Reciprocal cyclotomic polynomials

Pieter Moree

Abstract

Let $\Psi_{n}(x)$ be the monic polynomial having precisely all non-primitive nth roots of unity as its simple zeros. One has $\Psi_{n}(x)=\left(x^{n}-1\right) / \Phi_{n}(x)$, with $\Phi_{n}(x)$ the nth cyclotomic polynomial. The coefficients of $\Psi_{n}(x)$ are integers that like the coefficients of $\Phi_{n}(x)$ tend to be surprisingly small in absolute value, e.g. for $n<561$ all coefficients of $\Psi_{n}(x)$ are ≤ 1 in absolute value. We establish various properties of the coefficients of $\Psi_{n}(x)$.

1 Introduction

The nth cyclotomic polynomial $\Phi_{n}(x)$ is defined by

$$
\Phi_{n}(x)=\prod_{\substack{1 \leq j \leq n \\(j, n)=1}}\left(x-\zeta_{n}^{j}\right)=\sum_{k=0}^{\varphi(n)} a_{n}(k) x^{k},
$$

where φ is Euler's totient function and ζ_{n} a primitive nth root of unity. The coefficients $a_{n}(k)$ are known to be integral. The study of the $a_{n}(k)$ began with the startling observation that for small n we have $\left|a_{n}(k)\right| \leq 1$. The first counterexample to this inequality occurs for $n=105: a_{105}(7)=-2$. The amazement over the smallness of $a_{n}(m)$ was eloquently phrased by D. Lehmer [10] who wrote: 'The smallness of $a_{n}(m)$ would appear to be one of the fundamental conspiracies of the primitive nth roots of unity. When one considers that $a_{n}(m)$ is a sum of $\binom{\phi(n)}{m}$ unit vectors (for example 73629072 in the case of $n=105$ and $m=7$) one realizes the extent of the cancellation that takes place'.

We define $\Psi_{n}(x)$ by

$$
\Psi_{n}(x)=\prod_{\substack{1 \leq j \leq n \\(\leq, n)>1}}\left(x-\zeta_{n}^{j}\right)=\sum_{k=0}^{n-\varphi(n)} c_{n}(k) x^{k} .
$$

Note that $\Psi_{n}(x)=\left(x^{n}-1\right) / \Phi_{n}(x)$. The identity $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$ shows that

$$
\Psi_{n}(x)=\prod_{d \mid n, d<n} \Phi_{d}(x)
$$

Mathematics Subject Classification (2000). 11B83, 11C08
and thus the coefficients of $\Psi_{n}(x)$ are integers.
Note that for $|x|<1$ we have

$$
\frac{1}{\Phi_{n}(x)}=-\Psi_{n}(x)\left(1+x^{n}+x^{2 n}+\cdots\right)
$$

Since $n>n-\varphi(n)$, it follows that the Taylor coefficients of $1 / \Phi_{n}(x)$ are periodic with a period dividing n. This allows one to easily reformulate the results on the coefficients of $\Psi_{n}(x)$ obtained in this paper to the Taylor coefficients of $1 / \Phi_{n}(x)$ as well.

The purpose of this note is to show that the non-primitive roots, like the primitive ones, conspire and study the extent to which this is the case.

2 Some basics

Note that

$$
\begin{equation*}
x^{n}-1=\prod_{d \mid n} \prod_{\substack{1 \leq j \leq n \\(j, n)=d}}\left(x-\zeta_{n}^{j}\right)=\prod_{d \mid n} \Phi_{\frac{n}{d}}(x)=\prod_{d \mid n} \Phi_{d}(x) . \tag{1}
\end{equation*}
$$

It follows from this identity that

$$
\begin{equation*}
\Psi_{n}(x)=\frac{x^{n}-1}{\Phi_{n}(x)}=\prod_{\substack{d \mid n \\ d<n}} \Phi_{d}(x) \tag{2}
\end{equation*}
$$

We infer that $\Psi_{n}(x) \in \mathbb{Z}[x]$.
Lemma 1 Let $n>1$. We have

$$
\Psi_{n}(x)=-\prod_{\substack{d \mid n \\ d<n}}\left(1-x^{d}\right)^{-\mu\left(\frac{n}{d}\right)}
$$

Proof. By applying Möbius inversion one deduces from (1) that

$$
\begin{equation*}
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)} \tag{3}
\end{equation*}
$$

On using that $\sum_{d \mid n} \mu(n / d)=0$, we infer that $\Phi_{n}(x)=\prod_{d \mid n}\left(1-x^{d}\right)^{\mu\left(\frac{n}{d}\right)}$, from which the result follows on invoking (2).

