Reciprocal cyclotomic polynomials

Pieter Moree

Abstract

Let $\Psi_n(x)$ be the monic polynomial having precisely all non-primitive *n*th roots of unity as its simple zeros. One has $\Psi_n(x) = (x^n - 1)/\Phi_n(x)$, with $\Phi_n(x)$ the *n*th cyclotomic polynomial. The coefficients of $\Psi_n(x)$ are integers that like the coefficients of $\Phi_n(x)$ tend to be surprisingly small in absolute value, e.g. for n < 561 all coefficients of $\Psi_n(x)$ are ≤ 1 in absolute value. We establish various properties of the coefficients of $\Psi_n(x)$.

1 Introduction

The *n*th cyclotomic polynomial $\Phi_n(x)$ is defined by

$$\Phi_n(x) = \prod_{\substack{1 \le j \le n \\ (j,n)=1}} (x - \zeta_n^j) = \sum_{k=0}^{\varphi(n)} a_n(k) x^k,$$

where φ is Euler's totient function and ζ_n a primitive *n*th root of unity. The coefficients $a_n(k)$ are known to be integral. The study of the $a_n(k)$ began with the startling observation that for small *n* we have $|a_n(k)| \leq 1$. The first counterexample to this inequality occurs for n = 105: $a_{105}(7) = -2$. The amazement over the smallness of $a_n(m)$ was eloquently phrased by D. Lehmer [10] who wrote: 'The smallness of $a_n(m)$ would appear to be one of the fundamental conspiracies of the primitive *n*th roots of unity. When one considers that $a_n(m)$ is a sum of $\binom{\phi(n)}{m}$ unit vectors (for example 73629072 in the case of n = 105 and m = 7) one realizes the extent of the cancellation that takes place'.

We define $\Psi_n(x)$ by

$$\Psi_n(x) = \prod_{\substack{1 \le j \le n \\ (j,n) > 1}} (x - \zeta_n^j) = \sum_{k=0}^{n - \varphi(n)} c_n(k) x^k.$$

Note that $\Psi_n(x) = (x^n - 1)/\Phi_n(x)$. The identity $x^n - 1 = \prod_{d|n} \Phi_d(x)$ shows that

$$\Psi_n(x) = \prod_{d|n,d < n} \Phi_d(x),$$

Mathematics Subject Classification (2000). 11B83, 11C08

and thus the coefficients of $\Psi_n(x)$ are integers.

Note that for |x| < 1 we have

$$\frac{1}{\Phi_n(x)} = -\Psi_n(x)(1 + x^n + x^{2n} + \cdots).$$

Since $n > n - \varphi(n)$, it follows that the Taylor coefficients of $1/\Phi_n(x)$ are periodic with a period dividing n. This allows one to easily reformulate the results on the coefficients of $\Psi_n(x)$ obtained in this paper to the Taylor coefficients of $1/\Phi_n(x)$ as well.

The purpose of this note is to show that the non-primitive roots, like the primitive ones, conspire and study the extent to which this is the case.

2 Some basics

Note that

$$x^{n} - 1 = \prod_{d|n} \prod_{\substack{1 \le j \le n \\ (j,n) = d}} (x - \zeta_{n}^{j}) = \prod_{d|n} \Phi_{\frac{n}{d}}(x) = \prod_{d|n} \Phi_{d}(x).$$
(1)

It follows from this identity that

$$\Psi_n(x) = \frac{x^n - 1}{\Phi_n(x)} = \prod_{\substack{d|n \\ d < n}} \Phi_d(x).$$
 (2)

We infer that $\Psi_n(x) \in \mathbb{Z}[x]$.

Lemma 1 Let n > 1. We have

$$\Psi_n(x) = -\prod_{\substack{d|n \\ d < n}} (1 - x^d)^{-\mu(\frac{n}{d})}.$$

Proof. By applying Möbius inversion one deduces from (1) that

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(\frac{n}{d})}.$$
(3)

On using that $\sum_{d|n} \mu(n/d) = 0$, we infer that $\Phi_n(x) = \prod_{d|n} (1 - x^d)^{\mu(\frac{n}{d})}$, from which the result follows on invoking (2).

Let $\operatorname{rad}(n) = \prod_{p|n} p$ be the *radical* of *n*. From the previous lemma it is not difficult to arrive at the next result, see e.g. Thangadurai [17] for the proof of the corresponding result for $\Phi_n(x)$.

Lemma 2 Let n > 1. We have: 1) $\Psi_{2n}(x) = (1 - x^n)\Psi_n(-x)$ if n is odd; 2) $\Psi_{pn}(x) = \Psi_n(x^p)$ if p|n; 3) $\Psi_{pn}(x) = \Psi_n(x^p)\Phi_n(x)$ if $p \nmid n$; 4) $\Psi_n(x) = \Psi_{rad(n)}(x^{\frac{n}{rad(n)}})$; 5) $\Psi_n(x) = -\Psi_n(\frac{1}{x})x^{n-\varphi(n)}$. Put $V_n = \{c_n(k) : 0 \le k \le n - \varphi(n)\}$. If n > 1 then by part 5 of the latter lemma we have that $a \in V_n$ implies that $-a \in V_n$. It also gives that if $n - \varphi(n)$ is even, then $c_n((n - \varphi(n))/2) = 0$.

Lemma 3 If n = 1, then $V_n = \{1\}$. If n is a prime, then $V_n = \{-1, 1\}$. In the remaining cases we have $\{-1, 0, 1\} \subseteq V_n$.

