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CR-INVARIANT SUBSETS OF CR-MANIFOLDS

BURGLIND JORICKE

ABSTRACT. Let H be a smooth hypersurface in C*, n > 3, and let M be a generic submani-
fold of H of real codimension one. We describe classes of compact removable singularities
K for LP-solutions of the tangential Cauchy-Riemann equations on H under the conditions
K c M, 1< p<oo. The classical theory gives results only in the case p > 1. But even for
p > 1 removable singularities for LP-solutions of the tangential Cauchy-Riemann operators
may be metrically much more massive than the classical theory predicts.

There is a relation of this problem with the problem of describing envelopes of holomorphy
of suitable neighbourhoods of H \ K. The most complete results for the last problem are
obtained in the case when H is the boundary 9 of a strictly pseudoconvex domain 2 in
", n > 3. As before K is assumed to be contained in a generic submanifold M of Q2. The
results use the decomposition of the manifold M into CR-orbits. One section is devoted
to the geometry of the decomposition of a CR-manifold into C' R-orbits. The minimal
obstructions for the germ of envelopes of holomorphy of suitable neighbourhoods of Q2 \ K
to be equal to © \ K are of two kinds. Either K is the boundary of a complex variety of
codimension one in £} or it is an exceptional minimal C R-invariant subset of M. The latter
case may occur as is shown by examples. Further examples show that the mentioned germ
of envelopes of holomorphy may be multisheeted. A couple of open problems is discussed.
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REMOVABLE SINGULARITIES 1
0. INTRODUCTION AND BACKGROUND

During the last few years the problem of describing removable singularities of analytic
functions of several variables or of their boundary values became very popular. We mention
here especially the paper {St] which gives a survey of most of the relevant articles up to 1988
and contains a large number of related references. References of more recent papers are, for
example, [An-Ci], [Ci-St], [Duv], [Fo-St], {J&2], {J83], [Law], [Lu]. The popularity of this
subject, maybe, is based on the fact that there are various connections of this subject with
other ones and a number of ”variations on the theme ” itself.

We will not give here a survey of known results but we will recall some aspects of the
theory of removable singularities and related subjects. One problem is the following: Let
QCC'n > 2, be abounded domain of holomorphy. Characterize singularities of analytic
functions, i.e. those closed subsets A of the closure Q of Q, for which the set Q\A is a
domain of holomorphy or the union of domains of holomorphy.

On the opposite side, we ask which closed sets A C Q0 are removable. This means, each
function which is analytic in Q\A is the restriction to Q\A of an analytic function in Q.
In particular, a removable set does not contain any singularity set.

The most general problem, which includes both problems above, is to describe the envelope
of holomorphy of the set Q\A for domains of holomorphy Q1 and closed subsets A of the
closure Q1. (In case 2\ A is not connected the disjoint union of the envelopes of holomorphy
of the connected components of 1\ A is meant.) It turns out that although Q is a domain
of holomorphy the envelope of holomorphy of Q\A may not be a subset of C*, i.e. it may
be multisheeted.

A central question is to describe the possible intersection K = 00N A of singularity sets
or of removable sets A with the boundary 352. In other words, we are essentially interested
in envelopes of holomorphy of certain one-sided neighbourhoods of dQ\K . We take here the
following definition of one-sided neighbourhoods. Let H be a hypersurface of class C' in
C* (i.e. in a neighbourhood of each of its points H is the level set of a real function of class
C! with non-vanishing gradient, or equivalently, (see below) H is a proper sub-manifold
of C* of class C! and of real codimension one.) Let p be a point of H. A one-sided
neighbourhood of p (with respect to H ) is one of the connected components of U\H for
any neighbourhood U of p in C* which is divided by H into two connected components.
A one-sided neighbourhood of H is a set which contains a one-sided neighbourhood of each
point of H (with respect to H ).

The envelope of holomorphy depends in general on the choice of the one-sided neigh-
bourhood of OOQ\K . At least for bounded strictly pseudoconvex domains £ C C* and
one-sided neighbourhoods of IQ\K (K # 0§1) which are contained in ) the corresponding
envelopes of holomorphy stabilize (i.e. they will not decrease for one-sided neighbourhoods
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contained in a sustable fixed one-sided neighbourhood of 9NQ\K .) We will speak on the
germ of envelopes of holomorphy of one-sided neighbourhoods of 9Q\K .

For avoiding the inconvenience of the described kind the problem is sometimes slightly
modified: For example, one considers the question of analytic extendability of analytic func-
tions on OQ\K (i.e. of functions which are analytic in certain neighbourhood of 9Q\K
depending on the function) or the question of analytic extendability of continuous CR-
functions on OQ\K . (As usual, a CR-function (CR-distribution, respectively) is the weak
solution of the tangential Cauchy-Riemann equations.) All these questions are closely re-
lated one to the other and sometimes one of them is reduced to another one by varying the
domain (letting fixed the boundary part K'). The last setting of the problem, namely, the
question of analytic extendability of continuous CR-functions on I\ K seems to be nice
in each sense, nevertheless it has also some inconveniences: it consists of two problems, the
problem of analytic extension of continuous CR-functions to a one-sided neighbourhood
of N\ K and the problem of describing the envelope of holomorphy for a special class of
analytic functions (those with continuous (but not necessarily bounded) boundary values on
AN\ K ) see [J53] for the discussion of the problem for domains in C?.

We prefer to take here the setting of envelopes of holomorphy of one-sided neighbourhoods
of OO\K . In particular, for a bounded domain of holomorphy Q@ C C* a compact subset
K of 09 is called removable if OQ\K is connected and the envelope of holomorphy of any
domain V' = Q\A with A=ACQ and ANIN = K is equal to Q.

Thinking on these problems as on a generalization of Hartogs’ classical theorem a more
precise term could be "Hartogs negleagible” or "boundary trace of a removable set”, but the
shorter term ”"removable” is established now.

If one considers instead of all analytic functions those with boundary values on 90\ K
being distributions of finite order or being bounded functions or LP-functions we come after

the generalization to not necessarily pseudoconvex domains and an equivalent reformulation
to the following settings. ‘

Let @ C C* be a bounded domain with boundary of class C* and let 1 < p< o0. A
compact subset K of OQ is called (L?,d, )-removable if each function f € LP(OQN), which
satisfies the tangential Cauchy-Riemann equations 3,f = 0 (in the distributional sense) on
I\ K satisfies the equation Oy f = 0 on the whole boundary 0Y. If O is of class C™ and
if for any distribution f on O for which Oyf =0 on OQ\K there exists a distribution g
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on 00 with support on K such that Bb(f g) =0 on the whole boundary 00 then K 1is
called (E',04) -removable.

In this reformulation we are concerned with removable singularities of (bounded or dis-

tributional) solutions of partial differential equations in the classical sense (see, for example,
[Ha-Po].)

It is reasonable to speak on removable singularities in case of not necessarily closed hyper-
surfaces in C*. Let H be an orientable connected hypersurface in C*, H not necessarily
closed. Fix a side of H. (Call it the positive side of H.) If a function f is analytic in a
one-sided neighbourhood of H which is situated on the positive side of H we will say that
f is analytic on the positive side of H .

Let now K be a relatively closed subset of H. K is called removable (with respect to
H and to the positive side of H ) if the following holds. Let f be an arbitrary function
which is analytic on the positive side of H\K . Then there erists a connected one-sided
neighbourhood Os of H (O; must not necessarily be situated on the positive side of H )
which contains the germ of one-sided neighbourhoods of H\K situated on the positive side
of H\K and an analytic function on O which coincides with f on the mentioned germ
of one-sided neighbourhoods of H\K. For short, K is removable, if each function which is
analytic on the positive side of H\K has analytic extension to a one-sided neighbourhood of
H.

(L?,8,) -removability and (&', 3, )-removability with respect to H can be defined in an
obvious way.

The most complete information on the problem we have for the smallest possible dimension
n = 2. We have a good understanding of removable sets and of the connection of removability
with other problems in case of domains of holomorphy ! contained in C?. (See, among
others, [St], [J63].) For example, for a compact set K in the boundary OB? of the unit
ball B? in C? the germ of the envelopes of holomorphy of one-sided neighbourhoods of
dB*\K which are contained in B? is always contained in C? and is equal to B2\K . K
denotes the polynomially convex hull of K. So, a compact set K C B* is removable iff it
is polynomially convex. The point of view of describing removable sets gave new progress
in getting sufficient geometric conditions for polynomial convexity ([Duv], [Fo-St],[J51]).
Moreover, the detailed study of singularity sets for special domains in C? led to a new proof
of the well-known Corona theorem for the unit disc in the plane ([Be-Ra], [Slo]).

In this paper we will consider the question for domains in C*, n > 3. There exists a
complete characterization of removable sets in boundaries of strictly pseudoconvex domains
[Lu]. It is based on generalizing the following observation made for the dimension n = 2.
The original motivation for considering polynomially convex sets comes from approximation
theory. Under some condition on a compact set K C C?, excluding for example closed
hypersurfaces in C?, polynomial convexity is equivalent to the possibility of approximat-
ing analytic functlons near K by polynomials. More exactly K is polynomially convez iff
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the O -cohomology group Hg'l(K) is trivial and holomorphic functions near K can be ap-

prozimated by polynomials uniformly on K . The condition Hg’l(K) = 0 guarantees that

the inclusion map from K into the spectrum sp(O(K)) of the algebra O(K) is bijective.
O(K) is the space of functions holomorphic near K .

The theorem for m» > 2 is a natural generalization of this statement: the condition
Hg’l(K) =0 (or equivalently H;-’I(K) = 0) has to be replaced by the condition Hg’"_l(K) =
0 and instead of approzimating holomorphic functions by polynomials it is required that
smooth 8 -closed (n,n — 2)-forms near K can be approrimated uniformly together with
all derivatives by smooth 3-closed (n,n — 2)-forms defined on the whole C*. Another
equivalent condition for removability is Hg‘l(@\K) = 0; this condition being in terms of
the complement of K rather than in terms of K itself.

In the same way as it is difficult to give geometric conditions for polynomial convexity
it seems to be difficult to understand the geometric meaning of this condition. The more
general problem of the description of envelopes of holomorphy of one-sided neighbourhoods
of GN\K (9 a domain in C*, n > 3) is even more difficult. For example, let B® be the
unit ball in € and let K be a compact subset of the boundary. The germ of the envelopes
of holomorphy of one-sided neighbourhoods of AB*\K which are contained in B® is not
necessarily a subset of C*. It may be multisheeted. The reason for this difference is the fact
that the problem is really a problem concerning the operator 9, rather than the operator 9.
In C* we have to deal with a single operator while in C*, n > 2, we have an overdetermined
system of differential operators.

We wish to mention here a simple heuristic principle which gives some understanding of
the problem of the removal of compact sets in the boundary of strictly pseudoconvex do-
mains, namely, the analogy between Qka’s characterization principle for polynomially convex
hulls in €? on the one hand and analytic condition along one-parameter families of analytic
varieties via the Kontinuitatssatz on the other hand. Recall that by Oka’s characterization
principle [Stol] for polynomially convex hulls a point 2z € C*\K is not in the hull K iff
there exists a continuous one-parameter family of algebraic hypersurfaces H; in C* not
intersecting K with 2 € H; and dist (0,H;) — oo for t — co. For n =2 we get a family
of one-dimensional analytic varieties and this is what is needed for analytic continuation
via the Kontinuitatssatz. The only additional thing consits in monodromy considerations
to prove that the envelope of holomorphy is contained in C?. See [J63] where the heuristic
principle is performed into a rigorous proof. Monodromy considerations are based on the fact
that we have to deal with analytic sets of complex codimension one. This heuristic principle
also suggests results for n > 2. For example, the germ of envelopes of holomorphy of one-
sided neighbourhoods of dB*\K (n > 2) contains B*\K . Moreover, for a suitable small
one-sided neighbourhood O C B* of dB" \ K each analytic function in O is the restriction
to O of a well defined analytic function in B" \ K. The one-one correspondence between
connected components of B" \ K and connecied components of B* \ K is the same as for
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n = 2. But we have no chance to obtain the whole germ of envelopes of holomorphy by
analytic continuation along analytic varieties of complex dimension n — 1. It is enough to
use varieties of dimension one. So, in general, the envelope germ is expected to be much
larger than B*\K . In fact, in general B" \ K is not pseudoconvex, if n > 2. Moreover, the

envelope germ may be multisheeted. We will explain here an example with K situated on
a generic manifold of codimension one in 9B* .

Note that the connection between hulls characterized by a generalization of Oka’s principle
using analytic varieties of higher complez codimension on the one hand and between the
approzimation property like that in Lupacciolu’s theorem for forms of suitable degree on the
other hand is not clear at the moment.

The aim of this paper is to characterize large classes of removable sels in geometric
terms. We will give here detailed proofs of the results announced in [J62] and present
further results. We will neither try to give 2 maximum of results nor we will try to give the
most general formulation which can be obtained. We choose the statements by trying to
keep some balance in geometric clearness. and generality and develope some general methods
for proving removablility results. Note, that we do not know how to derive the results of the
present paper from Lupacciolu’s results.

The main results in this paper concern the following situation: §2 is a bounded strictly
pseudoconver domain in C*, n > 3, with boundary 90 of class C*, or H is a hypersurface
of class C* in C*, n > 3, which is strictly pseudoconver from one side. As in [J61] (where
the case n = 2 is considered) the basic assumption is that K is contained in a manifold
M of class C? contained in 9Q0 (or in H , respectively).

Recall that the most complete results on removable sets which are known up to now, concern
the case of sets K contained in manifolds (sometimes in manifolds of real codimension one).
This concerns the case of removable singularities in strictly pseudoconvex boundaries in
C? ({Jo1],[Fo-St],[Duv]) as well as the well-known classical Painlevé problem on removable
singularities of bounded analytic functions [Pai] of one complex variable: A compact set
contained in a rectifiable curve is removable iff it has zero one-dimensional Hausdorff measure
(see, for example, [Ma]). For general sets in the plane a complete geometric characterization
is not known.

By results in [Lu-St] the smallest dimension of a C? manifold M C 99 which contains

non-removable sets is 2n — 3. So we have to consider only manifolds of real dimension
2n — 3 and 2n — 2.

For manifolds of real dimension 2n —3 we give a complete characterization of removable
compact sets. This result was independently found by E. Cirka [Ci-St]. (In [Ci-St] the
smoothness conditions for M are weakened.)

For manifolds M of real dimension 2n — 2 we give a sufficient geometric criterion for a

compact set K C M to be removable. Probably it is also necessary but we are not able to
prove this at the moment.
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Note, that the assumption of strict pseudoconvexity of 9 (or of H ) can be considerably
weakened and still the mentioned conditiens are sufficient for removability. But if € is far
from being strictly pseudoconvex these conditions may be far from being necessary. So, in
case { is not pseudoconvex or 0! contains enough analytic manifolds there may occur

new reasons for a set to be removable (i.e. such ones which are not covered by the previous
formulations).

We will state ezamples of results without the assumption of strict pseudoconvexity. It is
left to the reader to add further statements or to generalize the present results. It is also not’
hard to see that the methods can be applied to more general situations than hypersurfaces

in C*.

1. TERMINOLOGY AND STATEMENT OF THE RESULTS

For the formulation of our main results we need several times the notion of manifolds and
submanifolds. Since the meaning of these terms in different papers is not always identical
we give here the definition we will work with throughout the paper.

A manifold of real dimension r is a Hausdorff space each point of which has a neigh-
bourhood which is homeomorphic to an open subset of R". A Hausdorff space each point
of which has a neighbourhood which is homeomorphic to either an open subset of R” or
to a set of the form {z = (z1,...,2m) € U, 21 2 0} where U is an open subset of R” is
called a manifold with boundary. A compact manifold (or, equivalently, a closed manifold)
is a manifold which 1s a compact topological space. A compact manifold with boundary is
a manifold with boundary which is a compact topological space. A manifold (or a manifold
with boundary) is said to be of class C*, k =1,...,00 (or, real analytic, respectively) if an
atlas of class C* (a real analytic atlas, resp.) is given, i.e. there is a covering of the manifold
with relatively open sets U, , homeomorphisms ¢, of U, onto open subsets U, of R” (or
onto sets of the form U, N {z; > 0} with U, open in R") such that for any pair, say U,
and U, the mapping 207! : @1(Uy NU2) = @a(Uy N U,) is of class C* (real analytic,
respectively). On manifolds of even real dimension (not on manifolds with boundary) one
may introduce a complex analytic structure in an analoguous way and call them complex
analytic manifolds. All manifolds we will consider here are assumed to be paracompact.

Let M be a manifold of class C*. A subset [' C M equipped with the structure of a
manifold of class C* is called a submanifold of M of class C* (k > 1) if the inclusion map
from T into M is a C* map whose differential is everywhere injective. In particular, the
inclusion map is continuous. But in this terminology a submanifold of M is not required to
be a topological subspace of M , in other words, the manifold topology on a C* submanifold
[' does not necessarily coincide with the topology on I' induced from M (it may be more
fine). For example, a submanifold ' of M is allowed to be dense in M . If the manifold
topology and the induced topology coincide on a C* submanifold T' of M we will call T



REMOVABLE SINGULARITIES 7

a proper submanifold of M. Note that in [Go-Gui] submanifolds in our sense are called

immersed submanifolds and proper submanifolds in our sense are called there submanifolds.
Our terminology is close to that in [Su].

Let I" be a C* submanifold of M. Note, that for each point p € T there exists a
neighbourhood U, of p in the manifold topology of I' such that on U, the two topolo-
gies coincide. Therefore the topologies coincide on relatively compact subsets of I' (in the
manifold topology).

For other classes than C* submanifolds are understood in an analoguous way. We will
not explane this here explicitely.

Let now I' be a connected submanifold of R™ of class C'. Then I' carries a natural
metric dr. It is defined in the following way. For two points 2; and z; in I' the distance
dr(z1,22) is equal to the infimum of the Euclidean length of all C' curves y which are
contained in I' and join the points z;-and z;. (The Euclidean-length of the curve v is the
length of v as a curve in R™ with the usual Euclidean metric.) It is clear that convergence
in the metric dr implies convergence in R™ but the converse is not true: the Euclidean
distance between two points in I' may be small while the distance in the metric dr is large.

As usual we will say that ' is complete in the metric dr if every Cauchy sequence in
(T,dr) has a limit in T in the topology defined by dr. Sometimes for a submanifold I' of
R™ we will speak on metrical completeness (omitting the phrase "in the metric dr ”) having
always in mind completeness in this sense. For example, the infinite spiral

I'= {re?™*0) 1 <r <2} cC,

¢ being a strictly increasing C® function defined on (1,2) with ¢(r) = —co0 for r — 1+

and @(r) = co for r — 2—, is complete in the metric dr (but, of course, not in C'). the
"half-infinite” spiral

Iy = {re?mie . % <r<2} (¢ as above)

is not complete in dp, .

[n this paper we need also the notion of CR-manifolds. We will consider here only CR-
manifolds immersed into C*. So we have always in mind the following definition.

Let M be a submanifold of C* of class C*. For p € M the tangent space T,M can be
identified with a real linear subspace of 7,C* . Usually we identify 7,C* with C* . Denote
by J the operator of multiplication with the imaginary unit in C* (considered as a real
linear space). If the dimension of the real linear subspace T/M = T,M 0\ JT,M does not
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depend on p € M and is positive, then M is called a CR-manifold of class C* immersed
into C* . :

The space T;) M can be considered as a complex linear subspace of C* . To avoid confusion
we will write T/M for TPJ M considered as a complex linear subspace of C*. The complex
dimension of 7;M is called the CR-dimension of M and is denoted by dimgr M .

Let M be a CR-manifold. A submanifold T' of M of class C* is called a CR-submanifold
of M (of class C*) if for each point p € ' the inclusion -

(1.1) T,0 > T/M

holds. (We usually identify the tangent space T,I' with a subspace of T,M .) The inclusion

(1.1) implies that T' is a CR-manifold (immersed into C*) of the same CR-dimension as
M.

A CR-manifold M immersed into C* will be called generic, if the CR-dimension is the
minimal possible one, or in other words, if

(1.2) ToM + JT,M =T,C" (in the sense of real linear spaces)

for all p € M. A CR-manifold M immersed into C* of odd dimension 2!/ + 1 will be

called maximally complex if, conversely, the CR-dimension of M is the maximal possible
one, namely [,

In the paper as usual, we will consider a CR-manifold M which is imbedded into C* . This
means, that M is a proper submanifold of C* with constant dimension of the complex tan-

gent space. Its real dimension will be denoted by dim, M and the number dim, M — 2dimggp M
will be denoted by e(M).

Now we can formulate our main results. Let §2 be a strongly pseudoconvex domain in C*,
n > 3. Note first, that the most elementary singularity set which comes into mind is the zero
set of an analytic function in £ which is continuous up to the boundary. In well-behaved
cases the intersection of such a set with the boundary € is a connected closed maximally
complex CR-manifold of real dimension 2n —3 contained in 3. This is, roughly speaking,

the only non-removable compact set contained in a connected proper submanifold of 9Q of
real dimension 2n — 3.

Theorem 1. Let Q C C*, n > 3, be a bounded strongly pseudoconvezr domain with boundary
00 of class C?, and suppose M is a connected proper submanifold of Q) of class C? and
of real dimension 2n — 3. A compact subset K of M is not removable iff K = M (hence
M is closed) and M is a mazimally complex CR-manifold.

So, if either M\ K is not empty or M is not maximally complex then K is removable.

Remark 1. By the theorem of Harvey and Lawson [Ha-La] a connected closed maximally
complex CR-manifold of class C? and dimension 2n — 3 contained in the boundary 89
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of a strongly pseudoconvex domain @ C C*, n > 3, bounds a complex variety V in Q of
complex dimension n — 1. (More detailed see section 4.) This fact shows that theorem 1 is
the complete analogue of the results for  C C*. Indeed, a compact set K contained in a
connected proper submanifold M of dB? of real dimension one is not removable iff K is
not polynomially convex and by a theorem of Stolzenberg [Sto2] this happens iff K bounds
a complex variety V C B? of complex dimension one (hence K = M and M is closed). In
dimension n > 2 it is even easier to check if a manifold of real dimension 2n — 3 bounds
an analytic variety of complex dimension n — 1 or not. In dimension n > 2 this depends
only on geometric properties (i.e. on the topology and the CR-geometry) of the manifold.

Now we will formulate the results for the case of manifolds M C 9§ of dimension 2n—2.
By [J61] compact subsets of sufficiently small diameter of generic CR-manifolds M contained
in 89, M of class C? and of real dimension 2n — 2, are removable. If a submanifold of
90 of the same dimension is not generic the conclusion may not be true. So, let M C 9§
be a generic CR-manifold of dimension 2n —2 imbedded into C*, and let K be a compact
subset of M. Theorem 1 describes an obstruction for K to be removable: if K contains
a closed maximally complex CR-manifold of dimension 2n — 3 then K is not removable.
The most important property of a closed maximally complex CR-submanifold of M of
dimension 2n — 3 in this respect is: it is a closed CR-invariant subset of M . Here a subset
S of M is called CR-invariant, if for each p € S and each C? curve v : [0,1] = M
with ¥(0) = p, ¥'(t) # 0 and 7'(t) € T,;’(t)M \ {0}, the point (1) = g belongs to S. The
smallest CR-invariant subset of M containing a given point p € M is called the CR-orbit
through p. By [Su] the CR-orbits are (possibly non proper) CR-submanifolds of M of class
C'. CR-invariant subsets are interesting in connection with the propagation of properties
of CR-functions and CR-distributions.

Theorem 2. Let 0 be as in theorem I and let M be a proper submanifold of 0. Suppose
M is a generic CR-manifold of class C* and of real dimension 2n — 2. If a compact set

K C M does not contain a non-empty compact CR-invariant subset of M (and therefore
K # M) then K is removable.