Let $\operatorname{rad}(n)=\prod_{p \mid n} p$ be the radical of n. From the previous lemma it is not difficult to arrive at the next result, see e.g. Thangadurai [17] for the proof of the corresponding result for $\Phi_{n}(x)$.

Lemma 2 Let $n>1$. We have:

1) $\Psi_{2 n}(x)=\left(1-x^{n}\right) \Psi_{n}(-x)$ if n is odd;
2) $\Psi_{p n}(x)=\Psi_{n}\left(x^{p}\right)$ if $p \mid n$;
3) $\Psi_{p n}(x)=\Psi_{n}\left(x^{p}\right) \Phi_{n}(x)$ if $p \nmid n$;
4) $\Psi_{n}(x)=\Psi_{\operatorname{rad}(n)}\left(x^{\left.\frac{n}{\mathrm{rad}(n)}\right)}\right.$;
5) $\Psi_{n}(x)=-\Psi_{n}\left(\frac{1}{x}\right) x^{n-\varphi(n)}$.

Put $V_{n}=\left\{c_{n}(k): 0 \leq k \leq n-\varphi(n)\right\}$. If $n>1$ then by part 5 of the latter lemma we have that $a \in V_{n}$ implies that $-a \in V_{n}$. It also gives that if $n-\varphi(n)$ is even, then $c_{n}((n-\varphi(n)) / 2)=0$.

Lemma 3 If $n=1$, then $V_{n}=\{1\}$. If n is a prime, then $V_{n}=\{-1,1\}$. In the remaining cases we have $\{-1,0,1\} \subseteq V_{n}$.

Proof. If $n=1$, then $\Psi_{n}(x)=1$. If n is a prime, then $\Psi_{n}(x)=x-1$. Next assume that n has at least two (not necessarily distinct) prime divisors. Note that this implies that $n-\varphi(n) \geq 2$. Note that $\Psi_{n}(x)$ is monic and that $\Psi_{n}(0)=-1$ by Lemma 1. It thus remains to be shown that $0 \in V_{n}$. In case n is not squarefree we have $\Psi_{n}(x)=-1+O\left(x^{2}\right)$ by Lemma 1 and thus $c_{n}(1)=0$. If n is odd and squarefree and $\mu(n)=-1$, then by Lemma 1 we find $\Psi_{n}(x)=-1+x+O\left(x^{3}\right)$ and hence $c_{n}(2)=0$ (here we use that $n-\varphi(n) \geq 2$). If n is odd and squarefree and $\mu(n)=1$, then by Lemma 1 we find

$$
\Psi_{n}(x)=\frac{\left(x^{p}-1\right)}{1-x}\left(1+O\left(x^{p+1}\right)\right)
$$

where p is the smallest prime divisor of n and hence $c_{n}(p)=0$. Since $p \leq n-\varphi(n)$ it follows that $0 \in V_{n}$. In case n is even and squarefree we invoke part 1 of Lemma 2 to complete the proof.

It is not difficult to prove that, as x tends to infinty,

$$
\sum_{n \leq x} \frac{\varphi(n)}{n} \sim \frac{x}{\zeta(2)}=x \frac{6}{\pi^{2}}
$$

Thus the average degree of $\Phi_{n}(x)$ and $\Psi_{n}(x)$ is $\frac{6}{\pi^{2}} n$, respectively $\left(1-\frac{6}{\pi^{2}}\right) n$. We have $\frac{6}{\pi^{2}}=0.60792710 \cdots$ and $1-\frac{6}{\pi^{2}}=0.3920728 \cdots$.