Proof. If n = 1, then $\Psi_n(x) = 1$. If n is a prime, then $\Psi_n(x) = x-1$. Next assume that n has at least two (not necessarily distinct) prime divisors. Note that this implies that $n - \varphi(n) \ge 2$. Note that $\Psi_n(x)$ is monic and that $\Psi_n(0) = -1$ by Lemma 1. It thus remains to be shown that $0 \in V_n$. In case n is not squarefree we have $\Psi_n(x) = -1 + O(x^2)$ by Lemma 1 and thus $c_n(1) = 0$. If n is odd and squarefree and $\mu(n) = -1$, then by Lemma 1 we find $\Psi_n(x) = -1 + x + O(x^3)$ and hence $c_n(2) = 0$ (here we use that $n - \varphi(n) \ge 2$). If n is odd and squarefree and $\mu(n) = 1$, then by Lemma 1 we find

$$\Psi_n(x) = \frac{(x^p - 1)}{1 - x} (1 + O(x^{p+1})),$$

where p is the smallest prime divisor of n and hence $c_n(p) = 0$. Since $p \le n - \varphi(n)$ it follows that $0 \in V_n$. In case n is even and squarefree we invoke part 1 of Lemma 2 to complete the proof.

It is not difficult to prove that, as x tends to infinity,

$$\sum_{n \le x} \frac{\varphi(n)}{n} \sim \frac{x}{\zeta(2)} = x \frac{6}{\pi^2}.$$

Thus the average degree of $\Phi_n(x)$ and $\Psi_n(x)$ is $\frac{6}{\pi^2}n$, respectively $(1-\frac{6}{\pi^2})n$. We have $\frac{6}{\pi^2} = 0.60792710\cdots$ and $1-\frac{6}{\pi^2} = 0.3920728\cdots$.

2.1 (Reciprocal) cyclotomic polynomials of low order

We define the order of $\Phi_n(x)$ and $\Psi_n(x)$ to be the number, $\omega_1(n)$, of distinct odd prime divisors of n. Instead of saying that f has order 3, we sometimes say that f is ternary. We define the *height* of a polynomial f in $\mathbb{Z}[x]$, h(f), to be the maximum absolute value of the coefficients of f. In case h(f) = 1 we say that fis *flat*.

Low order examples (in the remainder of this section p < q < r will be primes):

 $\Psi_1(x) = 1;$ $\Psi_p(x) = -1 + x;$ $\Psi_{pq}(x) = -1 - x - x^2 - \dots - x^{p-1} + x^q + x^{q+1} + \dots + x^{p+q-1}.$

These examples in combination with parts 1 and 4 of Lemma 2 establish the correctness of the following result.

Lemma 4 If $\Psi_n(x)$ is of order ≤ 2 , then $\Psi_n(x)$ is flat.

We like to point out that $\Psi_{pq}(x)$ has a rather simpler structure than $\Phi_{pq}(x)$. It can be shown, see e.g. Carlitz [7], Lam and Leung [9] and Thangadurai [17], that

$$\Phi_{pq}(x) = \sum_{i=0}^{\rho} x^{ip} \sum_{j=0}^{\sigma} x^{jq} - x^{-pq} \sum_{i=\rho+1}^{q-1} x^{ip} \sum_{j=\sigma+1}^{p-1} x^{jq}$$
$$= \sum_{i=0}^{\rho} x^{ip} \sum_{j=0}^{\sigma} x^{jq} - x \sum_{i=0}^{q-2-\rho} x^{ip} \sum_{j=0}^{p-2-\sigma} x^{jq},$$

where ρ and σ are the unique nonnegative integers for which $(p-1)(q-1) = \rho p + \sigma q$ (note that $\rho \leq q-2$ and $\sigma \leq p-2$). As a consequence we have the following evaluation of the coefficients $a_{pq}(k)$.

Lemma 5 Let p < q be odd primes. Let ρ and σ be the unique nonnegative integers for which $(p-1)(q-1) = \rho p + \sigma q$. Then

$$a_{pq}(k) = \begin{cases} 1 & \text{if } k = ip + jq \text{ for some } 0 \le i \le \rho, \ 0 \le j \le \sigma; \\ -1 & \text{if } k = 1 + ip + jq \text{ for some } 0 \le i \le q - 2 - \rho, 0 \le j \le p - 2 - \sigma, \\ 0 & \text{otherwise.} \end{cases}$$

Using the latter lemma it is easy to show that if $\Phi_n(x)$ is of order ≤ 2 , then $\Phi_n(x)$ is flat.

For the convenience of the reader we will prove that there are unique nonnegative integers such that $(p-1)(q-1) = \rho p + \sigma q$ (this proof is taken from Ramírez Alfonsín's book [15, p. 34], with the observation that in case p and q are primes the auxiliary polynomial Q(x) equals $\Phi_{pq}(x)$). We let r(n) be the number of representations of n in the form n = px + qy with $x, y \ge 0$. We have

$$R(x) = \sum_{i=0}^{\infty} r(i)x^{i} = \frac{1}{(1-x^{p})(1-x^{q})}.$$

Note that $R(x)(x^{pq}-1)(x-1) = \Phi_{pq}(x)$. By L'Hôpital's rule we find that $\Phi_{pq}(1) = 1$ and hence we have that

$$\frac{\Phi_{pq}(x) - 1}{x - 1} = \sum_{i=0}^{pq - p - q} g(i)x^{i},$$

with g(pq - p - q) = 1. On the other hand,

$$\frac{\Phi_{pq}(x) - 1}{x - 1} = R(x)(x^{pq} - 1) + \frac{1}{1 - x};$$

$$= \sum_{i=0}^{\infty} r(i)x^{pq+i} + \sum_{i=0}^{\infty} (1 - r(i))x^{i};$$

$$= \sum_{i=0}^{pq-1} (1 - r(i))x^{i} + \sum_{i=pq}^{\infty} (r(i - pq) + 1 - r(i))x^{i}$$

