STABILITY OF HARMONIC MAPS
and Eigenvalues of laplacian

Hajime Urakawa

$$
84 \quad 57
$$

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3
Federal Republic of Germany
and
Department of Mathematics College of General Education Tohoku University Kawauchi, Sendai, 980 Japan

Stability of Harmonic Maps and Eigenvalues of Laplacian Hajime URAKAWA

Contents

§o. Introduction and Statement of Results Chapter I. The Index and the Nullity of a General Harmonic Map §1. Preliminaries
§2. The Index and the Nullity of a Harmonic Map from a Closed Manifoli §3. The Index and the Nullity of a Harmonic Map from a Domain Chapter II. Stability of the Identity Map
§4. Kähler Version of Lichnérowicz-Obata Theorem
§5. Some Examples

Chapter III. Riemannian Submersions with Totally Geodesic fibers
§6. The Vertical Jacobi Operators
§7. The Canonical Variation of a Riemannian Submersion
§8. Homogeneous Riemannian Submersions

This work is supported by Max-Planck-Institut für Mathematik.
§o. Introduction and Statement of Results.

The purpose of this article is to give results concerning with the Jacobi operator of a harmonic map which is arisen from the second variational formula of the energy functional of the map. This article is divided into three parts : Chapter 1 is treated with the estimation of the index and the nullity of a general harmonic map. In chapter II, we will deal with the stability of the identity map of a closed Riemannian manifold, ie., a compact Riemannian manifold without boundary. Chapter III is devoted into the investigation of the Jacobi operator of the Riemannian submersion with totally geodesic fibers.

More precisely, let (M, g), (N, h) be two Riemannian manifolds of dimension m, n, respectively. We consider the energy functional E on the set $M(M, N)$ of all smooth maps $\varnothing ;(M, g) \longrightarrow(N, h)$ (cf.[E.L]) :

$$
E(\phi)=\frac{1}{2} \int_{M} \sum_{i=1}^{m} h\left(\phi_{*} e_{i}, \phi_{*} e_{i}\right) * 1,
$$

where $\left\{e_{i}\right\}_{i=1}^{m}$ is a locally defined orthonormal frame field on M and $* 1$ is the volume element of (M, g). A critical point ϕ of E in $M(M, N)$ is called to be harmonic. The second variational formula of E was obtained by E.Mazet [Ma] and R.T.Smith [Sm]: For every one-parameter deformation ϕ_{t} of ϕ with $\phi_{0}=\phi$, and $\left.\frac{d}{d t} \phi_{t}\right|_{t=0}$ giving a vector field v along ϕ,

$$
\left.\frac{d^{2}}{d t^{2}} E\left(\phi_{t}\right)\right|_{t=0}=\int_{M} n\left(J_{\phi} v, v\right) * 1 .
$$

Here J_{ϕ} is a second order elliptic differential operator, called a Jacobi operator analogously as a Morse theory of geodesics, acting on the space of all vector fields along ϕ. It is known that J_{ϕ}
has a discrete spectrum when M is a closed manifold. The index of ϕ, denoted by Index (\varnothing), is the sum of the multiplicities of the negative eigenvalues of J_{\varnothing}, and the nullity of \varnothing, denoted by Nullity (ϕ), is the dimension of the kernel of J_{ϕ}.

When Ω is a relatively compact domain in a complete Riemannian manifold (M, g), we consider the variation of the energy functional E on the set of all smooth maps $\phi ; \Omega \longrightarrow N$ with the fixed boundary values on $\partial \Omega$. In this case, the second variational formula yields the eigenvalue problem of $J \phi$ on Ω with the Dirichlet boundary condition :

$$
\left\{\begin{aligned}
J_{\phi} V & =\lambda V & \text { on } \Omega \\
V & =0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

where V is a vector field along \varnothing. The index of ϕ on Ω, denoted by Index $\Omega(\phi)$, is also defined as the sum of the multiplicities of the negative eigenvalues of this eigenvalue problem of J_{ϕ}, and the nullity of ϕ on Ω, denoted by Nullity (ϕ), is the dimension of the zero eigen-space. If Index $(\phi)=0 \quad$ (resp. Index ${ }_{\Omega}(\phi)=0$), that is, all the eigenvalues of J_{ϕ} are non-negative, the harmonic $\operatorname{map} \phi ;(M, g) \longrightarrow(N, h)$ is called to be stable (resp stable on Ω).

Main results of chapter I are as follows : The crucial proposition for us, which are the analogue of recent works of P.Berard and S.Gallot (cf.[B.G]) are:

Proposition 2.1. Let M be a closed manifold and $\varnothing:(M, g) \longrightarrow$ (N, h), a harmonic map. Then we have

$$
\text { Index }(\phi)+\text { Nullity }(\phi)<\sum_{m} \operatorname{Inf}\left\{e^{t^{N_{R} \phi}} Z_{M}(t) ; 0<t<\infty\right\} \text {, }
$$

where $n=\operatorname{dim} N$ and $N_{R} \phi$ is the following quantity :

$$
N_{R}{ }^{\phi}:=\operatorname{Sup}_{x \in M} \sup _{v \in T} \sum_{\phi(x)^{i v}} \sum_{i=1}^{m} h\left({ }^{N_{R}}\left(\phi_{*} a_{i}, v\right) \phi_{*} e_{i}, v\right) / h(v, v),
$$

N_{R} is the curvature tensor of (N, h) (cf. $\hat{\rho} 1$). $Z_{M}(t)$ is the trace of the heat kernel of the Laplace-Beltrami operator Δ_{M} of (M, g) acting on the space $C^{\infty}(M)$ of all smooth functions on M.

Proposition 2.4. Let Ω be a relatively compact domain in a complete Riemannian manifold (M, g), and $\phi:(M, g) \longrightarrow(N, h)$, a harmonic map. Then we have
where $n=\operatorname{dim} N$ and the quantity $N_{R_{\mathcal{S}}}^{\phi}$ is defined by

$$
N_{R_{\Omega}}^{\phi}:=\operatorname{Sup}_{x \in \Omega} \operatorname{Sup}_{v \in T} \phi(x)^{N} \sum_{i=1}^{m} h\left({ }^{N} R\left(\phi_{*} e_{i}, v\right) \phi_{*} e_{i}, v\right) / h(v, v) .
$$

$Z_{\Omega}(t):=\sum_{i=1}^{\infty} e^{-t \lambda_{i}(\Omega)}$, where $\lambda_{i}(\Omega), i=1,2, \ldots$, are the eigenvalues counted with their multiplicities of the Dirichlet problem of Δ_{m} for the domain Ω :

$$
\left\{\begin{aligned}
\Delta_{m} u & =\lambda u & \text { on } \Omega \\
u & =0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

As applications of these propositions, we have :
[Theorem 2.5. Let (M, g) be a closed Riemannian manifold of dimension $m \geq 2$, whose Ricci curvature $R i C_{M}$ is bounded below by a positive constant : Rice $c_{M} \geqq(m-1) \delta>0$. Let $\phi:(M, g) \longrightarrow(N, h)$ be a harmonic map of (M, g) into arbitrary Riemannian manifold (N, h) of dimension n. Then we have:
(i) In case of $m \geqq 3$,

$$
\text { Index }(\phi)+\text { Nullity }(\phi) \leqq n\left(1+\frac{1}{A}\right)^{A}\left\{1+(m-1)!m^{m-1} A(1+A)^{m-1}\right\}
$$

where $A:=N_{R} \phi / m \delta$.
(ii) In casa of $m=2$,

$$
\text { Index }(\phi)+\text { Nullity }(\phi) \leqq n\left(1+\frac{1}{B}\right)^{B}\left\{1+4 B^{2}\right\},
$$

where $B:=N_{R} \phi / \delta$.

Remark. The function $\left(1+\frac{1}{x}\right)^{x}$ satisfies that $\lim _{x \rightarrow 0}\left(1+\frac{1}{x}\right)^{x}=1$ and $\left(1+\frac{1}{x}\right)^{x}<e, 0<x<\infty$.
[Theorem 3.1. Let Ω be a relatively compact domain in a complete Riemannian manifold (M, g), and $\phi:(M, g) \longrightarrow(N, h)$ be a harmonic map into arbitrary Riemannian manifold (N, h) of dimension n. Then we have
(i) $\quad \lambda_{1}(\Omega) \geqq N_{R_{\Omega}}^{\phi} \Longrightarrow \operatorname{Index}_{\Omega}(\phi)=0 \quad$ and $\quad \operatorname{Nullity}(\phi) \leqq n$.
$\lambda_{1}(\Omega)>N_{R_{\Omega}^{\phi}} \longrightarrow$ Index $_{\Omega}(\phi)=$ Nullity $_{\Omega}(\phi)=0$.

Since $\lambda_{1}(\Omega)$ grows to infinity and $N_{R_{\Omega}}^{\phi}$ remains still bounded when Ω shrinks to "small", this theorem implies that ϕ is stable on a "small" relatively compact domain in M, which was stated in [Sm].

It is known (cf.[C.L], [B:G]) that there exists a constant $C(M, g)$ >0 depending only on (M, g) such that the eigenvalue $\lambda_{i}(\Omega)$ of the Dirichlet eigenvalue problem of Δ_{M} for Ω satisfies

$$
\lambda_{i}(\Omega) \geqq C(M, g) \operatorname{vol}(\Omega)^{-2 / m} i^{2 / m} \quad, \quad i=1,2, \ldots
$$

Then we can estimate Index $\mathcal{R}_{2}(\phi)+\operatorname{Nullityg}_{\Omega}(\phi)$ by the quantity $D:=N_{R_{\Omega}}^{\phi} C(M, g)^{-1} \operatorname{Vol}(\Omega)^{2 / m}-1$ (cf. Theorem 3.4).

In chapter II, we will treat with the Jacobi operator of the identity map. The identity map of a closed Riemannian manifold (M, g) is harmonic and (M, g) is called to be stable (cf.[Na]) if the
identity map is stable.
It is known (cf. [Sm], [Na]) that a holomorphic map between Kähler manifolds is always stable. Then the stability of the identity map of a closed Kähler manifola (M, g) yields the Kähler version of a theorem of Lichnérowicz-Obata concerning the first non-zero eigenvalue $\lambda_{1}(M)$ of the Laplace-Beltrami operator Δ_{M} :

Theorem 4.2. (M.Obata) Let (M,g) be a closed Kähler manifold whose Ricci curvature Ric C_{M} is bounded below by a positive constant : Ric $_{M} \geqq \alpha>0$. Then we have

$$
\lambda_{1}(M) \geq 2 \alpha
$$

When the equality holds, the Lie algebra a of the group of holomorphic transformations of M is non-zero.

Remark. In the case that ($M, g_{\text {) }}$ is Einstein and Kähler, this theorem was stated in [Ob]. In this case, the equality $\lambda_{1}(M)=2 \alpha$ holds if and only if $a \neq\{0\}$.

Some instability results about Riemannian tori and the canonical deformations of the standard unit sphere ($S^{2 n+1}$, can) are obtained (cf. 5.1 and 5.2). Y.L.Xin $[X]$ showed that every non-constant harmonic map of the standard unit sphere ($S^{n}, c a n$) into arbitrary Riemannian manifold is unstable. On the contrary, we can state :

Proposition 5.6. Every spherical space form ($S^{n} / G, g$), where $G \neq\{i d\}$ is a finite group acting fixed point freely on S^{n}, is stable. Here g is the Riemannian metric on S^{n} / G induced from the standard metric can of s^{n} with constant curvature 1.

Therefore every closed Riemannian manifold of constant curvature (positive, zero or negative) is stable except $\left[\begin{array}{l}\text { Only } \\ \text { the unit sphere }\end{array} \mathbf{S}^{n}, c a n\right.$) (cf. Corollary 5.7). The analogous stability theorem for Yang-Mills fields was stated in [B.L, P.223].

In chapter III, we will deal with the Jacobi operator of Riemannian submersions with totally geodesic fibers. The Riemannian submersion $\phi:(M, g) \longrightarrow(N, h)$ with totally geodesic fibers is harmonic (cf.[E.S]). The typical examples are (cf. $[B, B]$) :
(i) Hopf fibering $\phi_{1}:\left(s^{4 n+3}, g\right) \longrightarrow\left(H P^{n}, h\right)$,
(ii) Hopf fibering $\phi_{2}:\left(s^{2 n+1}, g\right) \longrightarrow\left(C P^{n}, h\right)$,
(iii) The natural projection $\phi:(G / H, g) \longrightarrow(G / K, h)$, where $G \supset K D H$ are compact Lie groups.

For the Riemannian submersion \varnothing, we will define the vertical (resp., horizontal) Jacobi operator J_{\varnothing}^{V} (resp. J_{\varnothing}^{H}) which satisfy

$$
\left[J_{\phi}^{V}, J_{\phi}^{H}\right]=0 \text { and } J_{\phi}=J_{\phi}^{V}+J_{\phi}^{H}
$$

(cf. Theorem 6.5). And we can compare Index (ϕ) (resp. Nullity (ϕ)) of the submersion ϕ with Index (id ${ }_{N}$) (resp. Nullity(id ${ }_{N}$) of the base manifold (N, h) :

Proposition 6.3. Let (M, g) be a closed Riemannian manifold and $\phi:(M, g) \longrightarrow(N, h)$, a Riemannian submersion with totally geodesic fibers. Then we have the inequalities Index $(\phi) \geqq$ Index $\left(i d_{N}\right)$, Nullity $(\phi) \geqq$ Nullity $\left(i d_{N}\right)$ and $\lambda_{1}\left(J_{\phi}\right) \leqq \lambda_{1}\left(J_{i d_{N}}\right)$. In particular, if the base manifold (N, h) is unstable, then the projection \varnothing is unstable.

Moreover, following $[B . B]$, we define the canonical deformation $9_{t}, 0<t<\infty$; of the Riemannian metric g on M with $9_{\boldsymbol{q}}=9$ (cf. §7) such that the projection $\varnothing:\left(M, g_{t}\right) \longrightarrow(N, h)$ is still
a Riemannian submersion with totally geodesic fibers. For this canonical deformation g_{t}, the Jacobi operator ${ }^{t} J_{\phi}$ of $\phi ;\left(M, g_{t}\right) \longrightarrow$ (N, h) satisfies (cf. Proposition 7.2)

$$
{ }^{t} J_{\phi}=t^{-2} J_{\varnothing}^{V}+J_{\varnothing}^{H} .
$$

Then we have :

Theorem 7.3. Let (M, g) be a closed Riemannian manifold and $\phi ;(M, g) \longrightarrow(N, h)$ be a Riemannian submersion with totally geodesic fibers. Let $g_{t}, 0<t<\infty$, be the canonical deformation of 9 with $g_{1}=9$. Then there exists a positive number ε such that

$$
\lambda_{1}\left({ }^{t} J_{\phi}\right)=\lambda_{1}\left(J_{\text {id }_{N}}\right) \quad \text { for all } 0<t<\varepsilon .
$$

In particular, if (N, h) is stable, then $\varnothing:\left(M, g_{t}\right) \longrightarrow(N, h)$ is stable for all $0<t<\varepsilon$.

As applications of Proposition 6.3 and Theorem 7.3, we have :
(i) Since ($H P^{n}, h$) is unstable (cf. [Sm], [$\left.N a\right]$), the submersion $\phi_{1}:\left(S^{4 n+3}, g\right) \longrightarrow\left(H P^{n}, h\right)$ is always unstable.
(ii) Since ($C P^{n}, h$) is stable, for the canonical deformation $g_{t}, 0<t<\varepsilon$, of g on $s^{2 n+1}$ with $g_{q}=g$, there exists a positive number ε such that the submersion $\phi_{2}:\left(s^{2 n+1}, g_{t}\right) \longrightarrow\left(C P^{n}, h\right)$ is stable for each $0<t<\varepsilon$ (cf. Proposition 7.4).

On the other hand, when the holomony group of the submersion does not act transitively on the fibers and the base manifold (N, h) is unstable, the index of the submersion $\phi ;\left(M, g_{t}\right) \longrightarrow(N, h)$ grows to infinity as $t \rightarrow \infty$ (cf. Theorem 7.5). This is an extension of results obtained by R.T. Smith in [Sm, Corollary 3.3].

At last, we will express in terms of Lie algebras, the Jacobi

operator of the homogeneous Riemannian submersions (iii) (cf.Theorem 8.11). As an application, we determine the spectrum of the Jacobi operator of the Hopf fibering of S^{3} onto $C P^{1}=S^{2}$ (Corollary 8.12).

Acknowledgement. I would like to express my hearty thanks to Max-Planck-Institut fur Mathematik for its hospitality during my stay.

Chapter I. The Index and the Nullity of a General Harmonic Map.
§1. Preliminaries.
1.1. In this section, following [E.L], we prepare the second variational formula of the energy functional obtained in [Ma], [Sm].

Let $(M, g),(N, h)$ be two Riemannian manifolds of dimension m, n, respectively. Let $\varnothing ; M \rightarrow N$ be a smooth map. Let $E=\phi^{-1} T N$ be the induced bundle by ϕ over M of the tangent bundle $T N$ of N. We denote by $\Gamma(E)$, the space of all sections V of E, that is, $V \in \Gamma(E)$ implies that V is a map of M into E such that $V_{x} \in$ $T_{\phi(x)} N$ for all $x \in M$. For $x \in \Gamma(T M)$, we define $\phi_{T} x \in \Gamma(E)$ by $\left(\phi_{*} x\right)_{x}:=\phi_{* x} X_{x} \in T_{\phi(x)} N, x \in M$, where $\phi_{* x}$ is the differential of ϕ at x. For $Y \in \Gamma(T N)$, we also define $\tilde{Y} \in \Gamma(E)$ by $\tilde{Y}_{x}:=Y_{\phi(x)}$, $x \in M$. We denote by $\nabla,{ }^{N} \nabla$ the Levi-Civita connections of ($M, 9$), (N, h), respectively. Then we give the induced connection $\widetilde{\nabla}$ on E by

$$
\text { (1.1) } \left.\left(\widetilde{\nabla}_{x} v\right)_{x}:=\frac{d}{d t} N_{p_{\phi(\gamma(t)}}\right)\left.^{-1} v_{\gamma(t)}\right|_{t=0}, \quad x \in \Gamma(T M), \quad v \in \Gamma(E)
$$

where $x \in M, \gamma(t)$ is a curve through $x \int_{\text {at } t=0}$ whose tangent vector at x is X_{x}, and $N_{\left.P_{\phi(\gamma(t)}\right) ;} T_{\varphi(x)} N \rightarrow T_{\phi(\gamma(t))} N$, is the parallel displacement along a curve $\phi(\gamma(s)), 0 \leq s \leq t, ~ g i v e n ~ b y ~ t h e ~ L e v i-C i v i t a ~$ connection ${ }^{N} \nabla$ of (N, h).

$$
\begin{aligned}
& \text { We define a tension field } \tau(\phi) \in \Gamma(E) \text { of } \phi \text { by } \\
& \qquad \tau(\phi):=\sum_{i=1}^{m}\left(\widetilde{\nabla}_{e_{i}} \phi_{*} e_{i}-\phi_{*} \nabla_{e_{i}} e_{i}\right)
\end{aligned}
$$

where $\left\{\theta_{i}\right\}_{i=1}^{m}$ is a (locally defined) orthonormal frame field on M. We call ϕ to be harmonic if $\tau(\phi)=0$. For a relatively compact domain Ω in M, the energy $E(\Omega, \phi)$ of ϕ on Ω is defined by

$$
E(\Omega, \phi):=\int_{\Omega} \theta(\phi)(x) * 1,
$$

where $e(\phi)(x):=\frac{1}{2} \sum_{i=1}^{m} h\left(\phi_{*} e_{i}, \phi_{*} e_{i}\right)$ and $* 1$ is the volume element of (M, g). We denote $E(\phi):=E(M, \phi)$ when defined. For an element V in $\Gamma(E)$, let $\phi_{t} ; M \longrightarrow N$ be a one-parameter family of maps from M into N with $\phi_{0}=\phi$, and $\left.\frac{d}{d t} \phi_{t}(x)\right|_{t=0}=v_{x}, x \in M$. If $V \in \Gamma(E)$ has a compact support, it is known (cf. [E.S], [E.L], [Ma]) that

$$
\text { (1.2) }\left.\quad \frac{d}{d t} E\left(\phi_{t}\right)\right|_{t=0}=-\int_{M} n(v, \tau(\phi)) * 1 .
$$

Moreover, if $\phi ;(M, g) \longrightarrow(N, h)$ is harmonic and $v \in \Gamma(E)$ has a compact support,

$$
\text { (1.3) }\left.\frac{d^{2}}{d t^{2}} E\left(\phi_{t}\right)\right|_{t=0}=\int_{M} h\left(v, J_{\phi} v\right) * 1,
$$

Where the operator $J_{\phi} ; \Gamma(E) \longrightarrow \Gamma(E)$, called the Jacobi operator of ϕ, is a second order elliptic differential operator given by

$$
\text { (1.4) } J_{\phi} v:=-\sum_{i=1}^{m}\left\{\widetilde{\nabla}_{e_{i}} \widetilde{\nabla}_{a_{i}} v-\widetilde{\nabla}_{\nabla_{\theta_{i}} \mathbf{e}_{i}} v\right\}-\sum_{i=1}^{m} N_{R}\left(\phi_{*} e_{i}, v\right) \phi_{*} e_{i},
$$

for $v \in \Gamma(E)$. Here N_{R} is the curvature tensor of (N, h) given by

$$
\text { (1.5) } \quad{ }^{N} R(x, y) z:={ }^{N} \nabla_{[x, y]} z-{ }^{N} \nabla_{X}^{N} \nabla_{Y} z+{ }^{N} \nabla_{y}^{N} \nabla_{x} z \text {, }
$$

for $X, Y, Z \in \Gamma(T N)$.
For a relatively compact domain Ω in M, let us consider the Dirichlet eigenvalue problem of J_{ϕ} as follows :

$$
\text { (1.6) }\left\{\begin{aligned}
J_{\phi} V=\lambda V & \text { on } \Omega, \\
V=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

If M is a closed manifold, we consider the eigenvalue problem of J_{ϕ} :

$$
\text { (1.7) } J_{\phi} V=\lambda V, V \in \Gamma(E) .
$$

It is known that the spectra of both problems (1.6), (1.7) consist of discrete eigenvalues with finite multiplicities. The index of \varnothing on Ω, denoted by Index $x_{S}(\phi)$, is defined as the sum of the eigenvalues of the problem (1.6), and the index of ϕ, denoted by Index (ϕ), is also defined as the sum of the eigenvalues of (1.7) when M is a closed manifold. The dimension of the zero eigenspace of (1.6) (resp. (1.7)) is called the nullity of ϕ on Ω (resp. the nullity of ϕ), denoted by Nullity (ϕ) (resp. Nullity (ϕ)). The harmonic map $\phi ;(M, g) \longrightarrow$ (N, h) is stable (resp. stable on Ω) if Index $(\phi)=0$ (resp. Index ${ }_{\Omega}(\phi)$ $=0$).
1.2. For the estimation of the index and the nullity of a harmonic map, we have to introduce the quantity $N_{R} \phi$ or $N_{R_{\Omega}}^{\phi}$ as follows. We retain the notations as in 1.1.