2.1 (Reciprocal) cyclotomic polynomials of low order

We define the order of $\Phi_{n}(x)$ and $\Psi_{n}(x)$ to be the number, $\omega_{1}(n)$, of distinct odd prime divisors of n. Instead of saying that f has order 3 , we sometimes say that f is ternary. We define the height of a polynomial f in $\mathbb{Z}[x], h(f)$, to be the maximum absolute value of the coefficients of f. In case $h(f)=1$ we say that f is flat.

Low order examples (in the remainder of this section $p<q<r$ will be primes):
$\Psi_{1}(x)=1 ;$
$\Psi_{p}(x)=-1+x ;$
$\Psi_{p q}(x)=-1-x-x^{2}-\ldots-x^{p-1}+x^{q}+x^{q+1}+\ldots+x^{p+q-1}$.
These examples in combination with parts 1 and 4 of Lemma 2 establish the correctness of the following result.

Lemma 4 If $\Psi_{n}(x)$ is of order ≤ 2, then $\Psi_{n}(x)$ is flat.

We like to point out that $\Psi_{p q}(x)$ has a rather simpler structure than $\Phi_{p q}(x)$. It can be shown, see e.g. Carlitz [7], Lam and Leung [9] and Thangadurai [17], that

$$
\begin{aligned}
\Phi_{p q}(x) & =\sum_{i=0}^{\rho} x^{i p} \sum_{j=0}^{\sigma} x^{j q}-x^{-p q} \sum_{i=\rho+1}^{q-1} x^{i p} \sum_{j=\sigma+1}^{p-1} x^{j q} \\
& =\sum_{i=0}^{\rho} x^{i p} \sum_{j=0}^{\sigma} x^{j q}-x \sum_{i=0}^{q-2-\rho} x^{i p} \sum_{j=0}^{p-2-\sigma} x^{j q}
\end{aligned}
$$

where ρ and σ are the unique nonnegative integers for which $(p-1)(q-1)=\rho p+\sigma q$ (note that $\rho \leq q-2$ and $\sigma \leq p-2$). As a consequence we have the following evaluation of the coefficients $a_{p q}(k)$.

Lemma 5 Let $p<q$ be odd primes. Let ρ and σ be the unique nonnegative integers for which $(p-1)(q-1)=\rho p+\sigma q$. Then
$a_{p q}(k)= \begin{cases}1 & \text { if } k=i p+j q \text { for some } 0 \leq i \leq \rho, 0 \leq j \leq \sigma ; \\ -1 & \text { if } k=1+i p+j q \text { for some } 0 \leq i \leq q-2-\rho, 0 \leq j \leq p-2-\sigma ; \\ 0 & \text { otherwise. }\end{cases}$
Using the latter lemma it is easy to show that if $\Phi_{n}(x)$ is of order ≤ 2, then $\Phi_{n}(x)$ is flat.

For the convenience of the reader we will prove that there are unique nonnegative integers such that $(p-1)(q-1)=\rho p+\sigma q$ (this proof is taken from Ramírez Alfonsín's book [15, p. 34], with the observation that in case p and q are primes the auxiliary polynomial $Q(x)$ equals $\left.\Phi_{p q}(x)\right)$. We let $r(n)$ be the number of representations of n in the form $n=p x+q y$ with $x, y \geq 0$. We have

$$
R(x)=\sum_{i=0}^{\infty} r(i) x^{i}=\frac{1}{\left(1-x^{p}\right)\left(1-x^{q}\right)}
$$

Note that $R(x)\left(x^{p q}-1\right)(x-1)=\Phi_{p q}(x)$. By L'Hôpital's rule we find that $\Phi_{p q}(1)=1$ and hence we have that

$$
\frac{\Phi_{p q}(x)-1}{x-1}=\sum_{i=0}^{p q-p-q} g(i) x^{i}
$$

with $g(p q-p-q)=1$. On the other hand,

$$
\begin{aligned}
\frac{\Phi_{p q}(x)-1}{x-1} & =R(x)\left(x^{p q}-1\right)+\frac{1}{1-x} \\
& =\sum_{\substack{i=0 \\
p q-1}}^{\infty} r(i) x^{p q+i}+\sum_{i=0}^{\infty}(1-r(i)) x^{i} \\
& =\sum_{i=0}^{\infty}(1-r(i)) x^{i}+\sum_{i=p q}^{\infty}(r(i-p q)+1-r(i)) x^{i}
\end{aligned}
$$