On comparing the two expressions for $(\Phi_{pq}(x) - 1)/(x - 1)$ we arrive at various conclusions. First of all we see that r((p-1)(q-1)) = 1. Secondly it allows one

to compute the Frobenius number g(p,q). Given relatively prime positive integers a_1, \ldots, a_n the largest natural number that is not representable as a non-negative integer combination of a_1, \ldots, a_n is called the Frobenius number and denoted by $g(a_1, \ldots, a_n)$. On noting that $r(i - pq) \leq r(i)$ comparison of the two expressions for $(\Phi_{pq}(x) - 1)/(x - 1)$ shows that r(pq - p - q) = 0 and $r(pq - p - q + i) \geq 1$ for $i \geq 1$, which yields g(p,q) = pq - p - q.

By Lemma 1 we have

$$\Psi_{pqr}(x) = \frac{(x-1)(1-x^{pq})(1-x^{pr})(1-x^{qr})}{(1-x^p)(1-x^q)(1-x^r)}.$$

This can be written as

$$\Psi_{pqr}(x) = (x-1) \Big(\sum_{j_1=0}^{q-1} x^{j_1 p}\Big) \Big(\sum_{j_2=0}^{r-1} x^{j_2 q}\Big) \Big(\sum_{j_3=0}^{p-1} x^{j_3 r}\Big).$$
(4)

Alternatively we can write, by part 3 of Lemma 2,

$$\Psi_{pqr}(x) = \Phi_{pq}(x)\Psi_{pq}(x^r).$$
(5)

Let the *denumerant* be defined as the number of non-negative integer representations of m by a_1, a_2, \ldots, a_n . Denote it by $d(m; a_1, \ldots, a_n)$. For m < pq we infer from (4) that $c_{pqr}(k) = d(m-1; p, q) - d(m; p, q)$. For more on denumerants see Chapter 4 of Ramírez Alfonsín [15].

Lemma 6 Let p < q < r be odd primes. If $0 \le k < r$, then we have $c_{pqr}(k) = -a_{pq}(k) \in \{-1, 0, 1\}$.

Proof. Immediate from (5), $\Psi_{pq}(0) = -1$ and Lemma 5.

The following result also relates $c_{pqr}(k)$ to $a_{pq}(k)$ in case k > r. (If k is outside the range $[0, \ldots, \varphi(n)]$ respectively, $[0, \ldots, n - \varphi(n)]$, then we put $a_n(k) = 0$, respectively $c_n(k) = 0$.

Lemma 7 Let p < q < r be odd primes. Put $\tau = (p-1)(r+q-1)$. Suppose that $qr > \tau$. If $k \leq \tau$, then

$$c_{pqr}(k) = -\sum_{j=0}^{m} a_{pq}(k-jr),$$

with m the unique integer such that $mr \leq k < (m+1)r$. Furthermore,

$$c_{pqr}(\tau - k) = c_{pqr}(k) \tag{6}$$

and $c_{pqr}(k+qr) = -c_{pqr}(k)$. If $\tau < k < qr$, then $c_{pqr}(k) = 0$.

Proof. We have

$$\Psi_{pqr}(x) = \Phi_{pq}(x)(1 + x^r + \ldots + x^{(p-1)r})(x^{qr} - 1).$$
(7)

Write

$$\Phi_{pq}(x)(1+x^r+\ldots+x^{(p-1)r}) = \sum_{k=0}^{\tau} e_{pqr}(k)x^k.$$
(8)

Note that the polynomial in (8) of degree τ and selfreciprocal. If $k \leq \tau$, then $c_{pqr}(k) = -e_{pqr}(k)$ and $c_{pqr}(k+qr) = e_{pqr}(k)$. On combining all these observations the result easily follows.

In 1895 Bang [4] proved that $h(\Phi_{pqr}(x)) \leq p-1$. The same bound applies to the height of $\Psi_{pqr}(x)$.

Theorem 1 The height of $\Psi_{pqr}(x)$ is at most p-1. More precisely, we have

$$h(\Psi_{pqr}(x)) \le \left[\frac{(p-1)(q-1)}{r}\right] + 1.$$

Proof. By (5) we find that

$$c_{pqr}(k) = \sum_{j=0}^{\lfloor k/r \rfloor} a_{pq}(k-jr)c_{pq}(j).$$
(9)

The number of j for which $0 \le k - jr \le \varphi(pq)$ is

$$\leq \left[\frac{\varphi(pq)}{r}\right] + 1 = \left[\frac{(p-1)(q-1)}{r}\right] + 1 \leq p - 2 + 1 = p - 1.$$

The proof is finished since $|a_{pq}(k-jr)| \leq 1$ by Lemma 5 and $|c_{pq}(j)| \leq 1$ by the identity $\Psi_{pq}(x) = -1 - x - x^2 - \dots - x^{p-1} + x^q + x^{q+1} + \dots + x^{p+q-1}$. \Box

We have seen that on average the degree of $\Phi_n(x)$ is less than that of $\Psi_n(x)$. It is left to the reader to show that if p < q < r are odd primes, then $\deg(\Psi_{pqr}(x)) < \deg(\Phi_{pqr}(x))$, except when $pqr \in \{105, 165, 195\}$.

