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§o. Introduction and statement of Results. 

The purpose of this article is to give results concerning with 

the Jacobi operator of a harmonic map which is arisen from the second 

variational formula of the energy functional of the map. This article 

is divided into three parts Chapter 1 is treated uith the 

estimation of the index and the nullity of a general harmonic map. 

In chapter II, ue will deal with the stability of the identity map 

of a closed Riemannian manifold, i.e., a compact Riemannian manifold 

without ?oundary. Chapter III is devoted into the investigation of 

the Jacobi operator of the Riemannian submersions uith totally geodesic 

fibers. 

More precisely, let (M,g), (N,h) be tuo Riemannian manifolds 

of dimension m, n, respectively. We consider the energy functional 

.E on the set "t1l(M, N) of all smooth maps ~ ; (M,g)--t(N,h) 

(cf. [E.l] ) : 

E(rp) • ~ J L m h( tp.ei , 'P.ei) * 1 , 
M i-1 

is a locally defined orthonormal frame field on M 

and ~1 is the volume element of (M,g). A critical point ; of 

E in »1(M,N) is called to be harmonic. The second variational 

formula of E was obtained by E.Mazet (Ma) and R.T.Smith [Sm] 

for everyone-parameter deformation 

giving a vector field 

'1t of 

V along 

- J M h(J;V,V)+1 • 

~ with , and 

~ , 

Here J~ is a s,cond order elliptic differential operator, called 

a Jacobi operator analogeusly as a Morse theory of geodeSics, acting 

on the space of all vector fields along ~. It is known that ~ 



has a discrete spectrum when PI is a closed manifold. The index 

of ~,denoted by Index(¢), is the sum of the multiplicities of 

the negative eigenvalues of J~, and the nullity of ~ , denoted by 

Nullity(1), is the dimension of the kernel of J,. 
When ~ is a relatively compact domain in a complete Riemannian 

manifold (M,g), we consider the variation of the energy functional 

E on the set of all smooth maps ~ j Q. --t N wi th the fixed boundary 

values on aS2.. In this case, the second variational formula yields 

the eigenvalue problem of J, 
condition 

on Q wi th the Oi richl et boundary 

r Jj6 V = 

L V = 

AV 

o 

on Q, 

on aQ, 

where V is a vector field along 'f.. The index of ¢ on Q , 

denoted by IndexSG{~)' is also defined as the sum of the multiplicities 

of the negative eigenvalues of this eigenvalue problem of J~, and 

the nullity of ~ on S2., denoted by Nulli t yS2,(¢) , is the dirnensi on 

of the zero eigen-space. If Index(~) = 0 (resp. Index~(¢) = 0 ), 

that is, al~ the eigenvalues of J~ are non-negative, the harmonic 

map ~ ; (lit,g)~(N,h) is called to be stable (resp. stable ~..R. ). 

Main results of chapter I are as follows: The crucial proposition 

for us, which are the analogue of recent works of P.Berard and S.Gallot 

(cf. [e.c]) are: 

Proposition 2.1. 

(N,h), a harmonic map. 

Let M be a closed manifold and ~ 

Then we have 

o<t < oo} , 

yhare n. dim N and NR~ is the following quantity 

(M,g)-3> 



NR is the curvature tensor of (N,h) (cf. §1). ZM(t) is the trace 

of the heat kernel of the Laplace-Beltrami operator II M of (M,g) 

acting on the space of all smooth functions on M. 

Proposition 2.4. let ~ be a relatively compact domain in 

a complete Riemannian manifold (M,g), and 1: (M,g)~(N,h), 8 

harmonic map. Then we have 

5 N 9 
Index (¢) + Nullity (~) ~ n lnf l et ~Z.Q(t); 0< t (00 }, 

where n - dim N and the quanti ty NR~ is defined by 

NR~:= Sup Sup ~m h(N R( ~ei'v) ~ei,v)/h(V,v). 
XE:.Q vcT ;(x)N 1=1 

",,00 e-tAl ~ Zt"'\( t):= 6 , where Xi (Q), i=1, 2, ••• , are the eigenvalues 
or.. i=1 

counted with their multiplicities of the Dirichlet problem of ~M 

for the domain 6G : 

on Q , 

on dQ,. 

As applications of these propositions, we have : 

Theorem 2.5. Let (M,g) be a closed Riemannian manifold of 

dimension m ~ 2 , uhosa Ricci curvature RicM is bounded below by a 

positive constant Ric~ ? (m-1)& > O. lat ~: (M,g)~(N,h) ba 

a harmonic map of (M,g) into arbitrary Riemannian manifold (N,h) of 

dimension n. -Than we have 

(i) In case of m > 3 , -
Index(¢) + Nullity(~) ~ n (1+t)A {1+(m-1)! mm-, A(1+A)m-'}, 



wh ere A:= N R ' / m S • 

(ii) In case of m = 2 , 

Index(~) + Nullity(~) ~ n {1+~)8 {1+482 } , 

where 8:= NR,/S • 

Remark. The function 

and (14)X < e, o<x(co. 

(1+1)x satisfies that x 

Theorem 3.1 • Let Q be a relatively compact domain in a 
. 

complete Riemannian manifold (M,g), and ¢: (M,g)--T(N,h) be a 

harmonic map into arbitrary Riemannian manifold (N,h) of dimension n. 

Then we have 

(i) A 1 (02) , N R~ q I ndex.Q.,(¢) = 0 and Nulli ty.Q.(¢) ~ n • 

(ii) A-1 (6G) > NR~ q IndexQ.(¢) = Nullity,Q,(¢) = O. 

Since ~1~) grows to infinity and NR~ remains still bounded when 

Q shrinks to "small", this theorem implies that ¢ is stable on a Iismall" 

relatively compact domain in M, which was stated in [5m]. 

It is knololn (cf. [C.L) ,[B~GJ ) that there exists a constant C(M,g) 

)0 depending only on (M,g) such that the eigenvalue A. (,Q) of 
~ 

the Dirichlet eigenvalue problem of 6 M for.s1 satisfies 

, i=1,2, •••• 

Then lJe can estimate Inde~(¢) + Nullity~(¢) by the quantity 

0:- N~ C(M,g)-1 VolGg)2/m -, (cf. Theorem 3.4). 

In chapter II, loiS will treat lJith the Jacobi operator of the 

identity map. The identity map of a closed Riemannian manifold (M,g) 

ia harmonic and (M,g) is called to be stable (cf.[Na]) if the 



identity map is stable. 

It is known (cf. [Sm], [Na]) that a holomorphic map between 

Kahler manifolds is always stable. Then the stability of the identity 

map of a closed Kahler manifola (M,g) yields the Kahler version of 

a theorem of Lichnerowicz-Obata concerning the first non-zero 

eigenvalue ~,(M) of the Laplace-Beltrami operator 6 M : 

Theorem 4.2. (M.Obata) Let (M,g) be a closed Kahler manifold 

whose Ricci curvature RicM is boundea below ~y a positiva constant : 

Then we have 

A.., (M) ? 20(. • 

When the equality holds, the Lie algebra a of the group of holomorphic 

transformations of M is non-zero. 

Remark. In the case that (M,g) is Einstein and Kahler, 

this theorem was stated in [Ob). In this case, the equality 

A,(M) III 2«. holdS if and only if a'""ioj. 

Some instability results about Riemannian tori and the canonical 

deformations of the standard unit sphere (S2n+',can) are obtained 

(cf. 5.1 end 5.2). V.L.Xin{X) showed that every non-constant 

harmonic map of the standard unit sphere (Sn,can) into arbitrary 

Riemannian manifold is unstable. On the contrary, we can state : 

Proposition 5.6. [very spherical space form (Sn/G, 9 ) , 
where G ir tid} is a finite group acting fixed point freely on Sn, 

is stable. Here 9 is the Riemannian metric on sn/G induced 

from the standard metric can of Sn with constant curvature 1. 



Therefore every closed Riemannian manifold of constant curvature 
(Only 

(positive, zero or negative) is stable exceptlthe unit sphere (Sn,can) 

(cf. Corollary 5.7). The analogous stability theorem for Yang-Mills 

fields was stated in [e.L, p.223]. 

In chapter Ill, we will deal with the Jacobi operator of Riemannian 

submersions with totally geodesic fibers. The Riemannian submersion 

<P : (M,g)~(N,h) with totally geodesic fibers is harmonic (cf. [E.SJ). 

The typical examples are (cf. [e.e]) : 

4n+3) n Hopf fibering ¢l 1 : (5 ,g ---i(HP ,h), 
2n+1' n Hopf fibering ¢2: (5 ,g)--,(CP ,h), 

(i) 

(ii) 

(iii) The natural projection ¢: (G/H,g)~(G/K,h), 

where G:::> K::> H are compact Lie groups. 

ror the Riemannian submersion ~, we will define the vertical 

(resp. horizontal ) Jacobi operator (resp. which satisfy 

and Jf6 = J~ + 

(cf. Theorem 6.5 ). And we can compare (resp. Nullity(¢) ) 

of the submersion ~ with Index(idN) (resp. Nullity(id N) of the 

base manifold (N,h): 

Proposition 6.3. Let (M,g) be a closed Riemannian manifold 

and ~: (M,g)~(N,h) , a Riemannian submersion with totally geodesic 

fibera. Then we have the inequalities Index(~) ~ Index(id ) 
't' f N ' 

In particular, 

if the base manifold (N,h) is unstable, then the projection ~ is 

unstable. 

Moreover, following ~.B] , we define the canonical deformation 

gt. 0 <t<oo~ of the Riemannian metric 9 on M with g, == 9 

(cf. §7) such that the projection <f: (M,gt)~ (N,h) is still 



a Riemannian submersion with totally geodesic fibers. For this 

canonical deformation gt ,the Jacobi operator tJ; of ; ; (M, 9t) ---+ 

(N,h) satisfies (cf. Proposition 7.2) 

Then we have : 

Theorem 7.3. let (M,g) be a closed Riemannian manifold and 

¢ ; (M,g}--1(N,h) be a Riemannian submersion with totally geodesic 

fibers. let 9t' O(t<M, be the canonical deformation of g with 

Then there exists a positive number E such that 

for all O<t < E.. 

In particular, if (N,h) is stable, then ?: (M,gt)~{N,h) is 

stable for all 0< t < E • 

As applications of Proposition 6.3 and Theorem 7.3, we have 

(i) Since (Hpn, h) is unstable (cf. lsm) , [Na) ), the submersion 

~1 : (S4n+3'9}~(Hpn,h) is always unstable. 

(ii) Since (Cpn,h) is stable, for the canonical deformation 

9t' O(t(&, of 9 on 52n+1 with g1 - g, there exists a positive 

number E. such that the submersion jll2: (S2n+1, gt)~ (Cpn, h) 

is stable for each O<t< f (cf. Proposition 7.4). 

On the other hand, when the holomony group of the submersion does 

not act transitively on the fibers and the base manifold (N,h) is 

unstable, the index of the submersion ¢; (M,9t)--t{N,h) grows to 

infini ty as t..,oo (cf. Theorem 7.5). This is an extension of results 

obtained by R.T.Smith in [sm, Corollary 3.3) • 

At last, wa will express in terms of Lie algebras, the Jacobi 



operator of the homogeneous Riemannian submersions (iii) (cf.Theorem 

8.1'). As.an application, we determine the spectrum of the Jacobi 

operator of the Hopf fibering of S3 onto Cp1 = S2 (Corollary 8.12). 

Acknowledgement. I would like to express my hearty thanks 

to Max-Planck-Institut fur Mathematik for its hospitality during 

my stay. 



Chapter I. The Index and the Nullity of a General Harmonic Map. 

§1. Preliminaries. 

1.1. In this section, following [E.l] • we prepare the second 

variational formula of the energy functional obtained in [Ma] , [5m]. 

Let (M,g),(N,h) be two Riemannian manifolds of dimension m,n, 

respectively. let ¢; M-tN be a smooth map. Let E:::: ",-1 TN be 

the induced bundle by ¢ over M of the tangent bundle TN of N. 

We denote by reEl, the space of all sections V of E, that is, 

V E' r( E) implies that V is a map of M into E such that V E x 

T SiS( x) N for all x E- M • for X E r(TM), ",e define 'Ilt.x E r(o by 

( S6.X) :-x S\xXx E T S"(x)N , x£-M, ",here ¢"'x is the differential of 9S 

YEf(TN), Y E reEl ""'J 

at x • for we also define by Y x :- Y ~ (x)' xE M. 