On comparing the two expressions for $\left(\Phi_{p q}(x)-1\right) /(x-1)$ we arrive at various conclusions. First of all we see that $r((p-1)(q-1))=1$. Secondly it allows one
to compute the Frobenius number $g(p, q)$. Given relatively prime positive integers a_{1}, \ldots, a_{n} the largest natural number that is not representable as a non-negative integer combination of a_{1}, \ldots, a_{n} is called the Frobenius number and denoted by $g\left(a_{1}, \ldots, a_{n}\right)$. On noting that $r(i-p q) \leq r(i)$ comparison of the two expressions for $\left(\Phi_{p q}(x)-1\right) /(x-1)$ shows that $r(p q-p-q)=0$ and $r(p q-p-q+i) \geq 1$ for $i \geq 1$, which yields $g(p, q)=p q-p-q$.

By Lemma 1 we have

$$
\Psi_{p q r}(x)=\frac{(x-1)\left(1-x^{p q}\right)\left(1-x^{p r}\right)\left(1-x^{q r}\right)}{\left(1-x^{p}\right)\left(1-x^{q}\right)\left(1-x^{r}\right)} .
$$

This can be written as

$$
\begin{equation*}
\Psi_{p q r}(x)=(x-1)\left(\sum_{j_{1}=0}^{q-1} x^{j_{1} p}\right)\left(\sum_{j_{2}=0}^{r-1} x^{j_{2} q}\right)\left(\sum_{j_{3}=0}^{p-1} x^{j_{3} r}\right) . \tag{4}
\end{equation*}
$$

Alternatively we can write, by part 3 of Lemma 2,

$$
\begin{equation*}
\Psi_{p q r}(x)=\Phi_{p q}(x) \Psi_{p q}\left(x^{r}\right) \tag{5}
\end{equation*}
$$

Let the denumerant be defined as the number of non-negative integer representations of m by $a_{1}, a_{2}, \ldots, a_{n}$. Denote it by $d\left(m ; a_{1}, \ldots, a_{n}\right)$. For $m<p q$ we infer from (4) that $c_{p q r}(k)=d(m-1 ; p, q)-d(m ; p, q)$. For more on denumerants see Chapter 4 of Ramírez Alfonsín [15].

Lemma 6 Let $p<q<r$ be odd primes. If $0 \leq k<r$, then we have $c_{p q r}(k)=$ $-a_{p q}(k) \in\{-1,0,1\}$.

Proof. Immediate from (5), $\Psi_{p q}(0)=-1$ and Lemma 5.
The following result also relates $c_{p q r}(k)$ to $a_{p q}(k)$ in case $k>r$. (If k is outside the range $[0, \ldots, \varphi(n)]$ respectively, $[0, \ldots, n-\varphi(n)]$, then we put $a_{n}(k)=0$, respectively $c_{n}(k)=0$.

Lemma 7 Let $p<q<r$ be odd primes. Put $\tau=(p-1)(r+q-1)$. Suppose that $q r>\tau$. If $k \leq \tau$, then

$$
c_{p q r}(k)=-\sum_{j=0}^{m} a_{p q}(k-j r),
$$

with m the unique integer such that $m r \leq k<(m+1) r$. Furthermore,

$$
\begin{equation*}
c_{p q r}(\tau-k)=c_{p q r}(k) \tag{6}
\end{equation*}
$$

and $c_{p q r}(k+q r)=-c_{p q r}(k)$. If $\tau<k<q r$, then $c_{p q r}(k)=0$.
Proof. We have

$$
\begin{equation*}
\Psi_{p q r}(x)=\Phi_{p q}(x)\left(1+x^{r}+\ldots+x^{(p-1) r}\right)\left(x^{q r}-1\right) \tag{7}
\end{equation*}
$$

