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Abstract

Let Ψn(x) be the monic polynomial having precisely all non-primitive nth
roots of unity as its simple zeros. One has Ψn(x) = (xn − 1)/Φn(x),
with Φn(x) the nth cyclotomic polynomial. The coefficients of Ψn(x) are
integers that like the coefficients of Φn(x) tend to be surprisingly small in
absolute value, e.g. for n < 561 all coefficients of Ψn(x) are ≤ 1 in absolute
value. We establish various properties of the coefficients of Ψn(x).

1 Introduction

The nth cyclotomic polynomial Φn(x) is defined by

Φn(x) =
∏

1≤j≤n

(j,n)=1

(x − ζj
n) =

ϕ(n)
∑

k=0

an(k)xk,

where ϕ is Euler’s totient function and ζn a primitive nth root of unity. The
coefficients an(k) are known to be integral. The study of the an(k) began with
the startling observation that for small n we have |an(k)| ≤ 1. The first coun-
terexample to this inequality occurs for n = 105: a105(7) = −2. The amazement
over the smallness of an(m) was eloquently phrased by D. Lehmer [10] who wrote:
‘The smallness of an(m) would appear to be one of the fundamental conspiracies
of the primitive nth roots of unity. When one considers that an(m) is a sum of
(φ(n)

m
) unit vectors (for example 73629072 in the case of n = 105 and m = 7) one

realizes the extent of the cancellation that takes place’.
We define Ψn(x) by

Ψn(x) =
∏

1≤j≤n

(j,n)>1

(x − ζj
n) =

n−ϕ(n)
∑

k=0

cn(k)xk.

Note that Ψn(x) = (xn − 1)/Φn(x). The identity xn − 1 =
∏

d|n Φd(x) shows that

Ψn(x) =
∏

d|n,d<n

Φd(x),
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and thus the coefficients of Ψn(x) are integers.
Note that for |x| < 1 we have

1

Φn(x)
= −Ψn(x)(1 + xn + x2n + · · ·).

Since n > n−ϕ(n), it follows that the Taylor coefficients of 1/Φn(x) are periodic
with a period dividing n. This allows one to easily reformulate the results on the
coefficients of Ψn(x) obtained in this paper to the Taylor coefficients of 1/Φn(x)
as well.

The purpose of this note is to show that the non-primitive roots, like the
primitive ones, conspire and study the extent to which this is the case.

2 Some basics

Note that

xn − 1 =
∏

d|n

∏

1≤j≤n

(j,n)=d

(x − ζj
n) =

∏

d|n

Φn
d
(x) =

∏

d|n

Φd(x). (1)

It follows from this identity that

Ψn(x) =
xn − 1

Φn(x)
=

∏

d|n
d<n

Φd(x). (2)

We infer that Ψn(x) ∈ Z[x].

Lemma 1 Let n > 1. We have

Ψn(x) = −
∏

d|n
d<n

(1 − xd)−µ( n
d
).

Proof. By applying Möbius inversion one deduces from (1) that

Φn(x) =
∏

d|n

(xd − 1)µ( n
d
). (3)

On using that
∑

d|n µ(n/d) = 0, we infer that Φn(x) =
∏

d|n(1 − xd)µ( n
d
), from

which the result follows on invoking (2). 2

Let rad(n) =
∏

p|n p be the radical of n. From the previous lemma it is not

difficult to arrive at the next result, see e.g. Thangadurai [17] for the proof of
the corresponding result for Φn(x).

Lemma 2 Let n > 1. We have:
1) Ψ2n(x) = (1 − xn)Ψn(−x) if n is odd;
2) Ψpn(x) = Ψn(xp) if p|n;
3) Ψpn(x) = Ψn(xp)Φn(x) if p - n;

4) Ψn(x) = Ψrad(n)(x
n

rad(n) );
5) Ψn(x) = −Ψn( 1

x
)xn−ϕ(n).
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Put Vn = {cn(k) : 0 ≤ k ≤ n−ϕ(n)}. If n > 1 then by part 5 of the latter lemma
we have that a ∈ Vn implies that −a ∈ Vn. It also gives that if n − ϕ(n) is even,
then cn((n − ϕ(n))/2) = 0.

Lemma 3 If n = 1, then Vn = {1}. If n is a prime, then Vn = {−1, 1}. In the
remaining cases we have {−1, 0, 1} ⊆ Vn.