We denote by V, NV the Levi-Civi ta connections of (M, g), 
...... 

(N,h), respectivaly. Then we give the induced connection 'V on E 

by 

"J d N -1 I 
(1.1) CVXV)x:= at P9l(lf(t» V'Zf(t) t=O' XE- r(TM), VEr<E 

rat t=O 
",here x EM, ~ (t) is a curve through xl whose tangent vector at 

x is N 
P9l(~(t» ; T~{x)N--+T~(~{t»N, is the parallel 

displacement along a curve 

connection NV of (N, h). 

~(~(s», CKs<t, given by the levi-Civita r I: :: 

We define a tension fi eld T(¢) E; r (E) of l' by 

where {eili.~ is a (locally defined) orthonormal frame field on PI· 

IJe call rp to be harmonic if T (rp) -= 0 • for a relatively compact 

domain g in M, the energy E (bl,rp) of 9 on b6 is defined by 



E($2·1):= .ke (9)(X) +' , 
, Em 

uhere e(~)(x):= 2' 1=' h(~ .... ei' cp",.e i ) and *, is the volume element 

of (M,g). We denote E(~):= E(MJ~q uhen defined. for an element 

V in reEl, let ~t; M--7N be a one-parameter family of maps 

from Minto N uith ~o "'ef, and ~ ¢t(x) I = Vx ' x EM. 
t=o 

If VE r(E) . has a compact support, it is knoun (cf. [E. 5] , [E.l] , [Ma]) 

that 

(1.2) 

Moreover, if 9>; (M,g)--t(N,h) is harmonic and VE r(E) has a 

compact support, 

(1.3 ) ~ E ( 1>t) I = j h ( V , J cb V )* 1 , 
dt£ t=O M r 

uhere the operator J; ; r(E)~r(E} , called the Jacobi operator 

of ~ , is a second order elliptic differential operator given by 

(1.4 ) 

for vE- r(E}. Here NR is the curvature tensor of (N,h) given by 

(1.5) N Nrz N N N Nn 
R (X, V ) z:= YIX, v1 z - Vx ~ z + ~ Vx Z , 

for X,Y,Zer(TN). 

For a relatively compact domain ~ in M, let us consider the 

Dirichlet eigenvalue problem of J; as follous 

on Q, 

on a~. 

If M is a closed manifold, U8 consider the eigenvalue problem of J~ 



( 1.7) J; V 110 ).. V , V f r(E). 

It is known that the spectra of both problems (1.6), (1.7) consist 

of discrete eigenvalues with finite multiplicities. The index of ~ 

on S2, denoted by Inde~(~), is defined as the sum of the eigenvalues 

of the problem (1.6), and the index of ~ , denoted by Index (P), is 

also defined as the sum of the eigenvalues of (1.7) when M is a closed 

manifold. The dimension of the zero eigenspace of (1.6) (resp. (1.7») 

is called the nullity of ¢ on Q. (resp. the 'nullity of SO), denoted 

by Nullity.Q.(cp) (resp. Nullity(CP) ). The harmonic map ¢; (M,g) ~ 

(N,h) is stable (resp. stable on~) if Index(~) = 0 (resp. Index~(¢) 

= 0 ). 

1.2. For the estimation of the index and the nullity of a 

t t ot NR~ NR! harmonic map, we have to introduce he quan 1 y or ~ as 

follows. We retain the notations as in 1.1. 

Definition 1.1. For a smooth map ~; (PI,g)---}(N,h), we define 

NRCP by 

(1. B) 

For a relatively compact domain Q in PI, we define also NR~ by 

(1.9) 

Note that these quantities d~ot depend on the choice of {ei}i.~· 

We have immediately : 

Lemma 1.2. Assume that the sectional curvature NK of (N,h) 



is bounded above by a positive constant : 

for all planes IT in T yN, yf N. 

Then ",e have 

(1.10) NR; < 2a Eoo(CP) , and .. 
(1.11) NR4 < 

~= 
2a Eco f$2,f) • 

Here E-(~) := Sup e(q,) (x) and (OO(Q,</l ) := Sup e{~ )(x). 
xE: M xE-Q, 

In fact, it is· obvious from that 

at each point of M. 

Example 1.3. Let ~j (M,g)~(N,h) be an isometric immersion. 

Then e(~)(x) - m/2 at each point. Therefore 

(1.12) 

(1.12') 

[oo(~) =or E(JAfSl.,~) = m/2, and 

NR.t. ~ R9 ~ rna , 

for every relatively compact domain ~ in M. In particular, let 

r;; to, 2'1tJ--~ (N, h) be 8 geodesic ",i th the 1 ength L. Then 

(1.13) 

Example 1.4. Let ?; (M,9)~(N,h) be an Riemannian 

submersion (cf. §6). Then ",e can choose an orthonormal local frame 

8 i • 0, n+1<i<m, = c 



where m ~ dim M, n • dim N and feI}i=~ is an orthonormal local 

frame on N. Then the Ricci curvature of . (N,h), RicN(v), v E: T ¢>(x)N, 

is by definition ~ m h(NR(tP.ei,v) ~ei'v)/h(v,v). 
1-1 

Therefore, since 

¢ is surjective, we have 

and NR~ - Sup Ric 
~ - f'$b) N· 



§2. The Index end the Nullity of a Harmonic Map from a Closed Manifold. 

2.1. Method of Berard and Gallot. At first, let us recall 

a method of Berard and Gallot (cf.[B.G]) how to give estimations of Betti 

number , dimension of the moduli space of Einstein metrics, and dimension 

of harmonic spinors. Here let us apply their method to estimate the 

index and the nullity of a harmonic map. 

Let (M,g) be a complete Riemannian manifold of dimension m, and 

E , a vector bundle over M wi th an inner product <","/ and a connection 
'" . \l compatible wi th respect to <:,.> , that is, 

, X E r( T rI ), s , s' ~ n E ) • 

Then we can define the rough Lapla~ian A on E in such a way that 

(2.1) , 

is an orthonormal local frame field on M. In ca~8 

that M is a closed manifold, the eigenvalue problem 

- 6. s - AS, S Eo r( E) , 

has a discrete spectrum : ~ ~ A2 ~ ••• ~ Ai ~ ••• • Consider the 

zeta function Z (t):- ~oo e-tAt 
E • 1 l.= 

, t,. o. And let 

S Al..< ••• - = be the spectrum of the Laplace-Beltrami operator 6 r1 acting 

'C"1 oo -tAo 
Then we can compare ZE(t) \.lith ZM(t):= L., e ~ 

1=0 

Theorem (H.Hess, R.Schrader and D.A.Uhlenbrock (H.S.U) ) 
, t) o. 

Hare ! is the rank of the vector bundle E. 



Now our situation is as follo~s : The vector bundle E is the 

induced bundle tf>-1 TN over I~ by a harmonic map r/J; (M,g)---t(N,h). 

And the Jacobi operator J~ ; r(E)~r(E) is of the form (cf.(1.4» 

(2.2) VE- feE). 

Here 6 is the rough Laplacian on the bundle E = ~-1TN and the 

operator of r(E) defined by 

'" a bundle map of E. Therefore, letting • •• ~ ,Ai~ ••• be 

the spectrum of J" ue have 

(2.3) , i == 1,2, ••• , 

by (2.2), definition of NR; , and Mini-max Principle of the 

eigenvalue problem of the elliptic operators. Since Index(¢) 

+Nullity(¢) is the number of the non-positive eigenvalues of J~, 

(2.4) Index(?)+Nullity(~) ~ 

, t) 0, 

by (2.3). Here, using a theorem of Hess, Schrader, and Uhlenbrock, 

ue have 

(2.5) 

noting that the rank of E coincides uith dim N = n 

Proposition 2.1. Let M be a closed manifold, and ~; 

(M,g)~(N,h) , a harmonic map. Then ue have 

(2.6) Index(;)+NUllity(t) ~ n { N~ Inf at R ZM(t)j o<t<ooj 

uhere n • dim N, NR, is the quantity in §1, and ZM(t) is the 

trace of the heat kernel of AM acting on Coo(M). 



~ 
Corollary 2.2. The situations are preserved as in Proposi tion 

I 2.1. Then we have 
I 

l 
(i) NR)1l < 0 t:::I Index(rp) = 0 and Nullity(¢» < n , = = 
(ii) NR¢ < 0 c::{ Index(¢» = Nullity(cp) = o. 

In fact, in the inequality 

(2.7) 
"V 

-tAo e 1 , t ) 0, 

the assumption NRJ' < 0 
= implies that the right hand side has a limit 

smaller than or equal to n as t tends to infinity since ZM(t) 
""J 

goes to 1 as t goes to infinity. Therefore each eigenvalue Ai 

of Jj6 must be non-negative, i.e., Index(~) = o. fVloreover, the 

left hand side of (2.7) is bigger than or equal to Index(~)+Nullity(¢; 

= Nullity (CP) for each t.,. O. Therefore Null! ty (~) < n. I f we 

assume NR;) 0 , then the right hand side of (2.7) g085 to 0 

as t tends to infinity. Therefore we have Index(¢) = Nullity(~) = o. 

Therefore the problem 1s reduced to give the estimation of ZM(t). 

2.2. Case of a Domain. The above procedure works well in 

the case of the Dirichlet eigenvalue problem for a relatively compact 

domain ~ in a complete Riemannian man! fold (M, g). 

Certainly, let 

( ••• < = = Ai (9) ~ ••• 

be the spectrum of the Oirichlet eigenvalue problem of the rough 

Laplacian is. (2.') of a vector bundle E wi th an inner product <.,,> 
and a connection et compatible with respect to <...,. > : 

{
-AS -

S • 0 

A.. 5 on 52., 

on db?" 



where s is a section of E on the closure .Q. of Q. 

the zeta function ZE,Q(t) defined by 

Loa e - t ~i (52) , t > o. 
i=1 

Similarly, let 

••• < A. IQ.) ( ••• , = 1\1 = 

Consider 

be the spectrum of the Dirichlet eigenvalue problem of the Laplaca-

Beltrami operator 6M for the domain ~ , and Z~(t) be the zeta 

function defined by 

(2.8) ZQ.( t) ;= , t > o. 

Then we have the analogue of a theorem of Hess, Schrader and Uhlenbrock 

Theorem 2.3. 

(2.9) t) 0 , 

where .It is the rank of E. 

Proof. I t can ·be proved in the similar way as the proof' in [B. G: 

Assume that s (t, x) E Ex ' t > 0, x ~ .Q., satis f i es the heat equation 

with the Dirichlet boundary condition 

{:~ - 4) s(t,x) =: 0 

s(t,x) - 0 

on (0,00»( Q , 

on (o,oo)xaQ.. 

for each e. > 0, let fe. :- ( Isl 2 + c 2 )1/2 (0" n w on ,1lO)Xj)c.. Then it can 

be provad by the same loIay as in [H.S.U] that 

on (0 ,00) x Q • 

Therefore fE: satisfies 



< 0 = on (O,eo)x Q. • 

Then we can apply ~ to the following Maximum Principle of heat kernel 

Theorem (Maximum Principle) Let &2. be a relatively compact 

domain in M, and let 0 < T < 00 • Assume that u is a real valued 

continuous function on [0, T}CQ, and satisfies the inequali ty 

on (O,T)xQ. 

Then u attains its maximum on the set {01)($2 or [0, TJ >( aQ • 

For proof, see [F,p.204]. 

Then, if fe(O,x) ~ f(O,x)i- ~,then fe(t,x) ~ f{t,x)+ E. 

Hence for every integrable section s of E on ~ with the Dirichlet 

condition 5 = D on a~, we have 

(2.10) I ( e t b s)( x ) I ~ (e t6M I s I )( x ) • 

Therefore applying s(z) >= L,1. $'. u.(z} 
i=1 z,Y J 

to (2.10), where c z,y 
R. 

Y and {U j (z) }j=1 is the Dirac function at is an orthonormal basis 

of the fiber Ez at each point z in M, and noting ! s (z) I ==.Q. b Z I Y 

we have the desired inequality (2.9). Q.E.D. 