A compact CR-invariant subset S of M is called minimal, if there is no non-empty
compact CR-invariant set 5, with §; C S, 5; # S. Clearly, the intersection of compact
CR-invariant subsets is again a compact CR-invariant subset of M, so each compact CR-
invariant subset of M contains a minimal compact CR-invariant subset of M. We are
interested in a more detailed description of (non-empty) minimal compact CR-invariant
subsets of manifolds M described in theorem 2. A CR-invariant subset of M is the union
of CR-submanifolds of M . Those may be either of real dimension 2n — 2 or 2n — 3 (in
view of the strong pseudoconvexity of 92 no complex manifold is contained in M, so
the dimension 2n — 4 is impossible). In case M is foliated into CR-submanifolds of real
dimension 2n — 3, the description of minimal compact CR-invariant subsets of M can be
given by methods of foliation theory of codimension one (see, for example, [He-Hi]). This
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are the minimal compact saturated sets. In the general case the approach of Sussmann [Su]
combined with methods of foliation theory gives the following theorem. We may even remove
the condition that M is contained in a strictly pseudoconvex boundary.

Theorem 3. Suppose M is a non-compact connected generic CR-manifold of class C* and
of real dimension 2n — 2 imbedded into C*. A minimal compact CR-invariant subset S
of M has ezactly one of the following two forms:

1. S is a proper compact mazimally complez CR-submanifold of M of real ;iimension
2n —3;

2. S is the union of metrically complete mazimally complez exceptional CR-submanifolds
Sa of M. Each S, is dense in S.

Here the metrical completeness of S, . is.understood with respect to, the metric ds, . A
metrically complete CR-submanifold of M of real codimension one is called ezceptional if
it is neither proper nor locally dense in M . A set S of the second kind is called an excep-
tional minimal compact CR-invariant subset of M . These objects are the analogues of the
exceptional leaves, or, the exceptional minimal sets, respectively, in foliations of codimen-
sion one. Note that an exceptional minimal compact CR-invariant set may occur in generic
CR-manifolds of dimension 2n — 2 contained in strictly pseudoconvex boundaries and such

a set may be the boundary of a minimal singularity set. Indeed, in section 5 we will prove
the following

Theorem 4. There ezists a bounded strictly pseudoconver domain 0 in C* with boundary
00 of class C*® and a proper connected compact submanifold M of 0Q of class C* which
is a generic CR-manifold of real dimension 4 with the following properties:

1.. M admits a smooth foliation of codimension one with leaves being CR-submanifolds of
M.

2. There is an exceptional minimal set S of the foliation but no compact leaf.

3. The exceptional minimal set is the boundary of a minimal singularity set in (), i.e. there
ezists a closed subset As = As of Q with boundary AsNIQ equal to S such that O\ Ag

is a pseudoconver domain. There is no non-empty closed subset A = A of Ag such that
O\ A is pseudoconvez.

Removing from M a compact set which does not intersect S we get an example of a non-
compact generic (2n — 2)-dimensional CR-manifold with the same properties as the manifold
in theorem 4.

We do not know if an exceptional minimal compact CR-invariant subset of a generic CR-
manifold M of dimension 2n — 2 contained in a strictly pseudoconvex boundary is always
the boundary of a singularity set. This would be a generalization of the theorem of Harvey
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and Lawson [Ha-La]. This generalization would imply that the condition in theorem 2 is
also necessary. See also section 6 for the discussion of further open problems.

We will now formulate variants of the theorems if the assumption of strict pseudoconvexity
of Q) is removed. '

Theorem 1'. Let Q@ C C*, n > 3, be a bounded domain with connected boundary of class
C?. Let M be a connected proper submanifold of Q0 of class C* and of real dimension
2n — 3. If a compact subset K of M is not removable (with respect to -0 ) then K = M
(hence M is closed) and M s a mazimally complez CR-manifold.

Theorem 2. Let Q be as in theorem 1’ and let M C 0Q) be a proper submanifold which is
a generic CR-manifold of class C* and of real dimension 2n—2. If a compact set K C M
does not contain a non-empty CR-invariant subset of M then K is removable.

In the following theorems 0f) is replaced by a (not necessarily closed) hypersurface H.
We will not give the most general statements.

Theorem 1la. Let H be an orientable hypersurface of class C* in C*, n > 3, which is
strictly pseudoconvez from one side. Suppose M is a connected proper submanifold of H of
dimension 2n—3 and of class C*. Let K be a relatively closed subset of H (not necessarily
a compact set). If K is contained in M and K is not removable (with respect to H ) then
K =M (hence M is relatively closed in H ) and M s a mazimally complezr CR-manifold.

Theorem 2a. Let H be as in theorem la and let M be a proper submanifold of H which
is a generic CR-manifold of class C? and of dimension 2n — 2. Let K be a relatively
closed subset of H, K C M . If K does not contain a non-empty CR-invariant subset of M

(and, therefore, K # M ) then K is removable (with respect to H ) and, therefore, H\K
is connected. '

The minimal relatively closed CR-invariant subsets of M are described by proposition 2.2
below.

The next theorems concern (L?, ;) -removablility. No condition (rather than the natural
smoothness condition) will be made for the hypersurface H.

Theorem 1 has a reasonable analogue only if p < 2. (By classical results, see for example,
[Ha-Po], each set in R" of finite (n — 2)-dimensional Hausdorff measure is removable for
L? solutions of first order differential operators if p > 2.)

Theorem 1b. Let H be a hypersurface in C* of class C* and let M be a connected proper
submanifold of H of class C* and of real dimension 2n—3. Suppose p< 2. [f K C M s

relatively closed in H and K is not (LP,0,)-removable then K = M and M is relatively
closed in H and mazimally complez.

Theorem 2b. Let H be a hypersurface in C* of class C*. Suppose M is a proper
submanifold of H of real dimension 2n—2 and of class C* which is a generic CR-manifold.
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If the compact subset K of M does not contain G;(M)-invariant sets then K is (L?, 5,,)-
removable for each p,1 < p < 0.

For p > 2 a weaker condition is suﬁiczent If2 < p < 0o and the compact subset K ofM
does not contain compact CR-invariant subsets of M of infinite (2n — 1 = p') - dimensional
Hausdorff measure then K is (LP,8,)-removable. If K C M does not contain G {(M)-
invariant subsets of positive (2n — 2)-dimensional measure then K is (L™, 0,)-removable.

Here p' is conjugate to p : ;—D + 1 > = 1. The minimal compact CR-invariant sets are
described by theorem 3.

Note that the property of a compact subset K of a generic CR-manifold M of class
C?, imbedded into C* which plays the main role in the preceeding theorems, namely, to

be without CR-invariant subsets is stable under small C? perturbations of M and K (see
proposition 2.4).

The proof of the theorems consists of two parts. The first part is the study of the geometry
of the decomposition of a CR-manifold into CR-orbits. This is done in section 2 and may be
of interest for itself. The second part is the propagation of wedge-extendability along orbits.
This is in principle well-known, but seems to be new in the smoothness class C? for generic
CR-manifolds of real codimension two. A proof is given in section 3. In section 5 we give a
proof of theorem 4. Further examples and open problems are discussed in section 6.

We conclude this section with a simple example which illustrates the theorems 2 and 2b.

Example 1.1. Let H = 0B’ be the unit sphere in C°, the boundary of the unit ball B® in
C. Let I = (0,3) be an interval contained in the real azis R. The manifold M = {z =
(21,22,23) € OB : 2, € I} is a generic CR-manifold of dimension § and CR-dimension 1.
Moreover, M is foliated, the leaves are the spheres S, = {21} x {(22,23) : |za* + |23 = 1 —
|21|2}, z1 € I, and each sphere is a compact CR-manifold of CR-dimension 1 and dimension
8. By theorems 1 and 2 a compact subset K of M is removable iff K does not contain a
whole sphere S;, for some z; € 1.

Moreover, K is (L™, 0,)-removable, if the set

{z1€1:5,, C K}

has zero linear measure. This condition is also necessary by Denjoy’s theorem ([Ahl-Bey] ,
[Den], [Ma]). Indeed, it is enough to consider functions depending only on the first variable
.

Forp <2 K is (L?,0,)-removable iff it does not contain any sphere S,, with z; € I. The
“only if” part follows easily from the fact, that the function z — -:- is in L? with respect to
planar measure if 1 <p < 2.

Let p = 2. K is (L?,8,)-removable if K does not contain an infinite number of spheres
SZ] y 21 € 1
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Forp>2 K is (L, 0)-removable if

Az_pl({zl € I . Szl C I(}) < 00.

(Here A, is the Hausdorff measure of dimension a).

Sufficient conditions for a cocmpact set|J, cp S, (E is a compact subset of I) to be a non-

removable set can be given in terms of certain capacities (see [Ca]). In terms of Hausdorff
measures one can prove, for ezample, the following: If p > 2 and

Ad{zn€l:S,,CK})>0

for some @ > 2 — p', then K is not (L?,8,)-removable. For this and for more information
see [Ca], [Ma-Ha).

Denote for any K C M by H(0B® \ K) the germ of envelopes of holomorphy of one-sided
neighbourhoods (contained in B*) of 9B \ K, and denote by K, the largest G;(M)-invariant

subset of K. It is quite easy to see that for any K C M the set H(GB? \ K) is one-sheeted,
moreover,

HOB \ K)=HOB*\ K\)=B\( |J B.),
21:5;) CK)

where

B., = {z1} x {(z2,23) : |22 + |zs|* < 1 = |21|*} = B’ N ({z1} x C?).

For deeper examples and open problems the interested reader is referred to section 6
before reading sections 3 and 4.

2. CR-ORBITS IN CR-MANIFOLDS

We will study now the geometry of the decomposition of CR-manifolds into CR-orbits.
CR-orbits are propagators of properties of CR-functions (like vanishing in a neighbourhood
of points or wedge extendability [Trv], [Trp]). This gives a motivation for this section.

The notion of orbits of families of vector fields goes back to a well written paper of
Sussmann [Su]. We will not repeat here the background and motivation for introducing

orbits in the general situation, but we have to go into the detail of the construction in the
case of CR-manifolds.

So, let M be a CR-manifold of class C*(k > 2) imbedded into C*. (Sussmann con-
sidered only the C* case. His construction works as well in the C? case.) Let m be the
CR-dimension of M. The CR-structure on M defines in a natural way a family of vector
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fields: Cover M with relatively open subsets {U;}%2, of sufficiently small diameter and

choose for each U; 2m real non-singular vector fields X9 . .,Xé';_)‘ of class C*~! such
that in U; their real linear hull coincides with T/M :

spanR(ij)(p), . ,Xéﬂ(p)) = TPJM for each p € U;.

The {X{j) you ,Xz(;’;l 22, give an everywhere defined set of vector fields on M in the sense
of Sussmann. One can make Sussmann’s construction with this set of vector fields, but it
is more convenient to work from the beginning with their linear span. A vector field X on

U; which is of the form X = ¥ a; X for real C*~! functions a; on U; we will call a
CR-vector field on M .

Let X be a CR-vector field of class C*~!(k > 2) defined in an open subset U of M.
For a point p € U denote by t — vx (p,t) the integral curve of X with starting point p,

Wm0 =5 ox(pt) = X(ax(p,1),

t belongs to the maximal interval of definition I,,. It is well known ([Hart}, V.4.1 and V.3.1)
that the mapping (p,t) — vx(p,t) is of class C*~! and for fixed t the mapping p — vx(p,t)
is a diffeomorphism of some neighbourhood of p on M onto some neighbourhood of
YX (pv t) .

Denote for fixed p the mapping t — vx(p,t) by px, and for fixed ¢ denote the mapping
p — vx(p,t) by gx. (both mappings are defined on the natural domain of existence). The
local diffeomorphisms gx, ( X is a CR-vector field on some of the U;, ¢ is a real parameter,
gx. 1s defined on its domain) generate a pseudogroup of local diffeomorphisms: Composites
GXqrte © * - © gx,t, and inverses (gx.)™' = gx,(-y are defined in a natural way on their
domain of existence. (The identity corresponds to the time-parameter ¢ = 0.) Denote this
pseudogroup which is associated to the CR-structure of M by G,(M).

Two elements p; and p; of M are called G;(M)-equivalent if there exists an element
g € Gy(M) such that g(p;) = p2. Equivalence classes for this relation are called CR-orbits.
In other words, let po € M. The CR-orbit of M through po which will be denoted by
O(M,po) consists of all points p of the form p = g(po) for some element g = gx :, 0+ 0
gx,, € Giy(M). (Here g is a natural number, Xi,...,X, are CR-vector fields of class
Ck-!, each defined on some U;. t,,...,t, are real parameters and the composite g is
defined on the natural domain of existence.) The equality p = g(po) means the following:

p can be joined with py by a piecewise CR-curve v = «,. This means, there is a
continuous mapping 7 : {a,b] = M with y(a) = po, ¥(b) = p such that the interval [a, b]
can be devided into ¢ intervals [t;,ti4q] (I =1,...,¢) with a = ¢ < --- < {41 = b and
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for each [ the part 4 = 7|[t;,ti41] of + is an integral curve of the vector field X; (and,
therefore, it is of class C*). In particular.each CR-orbit is connected.

Sometimes it is more convenient for us to work with the following definition of CR-curves
which is (for curves of small length) equivalent to the preceeding one:
A CR-curve v :[a,b] = M 1is a curve of class C*, of sufficiently small length which satisfies
the condition +'(t) € T_;’(t)M\{O} for each t € [a,b] (at the endpoints a,b derivatives are
taken from the right or from the left, respectively). (See also [J64].)

Fix now the natural number ¢, the g-tuple X of CR-vector fields, X = (X,,...,X,)
and the point p € M. We consider the mapping

(2.1) t= (b, slg) = (9xqt, 0 0 9x, ) (P) = 9x.(P)

on its natural domain of existence Qx, C R?. Denote this mapping by px,. px,p is a
mapping of class. C*~! from the open subset Q2x, of R? into M.

Following Sussmann we introduce now on the orbits a natural topology: the strongest one
which makes all mappings of the form py, (for arbitrary p € M , arbitrary natural numbers
g and arbitrary g-tuples of CR-vector fields X ) continuous. Sussmann’s proof gives that
with this topology each orbit admits a unique differentiable structure (of class C*~1) such
that it is a submanifold of M in the sense described in the introduction (but not necessarily
a proper submanifold of M ).

For further use we recall two lemmas of Sussmann (lemma 5.1 and lemma 5.2 of [Su]).
We formulate the lemmas for C? manifolds with our special choice of the system of vector

fields.

Lemma A. Suppose M is a CR-manifold of class C*, k > 2, imbedded into C* and N
is a CR-orbit of M. Let py € N be an arbitrary point. Suppose q is a natural number,
X = (X1,...,X,) ts a q-tuple of CR-vector fields on M and t = (t,,...,1;) is contained
in the domain Qx ,, of the mapping px p, . Denote by Tiflx ,, the tangent space of Qx p,
at t (which we will often identify with R?). Then

(2.2) dpx po(Tix,p,) C TpN.

Lemma B. Let M and N be as in lemma A and let p € N be an arbitrary point. There

exists a point pg € N, a natural number q, a q-tuple of CR-vector fields X = (X,,...,X,)
and a point t € Qx,, such that

(2.3) Px.po (1) (= gx,e(po)) = p and (dpx,p )(Tflx po) = TpN.

Note that the lemmas in [Su] are stated with T,,/N replaced by P(po). Here P is a
distribution on M, i.e. a mapping which assigns to every p € M a linear subspace P(p)
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of the tangent space T,M . Moreover, P is the smallest distribution with the following
properties: .

e P(p) contains T;,’M;

e P is G;(M)-invariant, i.e.for each p € M and each g € G;(M) with p in its domain
the differential dg maps P(p) into P(g(p)).

From the lemmas stated with P(po) instead of Ty, N and the rank theorem it follows
that for the mapping px ,, of lemma B the images px ,,(w) of small open sets w C Qx4
are integral submanifolds of P, i.e. the pxp(w) are manifolds such that T,px »(w) = P(p)
for all p € px po(w). Moreover, it turns out that sets of the form px . (w) for suitable X, po
and w cover the orbit N, they constitute a basis of the topology of the orbit N and define
a differentiable structure of class C*~! on N . From this the lemmas A and B follow in the
form stated above. We will use the lemmas in this form.

It is clear now from (2.2) that each'CR-orbit N -of the CR-manifold M is a CR-
subimanifold of M, i.e. T,N D T;;’M for each p € N. Moreover, different CR-orbits
are disjoint and the manifold M is the union of its CR-orbits. (The decomposition of M
into CR- orbits is uniquely determined.)

Together with the CR-orbits of M we will also consider the CR-orbits of open subsets of
M. Let p € M and consider for a neighbourhood U of p on M the U-orbit O(U,p). It
is clear that O(U,p) is contained in O(M,p). For a decreasing sequence of neighbourhoods
of p the dimensions of the corresponding orbits decrease and stabilize. The CR-manifold
germ obtained by considering the U -orbits O(U,p) for small neighbourhoods U of p on
M is called the CR-orbit germ at p and is denoted by O"°¢(M,p).

In the following we need some information about the structure of sets which are invariant

under the action of the pseudogroup G;(M). In other words, we consider subsets S of M
with the following invariance property:

p € S implies g(p) € S for each g € G;(M) with p in the domain of g.
Equivalently, § is G;(M) -invariant iff

together with a point p the set S contains all points of M which can be joined with p
by a (piecewise) CR-curve.

We will call such sets CR-invariant or, more precisely, G;(M)-invariant. If no confusion
will arise we will say invariant instead of G;(M)-invariant. It is clear that each invariant
subset of M consists of the union of CR-orbits of M .

Now we will formulate our results concerning the geometry of the decomposition of a
CR-manifold into CR-orbits. We will see that this decomposition has some properties in
common with foliation theory. This concerns especially some results on minimal closed
invariant sets. But there are also big differences. For example, different orbits may have
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different dimensions, moreover, the function p — dim, 0(M, p) is not necessarily constant
on a fixed orbit.

We begin with the following simple

Lemma 2.1. Let M be a CR-manifold of class C* imbedded (or immersed) into C* and
let S be a CR-invariant subset of M . Then the interior intS , the closure S, the boundary
S\intS and the complement M\S are CR-invariant. (The closure and the interior are
taken in M with the manifold topology). If Sy is another CR-invariant subset of M then
the sets S1\S, SU S, and SN S, are also CR-invariant.

Proof. Let p € intS and suppose g € G;(M) is a local CR-diffeomorphism which
contains p in its domain. There exists a neighbourhood U of p on M which is contained
in S and in the domain of g as well. It is clear that ¢(U) is open in M, it is contained
in S by the invariance of S and contains g(p). That means g(p) € IntS. We proved the
invariance of intS .

Let p€ S and let py, k =1,..., be points in S which converge to p (in the manifold
topology of M ). Suppose g € G;(M) contains p in its domain. Then for k£ > &y the point
pr is in the domain of g. Moreover, g(pk), (k > ko) is contained in S by the invariance of
S and g(px) converge to g(p). That means, g(p) € S. We proved the invariance of 5.

The remaining assertions are obvious. O

For a subset £ of M denote by I(E) the smallest invariant subset of M, containing
E . In other words, I(FE) is the union of all orbits O(M,p) for p € E. We call I(F) the
CR-invariant hull (or invariant hull) of E. In most situations we are interested in invariant
hulls of open subsets of M .

Lemma 2.2. Let M be as in lemma 2.1. If U is open in M then I(U) is open.
We omit the proof.

The following corollaries of lemmas 2.1 and 2.2 will be usefull.

Corollary 2.1. Let M be as in lemma 2.1. Suppose K 1is a relatively closed subset of

M, K # M. If K does not contain a non-empty relatively closed invariant subset then
I{M\K)=M.

Proof. I(M\K) is open. If I(M\K) # M then the invariant set M\I(M\K) is not

empty and relatively closed. Clearly it is contained in K . The contradiction proves the
corollary. O

Corollary 2.2. Let M be as in lemma 2.1. Suppose, moreover, that M does not contain

any non-empty relatively closed invariant subset different from M . Then for each open set
U in M we have I(U)=M .
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Proof. Apply corollary 2.1 to the set K = M\U. O

A relatively closed invariant subset S of a CR-manifold M as above is called minimal if

there is no non-empty relatively closed invariant subset S, of M which is contained in S
and does not coincide with S.

Corollary 2.3. Let M be as in lemma 2.1. Suppose, moreover, that M is connected. If
a mintmal relatively closed invariant subset S of M is not the whole of M then S has

no interior points with respect to M . All orbits, contained in S have dimension strictly
smaller than dim, M .

_ Proof. Suppose S# M and Int S # @. Then S\IntS is closed in M, non-empty (since
S =1Int S # @ would imply S = M by the connectedness of M) and invariant. This

contradicts the minimality of S. The assertion concerning the dimension of the orbits in S
1s now obvious. O

Lemma 2.3. Let M be as in lemma 2.1. Suppose S is the union of CR-orbits (for
ezample, S consists of one single CR-orbit of M ). Consider the CR-invariant set S\S
(the closure is taken in M in the manifold topology). (The invariance of S\S follows from
lemma 2.1). Let N be an orbit in S\S. Then the real dimension dim, N of N does not
exceed the mazimum of the real dimensions of the orbits contained in S .

Proof. Take an arbitrary point p € N and apply lemma B. Let py and g¢x,. be the
objects which existence is stated in lemma B. Recall that po = (gx.)~'(p). Let z € S
be sufficiently close to p (in the topology of M). Then z is in the domain of (gx.)™".
Denote zp = (gx.:)"'(z). The point 2y is close to po. Since the differential dpx ., depends
continuously on zg it follows that for z; sufficiently close to po the rank of dpy ., is not
smaller than the rank of dpx,, . But by lemma A the rank of dpx . is not greater than
the real dimension of the CR-orbit O(M, z) C S through z; and by lemma B the rank of
dpx p, 15 equal to the real dimension of N . Lemma 2.3 is proved. O

Let now M be a CR-manifold of class C? imbeddedinto C*. Suppose I' is a submanifold
of M which is not metrically complete in its natural metric dr. So Cauchy sequences in
(T',dr) may not have a limit in ' in the topology defined by dr . Nevertheless since for two
points p; and p; in I' the Euclidean distance between p; and p; in C* does not exceed
the distance dr(p1, p2), each Cauchy sequence in (I',dr) has a limit in the Euclidean metric
in C*. Denote by b the following set:

bI' = {Euclidean limits of all Cauchy sequences in (T',dr) which have no limit in
(T,dr)}.
Note that in this definition we did not exclude that to non-equivalent Cauchy sequences
{p;} and {z;} in (T,dr) (i.e. those with dr(p;,2;) not tending to zero) corresponds one
Euclidean limit in 6I'. Note that if on a submanifold T' of M the distance dps is equivalent
to dr then T is relatively closed in M iff M N 6T = §. So the condition M N 6T =
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generalizes the notion of relative closedness in M .

Let now N be a CR-orbit in M . The following proposition shows, in particular, that no
point of N can be contained in the set bN .

Proposition 2.1. Let M be a CR-manifold of class C* imbedded into C*. Suppose N is
a CR-orbit of M such that M N bN is not empty. Then M NbN is CR-invariant and for

each CR-orbit T of M contained in M NbN the real dimension dim, ' is strictly smaller
than that of N .

Proof. To prove the invariance of M NbON let p € MNbON and let g € G;(M) be alocal
CR-diffeomorphism of M with p in its domain. By the definition of MNON p = lim;_ p;
(the limit is taken in the Euclidean metric) for a Cauchy sequence of points {p;} in (N,dn)
which does not have a limit in (N, dy). Choose for each j and | C! curves v;; on N
which join the points p; and p; and which length do not exceed 2dn(p;,pi). For 7, > jo
the points p; and p; together with the curve v;; are contained in the domain of g. It is
now clear, that g(p;) (7 = jo) are contained in N and converge in the Euclidean metric to
g(p). Moreover, for 7, > jo the C' curve go~;,; is contained in N and the Euclidean
length of g o-y;; does not exceed dn(p;,p) multiplied by a constant depending on g. So
{9(pj)}i>io is a Cauchy sequence in (N,dy). It is clear that this sequence does not have a
limit in (V,dy) : otherwise the inverse local diffeomorphism g~! would map this limit to a
limit in (N,dn) of the sequence {p;}. To see this one has to repeat the arguments above
for the inverse local diffeomorphism ¢~! instead of g. The invariance of M NbN is proved.