3 Beiter's conjecture and its reciprocal analogue

In 1971 Sister Marion Beiter [5] put forward the conjecture that if p < q < rare odd primes, then $\Phi_{pqr}(x)$ is of height at most (p + 1)/2. As she pointed out, her conjecture is true for $p \leq 5$. She also showed that the height is $\leq p - \lfloor p/4 \rfloor$. Bachman [1] showed that if either q or r is congruent to ± 1 or ± 2 modulo p, then the height is $\leq (p + 1)/2$. H. Möller [12] gave explicit examples of polynomials $\Phi_{pqr}(x)$, for every p, with a prescribed coefficient equal to (p + 1)/2. This shows that the conjecture is best possible, if true. More precisely, Möller showed that if $q \equiv -2 \pmod{p}$, $r \equiv -(p - 1)(q - 1)/2 \pmod{pq}$, then $a_{pqr}((p - 1)(qr + 1)/2) = (p + 1)/2$. For further results and references see Bachman [1, 2]. In general Beiter's conjecture remains unresolved.

The following result gives the analogue of the Beiter conjecture for the reciprocal polynomials. **Theorem 2** Let p < q < r be odd primes. Then $h(\Psi_{pqr}(x)) = p - 1$ iff

$$q \equiv r \equiv \pm 1 \pmod{p}$$
 and $r < \frac{(p-1)}{(p-2)}(q-1)$.

In the remaining cases $h(\Psi_{pqr}(x)) < p-1$.

Corollary 1 Suppose that $h(\Psi_{pqr}(x)) = p - 1$ and q + 2p is a prime, then also $h(\Psi_{pq(q+2p)}(x)) = p - 1$.

By the above theorem and Dirichlet's theorem on arithmetic progressions it follows that for every prime $p \ge 3$ there are infinitely many pairs (q, r) such that $h(\Psi_{pqr}(x)) = p - 1$.

Theorem 2 follows from two theorems that deal with the necessity, respectively sufficiency part of its iff statement in combination with Theorem 1.

Theorem 3 If $h(\Psi_{pqr}(x)) = p - 1$, then

$$q \equiv r \equiv \pm 1 \pmod{p}$$
 and $r < \frac{(p-1)}{(p-2)}(q-1)$.

Proof. Let j_{\min} be the smallest j such that $k - jr \leq \varphi(pq)$ and j_{\max} be the largest j such that $k - jr \geq 0$. Then we can write (9) as

$$c_{pqr}(k) = \sum_{j=j_{\min}}^{j_{\max}} a_{pq}(k-jr)c_{pq}(j).$$

From $k - j_{\max}r \ge 0$ and $k - j_{\min}r \le (p-1)(q-1)$ we infer that $(j_{\max} - j_{\min})r \le (p-1)(q-1) < (p-1)r$ and hence $j_{\max} - j_{\min} \le p-2$. In order to have $c_{pqr}(k) = p-1$ for some k we must have $j_{\max} - j_{\min} = p-2$. Thus $(j_{\max} - j_{\min})r = (p-2)r \le (p-1)(q-1)$. Since (p-2)r is odd and (p-1)(q-1) is even it follows that

$$r < \frac{(p-1)}{(p-2)}(q-1).$$

Let k be such that $|c_{pqr}(k)| = p - 1$. Then we must have that $c_{pq}(j) \neq 0$ for $j_{\min} \leq j \leq j_{\max}$. It follows from this that the pair (j_{\min}, j_{\max}) must be one of the following: (0, p - 2), (1, p - 1), (q, q + p - 2), (q + 1, q + p - 1), and that $c_{pq}(j_{\min}) = c_{pq}(j_{\min} + 1) = \ldots = c_{pq}(j_{\max})$. Thus we have

$$p-1 = |c_{pqr}(k)| = \Big| \sum_{j=j_{\min}}^{j_{\max}} a_{pq}(k-jr) \Big|.$$

We now make a case distinction according to whether $a_{pq}(k - jr) = 1$ for $j_{\min} \le j \le j_{\max}$, or $a_{pq}(k - jr) = -1$ for every $j_{\min} \le j \le j_{\max}$.

First case. For every $j_{\min} \leq j \leq j_{\max}$ we have $a_{pq}(k - jr) = 1$. By Lemma 5 it follows that there must be non-negative integers i_m and j_m with $0 \leq i_m \leq \rho$ and $0 \leq j_m \leq \sigma$ such that

$$\begin{cases} k - j_{\max}r &=i_1p + j_1q; \\ k - (j_{\max} - 1)r &=i_2p + j_2q; \\ \cdots &= \cdots \\ k - j_{\min}r &=i_{p-1}p + j_{p-1}q, \end{cases}$$

Now if we would have $j_{m_1} = j_{m_2}$ for $m_1 \neq m_2$ by subtracting the corresponding equations we infer that p|r, a contradiction. Thus we must have $\{j_1, \ldots, j_{p-1}\} =$ $\{0, 1, \ldots, p-2\}$ and hence $\sigma = p-2$. It follows that $q \equiv -1 \pmod{p}$ and $\rho = (q-p+1)/p$. Now select m_1 and m_2 such that $j_{m_2} = j_{m_1}+1$. On substracting the corresponding equations we infer that $\alpha r = \beta p + q$ for some integers α and β with $-\rho \leq \beta \leq \rho$. Note that $p-1 \leq \beta p + q < 2q - p + 1 < 2r$. It follows that $\alpha = 1$ and $r = \beta p + q$ and hence $r \equiv q \equiv -1 \pmod{p}$.