We denote the spectrum of the Dirichlet eigenvalue problem of 

J; on Q by 

(2.11) 
...... "'-oJ 

"'"1 (51) ~ A2 (Q.) ~ 

and define 
I'J 

~(t) := 
,,00 -t ~ (Q) 
Lw e 1. • 

i=1 
lJe have : 

••• < 
= 

Then by the similar way as 2.1, , 



Proposition 2.4. Let ~ be a relatively compact domdin in a 

complete Riemannian manifold (M,g). 

harmonic map. Then we have 

Let Szl; (M,g)~(N,h) be a 

(2.12) Index.Q.(rJI)+Nullityst(CP) ~ ~(t) ~ n Inf{e tNRto Z,S2.(t);O<.t<IXI}, 

where n = dim N, NR~ is defined in ~1, and ZQ(t) is the zeta 

function of the Dirichlet eigenvalue of AM on Q, deFined by (2.8). 

2.3. To apply Proposition 2.1, we make us. of the following 

proposition obtained also by Berard and Gallot [a.G] : 

Proposition (P.Berard and S.Gallot) Let (M,g) be a closed 

Riemannian manifold whose Ricci curvature RicM is bounded below by 

a positive constant RicM , (m-1)& > o. Then the trace ZM(t) 

of the heat kernel of (M,g) is estimated as 

(2.13) 

where m = dim M and ZSm(t) is the trace of the heat kernel of the 

standard unit sphere (Sm,can) of constant curvature 1. 

It is known (cf. [a.G.M) that if m ") 2 , 
= 

~~ -tk(k+m-1) 
~ mk e , 
k-O 

t)O , 

(m+2k-1), k - 0,1,2, •••• 

Then the function ZSm(t) is estimated as follows . . 
(1 ) In case of m > 3 , 

a:: 

(2.14 ) ZSm(t) < 1+. "Loo (mk)m-1 -tmk e 
= k=1 

< 1+(m_1)!mm-1 e-tm(1_e- tm )-m , 
• 



(ii) In casa of m = 2, 

(2.14') ZS2(t) = Eoo (2k+1) a- tk (k+1) 
k=O 

< 1+2 6 00 k 
== k=2 

-tk a 

Therefore combining (2.13) with (2.14), we have 

(i) in case of m > 3 , 
= 

(2.15) 
N ; 1 

In f {e t R ZM (t) j 0< t < 00) 

~ InfletNRf6I&~+(m_1)!mm-1e-tm(1_e-tm)-,; o<.t<oo]. 

t 1 
a = 1+1\ ' 

(ii) In case of m = 2 , 

(2.15') Inf{etNR9 ZM(t);O<t<oo}S InfietNRrf 1[' 11+2e-2t(2-s-t) (1_e- t )-: 

;O(t(oo}. 

Letting 8 = NR~S and et = 1+~ , 

the right hand sida of (2.15') ~ (1+~)8t1+482}. 

Therefore together with (2.6), we have: 

Theorem 2.5. Let (M,g) be a closed Riemannian manifold of 

dimension m ~ 2 whose Ricci curvature RicM is bounded below by a 

positive constant: RicM ~ (m-1)f) > O. Let r;; (M,g)-1(N,h) 

be a harmonic map of (M,g) into an arbitrary Riemannian manifold 

(N,h) of dimension n. Then we have : 

(i) In case of m, 3 , 



Index(q,)+Nullity(~) ~ n (1+t)A {1+(m_1)!mm-1 A(1+A)m-1}, 

where A:- NR'/m& and NR; is the quantity in 91• 

(ii) In case of m - 2 , 

Index(;)+NUllity('1» $ n (1+j)8 {1+482 } , 

wh ere B:= N Rt IS. 

Remark. The function (1..l)x ,x> 0 ,s,atisfies lim(1+1)x = 1, 
x x~O x 

!~~1~)X _ e. Therefore, when the quantity NR-

goes to zero, the bounds of the above inequalities in Theorem 2.5 

tend to n. In'the case that , is the identity map of the 

n-dimensional flat torus, Index(~) - 0 and Nullity(1) = n. That is, 

the above estimate is optimal when NR~ goes to zero. 

By the way let us consider the case 1 
Pl - 5 - i/21t'l. 

cese, we know that 

III 1 + L. eo 

k=' 

Then we have the estimation of ZS1(t) ba the same way 

(i) 

(ii) 

and we have : 

1+e- t 
ZS1(t) ~ 1_e-t , t) 0, and 

, t) 0 , 

In this 

Proposition 2.6. Let 9 J [O,21tJ~(N,h) be a closed geodesic, 

that is, ;(0). ~(2~) for the tangent vectors at 9(0) - 9(2~), 

in an arbitrary Riemannian manifold (N,h) of dimension n. Than 



Index(~)+Nullity(¢) ~ n (1+t)C Min {1+2C, 1+ Jif /1+C J ' 
where C:= NR~ defined in 

sectiDnal curvature NK Df 

§1. In particular, assuming that the 

(N,h) is bDunded abDve by a positive 

cDnstant : the index and the nUllity of a closed geooesic 

~; [O,2xJ~ (N,h) of (N,h) satisfies 

(2.16) Ind.x (II» +Null1ty (9\) ~ n • {1+~; } • 

Remark. The estimate (2.16) is far from the optimal estimate 

Dbtained by Morse-Schonberg (cf.(G.K.M). 

2.4. Minimal ISDmetric Immersions. Let us consider an isometric 

immersion "'; (M,g)--+ (N,h). Then it is known (cr. [EoS], [E.l] ) 

that 9 is harmDnic if and only if ~ is minimal. The second 

variational formula of a volume for an isometric minimal immersion 

is as follDws (cf. LSi) ) : 
.L 

Let r ~ TM be the normal bundle of ~ 

in N which is a subbundle of E = ~-1TN 0 ror a section VE r(r), 

let ~t be a smooth variation Df tfJ wi th ¢o = ¢ and V x = ~t ~t (x)1 

x t PI. Then 
t :: (i 

The Dperator L,s; r (r)-7 r(r) is a second order elli pti c di ff er ent i al 

operator of the form : 

(2.17) ve:l(r), 

",hare .1.2 U is the rough Laplacian on r given by 

and V~V ia the normal cDmponent of the connection N\7x V , X E: r(ny, 
VE- r(r). The operator ~: r (r}--+ r(r) is d ... (;ngri nv 



t3 (V) :- , 

,",here B is the second fundamental form of ~ defined by 
N .L N 
(~V) ,the normal component of \7XV, X, V t r(TM) I and 

r(TM)--+ r(TM) is defined by h(8 X,y'V) = The operator 

R- ; r(f)--+ r(f) is the normal component of ~m NR(ei,V)e i • 
1.=1 

.L 
Note that for our Jacobi operator J~ lite normal'component (J,V), 

satisfies 

(2.18) 
.L.L2 .L ' 

(JJ6V) .. -" V + &3(V) - R (V), VE: r(r). 

Definition 2.7. (i) We denote by S-lndex(9) the sum of 

the multiplicities of the negative eigenvalues of L; on reF), 

and by S-Nullity(¢) the dimension of the kernel of Lp on r(r). 
( ) ( r .L ) ii Let fi3 resp. be the supremum of the maximal eigenvalues 

of the endomorphism ~ (resp. R.L) of the fiber fx of r ,",here 

x varies over M. 

Note that under the assumption that the sectional curvature NK 

of (N,h) is bounded above by a positive constant: NK ~ a , 

we have 

(2.19) 
.L 

r ~ ma , 

where m .. dim ~ (cf. Lemma 1.2 and Example 1.3). And note that 

(2.20) f!> ~ Sup 
XE- M 

L: m h(8 ,9 ). 
. . 1 e . , e . ei' e . 
~,Jc 1. J J 

Then by the same way as 2.1 and 2.3, we have 

Proposition 2.8. Let (~,g) be a closed Riemannian manifold 

~; (M,g)--t(N,h) an isometric minimal immersion. Then 



S-Index(Cj6)+S-Nullity(1') ~ (n-m) Inf{ Bt(~+r"') ZM(t) ; o<t<oo}, 

J. 
where m = dim M, n ... dim N, ~ and r are defined in Definition 2.7, 

and ZM(t) is the trace of the heat kernel of the Laplace-Beltrami 

operator AM of (M,g). 

Proposition 2.9. Let (M,g) be a closed Riemannian manifold 

of dimension m ~ 2 = whose Ricci curvature Ric M is bounded below by 

a positive constant RicM 2 (m-1)& ) D. Let cp; (M,g)--t(N,h) 

be an isometric minimal immersion of (M,g) into an arbitrary 

Riemannian manifold of dimension n whose sectional curvature NK 

is bounded above by a positive constant : N K < a. Then 

(i) In case of m) 3, 

1 Ali m-1 m-
S-lndex(~)+S-Nullity(~) ~ (n-m)(1~1) l1+(m-1)!m A'(1+At) 

where A': ... (~+ma) 1m S • 

(ii) In case of m ... 2, 

S-Index(cJ»+S-Nullity(~) ~ (n-2)(1~,)81 {1+4B,2} , 

where 8 1 := (~+2a)/S • 

Proposition 2.10. Let ~; [0,2)---} (N,h) be any closed geodesir 

in an arbitrary Riemannian manifold (N,h). Then 

S-Index(~)+S-NullitY(1) ~ (n-1)(1+t)C Min{1+2C, 1+m/1+c], 

where C ... NR~ defined in §1. In particular, assume that the 

sectional survature NK of (N,h) is bounded above by a positive 

constant: NK < a. Then 
... 2 

S-Indax(CI')+S-Nulllty(q,) < (n-1) e {1+W}. 
... 21t~ 



~3. The Index and the Nullity of a Harmonic Map from a Domain. 

3.1. We retain the notations as in 2.2. Ue have 

Theorem 3.1. Let ~ be a relatively compact domain in a 

comp,lete Riemannian manifold (M,g), ;; (rvl,g)~(N,h) , a harmonic 

map of (M,g) into an arbitrary Riemannian manifold (N,h) of 

dimension n. Then 

(i) ;\1 (.Q) ~ NR~ c:::> IndeXg(q,) = 0 and Nul-lityQ.(tp) ~ n , 

(ii) A1 (~ ,. NRl q Index.Q(q» .. NullitYsz.(16) = o. 

That is, if A, ("2) ~ N~, then the harmonic map ~ ;0. (M,g)--...,.(N,h) 

is stable on Q.. 

Proof. By Proposition 2.4, the zeta function Z5?(t) = LIO e- t ~ (f 
i=' 

of J~ on Q, satisfies 

is the spectrum of the 

Dirichlet eigenvalue problem of the Laplace-Beltrami operator ~M 

on Q. Noting the fact that "'1 (Q) "> '" (Q), i .. 2, 3, ••• , the 

assumption NR~ ~ A,~) implies that the limit of the right hand 

side of the above inequality is less than or equal to n whan t --+ 00 • 

Then I ndexQ.(;) .. a and Nulli tYQ(~) ~ n. 1 f NR~ < A, (.g), the 

limit of the right hand side o( the inequality is zero when t --+ 00. 

Therefore IndexQ(~)" NullitYQ(~) K O. a.(.o. 

r Corollary 3.2. Let Br(o) 

whose center ia a cartain point 0 

be a geodesic ball with radius 

in thei standard unit sphere 

m-dimen!!ional 

r 



(Sm,can) of constant curvature one. Ue choose the radius r with 

0< r < 'lt/2 in such a way that ),1(8 r (0» = m-1. Then , for every 

damain Q in Sm ",hose volume Vol (Q) is less than or equal to the 

volume vol(Br(O», the identity map idj (Sm,can)--+(Sm,can) is 

stable on S2 • 

Proof. By Example 1.4, we have NR~ = m-1 for every domain ~ 

in Sm. In this case, Theorem 3.1 implies that , if A1 (Q) ~m-1, 

then the identity map fjJ = id . (Sm,can)~(Sm,can) , is stable on ~ • 

Bya theorem of P.B'rard and D.Meyer ( c f • [8. M] ) , if 

then >'1 ~) > .\.1 (Br(O» = m-1. = 
Q.E.D. 