Proof. If n = 1, then Ψn(x) = 1. If n is a prime, then Ψn(x) = x−1. Next assume
that n has at least two (not necessarily distinct) prime divisors. Note that this
implies that n − ϕ(n) ≥ 2. Note that Ψn(x) is monic and that Ψn(0) = −1 by
Lemma 1. It thus remains to be shown that 0 ∈ Vn. In case n is not squarefree
we have Ψn(x) = −1 + O(x2) by Lemma 1 and thus cn(1) = 0. If n is odd and
squarefree and µ(n) = −1, then by Lemma 1 we find Ψn(x) = −1 + x + O(x3)
and hence cn(2) = 0 (here we use that n − ϕ(n) ≥ 2). If n is odd and squarefree
and µ(n) = 1, then by Lemma 1 we find

Ψn(x) =
(xp − 1)

1 − x
(1 + O(xp+1)),

where p is the smallest prime divisor of n and hence cn(p) = 0. Since p ≤ n−ϕ(n)
it follows that 0 ∈ Vn. In case n is even and squarefree we invoke part 1 of Lemma
2 to complete the proof. 2

It is not difficult to prove that, as x tends to infinty,

∑

n≤x

ϕ(n)

n
∼

x

ζ(2)
= x

6

π2
.

Thus the average degree of Φn(x) and Ψn(x) is 6
π2 n, respectively (1 − 6

π2 )n. We
have 6

π2 = 0.60792710 · · · and 1 − 6
π2 = 0.3920728 · · ·.

2.1 (Reciprocal) cyclotomic polynomials of low order

We define the order of Φn(x) and Ψn(x) to be the number, ω1(n), of distinct odd
prime divisors of n. Instead of saying that f has order 3, we sometimes say that
f is ternary. We define the height of a polynomial f in Z[x], h(f), to be the
maximum absolute value of the coefficients of f . In case h(f) = 1 we say that f
is flat.

Low order examples (in the remainder of this section p < q < r will be
primes):
Ψ1(x) = 1;
Ψp(x) = −1 + x;
Ψpq(x) = −1 − x − x2 − . . . − xp−1 + xq + xq+1 + . . . + xp+q−1.
These examples in combination with parts 1 and 4 of Lemma 2 establish the
correctness of the following result.

Lemma 4 If Ψn(x) is of order ≤ 2, then Ψn(x) is flat.
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We like to point out that Ψpq(x) has a rather simpler structure than Φpq(x). It
can be shown, see e.g. Carlitz [7], Lam and Leung [9] and Thangadurai [17], that

Φpq(x) =

ρ
∑

i=0

xip

σ
∑

j=0

xjq − x−pq

q−1
∑

i=ρ+1

xip

p−1
∑

j=σ+1

xjq

=

ρ
∑

i=0

xip

σ
∑

j=0

xjq − x

q−2−ρ
∑

i=0

xip

p−2−σ
∑

j=0

xjq,

where ρ and σ are the unique nonnegative integers for which (p−1)(q−1) = ρp+σq
(note that ρ ≤ q − 2 and σ ≤ p − 2). As a consequence we have the following
evaluation of the coefficients apq(k).

Lemma 5 Let p < q be odd primes. Let ρ and σ be the unique nonnegative
integers for which (p − 1)(q − 1) = ρp + σq. Then

apq(k) =

{

1 if k = ip + jq for some 0 ≤ i ≤ ρ, 0 ≤ j ≤ σ;
−1 if k = 1 + ip + jq for some 0 ≤ i ≤ q − 2 − ρ, 0 ≤ j ≤ p − 2 − σ;
0 otherwise.

Using the latter lemma it is easy to show that if Φn(x) is of order ≤ 2, then Φn(x)
is flat.

For the convenience of the reader we will prove that there are unique non-
negative integers such that (p − 1)(q − 1) = ρp + σq (this proof is taken from
Ramı́rez Alfonśın’s book [15, p. 34], with the observation that in case p and q are
primes the auxiliary polynomial Q(x) equals Φpq(x)). We let r(n) be the number
of representations of n in the form n = px + qy with x, y ≥ 0. We have

R(x) =
∞

∑

i=0

r(i)xi =
1

(1 − xp)(1 − xq)
.