Definition 1.1. For a smooth map $\phi ;(M, g) \longrightarrow(N, h)$, we define $N_{R}{ }^{\phi}$ by

$$
\text { (1.8) } \quad N_{R} \phi:=\operatorname{Sup}_{x \in M} \operatorname{Sup}_{v \in T} \phi(x)^{N} \sum_{i=1}^{m} n\left({ }^{N} R\left(\phi_{*} e_{i}, v\right) \phi_{*} e_{i}, v\right) / h(v, v) .
$$

For a relatively compact domain Ω in η, we define also $N_{R_{\Omega}}$ by

$$
\text { (1.9) } \quad N_{R_{\Omega} \phi}^{\phi}=\operatorname{Sup}_{x \in \Omega} \operatorname{Sup}_{v \in T_{\phi}(x)^{N}} \sum_{i=1}^{m} h\left({ }^{N} R\left(\phi_{*} e_{i}, v\right) \phi_{*} e_{i}, v\right) / h(v, v) .
$$

Note that these quantities dod not depend on the choice of $\left\{e_{i}\right\}_{i=1}^{m}$. We have immediately :
$]^{-}$Lemma 1.2. Assume that the sectional curvature N_{K} of (N, h)
is bounded above by a positive constant :

$$
N_{K}(\Pi) \leqq a \quad \text { for all planes } \Pi \text { in } T_{y} N, y \in N
$$

Then we have

$$
\begin{array}{ll}
(1.10) & N_{R} \phi \leqq 2 a E^{\infty}(\phi) \quad \text {, and } \\
(1.11) & N_{R_{\Omega} \phi} \leqq 2 a E^{\infty}(\Omega, \phi) \text {. }
\end{array}
$$

Here $E^{\infty}(\phi):=\operatorname{Sup}_{x \in M} e(\phi)(x)$ and $E^{\infty}(\Omega, \phi):=\operatorname{Sup}_{x \in \Omega} e(\phi)(x)$.

In fact, it is obvious from that

$$
\sum_{i=1}^{m} h\left({ }^{N_{R}}\left(\phi_{*} e_{i}, v\right) \phi_{*} e_{i}, v\right) \leqq a\left\{\sum_{i=1}^{m} h\left(\phi_{*} e_{i}, \phi_{*} e_{i}\right)\right\} h(v, v)
$$

at each point of M.

Note that $E(\Omega, \phi) \leqq E^{\infty}(\Omega, \phi) \operatorname{Vol} \Omega$ and $E(\phi) \leqq E^{\infty}(\phi)$ Vol M if vol $M<\infty$.

Example 1.3. Let $\phi ;(M, g) \longrightarrow(N, h)$ be an isometric immersion. Then $e(\phi)(x)=m / 2$ at each point. Therefore
(1.12) $\quad E^{\infty}(\phi)=E^{\infty}(\Omega, \phi)=m / 2$, and
(1.12') $\quad N_{R}{ }^{\phi} \leqq R^{\phi} \leqq m a \quad$.
for every relatively compact domain Ω in M. In particular, let $\phi ;[0,2 \pi] \longrightarrow(N, h)$ be a geodesic with the length L. Then
(1.13) $\quad E^{\infty}(\phi)=L^{2} / 8 \pi^{2}$.

Example 1.4. Let \varnothing; $(M, g) \longrightarrow(N, h)$ be an Riemannian submersion (cf. §6). Then we can choose an orthonormal local frame $\left\{e_{i}\right\}_{i=1}^{m}$ on M such that $e_{i}=e_{i}, 1 \leq i \leq n$, and $e_{i}=0, n+1 \leq i \leq m$,
where $m=\operatorname{dim} M, n=\operatorname{dim} N$ and $\left\{\theta_{i}^{\prime}\right\}_{i=1}^{n}$ is an orthonormal local
frame on N. Then the Riccio curvature of (N, h), Rice $N_{N}(v), v \in T_{\phi}(x)^{N}$, is by definition $\sum_{i=1}^{m} h\left(N_{R}\left(\phi_{n} \theta_{i}, v\right) \phi_{+} e_{i}, v\right) / h(v, v)$. Therefore, since ϕ is surjective, we have

$$
\text { (1.14) } \quad N_{R}^{\phi}=\operatorname{Sup}_{N} R i c_{N} \quad \text { and } \quad N_{R}^{\phi}=\operatorname{Sup}_{\phi(\Omega)} R^{i c} c_{N} \text {. }
$$

§2. The Index and the Nullity of a Harmonic Map from a Closed Manifold.
2.1. Method of Bérard and Gallot. At first, let us recall a method of Bérard and Galiot (cf.[B.C]) how to give estimations of Betti number , dimension of the moduli space of Einstein metrics, and dimension of harmonic spinors. Here let us apply their method to estimate the index and the nullity of a harmonic map.

Let (M, g) be a complete Riemannian manifold of dimension m, and E, a vector bundle over M with an inner product $\langle\cdot, \cdot\rangle$ and a connection $\widetilde{\nabla}$ compatible with respect to $\langle\cdot, \cdot\rangle$, that is,

$$
\nabla_{X}\left\langle s, s^{\prime}\right\rangle=\left\langle\tilde{\nabla}_{X} s, s^{\prime}\right\rangle+\left\langle s, \tilde{\nabla}_{X} s^{\prime}\right\rangle \quad, \quad x \in \Gamma(T M), s, s^{\prime} \in \Gamma(E)
$$

Then we can define the rough Laplacian $\bar{\Delta}$ on E in such a way that

$$
\text { (2.1) } \bar{\Delta} s:=\sum_{i=1}^{m}\left\{\tilde{\nabla}_{\theta_{i}}{\widetilde{\nabla_{i}}}^{s}-\widetilde{\nabla}_{\nabla_{i}} e_{i}^{s}\right\}, \quad s \in \Gamma(E) \text {, }
$$

where $\left\{\theta_{i}\right\}_{i=1}^{m}$. is an orthonormal local frame field on M. In case that M is a closed manifold, the eigenvalue problem

$$
-\bar{\Delta}_{s}=\lambda s, \quad s \in \Gamma(E),
$$

has a discrete spectrum : $\overline{\lambda_{1}} \leqq \overline{\lambda_{2}} \leqq \cdots \leqq \overline{\lambda_{i}} \leqq \cdots$... Consider the zeta function $\bar{Z}_{E}(t):=\sum_{i=1}^{\infty} e^{-t \overline{\lambda_{i}}}, t>0$. And let $0=\lambda_{0}<\lambda_{1} \leqq \lambda_{2} \leqq \ldots$ $\leqq \lambda_{i} \leqq \ldots$ be the spectrum of the Laplace-Beltrami operator Δ_{M} acting on $C^{\infty}(M)$. Then we can compare $\bar{Z}_{E}(t)$ with $Z_{M}(t):=\sum_{i=0}^{\infty} e^{-t \lambda_{i}}$:

Theorem (H.Hess, R.Schrader and D.A.Uhlenbrock [H.S.U])

$$
\bar{Z}_{E}(t) \leqq \ell Z_{M}(t) \quad, \quad t>0
$$

Here ℓ is the rank of the vector bundle E.

Now our situation is as follows : The vector bundle E is the induced bundle $\phi^{-1} T N$ over M by a harmonic map $\phi ;(M, g) \longrightarrow(N, h)$. And the Jacobi operator $J_{\phi} ; \Gamma(E) \longrightarrow \Gamma(E)$ is of the form (cf.(1.4)) :

$$
\text { (2.2) } J_{\phi} v=-\bar{\Delta} v-\sum_{i=1}^{m} N_{R}\left(\phi_{*} \theta_{i}, v\right) \phi_{*} \theta_{i}, \quad v \in \Gamma(E) .
$$

Here $\bar{\Delta}$ is the rough Laplacian on the bundle $E=\phi^{-1} T N$ and the operator of $\Gamma(E)$ defined by $V \longmapsto \sum_{i=1}^{m} N_{R}\left(\phi_{*} e_{i}, V\right) \phi_{*} e_{i}$, becomes a bundle map of E. Therefore, letting $\tilde{\lambda}_{1} \leq \tilde{\lambda}_{2} \leqq \ldots \leq \tilde{\lambda}_{i} \leq \ldots$ be the spectrum of J_{ϕ}, we have

$$
\text { (2.3) } \quad \tilde{\lambda_{i}} \geqq \overline{\lambda_{i}}-N_{R}^{\phi}, \quad i=1,2, \ldots,
$$

by (2.2), definition of $N_{R}{ }^{\phi}$, and Mini-max Principle of the eigenvalue problem of the elliptic operators. Since Index (ϕ) $+N u l l i t y(\phi)$ is the number of the non-positive eigenvalues of J_{ϕ},

$$
\text { (2.4) Index } \begin{aligned}
(\phi)+N u l l i t y(\phi) & \leqq \sum_{i=1}^{\infty} e^{-t \tilde{\lambda}_{i}} \\
& \leqq e^{t^{N_{R} \phi}} \sum_{i=1}^{\infty} e^{-t \overline{\lambda_{i}}} \quad, \quad t>0,
\end{aligned}
$$

by (2.3). Here, using a theorem of Hess, Schrader, and Uhlenbrock, we have
(2.5) Index $(\phi)+$ Nullity $(\phi) \leqq n e^{t^{N_{R}}} Z_{m}(t) \quad, t>0$,
noting that the rank of E coincides with dim $N=n$:
[Proposition 2.1. Let M be a closed manifold, and \varnothing; $(M, g) \longrightarrow(N, h)$, a harmonic map. Then we have
(2.6) Index $(\phi)+$ Nullity $(\phi) \leqq n \operatorname{Inf}\left\{\mathrm{e}^{\mathrm{t}_{\mathrm{R}} \phi} Z_{m}(t) ; 0<t<\infty\right\}$
where $n=\operatorname{dim} N, N_{R} \phi$ is the quantity in $\S 1$, and $Z_{m}(t)$ is the trace of the heat kernel of Δ_{m} acting on $c^{\infty}(M)$.

Corollary 2.2. The situations are preserved as in proposition 2.1. Then we have:
(i)

$$
\begin{align*}
& N_{R} \phi \leqq 0 \longmapsto \text { Index }(\phi)=0 \quad \text { and } \quad \text { Nullity }(\phi) \leqq n, \\
& N_{R} \phi \tag{ii}\\
& 0
\end{align*}
$$

In fact, in the inequality

$$
\text { (2.7) } \quad \sum_{i=1}^{\infty} e^{-t \tilde{\lambda}_{i}} \leqq n e^{t^{N_{R} \phi}} Z_{M}(t) \quad, \quad t>0 \text {, }
$$

the assumption $N_{R} \phi \leqq 0$ implies that the right hand side has a limit smaller than or equal to n as t tends to infinity since $Z_{M}(t)$ goes to 1 as t goes to infinity. Therefore each eigenvalue $\widetilde{\lambda}_{i}$ of J must be nonnegative, ice., Index $(\phi)=0$. Moreover, the left hand side of (2.7) is bigger than or equal to Index $(\phi)+$ Nullity (ϕ)
$=$ Nullity (ϕ) for each $t>0$. Therefore Nullity $(\phi) \leqq n$. If we assume $N_{R}{ }^{\phi}>0$, then the right hand side of (2.7) goes to 0 as t tends to infinity. Therefore we have Index $(\phi)=$ Nullity $(\phi)=0$.

Therefore the problem is reduced to give the estimation of $Z_{M}(t)$.
2.2. Case of a Domain. The above procedure works well in the case of the Dirichlet eigenvalue problem for a relatively compact domain Ω in a complete Riemannian manifold (M, g).

Certainly, let

$$
\overline{\lambda_{1}}(\Omega) \leqq \overline{\lambda_{2}}(\Omega) \leqq \cdots \leqq \overline{\lambda_{i}}(\Omega) \leqq \cdots
$$

be the spectrum of the Dirichlet eigenvalue problem of the rough Laplacian $\bar{\Delta}(2.1)$ of a vector bundle E with an inner product $\langle\cdot, \cdot\rangle$ and a connection $\widetilde{\nabla}$ compatible with respect to $\langle\cdot, \cdot\rangle$:

$$
\left\{\begin{aligned}
-\bar{\Delta} s=\lambda s & \text { on } \Omega, \\
s=0 & \text { on } \partial \Omega,
\end{aligned}\right.
$$

wheres is a section of E on the closure $\bar{\Omega}$ of Ω. Consider the zeta function $\bar{Z}_{E, \Omega}(t)$ defined by

$$
\bar{Z}_{E, \Omega}(t):=\sum_{i=1}^{\infty} e^{-t \overline{\lambda_{i}}(\Omega)} \quad, t>0
$$

Similarly, let

$$
\lambda_{1}(\Omega) \leqq \lambda_{2}(\Omega) \leqq \ldots \leqq \lambda_{i}(\Omega) \leqq \cdots,
$$

be the spectrum of the Dirichlet eigenvalue problem of the LaplaceBeltrami operator Δ_{M} for the domain Ω, and $Z_{\Omega}(t)$ be the zeta function defined by

$$
\text { (2.8) } \quad Z_{\Omega}(t):=\sum_{i=1}^{\infty} e^{-t \lambda_{i}(\Omega)} \quad, \quad t>0 .
$$

Then we have the analogue of a theorem of Hess, Schrader and Uhlenbrock:

Theorem 2.3.
(2.9) $\quad \bar{Z}_{E, \Omega}(t) \leq \ell Z_{\Omega}(t), \quad t>0$,
where ℓ is the rank of E.
Proof. It can be proved in the similar way as the proof in [B. \square^{-}, Assume that $s(t, x) \in E_{x}, t>0, x \in \bar{\Omega}$, satisfies the heat equation with the Dirichlet boundary condition :

$$
\left\{\begin{aligned}
\left(\frac{\partial}{\partial t}-\bar{\Delta}\right) s(t, x)=0 & \text { on }(0, \infty) \times \Omega \\
s(t, x)=0 & \text { on }(0, \infty) \times \partial \Omega
\end{aligned}\right.
$$

For each $\varepsilon>0$, let $f_{\varepsilon}:=\left(|s|^{2}+\varepsilon^{2}\right)^{1 / 2}$ on $(0, \infty) \times \bar{\Omega}$. Then it can be proved by the same way as in [H.S.U] that

$$
\langle-\bar{\Delta} s, s\rangle \leqq f_{E}\left(-\Delta_{M} f_{E}\right) \quad \text { on } \quad(0, \infty) \times \Omega
$$

Therefore f_{ε} satisfies

$$
\left(\frac{\partial}{\partial t}-\Delta_{m}\right) f_{\varepsilon} \leqq 0 \quad \text { on }(0, \infty) \times \Omega \text {. }
$$

Then we can apply f_{ε} to the following Maximum Principle of heat kernel

Theorem (Maximum Principle) Let Ω be a relatively compact domain in M, and let $0<T<\infty$. Assume that u is a real valued continuous function on $[0, T] \times \Omega$ and satisfies the inequality :

$$
\frac{\partial}{\partial t} u-\Delta_{M} u \leqq 0 \quad \text { on }(0, T) \times \Omega \text {. }
$$

Then u attains its maximum on the set $\{0\} \times \Omega$ or $[0, T] \times \partial \Omega$.

For proof, see [f,p.204].

Then, if $f_{\varepsilon}(0, x) \leqq f(0, x)+\varepsilon$, then $f_{\varepsilon}(t, x) \leqq f(t, x)+E$. Hence for every integrable section s of E on $\bar{\Omega}$ with the Dirichlet condition $s=0$ on $\partial \Omega$, we have

$$
\text { (2.10) }\left|\left(e^{t \bar{\Delta}} s\right)(x)\right| \leqq\left(e^{\left.t \Delta_{m}|s|\right)(x) .}\right.
$$

Therefore applying $s(z)=\sum_{i=1}^{\ell} \delta_{z, y} u_{j}(z)$ to (2.10), where $\delta_{z, y}$ is the Dirac function at y and $\left\{u_{j}(z)\right\}_{j=1}^{\ell}$ is an orthonormal basis of the fiber E_{z} at each point z in M, and noting $|s(z)|=\ell \delta_{z, y}$, we have the desired inequality (2.9). Q.E.D.

We denote the spectrum of the Dirichlet eigenvalue problem of J_{ϕ} on Ω by

$$
(2.11) \quad \tilde{\lambda}_{1}(\Omega) \leqq \tilde{\lambda}_{2}(\Omega) \leqq \ldots \leqq \tilde{\lambda}_{i}(\Omega) \leqq \cdots,
$$

and define $\tilde{\mathrm{Z}}_{\Omega}(\mathrm{t}):=\sum_{i=1}^{\infty} e^{-t \widetilde{\lambda}_{i}(\Omega)}$. Then by the similar way as 2.1, we have :

Proposition 2.4. Let Ω be a relatively compact domain in a complete Riemannian manifold (M, g). Let $\phi ;(M, g) \longrightarrow(N, h)$ be a harmonic map. Then we have
(2.12) Index $(\phi)+N u l l i t y_{\Omega}(\phi) \leqq \widetilde{Z}_{\Omega}(t) \leqq n \operatorname{Inf}\left\{e^{t^{N} R_{S}^{\phi}} Z_{\Omega}(t) ; 0<t<\infty\right\}$, where $n=\operatorname{dim} N, \quad N_{R_{\Omega}}$ is defined in $\oint 1$, and $Z_{\Omega}(t)$ is the zeta function of the Dirichlet eigenvalue of Δ_{M} on Ω defined by (2.8).
2.3. To apply Proposition 2.1, we make use of the following proposition obtained also by Bérard and Gallot [B.G]:

Proposition (P.Bérard and S.Gallot) Let (M, g) be a closed Riemannian manifold whose Riccio curvature Rich in bounded below by a positive constant : Rich $C_{M} \geq(m-1) \delta>0$. Then the trace $Z_{M}(t)$ of the heat kernel of (M, g) is estimated as

$$
(2.13) \quad Z_{M}(t) \leqq Z_{S^{m}}(\delta t),
$$

where $m=d i m m$ and $Z_{S} m(t)$ is the trace of the heat kernel of the standard unit sphere (S^{m}, can) of constant curvature 1 .

It is known (cf. [B.G.M]) that if $m \geqq 2$,

$$
Z_{S} m(t)=\sum_{k=0}^{\infty} m_{k} e^{-t k(k+m-1)}, t>0,
$$

where $m_{k}=\frac{(m+k-2)!}{k!(m-1)!}(m+2 k-1), \quad k=0,1,2, \ldots$.
Then the function $Z_{S}{ }^{m}(t)$ is estimated as follows :
(i) In case of $m \geq 3$,
(2.14) $\quad Z_{S^{m}}(t) \leqq 1+\sum_{k=1}^{\infty}(m k)^{m-1} e^{-t m k}$

$$
\leqq 1+(m-1)!m^{m-1} e^{-t m}\left(1-e^{-t m}\right)^{-m}
$$

(ii) In case of $m=2$,
(2.14') $\quad Z_{S} 2(t)=\sum_{k=0}^{\infty}(2 k+1) e^{-t k(k+1)}$

$$
\leq 1+2 \sum_{k=2}^{\infty} k e^{-t k} \leqq 1+2 e^{-2 t}\left(2-e^{-t}\right)\left(1-e^{-t}\right)^{-2}
$$

Therefore combining (2.13) with (2.14), we have
(i) in case of $m \geqq 3$,
(2.15) $\operatorname{Inf}\left\{e^{t^{N} R^{\phi}} Z_{m}(t) ; 0<t<\infty\right\}$

$$
\leqq \operatorname{Inf}\left\{e^{\left.t^{N} R^{\phi} / \delta\left\{1+(m-1)!m^{m-1} e^{-t m}\left(1-e^{-t m}\right)^{-m}\right\} ; 0<t<\infty\right\} . ~ . ~}\right.
$$

Pouting $A=N_{R} \phi / m \delta$ and $e^{t}=1+\frac{1}{A}$,
the right hand side of $(2.15) \leqq\left(1+\frac{1}{A}\right)^{A}\left\{1+(m-1)!m^{m-1} A(1+A)^{m-1}\right\}$.
(ii) In case of $m=2$,
(2.15') $\operatorname{Inf}\left\{e^{t^{N} R^{\phi}} Z_{M}(t) ; 0<t<\infty\right\} \leqq \operatorname{Inf}\left\{e^{N^{N} R^{\phi} / \delta}\left\{1+2 e^{-2 t}\left(2-e^{-t}\right)\left(1-e^{-t}\right)^{-1}\right.\right.$.

$$
; 0<t<\infty\}
$$

Letting $B=N_{R} / \delta$ and $e^{t}=1+\frac{1}{B}$,
the right hand side of $\left(2.15^{\prime}\right) \leqq\left(1+\frac{1}{B}\right)^{B}\left\{1+4 B^{2}\right\}$.
Therefore together with (2.6), we have :

Theorem 2.5. Let (M, g) be a closed Riemannian manifold of dimension $m \geq 2$ whose Ricci curvature $R^{2} c_{M}$ is bounded below by a positive constant : Rich $\mathrm{R}_{\mathrm{M}} \geqq(\mathrm{m}-1) \delta>0$. Let $\phi ;(M, g) \longrightarrow(N, h)$ be a harmonic map of (M, g) into an arbitrary Riemannian manifold (N, h) of dimension n. Then we have:
(i) In case of $m \geq 3$,

$$
\text { Index }(\phi)+\text { Nullity }(\phi) \leqq n\left(1+\frac{1}{A}\right)^{A}\left\{1+(m-1)!m^{m-1} A(1+A)^{m-1}\right\} \text {, }
$$

Where $A:=N_{R} \phi / m \delta$ and N_{R}^{ϕ} is the quantity in Si.
(ii) In case of $m=2$,

$$
\text { Index }(\phi)+\text { Nullity }(\phi) \leqq n\left(1+\frac{1}{B}\right)^{B}\left\{1+4 B^{2}\right\} \text {, }
$$

Where $B:=N_{R} \phi / \delta$.