I t is known that (cf. [C .l] , [8. G] , LU2]) that there exis~ a posi ti va 

constant C(M,g) depending only on (M,g) such that the eigenvalues 

Ai (Q.) of the Dirichlet eigenvalue problem of the Laplace-Bel trami 

operator AM on the domain &G satisfy 

(3.1) Ai(.Q) ~ C(M,g) Vol(Q.)-2 / m i 2/m , i=1,2, ••• , 

where m = dim M. In particular, 

(3.2) A, (~) ~ C (M, g) Vol (9.) -21m • 

Then the above Theorem 3.1 implies that 

Corollary 3.3. let Q, be a relatively compact domain in a 

complete Riemannian manifold (M,g) , and ~i (M,g}---t (N,h), a harmonic 

map. Then 

C(M,g) Vol(S2J-2/m ~ N~ q ~ is stable on (6. 

In particular, assume that the sectional curvature NK of (N,h) 

is bounded above by a positive constant : Then 



l 
If SG is" small" in (M,g), then Vol (.Q)-2/m tends to infinity 

and NR~ remains still bounded. Therefore Corollary 3.3 implies that 

a harmonic map '/>; (M,g)~(N,h) is stable on a " sufficiently small" 

domain .Q. in l~. 

3.2. In this part, we estimate Index~(1) and NullitY~(9}. 

By Proposition 2.4 and (3.1), we have 

{ N, 00 ) -21m· 2/m } 
~ n Inf et R.Q. L. e-tC(M,g Vol(Q.) k ; 0 < t (00 

k=1 

, 

. . NR.! d b .0= C(M,g) volK"'l)-2/1 where we put m - d1m M, n = d1m N, a:- .~ , an ~~ 

In case of a < b , we have Corollary 3.3. 
= 

So we assume a> b. 

We put a b = 1:+0 , 0)0. We express as 

(3.3) 
e~t [00 e- tk2/ m _ e(~ -1)t Loti e-(k 2/ m-1)t • 

k=1 k=1 

(i) In case of m = 1,2, 

(.g -1)t "OCt -tk 
the right hand side of (3 3) < e ~ e 

• = k=O 

(.g -1)t _t-1 
= 8 (1-8). 

Putting we have 



(11) In case of m" 3 , 
= 

t = 1+e 
[:00 _tk 2/ m 

e 
k=2 

Joo 21m 
< 1+et 1 e- tx dx 

bO m 1 
= 1+.!!!t-m/ 2 \ zZ- e- z dz 

2 J t 

k 
1 ~t-m/2pl.e-t \'p ~,'f 2() L L.. K ! ~ m = p+ 1 , P f 1 

k=O . 
< 

1+mt-(m+1)/2 , -t, P t k 2 
~ p.e L kT' if m= p+1, p~1~ 

k=O . 

Putting at = 1~ , wa have 

where 

(iii) 

{ -st ~oo 
Inf a L.. 

k=1 

_tk 2/m 
a ; 

~ I (1~)D{1+P(D)}. if 

l(1~)D{1+Q(D)J. if 

(3.4) }
P+1-k 

P (0):= (p+ 1 )! L p h f 1 1 ' if 
. k=D . 110g(1+0 ) 

(3.5) 1 i 1 }P+1-k C ( D) := ; p! L p KT ' if 
k=D . log (1 +-6) 

lJe can give another estimate of Index.Qt'1» and 

m=2(p+1),p~1 

m=2p+1, p~1, 

m=2(p+1),p2 

Nullity.Q.(~: 

In fact, we have 

to- _tk2/ m ~ ): 
_tx2/ m dx f(;+1 ) -m/2 

= t • 
B e 

k-, 

Therefore we obtain 

at Lto _tk 2/m O( t<coJ 
r(7+1 )em/2 m/2 

I nf \ aD ; < (E) e 
= (m/2)m/2 

• 
k-1 



Summing up, we obtain 

Theorem 3.4. Let S2 be a relatively compact domain in a 

comp'lete Riemannian manifold (M,g), and t}; (M,g)--t{N,h), a harmonic 

map. Then IndexQ{~) and Nullity~{~) are estimated by the quantity 

0:- NR~ C(M,g)-' Vol(~)2/m -1 as follows 

(i) In case of m - 1,2, 

(11) in case of m. 2{p+1), p ~ 1, 

(iii) in case of m - 2p+1, P ~ 1 , 

(iv) In all cases m ~ 1 , 

(;+1 )em/ 2 
Inde~(1))+NUllitY.2.(t) ~ n (1+0)m/2 , 

(m/2)m/2 

where p(o) and a(o) are the functions of 0 given by (3.4), (3.5), 

respectively , and m. dim M, n - dim N. 

Remark. Since the function f(O) ..: _ ..... 1~~ 
109(1+~) 

of o satisfies 

that f (0)4 a as O-t a and f (0)--- 0 as o-r 00, the functions 

p(o) and a(o) satisfy 

lim pea) - lim a(o) - 0 
~ o~a 

, and 

P(O) ........ {m/2)! Om/2, 8S O~oo. 



3.3. Minimal isometric immersions. We preserve the notation~ 

as in 2.4. for a relatively compact domain ~ in a complete 

Riemannian manifold (M,g), consider the Dirichlet eigenvalue problem 

of the operator L; "-acting sections of f = TM on ~ : 

J L" V.,).. V 

( V., 0 

on .Q., 

on aQ. 

Definition 3.5. (i) We denote by S-lndexa(') the sum of the 

multiplicities of the negative eigenvalues of this problem, and by 

S-Nullity~(¢), the di~ension of the zero eigenspace. (i1) Let 

Irt) ( r L 1.-..) ) (31,i)," resp. \pG be the supremum of the maximal eigenvalue of tne 

Y.a ( R.I. ) endomorphism ~ resp. of the bundle f over the domain Q 

(cf. Definition 2.7). Note thdt f3(Q) ~ ~ and "- '" r (Q) ~ r when 

the right hand sides are finite. 

Then by the same reason as 2.4 and 3.2, we have a serie~ of 

the following propositions : 

Proposition 3.5. Let ~ be a relatively compact domain in a 

complete Riemannian manifold (M,g), and tf;; (M,g)--t(N,h), a rninirnol 

isometric immersion. Then 

.L 

S-IndeX.2.(;)+S-Nullity~(¢) ~ (n-m) lnf{ et(~(,Q)+r (Q»Z,Q.(t) 

o<t<oo}, 

where ~(.Q.) and r.l.~) are given in Definition 3.5 (ii) and ZQ(t) 

is the zeta function of the Dirichlet eigenvalue problem of 6 M on~. 

r 
Proposition 3.6. Under the same assumptions of Proposition 3.5, 

(1) 



(ii) "1~» (3 (Q)+r oL (Q.) q 5-1 ndex~(~) .. S-Nulli tyS?(?) ... 0, 

where ~1(~) is the first eigenvalue of the Dirichlet eigenvalue problen 

of on Q. • 

Proposition 3.7. Under the same assumptions of Proposition 3.5, 

C (M, g) Vol tQ) -21m 2 f3(Q)+r ~~) c:> 'f is stable on £, 

where C(M,g) is the constant in (3.1). 

Proposition 3.8. Under the same assumptions of Proposition 3.5, 

5-1 ndex.Q.(~) and 5-Nulli ty~( ¢) are estimated by the quantity D t 

given by 0':= {(3(Q,)+r~~)}C(M'9)-1 Vol(£)2/m - 1 

(i) In case of m = 1,2, 

(ii) In case of m = 2(p+1), P ~ 1, 

S-Index~(~)+S-Nullity~(~) ~ (n-m)(1~)D'(1+P(D'»' 

(iii) in case of m ... 2p+1, p ~ 1, 

S-Index~(~)+5-Nullity~{~) ~ (n_m)(1~)Dt(1+a(D'» • 

(iv) In all cases m > 1, ... 
r(r1 )em/ 2 

S-Indexo(~)+S-NullitYQ(~) < (n-m) m/2 (1+D,)m/2 , 
~ ... (m/2) 

where the functions p(.), Q(.) are th~ same in Theorem 3.4, m ... dim I 

and n ... dim N. 

Remark. (i) The similar ones as Proposition 3.7 were stated in 

[Mo] ,[H), [T2) • (11) Inc a s e 0 r m. 1, 1 e t '); [0, 21tJ --t (N, h ) be 



a geodesic in an arbitrary Riemannian manifold (N,h). The i-th 

eigenvalue Ai{(0,2~» of the Dirichlet eigenvalue problem of the 

operator d2/dx2 on the interval lU,2n) is i 2/4, i:1,2, •••• 

Then under the assumption that the sectional curvature NK of (N,h) 

is bounded above by a positive constant : NK < a , we have = 

, 

where L is the length of 9. Therefore 

where 

(I) Index~(p)+Nullity~(t) 
, ~~nnf¥L~ 

[ , if L ~ ~ + En ra 

En is a positive constant depending only on n = dim N 

Theorem 3.4 (i),(lv». And 

(II) S-Index~(~)+S-NullitYQ(f) 

J 

~{ (n-1) if! L ~ , 

n-1 , if L < ~ + e =.ra n 

(cf. Proposition 3.8 (i),(iv». On the other hand, a theorem of 

M. Morse and I. Schonberg' tells us that 

S-IndexQ.(~)+S-NullitYQ.(<1» 'So (n-1) [Lq] , 

(cf. 

, 

",here [xJ expresses the integer part of x> 0 (cf. [G.K.M, PP.176,142)) 

When L S ;; + En ' our estimate (II) is optimal, but in general, it is 

far from the optimal one of Morse and Schonberg since J~~ = 2.066 ••• 



Chapter II. Stability of the Identity Map. 

§4. Kahler Version of Lichnerowicz-Obata Theorem. 

In this chapter, we treat with the Jacobi operator of the identity 

map. Let (M,g) be a closed Riemannian manifold of dimension m. 

The identity map idM ; (P1,g)-t(Pl,g) of (l"l,g) is harmonic (cf. [E.SJ), 

and the Riemannian manifold (M,g) is stable (cf.(Na) if the 

identity map idM is stable. The corresponding Jacobi operator 

J :- J id is a differential operator acting on the' I?pace r(TM) of all 
PI 

vector fields on M given by 

(4.') J V = - Li .. m, ('V e Ve V - gf7 e V) - P (V ) , 
i i "Bii , 

V f r(TM), 

where V is the Levi-C~vita conn~ction of (M,g), 

and f(U,V) > g( f(U),V) = ~ m g(R(ei,U)ei,V) is the Ricci tensor 
~=, 

(cf.[Pla], [Sm]). Under the identification of TM with TaM with 

respect to the metric g, the Hodge Laplecian ~. do + &d on r(T-Pl) 

induces a differential operator, denoted by the same letter and called 

also es the Hodge Laplacian, on r(TM), where 6 is the codifferential 

operator of d with respect to the metric g on M. Then the 

ueitzenbock formula of'the Hodge operator ~ tells us that 

(4.2) 

and then 

Then we have immediately : 

Let ~(M) (resp. A,(M» be the first (resp. 

eigenvalue or the Hodge Laplacian (resp. the Laplece-



Beltrami operator ·~M) on 1-forms (rasp. smooth functions) on M. Then 

(i) (fYI,g) is stable q 2 Inf RicM ~ i\~ (M) ~ ~ (1"1), 

(ii) A~(M) ,,2 Sup RicM q (M, g) is stable , 

where Inf RicM (rasp. Sup RicM) is the infimum (resp. supremum) of 

the Ricci curvature of (M,g) over It! : Inf RicM := lnf {feu, u); uf;TM, 

g(u,U)-1}, and Sup RicM := {f(u,u); u~TM. g(u,U)=1}. 

Proof. 

0 < = 

< = 

JfYI 

JM 

By (4.3), the stability of (M,g) implies that 

g(:rV,V)f1 = fM g(6V,V)*1 - 2JM g(P(V),V);J1 

g(AV,V)~1 - 2(Inf RicfYI) JMg(V,V)*1 , 

which gives the first inequality of (i). Taking V 85 the gradient 
\lJi th the eigenvalue "'t (M) . 

of the eigenfunction of Ar\' lJe get the second ~nequality of (i). 

The statement (ii) is obvious from (4.3). Q.E.D. 

From Lemma 4.1, we obtain 

Theorem 4.2. (fYI.Obata) Let (M,g) be a closed Kahler 

manifold IJhose Ricci curvature RicfYI is bounded below by a positive 

constant: RicM ? ~ > O. Then the first non-zero eigenvalue h,(M) 

of 6 M on CM(M) satisfies 

When the equality holds, the Lie algebra a of the group of holomorphic 

transformations of M is non-zero. 