Let now I' be a CR-orbit of M contained in M NbN . Since M NbN is contained in N
(closure in M in the manifold topology) it follows from lemma 2.3 that dim, I’ < dim, N .
Suppose, in contrast to the assumption, that the dimensions are equal. For an arbitrary
point p € I' we apply lemma B. Let py and gx: be as in lemma B, gx.(po) = p and
(dpxp0)(Teflx,p0) = T,I'. Let {z;}32, be a Cauchy sequence in (N,dy) with Euclidean
limit p which does not have a limit in (N,dy). For j > jo 2; isin the domain of (gx,)™".
Denote for j > jo the point (gx.:)~'(z;) by (;. Choose by the rank theorem a small C*
manifold @ in Qy,, C R? of dimension equal to dim, I' which is relatively closed in some
open subset of R?, contains ¢ and is such that pyx,, is a diffeomorphism of ¢ onto a
neighbourhood of p on I' (in the manifold topology of TI'). Shrinking @ if necessary we
may assume that @ is diffeomorphic to an open ball in R/ (l' = dim, N) and is contained
in Qx ¢, for large j. Denote by jx ,, (Ax.;, respectively) the restriction of px,, (px.; »
respectively) to Q. Then jx ¢, is close to pxp, in the C' topology if j is large.

Now we use the assumption dim, N = dim, I' = dim, @ . It follows (shrinking @ again, if
necessary) that for all sufficiently large j px,; is a diffeomorphism of @ onto a neighbour-

hood of z; on N. Let €, be an open connected subset of () containing ¢ with compact
closure in @ and with boundary 9Q; of class C?.
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Claim 2.1. There ezists a positive constant a not depending on j such that for each suf-

ficiently large j and for arbitrary points { in N\px,(Q1) the estimate dn((,(;) 2 a
holds.

Proof. Let ¢ € N\px(;(Q1) and let v be a C' curve in N which joins ¢ and (j.
Then the Euclidean length of v is not smaller than the Euclidean length of the connected
part ¥ of v which joins (; with the first point { of intersection of v with N\px ¢ (Q1).
It is clear that ( is contained in px¢;(8Q1). If j is large enough then the Euclidean length
of 4 is not smaller than the distance in @ of t from the boundary 9Q, of @, multiplied
by a constant not depending on j (the constant depends on the C! norm of the inverse of
the diffeomorphism px ¢, with px¢; close to px, in C'). The claim is proved. O

Now we will finish the proof of proposition 2.1. {z;};>1 is a Cauchy sequencein (N, dy),
so for some 7; and for.all { >0

[ RS

dN(z.ﬁ ’ zj1+l) <
Therefore, by the claim 2.1 l
zj+ € Px.g;, (Qr)-

But px¢;, (@Q,) is contained in px.;, (@) C N and it is compact in the manifold topology on
N and therefore also in the Euclidean topology in C", since it is the continuous image of a

compact set. It is also clear that on gx¢; (@,) the metric dy is equivalent to the induced
Euclidean metric:

for p1,p2 € px¢;, (@1) |p1 = p2| < dn(pr,p2) < ciipr — pal-

(]z| denotes the Euclidean norm of a point z € C*). So the Euclidean limit p of {z;} is

contained in ﬁx,(,-,(al) C N and p is a limit of {z;} in the metric dy. The contradiction
proves that the equality dim, N = dim, [’ is impossible. a

Not every CR-submanifold of a CR-manifold is CR-invariant (i.e. is the union of CR-

orbits). The following lemma gives a sufficient condition for a CR-submanifold to be CR-
invariant.

Lemma 2.4. Let M be a CR-manifold of class C* imbedded (or immersed) into C* . Let
[' be a CR-submanifold of M (of class C* ). If MNbI =@ (in particular, if T' is metrically
complete in its natural metric dr ) then T is CR-invariant.

Proof. Suppose I' is not CR-invariant. Let 4 be a CR-curve in M with starting point
p € I' and endpoint not in I'. Consider the maximal connected part of v which contains p
and is contained in ['. This part is open in + (since it is an integral curve of a C' vector
field on an open subset of M which is tangent to I' at points of ['). The endpoint of this
part is contained in M N bI' in contrast to the assumption. Lemma 2.4 is proved. ]
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The converse is not always true, i.e. not for each CR-orbit N of M the condition
M NbN =@ is satisfied. The following lemma gives sufficient conditions for a CR-manifold
M to have only CR-orbits with this property.

Lemma 2.5. Let M be a CR-manifold of class C* ifﬁbedded into C*. Let d > 0 be an
integer. Consider the following two conditions:

(a) Any CR-submanifold of M afreal codimension greater than d is contained in a compact
part of M .

(b) M does not contain a compact subset which consists of the union of CR-submanifolds
of M of real codimension greater than d.

If condition (b) is satisfied, then there are no CR-orbits of real codimension greater than d
which are contained in a compact part of M . Moreover, if a CR-orbit N of real codimension
d is contained in a compact part of M then N is metrically complete (in the metric dy ).

If both conditions are satisfied, then M does not contain any CR-orbit of real codimension

greater than d. Moreover, for each CR-orbit N of M of real codimension d the condition
MNbN =0 holds.

Lemma 2.6. 1.) Condition (b) is always satisfied for a CR-manifold M of class C* imbed-
ded (or immersed) into C* for which e(M) = dim, M —2dimcaM =d+1.

2.) Let M be as in 1.) . If the Leviflat part of M (i.e. that part of M where all eigen-
values of the Leviform are zero) is compact then condition (a) is satisfied. This fact takes
place if, for ezample, M is compact or M is contained in a hypersurface which is strictly
pseudoconvez from one side.

Proof of lemma 2.6. The proof is based on the following observation. Suppose, [ is a
manifold of class C? imbedded (or immersed) into C* such that for each point p € T' the
tangent space T,I' (considered as a real linear subspace of T,C* ~ C") is invariant under
the operator J of multiplication with the imaginary unit: JT,I' = T,I'. In other words
T,I' can be considered as a complex linear subspace of C*. Then I' is an analytic manifold
imbedded (or immersed) into C*. This fact is elementar. Suppose p; € I'. Represent T
locally near p as the graph of a vector valued function over a part of the tangent space T, ["
(Tp,I' considered as a real linear subspace of T,C* ~ C*). The condition JT,I' = T,I' for
all p € I' close to p is equivalent to the Cauchy-Riemann equations for the vector valued
function.

Moreover, there is no compact subset of C* which consists of the union of analytic
manifolds (see [Gr]). This proves part 1.). Part 2.) is clear. a

Proof of lemma 2.5. Suppose (b) is satisfied and in contrast to the assertion there
exists a CR-orbit I' of real codimension greater than d which is contained in a compact
part K of M. Then T' (closurein M) is also contained in K and therefore T' is compact.

Moreover, by lemma 2.3 T consists of CR-orbits of real codimension greater than d. This
contradicts (b). So there is no such CR-orbit.
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Let now N be a CR-orbit of real codimension d in M which is contained in a compact
part K of M. Then bN is contained in K and by proposition 2.1 8N consists of CR-
orbits of real codimension greater than d. By the preceeding arguments bN f,ie. N is
metrically complete. :

Suppose both conditions (a) and (b) are satisfied. If, in contrast to the assertion there
exists a CR-orbit I' of real codimension greater than d then by (a) it must be contained in
a compact subset of M . This is impossible as is shown above.

Let N be a CR-orbit of real codimension d in M. Then by proposition 2.1 M N bN

consists of CR-orbits of M of real codimension greater than d. So M NbN = as is shown
above. ]

Lemma 2.7. Suppose M is a CR-manifold of class C? imbedded into C*. Let S be a
minimal relatively closed (respectively, compact) CR-invariant subset of M . Then all CR-
orbits N, contained in S have equal dimension and have the property M NbN, = § (are

metrically complete, respectively). Moreover, N = S (closure in M ) for each CR-orbit N -
of M contained in S.

Proof. Suppose N is a CR-orbit contained in S with M NbN # @. Then bN (closure
in M) is CR-invariant, is contained in § and by proposition 2.1 it consists of CR-orbits of
dimension strictly smaller than the dimension of N. So N is not contained in bN . Since
this contradicts the minimality of S, for each orbit N in S the set M NN is empty.
Moreover, if S is compact, then the orbits contained in S are metrically complete.

Let N be a CR-orbit of M contained in § with

(2.4) dim, N < dim, T

for all CR-orbits ' contained in §. Then N (closure in M ) is relatively closed (compact,
respectively) and invariant and N is contained in S. So by minimality N = S . The lemma
follows from (2.4) and lemma 2.3. 0

We will now describe minimal closed CR-invariant subsets of CR-manifolds M under the
condition that the real codimension of the CR-orbits of M is either zero or one. (See lemma
2.5 and 2.6 for conditions which imply this fact).

The description of minimal closed CR-invariant subsets in this case follows along the same

lines as the description of minimal sets in foliation theory of codimension one ([He-Hi] Part
A, p. 4546, Part B p. 17-19).

The following proposition holds.

Proposition 2.2. Let M be a connected CR-manifold of class C*, k > 2, imbedded into
C* . Suppose all CR-orbits in M have either real codimension one or real codimension zero.

Then each minimal closed G ;(M) -invariant subset S of M has one (and only one) of the
following types.

1. §S=M and either
a) M s itself a CR-orbit or
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b) M is the union of CR-orbils N, of codimension one, each of them being dense in
M and with the property M NN, =0.
2. S consists of one orbit of codimension one which is proper and relatively closed in M .
3. S is the union of CR-orbits N, of codimension one in M such that M NbON, = 0
each of them with the following two properties:
a) N, is not proper.
b) N, is not locally dense in M (i.e. the closure N, in M has no inner point in
M).
A CR-orbit N, of codimension one which satisfies a), b) and the condition MNb&N, = §

is called exceptional and a minimal closed invariant subset S of M of the third kind
is called exceptional.

Proof. By lemma 2.7 each CR-orbit N of M contained in S satisfies the relation
MNbON =0.

Suppose S has interior points. Then S = M by corollary 2.3, so § is of the first kind.
By lemma 2.7

(2.5) N=8=M (closurein M) for each CR-orbit N of M.

If a CR-orbit N of M has itself interior points (with respect to M ) then by lemma 2.7
N = M. Indeed, M is connected and for an orbit N which is an open subset of M the
set M NbN is the boundary of N in M. But M NbN =@ for such N by lemma 2.7.

If no orbit in S = M has interior points, then all of them have real codimension one and
in view of (2.5) 1b) is realized.

Suppose S has no interior point. In this case each orbit in S has codimension one and
has no interior point in its closure. If no orbit in S is a topological subspace of M (i.e. no
orbit in S is proper) then § is of the third kind.

Suppose on some orbit N in S the topology induced from M coincides with the orbit
topology, i.e. N is proper. Prove that N=N (closure in M). If not there exists an orbit
Ny C N with Ny N N = 0. Since by mmlmahty N, = N for each p € N there is a sequence
p; € N; with p; — p (convergence in M) for § — oo. By the same reason for each j there
exists a sequence p;x € N with pjx — p; (convergence in M) for ¥ — oco. Choose a small
neighbourhood U, of p on N such that U, (closure in M) is contained in N. For each 7 and
k > ko(7) large enough the points p;; are not in U,. By a diagonal process we get a sequence
Pik(s) of points of N\U, which converges to p in the Euclidean metric (but not in the manifold
topology of N). This contradicts the fact that N is proper. The contradiction shows that

N is relatively closed in M. By minimality S = N and the second case is realized. The
proposition is proved. |

Proof of theorem 3. Since M is not compact, a minimal compact CR-invariant subset
of S can not be equal to M. Moreover, a generic CR-manifold of class C? and of real
dimension 2n — 2 imbedded into C* satisfies property (b) of lemma 2.5 with d = 1. So,
all CR-orbits of M contained in S have real codimension one. By lemma 2.7 all orbits
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contained in S are metrically complete. The rest is as in the proof of proposition 2.2: If no
orbit in S is proper, then S is exceptional. Otherwise, if an orbit N contained in S is
proper then it is compact and by minimality § = N . a

To give more inside in the geometric picture we give some reformulation of conditions 1,
2 and 3 of proposition 2.2. This reformulation is in analogy to foliation theory ([He-Hi]).

Proposition 2.3. Let M be a CR-manifold of class C*? imbedded into C*. Let S be a
minimal relatively closed CR-invariant subset of M . Suppose all CR-orbits of M contained
in S have real codimension one. Let N C S be a CR-orbit of M, let p € N and let
l, be a C' curve in M which contains p in its interior and which is transverse to T,N

(T,N considered as a real linear subspace of T,M ). The following conditions are pairwise
equivalent. '

1) N is locally dense (i.e. N (closure in. M ) has interior points with respect to M ).
I') NN, contains a neighbourhood of p on 1.

[1.) N is proper (and relatively closed in M ).
II'.) p is an isolated point of NN I,.

1) N is exceptional (i.e. N is not proper and not locally dense).
III') NN, is near p a one-dimensional Cantor set (i.e. for a suitable open part I, of I,
containing p the set N NI, is a Cantor set.)

A Cantor set is as usual a closed set without isolated points and without inner points.
The conditions I'), IT') and III') do not depend on the the choice of the point p € N and the
choice of the transverse curve I,.

As the proof of proposition 2.1 the proof of proposition 2.3 is based on lemma B: For
some natural number ¢ there exists a gq-tuple X of CR-vector fields, a C' manifold @ of
dimension equal to dim, N contained in R? (see the proof of proposition 2.1) and a point
po with the following properties. For some t € R? gx:(po) = p. Denote for z € I, close to
p the point (gx.)~'(2) by zo. There exist a C' mapping px,z(t), (2,t) € I, x @, which is
a diffeomorphism onto a neighbourhood of p on M and such that if z belongs to an orbit

of codimension one then px . maps @ diffeomorphically onto a neighbourhood z on this
orbit. We omit further details. O

Proposition 2.4. Let K be a compact subset of a generic CR-manifold M of class C*
imbedded into C* such that K does not contain non-empty Gj(M) -invariant subsets. Then
each sufficiently small C? perturbation of K 1is of the same kind.

More precisely, let ® be a C* diffeomorphism of M onto a manifold M; imbedded into
C*. Let M’ be an open part of M with K C M’ and with compact closure M in M.
If the C? norm of ®—Id (Id is the identity on M ) does not exceed a positive constant €

then M{ = ®(M'") is a generic CR-manifold in C* and ®(K) does not contain non-empty
Gy(M]) -invariant subsets.
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Proof. It is clear that ®(M’) is genericif ¢ is small. The condition on K means that for
each p € K the CR-orbit O(M,p) of M. through p is not contained in K . Equivalently,
for each p € K there exists a local diffeomorphism g, € G;(M) of a neighbourhood U,
of p onto an open set g,(U,), such that g,(p) is not contained in K. We may choose
U, small enough so that g,(U,) does not intersect K. Cover K with a finite number
of sets U,; as above, 7 = 1,...,l. We have to prove that for each local diffeomorphism
g € G4(M) and each connected open set U C M with U in the domain of g there exists a
constant €(g) such that if the C? norm of ®-Id over M’ does not exceed e(g) then there

exists ¢; € Gy(M!) with ®(U) in the domain of g, and with g,(®(U)) uniformly close
“to g(U). This follows from the fact that T3, ®(M’) is close to T,/M' for p € M’ if &
is close to the identity in C?. Indeed, we may suppose that U is small enough such that
in a neighbourhood of Uon M a family of vector fields Xi,..., X3, is defined with the
real linear span of X;(p)(I =1,...,2m; p € U) equal to TPJM’. There are corresponding
vector fields X; in a neighbourhood of ®(U), [ = 1,...,2m, with the real linear span
of the X(®(p)) equal to T&,’(P)@(ﬂl’), and, moreover, with X; 0 ® — X; uniformly small

near U. So, to each CR-vector field X in a neighbourhood of U on M corresponds a
CR-vector field X in a neighbourhood of ®(J/) with X o ® — X uniformly small near U .
The existence of ¢; follows now from the fact that by Gronwall's lemma the endpoints of
two integral curves ¥(t) = vy (p,t) and ¥,(t) = v, (p,t), t € [0,T], are close to each other
if the vector fields Y and Y; are close to each other. The proposition is proved. ]

3. A PROPAGATION RESULT FOR MANIFOLDS OF CLASS C?

Let M be a generic CR-manifold imbedded into C*, let p € M and let U be a neigh-
bourhood of p on M. Suppose K is a convex open truncated cone in T,C* ~ C",

K={CeC:|({|<a-Re((,0), [(|<h}

for positive constants a and h and a vector @ (the "symmetry axis” of ) of unit length

not contained in T,M . ((¢,0) = S %_, (xOy is the usual hermitian scalar product in C.)
A set W =W(U,K) of the form

WU K)={z+(e€C" :z€U,( € K}
is called a wedge with edge U.

A continuous function u on M is called wedge-extendable at p € M if there exists a
wedge W(U, K) which edge U is a neighbourhood of p on M and a continuous function
on M UW(U, K) which coincides with « on M and is analytic in W(U, K).

The following proposition is well-known for C? replaced by C%*,a > 0, i.e. in case
second order derivatives of the defining functions are Hoelder-continuous of order «.
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Proposition 3.1. Let M be a generic CR-manifold of class C* and of dimension 2n — 2
imbedded into C*. (So e(M) = 2.) Then .the wedge extendability propagates along the CR-
orbits of M . In other words, let u be a continuous CR-function on M and let v:([0,1] —
M be a CR-curve (of class C* ). Suppose u is wedge extendable at all points 4(t), t € [0, 1),
(to wedges Wy ). Then u is wedge ertendable at (1) to a wedge W,q) which depends
only on M and on the wedges Wy,t €10,1).

Suppose M is as in Proposition 3.1. Let p € M and suppose the local orbit germ O"°¢(M, p)
at p has dimension dim,M — 1(= 2dimgpM + 1). Let N, be a small representative of
O"¢(M,p) and put L, = T,N, + JT,N,. The real line I, = JT,N, TN, (the orthogonal
complement of the complex tangent space T;;’ N, in the real linear subspace JT,N, of T,C"
with the induced Euclidean structure) is not contained in T, M. Indeed, Ly, is invariant under
the multiplication with the imaginary unit and has a dimension strictly greater than T/ M.
For the proof of proposition 3.1 we will need the following lemma which will be proved below.

Lemma 3.1. Suppose M is as in proposition 8.1, p € M and let as above N, be a small
representative of the local orbit germ O"(M,p). Suppose dim.N, = dim,M — 1. Let H be
a small hypersurface of class C* in C* which contains a neighbourhood of p on M and is
transverse to l,. H divides suitable small neighbourhoods w of p in C* into two connected
parts wy and w, . For sufficiently small such neighbourhoods w the following holds: At least
for one of the w; there exists a (uniquely determined) connected analytic hypersurface X;
in C* which is relatively closed 1n w;. Moreover, Eﬂw is @ C' manifold with boundary
N,Nw in w. If M is contained in the boundary O of a strictly pseudoconvez domain
then the analytic hypersurface is contained in 0 and relatively closed in QN w.

Proposition 3.1 may be proved by using the scheme of [Jo4] but in the C? case there arise
some difficulties. So we will give the

Sketch of the proof. It consists of two steps. The first step is to deform the manifold
by moving points of the edge into the wedge with the aim to produce minimal points. The
second step consists in the application of Tumanov’s theorem [Tul] to manifolds which are
close in the C? topology to a given one. For the proof of the results on removable singularities
(see section 4) we need the result of each step separately.

We begin with the deformation of the generic manifold M of class C*. Let p be a point
of M andlet § € T/ M. We will use the notation of a CR-cone C(p,0) at (p,6) from [J54],

re. C(p,0) is a subset of M which is in suitable Euclidean coordinates ¢ on M an open
truncated cone with vertex p and "symmetry axis” 8:

(3.1) C(p,6) = ¢(C) with @(0) =p, (dowo)esr = b,

and

(3.2) C={veR™): || <a(v,er), Iv| <h}
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for positive constants @ and h. Here d(M) = dim, M, e; is the first coordinate vector
in R4 and (v,e1) denotes the scalar product oithe two vectors v and e; in RUM),
Euclidean coordinates ¢ in a neighbourhood of ¢' on M for which (3.1) holds we will

call adapted to C(p, ). Consider first the case when M is contained in the boundary of a
strictly pseudoconvex domain.

Lemma 3.2. Let M be as in proposition 8.1. Suppose M is contained in the boundary 0}
of a bounded strictly pseudoconvezr domain Q) with boundary of class C*. Let p be a point
of M which is not minimal. Denote by N, a small representative of the local orbit germ

O"(M,p) (which is of real codimension one in M ). Let C be a CR-cone at p and let
be Fuclidean coordinates on M adapted to C :

p(C)=C

for a convez truncated cone C in R) with vertez zero. Consider a non-negative function
p of class C* in R¥M) with support in C and with sufficiently small C* norm which is
strictly positive on C (compare with lemma 1 in [J64]). Let © be a vector in T,C* (T,C*

identified with C* ) which is transverse to the real linear span of T,M and I, and directed
into the inside of (1.

Define the function d on M,

23 d(z)= poez)-0 for z close to p,
(3.3) d(z)= 0 away from p.

The deformed manifold My,
My={z+d(2): z€ M}

is of class C?, is contained in M UQ and p is a minimal point of M.

Proof of Lemma 3.2. It is clear that My is contained in M U §}. Suppose p is not
minimal for My. Then the local orbit germ O'“(Md,p) has real codimension one in M;.
Moreover, a small representative of it, A, contains the intersection of N,\C with a small
neighbourhood of p in C*. Indeed, all points of N,\C are minimal for N, . It follows that
p can be joined with any point ¢ in N,\C by a piecewise CR-curve 7, in M , v, contained
in (M,\C)U {0}. Since (N,\C) U {0} is contained in M, the curve v, is a piecewise
CR-curve for My, too, and so any point g of N,,\C" is contained in A, .

Apply lemma 3.1 to M, N, and the hypersurface 90y O M, obtained from 99 by a
suitable deformation, 9Q; C Q U 3. Denote by ; the domain bounded by 9§;. If d is
small enough, 4 is strictly pseudoconvex. From lemma 3.1 we get a connected relatively
closed analytic hypersurface &, in 0y Nw with boundary A, on 8Q,. (w is a suitable
neighbourhood of p in €C*.) In the same way we get a connected relatively closed analytic
hypersurface X, in QNw (shrinking w, if necessary) with boundary N, on 9Q. Note that
near N,\C the two manifolds X, and X, coincide. To see this, apply the lemma 3.1 to a
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neighbourhood of each point ¢ on N, and on M. Since X, is closed in Nw and X, is
connected and contained in Qg Nw C QNw, we get

(3.4) Ay C X,.

Indeed, otherwise there would exist a curve «v:[0,1] — &}, with the following property:
for each t € [0,1) a neighbourhood of ¥(¢) on A, is contained in X, but this property
does not hold for ¢ = 1. 4(1) is contained in 4Nw C QNw, so in a small neighbourhood of
(1) the analytic manifold X, is the zero set of an analytic function f which is defined in a
neighbourhood V of (1) in C*. Consider the analytic function f|(X,NV). It vanishes in
a neighbourhood of ¥([0,1))NV on &, so it vanishes identically. Hence a neighbourhood
of (1) on A, is contained in X,. The contradiction proves the inclusion (3.4).

The inclusion (3.4) implies now the following:
(3.5) N, C (X, U N,) N 09,.

Now N, is a CR-submanifold of M, and the deformed cone Cy = {z +d(z) : z € C} isa

CR-cone on M;. So certain CR-curves on N, with starting point p are contained in Cj.
Lemma 3.2 follows now immediately from the following claim.

Let X, be an arbitrary C' manifold which contains X, U N,. (Recall that X, U N, is a

manifold with boundary of class C! in @Nw, thus a manifold X, with the described property
always exists.)

Claim 3.1. Cy does not intersect )~(p .

Proof of claim 3.1. Let & be a real hypersurface in C* (i.e. a proper submanifold of C*
of real codimension one) of class C' which contains a neighbourhood of p on X, UM . The
existence of S follows easily from the fact, that T, X, is spanned by [, = JT,N, © TJN, and
T,N, and the real line I, is not contained in T, M.