Remark. The function $\left(1+\frac{1}{x}\right)^{x}, x>0$, satisfies $\lim _{x \rightarrow 0}\left(1+\frac{1}{x}\right)^{x}=1$, $\left(1+\frac{1}{x}\right)^{x}<\theta$, and $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\theta$. Therefore, when the quantity $N_{R} \phi$ goes to zero, the bounds of the above inequalities in theorem 2.5 tend to n. In the case that ϕ is the identity map of the n-dimensional flat torus, $\operatorname{Index}(\phi)=0$ and Nullity $(\phi)=n$. That is, the above estimate is optimal when $N_{R} \phi$ goes to zero.

By the way let us consider the case $M=S^{1}=\mathbb{Q} / 2 \pi z$. In this case, we know that

$$
z_{s} 1(t)=1+\sum_{k=1}^{\infty} e^{-t k^{2}}
$$

Then we have the estimation of $Z_{S}{ }^{1}(t)$ ba the same way :
(i) $Z_{s} 1(t) \leqq \frac{1+e^{-t}}{1-e^{-t}} \quad, t>0$, and
(ii) $\quad Z_{S} 1(t) \leq 1+\sqrt{\frac{\pi}{t}} \quad, t>0$,
and we have :
[Proposition 2.6. Let $\phi ;[0,2 \pi] \longrightarrow(N, h)$ be a closed geodesic, that is, $\dot{\phi}(0)=\dot{\phi}(2 \pi)$ for the tangent vectors at $\phi(0)=\phi(2 \pi)$, in an arbitrary Riemannian manifold (N, h) of dimension n. Then

$$
\text { Index }(\phi)+\text { Nullity }(\phi) \leqq n\left(1+\frac{1}{C}\right)^{C} \operatorname{Min}\{1+2 C, 1+\sqrt{\pi} \sqrt{1+C}\},
$$

where $C:=N_{R} \phi$ defined in §1. In particular, assuming that the sectional curvature N_{K} of (N, h) is bounded above by a positive constant: $N_{K} \leqq a$, the index and the nullity of a closed geodesic $\phi ;[0,2 \pi] \longrightarrow(N, h)$ of (N, h) satisfies
(2.16) Index $(\phi)+$ Nullity $(\phi) \leqq n e\left\{1+\frac{L^{2} a}{2 \pi^{2}}\right\}$.

Remark. The estimate (2.16) is far from the optimal estimate obtained by Morse-Schönberg (cf.[G.K.M]).
2.4. Minimal Isometric Immersions. Let us consider an isometric immersion $\phi ;(M, g) \longrightarrow(N, h)$. Then it is known (cf.[E.S],[E.L]) that ϕ is harmonic if and only if ϕ is minimal. The second variational formula of a volume for an isometric minimal immersion is as follows (cf. [Si]) : Let $F:=T M^{+}$be the normal bundle of F in N which is a subbundle of $E=\varphi^{-1} T N$. For a section $V \in \Gamma(r)$, let ϕ_{t} be a smooth variation of ϕ with $\phi_{0}=\varnothing$ and $v_{x}=\frac{d}{d t} \phi_{t}(x){ }_{t=0}$ $x \in M$. Than

$$
\left.\frac{d^{2}}{d t^{2}} \operatorname{vol}\left(M, \varphi_{t}^{*} h\right)\right|_{t=0}=\int_{M} h\left(L_{\phi} v, v\right) * 1 .
$$

The operator $L_{\phi} ; \Gamma(F) \longrightarrow \Gamma(F)$ is a second order elliptic differential operator of the form :

$$
\text { (2.17) } \quad L_{\phi} v=-\nabla^{\perp 2} v-\beta(v)-R^{\perp}(v), \quad v \in \Gamma(F),
$$

Where $\nabla^{\boldsymbol{+ 2}}$ is the rough Laplacian on F given by

$$
\nabla^{\perp 2} v:=\sum_{i=1}^{m}\left(\nabla_{\mathbf{e}_{i}}^{\perp} \nabla_{\mathbf{e}_{i}}^{\perp} v-\nabla_{\nabla_{\mathbf{B}_{i}}^{\mathbf{e}_{i}}}^{\perp} v\right),
$$

and $\nabla_{X}^{\perp} v$ is the normal component of the connection ${ }^{N} \nabla_{X} v, x \in \Gamma\left(T M_{i}\right)$, $V \in \Gamma(F)$. The operator $B ; \Gamma(F) \longrightarrow \Gamma(F)$ is defined h.

$$
\beta(v):=\sum_{i=1}^{m} B_{B_{i}, A} v_{e_{i}},
$$

Where B is the second fundamental form of ϕ defined by $B_{X, Y}:=$ $\left({ }^{N} \nabla_{X} Y\right)^{\perp}$, the normal component of ${ }^{N} \nabla_{X} Y, X, Y \in \Gamma(T M)$, and A^{V}; $\Gamma(T M) \longrightarrow \Gamma(T M)$ is defined by $h\left(\theta_{X, Y}, V\right)=g\left(A^{V} X, Y\right)$. The operator $R^{-} ; \Gamma(F) \longrightarrow \Gamma(F)$ is the normal component of $\sum_{i=1}^{m} N_{R}\left(e_{i}, V\right) e_{i}$. Note that for our Jacobi operator J_{ϕ}, its normal component $\left(J_{\phi} V\right)$, satisfies

$$
\begin{equation*}
\left(J_{\phi} v\right)^{2}=-\nabla^{2} v+8(v)-R^{2}(v) ; \quad v \in \Gamma(F) . \tag{2.18}
\end{equation*}
$$

Definition 2.7. (i) We denote by S-Index (ϕ) the sum of the multiplicities of the negative eigenvalues of L_{ϕ} on $\Gamma(F)$, and by s-Nullity (ϕ) the dimension of the kernel of L_{ϕ} on $\Gamma(F)$. (ii) Let β (resp. r^{+}) be the supremum of the maximal eigenvalues of the endomorphism β (resp. R^{\perp}) of the fiber F_{x} of F where x varies over M.

Note that under the assumption that the sectional curvature N_{K} of (N, h) is bounded above by a positive constant : $N_{K} \leqq$ a , we have

$$
(2.19) \quad r^{2} \leqq \mathrm{ma},
$$

Where $m=\operatorname{dim} M$ (cf. Lemma 1.2 and Example 1.3). And note that (2.20) $\quad \beta \leqq \operatorname{Sup}_{x \in M} \sum_{i, j=1}^{m} h\left(B_{B_{i}, \theta_{j}}, \theta_{a_{i}, \theta_{j}}\right)$.

Then by the same way as 2.1 and 2.3, we have :
$\left[\begin{array}{l}\text { Proposition 2.8. Let }(M, g) \text { be a closed Riemannian manifold } \\ \text { and } \phi ;(M, g) \longrightarrow(N, h) \text { an isometric minimal immersion. Then }\end{array}\right.$

$$
\text { S-Index }(\phi)+S-N u l l i t y(\phi) \leqq(n-m) \operatorname{Inf}\left\{e^{t\left(\beta+r^{1}\right)} z_{m}(t) ; 0<t<\infty\right\} \text {, }
$$

where $m=\operatorname{dim} M, n=\operatorname{dim} N, \beta$ and r^{\perp} are defined in Definition 2.7, and $Z_{M}(t)$ is the trace of the heat kernel of the Laplace-Beltrami operator Δ_{M} of (M, g).

Proposition 2.9. Let (M, g) be a closed Riemannian manifold of dimension $m \geqq 2$ whose Riccio curvature Rich m_{M} is bounded below by a positive constant: Rich ${ }_{M} \geqq(m-1) \delta>0$. Let $\phi ;(M, \Omega) \longrightarrow(N, h)$ be an isometric minimal immersion of (M, g) into an arbitrary Riemannian manifold of dimension n whose sectional curvature N_{k} is bounded above by a positive constant: $N_{K} \leqq a$. Then
(i) In case of $m \geq 3$,

$$
\text { S-Index }(\phi)+\text { S-Nullity }(\phi) \leqq(n-m)\left(1+\frac{1}{A},\right)^{A^{\prime}}\left\{1+(m-1)!m^{m-1} A^{\prime}\left(1+A^{\prime}\right)^{m-}\right.
$$

where $A^{\prime}:=(\beta+m a) / m \delta$.
(ii) In case of $m=2$,

$$
\text { S-Index }(\phi)+S-N u l l i t y(\phi) \leqq(n-2)\left(1+\frac{1}{B},\right)^{B^{\prime}}\left\{1+4 B^{\prime}\right\},
$$

where $B^{\prime}:=(\beta+2 a) / \delta$.

Proposition 2.10. Let $\quad \phi ;[0,2] \longrightarrow(N, h)$ be any closed geodesic, in an arbitrary Riamannian manifold (N, h). Then

$$
\text { S-Index }(\phi)+\text { S-Nullity }(\phi) \leqq(n-1)\left(1+\frac{1}{C}\right)^{C} \operatorname{Min}\{1+2 C, 1+\sqrt{\pi} \sqrt{1+C}\},
$$

where $C=N_{R} \phi$ defined in §1. In particular, assume that the sectional curvature N_{K} of (N, h) is bounded above by a positive constant: $N_{K} \leqq$ a. Then

$$
\text { S-Index }(\phi)+\text { S-Nullity }(\phi) \leqq(n-1) \text { e }\left\{1+\frac{L^{2} a}{2 \pi^{2}}\right\} \text {. }
$$

§3. The Index and the Nullity of a Harmonic Map from a Domain.
3.1. We retain the notations as in 2.2. We have: [Theorem 3.1. Let Ω be a relatively compact domain in a complete Riemannian manifold $(M, g), \phi ;(M, g) \longrightarrow(N, h)$, a harmonic map of (M, g) into an arbitrary Riemannian manifold (N, h) of dimension n. Then
(i) $\quad \lambda_{1}(\Omega) \geqslant N_{R_{Q}} \longrightarrow$ Index $(\phi)=0$ and Nullity $(\phi) \leqq n$,
(ii) $\quad \lambda_{1}(\Omega)>N_{R_{\Omega}} \Rightarrow$ Index $\Omega(\phi)=\operatorname{Nullity}_{\Omega}(\phi)=0$.

That is, if $\lambda_{1}(\Omega) \geq N_{R_{\Omega} \phi}$, then the harmonic map $\phi ;(M, g) \longrightarrow(N, h)$ is stable on Ω.

Proof.

$$
\text { By Proposition 2.4, the zeta function } \tilde{Z}_{\Omega}(t)=\sum_{i=1}^{\infty} e^{-t \tilde{\lambda}_{i}(\mathbb{c}}
$$ of $J \phi$ on Ω satisfies

$$
\tilde{Z}_{\Omega}(t) \leqq n e^{t^{N_{R} \phi}} Z_{\Omega}(t)=n e^{t\left({ }^{N} R_{\Omega}-\lambda_{1}(\Omega)\right)}\left\{1+\sum_{i=2}^{\infty} e^{t\left(\lambda_{1}(\Omega)-\lambda_{i}(\Omega)\right)}\right\}
$$

where $\lambda_{1}(\Omega) \leqq \lambda_{2}(\Omega) \leqq \ldots \leqq \lambda_{i}(\Omega) \leqq \cdots$ is the spectrum of the Dirichlet eigenvalue problem of the Laplace-Beltrami operator Δ_{M} on Ω. Noting the fact that $\lambda_{i}(\Omega)>\lambda_{1}(\Omega), i=2,3, \ldots$, the assumption $N_{R_{\Omega}} \leq \lambda_{1}(\Omega)$ implies that the limit of the right hand side of the above inequality is less than or equal to n when $t \longrightarrow \infty$. Then Index $(\phi)=0$ and Nullity s $(\phi) \leqq n$. If $N_{R_{\Omega}}^{\phi}<\lambda_{1}(\Omega)$, the limit of the right hand side of the inequality is zero when $t \rightarrow \infty$. Therefore Index $(\phi)=\operatorname{Nullity}_{\Omega}(\phi)=0$. Q.E.D.

Corollary 3.2. Let $B_{r}(0)$ be a geodesic ball with radius r whose center is a certain point o in the $\left[\begin{array}{l}\text { standard unit sphere } \\ m \text {-dianeional }\end{array}\right.$
($S^{m}, c a n$) of constant curvature one. We choose the radius r with $0<r<\pi / 2$ in such a way that $\lambda_{1}\left(B_{r}(0)\right)=m-1$. Then, for every domain Ω in s^{m} whose volume $\operatorname{vol}(\Omega)$ is less than or equal to the volume $\operatorname{Vol}\left(\mathrm{B}_{\mathrm{r}}(0)\right)$, the identity map id; $\left(S^{m}, \mathrm{can}\right) \longrightarrow\left(S^{m}, \mathrm{can}\right)$ is stable on Ω.

Proof. By Example 1.4, we have $N_{R}^{\phi}=m-1$ for every domain Ω in S^{m}. In this case, Theorem 3.1 implies that, if $\lambda_{1}(\Omega) \geqq m-1$, then the identity map $\phi=i d ;\left(S^{m}, \operatorname{can}\right) \longrightarrow\left(S^{m}, c a n\right)$ is stable on Ω. By a theorem of P.Bérard and D. Meyer (cf.[B.M]), if $\operatorname{Vol}(\Omega) \leqq \operatorname{Vol}\left(B_{r}(0)\right)$, then $\quad \lambda_{1}(\Omega) \geqq \lambda_{1}\left(B_{r}(0)\right)=m-1$. Q.E.D.

It is known that (cf. [C.L], [B.C], [U2]) that there exists a positive constant $C(M, g)$ depending only on (M, g) such that the eigenvalues $\lambda_{i}(\Omega)$ of the Dirichlet eigenvalue problem of the Laplace-Beltrami operator Δ_{M} on the domain Ω satisfy
(3.1) $\quad \lambda_{i}(\Omega) \geqq C(M, g) \quad \operatorname{Vol}(\Omega)^{-2 / m} i^{2 / m}, \quad i=1,2, \ldots$,
where $m=$ dim M. In particular,

$$
(3.2) \quad \lambda_{1}(\Omega) \geqq c(M, g) \operatorname{vol}(\Omega)^{-2 / m}
$$

Then the above Theorem 3.1 implies that

Corollary 3.3. Let Ω be a relatively compact domain in a complete Riemannian manifold (M, g), and $\phi ;(M, g) \longrightarrow(N, h)$, a harmonic map. Then

$$
c(M, g) \operatorname{Vol}(\Omega)^{-2 / m} \geqq N_{R_{\Omega}}^{\Phi} \square \phi \text { is stable on } \Omega \text {. }
$$

In particular, assume that the sectional curvature N_{K} of (N, h)
is bounded above by a positive constant: $N_{K} \leqq a$. Then

$$
c(m, g) \operatorname{vol}(\Omega)^{-2 / m} \geq{ }^{2 a E^{\infty}(\Omega, \phi)} \Rightarrow \phi \text { is stable on } \Omega .
$$

If Ω is "small" in (M, g), then $\operatorname{vol}(\Omega)^{-2 / m}$ tends to infinity and $N_{R_{\Omega}^{d}}^{d}$ remains still bounded. Therefore Corollary 3.3 implies that a harmonic map $\phi ;(M, g) \longrightarrow(N, h)$ is stable on a " sufficiently small" domain Ω in M.
3.2. In this part, we estimate Index (ϕ) and Nullity $y_{\Omega}(\phi)$. By Proposition 2.4 and (3.1), we have

$$
\begin{aligned}
\operatorname{Index}_{\Omega}(\phi) & +N_{\text {nullity }}^{\Omega}(\phi) \leqq n \operatorname{Inf}\left\{e^{t^{N} R_{\Omega}^{\phi}} Z_{\Omega}(t) ; 0<t<\infty\right\} \\
& \leqq n \operatorname{Inf}\left\{e^{t^{N} R_{\Omega}^{\phi}} \sum_{k=1}^{\infty} e^{-t C(m, g) \operatorname{vol}(\Omega)^{-2 / m} k^{2 / m}} ; 0<t<\infty\right\} \\
& \leqq n \operatorname{Inf}\left\{e^{\frac{a}{b} t} \sum_{k=1}^{\infty} e^{-t k^{2 / m}} ; 0<t<\infty\right\} \quad,
\end{aligned}
$$

Where we put $m=\operatorname{dim} m, n=\operatorname{dim} N, a:=N_{R_{\Omega}^{\phi}}^{p}$, and $b:=c(M, g) \operatorname{vol}(\Omega)^{-2 / 1}$ In case of $a \leqq b$, we have Corollary 3.3. So we assume apb. We put $\frac{a}{b}=1+D, D>0$. We express as

$$
\text { (3.3) } \quad e^{\frac{a}{b} t} \sum_{k=1}^{\infty} e^{-t k^{2 / m}}=e^{\left(\frac{a}{b}-1\right) t} \sum_{k=1}^{\infty} e^{-\left(k^{2 / m}-1\right) t}
$$

(i) In case of $m=1,2$,
the right hand side of $(3.3) \leqq e^{\left(\frac{a}{5}-1\right) t} \sum_{k=0}^{\infty} e^{-t k}$

$$
=e^{\left(\frac{a}{b}-1\right) t}\left(1-e^{-t}\right)^{-1} .
$$

Putting $e^{t}=1+\frac{1}{D}$, we have

$$
\inf \left\{e^{\frac{\theta}{b} t} \sum_{k=1}^{\infty} e^{-t k^{2 / m}} ; 0<t<\infty\right\} \leqq\left(1+\frac{1}{D}\right)^{D}(1+D) .
$$

(ii) In case of $m \geqq 3$,

$$
\begin{aligned}
\sum_{k=1}^{\infty} e^{-t\left(k^{2 / m}-1\right)} & =1+e^{t} \sum_{k=2}^{\infty} e^{-t k^{2 / m}} \\
& \leqq 1+e^{t} \int_{1}^{\infty} e^{-t x^{2 / m}} d x \\
& =1+\frac{m}{2} t^{-m / 2} \int_{t}^{\infty} z^{\frac{m}{2}-1} e^{-z} d z \\
& \leqq\left\{\begin{array}{l}
1+\frac{m}{2} t^{-m / 2} p!e^{-t} \sum_{k=0}^{p} \frac{t^{k}}{k!}, \text { if } m=2(p+1), p \geqq 1 \\
1+\frac{m}{2} t^{-(m+1) / 2} p!e^{-t} \sum_{k=0}^{p} \frac{t^{k}}{k!}, \text { if } m=2 p+1, \quad p \geqq 1
\end{array}\right.
\end{aligned}
$$

Putting $e^{t}=1+\frac{1}{D}$, we have

$$
\operatorname{Inf}\left\{e^{\frac{a}{b} t} \sum_{k=1}^{\infty} e^{-t k^{2 / m}} ; 0<t<\infty\right\} \leqq\left\{\begin{array}{lll}
\left(1+\frac{1}{D}\right)^{D}\{1+p(D)\}, & \text { if } & m=2(p+1), p \geqq 1 \\
\left(1+\frac{1}{D}\right)^{D}\{1+Q(D)\}, & \text { if } & m=2 p+1,
\end{array}\right] \geqq 1,
$$

where

$$
\begin{aligned}
& \text { (3.4) } \quad P(D):=(p+1)!\sum_{k=0}^{p} \frac{1}{k!}\left\{\frac{1}{\log \left(1+\frac{1}{D}\right)}\right\}^{p+1-k} \text {, if } m=2(p+1), p \geqq \\
& \text { (3.5) } \quad Q(D):=\frac{m}{2} p!\sum_{k=0}^{p} \frac{1}{k!}\left\{\frac{1}{\log \left(1+\frac{1}{D}\right)}\right\}^{p+1-k} \text {, if } m=2 p+1, p \geqq 1
\end{aligned}
$$

(iii) We can give another estimate of Index $_{\Omega}(\phi)$ and Nullity ${ }_{\Omega}(\phi)$

In fact, we have

$$
\sum_{k=1}^{\infty} e^{-t k^{2 / m}} \leqq \int_{0}^{\infty} e^{-t x^{2 / m}} d x=\Gamma\left(\frac{m}{2}+1\right) t^{-m / 2}
$$

Therefore we obtain

$$
\operatorname{Inf}\left\{e^{\frac{a}{b} t} \sum_{k=1}^{\infty} e^{\left.-t k^{2 / m} ; 0<t<\infty\right\} \leqq \frac{\Gamma\left(\frac{m}{2}+1\right) e^{m / 2}}{(m / 2)^{m / 2}}\left(\frac{a}{\square}\right)^{m / 2} ~ . ~}\right.
$$

[Theorem 3.4. Let Ω be a relatively compact domain in a complete Riemannian manifold (M, g), and $\phi ;(M, g) \longrightarrow(N, h)$, a harmonic map. Then Index $\mathcal{S}_{2}(\phi)$ and Nullity $\mathcal{S}_{\Omega}(\phi)$ are estimated by the quantity $D:=N_{R_{\Omega}} C(M, g)^{-1} \operatorname{Vol}(\Omega)^{2 / m}-1$ as follows :
(i) In case of $m=1,2$,

$$
\text { Index }_{\Omega}(\phi)+\text { Nullity }_{\Omega}(\phi) \leqq n\left(1+\frac{1}{D}\right)^{D}\{1+D\},
$$

(ii) in case of $m=2(p+1), p \geqq 1$,

$$
\operatorname{Index}_{\Omega}(\phi)+\text { Nullity }_{\Omega}(\phi) \leqq n\left(1+\frac{1}{D}\right)^{D}\{1+P(D)\} \text {, }
$$

(iii) in case of $m=2 p+1, p \geqq 1$,

$$
\text { Index }_{\Omega}(\phi)+\text { Nullity }_{\Omega}(\phi) \leqq n\left(1+\frac{1}{D}\right)^{D}\{1+Q(D)\}
$$

(iv) In all cases $m \geqq 1$,

$$
\text { Index } \Omega_{\Omega}(\phi)+\operatorname{Nullity}_{\Omega}(\phi) \leq n \frac{\left(\frac{m}{2}+1\right) e^{m / 2}}{(m / 2)^{m / 2}}(1+D)^{m / 2},
$$

where $P(D)$ and $Q(D)$ are the functions of D given by (3.4), (3.5), respectively, and $m=\operatorname{dim} M, n=\operatorname{dim} N$.