Proof. Since every closed Kahler manifold (M,g) is stable 

(cr. [5m] J [Na]), by Lemma 4.1 (i), we have the ine'1lJality A1 (M) ~ 20( • 



Assume that the equality A,(M). 2« holds. We take V as the 

gradient of the eigenfunction of ~M with the eigenvalue 2~. Then 

~V ,. 2GtV. By (4.3), we have 

2DtJM9(V,V)., • t,9(6V,V).' 

· JMg(JV,V).1 + 2JMg(f(V),V)*1 

2 2~JMg(V'V).' • 

since (M.g) is stable and RicM ~ oc. • Hence we have ~Mg(JV.V)*' = 0 

and JMg(~(V).V)" = «JMg(v.V)" • The former implies JV = 0 , and 

then V belongs to a due to a theorem of LichneroIJicz (cf.[L) 

since (M,g) is a closed Kahler manifold. Q.E.O. 

Remark ,. In ~b], the above theorem was stated in case of 

a closed Einstein Kahler manifold (M,g). In this case, i.e., t l1li 0(9 , 

the equality A,(M) = 2« holds if and only if a =\= {O}. The author 

does not know whether Dr not the equality holds if a ~tO} without 

the assumtion that (M,g) is Einstein. 

Remark 2. A theorem of Lichnerowicz-Obata tells us that for 

a closed Riemannian manifold (M,g), if RicM " 0(,. (n-')~ >0, then 

"I. (M) ~ f' n Note that -1L < 2 d n 2~ 2 A, ~ no = n=T ~ • n-'" an n-' = ~ n= • 



§5. Some examples. 

In this section, we give three examples concerning ~ith stability 

or unstability of closed Riemannian manifolds. 

5.1. 8y (4.1) and Corollary 2.2, we kno~ (cf. ~mJ) that 

if Ricci curvature RicM of a closed Riemannian manifold (M,g) is 

non-positive, then Index(idM) = a and Index(idM)+Nullity(idM) ~ m = 
dim M. 8y the similar uay as the proof of Proposition 5.6 in [8.G,p.3~ 

notin-g only the difference of the constant terms of (4.1) and (4.2), 

we have : 

Proposition 5.1. There exists a posi tive constant f.m> 0 

depending only on m such that for every closed Riemannian manifold 

(M,g) of dimension m with Ric M < E , the index and the nullity of 
n = m 

the identity map of 1"1 satisfies 

However one can not expect a positive ans~er of the following 

question : .. Is there a positive constant em> a such that for 

every closed Riemannian manifold (M,g) of dimension m the assumption 

Ricpt 'S ~m implies the stability of (M,g), i.e., Index(idM) :: 0 ? II 

In fact, we have the following example 

Example 5.2. let Tm _ 1m/1m be the m-dimensional torus 

with the canonical coordinate (x 1 , ••• ,xm). Let f(x,) be a positive 

valued smooth function on 

9, on Tm defined by 

, 
I/Z - 5 • Consider the Riemannian metric 

. 2 2( 2 2) 9,.- dX 1 + r(x,> dX2 + ••• +dxm • 



Lemma 5.3. The vector field x, ... f(x,) a;, on Tm is e 

derivative LX 9, of 9f by X, , conformel vector field,i.e., the Lie 

satisfies 2 
LX 9f == n div(X,) gf' and , a 

Xi ... aXi ' ic2, ••• ,m, ere Killing, 

i. e., LX gf ... O. 
i 

Proof follows from a straightforwerd computation. 

Since for a vactor field V on a closed Riamannian manifold (M,g), 

where ILvgl is the norm of LV g induced by 9 and div(V) is the 

divergence of V (cf. [V.S), we have 

)ym g(JX1'X,)*' 
2 

1) hm div(x 1)2.1 • == (- -m 

Since div(X,) .. m f,(x,) where f' (x, ) is the derivative of f(x,), 

we have 

Proposition 5.4. Let Tm == 1m/1m be the m-dimensional torus 

with the canonical coordinate (x" ••• ,xm). for a positive valued 

smooth function f(x,) on S' == 1/1 , consider the Riemannian metric 

9f on Tm defined by gf 
2 

- dx, + 
222 f(x,) (dx2 + ••• +dxm ). Then, 

in case of m '> 3 , the Riemannian manifold (Tm,gf) is stable if and 
== 

only if the function f(x,) is constant. 

On the other hand the sectional curvature K of the Riemannian 

manifold (Tm,gf> is given (cf. [a.o]) as follows: 

n in the tangent space T( )Tm, let x" ••• ,xm 
{x ~~, + v , y ~~, + w} be an orthonormal basis of IT , where x, y I: I , 

m-' and v,wt-T(x x)T • 2'···' m 

for each plene 

Than the sectional curvature K (TT) ia 



Then the sectional curvature K of (Tm,gf) satisfies that 

Ir"l f,2 IKIS ~+:2 • 
f f 

for example, we can take a smooth function on 51 = III/Z as 

fe.(x,):= 1+E sin(21l"x,) , where e is a small positive constant. Then 

due to Proposition 5.4, the Riemannian manifold (Tm,9~), m ? 3, is 
Eo 

unstable, but its sBctional curvature K€ satisfies 

which goes to zero as E....,O • Therefore we can not take a constant 

~m ) 0 such that for every closed Riemannian mani fold (M, g) of 

dimension m, the assumption RicM ~ fm implies the stab.ility of (M,g). 

5.2. The next example is the odd dimensional unit sphere 52n+1 , 

n > 1. Let ; ; (S2n+1,g)--t( Cpn,h) be the Hopf fibration. Here • 
9 is the standard metric on 52n+' of constant curvature one and 

h is the fubini-5tudy metric on Cpn of constant holomorphic sectional 

curvature 4. Let ~ be the Killing vector field of (52n+1,g) 

such that g(~,~) - 1 everywhere 

fiber ,-1(~(x» at each point 

dual to s. Then the projection 

x 

52n+1 and ~ is tangent to the 

in 52n+1• Let '1 be the 1-form 

?; (52n+1,g)~ (Cpn,h) is a 

Riemannian submersion with totally geodesic fibers (cf. §6) and 

Let us consider the canonical variation gt' 0 < t< 00, 

of the metric 9 defined by 

(5.,) 



Now let us investigate the stability of (S2n+1 ) ,gt making use of 

Lemma 4.1. 

(i) 
, 

The first eigenvalue ~(gt) of the Hodge Laplacian. 

Put m:.= 2n+1. Note that gt = s { s -1 9 + s -1 (sm_1 )~9~}, where s:-

In his paper [T1, Proposition 2.8] , S.Tenno showed that the first 
1 eigenvalue A1 (gt) of the Hodge Laplacian on 1-forms is estimated as 

that is, 

(5.2) 

(ii) Ricci curvature of (S2n+1,gt). Let us recall a work 

of G.R.Jensen (J] • We denote 

K:- 5U(n+1), 

H:- 5(U(n}xU{1}) -{(~ ~)~5U(n+1) ; f,£-U(1}, A E: U{n)} , 

H1 : ... {{~ o } _ f E: U(1), ')S- e -1/n} , 
n ' n 

H 0-2-- {(~ 0) 0 

A ' 
A t 5U (n) } , 

where In is the unit 'matrix of order n. Then the natural projection 

gives the Hopf fibration: f}; 52n+1 ... K/H2 ~Cpn ,. K/H. Let k 

{resp. h, h1 ,h2} be the Lie algebra of K (resp. H, H1 ' H2)· 

Let r be the Killing form of k and m, the orthocomplement of h 

in k with respect to r. Then we have the orthogonal decomposition 

The metrics gt (5.') are K-invariant of k 

on K/H2 which come from the Ad(H2}-invariant inner product (·'·)t 

on h1 $ m such that 

(X,+x2,Y,+Y 2 )t'" (4(n+'))-'{~~1t2b(X,'Y,}+b(X2'Y2)}' 

for x" Y 1 E h, , X2, Y 2 Em, where the inner product b on k is 



given by b. - f. In fact, it is known that the restriction of b 

coincides \.lith 
o 

-n-'I } , and ~o 
n 

4(n+1) ~·h, and b(X,X) = 2(n+1)2/n for X := 
1 

is the tangent vector at 0:= (n E 52n+1 
o 

of 

the curve ,,~exp(oX).o. 

We denote by Sg the Ricci tensor of the metric IV 

K/H2 g on 

corresponding to the inner product 4(n+1)<'.,.~ on m . Then S~ g is 

a K-invariant tensor field on K/1i2 which is completely determined by 

the bilinear form on h, Ea m , denoted by the same letter 5"" • g Noting 

that the numbers k, c, r, and dim m in [J] are given in this case 

k = '/2, c = 0, r = dim h, = 1, and dim m = 2n , 

and due to Proposition " in [JJ, the bilinear form s..... is given by 
9 

Sg{X,+X 2,V,+V 2 ) = t{~~1)t2.4(n+')(X1'Y1)t 

+(J- !n(~~,)t2).4(n+1)<X2'Y2\ ' 

by 

X l' Y 1 t h l' X2' Y 2 Em. Therefore, since the infimum I nf Ric"" 
9 

(resp. 

supremum Sup Ricg) of the Ricci curvature of is given by 

Inf RiCg = Min{~ - 2(~+1) , 2(~+1)t2} (resp. Sup RiCg = Max { 11, II})' 

the one Inf Ric (resp. 
9t 

Sup RiCgt ) of the metric gt (5.1) is 

(5.3) Inf Ric == Min {2{n+1 )_2t2 , 2nt 2 } • 
gt 

(resp. Sup Ric g = MaX{",H}). Putting T:= t 2, let us observe the 
, t 

behavior of "",(9t) (5.2) 'and 2·1nf RiCgt (5.3) (cf. figure 5.1) : 

figure 5.1. The graphs of the functions 

and 4(n+1)-4T. 

-1 4nT,2n+T , 
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Therefore ue have : 

Proposition S.S. let 

of the standard metric g on 

gt be the canonical variation (5.1) 

S2n+1 of constant curvature one with 

. • gt:z g + (t2-1)'1.®~ • Then for every in the open 

interval (~,~), the Riemannian manifold (S2n+1,gt) is unstable. 

Here is a root of the equation 

4nT = 2n+T- 1 (resp. 4(n+1)-4T = 2n+T-1 ). 

5.3. Th~ third example is a spherical space form. Here we 

state the follouing : 

Proposition 5.6. Every spherical space form (Sn/G,g), 

uhere G; {id} is a finite group acting fixed point freely on Sn I 

is stable. Here the metric g is the Riemannian metric on the 

t " t Sn/G quo l.en space induced from the standard metric can on 

constant curvature one. 

In fact, this fol~ous immediately from Proposition 2.1 in (Sm]. 
Since (Sn/G,g) is Einstein,i.e., the Ricci tensor ~ of g 

satisfies ~ = (n-1)g , the manifold (Sn/G,g) is stable if and only if 

the first non-zero eigenvalue ~ (Sn/G,g) of the laplace-Beltrami 

operator AM on ClIO (Sn IG) is bigger than or equal to 2 (n-1). The 

eigenvalues of ~M of (Sn,can) are given by k(k+n-1), k=O,1,2, ••• , 

and k{k+n-1) > 2(n~') if· k ~ 2. Moreover the eigenfunctions of the 

first non-zero eigenvalue n uith k=1 of (Sn,can) are given by 

foidSn , uhere f is a linear map of I n+1 into 1 and idSn is 

the natural inclusion of Sn into In+1. Therefore we have only to 

show that every linear G-invariant function f on mn+1 must be zero. 

But this folIous immediately from the assumption that G acts fixed 



n point freely on 5 • Certainly, rex) - (x,y), x t I n+1 , for some 

y In In+1. The G-invariance of r implies that t.y - y for all 

¥ f G. Unless r vanishes, the point y/IYI ~ Sn must be a fixad 

point of G. 

Since every compact Riemannian manifold of positive constant 

curvature is as in Proposition 5.6 (cf. (w, Lemma 5.11, P.154]) and 

Ciq 

every compact Riemannian manifold of constant zero or negative curvature 

is stable (cf. [Sm), W8 have : 

[
Corollary 5.7. 

curvature is stable 

Every compact Riemannian manifold of constant 

except only the standard unit sphere (Sn,can). 