Second case. For every $j_{\min} \leq j \leq j_{\max}$ we have $a_{pq}(k - jr) = -1$.

By Lemma 5 it then follows that there must be non-negative integers i_m and j_m with $0 \le i_m \le q - 2 - \rho$ and $0 \le j_m \le p - 2 - \sigma$ such that

$$\begin{cases} k - j_{\max}r &= 1 + i_1p + j_1q; \\ k - (j_{\max} - 1)r &= 1 + i_2p + j_2q; \\ \cdots &= \cdots \\ k - j_{\min}r &= 1 + i_{p-1}p + j_{p-1}q; \end{cases}$$

For the same reason as above we must have $\{j_1, \ldots, j_{p-1}\} = \{0, 1, \ldots, p-2\}$. This implies $\sigma = 0$. It follows that $q \equiv 1 \pmod{p}$ and $\rho = (p-1)(q-1)/p$ and thus $\rho' := q-2-\rho = (q-p-1)/p$. Now select m_1 and m_2 such that $j_{m_2} = j_{m_1}+1$. On substracting the corresponding equations we infer that $\alpha r = \beta p + q$ for some integers α and β with $-\rho' \leq \beta \leq \rho'$. Note that $p+1 \leq \beta p+q < 2q-p-1 < 2r$. It follows that $\alpha = 1$ and $r = \beta p + q$ and hence $r \equiv q \equiv 1 \pmod{p}$.

Theorem 4 Let p < q < r be odd primes such that r < (p-1)(q-1)/(p-2). If $q \equiv -1 \pmod{p}$ and $r \equiv -1 \pmod{p}$, then

$$c_{pqr}(k) = \begin{cases} -1 - m & \text{for } 0 \le m \le p - 2, \ k = mr; \\ 0 & \text{for } k = 2; \\ m + 1 & \text{for } 0 \le m \le p - 2, \ k = (m + q)r, \end{cases}$$

and $V_{pqr} = \{-(p-1), -(p-2), \dots, p-2, p-1\}.$ If $q \equiv 1 \pmod{p}$ and $r \equiv 1 \pmod{p}$, then

$$c_{pqr}(k) = \begin{cases} 1+m & \text{for } 0 \le m \le p-2, \ k = 1+mr; \\ 0 & \text{for } k = 2; \\ -1-m & \text{for } 0 \le m \le p-2, \ k = 1+(m+q)r, \end{cases}$$

and $V_{pqr} = \{-(p-1), -(p-2), \dots, p-2, p-1\}.$

Proof. From the proof of Lemma 3 it follows that $c_{pqr}(2) = 0$. First case. Assume that $q \equiv r \equiv -1 \pmod{p}$.

Note that $\rho = (q - p + 1)/p$ and $\sigma = p - 2$. Notice furthermore that we can write $r = \alpha p + q$ with $\alpha = (r - q)/p \ge 0$. The condition r < (p - 1)(q - 1)/(p - 2) ensures that $(p - 2)\alpha \le \rho$. Let $0 \le m \le p - 2$ be arbitrary. We have $mr = m\alpha p + mq$ with $0 \le m\alpha \le (p - 2)\alpha \le \rho$ and $0 \le m \le \sigma = p - 2$. By Lemma 5 we then infer that $a_{pq}(mr) = 1$. On invoking Lemma 7 and Theorem 1 the proof of this case is then completed.

Second case. Assume that $q \equiv r \equiv 1 \pmod{p}$. We claim that $r(p-2) \leq (p-1)(q-1) - 2$. By assumption we have r(p-2) < q = 1 (p-1)(q-1). Suppose that r(p-2) = (p-1)(q-1)-1. By considering this equation modulo p we see that it is impossible and thus $r(p-2) \leq (p-1)(q-1)-2$. Note that $\sigma = 0$ and $\rho = (p-1)(q-1)/p$. We can write $r = \alpha p + q$ with $\alpha = (r-q)/p \geq 0$. The condition $r(p-2) \leq (p-1)(q-1)-2$ ensures that $(p-2)\alpha \leq q-2-\rho$. Let $0 \leq m \leq p-2$ be arbitrary. We have $1 + mr = 1 + m\alpha p + mq$ with $0 \leq m\alpha \leq (p-2)\alpha \leq q-2-\rho$ and $0 \leq m \leq p-2-\sigma = p-2$. By Lemma 5 we then infer that $a_{pq}(1+mr) = 1$. On invoking Lemma 7 and Theorem 1 the proof of this case is then also completed.

Remark. (Y. Gallot.) The above result suggests perhaps that in case n is of order at least two, V_n is always of the form $\{-a, -(a-1), \dots, -1, 0, 1, \dots, (a-1), a\}$ for some positive integer a. However, this is not the case. The smallest n for which V_n is not of this form is $n = 23205 = 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17$. Here the height is 13, but 12 (and -12) are not included in V_n . Further examples (in order of appearance) are 46410 (height 13, ± 12 not there), 49335 (height 34, ± 33 not found), 50505 (height 15, ± 14 not found). There are also examples where a whole range values smaller than the height is not in V_n .

3.1 The case where p = 3

In the case where p = 3 we can always explicitly compute V_{3qr} on invoking Theorem 3, Theorem 4 and Lemma 3. We obtain the following result.