Remark. Since the function $f(D)=\frac{1}{\log \left(1+\frac{1}{D}\right)}$ of D satisfies that $f(D) \longrightarrow 0$ as $D \longrightarrow D$ and $f(D) \sim D$ as $D \rightarrow \infty$, the functions $P(D)$ and $Q(D)$ satisfy

$$
\begin{aligned}
& \lim _{D \rightarrow 0} P(D)=\lim _{D \rightarrow 0} Q(D)=0 \quad, \quad \text { and } \\
& P(D) \sim(m / 2)!D^{m / 2}, \quad Q(D) \sim \frac{m}{2}\left(\frac{m-1}{2}\right)!D^{(m+1) / 2} \text { as } D \rightarrow \infty .
\end{aligned}
$$

3.3. Minimal isometric immersions. We preserve the notations as in 2.4. For a relatively compact domain Ω in a complete Riemannian manifold (M, g), consider the Dirichlet eigenvalue problem of the operator L_{ϕ} acting sections of $F=T M^{\perp}$ on Ω :

$$
\left\{\begin{aligned}
L_{\mu} V=\lambda V & \text { on } \Omega, \\
V=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Definition 3.5. (i) We denote by S-Index (ϕ) the sum of the multiplicities of the negative eigenvalues of this problem, and by S-Nullity (ϕ), the dimension of the zero eigenspace. (ii) Let $\beta(\Omega)$ (resp. $r^{2}(\Omega)$) be the supremum of the maximal eigenvalue of the endomorphism β (resp. R^{+}) of the bundle F over the domain Ω (cf. Definition 2.7). Note that $\beta(\Omega) \leqq \beta$ and $r^{2}(\Omega) \leqq r^{+}$when the right hand sides are finite.

Then by the same reason as 2.4 and 3.2 , we have a series of the following propositions :

Proposition 3.5. Let Ω be a relatively compact domain in a complete Riemannian manifold (M, g), and $\phi ;(M, g) \longrightarrow(N, h)$, a minimal isometric immersion. Then

$$
\begin{array}{r}
\operatorname{S-Index}(\phi)+S-\operatorname{Nuliity}_{\Omega}(\phi) \leqq(n-m) \text { Inf }\left\{e^{t\left(\beta(\Omega)+r^{\perp}(\Omega)\right)_{Z_{\Omega}}(t)} ;\right. \\
0<t<\infty\}
\end{array}
$$

where $\beta(\Omega)$ and $I^{\perp}(\Omega)$ are given in Definition 3.5 (ii) and $Z_{\Omega}(t)$ is the zeta function of the Dirichlet eigenvalue problem of Δ_{M} on Ω.

Proposition 3.6. Under the same assumptions of Proposition 3.5,
$\beta(\Omega)+r^{+}(\Omega)$
S-Index $(\phi)=0, \quad S-$ Nullitva $(\phi): n-m$

$$
\begin{equation*}
\lambda_{1}(\Omega)>\beta(\Omega)+r^{2}(\Omega) \Longrightarrow \text { s-Index } \Omega_{\Omega}(\phi)=\text { S-Nullity } \Omega_{\Omega}(\phi)=0, \tag{ii}
\end{equation*}
$$

Where $\lambda_{1}(\Omega)$ is the first eigenvalue of the Dirichlet eigenvalue problem of $: \Delta_{M}$ on Ω.

Proposition 3.7. Under the same assumptions of Proposition 3.5, $c(M, g) \operatorname{Vol}(\Omega)^{-2 / m} \geqq \beta(\Omega)+r^{+}(\Omega) \square \phi$ is stable on Ω,
where $C(M, g)$ is the constant in (3.1).
[Proposition 3.8. Under the same assumptions of Proposition 3.5, S-Index $\Omega_{\Omega}(\phi)$ and 5 -Nullity $\mathcal{S}_{\Omega}(\phi)$ are estimated by the quantity D^{\prime} given by $D^{\prime}:=\left\{\beta(\Omega)+r^{+}(\Omega)\right\} c(\eta, g)^{-1} \operatorname{vol}(\Omega)^{2 / m}-1$:
(i) In case of $m=1,2$,

$$
\text { S-Index }(\phi)+5-N u l l i t y_{\Omega}(\phi) \leqq(n-m)\left(1+\frac{1}{D^{T}}\right)^{D^{\prime}}\left(1+D^{\prime}\right) \text {. }
$$

(ii) In case of $m=2(p+1), p \geqq 1$,

$$
\text { S-Index } \Omega^{2}(\phi)+5-\text { Nullity }_{S}(\phi) \leqq(n-m)\left(1+\frac{1}{D^{\prime}}\right)^{D^{\prime}}\left(1+P\left(D^{\prime}\right)\right) \text {, }
$$

(iii) in case of $m=2 p+1, p \geqq 1$,

$$
\text { S-Index } \Omega_{\Omega}(\phi)+\text { S-Nullity } \Omega_{\Omega}(\phi) \leqq(n-m)\left(1+\frac{1}{D^{T}}\right)^{D^{\prime}}\left(1+Q\left(D^{\prime}\right)\right) .
$$

(iv) In all cases $m \geq 1$,

$$
\text { S-Index } \Omega(\phi)+5-\text { Nullity }_{2}(\phi) \leqq(n-m) \frac{\Gamma\left(\frac{m}{2}+1\right) e^{m / 2}}{(m / 2)^{m / 2}}\left(1+D^{\prime}\right)^{m / 2},
$$

where the functions $P(\cdot), Q(\cdot)$ are the same in Theorem $3.4, m=d i m$ (and $n=\operatorname{dim} N$.

Remark. (i) The similar ones as Proposition 3.7 were stated in [M o],[H],[T2]. (ii) In case of $m=1$, let $\phi ;[0,2 \pi] \longrightarrow(N, h)$ be
a geodesic in an arbitrary Riemannian manifold (N, h). The i-th eigenvalue $\lambda_{i}((0,2 \pi))$ of the Dirichlet eigenvalue problem of the operator $d^{2} / d x^{2}$ on the interval $(u, 2 \pi)$ is $i^{2} / 4, i=1,2, \ldots$. Then under the assumption that the sectional curvature N_{K} of (N, h) is bounded above by a positive constant : $N_{K} \leqq a$, we have

$$
D+1=D^{\prime+1} \leqq L^{2} a / \pi^{2}
$$

where L is the length of ϕ. Therefore
(I) Index $(\phi)+N u l l i t y_{\Omega}(\phi) \leqq\left\{\begin{array}{l}n \sqrt{\frac{\theta \pi}{2}} L \frac{\sqrt{a}}{\pi}, \\ n, \text { if } L \leqq \frac{\pi}{\sqrt{a}}+\varepsilon_{n},\end{array}\right.$
where ε_{n} is a positive constant depending only on $n=\operatorname{dim} N$ (cf. Theorem 3.4 (i).(iv)). And

$$
\text { (II) S-Index } \Omega_{\Omega}(\phi)+S-\text { Nullity }_{\Omega}(\phi) \leqq\left\{\begin{array}{l}
(n-1) \sqrt{\frac{e \pi}{2}} L \frac{\sqrt{a}}{\pi}, \\
n-1, \text { if } L \leqq \frac{\pi}{\sqrt{a}}+\varepsilon_{n},
\end{array}\right.
$$

(cf. Proposition 3.8 (i), (iv)). On the other hand, a theorem of M. Morse and I.Schönberg tells us that

$$
\text { S-Index }{ }_{\Omega}(\phi)+S-N u l l i t y_{\Omega}(\phi) \leqq(n-1)\left[L \frac{\sqrt{a}}{\pi}\right] \text {, }
$$

where $[x]$ expresses the integer part of $x>0$ (cf.[G.K.M, pp.176,142]) When $L \leqq \frac{\pi}{\sqrt{a}}+\varepsilon_{n}$, our estimate (II) is optimal, but in general, it is far from the optimal one of Morse and Schonberg since $\sqrt{\frac{e \pi}{2}}=2.066 \ldots$.
§4. Kähler Version of Lichnérowicz-Obata Theorem.
In this chapter, we treat with the Jacobi operator of the identity map. Let (M, g) be a closed Riemannian manifold of dimension m. The identity map $i d_{M} ;(M, g) \longrightarrow(M, g)$ of (M, g) is harmonic (cf.[E.S]), and the Riemannian manifold (M, g) is stable (cf. [Na]) if the identity map id ${ }_{M}$ is stable. The corresponding Jacobi operator $J:=J_{i d}$ is a differential operator acting on the space $\Gamma(T M)$ of all vector fields on M given by

$$
(4.1) \quad J V=-\sum_{i=1}^{m}\left(\nabla_{\mathbf{\theta}_{i}} \nabla_{\mathbf{\theta}_{i}} v-\nabla_{\nabla_{\mathbf{e}_{i}}{ }_{i}} v\right)-\rho(v), \quad v \in \Gamma(T M)
$$

where ∇ is the Levi-Civita connection of $(M, g), \quad \rho(V):=\sum_{i=1}^{m} R\left(e_{i}, V\right) e_{i}$ and $\rho(U, V):=g(\rho(U), V)=\sum_{i=1}^{m} g\left(R\left(e_{i}, U\right) e_{i}, V\right)$ is the Riccio tensor (cf.[Ma],[Sm]). Under the identification of TM with $T^{*} M$ with respect to the metric 9 , the Hodge Laplacian $\Delta=d \delta+\delta d$ on $\Gamma\left(T^{*} M\right)$ induces a differential operator, denoted by the same letter and called also as the Hodge Laplacian, on $\Gamma(T M)$, where δ is the codifferential operator of d with respect to the metric g on M. Then the Weitzenböck formula of the Hodge operator Δ tells us that

$$
\text { (4.2) } \Delta v=-\sum_{i=1}^{m}\left(\nabla_{\mathbf{e}_{i}} \nabla_{\mathbf{e}_{i}} v-\nabla_{\nabla_{e_{i}} \mathbf{e}_{i}} v\right)+\rho(v), \quad v \in \Gamma(T M)
$$

and then

$$
(4.3) \quad J=\Delta-2 \rho
$$

Then we have immediately :

[^0]Beltrami operator Δ_{M}) on 1-forms (resp. smooth functions) on M. Then
(i) (M, g) is stable $\longrightarrow \quad 2$ Inf Rice $M_{M} \leqq \lambda_{1}^{1}(M) \leqq \lambda_{1}(M)$,
(ii) $\quad \lambda_{1}^{1}(M) \geqq 2$ Sup Rich $\quad \square(M, g)$ is stable,
where Inf Rich ${ }_{M}$ (resp. Sup Rich C_{M}) is the infimum (resp. supremum) of the Riccio curvature of (M, g) over $\eta: \operatorname{Inf} \operatorname{Ric}_{M}:=\operatorname{Inf}\{\rho(u, u) ; u \in T M$, $g(u, u)=1\}$, and $\operatorname{Sup} \operatorname{Ric}_{M}:=\{\rho(u, u) ; u \in T M, g(u, u)=1\}$.

Proof. By (4.3), the stability of (M, 9) implies that

$$
\begin{aligned}
0 & \leqq \int_{M} g(J \dot{V}, V) * 1=\int_{M} g(\Delta V, V) * 1-2 \int_{M} g(\rho(V), V) * 1 \\
& \leqq \int_{M} g(\Delta V, V) * 1-2\left(\operatorname{Inf} R i c_{M}\right) \int_{M} g(V, V) * 1,
\end{aligned}
$$

Which gives the first inequality of (i). Taking V. as the gradient of the eigenfunction of Δ_{m}, we get the second inequality of (i). The statement (ii) is obvious from (4.3). Q.E.D.

From Lemma 4.1, we obtain :

Theorem 4.2. (M.Obata) Let (My) be a closed Kähler manifold whose Riccio curvature Rich $_{M}$ is bounded below by a positive constant : Rich $M \geqq \alpha>0$. Then the first nonzero eigenvalue $\lambda_{1}(M)$ of Δ_{M} on $C^{\infty}(M)$ satisfies

$$
\lambda_{1}(M) \geqq 2 \alpha
$$

When the equality holds, the Lie algebra a of the group of holomorphic transformations of M is non-zero.

Proof. Since every closed Kähler manifold (M, g) is stable (cf. [Sm], [Na]), by Lemma $4.1(i)$, we have the inequality $\lambda_{1}(M) \geqq 2 \alpha$.

Assume that the equality $\lambda_{1}(M)=2 \alpha$ holds. We take V as the gradient of the eigenfunction of Δ_{M} with the eigenvalue 2α. Then $\Delta V=2 \alpha V$. By (4.3), we have

$$
\begin{aligned}
2 \alpha \int_{M} g(V, V) * 1 & =\int_{M} g(\Delta V, V) * 1 \\
& =\int_{M} g(J v, v) * 1+2 \int_{M} g(\rho(v), v) * 1 \\
& \geq 2 \alpha \int_{M} g(v, v) * 1,
\end{aligned}
$$

since (M, g) is stable and $R i c_{M} \geqq \alpha$. Hence we have $\int_{M} g(J V, V) * 1=0$ and $\int_{M} g(\rho(V), V) * 1=\alpha \int_{M} g(V, V) * 1$. The former implies $J V=0$, and then V belongs to a due to a theorem of Lichnérowicz (cf.[L]) since (M, g) is a closed Kähler manifold. Q.E.D.

Remark 1. In [Ob], the above theorem was stated in case of
 the equality $\lambda_{1}(M)=2 \alpha$ holds if and only if a $\neq\{0\}$. The author does not know whether or not the equality holds if $\mathfrak{f} \neq\{0\}$ without the assumption that (M, g) is Einstein.

Remark 2. A theorem of Lichnerowicz-Obata tells us that for a closed Riemannian manifold (M, g), if Rich $M_{M} \geqq \alpha=(n-1) \delta>0$, then $\lambda_{1}(M) \geqq n \delta=\frac{n}{n-1} \alpha$. Note that $\frac{n}{n-1} \leqq 2$ and $\frac{n}{n-1}=2 \Leftrightarrow n=2$.

In this section, we give three examples concerning with stability or unstability of closed Riemannian manifolds.
5.1. By (4.1) and Corollary 2.2, we know (cf. $[\mathrm{sm}]$) that if Ricci curvature Ric m_{m} of a closed Riemannian manifold (m, g) is non-positive, then Index $\left(i d_{M}\right)=0$ and Index (id $\left.d_{M}\right)+N u l l i t y\left(i d_{M}\right) \leqq m=$ dim M. By the similar way as the proof of Proposition 5.6 in [B.G,p.30] noting only the difference of the constant terms of (4.1) and (4.2), we have :

Proposition 5.1. There exists a positive constant $\varepsilon_{m}>0$ depending only on m such that for every closed Riemannian manifold (M, g) of dimension m with $R i c_{M} \leqq \varepsilon_{m}$, the index and the nullity of the identity map of M satisfies

$$
\text { Index }\left(i d_{m}\right)+N u l l i t y\left(i d_{m}\right) \leqq m .
$$

However one can not expect a positive answer of the following question : " Is there a positive constant $\varepsilon_{m}>0$ such that for every closed Riemannian manifold (M, g) of dimension m the assumption Ric $_{M} \leqq \varepsilon_{m}$ implies the stability of (M, g), i.e., Index $\left(i d_{M}\right)=0$? " In fact, we have the following example :

$$
\text { Example 5.2. Let } \mathbf{T}^{m}=\mathbb{Q}^{m} / 2^{m} \text { be the m-dimensional torus }
$$ with the canonical coordinate $\left(x_{1}, \ldots, x_{m}\right)$. Let $f\left(x_{1}\right)$ be a positive valued smooth function on $\mathbb{Z} / \mathbb{Z}=S^{1}$. Consider the Riemannian metric $9 p$ on $\boldsymbol{T}^{\mathrm{m}}$ defined by

$$
g_{f}:=d x_{1}^{2}+f\left(x_{1}\right)^{2}\left(d x_{2}^{2}+\ldots+d x_{m}^{2}\right) .
$$

Lemma 5.3. The vector field $x_{1}=f\left(x_{1}\right) \frac{\partial}{\partial x_{1}}$ on \mathbb{U}^{m} is a conformal vector field,i.e., the Lie derivative $L_{x_{1}} g_{f}$ of g_{f} by x_{1} satisfies $L_{X_{1}} g_{f}=\frac{2}{n} \operatorname{div}\left(x_{1}\right) g_{f}$, and $X_{i}=\frac{\partial}{\partial x_{i}}, i=2, \ldots, m$, are killing, i.e., $L_{X_{i}}{ }^{9} f=0$.

Proof follows from a straightforward computation.

Since for a vector field V on a closed Riemannian manifold (M, g),

$$
\int_{M} g(J v, v) * 1=\int_{M}\left\{\frac{1}{2}\left|L_{v} 9\right|^{2}-\operatorname{div}(v)^{2}\right\} * 1,
$$

where $\left|L_{V} g\right|$ is the norm of $L_{V} g$ induced by g and div (V) is the divergence of V (cf. $[Y . B]$), we have

$$
\int_{T^{m}} g\left(J x_{1}, x_{1}\right) * 1=\left(\frac{2}{m}-1\right) \int_{\sigma^{m}} \operatorname{div}\left(x_{1}\right)^{2} * 1
$$

Since $\operatorname{div}\left(x_{1}\right)=m f^{\prime}\left(x_{1}\right)$ where $f^{\prime}\left(x_{1}\right)$ is the derivative of $f\left(x_{1}\right)$, we have :
[Proposition 5.4. Let $T^{m}=\mathbb{P}^{m} / \mathbf{Z}^{m}$ be the m-dimensional torus with the canonical coordinate $\left(x_{1}, \ldots, x_{m}\right)$. For a positive valued smooth function $f\left(x_{1}\right)$ on $S^{1}=\mathbb{E} / \mathbb{Z}$, consider the Riemannian metric g_{f} on T^{m} defined by $g_{f}=d x_{1}{ }^{2}+f\left(x_{1}\right)^{2}\left(d x_{2}{ }^{2}+\ldots+d x_{m}{ }^{2}\right)$. Then, in case of $m \geq 3$, the Riemannian manifold (T^{m}, g_{f}) is stable if and only if the function $f\left(x_{1}\right)$ is constant.

