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Let {p;} be the ordered sequence of primes p such that 2 is a primitive root mod p.
Weakly uniform distribution (WUD)} mod 28 of this sequence would imply a conjec-
ture of Rodier. However, on the Generalized Riemann Hypothesis (GRH), it is shown
that 1,2 and 4 are the only values of d such that {p;} is WUD mod d. Moreover,
Rodier’s conjecture is disproved, on GRH.

1 Introduction

An integer @ is said to be a primitive root mod p if its order in Z/pZ is p — 1 (and
thus maximal). Let Py denote the set of primes p such that p = —1,3,19(inod 28)
and 2 is a primitive root mod p. In [5] Rodier, in connection with a coding theoretical
result involving Dickson polynomials, made the conjecture that the (natural) density
of the set Pog is A/4, where

A= J] (a- L

_ =~ 0.3739558136192),
p prime }U(P - 1)) ( )

is Artin’s constant. On noticing that the primes p = —1, 3,19(mod 28) are precisely
those such that {p/7) = —1 and p = 3(mod 4), it follows from Thcorem 1 that, on
GRH, the prime density of Pyg is 214/82. Thus Rodier’s conjecture, if true, would
imply the falsity of the Generalized Riemann Hypothests.

Theorem 1 (GRH). Let [y, ... 1, be distinct odd primes and ey, ...,e; € {£1}. Let
N(z) denote the number of primes p < z satisfying

i) 2 1is a primitive root mod p,
i) (p/l;) =€, 1<j<s.
Then

u T zloglogx
1;[ zz—z —1)10g7+0( oz (1)

Moreover, if in addition to i) and i) it is required that p = ¢ (mod 4), then (1) holds
with A/2° replaced by AJ25F!.



Taking an heuristic approach might lead one to think that the density of Pag should
be A/4. Let P denote the set of primes p such that 2 is a primitive root mod p. Subject
to GRH the density of P is A, as was shown by Hooley in his classical memoir [1], in
which he proved, on GRH, a quantitative version of a conjecture made by Emil Artin
in 1927. Since there are (28) = 12 primitive congruence classes mod 28, the density
of primes from P in each of them would be A/12, on assuming WUD (see [4] for a
definition) mod 28. Thus one arrives at a density of A/4 for the set Pps. The sequence
{p;} is, however, not WUD mod 28. Indeed Theorem 1 can be used to show:

Theorem 2 (GRH). The sequence {p;} is WUD mod d if and only if d € {1,2,4}.

A. Reznikov (3], in the course of his investigations of a conjecture of Lubotzky and
Shalov on three-manifolds, arrived at the problem whether for a given prime {, the
set of primes p such that / is a primitive root mod p and p = £1(mod !) is infinite.
Reznikov’s question and Rodier’s conjecture suggest a more general problem: Let
a # £1 be a integer and M a nwmber field. Determine whether or not the set of
primes p such that @ is a primitive root mod p and, moreover, p splits completely in
M, is infinite. In case it is infinite, determine whether it has a density, and if yes,
compute the density. A first step in this is made by the following generalization of
Hooley’s classical result, that will be proved in the next section. Theorem 3 will be
the starting point of the proof of Theorem 1, which on its turn is the starting point
of the proof of Theorem 2. (As usual i denotes the Mdbius function.)

Theorem 3 Let M be Galois and a # £1 an integer. Suppose the Riemann Hypoth-
esis holds for the fields M, := M((,,a'/") for every squarefree r. Then Ny (a; ), the
number of primes p not exceeding x that split completely in M and such that a is o
primitive root mod p, satisfies

T zloglogz
N ‘) = §(M _—
M(a"(r) (S(l f)log.'ﬂ + O( logz T )’ (2)
where - )
Jer
(MY = —_ 3

(Since [M, : Q] > [@ : Q] > rp(r) > 7?2/ loglogr, the series for §(M) is convergent.)
The author thanks Don Zagier for some helpful suggestions, Patrick Solé for point-
ing out Rodicr’s conjecture to him and F. Rodier for sending [5].