By the choice of O the vector © is transverse to §. Since C C M C S and C; =
{z4+pop™(2)-©:2€ C} with goy™! positive on C, the cone C; does not intersect S
if g is small. But § contains a neighbourhood of p on 5(,, and the claim is proved. m

For arbitrary manifolds M which satisfy the conditions of proposition 3.1 we use the
following two lemmas instead of lemma 3.2.

Lemma 3.3. Suppose M is as in proposition 8.1 and let p € M . Suppose through p passes
a CR-submanifold T' of M of real codimension 2 in M, i.e. an analytic manifold of complex
dimension dimcr M contained in M. Let C be a small CR-cone on M with vertez p,
let ¢ be Euclidean coordinates adapted to C' and let u be a function as in lemma 3.2 for
C = ¢~Y(C). Moreover, let © be a vector not contained in T,M .
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Then the local orbit germ O"(My,p) of the deformed manifold
My={z+44d(z):z € M},

d(z) = po ' (2)- O for z close to p and d(z) = 0 away from p,

has real dimension at least 2dimgr M + 1.
We recall a proof (see also [Jo4]).

Proof. If there would exist a CR-submanifold [’y of M which is an analytic manifold and
contains p then, by the definition of CR-orbits, I'y; would contain a large part of ' near p.
So by the uniqueness theorems for analytic manifolds it must contain a neighbourhood of p
on I' which is impossible since the deformation moves the points of ', which are contained
in the CR-cone C, out off T. 0

Lemma 3.4. Let M be a generic CR-manifold of class C? of real codimension 2 imbedded
into C*, and let p be a point of M. Let v:[0,1] = M be a small CR-curve on M with
(1) = p. Suppose there is an increasing sequence of numbers tx € (0,1) such that tx — 1
and the local orbit germs O"*(M,v(t})) have dimension 2dimgpr M + 1(= dim, M — 1).
Suppose

dim, O"¢(M, p) = 2dimgp M + 1.

(It is clear that dim, O%¢(M,p) > 2dimgr M + 1. The condition excludes that p is a
minimal point.)

Let N, be a small representative of O"¢(M,p) and let I, = JT,N,&T;N,. Suppose C is
a small CR-cone on M Nw at p which contains y([r,1)) for some 7 € (0,1). Let O be a
real vector in T,C* ~ C* which is transverse to the real linear span of T,M and I,. Let ¢
be Euclidean coordinates on M near p adapted to C . There ezists a non-negative function
p of class C? in R¥M) with sufficiently small C? norm with support in C = p~Y(C) such
that p is a minimal point of the deformed CR-manifold

(3.6) My={z+d(z):z€ M},
where
(3.7) d(z) = poyp7'(z)- O

for z close to p and d(z) =0 away from p.

Proof. Let C; be a CR-coneon M at p which is contained in C and does not intersect
([, 1)), say Cy = (C;) for an open truncated cone in R¥M) with vertex zero, C; contained
in C = ¢ }(C) and C; does not intersect ¢~ !(y[r,1)). Since (p~! o y)(1-) is a vector
contained in the cone C such a cone C; always exists. Let g be a function as in lemma 3.2
associated to the cone Cy, supp u=Cy, £ >0 on C;.
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For the just defined function p let d be defined by (3.7) and let M, be defined by (3.6).
Suppose p is not a minimal point of the obtained manifold My. Denote by A, a small rep-
resentative of the local orbit germ O"(My,p). Since 7([0,1]) C M, the manifold N, has
dimension dim, M — 1. The key of the proof consists of applying several times the lemma
3.1. Apply it first to N, and a small hypersurface H which is transverse to I, and contains
M. Let w be a small neighbourhood of p in C* with w\H consisting of two connected com-
ponents w; and w;. We get a connected relatively closed analytic manifold X, in one of
the components, say in w; , such that N, is the boundary part of X, which is contained in
H. Set g = ¥(tx) and fix small representatives N,, of O%(M,q;) which are contained
in C\C}. Apply for all sufficiently large k the lemma 3.1 to N,, and the hypersurface H.
We get analytic manifolds X,, contained either in wy or in w; such that the part of the
boundary of X,, which is contained in H is equal to N, .

Consider now a hypersurface Hy associated to d, which contains the deformed manifold
M, and is obtained from H by moving a part of H into w; if O is directed into wy, and
into w; if © is directed into w;. Let w? and wé be the corresponding connected components
of w\Hy. Apply the lemma 3.1 once more, now to N, and Hy, we get a connected analytic
manifold &, which is a relatively closed subset of one of the w¢ and has boundary A, on
Hy. First we will deal with the case when © is directed into w,, t.e. wld C wy.

Claim 3.2. If w? C w; and p is not minimal for My then either for a sequence k; — oo

the manifolds X,,. are contained in wd or X, is contained in wl. Moreover, there ezist

analytic hypersurfaces Xg, —in C*, which contain the representatives Nq&,- of O"( My, q) =
J

Oloc(M, qk) .

Proof. Suppose for all sufficiently large k¥ the manifolds X,, are contained in w; and
X, is contained in w¢. Then (possibly, after shrinking the X,, slightly) we have

(3.8) X,NX, DX,

for all sufficiently large k (since My coincides with M near the CR-curve ([0, 1)), for large
k the gi are in N, and in N, as well, and N, coincides with A, near the g;). Since, moreover,

wf Cwy
(3.9) X, C X,

But this is impossible (compare with the proof of lemma 3.2 and claim 3.1). The contra-
diction proves the first part of the claim.

Suppose now that either X, is contained in w§ or for a sequence k; — oo the mani-
folds quj are contained in w;. In both cases we get for a sequence k; — co two analytic
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hypersurfaces qu and X‘;k , X;k,- C X, C w; and quj C wy, such that both analytic
hypersurfaces have the same part of the boundary, Nq,‘j , which is contained in H . Since
Xg. UN,, and X’ U N, are of class C*! this means that Ng,, is contained in an analytic
hypersurface Xo. = X ;Y X, U qu We may suppose that X,,. 1s relatively closed in
a nelghbourhood U; of gk; in C“ The claim 3.2 is proved completely m

We have to consider the remaining case, when © is directed into w,, i.e. wy C “-’1 In this
case we start with the deformed manlfold Md instead of M. Fix a small number a € (0,1).
The vector (—a®) is directed into w{. Consider a deformation of M, defined by o/,

d(z+d(z))={z+d(2)} —a-d(z)-O, z+d(z)€ M,
In other words
(Mg)ar = Miz—g)a-

Apply the claim 3.2 to (My)s and (wf)_d',j =1, 2, instead of M,y and wf. As in the previous
case we get that if p is not minimal for (My)e = M(1_q)4 then there exists a sequence of

analytic hypersurfaces X containing the quj.
1

For producing a minimal point of the deformed manifold we have to consider only the
case that p is not minimal for M; and for M(;_,4, too. We will use now the existence of
the analytic manifolds X and make another deformation such that for the manifold M;

b
obtained in this way p is a minimal point.

Let v, : [0,1] — Ny, be small CR-curves with starting point uy;(0) = ¢, and

v,(0) = i¥'(tx). Note that v} (3) eT) e )(M) and let Cy; be small disjoint CR-cones

at (vx;(3), v, (3)), which are contained in U; N C and do not intersect y (see Fig. 1). We
may suppose that Cy; = ¢(Cy,) for open convex truncated cones Cy, in R4M) with vertex
¢ '(vk;(3)). Let p; be non-negative C? functions in RYM) with support in C, , which

are positive in Cy, and such that the sequence {||g;||c2} of the C? norms is summable and
its sum is small enough. Put

(3.10) = u
i=1

and prove that with this choice of /i the point p is a minimal point of the deformed manifold
M; defined by (3.6) and (3.7) with d and p replaced by d and .

Indeed, suppose not. Denote by .‘Vp a small representative of the local orbit germ
Or(My,p). Let Hy be the hypersurface obtained by a small deformation of H , the defor-
mation associated to d with the choice of ji described by (3.10). Apply lemma 3.1 to ./'V,,
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and I?d. We get a connected analytic hypersurface A?p contained and relatively closed in
one of the connected components &3;? of w,\Hy, such that the boundary part of X, which
is contained in Hy is equal to A,. For sufficiently large j ./"\vfp contains a neighbourhood

of gk, on Nq,‘j (since va contains qx; for large j, qx, is minimal for N, and M = M;
near g, ). Therefore small parts of ./'E, contained in small neighbourhoods of the gy, are
contained in X7 . It follows that the whole connected part of fp N U; which contains gy,
in its boundary is contained in X;k,- . ‘But this is not possible by the choice of the vector ©.

(The (Cy)x, contain certain CR-curves in N, but they do not intersect X;.;+) The argument
is as in claim 3.1. Lemma 3.4 is proved completely. 0

We will come now to the second step of the proof of proposition 3.1.

In the following lemma we will state Tumanov’s result [Tul] in a form which is convenient
for us. We will not.give a proof here, although, may be, it would be desirable to give slightly
more details then in [Tul]. For working out more details one may consult [Tu2] or [Jo4].

Lemma 3.5. Let M be a generic CR-manifold of class C* imbedded into C* with p € M
a minimal point. There ezist two neighbourhoods U and U’ of p on M, U C U', U’ with
compact closure in M , and an open truncated cone K in C* with vertez zero such that the

wedge W(U, K) is contained in the polynomially convez hull U’

ﬁ = {z € C' : |P(2)| £ max|P]| for all polynomials 'P}
Uf

of U.

Moreover, let M, be close enough to M in the C? topology and Uy,U| and U; be close
enough to U, U’ and U'. (Say, there exists a C* diffeomorphism & of M onto M,
such that ®-id has small C* norm on a large compact set containing U’, and ®(U) =
Uy, ®(U') = U]. Here id is the identily mapping on M .) Then the wedge W(U, K) 1is

contained tn the polynomially convez hull Ufl of —U_’l .

We need also the approximation theorem of Baouendi and Treves which we state in the
following form.

Lemma 3.6. a) Let M be a generic CR-manifold of class C* imbedded into C*, p€ M .
There exist two neighbourhoods of p on M, 'U and "U, such that each continvous CR-
function on "U can be uniformly approzimated by polynomials on 'U . Moreover, if My, 'U;
and "U; are close enough in the C* topologyto M, 'U and "U (see lemma 8.5 for the ezact

meaning of this) then each continuous CR-function on "U; can be uniformly approzimated
on 'U, by polynomials.
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b) Moreover, if M is only of class C! (instead of class C*), p € M, then there are two
neighbourhoods 'U and "U of p on M , such that each CR-function of class C! on "U
can be uniformly approzimated on 'U by polynomials.

c) Let M, 'U and "U be as in a) and let p be a real number, 1 < p < 0o. Then
each function in LP("U) which satisfies the tangential Cauchy-Riemann equations (in the
weak sense) can be approzimated by polynomials in LP('U). As in a) the size of the two
neighbourhoods does not change essentially for manifolds M; which are C? close to M .

The lemmas imply the proposition 3.1. Indeed, it follows from the lemmas 3.2, 3.3
and 3.4 that if M is as in proposition 3.1, p € M, W, is a wedge with edge a neighbourhood
of p on M, and C is a small CR-cone on M at p then one can obtain a small C?
deformation My of M, My C M U W, which lets fixed M\C such that p is a minimal
point of My. Let now {¢;}52, be an arbitrary increasing sequence of points from (0, 1) which
tend to 1. Choose small disjoint CR-cones Ci at (y(tx),y'(tx)) and small C? functions
dr on M with support in Ci such that My, C M U W, and () is a minimal point
of My, . Moreover, the a’k may be choosen so small that the sum of the C? norms of the

dy is small. Set d = Z di. The manifold My = {z +d(z) : 2 € M} is of class C? and

4(1) is a minimal pomt of M, (since for each small neighbourhood U of p on My the
point () is in the orbit O(U,p) if k is large enough and (tx) is minimal). If ko is

large enough the manifolds My and My, 4 = def E d) are close in the C* topology, so by

the lemmas 3.5 and 3.6 there exists a nelghbourhood U of y(1) on M and a cone K in
C* such that each continuous CR-function on My extends to an analytic function in the
wedge W (Uy, K). For each continuous CR-function on M, which is wedge-extendable to
the Wy, t € [0,1), there exists a uniquely determined continuous CR-function on My
which coincides on My NM with the previous one. Moreover, Ug contains a neighbourhood

U’ of ¥(1) on M, so each continuous CR-function on M, which is wedge-extendable to

the Wy, t € [0,1), is wedge-extendable to the wedge W, &f W(U',K). Proposition 3.1

1s proved. a

It remains to prove the lemmas 3.1 and 3.6. Start with lemma 3.6. Part a) is known (for

some details see also [J64]). Part b) will be used in the proof of lemma 3.1. We will sketch
the proof.

Sketch of the proof of lemma 3.6.b). We may assume (possibly after a complex linear

change of coordinates) that p = 0 and in a neighbourhood of zero M is given by the
equations

(3.11) ty = ho(z1 + 2ty 0 T + iy Tty - -+, TR ) (= hy(t,2)), s=m 4+ 1,...,n
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Here m is the CR-dimension of M, z, = z,+1t,,s =1,...,n, are the coordinate functions
in C* and h, are C'functions such that h,(0) = 0,(Vh,)(0) = 0. (Vh, denotes the
gradient of the function 4, .)

We will use the scheme of the proof of [Ba—Tr]. The only thing we have to do, is to check
that the smoothness assumptions are sufficient. For this aim we approximate the functions
h, in the C'-topology by C* functions (h,);, [ =1,2,..., and consider the CR-manifolds
M, defined by the (h,); instead of h,. Let

be a complete system of tangential Cauchy-Riemann operators for M (i.e.
(0;)r(ts — ho(t,2)) =0, s=m+1,...,n) and let

0 ., .0 o
(312) LJ = é-i'; ;Ai(t,ﬂ:)a‘;, 1= 1,. PR £ 18

be a corresponding system in coordinates (¢,z) (z = (z1,...,25), t = (t1,...,tm)) on M
(i.e. Ljfi =0,7=1,...,m, for each C'function f; in a neighbourhood of M which is
the continuation not depending on t,,41,...,t, of a CR-function f of class C'on M ).Let
(L;)1 be the corresponding operators for M;. It is clear that the coefficients (M%), are of
class C* and converge uniformly to the continuous functions )\f .

Consider now as in [Ba—Tr] the determinants

§z"
A((t,z) =det (% (t;m)) )

(3.13)
A(t, z) = det 0z (t,z)
bl - az 3 ’
where
M — : : -1 () RO
- 1 s ydim my<m yW e eabn 3
(3.14) z (:c + ity T + Gty Tt + 1hy 0 (¢, T) T, +1hy/(t :c))

z=(z1+ ..., Tm + Uy Tngy + thmea (8, 2), .., Za + 2ha(t, T)).
The A; are of class C* and converge uniformly to A. By lemma 2.1 of [Ba—Tr]

(3.15) (L;)iA =0, j=1,....m; [=1,2,....

Now we can follow the scheme of proof in [Ba—Tr]. For each C!function ¥; and the same
7 and [ as above
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(3.16) (L)W - Ag) = Ty (L) A+ A (L)Y = Ay - (L)Y

We do not require that (L;);'¥; = 0. Write equations similar to (2.8) and (2.9) in [Ba-Tt]
with h replaced by ¥;, A replaced by A; and the coefficients A} replaced by (A]);. The
equations in our case differ from those in [Ba-Tr] by terms which come from integrating

terms of the form (g-(L;)1¥;-Ar) (g is as in [Ba-Tr) but supposed to be only of class C!.)
Take, similarly as in [Ba-Tr] :

(3.17) Ui(s,y) = (B )i(t, 758, y)uls,y)

where u is a CR-function on M in coordinates (s,y), and

k=1

(3.18) (Bt z55,y) = (7)" {—:ﬂ (Z(zf’(t, z) - 2 (s, y))’) }

(see (3.14). We get a formula which is similar to (2.12) in (Ba-Tr] (with the replacements
as above), but on the right we have to add the term

(3.19) -/ {Z JEOINCRCATCETIIA (s,y)dy} ds;.

() \I=1Rn

In the formula obtained in this way only first order differentiation of ¢ and u appear,
both functions being of class C'. So in this formula we let [ tend to infinity and use that
Liu=0(j=1,...,m). We get exactly formula (2.12) of [Ba-Tr] for the manifold M . The
remaining part of the proof of the approximation theorem in [Ba-Tr] uses only the fact that
M is of class C!and goes through without changes. Lemma 3.6 b) is proved. o

Sketch of the proof of Lemma 3.6.c. Let M be a generic CR-manifold imbedded into
C* of real dimension m + n and let L;, j = 1,...,m, be a complete system of tangential
Cauchy Riemann operators which are given by (3.12) in certain coordinates on M. Let z
and A(t,z) be defined by (3.13) and (3.14). Let u = u(?,z) be a function in LP in a
neighbourhood of zero in R™ x R™ for which

Liu=0, j=1,...,m
in the weak sense. Put as in [Ba-Tr]

(3.20) E,,(t,:l:; S,y) _ (%)”exp {—y2 (Z(zk(t,:c) - Zk(s,y))z) } X

k=1
and
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(3'21) ‘I’V(s$ y) (= ‘I’V(ta 758, y)) = Ev(t,$§ 8 y) : u(s, y)-
The function

(3.22) 6(5) (= 0u(t,235)) = [ 9u) - Buls,0) - As,)y
. R"
is in LP(Q:) for a cubic neighbourhood Q. of zero in R™, Q; = (—o,0)™ for some small

a > 0. Here g is a C? function with compact support in a neighbourhood @, = (—6,6)"
of zero in R™ (6 is some small positive number), ¢ = 1 in a smaller neighbourhood , say

%Qm Lf —%, —%)“, of the origin. The functions

(3.23) Fi(s) (= (Fi)u(t, z38)) =/‘I‘u(s,y) - A(s,y) - [Z Af(s,y)%g(y)] dy,
Rn k=1 y

3 =1,...,m, are also in L?(Q,). As in [Ba~Tr| we have

| 5

" 0

in the weak sense on @, (say, as functionals on compactly supported C? functions in @, ).
Take convolutions G* = G * x., F§ = F; * . for a compactly supported C? function x in

Q¢ with x =1 and x.(s) = Zx(2). Then
Q. £ £

(3.24) Fi(s) G(s), g=1,...,m,

Fi—=F;inlPiore—0, j=1,....m
(3.25) G° = Gin LP fore — 0,
and the formula (3.24) holds pointwise for F; replaced by F; and G replaced by G* for
some € > 0:

(3.26) Fil6) = 329°(0)
Write for the point ¢t € R™ which we took in (3.20)

t=(t1,...,tm),
and let

T =(T,...,T,) €R™

be close to zero.

From (3.26) we get for ¢t and T in @
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(3.27) G (ty,. s tm) — G5(Th,.. ., T, Z/J-' s)ds;,

=t

={Th} x-- x T} x (Tj,;) x {tja} x -+ x {tm}
if TJ' < t_,' and .

Li=A{T1} x - x {Tj} x (£, T5) % {tje} x oo % {tm}.
if T; > t;. The term is supposed to be zero if T; =t¢;.

Integrate (3.27) with respect to T in the cube (—7,7)™ in R™ for some small positive
T (r <o)

m

(3.28) (21)™G%(t1, -y tm) — / g’=Z(2‘r)m'j/pj(3j)-f;(s)dsl...dsj,
_ (=r,)m =t J;

where

Ji = (=1, 7Y x (aj,b;) x {tjs1} x -+ x {tm}, @; = min(—7,¢;), b; = max(r,t;),
and p; is a non-negative bounded function on the interval (aj, b;).

Recall that G°(t) = G*(t,z;t), Fi(t) = F;(t,z;t). It is now easy to see that one can go
to the limit in (3.28) for € — 0 in the space LP(Q; x 3Q.). Hence,

m

(3.29) 21)"G(t1,. .. tm) — / G= 221' /p, 8;) - Fi(s)dsq,...,ds;.

(~r,7)™ =1 J;

Prove now that for v — oo each term on the right of (3.29) tends to zero in LP(Q, x 1Q:),

provided, after fixing the small positive number § and the C? function g the positive
number ¢ is choosen small enough. The j-th term on the right in (3.29) is equal to

(3.30)
(2T)m—j / pi(s;)dsy,. .. ,de(/dyEy(t, T3 8¢,5,Y)  w(8e,j,¥) - A(8e,5,¥) X

(=771 x(ay.b;5) R"

X [; ’\_’;(St.j':y)b_i;g(y)jl )
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Here s:; = (s1,...,8;,tj41,-.-,tm). The integration with respect to y is over the set

Q:\3Qz. For « € 1Q. the function E,(t,z;s.;,y) is estimated as in [Ba-Tr], using (3.20)
and (3.14):

(3.31) Z(zkt:ﬂ — z(sej,y)) =

Z ((zx — yz) + 2{te — sk)) t Z (zp—yr)t+ Z ((zx — yx) +2(he(t,z) — hk(st.jsy))z-

b
k=1 k=j+1 k=m+1

Since (VA4)(0) =0 and the Euclidean distance from 1@, to Q.\3Q. is equal to 1§, for
small § > 0 and small enough ¢ > 0 (o depending on §)

n 62
(3.32) Btz < (22) o (- %)

It follows that the right hand side of (3.29) for v — oo tends to zero in LP(Q; x 1Q.).
Note that for each fixed v the term
(3.33) / G,(t,z; s)ds
(_fvf)m

is an entire function in z = z(t,z) (see (3.20), (3.21) and (3.22)). So, it remains to prove
that G,(t,z;t) tends to u(t,z) in LP(Q, x :Q2).

Write as in [Ba~Tr} the formula (3.14) in the form
z=z +14(t, ),

and make the change of variables y — 2z — £, we get

n

(3.34) Gu(t,z;t) =% /exp {— > (yx +iv(gilt, ) — gt z — *’,’E))} - K(t,z — §)dy,

R" k=1

where

(3.35) K{t,y) = g(y) - ult,y) - Alt, y).

For v — oo the integral
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(3.36)

(x)7% fexp {" E (yr +iv(dx(t,z) — du(t,z — %)))2} Atz — L) - Xouppg(T — %)dy

RN k=1

tends to 1 uniformly for (t,z) € Q¢ X 1Q. (see [Ba-Tr]). Here xeuppy is the function which
equals one on suppg and zero elsewhere. Denote the function under the integral sign in
(3.36) by L,(z,t;¥). It is now enough to show that with v =g -u

e [t bta-H-vea)d= [+ [ =59+a,
Rn i<C  Wi>C
considered as a function of (t,z), tends to zero in LP(Q: x 3Q). Estimate the LP norm

of Jl{") , using Hoelder’s inequality (p’ is conjugate to p).

p

] dtdz / dyL,(z,t;y) - {v(t,z — L) —v(t,z)}| <

Q:X{'Qz |y|<c
4
(3.38) / dtdz ] 1L (2, ;) dy / |o(t,x — &) = v(t,2)[" dy <
QGX%Q: yt(C Iyl(C

const / dy f dtdz:lv(t,m—%)-v(t,a:)lp.

ikC th}oz

This implies that J*) tends to zero in LP(Q; X 1Q;) for each fixed C'. The LP norm of
) is estimated similarly. Use that if (t,z) is contained in Q; X 1Q, and if g(z — £) # 0

(hence z — £ € Q.) then

(3.39) v[g(t,z) = d(t, 2~ L)| < 3yl
(see (2.13) of [Ba-Tr]) if § and o are small enough, and, therefore
(3.40) |Co(z,t;y)| < const exp {—-i—|y|2} .

Hence
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(3.41)
/ dtd:nljz,(")[p < const f dtdz f exp {_Z-IyP} . (|v(t,m - g)| + |v(t,z)|) dy
14
Qix1Q: Qex1Q. Wi>c
3 2 Yyp P
< const dide | exp{—3l}dy - (Iolt,z - )P + o(t,2)P) <
Quxiq. wi>c
< const ] lu(t, z)|Pdtdz - [ exp{—%[yﬁ}dy.
QexQs lyl>C ‘

Thus, Jz(”) is small in - LP(Q: x $Q.) uniformly in v if C is large enough. Lemma 3.6 is
proved completely. |

Remark 3.1. If in certain local coordinates (z,t) on M the L; are given by (3.12), then

in the lemma 3.6 one can take 'U = Q; x Q, and "U = Q: x 1Qz, where Q. = (=6,8)" C

R", 1Q. = (~%,+%)" C R" as in the proof of part c) and Q: = (a1,07) x (05,0%) X

. (of,0m) C R™ whenever § > 0 is small enough and o} < of, max{|o}|,|0}|} <o for

j =1,...,m and for some ¢ > 0 which is sufficiently small (in dependence of §). This can
be seen by a slight modification of the proof.