Theorem 5 Let 3 < q < r be odd primes. If $q \equiv 1 \pmod{3}$, $r \equiv 1 \pmod{3}$ and $r \leq 2q - 7$, then $V_{3qr} = \{-2, -1, 0, 1, 2\}$. In particular, $c_{3qr}(r+1) = 2$ and $c_{3qr}(r+1+qr) = -2$. If $q \equiv 2 \pmod{3}$, $r \equiv 2 \pmod{3}$ and $r \leq 2q - 3$, then $V_{3qr} = \{-2, -1, 0, 1, 2\}$. In particular, $c_{3qr}(r) = -2$ and $c_{3qr}(r+qr) = 2$. In the remaining cases $V_{3qr} = \{-1, 0, 1\}$ and then $\Psi_{3qr}(x)$ is flat.

Remark. The quoted results only give $r \leq 2q - 3$. Note, however, that if $q \equiv r \equiv 1 \pmod{3}$ and $r \leq 2q - 3$, then $r \leq 2q - 7$.

We now infer some consequences of Theorem 5. For this we need the following generalisation of Bertrand's Postulate.

Lemma 8 If q is any prime, then the interval (q, 2q - 7] contains primes p_1 and p_2 with $p_i \equiv i \pmod{3}$.

Proof. Molsen [13], cf. Moree [14], has shown that for $x \ge 199$ the interval $(x, \frac{8}{7}x]$ contains primes p_1 and p_2 with $p_i \equiv i \pmod{3}$. From this the result follows after some easy computations.

Theorem 6

1) Let r be any prime, then $\Psi_{15r}(x)$ and $\Psi_{21r}(x)$ are flat. 2) Let $q \ge 11$ be a prime. Then Ψ_{3qr} is flat for all primes $r \ge 2q - 1$. However, there is at least one prime r such that $\Psi_{3qr}(x)$ is non-flat. 3) Let 3 < q < r be primes. For $k \le 16$ we have $|c_{3qr}(k)| \le 1$. *Proof.* 1) An immediate consequence of Theorem 5 and Lemma 4.

2) A consequence of Theorem 5 and Lemma 8.

3) By part 1 and Theorem 5 we infer that the smallest r for which $V_{3qr} \neq \{-1, 0, 1\}$ is r = 17. By Lemma 6 the proof is then completed. \Box

3.2 Reciprocal polynomials of intermediary height

A variation of the methods used to establish Theorem 2 yields the following upper bound for $h(\Psi_{pqr}(x))$. Sometimes this bound is actually optimal, for example for the Chernick Carmichael numbers (see Lemma 13).

Theorem 7 Let ρ and σ be the unique non-negative integers such that one has $(p-1)(q-1) = \rho p + \sigma q$. Put $\tau = (p-1)(q+r-1)$. If $qr > \tau$, then the height of $\Psi_{pqr}(x)$ is at most $\max\{\min(\rho+1,\sigma+1),\min(q-1-\rho,p-1-\sigma)\}$.

Corollary 2 If either $q \equiv -2 \pmod{p}$ or $q \equiv 2 \pmod{p}$ and q > p+2, then the height of $\Psi_{pqr}(x)$ is at most (p+1)/2.

Proof. One easily checks that $qr > \tau$. We compute that

$$\sigma = \begin{cases} \frac{p-3}{2} & \text{if } q \equiv -2 \pmod{p};\\ \frac{p-1}{2} & \text{if } q \equiv 2 \pmod{p}. \end{cases}$$

Proof of Theorem 7. We have to show that $|c_{pqr}(k)|$ does not exceed the bound stated. The conditions of Lemma 7 are satisfied and by property (6) we may take $k \leq \tau/2 < (p-1)r$. Now choose $0 \leq m \leq p-2$ such that $mr \leq k < (m+1)r$. By Lemma 7 we have

$$c_{pqr}(k) = -\sum_{v=0}^{m} a_{pq}(k - vr).$$

Let us consider the worst case where m = p-2 and a priori $|c_{pqr}(k)| \le p-1$. We determine the maximum number of v with $0 \le v \le p-2$ for which $a_{pq}(k-vr) = 1$. Let us suppose that for v_1, \ldots, v_t we have $a_{pq}(k-v_jr) = 1$ and hence, by Lemma 5, we have

$$\begin{cases} k - v_1 r = i_1 p + j_1 q; \\ k - v_2 r = i_2 p + j_2 q; \\ \dots \\ k - v_t r = i_t p + j_t q, \end{cases}$$

where each j_m satisfies $0 \leq j_m \leq \sigma$. Now if $t > \sigma + 1$ two of the j_m must be equal. On subtracting the corresponding equations it would follow that p|r, a contradiction that shows that $t \leq \sigma + 1$. On using that $q \nmid r$, we likewise infer that $t \leq \rho + 1$. We infer that $c_{pqr}(k) \geq -\min(\rho + 1, \sigma + 1)$. Note that the same inequality actually holds for all k < (p-1)r.

We determine the maximum number of w with $0 \le w \le p-2$ for which $a_{pq}(k-wr) = -1$. Let us suppose that for w_1, \ldots, w_t we have $a_{pq}(k-w_jr) = 1$ and hence, by Lemma 5, we have

$$\begin{cases} k - w_1 r = 1 + i_1 p + j_1 q; \\ k - w_2 r = 1 + i_2 p + j_2 q; \\ \dots \\ k - w_t r = 1 + i_t p + j_t q, \end{cases}$$

where each j_m satisfies $0 \leq j_m \leq p-2-\sigma$. Now if $t > p-1-\sigma$ two of the j_m must be equal. On subtracting the corresponding equations it would follow that p|r, a contradiction that shows that $t \leq p-1-\sigma$. Likewise we infer that $t \leq q-1-\rho$. We infer that $c_{pqr}(k) \leq \min(q-1-\rho, p-1-\sigma)$. On combining this with $c_{pqr}(k) \geq -\min(\rho+1, \sigma+1)$ we are done.