2 Proof of Theorem 3

Since the proof is a straightforward generalization of Hooley’s proof in [1], we will
only discuss the fine points. Let Pu denote the set of primes that split completely in
M. Put m, = [M, : Q]. The analysis of the error terms can be taken over unchanged
on using that the set of primes that split completely in M is a subset of the set of all



primes. Thus the problem reduces to showing that (2) holds with Ny (a; 2:) replaced
by Npy(a;z,(y), which is defined as the cardinality of the set

{(p<z:p€Pa, L <G, IH[F :<a>]}, {prime,
with ¢; = logz/6. By inclusion and exclusion one finds

Nur(ayz,¢1) = Z 1(r)mas, (),

P(r)<é

where
T, (2) = {p < 2 :p € Pu, 7|[F, 1< a >},

and P(r) denotes the greatest prime divisor of 7. Now 7|}, :< a >] and p splits
completely in M if and only if p splits completely in M. Thus 7y () is the number
of primes not exceeding z that splits completely in M. The analysis of Hooley of
this quantity ([1, §5]) in case M = @ rests on the fact that the discriminant of @, is
bounded by ", where ¢ is a constant and the fact that Q. is Galois. One checks
that both properties are satisfied for M, as well. Thus, we deduce that, under the
Riemann Hypothesis for M,, the following estimate holds true:

li(z)

(Vz log(rz)), (4)

T (z) =

where li(z) denotes the logarithmic integral and the implied constant depends at most
on M. Thus, equation (29) of [1] now becomes

Na(a;2,¢1) = Z“ li(w) 3 - (—5—),

T
— m, ST ) log T

on using that m, > r@(r). This simplifies to

w(r), = T
N + O(——).
u(@2,G) ; my logm (logzz)

Thus (2) holds with Ny (a; z) replaced by Ny (a;z, (). O

Remark. An alternative way of establishing (4) is to make use of (11RH) of {2}, which
together with the upper bound 7™ for the discriminant of M., where ¢ is a constant
depending at most on M, yields that {1, (27)] is valid for M, under RH on M,. From
this estimate and the fact that A, is Galois, (4) is easily deduced.

3 Proof of Theorem 1

We start by a few propositions involving degrees of certain number fields A, r > 1.
Since these degrees are only used in the context of computing 6(M), see (3), it is
enough to compute them for r squarefree only. As usual w(d) denotes the number of
distinet prime divisors of .



Proposition 1 Put n, = [Q((,2"") : Q]. Then, for 8 + v, Q((,) and Q(2Y/") are
linearly disjoint and hence n, = ro(r).

Proof. Every subfield of @(¢,) is normal. All the normal subfields of Q(2/7) are
contained in Q(v/2). Since V2 € Q(¢) if and only if 8|r, it follows that for 8 {
Q(2Y/7) and Q(¢,) are linearly disjoint and thus n, = rp(r). 0O
Proposition 2 Let Iy, ... I, be distinct odd primes. Put I} = (=1/1;);, 1 < j < s.

Letr > 1. Put d = (hlp---Lo,7). Then, for 8 t v, [Q(VT, ..., /13,6, 2Y7) - @ =
20wy ip(r).

Proof. Clearly [Q(V/T5,..., \/l_;‘) : @ = 2*. Suppose 8 t 7. Then, by Proposition 1,
[Q(¢,2Y/7) : @] = r(r). Thus the sought for degree cquals
2°rg(r)

VT, .-, /1) NG, 217)]

(5)

Since I;,...,l, are the only primes that ramify in Q(/T},.. \/E and primes not,
dividing 2r do not ramify in Q(¢,, 2}/"), onc has that

Q/h, 1) NQG,2Y7) C QU /1) (6)

Using that /I7 € Q(¢,), it is seen that actually equality holds in (6). The (absolute)
degree of the fields occurring in (6) is 2¥(4). This together with (5) completes the
proof. O

Proposition 3 [1] (GRH). 6(Q) = A.
Proposition 4 (GRH). §(Q(i)) = A/2.
Proof. Put M = Q(i). For 4 t r, the fields Q(:), Q(¢) and Q(2V/7) are seen to be

mutually linearly disjoint on using Proposition 1. Thus [M, : Q] = 2n, = 2r¢(r), by
Proposition 1 again. Recalling (3) one finds,

1 & pfr)
o(M) = Z [M Q] §r:Z:1Tgo(7')'

On using the fact that p(r)/(re(r)) is a multiplicative function and Euler’s identity,
the result follows. O

Proposition 5 (GRH). Let I},...,1} be as in Proposition 2. For notational conve-

nience put 6(l;---1,) = 8(Q(V/15, - . -, ‘/E)) Then

6(ly -+ 1) =%ﬁ(1— 1)

=1 i i)



Proof. Put M = Q(/I;,..., \/lE) and A =1, ---l;. Let r > 1. If (\,7) = d, then, by
Proposition 2, [M, : Q] = 2*~“@rp(r). Thus

w(r) 1 24 pu(r)
5(A) = = — —.
%\: (A%::d (M, .qQ 2° dzp\: 4er ro(r)
(rAd)=1
On noticing that the inner sum equals
pw 10) 5~ 0
dip(d) (r =1 TSO(T),
one finds that
1 2¢@u(d) ()
Ay = =) ———=
2 d,ZA dep(d) (,,Az)ﬂ ro(r)
1 2 1
- —Tl0-——) - )
2 51 lj(lj = 1) plg( P(T) - 1)
A 1
= —|{(1-7———)
2s Lia Z2—1; -1
This completes the proof. a