Proof of Lemma 3.1. We may assume that p = 0 and in a neighbourhood of zero M is
given by the equations

(3.42) x = h(w, y)

where z = x+ iy € C?, w € C*%, h is C? function (with values in R?) defined in a
neighbourhood of zero in C*~2 x R? h(0) = 0,(Vh) = 0. Denote, as usual, by C? the
space of functions which are Holder continuous of order 8 (8 € (0,1)) and by C!'# the
space of functions with first order derivatives in C?. Let Ay® be the space of functions
which are analytic in D, are of class C' in D and vanish at 1.

Since the dimension of the local orbit germ O'°(M, p) is equal to dim, M—1 > dimgp M,

according to [Tul] there exist functions wy and w, in Ay® (8 is some number between 3
~and 1) such that the differential of the mapping

(3.43) w— h(w) Y f ﬂli’li%)’%(—)luc], w e AYP,

at wg in the direction w; does not vanish. Here y is the solution of Bishop’s equation

I A
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(344) Y = Tlh(w’ y)a
T1G is the harmonic conjugate, which vanishes at 1, of a function G.

Consider now for ¢ in a neighbourhood of p = 0 on the CR-submanifold Ny of M
the family {f,} of analytic discs of class C'® which satisfy the following conditions: The
boundaries f,(JD) are contained in M, f,(1) = ¢ and the orthogonal projection = onto
T M of f, is equal to mq + wo + aw, for a small real number «. By [Tu2] the f, are
uniquely determined (the (yn-1,¥yn)-component of such a disc is the solution of Bishop’s
equation, see (3.44)) and the mapping

(3.45) (¢,¢) — fol0),

g in a neighbourhood of zero on Np, (: eD,isof class CV1 (1 < B, < B).

We will prove now that the mapping (3 46) with { =r € (1 -4, , 1] for some positive §
defines a diffeomorphism onto an analytic manifold X; ;, such that (X U No) Nw is equal to
the required C' manifold with boundary X; Nw. Indeed, write the C'* manifold Ny as

the graph of a CR-function g (of class C'*# ) over a hypersurface Hy (of the same class) in
L() = T()No + JT()NO :

(3.46) No={z+g(z):z € Ho},

g is a CR-function with values in the orthogonal complement Lg, ¢(0) = 0,(Vg(0)) =
0. Consider analytic discs fI' : D — Lo with boundary fI'(dD) contained in Mo, of
class C'#, such that fJ'(1) is equal to the orthogonal projection Ilg of ¢ onto Lo and
the w-component of fJ', (i.e. the projection 7rf;I of fqn onto T%M C Lg) is equal to
7q + wo + awy . The discs fl? are uniquely determined by Bishop’s equation (see [Tu2]
theorem 1.6). Moreover, by lemma 3.6 the mappings

(3.47) F(Q) = Q) +g0 £ (¢) (¢ €dD)

extend to mappings of class C'# on the closed disc D which are analytic in DD, and
moreover, F,(JD) is contained in Ny C M. So by the uniqueness of analytic discs with
given parameters and boundaries in M we must have

(3.48) F, = f,|0D.

Hence f,(dD) is contained in Np. The (x,-1,x%,)-component of fo(r) is equal to
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(3.49) Iy =120 f (w0(€) + 0w (), Yuyaws () 4

2w r=¢I?

With Yugtow = T1A{(wo + w1, Yugtaw, ) - Since wg, w1 and Yypraw, arein CYP and vanish
at 1, it is not hard to see that

1—-.1"2

(3.50) J(r) = 5 {iz(wo + awy) + 0(1)} :

this equality holds uniformly for small real ¢ and » — 1. By the choice of wy and w,
(£J)(1) is not zero for some suitable small real . This means (see (3.49)) that with this

choice of wg,w, and «a the vector
3]
(EfO) (C)|(=1

is not zero and is not contained in TyM . Moreover, since by the Cauchy-Riemann equations,
applied to the analytic function fo, this vector is contained in JToNy C Lg, the mapping

(3.51) (¢,7) — fqn(r), g in a neighbourhood of zero on Ny, r € (1 —§,1]

is a diffeomorphism onto a neighbourhood of zero on the union of H, with a one-sided
neighbourhood of Hg in Lo . Using again lemma 3.6 we get that g extends to an analytic
function § on the one-sided neighbourhood of Hp in Lo and X; is the graph of § over the
mentioned one-sided neighbourhood . Moreover, §(fI'(r)) is equal to the Poisson integral at
the point 7 of the C'# function go f‘P, which is defined on the unit circle T. It follows easily
that X; Nw is of class C'. It is clear from the considerations made above that the analytic
hypersurface X; is contained in the envelope of holomorphy of an arbitrary neighbourhood
of Ny in C*. So, if Mis contained in the boundary of a strictly pseudoconvex domain 2

then the analytic hypersurface is contained in ! and relatively closed in 2 Nw. Lemma 3.1
1s proved. O

~ 4. REMOVABLE SETS

In this section we will prove theorems 1 and 2, related results for more general hypersur-
faces, and results on (LP,3,)-removability.

Let H be an orientable hypersurface in C*. Fix the positive side of H. Let K be a
relatively closed subset of H. A point p € H will be called (H\K) -regular if each function
u which is analytic on the positive side of H\K has analytic eztension to a one-sided
netghbourhood of p. More precisely, this means the following: There exists a one-sided
neighbourhood O, of p and an analytic function u, in O,. If O, is contained on the
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positive side of H then we require that u, coincides with u on the intersection of O, with
a.germ of one-sided neighbourhoods of H\K . If O, is contained on the negative side of H
then we require that u, is analytic in a neighbourhood O} of O\K (in particular u, is
analytic near each point of H\K close to p) and coincides with u on the intersection of
O; with a germ of one-sided neighbourhoods of H\K .

Proof of theorems 2 and 2a. We will prove theorem 2a. Theorem 2 follows easily from
theorem 2a. Let H,M and K be as in theorem 2a. The set of (H\K)-regular points is
open and contains H\K . Let M., be an arbitrary open subset of M consisting of (H\K)-
regular points. It is not hard to see that each function which is analytic on the pseudoconvex
side of H\K has analytic extension to a one-sided neighbourhood of (H\K)UM,., (which

is necessarily contained on the pseudoconvex side of H ). We have to show that all points
of K are regular. :

The following proposition shows that all points in the G;(M)-invariant hull J(M\K) of
the set M\ K are regular. By corollary 2.1 this implies the theorem.

Proposition 4.1. Let H M and K be as in theorem 2a. Suppose v :[0,1] = M is a CR-
curve. If for t € [0,1) the points ¥(t) are (H\K) -regular then (1) is (H\K) -regular.

Proof. Let Hy be a neighbourhood of ¥(1) on H and let U, C H be a neighbourhood
of 7([0,1)) consisting of (H\K)-regular points. Denote M\U, by M, . Let u be analytic
on the pseudoconvex side of Hp\ M, , say, u is analytic in the one-sided neighbourhood O,
of Ho\M, . Take a sequence t; € (0,1), ¢, T 1 and let Cyx = Ci(y(tx),1y'(tx)) C M QO U,
be small disjoint CR-cones on M. Apply lemma 3.2 to each Ci. For each k we get a C?
function dj on M with small C? norm such that

supp dx C Cy;
(4.1) for z € Cy the point z + di(z) is contained in M, U O.;
~(tk) is a minimal point of M%* = {z + di(z): z € M}.

Suppose the C? norms of the dy. tend to zero sufficiently fast. Then d = 372 dy is of
class C? and +(t;) are minimal points of the deformed manifold M? = {z + d(z) : z € M}.

Let My be the part of M contained in a small neighbourhood of 4(1) on H. Sweep out a
small neighbourhood U of ¥(1) on H by disjoint generic CR-manifolds M, (t € (=4,6))
which are close (in C%) to My. (For example, take the M, to be parallel shifts of M,
in certain Euclidean coordinates in a neighbourhood of (1) on H.) Let ko be large

k
enough and denote by d' the function d' = ZD: dr. Extend the di, k =1,...,ky, to C?

functions on U, denoted also by dj, such t.ha,ifc tile extended functions have disjoint support
not containing (1) and the set {z+di(2): z € U} is contained in U U Q, for all k. Denote
by the same letter d' the sum of the extended functions for k = 1,...,ky. Then for small
§ > 0 for t € (—6,6) the deformed manifolds MY = {z 4+ d'(z) : z € M,} are contained in
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M, U O, and are close (in C?) to M and, thus, to M¢ (see Fig. 2). Let v be the unit
normal to H at (1) which is directed to the pseudoconvex side of H . For each ¢ € (=4, 6)
we make a small parallel shift of MZ to the pseudoconvex side of H: Consider

(4.2) MY MY 4 s(t) v
for a small positive constant s(t) choosen in such a way that M® is contained in O, .

Decreasing § if necessary we may apply the lemmas 3.5 and 3.6 to the manifolds Mtd’,t €
(=6,8)\{0}, and to the restriction of the function u to these manifolds. We get open sets
Vi on M,, t€(=4,8),all V, closein C? to V;, and open sets

(4.3) VS e+ d(2)+s(t)-vize Vi)

on MZ which are close to V& in the C? topology. Moreover, V, is a neighbourhood of
¥(1) on M.

We get also an open convex cone K in C* (C* ~ T,C* for p € C*) such that for
t € (—6,8)\{0} the function u has an analytic continuation from a neighbourhood of V#
to a neighbourhood of the closure of the wedge W (V,¥,K) (see Fig. 2). Recall, that d
vanishes near y(1) on H . Hence d' vanishes on a neighbourhood ‘V; of 4(1) on ¥, and for
t close to zero, say |t| < &, the function d’ vanishes on open subsets 'V; of V; which are close
in C? to 'V. Hence 'V ="'V, and 'V# df V& 4 s(t) v ="V, + s(t)- v for |t| < §. Since
the V; and the number é will be needed no more, for notational convenience we will write 6
instead of ‘6 and V; instead of 'V;. Thus, with the new meaning of V; and é we have

f/td' — f/t d__?_f V; + S(t) -V, (t € (_6: 5))

The previous arguments hold for all sufficiently small numbers s(t) > 0, so for each ¢ €
(—6,8)\{0} there exists an analytic function in W(V;, K') which coincides with u near V;.

By the pseudoconvexity assumption for H it is clear that the W(V;, K) are contained on
the pseudoconvex side of H .

Denote Uy = |J V.. It is now easy to see that we get an analytic function u; in the
te(0,6)
connected set O, & U W(V, K) which coincides with f near U,. In an analoguous
t€(0,6)

way we define O_ and U_ and get an analytic function u_ on O_ which coincides with
u near U_ .

Now O4 UO_ cover a one-sided neighbourhood of v(1). Moreover, u; coincides with
u_ on W(V,K) =0y NO_. Indeed, V; contains a regular point v(t) for some ¢t < 1
close to 1. So there exists a one-sided neighbourhood O,y of ¥(f) and an analytic function
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Un(t) in O.) which coincides w1t‘.h U near HﬂO.,(g) We may suppose that O.,(t)ﬂU+ and
O, NU_ are connected. Therefore, w,( coincides with u, at the connected component
of O, N O which contains O.-Y(g) N U, in its boundary. Similarly, Us(t) coincides with
u_ at points in the connected component of O, N O which contains O.Y(t) NU_ in its
boundary. Thus u; = u_ on an open subset of O, NO_, hence, since O.NO_- = W(Vq, K)
is connected, uy = u_ on O NO_. We got a well defined analytic function in O, U O_

which coincides with u near U, U U_. = U\M . Thus it coincides with u near U\K . We
proved that «(¢) is regular. Q

Proof of the theorem 2'. Let 2, M and K be as in theorem 2. Put H = g§}. We start
with a function u which is analytic on the "inner side” of A\K . Let M,,, be as above
an open subset of M consisting of (H\K)-regular points of M. K does not divide the
connected hypersurface 91, otherwise it must contain a compact generic CR-manifold of
dimension 2n—2 which would be a CR-invariant subset of M. It is now easy to see that each
function which is analytic on the inner side of H\K has analytic extension to a connected
open set which contains a one-sided neighbourhood of each point of (H\K)U M,.,. This
time the one-sided neighbourhood is not necessarily contained on the inner side of H, but

for each point of H\M we may assume that it is. By the Hartogs-Bochner theorem it is
enough to show that each point of M is regular.

The regularity of all points of M is proved using corollary 2.1 and a variant of proposition
4.1 adapted to this case. This variant is proved in the same way as the proposition 4.1 itself:
Hy, U, and M, denote the same as in the proof of proposition 4.1, but the connected set
0., which contains a one-sided neighbourhood of each point of Ho\M, is not necessarily
contained on the inner side of H . Choose CR-cones C} as in the proof of proposition 4.1
and construct a deformation d = ) di with the d; satisfying conditions (4.1). For this
we use the lemmas 3.3 and 3.4 instj‘.ceal.d of lemma 3.2. The manifolds M; and the function
d' are choosen as in the proof of proposition 4.1 and v denotes the inner normal to H at
v(1). The manifolds M?# and the manifolds M¥ = M 4 5s(t)- v are defined as in (4.2); for
t € (=6,6)\ {0} and small s(t) > 0 the manifold M is easily seen to be contained in O, .
The rest of the proof is identical to that of proposition 4.1. Theorem 2’ is proved. o

Proof of theorems 1, 1a and 1’. We will prove theorem 1. The proof of the theorem la
and 1’ is similar to the proof of the "if”-part of theorem 1. The ”if”-part of theorem 1 we
will derive from theorem 2. With the same definition of (0Q\K)-regular points as in the
preceeding proof the following lemma holds.

Lemma 4.1. Suppose for the point p € K(C M)

(4.4) dim, T) M < 2n — 4
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(in other words, M is not mazimally comple:t: at p and, therefore, dim, TJM =2n-6).
Then p is (OQ\K )-regular.

Proof. Let U be a small neighbourhood of p on 99, such that My = M NU is connected
and relatively closed in U, and, moreover, dim, TqJMo = 2n — 6 for each ¢ € My. Thus,
My is a generic manifold of real dimension 2n — 3. Let M; C U be a generic CR-manifold
of real dimension 2n — 2 which is a proper submanifold of U C Q! and contains M. Such
a manifold M; can be obtained, for example, in the following way. Consider Euclidean
coordinates ¢ on U, ¢ : U — R*!, take a vector v in R?™! which is not contained in
To(pyp(Mo) , and put

(4.5) Mi={z€eU:z=¢"Yp({)+sv), (€M, s€ (—6,6)}

for a small positive number §. Shrinking U if necessary we get the desired CR-manifold
M.

Apply now theorem 2a to the hypersurface [/, the generic CR-manifold M, of dimension
2n — 2 and the relatively closed subset M, of U which is contained in M;. Since M,
is itself a manifold and for ¢ € M, Tq"Mg does not contain T:Ml (the first space has
dimension 2n — 6, the second one has dimension 2n —4) M, does not contain non-empty
CR-invariant subsets of M;. So by theorem 2a each point of My is (U\Mp)-regular and
therefore also (OQ\K)-regular. 0

Continue now the proof of theorem 1. Suppose either K does not coincide with M or
M is not a maximally complex CR-manifold. Consider the set

46)  Ki=K\{peK:dim T/M=2n-6}={pe K :dim TJM = 2n —4}.

K\K; consists of the points of K for which M is not maximally complex (and therefore
generic), so K is closed. Moreover, K\ K, consists of (dQ\K)-regular points by lemma
4.1. Let K be the set of non-regular points of K, and suppose j;' # 0. Since K is compact
and is contained in the set of maximally complex points of M, K does not coincide with M .

Let p be a "boundary point” of K : p € KNM\K . Let again U be a small neighbourhood
of p on 02 such that My = M NU is connected and relatively closed in /. Construct
as in the proof of lemma 4.1 a generic CR-manifold M; of dimension 2n — 2 which is a
proper submanifold of U C 9! and contains Mj. The manifold M; can be obtained as in
the proof of lemma 4.1. The only point is that the vector ¥ must be choosen accurately to
avoid complex tangencies of M;. If U is sufficiently small this can always be done. Apply
theorem 2a to the hypersurface U, to the generic CR-manifold M; and the relatively closed
subset K NU of U, ROUCMO.

Claim 4.1. K NU does not contain G (M) -invariant subsets of M, .
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Proof. A non-empty relatively closed G;(M,)-invariant subset K’ of K NU is the union
of CR-submanifolds of M; of dimension 2n —3, since K’ is itself contained in the manifold
My of dimension 2n — 3. Being the union of manifolds of that dimension the set K’ is
relatively open in M, . But it is also relatively closed in U, so by the connectedness of M,
we must have K’ = M, . But this contradicts the fact that p € f{ﬂM\I{’ {(i.e. My contains

points close to p which are not in K and therefore not in K'). 0
The ”if”-part of theorem 1 follows now from theorem 2a.

The following lemma is needed for the proof of the "only if” part of theorem 1.

Lemma 4.2. Let @ be a bounded strictly pseudoconvez domain in C*,n > 3, with boundary

00 of class C?. Suppose M is a mazimally complez CR-manifold of class C? contained in
0. Then M is orientable.

Proof. By [Fo], lemma 2.1, for all p in M we have

(4.7) T,M ¢ T oQ.

Give 00! the canonical orientation induced from C*. Since M is maximally complex, the
space T M has real codimension one in T,M . For getting an orientation of M it is sufficient
to choose a continuous nowhere vanishing vector field on M with values in the orthogonal
complement T,M © T/M of T,/M in T,M. But by (4.7) for each p € M the real line

Mo T;;’ M has non-trivial projection onto 7,002 6 T;;] 0Q . Thus, the orientation of 92
induces an orientation of M . ]

Now we come to the proof of the "only if” part of theorem 1. Suppose K = M is a
connected maximally complex CR-manifold of dimension dim, M = 2n — 3 of class C?
imbedded into 0€}. By lemma 4.2 we may suppose that M is oriented. By the theorem 1
of [Ha-La] applied to an arbitrary Stein neighbourhood €, of @ there exists a complex

analytic variety V of complex dimension dim¢V = n—1 contained in {,\M and relatively
compact in ©; such that

(4.8) d[V] = £[M]

in the sense of currents. Take instead of 1 a slightly smaller strictly pseudoconvex domain

2 with M C 80 and ¥ C MUQ. Apply the same arguments to arbitrary Stein
neighbourhoods of ¥ we get that

(4.9) VcauMm.

We have to show that Q\V _is pseudoconvex. Take a strongly pseudoconvex defining function
p in a neighbourhood of 2, @ = {p < 0}, p of class C? and dp # 0 on 9. Consider
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the relatively compact subset {p < —€} of @ with ¢ > 0 a small number. V is locally the
zero set of an analytic function (see, for example, [Na] or [Ci]). Thus the set {p < —e}\V is
pseudoconvex for sufficiently small € > 0. By the Behnke-Stein theorem (see, for example,
[Vla] III 16.10) the domain Q\V = |J ({p < —2}\V) is.pseudoconvex. O

neN

Now we will come to the proof of theorem 2b. We need analogs of proposition 3.1 and
related results for CR-functions of class LP on hypersurfaces. For simplicity we will for-
mulate these results only for hypersurfaces, not for manifolds of higher codimension. (The

statement and the proof which we choosed here, have a natural analogue for manifolds of
higher codimension.)

Definition 4.1. Suppose H is a hypersurface of class C* in C*. Let p € H and let O
be a one-sided mneighbourhood of p (with respect to H ) with C? boundary 8O . Suppose
00 contains a connected neighbourhood U of p on H. Let u be a function on H which is
locally of class LP,1 < p < 0o. We will say, that u has an HP-extension to O if there exists

an analytic function ue of class HP in O such that the boundary values of up on U coincide
with u.

Here H?(O) denotes the usual Hardy space in O. For 0 < p < oo it consists of all
analytic functions F in O for which

def
[|F | e0y = sup / | F|Pdman_q < oo
>0
90

for any fixed family of approximating domains O,, O, = {A < —¢} for a C? function A
in a neighbourhood of @ with O = {X <0} and d\ #0 on 80. my,_; is the (2n —1)-
dimensional surface measure on d0,. H®(O) is the space of all bounded analytic functions
in O. See also [Steinl] for more details.

We will say that a function u € L}, (H) has local HP -extension at p, if u has H®-ex-
tension to certain one-sided neighbourhood O of the kind described in the definition.

We need the following lemma only for p € [1,00), but for completeness reasons we state
it also for p = .

Lemma 4.3. Suppose H is a hypersurface of class C* in C* and p is a minimal point
of H. Then each CR-function of class L% (H),1 < p < o0, has local HP -extension at
p. Moreover, there ezxists a fized one-sided neighbourhood O of p of the kind described
in definttion 4.1 such that each CR-function of class L} (H) has HP -eztension to O. O
depends only on H and p, not on p.

Proof of lemma 4.3. By Tumanov’s theorem [Tul], [Tu2] there exists w € Ay®,(« €
(3,2)), with the following properties:

For ¢ in H, ¢ close to p, denote by f, the uniquely determined analytic disc
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fo(= fow) D — C', fo(T)CM,

for which f,(1) = ¢ and the orthogonal projection = of f, onto the complex linear subspace
T:H of C* (of complex codimension one) is equal to m¢ 4+ w. For certain Aq € (0,1) and
a neighbourhood Uy of p on H the mapping

(’\sQ) - fQ(’\)a ’\ € ()\Da 1]= q € UOa

is (for some B € (3,a)) a C'* diffeomorphism onto UyU Oy for some one-sided neighbour-
hood O of p with (0o) N H = Up. In particular, by the Cauchy-Riemann equations the
derivative 2 f,(e")|s=0 is not zero.

Choose Euclidean coordinates

v—q(v), v€V CR™,

in a neighbourhood of p on H with the following properties: V =V, x V' c R*™!, Y} C
R, V' Cc R*™ 2%V is a neighbourhood of zero in R?**~! and for each fixed v; € Wi the
mapping

(4.10) (0,0") = Fo(€) = frmuwn(€9), 18] < 6, v € V',

is a diffeomorphism onto a neighbourhood of p on H. We may suppose that V; is small
enough so that for each v; € V; the image of the mapping (4.10) contains a fixed connected

neighbourhood U; of p on H. Moreover, we may suppose that for v; € V; the image of
the diffeomorphism

(4.11) (8,v',0) = famwn(Xe?), 18] <8, v €V, A& (X,1]

contains U; U O, for a fixed one-sided neighbourhood O; of p, and the norms of the

diffeomorphisms (4.11) and the norms of the inverses are uniformly bounded for v, € ;.
We need the following

Lemma 4.4. With the previous notations let Hy = {z+d(z) : z € H} be a hypersurface of
class C', which is close to H in C (say, d has small norm in C'). Suppose Uz C Uy is
a neighbourhood of p on H such that (U)g = {z+d(z) : z € Uz} is contained in U; U0, .
Then for each polynomial P the following estimate holds

(412) / |'Pl"dm2n_1 S C/|P|pdm2n_1
Us

(U2)a

for a suitable neighbourhood Us of p on H. Uy contains Uy . Uz is small if Uy is small
enough.
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man-1 denotes, as usual, the (2n — 1)-dimensional surface measure. p is a real number,
1 < p < 00, and the constant C' depends only on H, U,, d, and on the exponent p.

Proof of lemma 4.4. Fix v; € Vj. There is a function A = A, (6,v") of class C'on

(—6,8) x V' with values in (0,1] such that the C'norm of 1 — A is small uniformly for
vy € Vq, and, moreover,

(4.13) { fatm(A(8,0))e), 18] < 6, v' € V'}

is an open subset of Hy which contains (U;)s. By the classical H® theory for the unit disc

(4.14) [ 1P o f,Pdm, < C, / P o f,lPdm,.