Note that R(x)(xpq − 1)(x − 1) = Φpq(x). By L’Hôpital’s rule we find that
Φpq(1) = 1 and hence we have that

Φpq(x) − 1

x − 1
=

pq−p−q
∑

i=0

g(i)xi,

with g(pq − p − q) = 1. On the other hand,

Φpq(x) − 1

x − 1
= R(x)(xpq − 1) +

1

1 − x
;

=
∞

∑

i=0

r(i)xpq+i +
∞

∑

i=0

(1 − r(i))xi;

=

pq−1
∑

i=0

(1 − r(i))xi +
∞

∑

i=pq

(r(i − pq) + 1 − r(i))xi.

On comparing the two expressions for (Φpq(x) − 1)/(x − 1) we arrive at various
conclusions. First of all we see that r((p− 1)(q − 1)) = 1. Secondly it allows one
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to compute the Frobenius number g(p, q). Given relatively prime positive integers
a1, . . . , an the largest natural number that is not representable as a non-negative
integer combination of a1, . . . , an is called the Frobenius number and denoted by
g(a1, . . . , an). On noting that r(i − pq) ≤ r(i) comparison of the two expressions
for (Φpq(x) − 1)/(x − 1) shows that r(pq − p − q) = 0 and r(pq − p − q + i) ≥ 1
for i ≥ 1, which yields g(p, q) = pq − p − q.

By Lemma 1 we have

Ψpqr(x) =
(x − 1)(1 − xpq)(1 − xpr)(1 − xqr)

(1 − xp)(1 − xq)(1 − xr)
.

This can be written as

Ψpqr(x) = (x − 1)
(

q−1
∑

j1=0

xj1p
)(

r−1
∑

j2=0

xj2q
)(

p−1
∑

j3=0

xj3r
)

. (4)

Alternatively we can write, by part 3 of Lemma 2,

Ψpqr(x) = Φpq(x)Ψpq(x
r). (5)

Let the denumerant be defined as the number of non-negative integer represen-
tations of m by a1, a2, . . . , an. Denote it by d(m; a1, . . . , an). For m < pq we infer
from (4) that cpqr(k) = d(m − 1; p, q) − d(m; p, q). For more on denumerants see
Chapter 4 of Ramı́rez Alfonśın [15].

Lemma 6 Let p < q < r be odd primes. If 0 ≤ k < r, then we have cpqr(k) =
−apq(k) ∈ {−1, 0, 1}.

Proof. Immediate from (5), Ψpq(0) = −1 and Lemma 5. 2

The following result also relates cpqr(k) to apq(k) in case k > r. (If k is outside
the range [0, . . . , ϕ(n)] respectively, [0, . . . , n − ϕ(n)], then we put an(k) = 0,
respectively cn(k) = 0.

Lemma 7 Let p < q < r be odd primes. Put τ = (p − 1)(r + q − 1). Suppose
that qr > τ . If k ≤ τ , then

cpqr(k) = −
m

∑

j=0

apq(k − jr),

with m the unique integer such that mr ≤ k < (m + 1)r. Furthermore,

cpqr(τ − k) = cpqr(k) (6)

and cpqr(k + qr) = −cpqr(k). If τ < k < qr, then cpqr(k) = 0.

Proof. We have

Ψpqr(x) = Φpq(x)(1 + xr + . . . + x(p−1)r)(xqr − 1). (7)
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Write

Φpq(x)(1 + xr + . . . + x(p−1)r) =
τ

∑

k=0

epqr(k)xk. (8)

Note that the polyniomal in (8) of degree τ and selfreciprocal. If k ≤ τ , then
cpqr(k) = −epqr(k) and cpqr(k + qr) = epqr(k). On combining all these observa-
tions the result easily follows. 2

In 1895 Bang [4] proved that h(Φpqr(x)) ≤ p− 1. The same bound applies to the
height of Ψpqr(x).

Theorem 1 The height of Ψpqr(x) is at most p − 1. More precisely, we have

h(Ψpqr(x)) ≤
[(p − 1)(q − 1)

r

]

+ 1.

Proof. By (5) we find that

cpqr(k) =

[k/r]
∑

j=0

apq(k − jr)cpq(j). (9)

The number of j for which 0 ≤ k − jr ≤ ϕ(pq) is

≤
[ϕ(pq)

r

]

+ 1 =
[(p − 1)(q − 1)

r

]

+ 1 ≤ p − 2 + 1 = p − 1.