Remark. The similar stability theorem for Yang-Mills fields 

\.las stated in [8. L, p. 223] • 



Chapter Ill. Riemannian Submersions with Tutally Geudesic fiter 

§6. The vertical Jacobi Operator. 

6.1. Definition of Riemannian Submersions. r 0 11 0 u i n 9 [l! • r; J , 
Dr ~.B], let us recall the definition of the Riemannian submersicnt. 

It is known (cr. ~.L,p.121]) that the projection of a Riemannian 

submersion is harmonic if and only if each fiber of the submersion j~ a 

minimal submanifold. In particular, the projection of the RiBma~nian 

submersion with totally geodesic fibers is harmonic. The Riemannian 

submersions are the next simple examples after Riemannian proaucts, but 

would be rich objects to study. In this chapter, we devote ourself 

to study the Jacobi operators of the projections of the Riemannian 

submersions with totally geodesic fibers analogously as in the theory of 

the Laplace-Beltrami operators (cf.[a.a]). 

Definition 6.1. Let (M,g), (N,h) be two closed Riemannian 

manifolds of dimension m,n, respectively. A map ~; (r"1, g) ~ U. , h) 

1s a Riemannian submersion (cf. [C.N) ,[a.a]) if for each point p in 

the tangent space TpM of M at p has the following orthogonal 

decomposition T 1"1 • H ® u p p p 
wi th r~spect to g : 

p 

(i) The subspace Vp is the kernel of the differential 

of ; at p, which is called as the verticel space. 

(ii) The restriction of ~p to the subspace H , called the p 

In this chapter, we further assume that each fiber r p:= ,,-1 (9(p)) 

through p admitting tha Riemannian metric induced from g is totally 

geodesic in (1"1,9). 

..,., 
I I, 



6.2. Definition of the vertical Jacobi operator. Ue take 

an orthonormal local frame field {e.}. m, on M such that 
1 1= 

(i) {ei}i_~ is basic associated to an orthonormal local frame 

field lei '}i.~ on N, i.eo, ei , 1~i~n, are the horizontel lifts of 
I 

'<i<n, and 
:0:: • 

(ii) e1·,n+1<i<m, are vertical. • = 
Then it is known (cfo [O.N] or [a.e) that \Z 8 i ' 1~i<n , are basic e. - = 

N 1 
associated to the vector fields '\7. ,e! and V!: ei , n+1<.i~m, are e. 1 e. == -

1. ,1 
vertical since all'the fibers are totally geodesic. In the following 

we retain the notations in §,. 

Definition 6.2. let ~i (M,g)---t(N,h) be the Riemannian 

submersion with totally geodesic fibers and J, , the ,Jacobi operator 

acting on r(sa-'TN). We define the vertical Jacobi operator acting 

on r{,-1 TN ) by 

J" v :- - E m (VeiVei -tZ... ei ) , 
i=n+1 16i 

and the horizontal Jacobi operator acting on r{,-'TN) by J,H:= 

v J, - J, . 

Then it is easy to see that the definitions of J v 
? and J H 

'1 do not 

depend on the above choice of the orthonormal local frame field {ei}i_~ 

on 1'1 (cf. Remark below). Oiese definitions are the analogue of the 

vertical or horizontal Laplacians Av' AH acting on C~{M) defined 

in laoa]: 6. v :- L m (Ve ~e -~ e ), AH := AM -!:>.v I where 
1-n+1 i i e i i 

A M :- 'E m(Vo '\7. -n... ) is the Laplace-aeltremi operator of 
n i-1 ei ai ~\'aiai 

(M,g). 

Than Av I AH ' and AI'\ ara commutative mutually (cf. [a.a,Theorem 

Each a.ction W in r(f- 1TN) can b. expressed locally as 

(6.n . "'""'. I ••• 

I 

1.5J 



uhere f., 1<i<n, are locally defined smooth functions on 
~ =. M and 

~ , 1~i~n I are local sections of ¢-1 TN defined by ------e. I := 
1 x 

x t M. Then by definition of V and rf.ei = a I n+1~i~m , we have 

(6.2) V \J ... ei 

(6.2') 
......., 
\7. \J = e i 

In particular, 

(6.3) J vIJ ; 

L n t( e. f.) ~I e. + 
j=1 ~ J J 

'En "'-'j (ei1f j ) e j 
j=1 

= - L n (6 f.) 
j ... 1 v J 

"'-' e. I 
J 

~~} f.~ e.' , 
J ei J 1~i~m, 

, n+1<.i<.m . 

Remark. (The intrinsic meaning of the vertical Jacobi operator) 

for each fiber f p '" rp-1(~(p» through pEM, the composition ~oip 

of the inclusion of into M and the projection ¢ 
is constant, so harmonic. The associate Jacobi operator JQ\ . 

r o1 
acting 

of all the restrictions to of elements IJ 

6.3. fundamental Properties of J t V and 

by definitions of V dnd WI, \J' E nTN) I 

(6.4) 

for W I E r( TN) • Than ue have 

(6.5) 

for WI E r(TN), by (6.4) and definition of 

ue obtain : 

H J" . 

J v , and 

p 
consists 

in and 

Note that, 

H 
J~ • Therefore 



Proposition 6.3. Let ;i (M,g)~(N,h) be the Riemannian 

submersion with totally geodesic fibers. Thsn 

Index(1) , Index(idN), Nullity(~) ? Nullity(idN) , 

and h,(J;) ~ A1 (J idN ). In particular, if the base manifold (N,h) 

is unstable, then the submersion ~ is unstable. 

In fact, suppose that W' E: r(TN) satisfies 

the element W't-I(}l'-'TN) satis-Fies 

J' d W' = AW'. 
~.N 

Then 

by (6.5). Therefore if x is the eigenvalue of J' d ' then A is 
~ N 

also the one of J;. Q.E.D. 

Proposition 6.4. 

(i) Let r = r be the fiber through PE M of the Riemannian 
p 

submersion ¢; (M,g)--t (N,h), with totally geodesic fibers. ror 

each W ~ r (9-' TN), we have 

J h(JdvW,W) dV r = L. m (h(V, W,~ W) oV r ' 
f'. ~=n+1 Jr si e i 

where dV r is the volume element on f with respect to the metric gr 

induced from the metric 9 on M. 

(ii) Moreover, for each W ~ r(S'-'TN), J1vW = 0 if and only if 
r0-

W = W' for 50ms W'f r(TN). 

(iii) Each eigenvaltie of J~v is non-negative • 

Proof. (i) for each W ~ r(SiS- 1TN), we have 

L m 
i-n+1 

+ L, 
,--

h(V't7 aY'W) • 
'1i i 1. 

m 
i.n+1 



Here there exists an element X in r(Tr) such that Qr(X,v) ~ 
.,..,; 

h(VyW,lJ) for each Y f r(Tf). Then since \Z e. ,n+1<i(m , are vertical e i 1 :::: :::: 

is the gradient of X on (r,Qr). Therefore we have (i). 

(ii) By (6.5), we have only to prove that if v 
Jpl W = 0 , then 

for some W'~ r(TN). 

have V. lJ = e i 
o , n+1<i<.m. - .. . 

Assume that J Vw 0 , = • Then by (1) 

We choose a local coordinate system 

W = 

we 

(x~, ••• ,x~) on e neighborhood u 

locally as 

in N. Then W can ba expressed 

xe ~-1(u), where fu . 
, J 

Since that 

(6.6) fU,i = on 

for another coordinate system (x~, ••• ,x~) on V • By (6.2'), 
"'oJ r. n(e.fu j) --a--' e. f U . n+1~i~mJ o :II V. W = (z, j) • Therefore .. 0, ei ., ~ , 1 ,J 

J= Xu 

that is, fU,j are constant along each fiber, which implies that 

fU,j c f'U,j.~ for some f'U,j~ Coo(U). 

satisfies f'U i = ~ n f'V ·tbC/ax~) on 
, . J=' ,J 

{t.~ f 'U,j 3/a Xa} defines a section W· 

lJ = We. (iii) follows immediatel y from 

By (6.6), f 'u . ,J 

Ul"'\ V. Therefore 

in r(TN) such that 

(i). In fact, suppose that 

J fjVlJ _ " W, 0., lJ E f( ~-1TN). Then there exists a fiber r such 

thet Jr h(W,W) dV f ) O. We apply (i) to this fiber r and we 

have (iii). Q.E.D. 



6.4. Commutatibity of J;v, J~H and J~. 

Theorem 6.5. Let ;; (M,g)---.,(N,h) be the Riemannian 

submarsion with totally geodesic fibers. 

J,H and J; are commutative each other. 

Proof. We have only to prove 

Then the operators 

J v J H , , = 

v 
J~ , 

for each 

(6.7) ~ n {( Ve Ve -Vl?' . e ) t (6v f j };;-. ) 
J,k=1 k k ~k k 

+(Av f j)NR(ek " e j ' )sk' } 

by definition of J;H and (6.3). Since ek and ~ ek , 1 <k <n , 
= -= k 

are basic , and Av is commutative with basic vector fields (cf. [B. B, 

Lemma 1.6] ), the first. term of the right hand side of (6.7) becomes 

. -
, 

by (6.3) and (6.4). Therefore we obtain 



Q.E.D. 

Therefore we have immediately 

Corollary 6.6. The Hilbert space of all L2 sections of 

;,-1 TN with respect to the inner product (V,W):= 5M h(V,W)!f:1 , 

for sections V, W, has a complete orthonormal basis consisting of 

the simultaneous eigensections of 



[ 

§7. The Canonical Variation of a Riemannian Submersion. 

7.1. Definition of the Canonical Variation. We retain the 

situations in §6. Let t}; (M,g)---. (N,h) be the Riemannian submersion 

with totally geodesic fibers. 

Definition 7.1. (cf. [a.a, p.191]) for each positive real number 

t ,let gt be the unique Riemannian metric on M such that 

(i) gt(u,v) = g(u,v) for u,v f Hp' p~ M, 

(ii) The subspaces Hp 

with respect to . gt at each point 

and Up are orthogonal each other 

p in M, and 

(iii) 2 gt(u,v) = t g(u,v) for 

Then ;; (M,gt)~(N,h) is a RiEmannian submersion with totdlly 

geodesic fibers (cf. [8. a , Proposition 5.2] ), wh.i,ch is called the 

canonical variation. 

an orthonormal 

are vertical and 

{ei}i=~ are the horizontal lifts of {ei'}i=~ with respect to gt. 

Then the vertical (resp. horizontal) Jacobi operator tJ~v (resp. tJ~H) 

of the canonical variation ;; (M, gt)---1> (N, h) satisfi es that 

, and 

Therefore we have : 

Proposition 7.2. The following formula hold : 

tJ~ _ t-2 JdV + J H t-2 J + (1 t-2 ) J H 
r - 7 '1" ., - ~. 

Remark. This is the analogue of Proposition 5.3 in [a.aJ. 



7.2. Due to Corollary 6.6 and Proposition 7.2, each eigenvalue 

of can be written as 

(7.1) , 

where )., is the eigenvalue of J1 H and t' ~ 0 is the eigenvalue of 

Then the following two cases occur : 

(i) fA '> 0 

(ii) fA' == o. 

, or 

In case of (i), k + t- 2"" . 90es to infinity when t -4' o. In 

case of (ii), A + t-2r = A which does not depend on t. Since the 

number of the eigenvalues of J; smaller than a given number is finite, 

there exists a small positive number e, such that for each 0 < t < E. , 

the first eigenvalue ~(tJ~) coincides with the smallest eigenvalue 

of when the case (ii) occurs. Then we have 

because of Propositions 6.4(ii) and 6.3. Therefore we obtain 

Theorem 7.3. Let ~; (M,g)-7(N,h) be a Riemannian submersion 

with totally geodesic fibers, and 9t ' O( t< 00, the canonical variatio 

(cf. Definition 7.1) of g with 91 = g. Then there exists a 

number E > 0 such that for each O( t < E:. , l.Je have 

In particular, if (N,h) is stsble, then the submersion ?; (M,gt) --->' 

(N,h) is stable for every O(t<f.. 