4 Further flatness results

In this section we present some further (near) flatness results.

Lemma 9 If r > (p-1)(q-1), then $\Psi_{pqr}(x)$ is flat.

Proof. Note that if f and g are flat polynomials and $m > \deg(f)$, then $f(x)g(x^m)$ is flat. By (5) we have $\Psi_{pqr}(x) = \Phi_{pq}(x)\Psi_{pq}(x^r)$. The assumption on r implies that $r > \deg(\Phi_{pq}(x)) = (p-1)(q-1)$. Since both $\Phi_{pq}(x)$ and $\Psi_{pq}(x)$ are flat, the result now follows. \Box

A variation of the latter proof making use of the identity $\Psi_{pn}(x) = \Psi_n(x^p)\Phi_n(x)$ if $p \nmid n$ (this is part 3 of Lemma 2), yields the following lemma.

Lemma 10 Let p be a prime. Let h_1, h_2 be the height of $\Phi_n(x)$, respectively $\Psi_n(x)$. If $p > \varphi(n)$, then $\Psi_{np}(x)$ is of height h_1h_2 .

Using this result we easily infer the following one.

Lemma 11 Let 3 < q < r < s be primes such that s > 2(q-1)(r-1). Then 1) $\Psi_{3qrs}(x)$ is of height at most 4. 2) If $r \equiv q \pmod{3}$ and $r \equiv \pm 1 \pmod{3q}$, then $\Psi_{3qrs}(x)$ is flat.

Proof. 1) Beiter [5] has shown that $\Phi_{3qr}(x)$ is of height at most 2. By Theorem 5 we know that also $\Psi_{3qr}(x)$ is of height at most 2. Now apply the previous lemma with n = 3qr and p = s.

2) Follows from the previous lemma, Theorem 5 and the result due to Kaplan [8, Theorem 1] (who extended on earlier work by Bachman [3]) that $\Phi_{3qr}(x)$ is flat if $r \equiv \pm 1 \pmod{3q}$.

Remark. Since $h(\Psi_{3\cdot 11\cdot 17\cdot 331}(x)) = 4$, we see that the 4 above cannot be replaced by a smaller number.

Recall that smallest n for which $\Phi_n(x)$ is non-flat is n = 105.

Lemma 12 The smallest n for which $\Psi_n(x)$ is non-flat is n = 561.

Proof. By computation one finds that $c_{561}(17) = -2$. By Lemma 4 it suffices to check that $\Psi_n(x)$ is flat for every odd squarefree $n \leq 560$ with $\omega_1(n) \geq 3$. This leaves us with the sets

 $\mathcal{A} = \{105, 165, 195, 231, 255, 273, 285, 345, 357, 399, 435, 465, 483, 555\},\$

and $\mathcal{B} = \{385, 429, 455\}$, where the set \mathcal{A} has all its elements divisible by 15 or 21. On applying part 1 of Theorem 6 we infer that $\Psi_n(x)$ is flat for every $n \in \mathcal{A}$.

By direct computation we find that $\Psi_{385}(x), \Psi_{429}(x)$ and $\Psi_{455}(x)$ are flat. \Box

Since 561 is the smallest Carmichael number and the smallest number m for which $h(\Psi_m(x)) > 1$, one might wonder whether perhaps $h(\Psi_C(x)) > 1$ for every Carmichael number C. The answer is no, as the example c = 2821 shows. However, for the Chernick Carmichael numbers the answer turns out to be yes. In 1939 Chernick proved that if $k \ge 0$ is such that 6k + 1, 12k + 1 and 18k + 1are all primes, then C = (6k + 1)(12k + 1)(18k + 1) is a Carmichael number. Examples occur for $k = 1, 6, 35, 45, 51, 56, \ldots$.

Lemma 13 If C = (6k+1)(12k+1)(18k+1) is a Chernick Carmichael number, then $c_C(24k+2) = -2$ and $h(\Psi_C(x)) = 2$.

Proof. Put p = 6k + 1, q = 12k + 1 and r = 18k + 1. We find $\rho = 1$ and $\sigma = p - 2$. By Theorem 7 we infer that $h(\Psi_C(x)) \leq 2$. By Lemma 5 we have $a_C(2q) = 1$ and $a_C(p) = 1$. Now $c_C(2q) = -a_C(2q) - a_C(2q - r) = -a_C(2q) - a_C(p) = -2$. Thus $c_C(2q) = c_C(24k + 2) = -2$ and $h(\Psi_C(x)) = 2$.

5 Sizable coefficients

The history of sizable coefficients goes back to Schur who in a letter in 1931 to Landau (see e.g. E. Lehmer [11]) proved that the $a_n(k)$ are unbounded. It is not difficult, see Suzuki [16], to adapt his argument so as to show that *every* integer shows up as a coefficient, that is $\{a_n(k) : n \ge 1, k \ge 0\} = \mathbb{Z}$. Bungers [6], in his Ph.D. thesis proved that under the assumption that there are infinitely many twin primes, the $a_n(k)$ are also unbounded if n has at most three prime factors. E. Lehmer [11] eliminated the unproved assumption of the existence of infinitely twin primes from this. The strongest result in this direction to date is due to Bachman, who proved a result ([2, Theorem 1]), which implies that

$$\{a_{pqr}(k) : 3 \le p < q < r \text{ primes}\} = \mathbb{Z}.$$

A minor variation of Suzuki's argument gives $\{c_n(k) : n \ge 1, k \ge 0\} = \mathbb{Z}$. Since the next result is stronger, the details are left to the interested reader.