The proof is finished since |apq(k − jr)| ≤ 1 by Lemma 5 and |cpq(j)| ≤ 1 by the
identity Ψpq(x) = −1 − x − x2 − . . . − xp−1 + xq + xq+1 + . . . + xp+q−1. 2

We have seen that on average the degree of Φn(x) is less than that of Ψn(x). It is
left to the reader to show that if p < q < r are odd primes, then deg(Ψpqr(x)) <
deg(Φpqr(x)), except when pqr ∈ {105, 165, 195}.

3 Beiter’s conjecture and its reciprocal analogue

In 1971 Sister Marion Beiter [5] put forward the conjecture that if p < q < r
are odd primes, then Φpqr(x) is of height at most (p + 1)/2. As she pointed
out, her conjecture is true for p ≤ 5. She also showed that the height is
≤ p − bp/4c. Bachman [1] showed that if either q or r is congruent to ±1 or
±2 modulo p, then the height is ≤ (p + 1)/2. H. Möller [12] gave explicit ex-
amples of polynomials Φpqr(x), for every p, with a prescribed coefficient equal to
(p + 1)/2. This shows that the conjecture is best possible, if true. More pre-
cisely, Möller showed that if q ≡ −2(mod p), r ≡ −(p − 1)(q − 1)/2(mod pq),
then apqr((p − 1)(qr + 1)/2) = (p + 1)/2. For further results and references see
Bachman [1, 2]. In general Beiter’s conjecture remains unresolved.

The following result gives the analogue of the Beiter conjecture for the recip-
rocal polynomials.
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Theorem 2 Let p < q < r be odd primes. Then h(Ψpqr(x)) = p − 1 iff

q ≡ r ≡ ±1(mod p) and r <
(p − 1)

(p − 2)
(q − 1).

In the remaining cases h(Ψpqr(x)) < p − 1.

Corollary 1 Suppose that h(Ψpqr(x)) = p − 1 and q + 2p is a prime, then also
h(Ψpq(q+2p)(x)) = p − 1.

By the above theorem and Dirichlet’s theorem on arithmetic progressions it fol-
lows that for every prime p ≥ 3 there are infinitely many pairs (q, r) such that
h(Ψpqr(x)) = p − 1.

Theorem 2 follows from two theorems that deal with the necessity, respectively
sufficiency part of its iff statement in combination with Theorem 1.

Theorem 3 If h(Ψpqr(x)) = p − 1, then

q ≡ r ≡ ±1(mod p) and r <
(p − 1)

(p − 2)
(q − 1).

Proof. Let jmin be the smallest j such that k− jr ≤ ϕ(pq) and jmax be the largest
j such that k − jr ≥ 0. Then we can write (9) as

cpqr(k) =

jmax
∑

j=jmin

apq(k − jr)cpq(j).

From k − jmaxr ≥ 0 and k − jminr ≤ (p− 1)(q − 1) we infer that (jmax − jmin)r ≤
(p − 1)(q − 1) < (p − 1)r and hence jmax − jmin ≤ p − 2. In order to have
cpqr(k) = p−1 for some k we must have jmax−jmin = p−2. Thus (jmax−jmin)r =
(p−2)r ≤ (p−1)(q−1). Since (p−2)r is odd and (p−1)(q−1) is even it follows
that

r <
(p − 1)

(p − 2)
(q − 1).

Let k be such that |cpqr(k)| = p − 1. Then we must have that cpq(j) 6= 0 for
jmin ≤ j ≤ jmax. It follows from this that the pair (jmin, jmax) must be one of
the following: (0, p − 2), (1, p − 1), (q, q + p − 2), (q + 1, q + p − 1), and that
cpq(jmin) = cpq(jmin + 1) = . . . = cpq(jmax). Thus we have

p − 1 = |cpqr(k)| =
∣

∣

∣

jmax
∑

j=jmin

apq(k − jr)
∣

∣

∣
.