Tq T

Here q = q(v1,v’) is fixed, v, is the curve

Yo = {Aw (6,0")e? : 0] <6}

contained in D, dm, is the one-dimensional Hausdorff-measure on a curve, the real number
p is contained in [1,00). The inequality (4.14) is Carleson’s imbedding theorem. Indeed,
for each ¢ the one-dimensional Hausdorff-measure on v, ND is a Carleson measure:

(4.15) mi (1, NDNB,(()) <A-p

for every ball B,({) with center { € T = dD and radius p > 0. The constant A depends on
the C'norm of the function 8 — (1 — A, (6,v')) and thus can be choosen to be independent
of (v1,v") € Vi x V'. The inequality (4.14) holds now with

Cl-—-a-Ap—i-l

for an absolute constant a. (See, for example [Vi-Ha] or [Koo] for more detailed information
on Carleson’s imbedding theorem and maximal functions.)

Integrate now (4.14) for fixed v; with respect to v’ € V'. We get (since the set (4.13)
contains (Uz)q)

(4.16) / |PPdman_y < Cz/dv’f ldC| [P o o (O)I°-
(Uz)a v

This holds for each v; € V; . Integrate over v, € V; we get
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C, - ]
(4.17) f |PIPdman_y < ml(i,l) / dvidv Tf!dé'l P o fowr (O

{U2)a Vix V!

For estimating the right hand side of (4.17) we use that for each fixed ¢ € T the mapping

(4.18) v fow)(C), vEV,

is a diffeomorphism onto its image, provided V is small. The norms of the diffeomorphisms
and the inverses are uniformly bounded for { € T . Indeed, we may consider the mapping

(4.19) q — f.(0), g in a neighbourhood of p on H
instead of (4.18). Consider the-projection = of (4.19) onto T} H ,

(4.20) 7q = 7 fo(() = mq + w(().
Its differential is an isomorphism on T’;] H for each ( € T. It remains to differentiate
Bishop’s equation (see {Tu2] §2) in the direction T,H © T/ H .

It follows that for each ( € T and each function F € L (H)

loc

(4.21) / dv1dV’|F 0 fyn0 (O < Cs / | 7P dman-
Us

VixVv!

holds for a neighbourhood U; of p on H, which contains fo(,, »({) for all (v;,2") €
Vi x V', ¢ € T. It is clear that Us can be taken small if U, is small. Integration with
respect to ( gives the desired result. Lemma 4.4 is proved. ]

Continue now the proof of lemma 4.3. Let first p < co. Consider a neighbourhood U;
of pon H, U, C U;. Let so be a small positive number. For s € (0,s0) denote by d,
a C'function on H which is equal to s-v on U,. Here v is the unit normal of H at
p which is directed into O;. If so is small enough, we may apply lemma 4.4 to U, and
d = d, for each s € (0,s0). Integrating inequality (4.12) (written for d, instead of d) with
respect to the parameter s we get

(4.22) / |P|Pdmy, < C f |P|Pdman1
o)) Us

for certain one-sided neighbourhood O; of U; and all polynomials P. This implies in a
standart way that for each compact subset K of O,
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(423) mI?.X|P| S C"(I\’)/|P1pdm2n_1
Us

for each polynomial P.

Let now S be a non-negative C? function on U, which is zero on a connected neigh-
bourhood Uj of p on H, Uj C U, and strictly positive on U;\U,. Put d(q) = S(q) - v
with v as above.

Let O be a one-sided neighbourhood of p, O C O,, with C? boundary 80, such that
a part of A0 is contained in (U3;)s and the other part of JO is a compact subset of O;.
By lemma 4.4 and the preceeding remark

(4.24) [PHanoy < C(O) f PIPdman_s
. Us

for each polynomial P.

Let now u be a CR-function on H of class L . We may suppose that the set s in
(4.24) is small enough to apply the approximation lemma 3.6.c. with 'U = U;. Let the
polynomials {P,}{2, approximate u in LP(Us,dmsn—1). Then for {Pi}i>1 as well as for
{Pk — P1}ki>1 the estimate (4.24) holds. Hence, P; converge in HP(O) to a function up

and the boundary values of up on U; are equal to u. Lemma 4.3 is proved for p < .

For p = co we add the following simple arguments. Note first that L*® C L% _, so each
bounded CR-function u on H has local H?-extension @ at p. Moreover, using (4.21)
integrated with respect to ¢ and the approximation lemma 3.6.c we may choose a sequence
of polynomials {P,}5; in C* such that

o0

Z f dv/ [0 fow)(€) = P 0 fo@(¢)PldC] < oo

n=1 v T
It follows that for almost all ¢ € H close to p the function uo f,(¢), { € T, extends to an
H?-function u, on the unit disc D. Since u is bounded the extension of uo f, is bounded for
almost all ¢ by the essential supremum of |u|. Using the existence of non-tangential boundary
values almost everywhere for the local H?-extension @ (boundary values on a part of H) and
for the functions u, (boundary values on T) we see by Privalov’s uniqueness theorem that
for almost all ¢ € H close to p and for ( € D close to one u,({) coincides with @ o f(().
Thus |&| is bounded almost everywhere by ess sup |u|, so by continuity |i| is bounded by
ess sup ju| at all points. Lemma 4.3 is proved completely. O

Remark 4.1. Lemma 4.3 is stable under small C?-deformations: If H; is close to H in
C? the lemma still holds with some @; and U; close to © and U in the natural sense.
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This follows by slightly varying the family of discs f,. The LP-analog of proposition 3.1 for
hypersurfaces follows:

Suppose H is a hypersurface of class 02 in C* and N is a CR-orbit of H. Let u be
a CR-function of class L} on H, 1 <p <oo. If u haslocal HP -extension at some point
p € N, then u has local HP-extension at all points of N .

The assertion follows from the deformation argument used in the proof of proposition 3.1
(see also [J64]) and from lemma 4.3.

Let now N be a CR-orbit of H which is an open subset of H. Then N contains a
minimal point, hence by lemma 4.3 and the preceeding remark each CR-function = of class
L} (H) has local HP-extension at each point of H. Consider now the union of suitable
one-sided neighbourhoods O, of all points of N such that the CR-function u has HP-
extension to each O,. The set obtained in this way may be not locally connected if for some
point p of N it contains one-sided neighbourhoods, say, OF and Oy , on both sides of N.

Claim 4.2. If u has HP -estension to OF and to O; then (after a correction on a set of
measure zero on H) u ezxtends to an analytic function in a neighbourhood of the point p.

Proof. Suppose the z,-axis is transverse to H at p. Let D =Dy x D’ (D1 ={lar —2Y <
R} Cc C, D’ C C*') be a small open polydisc centered at some point z% of OF , which
contains p and which closure is contained in Oy U H U OF. We define a functlon i on
O, U H U Oy by the equalities

i =upt on OF, i=ug-on O, @=uonH.

Varying, if necessary, OF and O; slightly outside a neighbourhood of H, we may assume
that C x {2} intersects Of and O transversely for 2’ € D'. Denote for z' € D’ the planar
domains (C x {z'}) N O} and (C x {2'}) N O; by OF(2') and O (2'), respectively.

Both domains may be assumed to be simply connected and have C? boundary. Moreover,
using a maximal function inequality for HP-functions (see {Steinl], I1.9 corollary of theorem
10) it is easy to see that for almost all 2’ the function u+|O5 (2') belongs to HP(OF (")) and

the same for u,~. Moreover, for almost all r > 0 such that D7 x D’ & {

is contained in O U H U O;‘ and contains p, the integral

f [P drmgny

(8D} xD"YNOF

zi ;=2 < r}x D’

is finite. This follows from the maximal function inequality and (4.23). The same is true for
O; instead of OF. Choose the number R above such that with D, = Df the integral
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(4.25) ] [P dmgn-
8Dy x D’

is finite. Let A(z') denote the disc D; x {2’} for 2’ € D’. Using the preceeding remarks
together with the definition of the AP-extension, we get that for almost all 2’ the function
#|A(2") N OF can be represented as the Cauchy integral of @ over the boundary

HA(ZYNOF) =(OF N (8D, x {z'})) U (HN (D x {'}))

of A(2') N O}

Moreover, the Cauchy integral of @|A(2) N O with pole outside O (2) taken over the
boundary of A(z') N O, is zero for almost all 2'.€ D’. Thus, the Cauchy integral of @ over
0A(2") = 8D, x {2} coincides on A(2') N OF with ajA(2) N Of. By the same reasons
for almost all 2' € D’ the Cauchy integral of & over JA(z’) coincides on A(z') N O with
#|A(2') 0 O . Hence, 4|A(2") coincides outside a set of zero linear measure on A(z') N H
with an analytic function on A(2').

It follows now in a standard way that gt |D N Op+ extends to an analytic function in D
and thus %|D coincides with this analytic function after a correction on a set of zero measure
on H. Indeed, consider the Taylor series of Uot with respect to z; near 2°:

o0

(4.26) Lot (z) = u(2) = Z ar(2')(z1 = 20k

k=0

Here z = (z1,2'), z' € D', |z —2}| < r for some small positive r such that {|z; —2}| <
r} x D' is contained in Of . (If necessary we will shrink D'.) The coefficients a,

(4.27) ap(z') = 51—- / ii(z1,2)(z1 = 20) ¥ dz

T
fzy -2 |=r

are analytic functions of z' in a neighbourhood of D’. For almost all z’ the function

z; — up(z1,2') is analytic on D, thus for almost all 2’ formula (4.26) holds for R > r
instead of r. Holders inequality and integration over 2’ give

RP-1 . i
(4.28) ] ) Pdmana() < T / l@P|2y — 20|~ drmgn_1.
Dl

(8D1 )X D’

Thus for each k&
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(4.29) R”pflak(z’)l"dmzn_g(z') <C
b

for a constant C not depending on & and R. Applying in a suitable way the mean value
theorem to the analytic function aj, we get that R¥|ai| is bounded on each relatively
compact subset D’ of D’ by a constant not depending on R and k. Hence, up, extends
analytically into the set Dy x D' which contains p. O

Since the orbit N is connected it is now easy to see that there exists a connected open
set O containing a one-sided neighbourhood O, of each point p € N (the O, as in the
definition 4.1) such that for each p, 1 < p < 00, each CR-function u on N of class L} (N)
has HP -extension to O, for each p. (This follows from the claim 4.2 and the fact that the
O, may be choosen not depending on the function u and the exponent p.)

We are now ready to give the
Proof of theorem 2b. We will call a point p € M LP(H\K)-regular if each function
u € L{ (H), which satisfies the tangential Cauchy-Riemann equations (in the weak sense)
on H\K, satisfies the tangential Cauchy-Riemann equations also in a neighbourhood of
the point p on H.

We have to prove the following

Lemma 4.5. Let v : [0,1] = M be a CR-curve such that v(t) is LP(H\K) -regular for
t€[0,1),p € [1,00). Then (1) is LP(H\K) -regular.

Lemma 4.5 implies theorem 2b. Indeed, let M\K' be the G;{M)-invariant hull of
M\K . Lemma 4.5 implies that each function u € L} .(H) which is a CR-function on
H\K is a CR-function on H\K’. K’ is a compact CR-invariant subset of M. Since
L} (H) C L, (H) for each p > 1, the LP(H\K)-removability is guaranteed, if /{’ is empty.
Hence, theorem 2b is proved for 1 <p < 2. If 2 < p < 0o and the (2n—1—p')-dimensional
Hausdorff measure of K’ is finite, or if p = oo and the (2n — 2)-dimensional Hausdorf
measure is zero, then by general results on removable singularities for solutions of first order
differential equations (see [Ha—Po], theorem 4.1) K’ is removable for the corresponding space
L} .. Theorem 2b is proved. D

Proof of lemma 4.5. Let the CR-curve v on M be the integral curve of a CR-vector
field Xpn_2 (more precisely, of a G;(M)-vector field) of class C!defined in a neighbour-
hood of ¥([0,1]) on M. Since for p € M the complex tangent space T; M is contained
in T;H we may continue Xs,_; to a CR-vector field X3,_2 of class C'on H (more pre-
cisely, to a Gj(H)-vector field). Let Xi,...,Xz,-35 be CR-vector fields ( G;(H)-vector
fields) of class C'in a neighbourhood of ¥([0,1]) on H such that the 2n — 2 real vectors
X1(p), ..., Xon-2(p) span T;H for each point p of the mentioned neighbourhood . (We
may always consider instead of v a small part of v, 4|[r,1], 7 close to 1, and make a
reparametrization. So we work in a sufficiently small neighbourhood of the point (1).)
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M is a generic CR-manifold, hence the subspaces ;)M and T%I)H of Tq)H intersect
transversally. Take £, € (0,1) close enough to 1 and consider a small C! curve [: (=6,6) —
M in M through /(0) = v(t), which is transverse to (T,f(to)H)ﬂT.,(,D)M. Now we introduce
Euclidean coordinates in a neighbourhood of v(fs) on H using the mapping gx r of section
2. (Here X =(Xi,...,X2u-2) with the CR-vector fields X; defined above.)

Let =0 x -+ X 3,2 C R*? be an open set containing {0} x --- x {0} x [0,1].
The mapping

(4.30)  (T,s) = G(T,8) = gxr(I(5)) = 9Xan 2Tanz © - 0 gy, (I(5)), T €D, |s| <6,

defines a diffeomorphism of Q x (—§,8) onto a neighbourhood of 4([0,1]) on H . Denote
the set G(Q? x (—6,6)) by Hp. The tangent space at T = 0 of the (2n — 2)-dimensional
C" manifold

(4.31) Q¥ (G(T,0), Ten)

is equal to T,f(to)H. We work in a small neighbourhood of (1), in particular, ¥(ty) is close
to (1), so for each fixed s € (=4,6) the (2n — 2)-dimensional manifold

(4.32) | Q. £ {G(T,s): T € O}

is a C'-manifold which is the graph of a C!function over an open subset of T,f(l)H. In
particular, M intersects each ¢}, transversally in H . Thus, M N, is a proper submanifold

of Q. of class C'and of dimension 2n —3. It is clear that the closure of Q,\M in M N Hy
is equal to Q).

Fix now a small neighbourhood U, of ¥([0,1)) on H which consists of LP{H\K)-
regular points. Since [(0) = «(to) € U, we may suppose (shrinking Q,...,Q2,_5 and
(=6, 6) if necessary) that for an open interval §2;,_, containing to the set

(433) EO ééf G(Q x (_615))3 Q = Q1 XX Q?n—:} X Q?n—Zu

is contained in U, . Set M, = M\U,.
[t is clear that Hp\M, is connected. Moreover, each point of Hy can be joined with a

point of Hy by an integral curve of X2, in other words, for a suitable interval I we have
the relation

(4.34) nggn_,,t(lqo) = Ho.
tel

For each s3,|s| < 6, denote by NV (s) the (Ho\M,)-orbit through I(s). For each orbit N (s)
denote by m(s) the set of all limit points of A (s) on M N Hy:

(4.35) m(s) = (N(s)N M) N Ho.
We need the following
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Claim 4.3. For each s,|s| < &, the set N(s) d=ef./\f(s) Um(s) is the Hy-orbit through I(s)
and ' :

dim, NV(s) = dim, N(s).

Proof. If an Gy(Ho\M,)-orbit N (s) contains for some s’ € (—86,8) some point of Q, def

G(£1 x {s'}) then, obviously, it contains Q, . Since Xz._, is tangent to M at points of M
we have for t € ‘

IXznat(M N [:—’0) Cc M,

(4.36) - )
ng,,_g,t(HD\M) C HO\M'

Thus, all points of G(2x {s'H)\M = Q,\M can be joined with a point in GO x {s'PY\M =
Q«+\M by an integral curve of X;,_, which is contained in Q,\M.. Thus, if N(s) contains
a point of Qy\M , it contains also a point in Qy and thus it contains Q) , and, therefore,

it contains also Qu\M . Since each @y, is the graph of a C!-function over a subset of
TymM,

(4.37) (QA\M)NM N Hy=QuN M.

Consider first an (Ho\M,)-orbit A (s) of real codimension one in Ho\M,, . In this case
N(s) is an analytic hypersurface which contains the subset Q, U(Q,\M) of Q,. At each
point p of this subset the tangent space T,Q, is equal to T:H. Since @, is the graph
of a C'-function over a subset of T{,](uH and @, N M is a proper submanifold of @, of
dimension less than ), by continuity for p € @, N M the same equality

(4.38) T,Q, =TJ)H

holds. Thus (4.38) holds on @, and, therefore, @, is an analytic manifold of complex dimen-
sion n—1, which is a proper, relatively closed submanifold of Hy. Thus @, is an Hg-orbit, and
the connected G;(Hp \ M,)-invariant set @, \ M, which contains I(s), is a (Ho \ M,)-orbit
and is therefore equal to A’(s). In the case dim, A'(3) = 2n — 2 the claim is proved.
Consider now (Ho \ M, )-orbits N(s) of dimension 2n — 1. Recall that M(s) contains all
sets Q. U (Q’\ M) which it intersects. Since M is generic and, hence, T, M does not contain
the complex tangent space T H for p € M the set m(s) C M is contained in the G(Ho)-
invariant hull of A (s). Moreover, N(s) = N (s) U m(s) is a connected open subset of Ho.

Since U N(s) is Gy(Hp)-invariant, the same is true for the complement. Since each
dim AN (s)=2n-2
N(s) of dimension (2n — 1) is a connected component of the complement U N(s)

dim A (s)=2n-1
we are done. O
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Continue now the proof of lemma 4.5. We need the following claim which concerns

(Ho \ M,)-orbits of maximal dimension and is in this case formally slightly sharper than
lemma 4.5.

Claim 4.4. Suppose the (Ho \ M,)-orbit N(s) is open in Hy. Then each CR-function u of
class LP(N(s)), 1 < p < oo, defines a CR-function on N(s) (of class LP).

Each point of M N Hy can be joined with a point in M N Ay (i.e. with a regular point)
by an integral curve of Xp,_» (which is contained in M N Hy). Hence claim 4.4 is exactly
lemma 4.5 (with 4 and (1) replaced by an integral curve of Xp,_2 and its endpoint) in
the particular case, when the (Hg \ M, )-orbit A(s) has maximal dimension. For notational
convenience denote the mentioned integral curve of the vector field X;,_,, as before by ¥
and its endpoint by v(1). Moreover, denote as before a neighbourhood of ¥([0,1)) on H,
consisting of regular points, by U, and let M, = M \ U,. We have to prove that u is a
CR-function in a neighbourhood of ¥(1) on Hy. Now, if N(s) is open in Ho, N (s) contains a
minimal point of Hy. Thus, by lemma 4.3 and claim 4.2 there is a connected open set O(s)
which contains a one-sided neighbourhood of each point of M(s) and an analytic function
uo(s) in O(s) which is locally the HP-extension of u.

We consider now a small C?%-deformation of Hy which has fixed all points of M and of
Ho\ N(s) and moves all points of N(s)\ M into O(s). Denote the obtained manifold by Hj.

Apply the scheme of the proof of proposition 4.1. Recall that the main point is to obtain
a small C2-deformation of M which fixes M, and moves small disjoint CR-cones at some
points v(tx), tx € (0,1), tx — 1, into O(s) in such a way that (1) becomes a minimal
point of the deformed manifold M? = {z + d(z) : z € M} (see the lemmas 3.3 and 3.4). Let
as in the proof of proposition 4.1 the function d' be close to d and vanish in a neighbourhood
of 7(1) on M. Say d’ moves a finite number of CR-cones on M at y(tx), k=1,...,ko, into
O(s). Denote by the same letter d' a suitable extension of that function to Hj such that the
deformed manifold (H})* is contained in H)U O(s) and thus in MU O(s) U (Ho \ N(s)). As
in the proof of proposition 4.1 we sweep out a small neighbourhood of ¥(1) on H] by disjoint

manifolds M;, t € (—6,6), which are close to My %' M in the C? topology. The deformed
manifolds

MY ={z4d(z): 2 € M)

are close to M¢ in C?. Hence, by the lemmas 3.5 and 3.6, each continuous CR-function on
M, t € (=$,6), has analytic extension to a wedge W/ the edge of which is an open set on
M¢. Moreover, since d' vanishes near (1) the W/ contain wedges W, which edges are open
subsets of M;, and the W, are close to each other. Recall now that the CR-function u of class
L} .(Ho) has an analytic extension ug(,) to the set O(s). O(s) is a neighbourhood of each
point in Hy\ M which is close to y(1). Hence, O(s) contains each M;, t € (-4,6)\ {0}, and
$0 up(s) has analytic extension to each Wy, t € (=6,6)\ {0}. As in the proof of proposition

4.1 we get analytic extensions uy and u_ of upsy to Ox = |J Wiandto O_ = |J W,
te(0,6) te(—46,0)
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In the same way as in that proof, we see that vy = u_ in O, NO_. We obtained an analytic
extension of up(,) to a one-sided neighbourhood of (1) with respect to Hj and therefore, we
obtained an analytic extension of u to a one-sided neighbourhood O, of (1) with respect to
Hy.

It remains to show that the extended function is of class HP in a suitably choosen one-
sided neighbourhood of ¥(1) (with respect to Hp). To see this use the deformed manifold
M¢? obtained above. By Tumanovs theorem ([Tu2]) for o € (3,1) there exists an analytic

function w € Aé'“l with values in T, M¢? such that

(4.39) a%fm),w(A)lA=1

is transverse to H and directed into O(s). Here by f,., ¢ € M close to (1), we denote the
family of analytic discs of class CY*, a € (%,a’), with boundary f,.(T) C M? for which
few(1) = g and the orthogonal projection = onto T,f(led is equal to 7 f, ,, = ¢+ w. The
existence of the w for which (4.39) has the desired properties follows from the construction

of M?: The vectors (4.39) sweep out a cone in the transverse directions to M? and some of
these vectors are directed into O; by the construction of the set O,.

For all manifolds which are C? close to M¢ there exist similar families of analytic discs.
More precisely, we need the following: Let the function d' on M be as above and sufficiently
close to d in C?. Extend this time the function d’ to Hy (not to H}). Denote the deformed
manifold {z + d'(z) : z € Ho} by H¢. We may suppose that d’ moves small neighbourhoods
of ¥(tx) on Hy, k =1,..., ko, into O(s) and vanishes outside this neighbourhoods. Hence
each CR-function u on Hg \ M, of class LP (1 < p < o) extends to a CR-function ug of
the same class on (Hp)* \ M,. (This follows from lemma 3.6.c, from the fact that u has
local H®-extension at ¥(fx) to O(s) and from Carleson’s embedding theorem (see also the
proof of lemma 4.4).) Sweep out a neighbourhood of (1) on H by disjoint C? manifolds
M%(t), |t| < o, such that M¥'(0) = M? and each M¥(t), |t| < o, is sufficiently close to
M? (and thus to M?) in the C? topology. We may suppose that (v,t) € V x {Jt| < o}
define Euclidean parameters on HZ for a neighbourhood V of zero in R?*~2, More precisely,
there exists a C? diffeomorphism ¢ from V x {[t| < ¢} onto a neighbourhood of 4(1) on
HZ | such that for each ¢ the mapping v — (v,1) is a diffeomorphism onto an open subset
of M¥(t). For each t we get analytic discs F,,, with boundary F,;(T) contained in M?(t)

such that F, (1) = ¢(v,t) € M¥(t) and 7 F,; = 7¢(v,t) + w. By Tumanovs theorem [Tu 2]
the mapping

(4.40) (v,t,A) = Fy(A), (v,t,A) eV x {|t| <o} x (Ao, 1],

is a diffeomorphism of class ' onto (HE Nw; )UO for a small neighbourhood wy of (1) and
a one-sided neighbourhood O of v(1) (with respect to H{ ). We may suppose that O C Oy,
moreover, V =V} x V' and (after shrinking ;) for each fixed v, € V; the mapping
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(441)  (0,0',£,7) = Fpan(Ae), (8,01, 0) € {|0] < 8} x V' x {}t| < 0} x (N0, 1]

is also a diffeomorphism onto (Hg: N w;) U @ for another neighbourhood w; of (1) and
another one-sided neighbourhood O’ C O, of ¥(1).