On the other hand the sectional curvature K of the Riemannian manifold (σ^{m}, g_{f}) is given (cf. [B.O]) as follows :

For each plane Π in the tangent space $T\left(x_{1}, \ldots, x_{m}\right)^{T^{m}}$, lat $\left\{x \frac{\partial}{\partial x_{1}}+v, y \frac{\partial}{\partial x_{1}}+w\right\}$ be an orthonormal basis of Π, where $x, y \in \mathbb{B}$, and $v, \omega \in T\left(x_{2}, \ldots, x_{m}\right)^{T^{m-1}}$. Then the sectional curvature $K(\pi)$ is

$$
\begin{array}{r}
K(T)=-\frac{f^{\prime \prime}\left(x_{1}\right)}{f\left(x_{1}\right)}\left\{x^{2} g_{f}(w, w)-2 x y g_{f}(w, v)+y^{2} g_{f}(v, v)\right\} \\
-\frac{f^{\prime}\left(x_{1}\right)^{2}}{f\left(x_{1}\right)^{2}}\left\{g_{f}(v, v) g_{f}(w, w)-g_{f}(v, w)^{2}\right\} .
\end{array}
$$

Then the sectional curvature k of $\left(T^{m}, g_{f}\right)$ satisfies that

$$
|k| \leqq \frac{\mid f \prime \prime}{f}+\frac{f^{2}}{f^{2}}
$$

For example, we can take a smooth function $f_{\varepsilon}\left(x_{1}\right)$ on $S^{1}=\mathbb{Z} / \mathbb{Z}$ $f_{\varepsilon}\left(x_{1}\right):=1+\varepsilon \sin \left(2 \pi x_{1}\right)$, where ε is a small positive constant. Then due to Proposition 5.4, the Riemannian manifold ($T^{m}, g_{f_{\varepsilon}}$), $m \geqq 3$, is unstable, but its sectional curvature K_{E} satisfies

$$
\left|k_{\varepsilon}\right| \leqq 4 \pi^{2}\left\{\frac{\varepsilon}{1-\varepsilon}+\frac{\varepsilon^{2}}{(1-\varepsilon)^{2}}\right\},
$$

which goes to zero as $\varepsilon \rightarrow 0$. Therefore we can not take a constant $\varepsilon_{m}>0$ such that for every closed Riemannian manifold (M, g) of dimension m, the assumption $R i c_{M} \leqq \varepsilon_{m}$ implies the stability of (M, g).
5.2. The next example is the odd dimensional unit sphere $s^{2 n+1}$, $n \geqq 1$. Let $\phi ;\left(S^{2 n+1}, g\right) \longrightarrow\left(C P^{n}, h\right)$ be the Hop fibration. Here 9 is the standard metric on $s^{2 n+1}$ of constant curvature one and h is the fubini-Study metric on $C P^{n}$ of constant holomorphic sectional curvature 4. Let ξ be the Killing vector field of ($S^{2 n+1}, 9$) such that $g(\xi, \xi)=1$ everywhere $s^{2 n+1}$ and ξ is tangent to the fiber $\phi^{-1}(\phi(x))$ at each point x in $s^{2 n+1}$. Let η be the 1 -form dual to 5 . Then the projection $\phi ;\left(S^{2 n+1}, g\right) \longrightarrow\left(C P^{n}, n\right)$ is a Riemannian submersion with totally geodesic fibers (cf. §6) and $9=\phi^{*} h+\eta \otimes \eta$. Let us consider the canonical variation $g_{t}, 0<t<\infty$, of the metric 9 defined by
(5.1) $g_{t}:=\phi^{*} h+t^{2} \eta \otimes \eta=g+\left(t^{2}-1\right) \eta \otimes \eta$.

Now let us investigate the stability of $\left(s^{2 n+1}, g_{t}\right)$ making use of Lemma 4.1.
(i) The first eigenvalue $\lambda_{\eta}^{1}\left(g_{t}\right)$ of the Hodge Laplacian. Put $m:=2 n+1$. Note that $g_{t}=s\left\{s^{-1} 9+s^{-1}\left(s^{m}-1\right) \eta \theta \eta\right\}$, where $s:=t^{2 / \pi}$ In his paper [T1, Proposition 2.8], S.Tanno showed that the first eigenvalue $\lambda_{1}^{1}\left(g_{t}\right)$ of the Hodge Laplacian on 1 -forms is estimated as

$$
\lambda_{1}^{1}\left(g_{t}\right) \leqq \operatorname{Min}\left\{s^{-1} \cdot 2(m-1) s^{m+1}, s^{-1}\left(m s-s\left(1-s^{-m}\right)\right)\right\},
$$

that is,
(5.2) $\quad \lambda_{1}^{1}\left(g_{t}\right) \leqq \operatorname{Min}\left\{4 \pi t^{2}, 2 \pi+t^{-2}\right\}$.
(ii) Ricci curvature of $\left(s^{2 n+1}, g_{t}\right)$. Let us recall a work of G.R.Jensen [J]. We denote

$$
\begin{aligned}
& K:=S U(n+1), \\
& H:=S(U(n) \times U(1))=\left\{\left(\begin{array}{ll}
\varepsilon & 0 \\
0 & A
\end{array}\right) \in S U(n+1) ; \varepsilon \in U(1), A \in U(n)\right\}, \\
& H_{1}:=\left\{\left(\begin{array}{cc}
\varepsilon & 0 \\
0 & \gamma I_{n}
\end{array}\right) ; \varepsilon \in U(1), \quad \gamma=\varepsilon^{-1 / n}\right\}, \\
& H_{2}:=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & A
\end{array}\right) ; A \in \operatorname{SU}(n)\right\},
\end{aligned}
$$

where I_{n} is the unit matrix of order n. Then the natural projection gives the Hopf fibration : $\phi ; S^{2 n+1}=K / H_{2} \rightarrow C P^{n}=K / H$. Let k (resp. h, h_{1}, h_{2}) be the Lia algebra of K (resp. H, H_{1}, H_{2}). Let f be the $k i l l i n g$ form of k and m, the orthocomplement of h in k with respect to F. Then we have the orthogonal decomposition of $k: k=h_{2} \oplus h_{1} \oplus m$ 。 Themetrics g_{t} (5.1) are K-invariant on $\mathrm{K} / \mathrm{H}_{2}$ which come from the $\mathrm{Ad}\left(\mathrm{H}_{2}\right)$-invariant inner product $\langle\cdot \cdot \cdot\rangle_{t}$ on $h_{1} \oplus m$ such that

$$
\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle_{t}=(4(n+1))^{-1}\left\{\frac{2 n}{n+1} t^{2} b\left(x_{1}, y_{1}\right)+b\left(x_{2}, y_{2}\right)\right\}
$$

for $X_{1}, Y_{1} \in h_{1}, X_{2}, Y_{2} \in m$, where the inner product b on k is
given by $b=-F$. In fact, it is known that the restriction of b to m_{1} coincides with $4(n+1) \pi^{*} n$, and $b(x, x)=2(n+1)^{2} / n$ for $x:=$ $\sqrt{-1}\left(\begin{array}{cc}1 & 0 \\ 0 & -n^{-1} I_{n}\end{array}\right)$, and ξ_{0} is the tangent vector at $0:=\left(\begin{array}{l}1 \\ 0 \\ \vdots \\ 0\end{array}\right) \in S^{2 n+1}$ of the curve $\theta \longmapsto \exp (\theta X) \cdot 0$ -

We denote by $S_{\tilde{g}}$ the Ricci tensor of the metric \tilde{g} on K / H_{2} corresponding to the inner product $4(n+1)<\cdot, \cdot\rangle_{t}$ on m. Then $S_{\tilde{g}}$ is a K -invariant tensor field on $\mathrm{K} / \mathrm{H}_{2}$ which is completely determined by the bilinear form on $h_{1} \oplus m$, denoted by the same letter $S_{\tilde{g}}$. Noting that the numbers k, c, r, and dim m in [J] are given in this case by

$$
k=1 / 2, c=0, r=\operatorname{dim} h_{1}=1 \text {, and } \operatorname{dim} m=2 n,
$$

and due to Proposition 11 in [J], the bilinear form $\mathrm{S}_{\tilde{g}}$ is given by

$$
\begin{aligned}
& S_{\widetilde{g}}\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=\frac{1}{4}\left(\frac{2 n}{n+1}\right) t^{2} \cdot 4(n+1)\left\langle x_{1}, y_{1}\right\rangle_{t} \\
& +\left(\frac{1}{2}-\frac{1}{4 n}\left(\frac{2 n}{n+1}\right) t^{2}\right) \cdot 4(n+1)\left\langle x_{2}, y_{2}\right\rangle_{t},
\end{aligned}
$$

$X_{1}, Y_{1} \in h_{1}, X_{2}, Y_{2} \in m$. Therefore, since the infimum Inf Rich \tilde{g} (resp. supremum Sup Rictus of the Ricci curvature of ($\left.S^{2 n+1}, \tilde{g}\right)$ is given by $\operatorname{Inf} \operatorname{Ri} c_{\tilde{q}}=\operatorname{Min}\left\{\frac{1}{2}-\frac{t^{2}}{2(n+1)}, \frac{n}{2(n+1)} t^{2}\right\}$ (resp. $\operatorname{Sup} \operatorname{Ric} c_{\tilde{q}}=\operatorname{Max}\{n, \|\}$), the one Inf Rice g_{t} (resp. Sup Rice g_{t}) of the metric g_{t} (5.1) is (5.3) Inf Rice $g_{t}=\operatorname{Min}\left\{2(n+1)-2 t^{2}, 2 n t^{2}\right\}$.
(resp. Sup Rice $g_{t}=\operatorname{Max}\{11, n\}$). Putting $T:=t^{2}$, let us observe the behavior of $\lambda_{1}^{1}\left(g_{t}\right)(5.2)$ and $2 \cdot \operatorname{Inf} R i c_{g_{t}}$ (5.3) (cf. Figure 5.1) :

Figure 5.1. The graphs of the functions $4 \pi T, 2 n+T^{-1}$, and $4(n+1)-4 T$.

Figure 5.1. The graphs of the functions $4 \pi T, 2 n+T^{-1}$, and $4(n+1)-4 T$.

Therefore we have :

Proposition 5.5. Let g_{t} be the canonical variation (5.1) of the standard metric g on $s^{2 n+1}$ of constant curvature one with $g_{1}=9: \quad g_{t}=9+\left(t^{2}-1\right) \eta \otimes \eta$. Then for every t^{2} in the open interval (α, β), the Riemannian manifold $\left(s^{2 n+1}, g_{t}\right)$ is unstable. Here $\quad \alpha:=\frac{n+\sqrt{n^{2}+4 n}}{4 n}$ (resp. $\beta:=\frac{n+2+\sqrt{n^{2}+4 n}}{4}$) is a root of the equation $4 n T=2 n+T^{-1}$ (resp. $4(n+1)-4 T=2 n+T^{-1}$).
5.3. The third example is a spherical space form. Here we state the following :

Proposition 5.6. Every spherical space form ($S^{n} / G, 9$), where $G \neq\{i d\}$ is a finite group acting fixed point freely on S^{n}, is stable. Here the metric g is the Riemannian metric on the quotient space S^{n} / G induced from the standard metric can on s^{n} of constant curvature one.

In fact, this follows immediately from Proposition 2.1 in [Sm]. Since ($S^{n} / G, g$) is Einstein,i.e., the Riccitensor ρ of g satisfies $\rho=(n-1) g$, the manifold $\left(S^{n} / G, g\right)$ is stable if and only if the first non-zero eigenvalue $\lambda_{1}\left(5^{n} / G, g\right)$ of the Laplace-Beltrami operator Δ_{M} on $C^{\infty}\left(s^{n} / G\right)$ is bigger than or equal to $2(n-1)$. The eigenvalues of Δ_{M} of $\left(s^{n}, c a n\right)$ are given by $k(k+n-1), k=0,1,2, \ldots$, and $k(k+n-1)>2(n-1)$ if $k \geqq 2$. Moreover the eigenfunctions of the first non-zero eigenvalue n with $k=1$ of ($s^{n}, c a n$) are given by F.ids S^{n}, where F is a linear map of \mathbb{X}^{n+1} into \mathbb{A} and id S^{n} is the natural inclusion of s^{n} into \mathbb{x}^{n+1}. Therefore we have only to show that every linear G-invariant function F on \mathbb{R}^{n+1} must be zero. But this follows immediately from the assumption that G acts fixed
point freely on s^{n}. Certainly, $F(x)=\langle x, y\rangle$, $x \in \mathbb{E}^{n+1}$, for some y in \mathbb{e}^{n+1}. The G-invariance of f implies that $\gamma \cdot y=y$ for all $\gamma \in G$. Unless F vanishes, the point $y /|y| \in S^{n}$ must be a fixed point of G.

Since every compact Riemannian manifold of positive constant curvature is as in Proposition 5.6 (cf. [W, Lemma 5.11, p.154]) and every compact Riemannian manifold of constant zero or negative curvature is stable (cf. [Sm]), we have: $\left[\begin{array}{c}\text { Corollary 5.7. Every compact Riemannian manifold of constant } \\ \text { curvature is stable except only the standard unit sphere (} S^{n}, \text { can). }\end{array}\right.$

Remark. The similar stability theorem for Yang-Mills fields was stated in [B.L,P. 223].
§6. The vertical Jacobi Operator.
6.1. Definition of Riemannian Submersions. following [0.1], or [B.B], let us recall the definition of the Riamannian submersicne. It is known (cf. [E.L.P.127]) that the projection of a Riamannian submersion is harmonic if and only if each fiber of the submersion is a minimal submanifold. In particular, the projection of the Riemarnion submersion with totally geodesic fibers is harmonic. The fiemonnian submersions are the next simple examples after Riemannian prooucts, but would be rich objects to study. In this chapter, we devote ourself to study the Jacobi operators of the projections of the Riemannian submersions with totally geodesic fibers analogously as in the theory of the Laplace-Beltrami operators (cf.[B.B]).

Definition 6.1. Let (M, g) , (N, K) be two closed Riemannien manifolds of dimension m, n, respectively. $\quad A$ map $\phi ;(M, Q) \longrightarrow(A, n)$ is a Riemannian submersion (cf.[O.N], [B.B]) if for each point p in M, the tangent space $T_{p} M$ of M at ρ has the following orthogonal decomposition $T_{p} M=H_{p} \oplus V_{p}$ with respect to g_{p} :
(i) The subspace V_{p} is the kernel of the differentiai for of ϕ at p, which is called as the vertical space.
(ii) The restriction of $\phi_{\psi_{p}}$ to the subspace H_{p}, called the horizotal space, is an isometry of $\left(H_{p}, g_{p}\right)$ onto ($\left.T_{\phi(p)} N, n_{\phi(p)}\right)$.

In this chapter, we further assume that each fiber $F_{p}:=\phi^{-1}(\phi(p))$ through p admitting the Riemannian metric induced from g is totally geodesic in ($M, 9$).
6.2 Definition of the vertical Jacobi operator. We take an orthonormal local frame field $\left\{\theta_{i}\right\}_{i=1}^{m}$ on M such that
(i) $\left\{e_{i}\right\}_{i=1}^{n}$ is basic associated to an orthonormal local frame field $\left\{e_{i}\right\}_{i=1}^{n}$ on N, $1 . e_{\text {. }} \quad e_{i}, 1 \leqq i \leq n$, are the horizontal lifts of $\theta_{i}{ }^{\prime}, 1 \leqslant i \leqslant n$, and
(ii) $\quad e_{i}, n+1<j \leq m$, are vertical.

Then it is known (cf. [O.N] or [B. 日]) that $\nabla_{e_{i}} \theta_{i}, 1 \leqq i \leqq n$, are basic associated to the vector fields ${ }^{N} \nabla_{e_{i}^{\prime}} e_{i}^{\prime}$ and $\nabla_{e_{i}} e_{i}, n+1 \leqq i \leq m$, are vertical since all the fibers are totally geodesic. In the following we retain the notations in §1.

Definition 6.2. Let $\phi ;(M, g) \longrightarrow(N, h)$ be the Riemannian submersion with totally geodesic fibers and J_{ϕ}, the Jacobi operator acting on $\Gamma\left(\phi^{-1} T N\right)$. We define the vertical Jacobi operator acting on $\Gamma\left(\varphi^{-1} T N\right)$ by

$$
J_{\phi}^{v}:=-\sum_{i=n+1}^{m}\left(\tilde{\nabla}_{e_{i}} \widetilde{\nabla}_{e_{i}}-\widetilde{\nabla}_{\theta_{i}} e_{i}\right)
$$

and the horizontal Jacobi operator acting on $\Gamma\left(\phi^{-1} T N\right)$ by $J_{\phi}{ }^{H}:=$ $J_{\phi}-J_{\phi}{ }^{v}$.

Then it is easy to see that the definitions of $J_{\phi}{ }^{v}$ and $J_{\phi}{ }^{H}$ do not depend on the above choice of the orthonormal local frame field $\left\{e_{i}\right\}_{i=1}^{m}$ on M (cf. Remark below). Dies definitions are the analogue of the vertical or horizontal Laplacians Δ_{V}, Δ_{H} acting on $C^{\infty}(M)$ defined in [B.B]: $\Delta_{V}:=\sum_{i=n+1}^{m}\left(\nabla_{e_{i}} \nabla_{B_{i}}-\nabla_{\nabla_{i}} e_{i}\right), \Delta_{H}:=\Delta_{M}-\Delta_{V}$, where $\Delta_{M}:=\sum_{i=1}^{m}\left(\nabla_{B_{i}} \nabla_{\theta_{i}}-\nabla_{\theta_{i}} \theta_{i}\right)$ is the Laplace-Beltrami operator of (M, g). Then Δ_{V}, Δ_{H}, and Δ_{M} are commutative mutually (cf. [B.B ,Theorem 1.5]

Each section W in $\Gamma\left(\varphi^{-1} T N\right)$ can be expressed locally as (6.1) $\quad v=\sum n$ f. $\widetilde{\text { e. }}$
where $f_{i}, 1<j<n$, are locally defined smooth functions on M and $\widetilde{e_{i}^{\prime}}, 1 \leq i \leq n$, are local sections of $\phi^{-1} T N$ defined by $\widetilde{e_{i}{ }_{x}}:=e_{i}^{\prime} \phi(x)$, $x \in M$. Then by definition of $\widetilde{\nabla}$ and $\phi_{*} e_{i}=0, n+1 \leqq i \leqq m$, we have
(6.2) $\widetilde{\nabla}_{\mathbf{e}_{i}} w=\sum_{j=1}^{n}\left\{\left(e_{i} f_{j}\right){\widetilde{e_{j}}}^{\prime}+f_{j} \widetilde{\nabla}_{\mathbf{e}_{i}}{\widetilde{e_{j}}}^{\prime}\right\}, 1 \leq i \leq m$,
(6.2') $\widetilde{\nabla}_{e_{i}} W=\sum_{j=1}^{n}\left(e_{i}^{\prime \prime} f_{j}\right) \widetilde{e}_{j}^{\prime} \quad, n+1 \leqq i \leqq m$.

In particular,
(6.3) $J_{\phi} v_{w}=-\sum_{j=1}^{n}\left(\Delta_{v} f_{j}\right){\tilde{\theta_{j}}}^{\prime}$.

Remark. (The intrinsic meaning of the vertical Jacobi operator) For each fiber $F_{p}=\phi^{-1}(\phi(p))$ through $p \in M$, the composition $\phi_{0} i_{p}$; $F_{p} \longrightarrow N$ of the inclusion i_{p} of F_{p} into M and the projection ϕ is constant, so harmonic. The associate Jacobi operator J Join acting on $\Gamma\left(\left(\phi \cdot i_{p}\right)^{-1} T N\right)$ is well-defined. Then $\Gamma\left(\left(\phi \cdot i_{p}\right)^{-1} T N\right)$ consists of all the restrictions to $F_{p},\left.W\right|_{F_{p}}$, of elements W in $\Gamma\left(\phi^{-1} T N\right)$ and

$$
\left(J_{\phi} v_{W}\right)(p)=J_{\phi \cdot i_{p}}\left(\left.W\right|_{F_{p}}\right)(p), \quad w \in \Gamma\left(\phi^{-1} T N\right)
$$

6.3. Fundamental Properties of $J_{\phi} V$ and $J_{\phi}{ }^{H}$. Note that, by definitions of $\tilde{\nabla}$ and $\tilde{w}^{\prime}, w^{\prime} \in \Gamma(T N)$,

$$
\text { (6.4) } \quad \widetilde{\nabla}_{e_{i}} w^{\prime}=\widetilde{\widetilde{N}_{\phi_{*} e_{i}} W^{\prime}}=\left\{\begin{array}{l}
\widetilde{N_{\nabla_{e_{i}}}, w^{\prime}}, 1 \leqq i \leqq n, \\
0, \quad n+1 \leqq i \leqq m,
\end{array}\right.
$$

for w' $\in \Gamma(T N)$. Then we have
(6.5) $J_{\phi}{ }^{v}\left(\widetilde{w^{\prime}}\right)=0$, and $J_{\phi}^{H}\left(\widetilde{w^{\prime}}\right)=\widetilde{J_{i d_{N}}\left(w^{\prime}\right)}$,
for $w^{\prime} \in \Gamma(T N)$, by (6.4) and definition of $J_{\phi} v$ and $J_{\phi}{ }^{H}$. Therefore we obtain :
[Proposition 6.3. Let $\phi ;(M, g) \longrightarrow(N, h)$ be the Riemannian submersion with totally geodesic fibers. Then

$$
\text { Index }(\phi) \geqq \text { Index }\left(i d_{N}\right), \text { Nullity }(\phi) \geqq \text { Nullity }\left(i d_{N}\right),
$$

and $\lambda_{1}\left(J_{\phi}\right) \leqq \lambda_{1}\left(J_{i d_{N}}\right)$. In particular, if the base manifold (N, h) is unstable, then the submersion \varnothing is unstable.

In fact, suppose that $W^{\prime} \in \Gamma(T N)$ satisfies $J_{i d_{N}} W^{\prime}=\lambda w^{\prime}$. Then the element $\widetilde{w}^{\prime} \in \Gamma\left(\phi^{-1} T N\right)$ satisfies

$$
J_{\phi} \widetilde{w}^{\prime}=J_{\phi}{ }^{H}\left(\widetilde{w^{\prime}}\right)=\widetilde{J_{i d_{N}} w^{\prime}}=\lambda \widetilde{w}^{\prime},
$$

by (6.5). Therefore if λ is the eigenvalue of $J_{i d}$, then λ is also the one of J_{ϕ}. Q.E.D.