We now make a case distinction according to whether apq(k − jr) = 1 for jmin ≤
j ≤ jmax, or apq(k − jr) = −1 for every jmin ≤ j ≤ jmax.
First case. For every jmin ≤ j ≤ jmax we have apq(k − jr) = 1.
By Lemma 5 it follows that there must be non-negative integers im and jm with
0 ≤ im ≤ ρ and 0 ≤ jm ≤ σ such that











k − jmaxr =i1p + j1q;
k − (jmax − 1)r =i2p + j2q;
· · · = · · ·
k − jminr =ip−1p + jp−1q,
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Now if we would have jm1 = jm2 for m1 6= m2 by subtracting the corresponding
equations we infer that p|r, a contradiction. Thus we must have {j1, . . . , jp−1} =
{0, 1, . . . , p − 2} and hence σ = p − 2. It follows that q ≡ −1(mod p) and
ρ = (q−p+1)/p. Now select m1 and m2 such that jm2 = jm1 +1. On substracting
the corresponding equations we infer that αr = βp + q for some integers α and β
with −ρ ≤ β ≤ ρ. Note that p − 1 ≤ βp + q < 2q − p + 1 < 2r. It follows that
α = 1 and r = βp + q and hence r ≡ q ≡ −1(mod p).
Second case. For every jmin ≤ j ≤ jmax we have apq(k − jr) = −1.
By Lemma 5 it then follows that there must be non-negative integers im and jm

with 0 ≤ im ≤ q − 2 − ρ and 0 ≤ jm ≤ p − 2 − σ such that











k − jmaxr =1 + i1p + j1q;
k − (jmax − 1)r =1 + i2p + j2q;
· · · = · · ·
k − jminr =1 + ip−1p + jp−1q,

For the same reason as above we must have {j1, . . . , jp−1} = {0, 1, . . . , p − 2}.
This implies σ = 0. It follows that q ≡ 1(mod p) and ρ = (p − 1)(q − 1)/p and
thus ρ′ := q−2−ρ = (q−p−1)/p. Now select m1 and m2 such that jm2 = jm1 +1.
On substracting the corresponding equations we infer that αr = βp + q for some
integers α and β with −ρ′ ≤ β ≤ ρ′. Note that p + 1 ≤ βp+ q < 2q − p− 1 < 2r.
It follows that α = 1 and r = βp + q and hence r ≡ q ≡ 1(mod p). 2

Theorem 4 Let p < q < r be odd primes such that r < (p − 1)(q − 1)/(p − 2).
If q ≡ −1(mod p) and r ≡ −1(mod p), then

cpqr(k) =







−1 − m for 0 ≤ m ≤ p − 2, k = mr;
0 for k = 2;
m + 1 for 0 ≤ m ≤ p − 2, k = (m + q)r,

and Vpqr = {−(p − 1),−(p − 2), . . . , p − 2, p − 1}.
If q ≡ 1(mod p) and r ≡ 1(mod p), then

cpqr(k) =







1 + m for 0 ≤ m ≤ p − 2, k = 1 + mr;
0 for k = 2;
−1 − m for 0 ≤ m ≤ p − 2, k = 1 + (m + q)r,

and Vpqr = {−(p − 1),−(p − 2), . . . , p − 2, p − 1}.

Proof. From the proof of Lemma 3 it follows that cpqr(2) = 0.
First case. Assume that q ≡ r ≡ −1(mod p).
Note that ρ = (q− p+1)/p and σ = p− 2. Notice furthermore that we can write
r = αp+q with α = (r−q)/p ≥ 0. The condition r < (p−1)(q−1)/(p−2) ensures
that (p − 2)α ≤ ρ. Let 0 ≤ m ≤ p − 2 be arbitrary. We have mr = mαp + mq
with 0 ≤ mα ≤ (p− 2)α ≤ ρ and 0 ≤ m ≤ σ = p− 2. By Lemma 5 we then infer
that apq(mr) = 1. On invoking Lemma 7 and Theorem 1 the proof of this case is
then completed.
Second case. Assume that q ≡ r ≡ 1(mod p).
We claim that r(p − 2) ≤ (p − 1)(q − 1) − 2. By assumption we have r(p − 2) <
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(p−1)(q−1). Suppose that r(p−2) = (p−1)(q−1)−1. By considering this equa-
tion modulo p we see that it is impossible and thus r(p− 2) ≤ (p− 1)(q − 1)− 2.
Note that σ = 0 and ρ = (p − 1)(q − 1)/p. We can write r = αp + q with
α = (r − q)/p ≥ 0. The condition r(p − 2) ≤ (p − 1)(q − 1) − 2 ensures that
(p − 2)α ≤ q − 2 − ρ. Let 0 ≤ m ≤ p − 2 be arbitrary. We have 1 + mr =
1+mαp+mq with 0 ≤ mα ≤ (p−2)α ≤ q−2−ρ and 0 ≤ m ≤ p−2−σ = p−2.
By Lemma 5 we then infer that apq(1 + mr) = 1. On invoking Lemma 7 and
Theorem 1 the proof of this case is then also completed. 2