Recall now, that to each CR-function u of class L}, . (1 < p < oo) on Hp\ M,, corresponds
a CR-function ug of the same class on (Ho)* \ M,,. Since M is a generic CR-manifold it is
easy to see that for a suitable neighbourhood wj of y(1) in C* the set H Nws\ M¥ consists
of two connected components. After a change of coordinates on H (we have to change only
t-variables and do not change the form of the corresponding system (3.12)) and shrinking
ws, if necessary, we may suppose that both connected components of (HZ Nws3)\ M¥ are of
the form described in remark 3.1. Hence, ug can be approximated by polynomials in LP on
each of this sets. Take now any sequence of hypersurfaces (H?'), C @ which approximates

H¥ Nw,. There is a function A, of class Cl with values in (0,1] and small C! norm of 1 —A,,
such that for each fixed v; € V)

(4.42) (HY). C {Froyona(Ae((v1,0'),8,0)e™) 1 (0,0',) € {16] < 6} x V' x {|t] < o})

Use now an inequality like (4.14) for each polynomial P, integrate over V! x {t € (0,)} for
suitable small V/ C V' and & < o and use the approximation theorem. Do the same for
{t € (0,6} replaced by {t € (—&,0} and use that the image of {t = 0} under the mapping

(4.43) (91 vf7 t) —* F(vl,vr),t(AE((vl) U’), t! 9)619)

has (2n —1)-dimensional measure zero. Integrate over v;. We get an estimate of the LP-norm
of uo()[(H?)e Nwy by the LP-norm of u over a suitable subset of H. (w, is a suitable neigh-
bourhood of ¥(1).) It follows (see also the proof of lemma 4.3) that the analytic extension
is of class HP in a suitable one-sided neighbourhood of v(1) with respect to H*. Since H¥
contains a neighbourhood of (1) on H claim 4.4 is proved. ]

Remark 4.2. The arguments which we used to prove that the extension is of class LP are
sufficient to prove the claim 4.4. We have to apply it twice with two different functions
wi,wy € Aé’“‘ such that the vectors %f,,(l)'wl()\)l,\=1 and %f.,(l)m()\)lhl are linearly inde-
pendent. Doing so we do not need claim 4.2. Claim 4.2 seems to us interesting for itself, so
we included it.

If the (Ho \ M,)-orbit A(0) through [(0) is an open subset of H then we are done by
claim 4.4. Suppose it is not. Denote by .4y the union of all Hy-orbits of real codimension

one, i.e. the union of all N(s) = M(s) Um(s) which are analytic manifolds. Let A, be the
union of Hg-orbits of real codimension zero. '
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Claim 4.5. Let u be a CR-function of class LP on Ho \ M,, 1 < p < co. After changing
u on a set of (2n — 1)-dimensional measure zero, u becomes an analytic function on_each
analytic manifold N(s) for which N(s) is contained in Ay.

Proof. The claim follows from the approximation lemma 3.6.c. Let U be an open subset
of Hy\ M, of sufficiently small diameter and let P, be polynomials which approximate u in

LP(U). We may suppose (after a complex linear change of coordinates) that U contains zero
and near zero H has the form

(4.44) x = h(w,y)

for a (real) C? function h with A(0) =0, (VR)(0) =0. (w,x +iy) = (w1,... ,Wn-1,X + 1Y)
are the complex coordinates of C*. Let Xi,...,X2,_2 be the CR-vector fields on H near
zero for which the orthogonal projection onto 7§ H is equal to Re Wy, Im Wi, ... Re W,_,,
Im W,_,, respectively. (Wh,... ,W,_; are the standard complex vector fields in Ty H which
we identify with C*~! with complex coordinates wy,... ,w,_;.) Denote by p(y) the point

p(y) = (h(y,0) + iy,0) on H and define C' coordinates on H using the mapping gx r with
the just defined CR-vector fields:

(4.45) (T,y) = gx1(p(y)) E G(T,y).

We may suppose that

(4.46) U={G(T,y): TeR™™? |T|<é yeR, ly|l <6}
It is now clear that Ay N U has the form

(4.47) AU = {G(T,y): |T| <6, y € E}

for a closed subset E of (—§,6). Moreover, write w; = T3;_; + ¢13;. Then the orthogonal
projection of G(T,y) onto T H is equal to (w;, ... ,wn-1), and for fixed y the set {G(T,y) :
|T'| < 6} has the form

(4.48) {(a(y, w),w) : [w] < 6}

for a C'-function g on {|w| < 6} x {|y| < 6}, which is for fixed y € E an analytic function
of w.
Now, for each polynomial P;, each test function ¢ € LP'(E) (p'is the exponent conjugate

to p) and each smooth test function x with compact support in {Jw| < é} the following
equalities hold
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(4.49) ] dy [ (1) a(y)-y(iu)-a_%fn(g(y,w),w)=o,j=1,...,n—1.

E Jw|<é

Integrate by parts with respect to w and take the limit for » — oo, we get for each ¢ € L' (E)
and x € C§°(|w] < §)

(450) /mdy / (;_w_:;)(w) ) u(g(yaw)sw)dml’n—E(w) = 01 J = 1) cee T L.
E

lwj<$

Thus, for almost all y € E the function w — u(g(y,w),w) satisfies the Cauchy-Riemann
equations in the weak sense and, therefore, it coincides almost everywhere on {|w| < §} with
an analytic function of w. Claim 4.5 is proved. m

Assume now that u is analytic on each A'(s) with N(s) C Ag. The following two lemmas
will imply lemma 4.5, and hence, theorem 2b.

Lemma 4.6. If N(s) is contained in Ay then u|N(s) extends to an analytic function on
N(s). '

Lemma 4.7. Suppose u € LP(Hp), 1 < p < o0o. If u|A; is a CR-function and for each
N(s) C Ag the function u|N(3) is analytic, then u is a CR-function on H,.

Proof of Lemma 4.6. Fix the analytic manifold N(s) C Ag and consider the hypersurface

Mo E Mn N(s) in N(s). Recall that each point in M N N(s) can be joined with a point

in M N N(s)N U, by an integral curve of the G;(M)-vector field X,,_, (the integral curve
contained in M N N(s)). Note that u|N(s) is analytic on N(s) \ M and on N(s) n U,.
Introduce Euclidean coordinates on N(s) to identify N(s) with an open subset of C*~! and
consider in these coordinates small parallel shifts M; of My N N(s) to both sides of M, (in
N{s)). Apply to the manifolds M, the fact that the analytic extendability of CR-functions
on hypersurfaces to one-sided neighbourhoods propagates along CR-orbits. We use that for
each t # 0 u|M, is a CR-function which has analytic extension to U, N N(s). By the choice

of U, and by the fact that the M, are parallel shifts of My, the set U, N N(s) contains for
each t close to zero

1. open subsets @; of M, with the property that the G,(M,)-invariant hull of @, is equal
to M, and the @, are parallel shifts of Qy,

2. open subsets ; of N(s) which are parallel shifts of £,, and contain a one-sided neigh-
bourhood in N(s) of each point of Q,.

Thus, u|AV(s) has analytic extension to a one-sided neighbourhood #f; of M, for each
t # 0 which is small enough, U; being a small parallel shift of a one-sided neighbourhood Uy
of My. It follows that u[A/(s) has analytic extension to each point of M N N(s). O



REMOVABLE SINGULARITIES 63

Proof of Lemma 4.7. A proof for continuous functions instead of LP-functions was given
for example in [Di-Pi] for the case of C*-hypersurfaces and in [J64] for the case of CR-
manifolds of higher codimension of class C* (in the last case the coordinates of the form
(4.45) are of class C%). We will give a proof for C? hypersurfaces in the LP-case. There
are some difficulties in the case of C? hypersurfaces (the coordinates (4.45) are ensured only
to be C'), so our proof will be close to that in [Di-Pi]. Let U be a small open subset of
Ho, U C Hy. Suppose near U the hypersurface H can be described by (4.44). Write the
tangential Cauchy-Riemann operators L; in coordinates (y,w), w(y,w) = (h(y,w) + ty,w).
We have to prove the tangential Cauchy-Riemann equations in the weak sense:

(4.51) f Li(xop) -uop dmoy_i(w,y) =0
lwl<é.ly|<8

for each smooth function y with compact support in U C ¢ ({|w| < 8} x {|y| < 6}). L% is
the transpose of L; in the considered coordinates. Suppose the diameter of U is sufficiently
small with respect to §. To prove {4.51) we will divide the domain of integration. One part
will be contained in .4; and the integral over this part will be zero (see claim 4.7, below).
The other part will be a small neighbourhood of A4,. The estimate of the integral over this
part is based on the fact that u i1s analytic on each leaf in A4y and, therefore, u is close to an

analytic function on the mentioned neighbourhood of Ag in an appropriate sense. We need
the following preparation.

Consider the set E = {y € (=6,6): G(T,y) C Ao for |T| < 6} (with G as in (4.45)). Let
e be the characteristic function of E, yg = 1 on E and xg = 0 on {=6,8) \ E. We get
further a function f on (-4, 8) from the following considerations. The function G of (4.45)
defines C?! coordinates on U:

(w, A(w,y) +1y) = G(T, y).
The connection between coordinates (w,y) and (T,y) is the following:

w; =G;(T,y) =Tajo1 +iT0;,5=1,... ,n=1; y= ImG,(T,y),

or, equivalently,

(4.52) (w,y) = (¢7" 0 G)(T,y) with ¢~ o G of class C'.

l?euote the continuous function Li(x o ¢) which appears in (4.51) by I' 0 ¢ and fix it. (4.51)
ecomes

(4.53) / / FoG-uoG-|detd(yp™" o G)|dmaon(T,y) = 0.
ITi<s Yyl<§
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For y € (—4,6) we put now

(454)  fly)= / (ToG)(y,t)- (w0 G)(y,T) - |det dlip™ 0 G)(T, y)| dman-a(T).

|T|<5

Denote by E’ the set of all points of £ which are Lebesgue points for the function f and for
the function xg as well. It is well-known (see, for example, [Stein2]), that £\ E’ has linear
measure zero. Let y € E’. Since y is a Lebesgue point for f the integral

1 , /
(4.55) o [ e - 1)

()

is arbitrarily small, if the length |I(y)| of the interval I(y) C (—§,8), which contains y, is
small enough. Since y is a Lebesgue point for xg, there are intervals I(y) of arbitrarily small
length containing y, such that their end points are contained in E. Call intervals with end
points in F admissible.

Recall that for each y € F the set @Q(y) = G({|T] < 6} x {y}) is an analytic manifold (of
complex codimension one in C*), and the function u|Q(y) is analytic. To each y € E’ we
associate an analytic function u} in a neighbourhood of Q(y) (in C*) which coincides with
u|@(y) on Q(y). For each interval I C (-4, 6) denote by B; the "box”

(4.56) B ={G(T,y):|T| <6 y €I}

If I = I{y) = (y1,y2) with y1 < y < y2 and y1,y2 € E we will call the box admissible

and denote it by B(y) T Byy). The boundary pieces {G(T,yx) : |T| < 8}, k = 1,2, of
an admissible box B(y) are analytic manifolds and on the rest of the boundary of B(y) the
function I' vanishes.

The lemma 4.7 follows now from the two claims below, and the covering theorem of Vitali
(for example {Stein 2}, 1.5.5.4, or [Saks]).

Claim 4.6. Fiz a small positive number €. For each y € E' there exist arbitrarily "thin”
admissible bozes B(y) = {G(T,y') : |[T| < 6, y' € I(y)}, I(y)| erbitrarily small, such that

(4.57) | / LTop-uop dmg1(w,y)| <e-C-ma_1(p7 (B(y)).
¢~ H(B(v))
Claim 4.7. Let U’ be a connected open subset contained in U \ Ao with piecewise smooth

boundary 8U'. Suppose QU is the union of two disjoint sets 3, and 0, where 0 is a connected
analytic manifold contained in Ay and y vanishes near 0;. Then
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(4.58) / Li(x o (p).- uop dmop_1(w,y) =0.

=1 {U) ‘
First we finish the proof of the lemma 4.7. Fix a sufficiently small € > 0. By the covering
theorem of Vitali (applied to the set E' and small admissible covering intervals I(y) for

y € E') there exists a sequence of disjoint admissible intervals I{y;), ¥ = 1,2,... which
satisfy the conclusion of claim 4.6 such that

(4.59) mi(E'\ | I(ys)) = 0.
k
Hence, for those I{yy),
@eo) | [ Lixoe) uop dnaswy)] €e- O (mans(o™ (JB@).
@~ U B(we))

Show, that the integral over the complement is zero. Note first that

(4.61) FE 1)\ JIw) C E.
k k

Indeed, let y* be a limit point of the set | J I{yx) which is not contained in this set itself.
%

Then each interval I(y;) is either on the right or on the left of y* and therefore y* is also
a limit point for the endpoints of the I(yx). The endpoints of the I(yx) are contained in
E, E is closed, and, thus, y* € E. By (4.59) the set F' has measure zero. Hence, the set

(—6,8)\ (U I(yx)UE) differs from (=6, )\ (|JI(yx)) by a set of zero linear measure, moreover
¥ k

it is the union of intervals with endpoints being either {—§} or {6} or contained in E. Thus,

the complement U \ {(|JB(yx)) U Ao} is the union of boxes of the form

Br={G{|T| < 6} x I}
for intervals I with endpoints in E or {—8} or {6}, By contained in U \ Ap. Take in each
B; a suitable partition of the unit with a finite number of elements and apply claim 4.7. We

see that the integral of Lt(x o ¢)-u 0 ¢ over the complement ¢ (U \ (U B(ys))) is equal to
zero. Since € > 0 in (4.60) can be taken arbitrarily small, lemma 4.7 is proved. O

Proof of Claim 4.6. Consider admissible boxes B(y) = By, with |/(y)| small and (4.55)

small enough. Recall that the support of the function T is contained in U with U C H,.
Thus for small 7(y) the box
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B(y) = {G(I,y') : |T| <3, ¥ € I(y)}

(6 is some positive number smaller than §) which is slightly smaller than B(y) = By in the
T-directions, contains U N B(y). We may assume that I(y) is so small that uy is defined in

a neighbourhood of B(y). The integral on the left hand side of (4.57) is equal to

(4.62) I, = / FoG-uoG:|detd(p™" 0 G)| dmaoa_i(T,y").

{ITI<8}x I(y)

We will show that this integral differs from

(4.63) T, = / P0G uioG - |detd(p™ 0 G)| dmamor(T,y')

{IT|<8}x I(y)

by a constant not exceeding the right hand side of (4.57) in modulus, and that the analyticity
of u} in a neighbourhood of B(y) implies that

Write
(4.65)
I, = ] Fop-uyop dng,(w,y) = f L;(x 0p) - u, 0 dmay_1(w,y).
e=1(B(y)) e=1{B(»))

Since u; is analytic, the equality L;(uj o ) = 0 holds, thus

(4.66) I, = / Li(xow-ujop) dman_i(w,y).
¢~ {B(w)
©~1(B(y)) has piecewise smooth boundary and on the smooth pieces either y o ¢ = 0 or L;

is tangent to the smooth piece. Thus, by Stoke’s formula I, = 0.
Estimate now T, — Z;:
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ILi—-I, = / I‘oG-|de£d(go"loG)|-{qu—u;oG} dmagn (T, y")
{ITI<8}yx1(y) '
(4.67) = ] AT,y (T, y) = wy(T,y)} dmana(T,y).
{ITI<8} x I(y)
Now
ATy ulty) - w(Ty)} =
AT,y W(Ty) - AT 9)u(T,y) +
(4.68) MT,y)uy(T,y) — ATy )w(Ty) = Th + Je.
We used here that uj(7T,y) = u(T,y). Note that

[ = |/ — fw) &y

{IT1<8}x I(y) I(y)
(4.69) < ell(y)| < C e maaca{e™ (B(y)),

if |I(y)| is small enough. (C depends on the small, but fixed constant §, not on I(y).) Since
A -u} is a continuous function, the estimate

(4.70) | T2} < &

holds for each (T,y") € {|T| < 6} x I(y) if |I(y)] is less than some constant depending on y.
Thus, the integral of J; is estimated in the same way. Claim 4.6 is proved. m]

Proof of Claim 4.7. We may suppose that zero is contained in d; and, moreover, that there
is a neighbourhood U" of zero on H and C? coordinates ¢y on U”, 1 (v) = ¢1(v1,... ,U2n-1) €
U”, such that

(471) 61 = {(,O](U) S U” I = 0}
and
(4.72) U'={p1(v) € U": vy > 0}.

Let Lj be the tangential Cauchy-Riemann operators written in these coordinates and take
the transposes L in these coordinates. We have to prove
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(4.73) f L'X -4 dmyp_y = 0.
{v1>0}
Here x and i are the functions x and u written in these coordinates. For each € > 0 let

X be a smooth function defined in R?*~!, which depends only on the first coordinates v,
Xe=1on {v; > ¢}, x. =0o0n {v; <%} and

(4.74) 0< i (e < Ce™t
dv”’

for some constant C not depending on e. x¥. has compact support in U’ and u is a CR-
function on U, thus

(4.75) / LY (X%e) - & dmgny = 0.
{v1>0}
But
ﬁ;(i(l - 25)) * ﬁ dmZn—l = / (1 - 25)(1.;;2) * ﬁ dm2n_1
{n1>0} {v1>0}
{n1>0}

I — 0 for ¢ — 0 since (1 — X,) — 0 pointwise. LJXE vanishes outside the strip S, = {£ <

vy < €}. Write L = 3 dx;(v) L is tangent to vy = 0, thus for v; = 0 the coeflicient
dy ;(v) vanishes. On the strip S the estimate

(4.77) |d@1 ;(v)| £ Const ¢

holds, since the coeflicients of J:Jj are of class C'. Since ¥. depends only on v;, from (4.74)
follows now that /T — 0 for ¢ — 0. Claim 4.7 is proved. m

5. AN EXAMPLE OF AN EXCEPTIONAL MINIMAL CR-INVARIANT SET

In this section we will prove theorem 4. We start with a real analytic compact manifold
of dimension three which carries a real analytic foliation of codimension one with an excep-
tional minimal set. Such examples can be obtained by the classical suspension construction
(see, for example, [He-Hi|, part A, pp, 124/125; part B, pp.- 33-35). The manifold we will
consider here is diffeomorphic to B x T, where T is the unit circle in the plane and B is the
oriented surface of genus two. For convenience of the reader we recall briefly the construction
of the foliation (for more details, see [He--Hi]). Consider the fundamental group (B, by)
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of B with fixed point by and define a representation H of m(B,bo) into the group of ori-
entation preserving real analytic diffeomorphisms of the circle T onto itself in the following
way. Choose standard generators a,,b,,a,,b, of 71(B, ). The loops a,, b,,a a,,b, in Figure
3 represent a,,b,,a,,b, in m (B).
Put
H(by) = H(bs)=id,
(5.1) H(ai) = hy, H(az) = hs,

where 2d denotes the identity mapping of T and h; and hy are the restrictions to T of
hyperbolic transformations of the Riemann sphere which let invariant the unit disc. (In fact,

we have a representation of the free group of rank two, F;, the fundamental group of the
"handle body”, bounded by the surface B.)

For 7 = 1,2 the mapping A; has two fixed points on the unit circle, one attractive and one
repulsive. Suppose all fixed points are different. Then A; and h, generate a discontinuous
group G of transformations of the Riemann sphere with the property that the limit set

Lo ={z: lim g,(2'}) = z for some z' € D and distinct elements " €G
ndmg g

is a Cantor set. See [Le] (e.g. p. 100-105) for more detailed information. Thus, the group
G of diffeomorphisms of T has an invariant Cantor set, and no finite subset of T is invariant

for G.

The foliation is now constructed in the following way: Let B be the universal covering

of B. Tdentify =(B,bo) with the group of covering translations. It acts on B x T in the
following way:

A:my(B,bo) x (B xT) —
(5.2) (vv (6¢) —

T)

(B x
(vB, H(v)().

Denote the quotient B x T/4 by 9 and the projection from B x T onto M by P. M is
a compact real analytic manifold. On the manifold B x T we have a canonical real analytic
foliation of codimension one, namely, that with leaves B x {(o}, (o € T fixed. The mapping

A maps leaves onto leaves. So we get a real analytic foliation on the quotient 9t = B x T/ 4.
We have to prove two assertions:

1. M is diffeomorphic to B x T.
2. We get a foliation on 9T with an exceptional minimal set, but without closed leaves.

To see the second fact we mention that for each fixed b € B the closed curve {b} x T is

transverse to the leaves of the canonical foliation of B x T. Thus, the image under P of this
curve is transverse to the leaves in 9.

It is easy to see that for an arbitrary element v of m;(B,bo) the points P((b,¢)) and
P((7v715,¢)) = P((b, H(y)¢)) belong to the same leaf in M = P(B x T). For all v the
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points P((b, H(7)()) are the intersections of the leaf through P((b,(¢)) with the transversal
P({b} x T) to the foliation of M. Recall now that the group G of diffeomorphisms of T,
generated by hy = H(a,) and hy = H(a), has an invariant Cantor set but no finite invariant
set. The exsistence of an exceptional minimal set and the absence of a closed leaf in 901
are now clear from the characterization of exceptional leaves (closed leaves, respectively) by
their intersections with transversals (see [He-Hi] or section 2 of the present paper)’

To see that the first assertion is true it is enough to have a diffeomorphism of B x T onto
itself which transforms the following mapping Ap into the mapping A:

Ao : (B, b)) x (BxT) — (BxT)
(5.3) (v (5 Q) = (3,0

The quotient space B x T/ 4, is obviously equal to B x T. Thus, we have to construct a
smooth mapping

(5.4) w:BxT—>T
which is for fixed b € B a diffeomorphism of T onto itself, such that
(5.5) w(yb,¢) = H(y)u(b, ()

for (b,¢) € B x T and 4 € m1(B, b). This can be done in the following way. Consider the
normal polygon ‘B of the surface B with the symbol a,b,a7*b] a,b,a7b7* (see Figure 4, for
more detailed information we refer to the book of Springer [Sp]). Construct first a suitable
mapping @ which satisfies (5.5) for ¢ € T and for b belonging to the boundary & of the
normal polygon. Extend the mapping  to the inside of the normal polygon and then, using

(5.5), to the whole universal covering. It is not difficult to see that this can be done explicitly
(for more details see also [He-Hi)).

Now, we will use the manifold 90t with the real analytic foliation to construct the example
required in theorem 4. First we will obtain a real analytic imbedding ¢ of the compact
manifold M as a totally real submanifold M gef @(M) of C*. Start with a smooth totally real
imbedding of B x T into C*. For example, suppose B is already realized as a smooth proper
submanifold of R® For each point b € B let v(b) be the unit normal which corresponds to a

fixed orientation of B. Consider R? as the real subspace of C*. The following mapping from
B x T into C,

(56) (b,C)—'b-I-V(b)EC, bEBa CGT)

is a smooth totally real imbedding of B x T into C* (¢ is a small positive number). Recall
that B x T is diffeomorphic to 2.

By results of Bruhat-Whitney and Grauert (see e.g. [Grau]) the smooth totally real
imbedding of the compact real analytic manifold 9t may be approximated in C! by a real
analytic imbedding ¢ (which is totally real as before). Thus, we get a compact totally real,

real analytic manifold M o (M) contained in C®. On M a real analytic codimension one
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foliation with a minimal exceptional set is defined, namely the foliation which is conjugate
to the foliation on 9 (under the real analytic mapping ¢). So we have a real analytic atlas
A = {(Ui,¢:)}, where {U;} is a covering of M with open sets, ¢; : U; = V; C R? are real
analytic homeomorphisms such that the coordinate transformations

(5.7) eij =piop; 1 pi(UinU;) > R*=R*x R

are real analytic mappings of the form
(5.8) pij(@1,32,33) = (0] (1,22,0), 9l (21, 22,73), 9 (23)).

The connected components of the sets {p € U; : c,o,(a)(p) = const} are the connected
components of the intersection of the leaves with U;.

The strictly pseudoconvex dormain € in the assertion of theorem 4 will now be a small

tubular neighbourhood of M
(5.9) Q=% {zeC: dist(z, M) < 8}

for some small positive §. The closed CR-manifold M in the assertion of theorem 4 will be

the intersection of the boundary 99 with a smooth hypersurface A in C* defined in the
following way.