7.3. The typicel examples of the Riemannian submersions with 

totally geodesic fibers are the homogeneous Riemannian submersions 

(cf. [S.S.§2]): Let G be a compact connected Lie group, and K H 

closed subgroups of G. Let 9 (resp. k , h) be the Lie algebra of 

G (resp. K , H). We choose subspaces h, (resp. p) of k (resp. 9 ) 

such that 

k :a h EB h, , with Ad(H) h, = h, , and 

9 = k (t) p , with Ad(K) p == p • 

Put m:= h, Et)p • Then 

9 == h EB m , with Ad(H) m == m • 

Let (0,.) (resp. (0,.) ) be an Ad(H)-invariant (resp. Ad(K)-
h, p 

invariant ) inner product on 

Ad(H)-invariant inner product 

h, (resp. p). 

(0 , 0) m on 

Then we can define an 

m by 

Then the inner product (o")h (resp. (o,o)p' (o")m) gives a 
1 

K-invariant (resp. G-invariant) Riemannian metric k (resp. h, g) 

on K/H (resp. C/K , G/H ). It is known (cf.[S.S) that the projection 

56 ; G/H ~ xH ~ xK Eo G/K gives the Riemannian submersion of (G/H, g) 

onto (G/K,h) with totally geodesic fibers (K/H,k). 

In particular, these give the Hopf fibrations : 

(1) " ; 54n+3 ... 5p(n+')/Sp(n) _~)Hpn = Sp(n+1)/Sp(1)xSp(n 

(ii) '2; 52n+1= SU("+1)/Su(n)~Cpn = SU(n+1)/S(U(1)xU(n». 

Note that Sp(n+1)-invariant (resp. SU(n+1)-invariant) metrics h on 

HP" (resp. Cpn) are unique up to a constant factor. 

Since (Hpn,h) (resp. (Cpn,h) ) is unstable (resp. stable ) 

{,.F • rC:n1 . rt.J," _ '-'e" I .. ,., •• 



Proposition 7.4. 

(i) for each 5p(n+1)-invariant metric 9 on 54n+3 = 
Sp(n+1)/Sp(n), the Riemannian submersion 1'1 ; (5 4n+3 ,g)--+ (Hpn,h) is 

unstable. 

(ii) for each 5U(n+1)-invariant metric 9 on 52n+1 = 

SU(n+1)/SU(n), there exists a number E>O such that for each O<t<f., 

the canonical variation '" (2n+1 n ~2; 5 ,gt)---+(CP ,h) is stable. 

The proof follous from Proposition 6.3 and Theoram 7.3. 

Remark. Proposition 7.4 asserts that each odd dimensional 

unit sphere 52n+1 , n2'1, uith the canonical variation 9t' 0< t< t., 

admits a non-constant stable harmonic map. On the contrary, 

V.L.Xin [~shoued that each non-constant harmonic map from the standard 

unit sphere m 
(S ,can) I m23 , of constant curvature into arbitrary 

Riemannian manifold is unstable. 

7.4. Next, let us study the case uhen t goes to infinity. 

We retain the situations as in 7.1. let us recall that the holonomy 

group G of a fiber f. of the submersion ~; (M, 9)--t (N J h) with 

totally geodesic fibers is the group of all isometries of the fiber F 

induced by the horizontal transports along the horizontal lifts of loops 

in N based at the projection of F. It is known ([O.N, Theorem 5) 

that G -{id} if and only if the submersion ~ ; (M,g)--t(N,h) is 

trivial, that is, there exist an isometry 1- of (M,g) and a 

submanifold f of PI such that M is the Riemannian product f)(N 

and ? pr. 1- I ",here pr is the projection of fXN onto N. 

r T h eo r em 7. 5 • 

I submersion ",ith totally geodesic fibers. 

Let ~; (M,g)---t(N,h) be the Riemannian 

Assume that the holonomy 



group G of a fiber f of the submersion f; ; (M,g)---+ (N,h) 

does not act transitively on the fiber, and Index(id N» o. Then the 

index of the canonical variation ;; (M,gt)--;(N,h) goes to infinity 

"'hen t -",00. 

Proof. Let C~(f) be the space of all functions f on C~(f) 

invariant under the actions of G. Since each G-orbit has an open 

G-invariant tubular neighborhood in M (cf.[Sr, Theorem 2.2,p.306), 

there exists a non-constant function f in c;(r). Then the dimension 

of c~(r) is infinite. Each element f in c~(r) can be extended 

to a function r in the space C~(M) of all elements in C~(M) which 

are invariant under the horizontal transport. 

transport is isometry, the vertical Laplacian 

Since the parallel 

Av preserves C~(M) 

invariant. Therefore there exist an infinite number of the eigenvalues 

O~ r1~ ~2~ ••• ~ ~i~ ••• , of 

such that 

A counted with their multiplicities 
~v 

(7.2) • 

Now suppose that Index(idN»O, that is, there exists a non-zero 

element W' in r(TN) such that J. d W' = ]I. W· and A < 0 • 
J. N 

Then ue have 

= (t-2J~V+J,H)(fiwr) (by Proposition 7.2 ) 

= t-2(-6vfi)~ + fi J;H(Wt) (by (6.3) and 
co 

f.fC (M) 
J. v 

(by (6.5) and (7.2». 

t -2 ~ That is, J; has the eigenvalues t fi+~' i=1,2, •••• lJhen t 

goes to infini ty, the eigenvalues t -2 fi + A tend to the eigenvalue ').... 

Since )..< 0, for each 

that t-2 r--i +A.<,O for 

i - 1,2, ••• , there exists a number N,.O such 

t~N. Therefore ue have the desired conclusion. 

Remark. Theorem 7.5 is a generalization of Carollar 3.3 in Isml 



§8. Homogeneous Riemannian submersions. 

8.1. In this section, we consider the homogeneous Riemannian 

submersions. Our purpose is to express the Jacobi operator of the 

homogeneous Riemannian submersions in terms of Lie algebras and 

calculate the spectrum of the Jacobi operator of the Hopf fibration 

using these results. We retain the situations as in 7.3. 

Let G be a compact connected Lie group, and K,H, closed subgroup~ 

of G. Let g be the Lie algebra of G consisting of all left invariar 

vector fields on G. Let k,h be the subalgebras corresponding to K,H. 

Put s:= dim G, m:= dim G/H ,and n:= dim G/K. We choose an Ad(G)-

invariant inner product (. , . ) on 9 , and h1 (resp. p ) , the 

orthogonal complement of h (resp. k) in k (resp. g). Then 

k = h E!) h1 with Pld (H) h1 = h1 , and 

g = k ED P with Ad (K) p = P . 
Put m:= h, ~ p, then 

g=hEt>m with Ad(H) m = m. 

In this section, we always assume the following 

Assumption (A) : wet ak e the inn e r pro d u c t s (., . ) h ' (.,.) P 
1 

(. , . ) 
m 

as the restrictions to h1' p, m of the above Ad(G)-

invariant inner product (0,.) on g, respectively. 

Now we consider the Riemannian submersion,; G/H~G/K admitting 

the Riemannian metric 9 (resp. h) on G/H (resp. G/K) corresponding 

to the inner product (. I') on m (resp. p ). Since the induced 

bundle E ~ ~-1T(G/K) is identified with the associate bundle GX H p , 

which is the space of the equivalence classes of (x,X)~ GKp under the 

equivalence relation (xh,Ad(h)X)""""""(X,X), for h (-H , ue can identify 



the space r(E) of 1tssect10ns with the following space 

Definition 8.1. Let C~(G,p) be the space of all smooth maps 

of . G 1nto p. We define the subspace 
ClO 

CH(G,p) of by 

C~~,p) := {ff C~(G,p) ; f(xh) = Ad{h- 1 )f(x), x E- G, h f H}. 

The identification ~ of reEl with C~(G,p), q>; C~{G,p)--+r(E), is 

(8.1 ) 

Here f(X{K} is the tangent vector of G/K at the origin {K} correspon-

ding to f{x) E: p , and lx· is the differential of the translation 

Lx j G/K 3 yK ~ x yK E- G/K. Then it turns out that q> is an isomor-

phism of C~(G,p) onto reEl • Under the G-actions on r(E) or 

C~(G,p) defined by 

(t: f)(y) := f(x- 1y) x 
, 

~ is a G-isomorphism, that is, 

(8.2) 

Note that the Jacobi operator J, j r (E)~ r (E) is G-invariant, 

that is, 

(8.3) V~ r(E). 

In fact, here we denote also by 'rx. is the di fferential of the 

G/K by x r G. Then we have translation ~x on G/H or 

't -1. \)eiSi =\1r -1 t -\. si x ~ .e i x 
, and 

for V E r< E), x f G, where {Si} i-~ is an orthonormal local frame 

field on (G/H,g) •. Because of ths expression (1.4) of J~, ws have 



Furthermore we identify with the subspace 

of the tensor product 
00 

C (G)@p : 

Definition 8.2. (C~(G~P)H is by definition the subspace of 

C~(G)3P Et oc 
consisting of all elements f i ®X i E C ( G )® p satisfying 

i=1 

z::lRhf .~Ad(h)X. = :L.2. f i@X i 1=1 l. l. i=1 

Here .( Rh f)( x) := f(xh) I h E H, x E:- G I 

Under the G-action of 
00 

C (G)®p defined by 

the subspace (C~(G)&P)H is a G-submodule. 

C~(GJP) with (C~(G}&P)H is given by 

(8.4) 'Y( f) := L n f .®X. , 
. 1 l. l. 
l.= 

for all h f H. 

'00 

fEC(G). 

6Q 

fEe (G) , X t p I 

The identification 'f' of 

is a fixed orthonormal 

basis of p with respect to (,). Then it turns out that if is 

a G-isomorphism of onto 

(8.5) I X E G. 

Definition 8.3. . Via ~ and 0/, we can define a G-invariant 
,....., 00 

operator J on (C (G)&P)H from the Jacobi operator J? in such a 

wey that the following diagram is commutative : 



,.., 
By (B.2), (B.3) and (B.5), the operator J 1s G-invariant , that is, 

(8.6) 
,.. 
J • 't • x 

..... 
't • J x , x £ G. 

Therefore the problem to determine the spectrum of J~ is reduced to 

the one of the operator J on (C·(G)9p)H. The main purpose of this 

section is to express the operator J in terms of the Lie algebra g 

of G for the above aim (cr. Theorem B."). 

8.2_ for the calculus, we take a neiborhood U in G and 

a subset N (resp. NK ) of G (resp_ K) in such a way that 

(i) N - U" exp(p), NK = U" exp(h,), 

(ii) The map N XNK ~ (y I k) I---t yk E- N· NK is a diffeomorphism, 

(iii) The projection '1< of G onto G/K is a diffeomor-

phism of N onto a neighborhood '\ (N) 

7tH of 

of the origin {K} in G/K I and 

(iv) the projection G onto G/H is a diffeomor-

phism of N-NK onto a neighborhood ~(N·NK) of the origin ~} in G/H, 

where N-NK :- {yk ; yf: N, k t NK}-

Now for an element X Em ... h1 ~ P , define a vector field X· on 

the neighborhood ~H(N~NK) of {H} in G/H by 

(8.7) 

Similarly, for an element X E p , define a vector field X on the 

neighborhood 'It'K (N) of {K} in G/K by 

(B.8) 

Let {X i h.~ be an orthonormal basis of (II, ( , » 

(resp. {Xi }i_n:1) is a basis of p (resp_ h,). 

orthonormal frame field on ~(N-NK) such that 

such that {Xi}i.~ 

Than {X;}i_~ is an 



vertical and ¥ 
Xi' 1<i<n , -... 

are horizontal. 

orthonormal frame field on ~K(N) • 

Remark. In general, • Xi' 1~i~n, arB not necessarily basic vectoI 

fields. 

for every f E: C~(G,p), we can express V = ~ (f) E r(E) as 

I x f G , 

uhere f(x) = E n f. (x) Xi , x ~ G. Moreover, putting 
. 1 1 1= 

(B.9) Ad(k)X. = 1 
L,n a .. (k)X. 
j=1 1J J 

I kE:K I 

(B.10) 
.... 

L: n f i (yk) f.(ykH) := aij(k) , y f: N , k E: NK , 
J i=1 

the section V can be expressed on the neighborhood ~(N.NK) as 

(B.11) V = 

""-
uhere f. 

J 
is a function (B.10) 

0.-
and Xj is a local 

section of E corresponding to the vector field X. 
J 

Then ue have for X E:- m , 

(B.12) 
......, 
\l V ,. 