Since, for 4 {7, Q(i) is linearly disjoint from Q(/T5, ..., \/l_;, ¢, 2'7), one has

5@/t 5 ) = 8@/, 1) /2
Thus

Proposition 6 (GRH). Let [3,...,1} be as in Proposition 2. Then

wo AL =
SVt /1) = 55 1O - =)
j=1 7

Proposition 7 (GRH). Let I},..., I3 be as in Proposition 2. Put A =1, ---l,. The
density ¢'(A) of primes p such that 2 is a primitive root mod p and p does not split

completely in any of the quadratic fields Q(\/T5), ..., Q( \/E) equals

1
21

§0) =25 10+ )

Proof. Let §(1) denote the density of the primes p such that 2 is a primitive root mod
p. The sought for density, 6’(A), equals, by inclusion and exclusion,

50 = 3 uld)é(d). (")

d|A



By Proposition 5 §/4 is a multiplicative function on the odd squarefree integers. The
same holds for the Mébius function and for §'/A, the Cauchy product of §/A and p.
Using Propositions 3 and 5 one finds, for 1 < 5 <s,

A 1
8 () =6(1)—6(L)==(1+ 5———).
In combination with the multiplicativity of §'/A, this yields the result. O
Remark (Don Zagier). Put ¢; = —1, 1 < j < s. Using Theorem 1 it is seen that the
density of primes p satisfying i) and ii) of Theorem 1 and in addition p = 3(mod 8) is

8
1
1
2s+1 JI}} +l§ruzj—1 28+1 H,\ P(P—l))

The density of the primes p satisfying ii) of Theorem 1 and p = 3(mod 8) equals
272=%, Thus the relative density of primes p such that 2 is a primitive root is

2110

sy z(p 1)

)

By taking A to be the product of the first s consecutive odd primes and s large enough,
the relative density can be made arbitrary close to 1. The conditions imposed ensure
that p — 1 contains only 2 (to the first power) and some prime factors larger than
the sth prime. Thus if 2 is not primitive mod p, 2 must have a small order mod p,
which 1s something rarely happening. Another interpretation is obtained on noting
that 1/({({ — 1)) in the factor 1 — 1/(I(! — 1)), ! odd, in Artin’s constant is due to
the primes that split completely in Q({;, 2'/*), that is satisfy at least p = 1(mod {).
But (p/l) = ~1 ensures p # 1(mod !} and thus the factor 1 — 1/({{! — 1)) should be
replaced by 1. For ! = 2 the 1/2 in the factor 1 — 1/2 comes from the primes that
split completely in Q(v/2). Since p = 3(mod 8) implies (2/p) = —1, this factor should
be replaced by 1 as well.

Proof of Theorem 1. Let J = {j : ¢; = 1}. Put A; = [, [; and Ay = A/X;. Except
for at most finitely exceptions a prime p satisfies ii) if and only if p splits completely
in Q(\/E), 7 € .J and does not split completely in Q(\/E), for 7 not in J. By inclusion
and exclusion the sought for density is seen to equal 34, p(d)8(dA,). By the multi-
plicativity of §/A4 and (7) this equals §'(Ag)8(A)/A. Now (1) follows from Theoremn
3, Propositions 5 and 7. The proof of the remaining part is similar, instead of Propo-
sttion 5 one now uses Proposition 6. O



4 Proof of Theorem 2

The proof of Theorem 2 is an alinost immediate consequence of Propositions 3 and 4
and Theorem 1.

Proof of Theorem 2. Clearly the sequence {p;} is WUD mod 1 and WUD mod 2.
By Propositions 3 and 4 the sequence is WUD mod 4. Since 2¢°=)/2 = 1(mod 8), for
every prime p satisfying p = 1(inod 8), and hence none of these primes is such that 2
is a primitive root mod p, the sequence is not WUD od 8. To finish the proof it is
enough to show that for every odd prime ! the sequence is not WUD mod /. Consider
the set A, of residue class a mod [ such that (e¢/l) = 1. Notice that |4, = ¢(I)/2.
If the sequence {p,;} were WUD mod [, then the density of primes p € P such that
p = a;{mod [) for some a; € A;, would be A/2. On the other hand, using quadratic
reciprocity, this density equals the density of p € P such that p splits completely in
Q(v/I*). Now Proposition 5 with s = 1 and I; = [ leads to a contradiction. O
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