Proposition 6.4.
(i) Let $F=F_{p}$ be the fiber through $p \in \mathbb{M}$ of the Rismannian submersion $\phi ;(M, g) \longrightarrow(N, h)^{\text {© }}$ with totally geodesic fibers. For each $w \in \Gamma\left(\phi^{-1} T N\right)$, we have

$$
\int_{F} h\left(J_{\phi} v_{w, w}\right) d v_{F}=\sum_{i=n+1}^{m} \int_{F} h\left(\widetilde{\nabla}_{\theta_{i}} w, \widetilde{\nabla}_{\theta_{i}} w\right) d v_{F},
$$

where $d v_{F}$ is the volume element on F with respect to the metric g_{F} induced from the metric 9 on M.
(ii) Moreover, for each $w \in \Gamma\left(\varphi^{-1} T N\right), J_{\phi} v_{W}=0$ if and only if $w=W^{\prime}$ for some $w^{\prime} \in \Gamma(T N)$.
(iii) Each eigenvalue of $J_{\phi} v$ is non-negative.

Proof. (i) For each $W \in \Gamma\left(\phi^{-1} T N\right)$, we have

$$
\begin{aligned}
h\left(J_{\phi} v_{w, w}\right)=- & \sum_{i=n+1}^{m} e_{i} \cdot h\left(\widetilde{\nabla}_{\theta_{i}} w, w\right)+\sum_{i=n+1}^{m} h\left(\widetilde{\nabla}_{e_{i}} w, \widetilde{\nabla}_{e_{i}} w\right) \\
& +\sum_{i=n+1}^{m} h\left(\widetilde{\nabla}_{\nabla_{\theta_{i}}{ }_{i}} w, w\right) .
\end{aligned}
$$

Here there exists an element X in $\Gamma(T F)$ such that $g_{F}(X, Y)=$ $h\left(\widetilde{\nabla}_{Y} w, W\right)$ for each $Y \in \Gamma(T F)$. Then since $\nabla_{e_{i}} e_{i}, n+1 \leq i \leq m$, are vertical

$$
\begin{aligned}
\sum_{i=n+1}^{m} & \left\{e_{i} \cdot n\left(\widetilde{\nabla}_{\mathbf{a}_{i}} w, w\right)-n\left(\widetilde{\nabla}_{\nabla_{\mathbf{e}_{i}}} e_{i} w, w\right)\right\} \\
& =\sum_{i=n+1}^{m}\left\{e_{i} \cdot g_{F}\left(x, e_{i}\right)-g_{F}\left(\nabla_{e_{i}} e_{i}, x\right)\right\}
\end{aligned}
$$

is the gradient of X on ($F, 9_{F}$). Therefore we have (i).
(ii) By (6.5), we have only to prove that if $J_{\phi}{ }^{v} W=0$, then $w=$ wt for some wit ${ }^{\prime}(T N)$. Assume that $J_{\phi}{ }^{v} W=0$. Then by (i) we have $\widetilde{\nabla}_{e_{i}} \omega=0, n+1 \underline{i} \underline{\underline{=}}$. We choose a local coordinate system $\left(x_{u}^{1}, \ldots, x_{u}^{n}\right)$ on a neighborhood u in N. Then w can be expressed locally as $w_{x}=\sum_{j=1}^{n} f_{U, j}(x)\left(\frac{\partial}{\partial_{x}^{j}}\right) \phi(x), x \in \phi^{-1}(U)$, where $f_{U, j}$
$c^{\infty}\left(\phi^{-1}(U)\right)$. Since $\quad W \in \Gamma\left(\phi^{-1} T N\right)$, it satisfies that

$$
\text { (6.6) } f_{u, i}=\sum_{j=1}^{n} f_{v, j} \frac{\partial x_{u}^{i}}{\partial x_{v}^{j}} \quad \text { on } \quad \phi^{-1}(u)_{n} \phi^{-1}(v) \text {, }
$$

for another coordinate system $\left(x_{V}^{1}, \ldots, x_{V}^{n}\right)$ on V. By (6.21), $0=\widetilde{\nabla}_{a_{i}} u=\sum_{j=1}^{n}\left(\theta_{i} f_{u, j}\right) \widetilde{\left(\frac{\partial}{\partial \times j}\right)}$. Therefore $\theta_{i} f_{u, j}=0, n+1 \leq i \leq m$, that is, $f_{U, j}$ are constant along each fiber, which implies that $f_{U, j}=f^{\prime} u, j \bullet \phi \quad$ for some $f^{\prime} u, j \in C^{\infty}(u)$. By ($\epsilon .6$), f'u,j satisfies $f^{\prime} U, i=\sum_{j=1}^{n} f^{\prime} v, j\left(\partial x_{U}^{i} / \partial x_{v}^{j}\right)$ on Un V. Therefore
 $W=\widetilde{W^{\top}}$. (iii) follows immediately from (i). In fact, suppose that $J_{\phi} W=\lambda W, \quad 0 \neq W \in \Gamma\left(\phi^{-1} T N\right)$. Then there exists a fiber F such that $\int_{F} h(w, w) d v_{F}>0$. We apply (i) to this fiber F and $w e$ have (iii).
6.4. Commutatibity of $J_{\phi} V, J_{\phi}{ }^{H}$ and J_{ϕ}.
[Theorem 6.5. Let $\phi ;(M, g) \longrightarrow(N, h)$ be the Riemannian submersion with totally geodesic fibers. Then the operators Jp, $J_{\phi}{ }^{H}$ and J_{ϕ} are commutative each other.

Proof. We have only to prove $J_{\phi}{ }^{v} J_{\phi}{ }^{H}=J_{\phi}{ }^{H} J_{\phi} v$. For each $w \in \Gamma\left(\varphi^{-1} T N\right)$, we have

$$
\begin{aligned}
& \text { (6.7) } J_{\phi}{ }^{H} J_{\phi}{ }^{v} w=-\sum_{j, k=1}^{n}\left\{\left(\widetilde{\nabla}_{e_{k}} \widetilde{\nabla}_{e_{k}}-\widetilde{\nabla}_{\nabla_{\varepsilon_{k}}} e_{k}\right)\left(\left(\Delta_{v} f_{j}\right){\widetilde{e_{j}}}^{\prime}\right)\right. \\
& \left.\left.+\left(\Delta_{v} f_{j}\right)^{N_{R}\left(\theta_{k}\right.}{ }^{\prime}, \theta_{j}{ }^{\prime}\right) \theta_{k} \prime^{\prime}\right\} \\
& =-\sum_{j, k=1} n\left\{\theta_{k}{ }^{2}\left(\Delta_{v} f_{j}\right){\widetilde{\theta_{j}}}^{\prime}+2 e_{k}\left(\Delta_{v} f_{j}\right) \widetilde{\nabla}_{\theta_{k}} e_{j}{ }^{\prime}+\left(\Delta_{v} f_{j}\right) \widetilde{\nabla}_{\theta_{k}} \widetilde{\nabla}_{\theta_{k}}{\widetilde{\theta_{j}}}\right. \\
& \left.-\left(\nabla_{\theta_{k}} e_{k}\right)\left(\Delta_{v} f_{j}\right){\widetilde{e_{j}}}^{\prime}-\left(\Delta_{v} f_{j}\right){\widetilde{\nabla_{\nabla_{k}}}}^{e_{k}} \widetilde{e}_{j}^{\prime}\right\} \\
& \left.-\sum_{j, k=1} n_{v}\left(\Delta_{j}\right)^{N_{R}\left(\theta_{k}\right.}{ }^{\prime}, \theta_{j}{ }^{\prime}\right) \theta_{k}{ }^{\prime} \quad,
\end{aligned}
$$

by definition of $J_{\phi} H$ and (6.3). Since θ_{k} and $\nabla_{\theta_{k}} e_{k}$, $1 \leq k \leq n$, are basic, and Δ_{v} is commutative with basic vector fields (cf. [B.B, Lemma 1.6]), the first. term of the right hand side of (6.7) becomes

$$
\begin{aligned}
& -\sum_{j, k=1}{ }^{n}\left\{\Delta_{v}\left(e_{k}{ }^{2} f_{j}\right){\widetilde{\theta_{j}}}^{\prime}+2 \Delta_{v}\left(\theta_{k} f_{j}\right) \widetilde{\nabla}_{\theta_{k}}{\widetilde{\theta_{j}}}^{\prime}+\left(\Delta_{v} f_{j}\right) \widetilde{\nabla_{\theta_{k}}} \widetilde{\nabla}_{\theta_{k}}{\widetilde{\theta_{j}}}^{\prime}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{j, k=1} n_{\phi} J_{\phi}{ }^{v}\left\{\left(e_{k}{ }^{2} f_{j}\right) \widetilde{\varepsilon}_{j}^{\prime}+2\left(e_{k} f_{j}\right) \widetilde{\nabla}_{\theta_{k}} \widetilde{e}_{j}^{\prime \prime}+f_{j} \widetilde{\nabla}_{\theta_{k}} \widetilde{\nabla}_{\theta_{k}}{\widetilde{e_{j}}}^{\prime}\right.
\end{aligned}
$$

by (6.3) and (6.4). Therefore we obtain

$$
\jmath^{H} \jmath v_{w}=-\sum_{k=1}^{n} \jmath_{\phi}^{v}\left\{\left(\tilde{\nabla}_{a_{k}} \widetilde{\nabla}_{e_{k}}-\widetilde{\nabla}_{\nabla_{\theta_{k}} e_{k}}\right) w-N_{R}\left(e_{k}{ }^{\prime}, w\right) e_{k}{ }^{\prime}\right\}
$$

Therefore we have immediately :

Corollary 6.6. The Hilbert space of all L^{2} sections of $\phi^{-1} T N$ with respect to the inner product $(v, w):=\int_{M} h(v, w) * 1$, for sections V, W, has a complete orthonormal basis consisting of the simultaneous eigensections of $J_{\phi} v, J_{\phi}{ }^{H}$, and J_{ϕ}.
§7. The Canonical Variation of a Riemannian Submersion.
7.1. Definition of the Canonical Variation. We retain the situations in §6. Let $\phi ;(M, g) \longrightarrow(N, h)$ be the Riemannian submersion with totally geodesic fibers.

Definition 7.1. (cf.[B.B, p.191]) For each positive real number t, let g_{t} be the unique Riemannian metric on M such that
(i) $g_{t}(u, v)=g(u, v)$ for $u, v \in H_{p} ; p \in M$,
(ii) The subspaces H_{p} and V_{p} are orthogonal each other with respect to g_{t} at each point p in M, and
(iii) $\quad g_{t}(u, v)=t^{2} g(u, v) \quad$ for $u, v \in v_{p}, p \in M$.

Then $\phi ;\left(M, g_{t}\right) \longrightarrow(N, h)$ is a Riemannian submersion with totally geodesic fibers (cf.[B.B, Proposition 5.2]), which is called the canonical variation.

For each $t>0,\left\{e_{1}, \ldots, e_{n}, t^{-1} e_{n+1}, \ldots, t^{-1} e_{m}\right\}$ is an orthonormal local frame field on (M, g_{t}) such that $\left\{t^{-1} e_{i}\right\}_{i=n+1}^{m}$ are vertical and $\left\{e_{i}\right\}_{i=1}^{n}$ are the horizontal lifts of $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ with respect to g_{t} Then the vertical (resp. horizontal) Jacobi operator ${ }^{t} J_{\phi} V$ (resp. ${ }^{\mathrm{t}} \mathrm{J}_{\phi}{ }^{H}$) of the canonical variation $\phi ;\left(M, g_{t}\right) \longrightarrow(N, h)$ satisfies that

$$
t J_{\phi} v=t^{-2} J_{\phi} v \quad \text {, and } \quad t_{J_{\phi}} H=J_{\phi}^{H} \text {. }
$$

Therefore we have :

$$
\left[\begin{array}{r}
\text { Proposition 7.2. The following formula hold : } \\
{ }^{t} J_{\phi}=t^{-2} J_{\phi}^{v}+J_{\phi}^{H}=t^{-2} J_{\phi}+\left(1-t^{-2}\right) J_{\phi}^{H} .
\end{array}\right.
$$

Remark. This is the analogue of Proposition 5.3 in [$B . B$].
7.2. Due to Corollary 6.6 and Proposition 7.2, each eigenvalue of ${ }^{t} J_{\phi}$ can be written as

$$
\text { (7.1) } \lambda+t^{-2} \mu \text {, }
$$

Where λ is the eigenvalue of $J_{\phi}{ }^{H}$ and $\mu \geqq 0$ is the eigenvalue of $J_{\phi}{ }^{v}$. Then the following two cases occur :
(i) $\mu>0$, or
(ii) $\mu=0$.

In case of (i), $\lambda+t^{-2} \mu$ goes to infinity when $t \rightarrow 0$. In case of (ii), $\lambda+t^{-2} \mu=\lambda$ which does not depend on t. Since the number of the eigenvalues of J_{ϕ} smaller than a given number is finite, there exists a small positive number ε such that for each $0<t<\varepsilon$, the first eigenvalue $\lambda_{l}\left({ }^{t} J_{\phi}\right)$ coincides with the smallest eigenvalue of ${ }^{t} J_{\phi}$ when the case (ii) occurs. Then we have

$$
\begin{aligned}
\lambda_{1}\left({ }^{t} J_{\phi}\right) & =\operatorname{Min}\left\{\lambda ; J_{\phi} \omega=\lambda w \text { and } J_{\phi} v_{W}=0 \text { for some } 0 \neq \omega \in \Gamma\left(\phi^{-1} T\right.\right. \\
& =\lambda_{1}\left(J_{i d_{N}}\right),
\end{aligned}
$$

because of Propositions 6.4(ii) and 6.3. Therefore we obtain :

Theorem 7.3. Let $\phi ;(M, g) \longrightarrow(N, h)$ be a Riemannian submersion with totally geodesic fibers, and $g_{t}, 0<t<\infty$, the canonical variation (cf. Definition 7.1) of 9 with $9_{1}=g$. Then there exists a number $\varepsilon>0$ such that for each $0<t<\varepsilon$, we have

$$
\lambda_{1}\left({ }^{t} J_{\phi}\right)=\lambda_{1}\left(J_{i d_{N}}\right)
$$

In particular, if (N, h) is stable, then the submersion $\phi ;\left(M, g_{t}\right) \longrightarrow$ ' (N, h) is stable for every $0<t<\varepsilon$.
7.3. The typical examples of the Riemannian submersion with totally geodesic fibers are the homogeneous Riemannian submersion (cf.[B.B,§2]): Let G be a compact connected Lie group, and $K H$ closed subgroups of G. Let 9 (resp. k, h) be the Lie algebra of G (resp. K, H). We choose subspaces h_{1} (resp. p) of k (resp. g) such that

$$
\begin{aligned}
& k=h \oplus h_{1}, \text { with } \operatorname{Ad}(H) h_{1}=h_{1}, \text { and } \\
& g=k \oplus p, \text { with } A d(k) p=p .
\end{aligned}
$$

Put $m:=h_{1} \oplus p$. Then

$$
g=h \oplus m \quad, \quad \text { with } \quad \operatorname{Ad}(H) m=m
$$

Let ($\cdot, \cdot)_{h_{1}}$ (resp. ($\left.\cdot,\right)_{p}$) be an $A d(H)$-invariant (resp. Ad (K)invariant) inner product on h_{1} (resp. p). Then we can define an Ad (H)-invariant inner product $(\cdot, \cdot)_{m}$ on m by

$$
\left(x_{1}+x_{2}, Y_{1}+y_{2}\right)_{m}:=\left(x_{1}, y_{1}\right)_{h_{1}}+\left(x_{2}, Y_{2}\right)_{p}, \quad x_{1}, Y_{1} \in h_{1}, x_{2}, Y_{2} \in p
$$

Then the inner product $(\cdot, \cdot)_{h_{1}}$ (resp. ($\left.\left.\cdot, \cdot\right)_{p},(\cdot, \cdot)_{m}\right)$ gives a K-invariant (resp. G-invariant) Riemannian metric k (resp. h, g) on K / H (resp. $G / K, G / H$). It is known (cf.[B.B]) that the projection $\phi ; G / H \ni \times H \longmapsto X K \in G / K$ gives the Riemannian submersion of ($G / H, g$) onto ($G / K, h$) with totally geodesic fibers ($K / H, K$).

In particular, these give the Hop fibrations :
(i) $\quad \phi_{1} ; s^{4 n+3}=S p(n+1) / S p(n) \longrightarrow H P^{n}=S p(n+1) / S p(1) \times S p(n$
(ii) $\phi_{2} ; s^{2 n+1}=S U(n+1) / S U(n) \longrightarrow C P^{n}=S U(n+1) / S(U(1) \times U(n))$.

Note that $\mathrm{Sp}(\mathrm{n}+1)$-invariant (resp. $\mathrm{SU}(\mathrm{n}+1)$-invariant) metrics h on $H P^{n}$ (resp. $C P^{n}$) are unique up to a constant factor.

Since ($H P^{n}, h$) (resp ($C P^{n}, h$) is unstable (resp. stable) $\left.\left.r_{1, f} \cdot r_{n}\right\rangle, r_{N}, 7\right)$

Proposition 7.4.
(i) For each $\mathrm{Sp}(\mathrm{n}+1)$-invariant metric g on $\mathrm{s}^{4 \mathrm{n}+3}=$ $\mathrm{Sp}(\mathrm{n}+1) / \mathrm{Sp}(\mathrm{n})$, the Riemannian submersion ϕ_{1}; $\left(s^{4 n+3}, g\right) \longrightarrow\left(H P^{n}, n\right)$ is unstable.
(ii) For each $\mathrm{su}(\mathrm{n}+1)$-invariant metric g on $\mathrm{s}^{2 \mathrm{n}+1}=$ SU($n+1) / S U(n)$, there exists a number $\varepsilon>0$ such that for each $0<t<\varepsilon$, the canonical variation $\phi_{2} ;\left(s^{2 n+1}, g_{t}\right) \longrightarrow\left(C P^{n}, h\right)$ is stable.

The proof follows from Proposition 6.3 and Theorem 7.3.

Remark. Proposition 7.4 asserts that each odd dimensional unit sphere $s^{2 n+1}, n \geq 1$, with the canonical variation $g_{t}, 0<t<\varepsilon$, admits a non-constant stable harmonic map. On the contrary, Y.L.Xin [X] showed that each non-constant harmonic map from the standard unit sphere ($\mathrm{s}^{\mathrm{m}}, \mathrm{can}$) , $\mathrm{m} \geq 3$, of constant curvature into arbitrary Riemannian manifold is unstable.
7.4. Next, let us study the case when t goes to infinity. We retain the situations as in 7.1. Let us recall that the holonomy group G of a fiber F of the submersion $\phi ;(M, g) \longrightarrow(N, h)$ with totally geodesic fibers is the group of all isometries of the fiber f induced by the horizontal transports along the horizontal lifts of loops in N based at the projection of F. It is known ([O.N, Theorem 5]) that $G=\{i d\}$ if and only if the submarsion $\varnothing ;(M, g) \longrightarrow(N, h)$ is trivial, that is, there exist an isometry 2 of (M, g) and a submanifold F of M such that M is the Riemannian product $F \times N$ and $\phi=p r \cdot q$, where pr is the projection of $F \times N$ onto N.

$$
\text { Theorem 7.5. Let } \varnothing \text {. }(M, g) \longrightarrow(N, h) \text { be the Riemannian }
$$

group G of a fiber F of the submersion $\phi ;(M, g) \longrightarrow(N, h)$ does not act transitively on the fiber, and Index $\left(i d_{N}\right)>0$. Then the index of the canonical variation $\phi ;\left(M, g_{t}\right) \longrightarrow(N, h)$ goes to infinity when $t \rightarrow \infty$.

Proof. Let $C_{G}^{\infty}(f)$ be the space of all functions f on $C^{\infty}(F)$ invariant under the actions of G. Since each G-orbit has an open G-invariant tubular neighborhood in M (cf.[Br, Theorem 2.2,p.306]), there exists a non-constant function f in $C_{G}^{\infty}(f)$. Then the dimension of $C_{G}^{\infty}(F)$ is infinite. Each element f in $C_{G}^{\infty}(F)$ can be extended to a function \tilde{f} in the space $C_{v}^{\infty}(M)$ of all elements in $C^{\infty}(M)$ which are invariant under the horizontal transport. Since the parallel transport is isometry, the vertical Laplacian Δ_{v} preserves $C_{v}^{\infty}(M)$ invariant. Therefore there exist an infinite number of the eigenvalues $0 \leqq \mu_{1} \leqq \mu_{2} \leqq \cdots \leqq \mu_{i} \leqq \cdots$, of Δ_{v} counted with their multiplicities such that

$$
\text { (7.2) }-\Delta_{v} f_{i}=\mu_{i} f_{i}, \quad 0 \neq f_{i} \in C_{v}^{\infty}(\eta), i=1,2, \ldots \text {. }
$$

Now suppose that $\operatorname{Index}\left(i d_{N}\right)>0$, that is, there exists a non-zero element W^{\prime} in $\Gamma(T N)$ such that $J_{i d} W^{\prime}=\lambda W^{\prime}$ and $\lambda<0$. Then we have

$$
\begin{aligned}
t_{J_{\phi}}\left(f_{i} \widetilde{W}^{\prime}\right) & =\left(t^{-2} J_{\phi}{ }^{v}+J_{\phi}{ }^{H}\right)\left(f_{i} \widetilde{w}^{\prime}\right) \quad \text { (by Proposition 7.2) } \\
& =t^{-2}\left(-\Delta_{v} f_{i}\right) \widetilde{w^{\prime}}+f_{i} J_{\phi}{ }^{H}\left(\widetilde{w^{\prime}}\right) \quad \text { (by (6.3) and } f_{i} \in C_{v}^{\infty}(M) \\
& =\left(t^{-2} \mu_{i}+\lambda\right)\left(f_{i} \widetilde{w}^{\prime}\right) \quad \text { (by (6.5) and (7.2)). }
\end{aligned}
$$

That is, ${ }^{t} J_{\phi}$ has the eigenvalues $t^{-2} \mu_{i}+\lambda, i=1,2, \ldots$. when t goes to infinity, the eigenvalues $t^{-2} \mu_{i}+\lambda$ tend to the eigenvalue λ. Since $\lambda<0$, for each $i=1,2, \ldots$, there exists a number $N>0$ such that $t^{-2} \mu_{i}+\lambda<0$ for $t \geq N$. Therefore we have the desired conclusion.
§日. Homogeneous Riemannian submersions.
8.1. In this section, we consider the homogeneous Riemannian submersions. Our purpose is to express the Jacobi operator of the homogeneous Riemannian submersions in terms of Lie algebras and calculate the spectrum of the Jacobi operator of the Hopf fibration using these results. We retain the situations as in 7.3.