Remark. (Y. Gallot.) The above result suggests perhaps that in case n is of order
at least two, Vn is always of the form {−a,−(a−1), · · · ,−1, 0, 1, · · · , (a−1), a} for
some positive integer a. However, this is not the case. The smallest n for which
Vn is not of this form is n = 23205 = 3 · 5 · 7 · 13 · 17. Here the height is 13, but
12 (and -12) are not included in Vn. Further examples (in order of appearance)
are 46410 (height 13, ±12 not there), 49335 (height 34, ±33 not found), 50505
(height 15, ±14 not found). There are also examples where a whole range values
smaller than the height is not in Vn.

3.1 The case where p = 3

In the case where p = 3 we can always explicitly compute V3qr on invoking
Theorem 3, Theorem 4 and Lemma 3. We obtain the following result.

Theorem 5 Let 3 < q < r be odd primes.
If q ≡ 1(mod 3), r ≡ 1(mod 3) and r ≤ 2q − 7, then V3qr = {−2,−1, 0, 1, 2}. In
particular, c3qr(r + 1) = 2 and c3qr(r + 1 + qr) = −2.
If q ≡ 2(mod 3), r ≡ 2(mod 3) and r ≤ 2q − 3, then V3qr = {−2,−1, 0, 1, 2}. In
particular, c3qr(r) = −2 and c3qr(r + qr) = 2.
In the remaining cases V3qr = {−1, 0, 1} and then Ψ3qr(x) is flat.

Remark. The quoted results only give r ≤ 2q − 3. Note, however, that if
q ≡ r ≡ 1(mod 3) and r ≤ 2q − 3, then r ≤ 2q − 7.

We now infer some consequences of Theorem 5. For this we need the following
generalisation of Bertrand’s Postulate.

Lemma 8 If q is any prime, then the interval (q, 2q− 7] contains primes p1 and
p2 with pi ≡ i(mod 3).

Proof. Molsen [13], cf. Moree [14], has shown that for x ≥ 199 the interval (x, 8
7
x]

contains primes p1 and p2 with pi ≡ i(mod 3). From this the result follows after
some easy computations. 2

Theorem 6
1) Let r be any prime, then Ψ15r(x) and Ψ21r(x) are flat.
2) Let q ≥ 11 be a prime. Then Ψ3qr is flat for all primes r ≥ 2q − 1. However,
there is at least one prime r such that Ψ3qr(x) is non-flat.
3) Let 3 < q < r be primes. For k ≤ 16 we have |c3qr(k)| ≤ 1.
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Proof. 1) An immediate consequence of Theorem 5 and Lemma 4.
2) A consequence of Theorem 5 and Lemma 8.
3) By part 1 and Theorem 5 we infer that the smallest r for which V3qr 6=
{−1, 0, 1} is r = 17. By Lemma 6 the proof is then completed. 2

3.2 Reciprocal polynomials of intermediary height

A variation of the methods used to establish Theorem 2 yields the following upper
bound for h(Ψpqr(x)). Sometimes this bound is actually optimal, for example for
the Chernick Carmichael numbers (see Lemma 13).

Theorem 7 Let ρ and σ be the unique non-negative integers such that one has
(p − 1)(q − 1) = ρp + σq. Put τ = (p − 1)(q + r − 1). If qr > τ , then the height
of Ψpqr(x) is at most max{min(ρ + 1, σ + 1), min(q − 1 − ρ, p − 1 − σ)}.

Corollary 2 If either q ≡ −2(mod p) or q ≡ 2(mod p) and q > p + 2, then the
height of Ψpqr(x) is at most (p + 1)/2.

Proof. One easily checks that qr > τ . We compute that

σ =

{

p−3
2

if q ≡ −2(mod p);
p−1
2

if q ≡ 2(mod p).