Write

$$
\begin{equation*}
\Phi_{p q}(x)\left(1+x^{r}+\ldots+x^{(p-1) r}\right)=\sum_{k=0}^{\tau} e_{p q r}(k) x^{k} \tag{8}
\end{equation*}
$$

Note that the polyniomal in (8) of degree τ and selfreciprocal. If $k \leq \tau$, then $c_{p q r}(k)=-e_{p q r}(k)$ and $c_{p q r}(k+q r)=e_{p q r}(k)$. On combining all these observations the result easily follows.

In 1895 Bang [4] proved that $h\left(\Phi_{p q r}(x)\right) \leq p-1$. The same bound applies to the height of $\Psi_{p q r}(x)$.

Theorem 1 The height of $\Psi_{p q r}(x)$ is at most $p-1$. More precisely, we have

$$
h\left(\Psi_{p q r}(x)\right) \leq\left[\frac{(p-1)(q-1)}{r}\right]+1
$$

Proof. By (5) we find that

$$
\begin{equation*}
c_{p q r}(k)=\sum_{j=0}^{[k / r]} a_{p q}(k-j r) c_{p q}(j) . \tag{9}
\end{equation*}
$$

The number of j for which $0 \leq k-j r \leq \varphi(p q)$ is

$$
\leq\left[\frac{\varphi(p q)}{r}\right]+1=\left[\frac{(p-1)(q-1)}{r}\right]+1 \leq p-2+1=p-1
$$

The proof is finished since $\left|a_{p q}(k-j r)\right| \leq 1$ by Lemma 5 and $\left|c_{p q}(j)\right| \leq 1$ by the identity $\Psi_{p q}(x)=-1-x-x^{2}-\ldots-x^{p-1}+x^{q}+x^{q+1}+\ldots+x^{p+q-1}$.

We have seen that on average the degree of $\Phi_{n}(x)$ is less than that of $\Psi_{n}(x)$. It is left to the reader to show that if $p<q<r$ are odd primes, then $\operatorname{deg}\left(\Psi_{p q r}(x)\right)<$ $\operatorname{deg}\left(\Phi_{p q r}(x)\right)$, except when $p q r \in\{105,165,195\}$.

3 Beiter's conjecture and its reciprocal analogue

In 1971 Sister Marion Beiter [5] put forward the conjecture that if $p<q<r$ are odd primes, then $\Phi_{p q r}(x)$ is of height at most $(p+1) / 2$. As she pointed out, her conjecture is true for $p \leq 5$. She also showed that the height is $\leq p-\lfloor p / 4\rfloor$. Bachman [1] showed that if either q or r is congruent to ± 1 or ± 2 modulo p, then the height is $\leq(p+1) / 2$. H. Möller [12] gave explicit examples of polynomials $\Phi_{p q r}(x)$, for every p, with a prescribed coefficient equal to $(p+1) / 2$. This shows that the conjecture is best possible, if true. More precisely, Möller showed that if $q \equiv-2(\bmod p), r \equiv-(p-1)(q-1) / 2(\bmod p q)$, then $a_{p q r}((p-1)(q r+1) / 2)=(p+1) / 2$. For further results and references see Bachman [1, 2]. In general Beiter's conjecture remains unresolved.

The following result gives the analogue of the Beiter conjecture for the reciprocal polynomials.

Theorem 2 Let $p<q<r$ be odd primes. Then $h\left(\Psi_{p q r}(x)\right)=p-1$ iff

$$
q \equiv r \equiv \pm 1(\bmod p) \text { and } r<\frac{(p-1)}{(p-2)}(q-1)
$$

In the remaining cases $h\left(\Psi_{p q r}(x)\right)<p-1$.
Corollary 1 Suppose that $h\left(\Psi_{p q r}(x)\right)=p-1$ and $q+2 p$ is a prime, then also $h\left(\Psi_{p q(q+2 p)}(x)\right)=p-1$.
By the above theorem and Dirichlet's theorem on arithmetic progressions it follows that for every prime $p \geq 3$ there are infinitely many pairs (q, r) such that $h\left(\Psi_{p q r}(x)\right)=p-1$.