Let G be a compact connected Lie group, and K, H, closed subgroups of G. Let g be the Lie algebra of G consisting of all left invariar vector fields on G. Let k, h be the subalgebras corresponding to k, H. Put s:= dim G, m:= dim G/H, and $n:=\operatorname{dim} G / K$. We choose an $\mathrm{Ad}(\mathrm{G})-$ invariant inner product (\cdot, \cdot) on 9 , and h_{1} (resp. p), the orthogonal complement of h (resp. k) in k (resp. g). Then

$$
\begin{array}{lll}
k=h \oplus h_{1} & \text { with } & \text { fo }(H) h_{1}=h_{1}, \text { and } \\
g=k \oplus p & \text { with } & A d(k) p=p .
\end{array}
$$

Put $m:=h_{1} \oplus p$, then

$$
g=h \oplus m \quad \text { with } \quad \operatorname{Ad}(H) m=m .
$$

In this section, we always assume the following :

Assumption (A) : We take the inner products $(\cdot, \cdot)_{h_{1}},(\cdot, \cdot)_{p}$, $(\cdot, \cdot)_{m}$ as the restrictions to h_{1}, p, m of the above $\operatorname{Ad}(G)-$ invariant inner product (\cdot, \cdot) on 9 , respectively.

Now we consider the Riemannian submersion $\varnothing ; G / H \longrightarrow G / K$ admitting the Riemannian metric g (resp. h) on G/H (resp. G/K) corresponding to the inner product (\cdot, \cdot) on m (resp. ρ). Since the induced bundle $E:=\phi^{-1} T(G / K)$ is identified with the associate bundle $G x_{H} p$, which is the space of the equivalence classes of $(x, x) \in G \times p$ under the equivalence relation $(x h, \operatorname{Ad}(h) x) \sim(x, x)$, for $h \in H$, we can identify
the space $\Gamma(E)$ of its sections with the following space :

Definition 8.1. Let $C^{\infty}(G, P)$ be the space of all smooth maps of G into p. We define the subspace $C_{H}^{\infty}(G, p)$ of $C^{\infty}(G, p)$ by

$$
C_{H}^{\infty}(h, p):=\left\{f \in C^{\infty}(G, p) ; f(x h)=A d\left(h^{-1}\right) f(x), x \in G, h \in H\right\} .
$$

The identification Φ of $\Gamma(E)$ with $C_{H}^{\infty}(G, P), \Phi ; C_{H}^{\infty}(G, P) \longrightarrow \Gamma(E)$, is

$$
(8.1) \quad \Phi(f)(x H):=\tau_{x *} f(x)_{\{K\}}, x \in G .
$$

Here $f\left(x\left\{_{K\}}\right.\right.$ is the tangent vector of G / K at the origin $\{K\}$ corresponding to $f(x) \in p$, and $\tau_{x^{*}}$ is the differential of the translation $\tau_{x} ; G / K \ni y K \longmapsto x y K \in G / K$. Then it turns out that Φ is an isomorphism of $C_{H}^{\infty}(G, p)$ onto $\Gamma(E)$. Under the G-actions on $\Gamma(E)$ or $C_{H}^{\infty}(G, P)$ defined by

$$
\begin{aligned}
& \left(\tau_{x *} V\right)_{y H}:=\tau_{x *} V_{x}^{-1} y H, \quad x, y \in G, \quad V \in \Gamma(E), \\
& \left(\tau_{x} f\right)(y):=f\left(x^{-1} y\right), \quad x, y \in G, f \in C_{H}^{\infty}(G, p),
\end{aligned}
$$

Φ is a G-isomorphism, that is,

$$
\text { (8.2) } \Phi \cdot \tau_{x} f=\tau_{x *} \Phi(f), \quad x \in G, \quad f \in C_{H}^{\infty}(G, p)
$$

Note that the Jacobi operator $J_{\phi} ; \Gamma(E) \longrightarrow \Gamma(E)$ is G-invariant, that is,

$$
\begin{equation*}
J_{\phi}\left(\tau_{x *} v\right)=\tau_{x *}\left(J_{\phi} v\right), \quad v \in \Gamma(E) \tag{8.3}
\end{equation*}
$$

In fact, here we denote also by $\tau_{x^{*}}$ is the differential of the translation τ_{x} on G / H or G / K by $x \in G$. Then we have $\tau_{x}-1_{*} \nabla_{\theta_{i}} \theta_{i}=\nabla_{\tau_{x}-1_{*} \theta_{i}} \tau_{x}^{-1_{*}} \theta_{i}$, and $\widetilde{\nabla}_{\theta_{i}} \tau_{x *} V=\tau_{x_{*}} \widetilde{\nabla}_{\tau_{x}-1_{*} \theta_{i}} v$, for $V \in \Gamma(E), x \in G$, where $\left\{e_{i}\right\}_{i=1}^{m}$ is an orthonormal local frame field on $(G / H, g)$. Because of the expression (1.4) of J_{β}, we have

Furthermore we identify $C_{H}^{\infty}(G, P)$ with the subspace $\left(C^{\infty}(G) \otimes p\right)_{H}$ of the tensor product $c^{\infty}(G) \otimes p$:

Definition 8.2. $\quad\left(C^{\infty}(G) \otimes p\right)_{H}$ is by definition the subspace of $C^{\infty}(G) \otimes \rho$ consisting of all elements $\sum_{i=1}^{\ell} f_{i} \otimes X_{i} \in C^{\infty}(G) \otimes p$ satisfying

$$
\sum_{i=1}^{\ell} R_{h} f_{i} \otimes A d(h) x_{i}=\sum_{i=1}^{\ell} f_{i} \otimes x_{i} \text { for all } h \in H .
$$

Here

$$
\left(R_{h} f\right)(x):=f(x h), \quad h \in H, \quad x \in G, \quad f \in C^{\infty}(G)
$$

Under the G-action of $c^{\infty}(G) \otimes \rho$ defined by

$$
\tau_{x}(f \otimes x):=\tau_{x} f \otimes x, x, y \in c, f \in c^{\infty}(G), x \in p,
$$

the subspace $\left(C^{\infty}(G) \otimes p\right)_{H}$ is a G-submodule. The identification Ψ of $C_{H}^{\infty}(G, P)$ with $\left(C^{\infty}(G) \otimes p\right)_{H}$ is given by

$$
\text { (8.4) } \Psi(f):=\sum_{i=1}^{n} f_{i} \otimes x_{i}, \quad f \in C_{H}^{\infty}(G, p),
$$

where $f(x)=\sum_{i=1}^{n} f_{i}(x) x_{i}, x \in G$, and $\left\{x_{i}\right\}_{i=1}^{n}$ is a fixed orthonormal basis of p with respect to (,). Then it turns out that Ψ is a G-isomorphism of $C_{H}^{\infty}(G, P)$ onto $\left(C^{\infty}(G) \otimes p\right)_{H}$:

$$
\text { (8.5) } \Psi \cdot \tau_{x}=\tau_{x} \cdot \Psi \quad, x \in \sigma
$$

Definition 8.3. Via Φ and Ψ, we can define a G-invariant operator \mathcal{J} on $\left(C^{\infty}(G) \otimes P\right)_{H}$ from the Jacobi operator J_{ϕ} in such a way that the following diagram is commutative :

$$
\begin{aligned}
& \Gamma(E) \xrightarrow{\Phi^{-1}} c_{H}^{\infty}(G, p) \xrightarrow{\Psi}\left(C^{\infty}(G) \otimes p\right)_{H} \\
& \Gamma(E) \xrightarrow{J_{\rho}} \xrightarrow{\Phi^{-1}} C^{\infty}(G, p) \xrightarrow{\Psi}\left(C^{\infty}(G) \otimes p\right)_{H}
\end{aligned}
$$

By (8.2), (8.3) and (8.5), the operator \tilde{J} is G-invariant, that is,

$$
\text { (8.6) } \tilde{J} \cdot \tau_{x}=\tau_{x} \cdot \tilde{\jmath} \quad, x \in G
$$

Therefore the problem to determine the spectrum of J_{ϕ} is reduced to the one of the operator \tilde{J} on $\left(C^{\infty}(G) \otimes p\right)_{H}$. The main purpose of this section is to express the operator $\tilde{\jmath}$ in terms of the lie algebra g of G for the above aim (cf. Theorem 8.11).
8.2. For the calculus, we take a neiborhood U in G and a subset N (resp. N_{K}) of G (resp. K) in such a way that
(i) $\quad N=U_{n} \exp (p), \quad N_{K}=U_{n} \exp \left(h_{1}\right)$,
(ii) The map $N \times N_{K} \ni(y, k) \mapsto y k \in N \cdot N_{K}$ is a diffeomorphism, (iii) The projection π_{K} of G onto G / K is a diffeomorphism of N onto a neighborhood $\pi_{K}(N)$ of the origin $\{K\}$ in G / K, and (iv) the projection π_{H} of G onto G / H is a diffeomorphism of $N \cdot N_{K}$ onto a neighborhood $\pi_{H}\left(N \cdot N_{K}\right)$ of the origin $\{H\}$ in G / H, where $N \cdot N_{k}:=\left\{y k ; y \in N, k \in N_{k}\right\}$.

Now for an element $x \in m=h_{1} \oplus p$, define a vector field X^{*} on the neighborhood $\pi_{H}\left(N \cdot N_{K}\right)$ of $\{H\}$ in G / H by
(8.7) $\quad x_{x H}^{*}:=\tau_{x+} x_{X H\}} \in T_{x H} G / H, \quad x \in N \cdot N_{K}$.

Similarly, for an element $x \in p$, define a vector field \bar{x} on the neighborhood $\pi_{K}(N)$ of $\{K\}$ in G / K by
(8.8) $\bar{x}_{y K}:=\tau_{y \neq} x_{k K\}} \in \top_{y K} G / K, \quad y \in N$.

Let $\left\{x_{i}\right\}_{i=1}^{m}$ be an orthonormal basis of ($\mathrm{m}_{\mathrm{i}},($,$)) such that \left\{x_{i}\right\}_{i=1}^{n_{i}}$ (resp. $\left\{x_{i}\right\}_{i=n+1}^{m}$) is a basis of $p\left(r e s p . h_{1}\right)$. Then $\left\{x_{i}^{*}\right\}_{i=1}^{m}$ is an orthonormal frame field on $\pi_{H}\left(N \cdot N_{K}\right)$ such that $x_{i}^{*}, n+1 \leqq i \leqq m$, are
vertical and $X_{i}^{*}, 1 \leqq i \leqslant n$, are horizontal. And $\left\{\bar{x}_{i}\right\}_{i=1}^{n}$ is also an orthonormal frame field on $\pi_{K}(N)$.

Remark. In general, $X_{i}^{*}, 1 \leq i \leqslant n$, are not necessarily basic vector fields.

For every $f \in C_{H}^{\infty}(G, P)$, we can express $V=\Phi(f) \in \Gamma(E)$ as

$$
v_{x H}=\sum_{i=1}^{n} f_{i}(x) \tau_{x *} x_{i\{K\}} \quad, \quad x \in G,
$$

where $f(x)=\sum_{i=1}^{n} f_{i}(x) x_{i}, \quad x \in G$. Moreover, putting
(8.9) $\quad \operatorname{Ad}(k) x_{i}=\sum_{j=1}^{n} a_{i j}(k) x_{j}, k \in k$,
(B.10) $\quad \tilde{f}_{j}(y k H):=\sum_{i=1}^{n} f_{i}(y k) a_{i j}(k) \quad, y \in N, k \in N_{k}$,
the section V can be expressed on the neighborhood $\pi_{H}\left(N \cdot N_{K}\right)$ as

$$
(8.11) \quad v=\sum_{j=1}^{n} \widetilde{f}_{j} \widetilde{\bar{x}}_{j}
$$

where $\tilde{\mathbf{f}}_{j}$ is a function (8.10) on $\pi_{H}\left(N \cdot N_{K}\right)$ and $\widetilde{\bar{X}}_{j}$ is a local section of E corresponding to the vector field \bar{X}_{j} on $\pi_{H}\left(N \cdot N_{K}\right)(c f .1$. . Then we have for $x \in m$,

$$
\text { (8.12) } \widetilde{\nabla}_{X^{*}}^{v}=\sum_{j=1}^{n}\left\{\left(x^{*} \tilde{f}_{j}\right){\widetilde{\bar{x}_{j}}}_{j}+\widetilde{f}_{j} \widetilde{\nabla}_{X^{*}} \widetilde{X}_{j}\right\} \text { on } \pi_{H}\left(N \cdot N_{K}\right)
$$

Here $\quad\left(\widetilde{\nabla}_{X} \widetilde{\bar{x}}_{j}\right)_{x H}, x \in N \cdot N_{K}$, is given as follows:
(8.13) $\quad\left(\widetilde{\nabla}_{x} \widetilde{\bar{x}}_{j}\right)_{x H}=\left({ }^{N} \nabla_{W} \bar{x}_{j}\right)_{x K}$,
where W is a locally defined vector field on G / K satisfying $W_{x K}=$ $\phi_{*} x_{x H}^{*}$ (cf. (1.1) or (6.4)), and ${ }^{N} \nabla$ is the Levi-Civita connection of ($G / K, g$). This vector field W can be actually chosen as follows :

$$
(8.14) \quad w=0 \text { for } x \in h_{1} \text {, }
$$

$$
(8.15) \quad w=\overline{(\operatorname{Ad}(k(\cdot)) X)} \quad(c f .(8.8)), \text { for } x \in p .
$$

In fact, since $\phi_{7} X_{x H}^{*}=0$ for $x \in h_{1}$, we have (8.14). For (8.15), let $x \in p$. For a fixed point $x=y(x) k(x), y(x) \in N, k(x) \in N_{K}$, we have

$$
\begin{aligned}
\phi_{*} x_{x H}^{*} & =\tau_{y(x) *} \tau_{k(x) *} x_{\{k\}} \\
& =\tau_{y(x) *}\left(\operatorname { A d } (k (x)) x \left\{_{\{k\}}\right.\right. \\
& =\frac{\operatorname{Ad}(k(x)) x)_{y(x) k}}{},
\end{aligned}
$$

so we can choose W as in (8.15). By (8.14), we get, for $x \in h_{1}$,
(8.16) $\quad\left(\widetilde{\nabla}_{x *} *\right)_{x H}=\sum_{j=1}^{n}\left(x^{*} \widetilde{f}_{j}\right)(x H)\left(\widetilde{\bar{x}_{j}}\right)_{x H}$.

By (8.15), we get in particular, for $x \in P$,

$$
\begin{equation*}
\left(\widetilde{N}_{W} \bar{x}_{j}\right)_{H H\}}=\left({ }^{N} \nabla_{\bar{x}} \bar{x}_{j}\right\}_{\{K\}} . \tag{8.17}
\end{equation*}
$$

Moreover we get, for $x \in P$,

$$
\begin{equation*}
\left(\widetilde{\nabla}_{x^{*}} \widetilde{\nabla}_{x^{*}} \widetilde{\bar{x}}_{j}\right)_{\{H\}}=\frac{1}{4}\left(\left[x,\left[x, x_{j}\right]_{p}\right]_{p}\right)_{\{K\}} \in T_{\{K\}}^{G / K}, \tag{8.18}
\end{equation*}
$$

Where X_{p} is the p-component of X corresponding to the decomposition $g=k+p$.

Proof of (8.18). Let us recall the following :

Lemma 8.4. For every $Y, Z \in P$,

$$
{ }^{N} \nabla_{\bar{Z}} \bar{Y}=\frac{1}{2} \overline{\left([Z, Y]_{p}\right)} \text {, along the curve } \xi(t) K \text { in } G / K
$$

for a sufficiently small t such that $\xi(t):=\exp (t z)$ belongs to N.

This lemma follows from theorems 8.1, 10.1 and 13.2 in [$N \mathrm{~N}$], due to the assumption (A).

$$
\text { (8.19) } \quad\left(\widetilde{\nabla}_{x^{*}} \tilde{\nabla}_{X^{*}} \widetilde{\bar{x}}_{j}\right)_{\{H\}}=\left({ }^{N} \nabla_{W}{ }^{N} \nabla_{W} \bar{x}_{j}\right\}_{k K\}},
$$

Where W is in (8.15). Then for the curve $\sigma(t):=\exp (t x) K$ in G / k, the right hand side of $(8.19)=\left.\frac{d}{d t} N_{\rho}{ }_{\sigma(t)}{ }^{-1}\left(N_{V} \bar{x}_{j}\right)_{\sigma(t)}\right|_{t=0}$, where ${ }^{N_{P}}{ }_{\sigma(t)}$ is the parallel transport of ($G / K, g$) along the curve $\sigma(t)$. Here $w_{\sigma(t)}=\bar{X}_{\sigma(t)}$, because (8.15) and $\exp (t x) \in N$, and then $k(\sigma(t))=e$. Then we have

$$
\left.\left({ }^{N} \nabla_{W} \bar{x}_{j}\right)_{\sigma(t)}=\left({ }^{N} \nabla_{\bar{x}} \bar{x}_{j}\right)_{\sigma(t)}=\frac{1}{2}\left(\left[x_{0} x_{j}\right]_{p}\right)_{\sigma(t)}\right),
$$

by Lemma 8.4. Therefore

$$
\begin{aligned}
& \text { the right hand side of }(8.19)=\left.\frac{1}{2} \frac{d}{d t} N_{p(t)}{ }^{-1} \overline{\left(\left[X, X_{j}\right]_{p}\right)_{\sigma}(t)}\right|_{t=1} \\
& =\frac{1}{2}\left({ }^{N} \nabla_{\bar{X}} \overline{\left[x, x_{j}\right]_{p}}\right)_{\{K\}} \\
& =\frac{1}{4}\left(\left[x,\left[x, x_{j}\right]_{p}\right]_{p}\{x\}\right. \text {, }
\end{aligned}
$$

again by Lemma 8.4, which implies (8.18).

Summing up the above, we have :

Lemma 8.5. For $V=\Phi(f), f \in C_{H}^{\infty}(G, P)$, we have
(i) $\quad\left(\widetilde{\nabla}_{X} \widetilde{\nabla}_{X^{*}} \vee\right)_{\{H\}}=\sum_{j=1}^{n} X_{\{H\}}^{*}\left(x^{*} \widetilde{f}_{j}\right) \bar{x}_{j,\{K\}}$, for $x \in h_{1}$,

$$
+\frac{1}{4} \widetilde{f}_{j}(H) \overline{\left(\left[x,\left[x, x_{j}\right]_{p}\right]_{p}\right)}\{K\},
$$

for $x \in p$.

Lemma 8.6.
(i) For $x \in h_{1}$, we have

$$
\begin{aligned}
x_{H H}^{*} \tilde{f}_{j}=X f_{j}(e) & +\sum_{i=1}^{n} f_{i}(e)\left(\left[x, x_{i}\right], x_{j}\right), \text { and } \\
x_{\{H\}}^{*} x^{*} \tilde{f}_{j}=x^{2} f_{j}(e) & +2 \sum_{i=1}^{n}\left(x f_{i}\right)(e)\left(\left[x, x_{i}\right], x_{j}\right) \\
& +\sum_{i=1}^{n} f_{i}(e)\left(\left[x,\left[x, x_{i}\right]\right], x_{j}\right)
\end{aligned}
$$

(ii) For $X \in P$, we have

$$
\left.X_{\{H\}}^{*} \widetilde{f}_{j}=X f_{j}(e), \quad \text { and } \quad X_{\{H\}}^{*}\right\}^{*} \tilde{f}_{j}=X^{2} f_{j}(e)
$$

Proof follows immediately from the definition of $\widetilde{\mathbf{f}_{j}}$ (8.9), (8.10) and $x^{*}(8.7)$.Lemma 8.7.

$$
\left(\widetilde{\nabla}_{\nabla_{x^{*}} x^{*}} v\right)_{H}=0 \quad \text { for all } \quad x \in m \text {, and } v \in \Gamma(E)
$$

Proof. Due to the assumption (A), we have

$$
\left(\nabla_{X^{*}} X^{*}\right)_{\{H\}}=0 \text { for } x \in \mathrm{~m},
$$

by Theorems 8.1, 13.1 in $\left[\mathrm{N}_{\mathrm{O}}\right]$. By (8.13) or (1.1), we have Lemma 8.7.