Let {U,} be a covering of M with open sets, the U; being relatively compact subsets of
the U;. Consider the real analytic mappings

(5.10) @i = ¢ilU; = Vi C RS
The inverses
o7t V- Un

which map the open subset V; of R? onto the open subset U; of the totally real manifold
M contained in C?, can be extended to a complex analytic homeomorphism (°@;)~ ! of a
complex neighbourhood °V; of V; in C° onto a complex neighbourhood J; of U; in C. If
the <V; are close enough to the Vi, then °U; N° U is close to a relatively compact subset of

U; N U; for each pair ¢ and j. Hence, the real analytlc mappings ¢;; (see (5.7)) extend to
complex analytic mappings

(5.11) i = @i - (3;) 7t %@ (U N°U;) = C
of the form
(5.12) @21 22, 23) = (B (21,72, 2y B (21,22, 23), P (23).

Note now, that for z € °V; with real third component zz = z3 the third component tp( )
of the mapping °@;; is real (see (5.8)). Denote by "V; the set

(5.13) "Vi={z€V;:z3 =13 € R}
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If the °V; are close enough to V; and 6 is small enough, then the sets
(5.14) Ui =37 V) N Qg

cover a real analytic five-dimensional manifold A" which is relatively closed in ;5. Moreover,
the mappings °®;; (see (5.11)) restricted to °;("U; N "U;) define in view of (5.12) a real
analytic codimension one foliation on N. The connected components of the intersections

of the leaves in A with the sets "U are the connected components of the complex analytic
manifolds

(5.15) 37 ({z € Vit z3 = 23}) N Qas, 5 a fixed real number.
The complex dimension of these complex analytic manifolds is two.

The codimension one foliation of A" has an exceptional minimal set Sy, but no relatively
closed leaf. This can be easily seen by looking on the intersection of leaves with transversals.
Since each point of A" can be connected with a point in M by a curve contained in one single
leaf, it is enough to consider arbitrary points p of M and look on the intersection of the leaf

through p with a transversal contained in M. Now the assertion is clear from the property
of the foliation of M.

Note now that the set Ag wf Sy N Qs is relatively closed in s and it is the union of
analytic manifolds of complex codimension one in {}5. Moreover, As = Sy N {15 is contained
in the real hypersurface &' N Qs, but its does not coincide with this hypersurface. It follows
that Qs \ Sx = Qs \ As is connected and pseudoconvex.

Consider now the set § &' Sy N OQs. Note that the tangent space T,A of M at a point
p of the subset M of NV is spanned by T,M and the tangent space T,L; of the (complex)
leaf L5 through p in the foliated manifold A (see (5.13), (5.14) and (5.15)). The space
T,L; is the (real) linear hull of T,L7 and JT,L;. Here J is the multiplication with the
imaginary unit and £} is the (real) leaf through p in the foliated (totally real) manifold
M. Hence, T,N is spanned by T,M and two linearly independent real vectors from JT,L7
which are transerse to M. From these argument it is clear that for sufficiently small p051t1ve
8 the boundary 9 intersects A transversally at each point. Moreover, 99 intersects
each complex leaf contained in N transversally. Thus M = N N 98 is a compact generic
CR-manifold with a codimension one foliation, the leaves being maximally complex CR-
manifolds of real dimension three. Looking on small transversals to the leaves in M (which

are transversals also for the leaves of A') we see, that M has an exceptional minimal set but
no closed leaves. Theorem 4 is proved. O

6. EXAMPLES AND OPEN PROBLEMS

Here we will collect a few open problems and examples.
The first problem is the question whether a generalization of the theorem of Harvey and
Lawson holds. We consider instead of compact maximally complex CR-manifolds contained
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in strictly pseudoconvex boundaries exceptional minimal compact CR-invariant subsets of
CR-manifolds contained in strictly pseudoconvex boundaries.

6.1. Problem. Suppose §} is a strictly pseudoconvezr domain in C*, n > 3, with boundary of
class C™. Let M be a proper submanifold of O of class C* which is a generic CR-manifold
of real codimension two in C*. Suppose M contains an exceptional minimal compact CR-
invariant set S (precisely G ;(M)-invariant set S). Is S the boundary of a singularity set
in ¢ More precisely, does there exist a closed subset A = A of Q0 such that AN9Q = S
and 2\ A s pseudoconvex? If such a singularity set A exists, it is clearly minimal, i.e.

there is no non-empty closed subset A, = A, of A not coinciding with A, such that Q\ Ay is
pseudoconvexz.

The problem may be reformulated. Since each smooth maximally complex CR-manifold
contained in a strictly pseudoconvex boundary bounds locally an analytic manifold we get
a relatively closed subset Xs of a "ring domain” Q \ @, (Q; a relatively compact open
subset of Q) with X5 N 9N = S, such that Xs is the union of (non-proper) submanifolds
of 1\ Q) which are analytic manifolds of complex dimension n — 1. Thus, each boundary
point of 2\ (2, U X5s) which is not contained in 8% is a pseudoconvex boundary point. So,
the problem is equivalent to the question whether a certain plurisubharmonic function of a
special kind defined in a "ring domain” Q\ Q,, has plurisubharmonic extension to the whole
domain €. This is not true for general plurisubharmonic functions ([Fo-Si}).

6.2. Problem. LetQ and M be as in problem 1. Do there exist simple topological conditions
on M which exclude the eristence of

1. compact mazimally complez CR-manifolds of dimension 2n — 3 contained in M,
2. ezxceptional minimal compact CR-invariant subsets of M ¥?

(Compare with the problem posed in [Ci-St]). The problem is motivated by results concern-
ing the corresponding problem in C?: totally real discs in strictly pseudoconvex boundaries
in C* are removable ([J51],[Fo-St], [Duv]).

We give the following discussion. To study the removability (or, equivalently, the convexity
with respect to suitable function spaces) of totally real manifolds M in strictly pseudoconvex
boundaries 9 in C? it is useful to consider the characteristic foliation. For each p € M the
intersection T, M ﬂT};] 04} is a real line. Let M be diffeomorphic to an open planar disc. We

get a non-singular vector field on M. The associated foliation is the characteristic foliation.
Let K be a compact subset of M.

By Oka’s characterization principle for hulls the leaves of the characteristic foliation are

transverse to the trace of the essential hull K, % (K\K)N K of K on M. The theory of

Poincaré and Bendixson implies now that each compact subset of M is convex with respect
to a suitable space of analytic functions and hence it is removable ([J61],[Duv]). Let M now
be a sufficiently smooth generic orientable CR-manifold of codimension 2 in C? contained in
a strictly pseudoconvex boundary 9Q in C®, n > 3. We may also consider a characteristic
flow on M. Indeed, the linear space T, M ﬂT;;’ 00 has codimension 2 in 1,09} for each p € M.
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Moreover, for each p € M it contains the linear space T,;I M which has codimension 3 in T,00.
Consider the orthogonal complement (T,M NT,)0Q)© T/ M of T/ M in T,M NT;/Q. Thisis
a real line for each p € M, and thus we get a non-singular vector field on M. By a theorem
of Forstneri¢ [Fo] the vector field is transverse to each CR-submanifold of M. (Indeed, the
tangent space of a CR-submanifold of M contains T M but it is not contained in T/ 992.) So,
in principle, CR-invariant subsets could be studied by looking at the characteristic foliation
(i.e. by looking at a foliation which is transverse to the set we are interested in). But an
analogue of the Poincaré-Bendixson theory fails for flows on manifolds of dimension greater
than two. Even if the manifold is diffeomorphic to an Euclidean ball, in general there may
be, for example, cycles or limit cycles.

On the other hand we get some more information than in case of dimension n = 2. We
have a geometric understanding of the obstructions for removability (see theorems 2 and 3).

6.2.a. Question. Do the theorems 2 and 3 give any suggestions which are helpful for
a geometric understanding of corresponding problems in C?*¢ In particular, are there any
suggestions related to the well-known open question which totally real discs in C* are poly-
nomially convez? (See for ezample [J61],[Duv-Si].
We wish to add two remarks concerning the discussion of problem 6.2.
First remark: For finding topological conditions of M which exclude the existence of com-
pact maximally complex CR-submanifolds of M with finite fundamental group (in particular,
simply connected maximally complex CR-submanifolds) stability theorems like Reeb’s sta-
bility theorem are helpful ([He-Hi, B, p. 97]). But even if § is the unit ball B*® in C* there
are compact maximally complex CR-manifolds of dimension 3 contained in the boundary
OB® with infinite fundamental group. We ask the following concrete
6.2.b. Question. Is there a smooth (C®) generic CR-manifold M which is diffeomorphic
to the real (2n — 2)-ball 6>~ and properly imbedded into the boundary IB" of the unit ball
B* in C*, which contains a compact mazimally complex CR-manifold of dimension 2n — 3¢
We conclude the first remark with the following example of a compact (2n—3)-dimensional
maximally complex CR-manifold contained in the boundary of the unit ball B* in C* with
infinite fundamental group. The example was told to the author by Alex Dimca ([Di)).
6.2.c. Example. If ¢ > 0 is small and the natural number n ezceeds two, then the set

(6.1) N={(z1,22,...,2,) EOB" : 2y - 29+ ... 2, = €}

is a (connected) smooth compact mazimally conpler CR-manifold of dimension 2n —3, which
is diffeomorphic to the product S*~% x (S1)*"!. (S! is the unit circle, S™ % is the (n — 2)-
dimensional unit sphere in R"™'). Thus N has infinite fundamental group.

Indeed, for j =1,... ,n — 1 write z; = r;{; with r; € (0,c0) and ¢; € S! and put

(6.2) 2 = £

TR o R S
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We see that N is diffeomorphic to the direct product of the set

. 82 ‘
(6.3) N = {(7‘1,... yTae1) € {(0,+00)}* it 4L 412+ ST = 1}
1

foerk
and the set
(6.4) {(Cyeo Gty (G Gam) ™) G €S for j=1,...,n =1},
The last set is diffeomorphic to (S*)"~'. The set N’ is a level set of the smooth function g,
(6.5) g(rl,...,rn_l)zrf+...+ri_l+ﬁ:‘
A simple calculation shows that g has exactly one critical point, namely the point (5%, e ,5%).

Using the relation between the arithmetic and the geometric mean, it is easy to see that on
the set {r? +...+r2_, = s} the function g takes the smallest value if all r; are equal. This

T . . 1 1

implies easily that g has a minimum gp;, at (e%,...,ew). Thus, for each number ¢ > gnmin
the set {g = t} is diffeomorphic to 5"~?. We got that for small ¢ > 0 the boundary 9B"
intersects the analytic manifold {(z1,z22,...,2,) € C* - 2122 ... - 2, = €} transversally,

hence N is a compact maximally complex CR-manifold. Moreover, N is diffeomorphic to
Sn—? % (Sl)n—ll .

The second remark is the following. For excluding the existence of compact CR-
invariant subsets of a CR-manifold M (M as in problem 6.2) it is not enough to exclude the
ezistence of compact CR-submanifolds of all CR-manifolds M, which are sufficiently close
to M in some C*, k > 2. One has to deal with exceptional minimal compact CR-invariant,
subsets separately. Indeed, with a suitable choice of the hyperbolic transformations Ay and
h, the example of section 5 is stable under small perturbations, i.e. any foliation which is
close enough to that of section 5 is topologically conjugate to it (personal communication
by E. Ghys [Gh]).

6.3.a. Problem. Prove the analogue of theorem 2b in the following situation:

1. replace hypersurfaces by sufficiently smooth generic CR-manifolds 9 imbedded into C*
of arbitrary codimension not exceeding (n — 2);

2. replace M by a generic (proper) submanifold of M of real codimension one in M.
(The condition on the codimension of M is equivalent to the fact that the CR-dimension of
9N is positive, i.e. M is a CR-manifold.)

6.3.b. Suppose the hypersurface H and the CR-manifold M in theorem 2b are of class C™.
Is the analogue of theorem 2b for distributions true? In other words, is each compact subset
K of M removable for CR-distributions (see the definition in section 0), if it does not contain
CR-invariant subsets of M ¥

Note, that this is true if H is strictly pseudoconvex from one side. In this case CR-
distributions on open parts of H have analytic extension (in the distribution sense) to the
pseudoconvex side. The scheme of the proof of theorem 2 shows that CR-distributions on

H\ K have analytic extension to a one-sided neighbourhood of H. It remains to give growth
estimates of the analytic extension near the hypersurface H.
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6.3.c. Let M be a generic CR-manifold embedded into C* of dimension (n + 1), and let M
be a generic submanifold of M of codimension one in M. In other words, CR-dimM = 1
and M is totally real. If n =2 M is a hypersurface.

If an orientable (not necessarily closed) hypersurface in C? is strictly pseudoconvex from
one side then closed totally real discs in 01 are (£’, J;)-removable and (L®, 8)-removable
([J61], the analogs of corollaries 2 and 3 of theorem 2'). See also the L'-result in [An-Ci).
What is the right analogue of these results forn > 27

The case of CR-dim 9t = 1 seems to be especially difficult to handle. On the totally real
manifold M there is no obvious structure associated to the obstructions for removability
(as, for example, in theorem 2b). On the other hand, it is difficult to get some information
using one-dimensional foliations (flows) which are transverse to these obstructions, since the
theory of Poincaré and Bendixson fails for dim M > 2 (see the discussion of problem 6.2).

Before stating the fourth problem we give two examples:
6.4.a. Example. Let M be a connected compact mazimally complez CR-manifold of class
C? and of dimension 2n — 3 contained in OB*, n > 3. Then the germ of envelopes of
holomorphy of one-sided neighbourhoods (contained in B* ) of OB* \ M (denote it by H(OB™ \
M) for short) is one-sheeted over C* and is equal to B* \ V, where V is the analytic variety

in B* with "boundary” M which ezists by the theorem of Harvey and Lawson (compare with
the proof of theorem 1).

Indeed, V is locally the zero set of an analytic function: There is a covering {U;} of B®
with open sets and analytic functions f; in U; such that VN U; = {z € U; : fi(z) = 0}.
Moreover, we may assume that in U; N U; the equality

(6.6) fi= hi;f;

holds for an analytic function h;; without zeros in U; N U; (for more detailed information on

analytic varieties see also [Ci]). Since the cohomology H?(B",Z) vanishes, there are analytic
functions A, in U; without zeros, such that

(6.7) hij = hih}!

(see for example [H6]). Hence, the function f, which is equal to f;h]! on Uj, is a correctly
defined analytic function in B* with the property that V = {z € B* : f(z) = 0}. It follows
now by the same methods as for sets in C* (see for example [J53]) that H(9B" \ M) is equal
to B*\ V.

Now, we give an example of a compact subset Ky of a CR-manifold M; contained in B>
for which the germ of the envelopes of holomorphy of one-sided neighbourhoods of B \ K,

is not a domain in C°, i.e. H(9B?\ K}) is multisheeted. This is a perturbation of the example
1.1.
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6.4.b. Example. Let I = (0,1) and let M denote the CR-manifold of ezample 1.1,
M={z€0B .z €I}. Let K C M be the compact set

(6.8) K={zedB :z eTI_},

where Iy = (3, 3) is an interval which closure is contained in (0,3). K is the union of spheres

S, ={z1} x {(22,23) : |22)2 + |23 = 1 = |1|?}, 21 € I,. Each S,, is a CR-orbit.

Let U be a small neighbourhood on M of the curve {(z1,/1 —|21]%,0) : 21 € I}, which
does not intersect the spheres S,, for zy € I'\ I}, and suppose for z; € I the set UN S,, is
connected and its closure does not coincide with the whole sphere S,,. Suppose My C OB® is
a sufficiently small perturbation of M, say of class C*°, which fizes all points of M\ U and
moves all points of U into some set U, which is contained in 0B* \ M (the manifold M has
codimension one in OB®, so this can always be done). Put

(6.9) Ki= {(Int K\UYUUJUS;USs = Int Ky USyUS;.
Then H(OB® \ K1) is at least twosheeted.

The assertion in the example is not quite obvious. To prove it we start with the following
6.4.c. Claim. If M, is close enough to M then the CR-invariant subset Int K, of M,
consists of one single CR-orbit of My, or, equivalently, Int K| does not contain a CR-orbit
of codimension one.

Proof of the claim. Since Int K, is a connected component of M; \ (Sé_ U S%) and Si‘ U S%
is CR-invariant, the CR-invariance of Int K is clear (lemma 2.1). The equivalence of the
two assertions of the claim follows from the connectedness of Int K;.

Let now p be in Int K; \ Uy, i.e. p is in the unperturbed part of K. Suppose p € S,,,
z; € I1. The G;(M,)-orbit through p contains a large open part of S;,. S, lieson the analytic
manifold {z;} x C? in C®. If the G,(M,)-orbit through z; would have codimension one it
would locally bound an analytic manifold (immersed in B®). By uniqueness this manifold
must be contained in {#z;} x C*. Hence, the G;(M;)-orbit through p must be contained in
S.,. Since K, is a compact CR-invariant subset of M; the G,(M;)-orbit through p must
be metrically complete (lemmas 2.5 and 2.6). Hence, it must coincide with S,,. But M,
does not contain S, (recall that for each (3 € Iy certain points of S, are moved out off M).
This contradiction proves that the Gj(M;)-orbit through each point p € Int K; \ U; has
codimension zero.

It remains to see, that the orbits through points in Int iy N U, have codimension zero.
This is implied by the following arguments. Let U’ be a small open neighbourhood of U on
M. Each point ¢ € U can be joined with a point in K \ U’ by a piecewise G;(M)-curve
vq- If M, is close to M (in C?), then to each pair of points ¢ € M and ¢, € M; with small
Euclidean distance |¢ — ¢;| in C* and to each piecewise G ;(M)-curve v, with starting point ¢
corresponds a piecewise G;(M;)-curve -7,(,11) with starting point gy, such that 78) is close to 7,
(see section 2, the proof of proposition 2.4). Since U and K \ U’ are compact the arguments
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apply uniformly for suitable pairs (¢, q1) with ¢ running over the whole set U,. Hence each
point q; € U, can be joined with a point in M; \ U, = M \ U by a piecewise G ;(M;)-curve.
By the CR-invariance of Int K; each point ¢, € IntK, N U, can be joined with a point in

Int K, \ U, thus the G;(M;)-orbit through each point of Int X has codimension zero. The
claim is proved. O

Now, we prove that H{OB® \ K;) is at least twosheeted.

Since Int K; consists of one single CR-orbit, each continuous CR-function on Int K, is
wedge-extendable at each point of Int K;. (It is enough to use here the propagation of
wedge-extendability along orbits and the fact, that Int K, contains a minimal point, since it
is contained in B’ and hence does not contain analytic manifolds.) Consider CR-manifolds
M} and M] which are contained in dB® \ M, are close enough in some C*, k > 2, to
M; and are locally situated on different sides of M; in dB®. Fix a suitable small one-sided

+ +
neighbourhood @ of 9B° \ K, © C B®. Consider rM,” = {rz:z € M, } for some
r < 1 close enough to 1, such that rM;f and rM; are contained in O.

By proposition 2.4 there are relatively open subsets Ny and Nj of rM;" and rM;, re-
spectively, which are close (in C*) to Int K, and do not contain compact G ;(r M )-invariant
subsets (G j(rM; )-invariant subsets, respectively). Hence, there is a Gj(rM;")-orbit which
contains Njt and a G;(rM; )-orbit which contains Ny . Therefore, each continuous CR-
function on rM{" (r M, respectively), in particular the restriction to this set of each analytic
function in O, is wedge-extendable at each point of rM;" and rM; . If r is close enough to
1 and M}t and M| are close enough to M;, by continuity (see for example lemma 3.5) the
corresponding wedges W' and W™ with edges in rM;" and rM; , respectively, overlap.

It remains to see that for some analytic function in O the analytic continuation from
rM;" into W' does not coincide with the analytic continuation from rM into W)™ on the
overlapping of this wedge. Consider a branch of the function {(2 — z)(z — %)‘1}% on the set
C\T;. (€ = CU {0} is the Riemann sphere). The Riemann surface R of this function is a

twosheeted covering of the set €\ ({§} U {2}). Denote the corresponding analytic function
on R by f. Since

s ({2)of2) ]

it is not hard to see that there is an embedding ¢« of 9B® \ K, into R x C? such that for

the canonic projection 7 of R x C? onto (C \ ({3} U {2})) x C* the superposition 7 o ¢ is
the identity map on dB? \ K;. Denote by the same letter : a continuation of the considered
imbedding to a suitable one-sided neighbourhood O' C B® of dB° \ K, such that as before
7 o ¢ is the identity map (on O’). Consider on R x C? the function F which depends only
on the first variable z € R and is equal to f(z) for fixed values of the second and third
variables. It is now clear that the function F o¢ defines an analytic function on Q' with
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different values of the analytic continuation to the intersection of the wedges W;" and W~
mentioned above. We proved that H(0B® \ K,) is at least twosheeted. O

Now, we may formulate the fourth problem.
6.4.d. Problem. Let Q be a strictly pseudoconver domain in C*, n > 3, and let K
be a compact subset of a (2n — 2)-dimensional generic submanifold M of 0Q). Denote the
germ of envelopes of holomorphy of one-sided neighbourhoods of I\ K, contained in Q, by
H(0Q\ K). Continue the study of the question whether H(0Q \ K) is multisheeted (see the
examples 6.4.a and 6.4.b and the discussion in section 0). What is the number of sheets?
We add the following more concrete questions.
6.4.e. Question. Let §) be the domain of theorem 4 and let S be the exzceptional minimal
set of that theorem. Is H(G2\ S) onesheeted and equal to the pseudoconver domain Q\ Ag
(which appeared in the proof of theorem 4)¥¢
6.4.f. Question. Let Q be an arbitrary strictly pseudoconvezr domain in C* and let K be

a compact CR-invariant subset of a (2n — 2)-dimensional generic submanifold M of 0Q. Is
H(0Q\ K) onesheeted, if

i) K is the union of (proper) compact mazimally complez CR-manifolds of real dimension
2n — 3,

or more generally,

ii) K is the union of minimal compact CR-invariant subsets of M (i.e. K is the union of
a set as in i) and certain exceptional minimal sets),
or yel more generally,

i) K is the union of CR-orbits of codimension one in M (i.e. K is the union of a set like
in ii) and certain locally dense orbits)?

6.4.g. Question. Let Q) and M be as in question 6.4.f and let K be a compact CR-invariant
subset of M.
Is H(0Q\ K) always multisheeted if K contains CR-orbits of full dimension?
What is the image of H(0Q\ K) under the canonical projection = ¢

The last problem concerns generalizations of the present theorems to abstract CR-manifolds
or even to operators different from Cauchy-Riemann operators.
6.5.a. Problem. Certain statement of results and problems on removable singularities
(e.g. theorems 2b and 3, problems 6.3.a, 6.3.b and 6.3.c and the (€', 3;)-analog as well as the
(L, 0;)-analog of theorem 2 in [J61]) do not use the fact that we have to do with certain
hypersurfaces (or CR-manifolds of higher codimension) imbedded into C*. Prove theorems
on removable singularities for general CR-manifolds (which are not necessarily even locally
imbedded into some C* ).
6.5.b. Look on the statements mentioned in problem 6.5.a in the following way. Suppose
we have a CR-manifold on which we may introduce global Euclidean coordinates. We get an
open subset of some R" and a first order differential operator or a system of such operators
defined in this set. This operator or system of operators has large removable sets for some
spaces of functions or distributions: The removable singularities may be metrically much
more massive than the general theory [Ha-Po] predicts. Understand this phenomenon in
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operator theoretic terms, say in terms of the symbols of the operators. Is there some notion of

convezilty corresponding to individual operators which helps to understand the phenomenon?
What can be done for more general operators?

This article was done at the Max-Planck-Institute fiir Mathematik and the Max-Planck-
Arbeitsgruppe ” Algebraische Geometrie und Zahlentheorie”. The author also wants to thank
Th. Fielder, A. Juhl and L. Stout for several helpful discussions.

After this paper was finished the author knew about the preprint of S. Berhanu and G.A.
Mendoza ”Orbits and global unique continuation for systems of vector fields”, where things
related to our section 2 are treated. There is some intersection of that work with our section

2.
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