Theorem 2 follows from two theorems that deal with the necessity, respectively sufficiency part of its iff statement in combination with Theorem 1.

Theorem 3 If $h\left(\Psi_{p q r}(x)\right)=p-1$, then

$$
q \equiv r \equiv \pm 1(\bmod p) \text { and } r<\frac{(p-1)}{(p-2)}(q-1)
$$

Proof. Let $j_{\text {min }}$ be the smallest j such that $k-j r \leq \varphi(p q)$ and $j_{\max }$ be the largest j such that $k-j r \geq 0$. Then we can write (9) as

$$
c_{p q r}(k)=\sum_{j=j_{\min }}^{j_{\max }} a_{p q}(k-j r) c_{p q}(j)
$$

From $k-j_{\max } r \geq 0$ and $k-j_{\min } r \leq(p-1)(q-1)$ we infer that $\left(j_{\max }-j_{\min }\right) r \leq$ $(p-1)(q-1)<(p-1) r$ and hence $j_{\max }-j_{\min } \leq p-2$. In order to have $c_{p q r}(k)=p-1$ for some k we must have $j_{\max }-j_{\min }=p-2$. Thus $\left(j_{\max }-j_{\min }\right) r=$ $(p-2) r \leq(p-1)(q-1)$. Since $(p-2) r$ is odd and $(p-1)(q-1)$ is even it follows that

$$
r<\frac{(p-1)}{(p-2)}(q-1)
$$

Let k be such that $\left|c_{p q r}(k)\right|=p-1$. Then we must have that $c_{p q}(j) \neq 0$ for $j_{\min } \leq j \leq j_{\max }$. It follows from this that the pair $\left(j_{\min }, j_{\max }\right)$ must be one of the following: $(0, p-2),(1, p-1),(q, q+p-2),(q+1, q+p-1)$, and that $c_{p q}\left(j_{\text {min }}\right)=c_{p q}\left(j_{\text {min }}+1\right)=\ldots=c_{p q}\left(j_{\max }\right)$. Thus we have

$$
p-1=\left|c_{p q r}(k)\right|=\left|\sum_{j=j_{\min }}^{j_{\max }} a_{p q}(k-j r)\right|
$$

We now make a case distinction according to whether $a_{p q}(k-j r)=1$ for $j_{\min } \leq$ $j \leq j_{\max }$, or $a_{p q}(k-j r)=-1$ for every $j_{\min } \leq j \leq j_{\max }$.
First case. For every $j_{\min } \leq j \leq j_{\max }$ we have $a_{p q}(k-j r)=1$.
By Lemma 5 it follows that there must be non-negative integers i_{m} and j_{m} with $0 \leq i_{m} \leq \rho$ and $0 \leq j_{m} \leq \sigma$ such that

$$
\begin{cases}k-j_{\max } r & =i_{1} p+j_{1} q \\ k-\left(j_{\max }-1\right) r & =i_{2} p+j_{2} q \\ \cdots & =\cdots \\ k-j_{\min } r & =i_{p-1} p+j_{p-1} q\end{cases}
$$

Now if we would have $j_{m_{1}}=j_{m_{2}}$ for $m_{1} \neq m_{2}$ by subtracting the corresponding equations we infer that $p \mid r$, a contradiction. Thus we must have $\left\{j_{1}, \ldots, j_{p-1}\right\}=$ $\{0,1, \ldots, p-2\}$ and hence $\sigma=p-2$. It follows that $q \equiv-1(\bmod p)$ and $\rho=(q-p+1) / p$. Now select m_{1} and m_{2} such that $j_{m_{2}}=j_{m_{1}}+1$. On substracting the corresponding equations we infer that $\alpha r=\beta p+q$ for some integers α and β with $-\rho \leq \beta \leq \rho$. Note that $p-1 \leq \beta p+q<2 q-p+1<2 r$. It follows that $\alpha=1$ and $r=\beta p+q$ and hence $r \equiv q \equiv-1(\bmod p)$.
Second case. For every $j_{\min } \leq j \leq j_{\max }$ we have $a_{p q}(k-j r)=-1$.
By Lemma 5 it then follows that there must be non-negative integers i_{m} and j_{m} with $0 \leq i_{m} \leq q-2-\rho$ and $0 \leq j_{m} \leq p-2-\sigma$ such that