Proof of Theorem 7. We have to show that |cpqr(k)| does not exceed the bound
stated. The conditions of Lemma 7 are satisfied and by property (6) we may take
k ≤ τ/2 < (p − 1)r. Now choose 0 ≤ m ≤ p − 2 such that mr ≤ k < (m + 1)r.
By Lemma 7 we have

cpqr(k) = −
m

∑

v=0

apq(k − vr).

Let us consider the worst case where m = p−2 and a priori |cpqr(k)| ≤ p−1. We
determine the maximum number of v with 0 ≤ v ≤ p−2 for which apq(k−vr) = 1.
Let us suppose that for v1, . . . , vt we have apq(k− vjr) = 1 and hence, by Lemma
5, we have











k − v1r = i1p + j1q;
k − v2r = i2p + j2q;
. . .
k − vtr = itp + jtq,

where each jm satisfies 0 ≤ jm ≤ σ. Now if t > σ + 1 two of the jm must be
equal. On subtracting the corresponding equations it would follow that p|r, a
contradiction that shows that t ≤ σ + 1. On using that q - r, we likewise infer
that t ≤ ρ + 1. We infer that cpqr(k) ≥ −min(ρ + 1, σ + 1). Note that the same
inequality actually holds for all k < (p − 1)r.

We determine the maximum number of w with 0 ≤ w ≤ p − 2 for which
apq(k − wr) = −1. Let us suppose that for w1, . . . , wt we have apq(k − wjr) = 1
and hence, by Lemma 5, we have











k − w1r = 1 + i1p + j1q;
k − w2r = 1 + i2p + j2q;
. . .
k − wtr = 1 + itp + jtq,
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where each jm satisfies 0 ≤ jm ≤ p − 2 − σ. Now if t > p − 1 − σ two of the
jm must be equal. On subtracting the corresponding equations it would follow
that p|r, a contradiction that shows that t ≤ p − 1 − σ. Likewise we infer that
t ≤ q − 1 − ρ. We infer that cpqr(k) ≤ min(q − 1 − ρ, p − 1 − σ). On combining
this with cpqr(k) ≥ −min(ρ + 1, σ + 1) we are done. 2

4 Further flatness results

In this section we present some further (near) flatness results.

Lemma 9 If r > (p − 1)(q − 1), then Ψpqr(x) is flat.

Proof. Note that if f and g are flat polynomials and m > deg(f), then f(x)g(xm)
is flat. By (5) we have Ψpqr(x) = Φpq(x)Ψpq(x

r). The assumption on r implies
that r > deg(Φpq(x)) = (p− 1)(q− 1). Since both Φpq(x) and Ψpq(x) are flat, the
result now follows. 2

A variation of the latter proof making use of the identity Ψpn(x) = Ψn(xp)Φn(x)
if p - n (this is part 3 of Lemma 2), yields the following lemma.

Lemma 10 Let p be a prime. Let h1, h2 be the height of Φn(x), respectively
Ψn(x). If p > ϕ(n), then Ψnp(x) is of height h1h2.

Using this result we easily infer the following one.

Lemma 11 Let 3 < q < r < s be primes such that s > 2(q − 1)(r − 1). Then
1) Ψ3qrs(x) is of height at most 4.
2) If r ≡ q(mod 3) and r ≡ ±1(mod 3q), then Ψ3qrs(x) is flat.

Proof. 1) Beiter [5] has shown that Φ3qr(x) is of height at most 2. By Theorem 5
we know that also Ψ3qr(x) is of height at most 2. Now apply the previous lemma
with n = 3qr and p = s.
2) Follows from the previous lemma, Theorem 5 and the result due to Kaplan [8,
Theorem 1] (who extended on earlier work by Bachman [3]) that Φ3qr(x) is flat
if r ≡ ±1(mod 3q). 2

Remark. Since h(Ψ3·11·17·331(x)) = 4, we see that the 4 above cannot be replaced
by a smaller number.

Recall that smallest n for which Φn(x) is non-flat is n = 105.

Lemma 12 The smallest n for which Ψn(x) is non-flat is n = 561.