Moreover, it is known (cf. $[K . N]$) that under the assumption (A), the curvature tensor N_{R} of $(G / K, h)$ is given by

$$
\begin{aligned}
-\left({ }^{\left.N_{R}(X, Y) Z\right)_{\{K\}}=}\right. & \frac{1}{4}\left[x,[y, z]_{p}\right]_{P}-\frac{1}{4}\left[y,[x, z]_{p}\right]_{p}-\frac{1}{2}\left[[x, y]_{p}, z\right]_{p} \\
& -\left[[x, y]_{k}, z\right] \quad, \quad x, y, z \in P,
\end{aligned}
$$

where we identify $X \in P$ with the tangent vector $X_{\{K\}} \in T_{\{K\}} G / K$. Then we ge

$$
\begin{aligned}
& \text { [Lemma 8.日. For } V=\Phi(f), f \in C_{H}^{\infty}(G, p) \text {, we have } \\
& -\left(N_{R}\left(\phi_{+} x^{*}, v\right) \phi_{p} x^{*}\right\}_{\{K\}}= \begin{cases}0 & , x \in h_{1}, \\
\sum_{i=1}^{n} f_{i}(a)\left\{\frac{1}{4}\left[x,\left[x_{i}, x\right]_{p}\right]_{p}-\frac{1}{2}\left[\left[x, x_{i}\right]_{p}, x\right]_{p}\right.\end{cases} \\
& \left.-\left[\left[x, x_{i}\right]_{k}, x\right]\right\} \quad, \quad x \in p .
\end{aligned}
$$

Summing up Lemmas $8.5 \sim 8.8$, we obtain :

Proposition 8.9. For $V=\Phi(f), f=\sum_{i=1}^{n} f_{i} x_{i} \in C_{H}^{\infty}(G, p)$, the evaluation of $J_{\phi} V$ at the origin $\{H\}$ in G / H is given by

$$
\begin{aligned}
\left(J_{\phi} V\right)_{\{H\}}= & -\sum_{k=1}^{m} \sum_{j=1}^{n}\left(x_{k}{ }^{2} f_{j}\right)(e) x_{j}\{k\} \\
& -\sum_{k, j=1}^{n}\left(x_{k} f_{j}\right)(e)\left[x_{k}, x_{j}\right]_{p\{k\}} \\
& -2 \sum_{k=n+1}^{m} \sum_{j=1}^{n}\left(x_{k} f_{j}\right)(e)\left[x_{k}, x_{j}\right]_{\{k\}} \\
& -\sum_{k=n+1}^{m} \sum_{j=1}^{n} f_{j}(e)\left[x_{k},\left[x_{k}, x_{j}\right]\right]_{\{k\}} \\
& -\sum_{k, j=1}^{n} f_{j}(e)\left[\left[x_{k}, x_{j}\right]_{k}, x_{k}\right]_{\{k\}} .
\end{aligned}
$$

8.3. Before we state Theorem 8.11, we have to prepare some notations :

Definition 8.10. We define the operators $D_{i}, i=0,1, \ldots, 6$, acting on $c^{\infty}(G) \otimes p$ by

$$
\begin{aligned}
& D_{0}:=\sum_{k=1}^{s} x_{k}^{2} \otimes I, \\
& D_{1}:=\sum_{k=1}^{m} x_{k}^{2} \otimes I, \\
& D_{2}:=\sum_{k=1}^{n} x_{k} \otimes P_{p} \cdot \operatorname{ad}\left(x_{k}\right),
\end{aligned}
$$

$$
\begin{aligned}
& D_{3}:=\sum_{k=n+1}^{m} x_{k} \otimes \operatorname{ad}\left(x_{k}\right), \\
& D_{4}:=\quad I \otimes \sum_{k=n+1}^{m} \operatorname{ad}\left(x_{k}\right)^{2}, \\
& D_{5}:=I \otimes \sum_{k=1}^{n} \operatorname{ad}\left(x_{k}\right) \circ P_{k} \cdot \operatorname{ad}\left(x_{k}\right), \\
& D_{6}:=\sum_{k=m+1} s x_{k}{ }^{2} \otimes I,
\end{aligned}
$$

where P_{p}, P_{k} are the projection of $g=k \oplus p$ onto p, k, respectLively, $\left\{x_{k}\right\}_{k=1}^{s}$ is an orthonormal basis of $(g,()$,$) such that$ $\left\{x_{i}\right\}_{i=1}^{n}$ (resp. $\left\{x_{i}\right\}_{i=n+1}^{m},\left\{x_{i}\right\}_{i=m+1}^{s}$) is a basis of p (resp. h_{1}, h), I is the identity operator of $C^{\infty}(G), p$ or $C^{\infty}(G) \otimes p$, and $(X f)(x):=$ $\left.\frac{d}{d t} f(x \exp (t x))\right|_{t=0}$, for $x \in g, f \in C^{\infty}(G)$, and $x \in G$.

It turns out all $D_{i}, i=0,1, \ldots, 6$, do not depend on the choice of the above basis $\left\{X_{k}\right\}_{k=1}$ s and they are G-invariant, i.e., $D_{i} \cdot \tau_{x}=$ $\tau_{x} \cdot D_{i}$, for. all $x \in G$. Noting that

$$
R_{h} \cdot X f=A d(h) X\left(R_{h} f\right), f \in C^{\infty}(G), h \in H, \text { and } x \in g \text {, }
$$

all D_{i} preserve the subspace $\left(C^{\infty}(G) \theta_{p}\right)_{H}$ invariant, because of independency on the choice of the basis $\left\{x_{k}\right\}_{k=1}$. We also note that
(8.20) $\quad D_{0}=D_{1}+D_{6}$,
(8.21) $\quad D_{6}=I \otimes \sum_{k=m+1}^{s} \operatorname{ad}\left(X_{k}\right)^{2} \quad$ on $\left(C^{\infty}(G) \otimes p\right)_{H}$,
because of definitions of $\left(C^{\infty}(G) \otimes p\right)_{H}$ and D_{G}. Then by Proposition 8 . we obtain :

Theorem 8.11. Let ϕ be the Riemannian submersion of ($G / H, g)^{\prime}$ onto ($G / K, h$) whose metrics $9, h$ come from the Ad(G)-invariant inner product (,) on the Lie algebra 9 . Then the operator \mathcal{J} of $\left(C^{\infty}(G) \otimes p\right)_{H}$ corresponding to the Jacobi operator Jg of the
submersion ϕ coincides with the operator

$$
D:=-D_{0}-D_{2}-2 D_{3}-D_{4}+D_{5}+D_{6},
$$

where all D_{i} are defined in Definition 8.10.

$$
\begin{aligned}
& \text { Proof. Proposition } 8.9 \text { and (8.21) say that } \\
& \tilde{J}\left(\Psi \Phi^{-1} V\right)(e)=D\left(\Psi \Phi^{-1} V\right)(e),
\end{aligned}
$$

for every $V \in \Gamma(E)$. For every $x \in G$, we have

$$
\begin{aligned}
\tilde{J}\left(\Psi \Phi^{-1} v\right)(x) & =\tau_{x}^{-1} \cdot \tilde{J}\left(\Psi \Phi^{-1} v\right)(e) \\
& =\tilde{J}\left(\Psi \Phi^{-1} \tau_{x}^{-1 *} v\right)(e) \\
& =D\left(\Psi \Phi^{-1} \tau_{x}^{-1 *} v\right)(e) \\
& =\tau_{x-1} D\left(\Psi \Phi^{-1} v\right)(e)=D\left(\Psi \Phi^{-1} V\right)(e) \cdot \quad \text { Q.E.D. }
\end{aligned}
$$

As applications of Theorem 8.11, we obtain :

Corollary 8.12. Let ϕ be the Riemannian submersion of (G/H,g onto ($G / K, h$) whose metrics $9, h$ come from the $\operatorname{Ad}(G)$-invariant inner product (\cdot, \cdot) on the Lie algebra 9 . Assume that ($G / K, h$) is Riemannian symmetric, g is semi-simple, and $(X, Y):=-F(X, Y)$, $X, Y \in g$, where F is the killing form of 9 .
(i) Then the operator $\widetilde{\mathcal{J}}$ of $\left(C^{\infty}(G) \otimes p\right)_{H}$ corresponding to the Jacobi operator J_{ϕ} of the submersion ϕ coincides with

$$
D:=-D_{0}-2 D_{3}+2 D_{6} .
$$

Moreover we assume $H=\{i d\}$. Then the operator $\tilde{\jmath}$ coincides with

$$
D:=-D_{0}-2 D_{3},
$$

where D_{0}, D_{3} and D_{6} are defined in Definition 8.10.
(ii) In particular, the spectrum of the Jacobi operator J_{ϕ} of the Hop fibering ϕ; $(S U(2), g)=\left(s^{3}, g\right) \longrightarrow(S U(2) / s(u(1) \times u(1)), h)=$ $\left(s^{2}, h\right)$ is given as follows :

The eigenvalues : $\frac{1}{2} \ell(\ell+1)+i, \frac{1}{2} \ell(\ell+1)-i$,
their multiplicities : $2 \ell+1$,
where ℓ varies over the set $\left\{\ell \in \frac{1}{2} z ; \ell \geqq 0\right\}$, and i varies over the set $\{l, \ell-1, \ldots, 1-\ell,-l\}$. Then the index and the nullity are given as Index $(\phi)=4$ and Nullity $(\phi)=7$.

Proof. (i) Since ($G / K, h$) is symmetric, ie., $[p, p] C K$, we have $D_{2}=0$ and $D_{5}=I \otimes \sum_{k=1}^{n} a d\left(X_{k}\right)^{2}$. Moreover, we have $D_{5}=-\frac{1}{2} I$ and $D_{4}+D_{6}=-\frac{1}{2} I$, which implies (i). For it follows from that $\left(\sum_{k=1}^{n} \operatorname{ad}\left(X_{k}\right)^{2}(x), y\right)=\frac{1}{2} F(x, y)$, and $\left(\sum_{k=n+1}^{s} \operatorname{ad}\left(X_{k}\right)^{2}(x), y\right.$ $=\frac{1}{2} F(X, Y)$, for $X, Y \in p(c f .[T . K, p .212])$. The second equality is clear from that $D_{6}=0$ when $H=\{i d\}$.
(ii) Let us recall the computation in $[U 1, \S 5]$. In this case,

$$
\begin{aligned}
& G=S u(2), \\
& K=S(u(1) \times u(1))=\left\{\left(\begin{array}{cc}
\begin{array}{l}
\sqrt{-1} \theta \\
0
\end{array} & 0 \\
0 & \sqrt{-1} \theta
\end{array}\right) ; \theta \in \mathbb{\mathbb { R }}\right\} \text {, } \\
& (X, Y)=-4 \text { Trace }(X Y), \quad X, Y \in g=s u(2), \\
& k=\left\{H_{1}\right\}_{\mathbb{Q}} \quad, \\
& p=\left\{u_{\alpha} / \sqrt{2}, v_{\alpha} / \sqrt{2}\right\}_{\Phi} \text {, }
\end{aligned}
$$

where $H_{1}:=\frac{\sqrt{-1}}{2 \sqrt{2}}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), U_{\alpha}:=2^{-1}\left(\begin{array}{cc}0 & \sqrt{-1} \\ \sqrt{-1} & 0\end{array}\right)$ and $v_{\alpha}:=2^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. $\left\{H_{1}, U_{a} / \sqrt{2}, V_{a} / \sqrt{2}\right\}$ is an orthonormal basis of $(g,(0)$,$) . We have only$ to know the actions of $D_{3}=H_{1} \otimes a d\left(H_{1}\right)$ and $D_{0}=C \otimes I$ on $C^{\infty}(G) \otimes p$, where C is the Casimir operator $C:=H_{1}{ }^{2}+u_{a}^{2} / 2+V_{\alpha} 2 / 2$.

A complete orthogonal basis of the space $C_{\mathbb{C}}^{\infty}(G)$ of complex valued smooth functions on G with respect to the inner product $\int_{G} f(x) \overline{f(x)} d$: $f, f^{\prime} \in \mathbb{C}_{\mathbb{C}}^{\infty}(G)$, with the Haar measure $d x$, is given as follows (PeterWeal theorem): Let $\mathbb{D}:=\left\{\ell \alpha ; \ell \in \frac{1}{2} \mathbb{Z}, \ell \geqq 0\right\}$. For $\lambda=\ell \alpha \in \mathbb{D}$, let $\left(V_{\lambda}, \pi^{\lambda}\right)$ be the irreducible unitary representation of G with highest weight λ, and $\left\{v_{i}\right\}_{i=1} d_{\lambda}, d_{\lambda}:=\operatorname{dim}\left(v_{\lambda}\right)$, an orthonormal basis of V_{λ} with respect to the $G-i n v a r i a n t i n n e r$ product $(()$,$) on V_{\lambda}$. Put $\pi_{i j}^{\lambda}(x):=\left(\left(\pi^{\lambda}(x) v_{i}, v_{j}\right)\right), 1 \leq i, j \leq d_{\lambda}$. Then

$$
x \pi_{i j}^{\lambda}(x)=\left(\left(\pi^{\lambda}(x) \pi^{\lambda}(x) v_{i}, v_{j}\right)\right), \quad x \in g, 1 \leq i, j \leq d_{\lambda}
$$

and $\left\{\pi_{i j}^{\lambda}, \lambda \in \mathbb{D}, 1<i, j<d_{\lambda}\right\}$ is an orthogonal basis of $C_{\mathbb{C}}^{\infty}(G)$. For $\lambda=l \alpha$ with $l \in \frac{1}{2} Z, l \geqq 0, v_{\lambda}$ has an orthonormal basis $\left\{v_{m}\right.$; $m=\ell, \ell-1, \ldots, 1-\ell,-l\}$ such that

$$
\pi^{\lambda}\left(H_{1}\right) v_{m}=\frac{\sqrt{-1}}{\sqrt{2}} m v_{m} \text {, for each } m \text {. }
$$

Since $\pi^{\lambda}(C)=\frac{1}{2} \ell(\ell+1)$ on V_{λ}, we get

$$
\begin{aligned}
& H_{1} \pi_{i j}^{\lambda}(x)=\frac{\sqrt{-1}}{\sqrt{2}} i \pi_{i j}^{\lambda}(x), \\
& C \pi_{i j}^{\lambda}(x)=\frac{1}{2} \ell(\ell+1) \pi_{i j}^{\lambda}(x) \quad, \text { for } i, j=\ell, \ell-1, \ldots, 1-l,-\ell .
\end{aligned}
$$

On the other hand,

$$
\operatorname{ad}\left(H_{1}\right)\left(U_{\alpha} / \sqrt{2}\right)=\frac{1}{\sqrt{2}}\left(U_{\alpha} / \sqrt{2}\right) \quad \text { and } \quad \operatorname{ad}\left(H_{1}\right)\left(V_{\alpha} / \sqrt{2}\right)=-\frac{1}{\sqrt{2}}\left(U_{\alpha} / \sqrt{2}\right)
$$

Then the action of $D_{3}=H_{1} \otimes a d\left(H_{1}\right)$ on $\vartheta_{\lambda} \otimes p$, where $\mathcal{g}_{\lambda}:=\left\{\pi_{i j}^{\lambda} ; 1 \leqq i, j \leqq d_{\lambda}\right\} \mathbb{d}$ is equivalent to the matrix
where $\quad \lambda_{i}:=\frac{\sqrt{-1}}{\sqrt{2}} i, i=l, l-1, \ldots, 1-l,-l$. Therefore the eigenvalues of D_{3} on $v_{\lambda} \otimes p$ are given by $\pm \frac{i}{2}, i=l, l-1, \ldots, 1-l,-l$. Hence the spectra of $D=-D_{0}-2 D_{3}$ is given as in (ii). Q.E.D.

Instead of the assumption of Corollary 8.12, we now assume that $K=H$. In this case, we obtain the formula of \tilde{J} of the Jacobi operator $J_{i d}$ of the identity map of a normally homogeneous space ($G / H, g$). Here we have $k=h, h_{1}=0, m=p$ and $D_{3}=D_{4}=0$. Then we obtain :

where I is the identity map of $\left(C^{\infty}(G) \otimes m\right)_{H^{*}}$

Proof. The last formula follows from $D_{2}=0$ and $D_{5}+D_{6}=-1$

Remark. The last formula $D=-D_{0}$ - I for the Jacobi operator of the identity map of a Riemannian symmetric space was stated in [Na].
［B．G］P．Béard and S．Gallot，Ińgalités isopérimétriques pour l＇equation de la chaleur et application a l＇estimation de quelques invariants， Seminaire Goulaouic－Meyer－Schwartz，1983－1984， n^{D} 15，1983．
［B．B］L．Bérard Bergery and J．P．Bourguignon，Laplacians and Riemannian submersions with totally geodesic fibers，Illinois Jour．Math．，26（1982）， 181－200．
［B．G．M．］M．Berger，P．Gauduchon and E．Mazet，Le spectre d＇une variété riemannienne，Lecture Notes in Math．， $\mathrm{n}^{0} 194$ ，Springer，New York， 1871. ［8．O］R．L．日ishop and B．O＇Neill，Manifolds of negative curvature，Trans． Amer．Math．Soc．，145（1969），1－49．
［B．L］J．P．Bourguignon and B．Lawson，Stability and isolation phenomena for Yang－Mills fields，Commun．Math．Phys．，79（1981），189－230．
［B．M］P．日érard and D．Meyer，Inégalités isopérimétriques et applications， Ann．Sc．Ec．Norm．Sup．，15（1982），513－542．
［Br］G．R．Bredon，Introduction to compact transformation groups，Academic Press，New York，London，1972．
［C．L］S．Y．Cheng and P．Li，Seminar on Differential Geometry，ed．by S．T． Yau，Ann．Math．Studies，n^{0} 102，Princeton，New Jersey，1982，p． 22.
［E．L］J．Eells and L．Lemaire，A report on harmonic maps，Bull．London Math．Soc．，10（1978），1－68．
［E．S］J．Eells and J．H．Sampson，Harmonic mappings of Riemannian manifolds， Amer．J．Math．，86（1964），109－160．
［F］G．日．folland，Introduction to partial differential equations， Mathematical Notes，Princeton Univ．Press， 1976.
［G．k．M］D．Gromoll，W．Klingenberg and W．Meyer，Riemannsche Geometrie im GroBen，Lecture Notes in Math． 55 ，Springer，New York， 1975.
［H．S．U］H．Hess，R．Schrader and D．A．Uhlenbrock，Kato＇s inequality and the spectral distribution of Laplacians on compact Riemannian manifolds， J．Diff．Geometry，15（1980），27－38．
［H］D．Hoffman，Lower bounds on the first eigenvalue of the Laplacian of Riemannian submanifolds，Minimal submanifolds and geodesics，Kaigai Publ．，Tokyo，（1978），61－73．
[J] G.R.Jensen, Einstein metrics on principal fiber bundles, J. Diff. Geometry, 8(1973),599.614.
[K.N] S.Kobayashi and K.Nomizu, foundations of differential geometry II, Intersciece, New York, 1969 .
[L] A.Lichnérowicz, Applications harmoniques et varíétés Kählerienne, Symposia Math. III, Bologna,(1970),341-402.
[Ma] E.Mazet, La formule de la variation seconde de l'énergie au voisinage d'une application harmonique, J.Diff. Geometry, 8(1973),279-29، [Mo] H.Mori, Notes on the stability of minimal submanifolds of Riemannia manifolds, Yokohama Math. J.,25(1977),9-15.
[M.U] H.Muto and H.Urakawa, on the least positive eigenvalue of the Laplacian on compact homogeneous spaces, Osaka J. Math., 17(1980),471-484.
[Na] T.Nagano, Stability of harmonic maps between symmetric spaces, Harmonic maps, Proc. Tulane, Lecture Note in Math., $n^{0} 949$, Springer, New York, 1982, 130-137.
[No] K.Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math., 76(1954),33-65.
[Ob] M.Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. U.S.-Japan Semin. in Diff. Geom. Kyoto, Japan (1965), 101-114.
[O.N] B.o'Neill, the fundamental equations of a submersion, michigan Math. J.,13(1966),459-469.
[si] J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), 62-105.
[Sm] R.T.Smith, The second variation formula for harmonic mappings, proc Amer.Math. Soc., 47(1975),229-236.
[T] M.Takeuchi, Modern theory of spherical functions (in Japanese), I wanami, Tokyo, 1975.
[T.K] M.Takeuchi and S.Kobayashi, Minimal imbeddings of R-spaces, J. Dif Geometry,2(1968),203-215.
[T1] S.Tanno, Geometric expressions of eigen 1-forms of the Laplacian on spheres, Spectra of Riemannian manifolds, Kaigai Publ., Tokyo,(1983)', 115-128.
[T2] S.Tanno, Remarke on Sobolev inequalities and stability of minimal submanifolds, J. Math. Soc. Japan, 35(1983), 323-329.
[U1] H.Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, 31(1979), 209-226.
[U2] H.Urakawa, Lower bounds for the eigenvalues of the fixed vibrating membrane problems, Tohoku Math. Jour., 36(1984),185-189.
[W] J.A.Wolf, Spees of constant curvature, McGrow-Hill, New York, 1967. X Y.L.Xin, Some results on stable harmonic maps, Duke Math. Jour., 47(1980), 609-613.
[Y.B] K.Yano and S.Bochner, Curvature and Betti numbers, Ann. Math. Studies, n^{0} 32, Princeton Univ. Press, Princeton, New Jersey, 1953.

Max-Planck-Institut für Mathematik,
Gottfried Claren Straße 26,
5300 Bonn 3, Federal Republic of Germany
and

Department of Mathematics,
College of General Education,
Tohoku University,
Kawauchi, Sendai, 980, Japan

[^0]: Lemma 4.1. Let $\lambda_{Y}^{1}(M)$ (resp. $\lambda_{1}(M)$) bethe first (resp. first nonzero) eigenvalue of the Hodge Laplacian (resp. the Laplace-