$$
\begin{cases}k-j_{\max } r & =1+i_{1} p+j_{1} q \\ k-\left(j_{\max }-1\right) r & =1+i_{2} p+j_{2} q \\ \cdots & =\cdots \\ k-j_{\min } r & =1+i_{p-1} p+j_{p-1} q\end{cases}
$$

For the same reason as above we must have $\left\{j_{1}, \ldots, j_{p-1}\right\}=\{0,1, \ldots, p-2\}$. This implies $\sigma=0$. It follows that $q \equiv 1(\bmod p)$ and $\rho=(p-1)(q-1) / p$ and thus $\rho^{\prime}:=q-2-\rho=(q-p-1) / p$. Now select m_{1} and m_{2} such that $j_{m_{2}}=j_{m_{1}}+1$. On substracting the corresponding equations we infer that $\alpha r=\beta p+q$ for some integers α and β with $-\rho^{\prime} \leq \beta \leq \rho^{\prime}$. Note that $p+1 \leq \beta p+q<2 q-p-1<2 r$. It follows that $\alpha=1$ and $r=\beta p+q$ and hence $r \equiv q \equiv 1(\bmod p)$.

Theorem 4 Let $p<q<r$ be odd primes such that $r<(p-1)(q-1) /(p-2)$. If $q \equiv-1(\bmod p)$ and $r \equiv-1(\bmod p)$, then

$$
c_{p q r}(k)= \begin{cases}-1-m & \text { for } 0 \leq m \leq p-2, k=m r \\ 0 & \text { for } k=2 \\ m+1 & \text { for } 0 \leq m \leq p-2, k=(m+q) r\end{cases}
$$

and $V_{p q r}=\{-(p-1),-(p-2), \ldots, p-2, p-1\}$.
If $q \equiv 1(\bmod p)$ and $r \equiv 1(\bmod p)$, then

$$
c_{p q r}(k)= \begin{cases}1+m & \text { for } 0 \leq m \leq p-2, k=1+m r \\ 0 & \text { for } k=2 \\ -1-m & \text { for } 0 \leq m \leq p-2, k=1+(m+q) r\end{cases}
$$

and $V_{p q r}=\{-(p-1),-(p-2), \ldots, p-2, p-1\}$.
Proof. From the proof of Lemma 3 it follows that $c_{p q r}(2)=0$.
First case. Assume that $q \equiv r \equiv-1(\bmod p)$.
Note that $\rho=(q-p+1) / p$ and $\sigma=p-2$. Notice furthermore that we can write $r=\alpha p+q$ with $\alpha=(r-q) / p \geq 0$. The condition $r<(p-1)(q-1) /(p-2)$ ensures that $(p-2) \alpha \leq \rho$. Let $0 \leq m \leq p-2$ be arbitrary. We have $m r=m \alpha p+m q$ with $0 \leq m \alpha \leq(p-2) \alpha \leq \rho$ and $0 \leq m \leq \sigma=p-2$. By Lemma 5 we then infer that $a_{p q}(m r)=1$. On invoking Lemma 7 and Theorem 1 the proof of this case is then completed.
Second case. Assume that $q \equiv r \equiv 1(\bmod p)$.
We claim that $r(p-2) \leq(p-1)(q-1)-2$. By assumption we have $r(p-2)<$
$(p-1)(q-1)$. Suppose that $r(p-2)=(p-1)(q-1)-1$. By considering this equation modulo p we see that it is impossible and thus $r(p-2) \leq(p-1)(q-1)-2$. Note that $\sigma=0$ and $\rho=(p-1)(q-1) / p$. We can write $r=\alpha p+q$ with $\alpha=(r-q) / p \geq 0$. The condition $r(p-2) \leq(p-1)(q-1)-2$ ensures that $(p-2) \alpha \leq q-2-\rho$. Let $0 \leq m \leq p-2$ be arbitrary. We have $1+m r=$ $1+m \alpha p+m q$ with $0 \leq m \alpha \leq(p-2) \alpha \leq q-2-\rho$ and $0 \leq m \leq p-2-\sigma=p-2$. By Lemma 5 we then infer that $a_{p q}(1+m r)=1$. On invoking Lemma 7 and Theorem 1 the proof of this case is then also completed.