Proof. By computation one finds that c561(17) = −2. By Lemma 4 it suffices to
check that Ψn(x) is flat for every odd squarefree n ≤ 560 with ω1(n) ≥ 3. This
leaves us with the sets

A = {105, 165, 195, 231, 255, 273, 285, 345, 357, 399, 435, 465, 483, 555},

and B = {385, 429, 455}, where the set A has all its elements divisible by 15 or
21. On applying part 1 of Theorem 6 we infer that Ψn(x) is flat for every n ∈ A.
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By direct computation we find that Ψ385(x), Ψ429(x) and Ψ455(x) are flat. 2

Since 561 is the smallest Carmichael number and the smallest number m for
which h(Ψm(x)) > 1, one might wonder whether perhaps h(ΨC(x)) > 1 for
every Carmichael number C. The answer is no, as the example c = 2821 shows.
However, for the Chernick Carmichael numbers the answer turns out to be yes.
In 1939 Chernick proved that if k ≥ 0 is such that 6k + 1, 12k + 1 and 18k + 1
are all primes, then C = (6k + 1)(12k + 1)(18k + 1) is a Carmichael number.
Examples occur for k = 1, 6, 35, 45, 51, 56, . . ..

Lemma 13 If C = (6k+1)(12k+1)(18k+1) is a Chernick Carmichael number,
then cC(24k + 2) = −2 and h(ΨC(x)) = 2.

Proof. Put p = 6k+1, q = 12k+1 and r = 18k+1. We find ρ = 1 and σ = p−2.
By Theorem 7 we infer that h(ΨC(x)) ≤ 2. By Lemma 5 we have aC(2q) = 1
and aC(p) = 1. Now cC(2q) = −aC(2q) − aC(2q − r) = −aC(2q) − aC(p) = −2.
Thus cC(2q) = cC(24k + 2) = −2 and h(ΨC(x)) = 2. 2

5 Sizable coefficients

The history of sizable coefficients goes back to Schur who in a letter in 1931 to
Landau (see e.g. E. Lehmer [11]) proved that the an(k) are unbounded. It is not
difficult, see Suzuki [16], to adapt his argument so as to show that every integer
shows up as a coefficient, that is {an(k) : n ≥ 1, k ≥ 0} = Z. Bungers [6], in
his Ph.D. thesis proved that under the assumption that there are infinitely many
twin primes, the an(k) are also unbounded if n has at most three prime factors.
E. Lehmer [11] eliminated the unproved assumption of the existence of infinitely
twin primes from this. The strongest result in this direction to date is due to
Bachman, who proved a result ([2, Theorem 1]), which implies that

{apqr(k) : 3 ≤ p < q < r primes} = Z.

A minor variation of Suzuki’s argument gives {cn(k) : n ≥ 1, k ≥ 0} = Z.
Since the next result is stronger, the details are left to the interested reader.

Theorem 8 We have {cpqr(k) : 3 ≤ p < q < r primes} = Z.

Proof. By Dirichlet’s theorem on arithmetic progressions for every prime p there
is a q0(p) such that for every q > q0(p) with q ≡ ±1(mod p), there exists
r ≡ q(mod p) with q < r < (p − 1)(q − 1)/(p − 2). The proof is then com-
pleted on invoking Theorem 4. 2

In the table below (part of a much large table computed by Yves Gallot) the
minimal n, n0, such that cn0(k) = m for some k is given. The third column
gives the degree of Ψn0(x). The fourth column gives the smallest k, k0, for which
|cn0(k0)| = m.
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Table 1: Minimal n and k with |cn(k)| = m

m n0 deg(Ψn0) k0 cn0(k0)
1 1 0 0 +1
2 561 = 3 · 11 · 17 241 17 −2
3 1155 = 3 · 5 · 7 · 11 675 33 −3
4 2145 = 3 · 5 · 11 · 13 1185 44 +4
5 3795 = 3 · 5 · 11 · 23 2035 132 −5
6 5005 = 5 · 7 · 11 · 13 2125 201 −6
7 5005 = 5 · 7 · 11 · 13 2125 310 −7
8 8645 = 5 · 7 · 13 · 19 3461 227 −8
9 8645 = 5 · 7 · 13 · 19 3461 240 +9
10 11305 = 5 · 7 · 17 · 19 4393 240 −10
11 11305 = 5 · 7 · 17 · 19 4393 306 +11

For m = 10, . . . , 21 it turns out that n0 = 11305.
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