X" 
~n{ *,..,.)~ ............ O..I} L... (X f. X. + f. \1 X . 
j=1 J J J X" J 

on 

~-
Here (V~j)XH' x~ N.N K ' is given as folIous 

(8.13) 

uhere W is a locally defined vector field on G/K satisfying 

N~ is the Levi-Civita connection ~",X:H (cf. (1.1) or (6.4», and 

of (G/K,g). This vector field 
I 

W can be actually chosen as follows : 

(8.14) IJ - 0 for X E h 1 ' 



(8.15) lJ - (Ad{k(.))X) (cf. (8.8», for Xf p. 

In fact, since CP .. x:H " 0 for X£-hp ue have (8.14). for (8.15), 

let XEp. for a fixed point X::r: y(x}k(x), y(x) E: N, k(x) (;- NK ' 

\.Ie have 

Ly (x)* t k (x).1K} 

aD Ly (x) ... (Ad (k (x» X ~K} 

.. (Ad(k(X»X)y(X}K ' 

so \.Ie can choose W as in (8.15). By (8.14), we get, for XE-h 1 ' 

(8.16) • 

By (8.15), we get in particular, for X Eo p , 

(8.17) 'N"-=- N 
( V WX j 1H} = ( V-x X j \K} • 

Moreover ue get, for X f p , 

(8.18) 

IJhere is the p-component of X corresponding to the decomposition 

g == k + p. 

Proof of (8.18). let us recall the follolJing : 

lemma 8.4. for every Y, Z E- p , 

, elong the curve ~(t)K in G/K 

for a sufficiently small t ~uch that ~(t):- exp(tZ) belongs to N~ 

This lemma follolJs from Theorems 8.1, 10.1 and 13.2 in [NO), due 

to the assumption (A). 



(8.19) 

where W is in (8.15). Then for the curve c(t):= exp(tX)K in G/K, 

where N 
P er( t) is the parallel transprort of (G/K,g) along the curve 

6( t ) • Here W 6'( t) = X ~(t) , because (8.15) and BXp(tX) E N, and 

then k(Ef{t» = e. Then we have 

by lemma 8.4. :rherefore 

the right hand side of (8.19) = ~ ~t Np 5(t) -1 CLX,X j ] p) 6(t) I t;[ 

again by Lemma 8.4, which implies (8.18). 

Summing up the above, we have : 

lemma 8.5. for V = ~(f), 

(i) , for XE:-h 1 , 

for X E p. 

. ...... 
Our next task is to calculate ~H}fj and x t m • 



Lemma 8.6. 

(i) for XEh" we have 

X;}fj-Xfj(e) + ~nfi(e) ([x,x il,x J,), and 
l. "" 1 

~} X·fj "" X2 f j(e)+2 t=~(Xfi) (e) «(X,X i ] ,X j ) 

+ ~= ~ f i ( e )( (X. t X, X J1. X j) • 

(ii) for X E P , we have 

and 

,..., 
Proof follows immediately from the definition of fj (8.9),(8.10) and 

X" (8.7). 

Lemma 8.7. 

for all X ~ m , and V~ n E) • 

Proof. Due to the assumption (A), we have 

(~"X·\H}= O' for xf m , 

by Theorems 8.1, '3.1 in [NO]. 8y (8.13) or (1.1), we have lemma 8.7. 

Moreover, it is known (cf.[K.N) that under the assumption (A), 

the curvature tensor NR of (G/K,h) is given by 

_(NR(X,V)Z\K} == {[x,[v,Z]p]p - i[v,[x,z]p]p - ~ [[x,V]p.z]p 

- (lx, v] k' Z J , X,Y,ZEP, 

where we identify X~p with the tangent vector ~}t- TlI<JG/ K• Then we ge 



IJ..J 

Lemma 8.8. ror v == ~(f) , f ~ C~(G,p), we have 

f i (.){ M x. (X l' xl p] p - it [x • x;] p' X ] P 

- lLx,x i lk'x] } , XtP. 

Summing up Lemmas 8.5 ........ 8.8, we obtain 

;t "n co Proposition 8.9. ror V = "l'(f), f = L:-- fiX i l: CH(G,p), 
l.=1 

the evaluation of J~V at the origin {H} in G/H is given by 

- L: m ~ n f j ( e) Lx k ' [X k ' X j) J {K} 
k=n+1 J=1 

L: n f j ( e) [(xk , X j] k' xk ] {K} 
k, j=1 

B.3. Before ue state Theorem 8.11, we have to prepare some 

notations 

Definition B.10. We define the operators 0i' i:O,1, ••• ,6, 

acting on 
00 

C (G)$P by 

D '. L S Xk 2 61 , o· 
k-1 

°1:-
Em Xk 2& I , 
k-1 



where Pp • Pk are the projection of g =k®p onto p , k , respec-

tively, {Xk}k=~ is an orthonormal basis of (g, ( , » such that 

tXi}i=~ (resp. {Xi}i=n~" {X i li=m!, } is 8 basis of p (resp. h1,h ), 

I is the identity operator of e~(G}, p or e-(G)®p, and 

%r f(x exp(tx)}1 t=O ' for X E: g, f ~ eoo(G}, and XE-G. 

(Xf) (x) := 

It turns out all 0i' i=0,1, ••• ,6, do not depend on the choice of 

the above basis {Xk}k.~ and they are G-invariant, i.e., °1 • Tx = 

Noting that 

00 
f (- e (G), hf:H, and XE:g, , 

all 0i preserve the subspace (e~(G)~p)H invariant, because of 

independency on the choice of the basis {Xk}k=~. We also note that 

(8.20) 

(B.2,) on 

because of definitions of (eeo( G)~p} Hand °6 • 

we obtain : 

Then by Proposition 6. 

Theorem 8.1'. Let , be the Riemannian submersion of (G/H,g1 

onto (G/K,h) whose metrles g, h come from the Ad(G)-invariant 
"w 

inner product (,) on the Lie algebra g. Then the operator J 

of (COO(G)®p)~ corresponding to the Jacobi operator Jp of the 



submersion ~ coincides uith the operator 

uhere all D. are defined in Definition 8.10. 
1 

Proof. Proposition 8.9 ano (8.21) say that 

for every V ~ r(E). ror every x (; G, ue have 

...... U'f if,.-1 J (I "1:' • V)(x) = T _1"JC¥~-1v)(e) 
x 

I: D('qr~-1 t _1.V} (e) 
x 

= 1: -1 O(~q,-1v)(e) = D('!Jcp-1 V)(e). 
x 

As applications of Theorem 8.11, ue obtain 

Q.E.D. 

Corollary 8.12. Let 9 be the Riemannian submersion of (G/H,g 

onto (G/K,h) uhose metrics g, h come from the Ad(G)-invariant 

inner product (.,.) on the Lie algebra g. Assume that (G/K,h) 

is Riemannian symmetric, 9 is semi-simple, and (X,V) := - F(X,Y), 

X, Y E 9 , where r is the Killing form of g. 

(i) "" Then the operator J of 

Jacobi operator J~ of the submersion 

(C~(G)®P)H corresponding to the 

~ coincides uith 
I 

""-J 

Moreover us assume H = tid}. Then the operator J coincides with 



where Do' 03 and 06 are defined in Definition 8.10. 

(ii) In particular, the spectrum of the Jacobi operator J~ 

of the Hopf fibering 91; (SU(2),g) - (S3,g)--7'(SU(2)/S(U(1)xU(1»,h) ... 

(S2,h) is given as follows 

The e i g en val u e s : i l( l + 1 ) + i, i 2 (.t + 1 ) - i , 

their multiplicities : 2t+1, 

where .e. varies over the set {if ~ Z ; Q. ~ o} " and i varies over 

the set t!,t-1, ••• ,1-I,-t}. Then the index and the nullity are given 

as Index(¢) = 4 and Nullity(~) - 7. 

Proof. (i) Since (G/K,h) 

O2 = 0 and 05 -= I ® L: n 
k-1 

we have 

is symmetric, i.e., [p,p]C k , 

ad(xk )2 • Moreover, we have 

1 
05 :: - 'Z I 

from that 

and 0 4 + 06 = - ~ 1', which implies 

( L. n ad (Xk ) 2 (X) , V) ... i r (X, V) , and 
k=1 

(1). For it follows 

{ L: s ad ( Xk ) 2 ( X) , Y 
k=n+1 

= ~ r(x,v) , for X,V€- p (cf.[T.K, p.2'2]). 

clear from that 06 = 0 when H ... tid}. 

The second equality is 

(ii) Let us recall the computation in [u,,§s]~ In this case, 

G ... SU(2), 

(t-Pi&- ) } 
K :: S (U ( , )x U ( ,» == {\.e 0 ~ 6-; ~ E: 8l , 

(x,V) ... - 4 Trace{XV), X,Yfg = su(2) , 

k ... tH'}1i , 

p so 1l1ac/J2" , Voc./.J2 }Ii ' 

where . H , 0) UCI(, : ... 2-'{0 .F1) and Vel(. ~_ 2-'{0 1} 
H, .= - (0 " • - , 0 • 

2,f'2 - l=1 0 

1 H, , u,~..1.[2 , Vot./[2) is an orthonormal basis of (g,f,·». We have only 

to know the actions of 0 3 == H,®ad (H,) and Do -= CSI on Coo(G)®P, 

where C is the Casimir operator C := H 2 
1 + l./o....2/:t! + V", 2/2. 



A complete orthogonal basis of the space C~(G) of complex valued 

smooth functions on G ~ith respect to the inner product JG f(x) f'{x)d: 

-f, f'fCIt(G), ~ith the Haar measure dx, is given as follows (Peter-

Weyl theorem) Let [D :={i.«. 
1 

Z , o.~ oJ. For ~=Q.tl(f[D i Q. E L , 

let (V"" 'itA.) be the irreducible unitary representation of G with 

high est ~eight ).., and {vi} i=~~' dA : = dim (VA) , an orthonormal basi 5 

of V~ with respect to the G-invariant inner product «(,» on VA. 

Put '1tij(x) := «ttA.(x)vi,v j », 1~i,j~dA. Then 

X 7t ij ( x ) = « 1t),( X ) 7t "'( X ) vi' v j ) ) , X t g , 1 ~ i , j ~ d A , 

and 
oa 

is an orthogonal basis of C[(G). 

For , VA has an orthonormal basis {V m 

m=1,t-1, ••• ,1-1,-l} such that 

, for each m. 

Since ,(cC) = ~1(!+1) I on VA' we get 

H111:~J.(X) = r-; i 7(~.(x), ... J2 ~J 

On the other hand, 

Then the action of D3 = H1®ad(H 1 ) 

is equivalent to the matrix 

, for i,j = Q.,i-1, ••• ,1-Q,-1 • 

on S @P, ~here 
),. 



where N' 
~i:- ~ i , i-l,i-1, ••• ,1-L,-t. 

.. 2 . 
Therefore the eigenvalues of 

on .J.",8P are given by ! ~ , i -1,(-1, ••• ,1-1,-t. Hence the spectru· 

of 0 .. - Do -203 is given as in (ii). Q.E.D. 

Instead of the assumption of Corollary 8.12, we now assume that 

K .. H. In this case, we obtain the formula of "-
J of the Jacobi 

operator J id of the identity map of a normally homogeneous space 

(G/H,g). Here we have k - h, h1 .. 0, m .. p and 03 = 04 - 0 • 

Then we obtain : 

Corollary 8.13. Let (G/H,g) be a normally homogeneous space, 

that is, the metric g is induced from the Ad(G)-invariant inner 

product (.,.) on the lie algebra g. 
....... 

Then the operator J of 

(C~(G}®m)H corresponding to the Jacobi operator J id of the identity 

map of (G/H,g) coincides with 

whera m is the orthogonal complement of h in 9 with respect to 

(. , • ) and Do ' 02' 05 and 06 are defined in Definition 8.10. 

In particular, asSume that '(G/h,g) is Riemannian symmetric, g is 

semi-simple, and (X,V):- - f(X,Y), X,V g, where f is the Killing 

form of g. Then 

0-- 0 - I , o 

where I is the identity map of (CM(G)®m)H. 

Proof. The last formula follows from °2 " 0 and 05+°6--1 • 

Remark. The last formula o. - 00 - I for the Jacobi operator 

of the identity map of a Riemannian symmetric space was stated in (NaJ. 
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