Theorem 8 We have $\{c_{pqr}(k) : 3 \le p < q < r \text{ primes}\} = \mathbb{Z}$.

Proof. By Dirichlet's theorem on arithmetic progressions for every prime p there is a $q_0(p)$ such that for every $q > q_0(p)$ with $q \equiv \pm 1 \pmod{p}$, there exists $r \equiv q \pmod{p}$ with q < r < (p-1)(q-1)/(p-2). The proof is then completed on invoking Theorem 4.

In the table below (part of a much large table computed by Yves Gallot) the minimal n, n_0 , such that $c_{n_0}(k) = m$ for some k is given. The third column gives the degree of $\Psi_{n_0}(x)$. The fourth column gives the smallest k, k_0 , for which $|c_{n_0}(k_0)| = m$.

m	$n_{ m O}$	$deg(\Psi_{m_{1}})$	k_0	$c_{m}(k_0)$
1	1	0	0	+1
2	$561 = 3 \cdot 11 \cdot 17$	241	17	-2
3	$1155 = 3 \cdot 5 \cdot 7 \cdot 11$	675	33	-3
4	$2145 = 3 \cdot 5 \cdot 11 \cdot 13$	1185	44	+4
5	$3795 = 3 \cdot 5 \cdot 11 \cdot 23$	2035	132	-5
6	$5005 = 5 \cdot 7 \cdot 11 \cdot 13$	2125	201	-6
7	$5005 = 5 \cdot 7 \cdot 11 \cdot 13$	2125	310	-7
8	$8645 = 5 \cdot 7 \cdot 13 \cdot 19$	3461	227	-8
9	$8645 = 5 \cdot 7 \cdot 13 \cdot 19$	3461	240	+9
10	$11305 = 5 \cdot 7 \cdot 17 \cdot 19$	4393	240	-10
11	$11305 = 5 \cdot 7 \cdot 17 \cdot 19$	4393	306	+11

Table 1: Minimal n and k with $|c_n(k)| = m$

For m = 10, ..., 21 it turns out that $n_0 = 11305$.

Acknowledgement. As in many papers before this one, impressive computational assistance was provided by Yves Gallot. I am deeply grateful for all the work he did for me. Paul Tegelaar proofread an earlier version and Gennady Bachman updated me on recent results on the flatness of $\Phi_{3qr}(x)$.

In the context of assigning student projects to Alexander Bridi, Andreas Decker, Patrizia Dressler, Silke Glas and Thorge Jensen (and earlier Christine Jost and Janina Müttel), I considered cyclotomic polynomials. I thank them all for their enthusiasm and cheerful presence which added to the already pleasant atmosphere at the Max-Planck-Institut für Mathematik.

My belief that 561 is a boring number was expelled by Don Zagier who remarked that, on the contrary, it is interesting since it is the smallest Carmichael number. I thank him for this and several other helpful remarks.

References

- G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory 100 (2003), 104–116.
- [2] G. Bachman, Ternary cyclotomic polynomials with an optimally large set of coefficients, Proc. Amer. Math. Soc. 132 (2004), 1943–1950 (electronic).
- [3] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
- [4] A.S. Bang, Om Ligningen $\varphi_n(x) = 0$, Nyt Tidsskrift for Mathematik (B) 6 (1895), 6–12.
- [5] M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial F_{pqr}. II, Duke Math. J. 38 (1971), 591–594.
- [6] R. Bungers, Uber die Koeffizienten von Kreisteilungspolynomen, Dissertation, Göttingen, 1934, pp. 14.

- [7] L. Carlitz, The number of terms in the cyclotomic polynomial $F_{pq}(x)$, Amer. Math. Monthly **73** (1966), 979–981.
- [8] N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory, to appear (available already electronically).
- [9] T.Y. Lam and K.H. Leung, On the cyclotomic polynomial $\Phi_{pq}(X)$, Amer. Math. Monthly **103** (1996), 562–564.
- [10] D.H. Lehmer, Some properties of cyclotomic polynomials, J. Math. Anal. Appl. 15 (1966), 105–117.
- [11] E. Lehmer, On the magnitude of the coefficients of the cyclotomic polynomials, Bull. Amer. Math. Soc. 42 (1936), 389–392.
- [12] H. Möller, Uber die Koeffizienten des n-ten Kreisteilungspolynoms, Math. Z. 119 (1971), 33–40.
- [13] K. Molsen, Zur Verallgemeinerung des Bertrandschen Postulates, Deutsche Math. 6 (1941), 248–256.
- [14] P. Moree, Bertrand's Postulate for primes in arithmetical progressions, Comput. Math. Appl. 26 (1993), 35–43.
- [15] J.L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005.
- [16] J. Suzuki, On coefficients of cyclotomic polynomials, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), 279–280.
- [17] R. Thangadurai, On the coefficients of cyclotomic polynomials, Cyclotomic fields and related topics (Pune, 1999), 311–322, Bhaskaracharya Pratishthana, Pune, 2000.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany. e-mail: moree@mpim-bonn.mpg.de