Remark. (Y. Gallot.) The above result suggests perhaps that in case n is of order at least two, V_{n} is always of the form $\{-a,-(a-1), \cdots,-1,0,1, \cdots,(a-1), a\}$ for some positive integer a. However, this is not the case. The smallest n for which V_{n} is not of this form is $n=23205=3 \cdot 5 \cdot 7 \cdot 13 \cdot 17$. Here the height is 13 , but 12 (and -12) are not included in V_{n}. Further examples (in order of appearance) are 46410 (height $13, \pm 12$ not there), 49335 (height $34, \pm 33$ not found), 50505 (height $15, \pm 14$ not found). There are also examples where a whole range values smaller than the height is not in V_{n}.

3.1 The case where $p=3$

In the case where $p=3$ we can always explicitly compute $V_{3 q r}$ on invoking Theorem 3, Theorem 4 and Lemma 3. We obtain the following result.

Theorem 5 Let $3<q<r$ be odd primes.
If $q \equiv 1(\bmod 3), r \equiv 1(\bmod 3)$ and $r \leq 2 q-7$, then $V_{3 q r}=\{-2,-1,0,1,2\}$. In particular, $c_{3 q r}(r+1)=2$ and $c_{3 q r}(r+1+q r)=-2$.
If $q \equiv 2(\bmod 3), r \equiv 2(\bmod 3)$ and $r \leq 2 q-3$, then $V_{3 q r}=\{-2,-1,0,1,2\}$. In particular, $c_{3 q r}(r)=-2$ and $c_{3 q r}(r+q r)=2$.
In the remaining cases $V_{3 q r}=\{-1,0,1\}$ and then $\Psi_{3 q r}(x)$ is flat.
Remark. The quoted results only give $r \leq 2 q-3$. Note, however, that if $q \equiv r \equiv 1(\bmod 3)$ and $r \leq 2 q-3$, then $r \leq 2 q-7$.

We now infer some consequences of Theorem 5. For this we need the following generalisation of Bertrand's Postulate.

Lemma 8 If q is any prime, then the interval ($q, 2 q-7$] contains primes p_{1} and p_{2} with $p_{i} \equiv i(\bmod 3)$.

Proof. Molsen [13], cf. Moree [14], has shown that for $x \geq 199$ the interval ($x, \frac{8}{7} x$] contains primes p_{1} and p_{2} with $p_{i} \equiv i(\bmod 3)$. From this the result follows after some easy computations.

Theorem 6

1) Let r be any prime, then $\Psi_{15 r}(x)$ and $\Psi_{21 r}(x)$ are flat.
2) Let $q \geq 11$ be a prime. Then $\Psi_{3 q r}$ is flat for all primes $r \geq 2 q-1$. However, there is at least one prime r such that $\Psi_{3 q r}(x)$ is non-flat.
3) Let $3<q<r$ be primes. For $k \leq 16$ we have $\left|c_{3 q r}(k)\right| \leq 1$.

Proof. 1) An immediate consequence of Theorem 5 and Lemma 4.
2) A consequence of Theorem 5 and Lemma 8.
3) By part 1 and Theorem 5 we infer that the smallest r for which $V_{3 q r} \neq$ $\{-1,0,1\}$ is $r=17$. By Lemma 6 the proof is then completed.

3.2 Reciprocal polynomials of intermediary height

A variation of the methods used to establish Theorem 2 yields the following upper bound for $h\left(\Psi_{p q r}(x)\right)$. Sometimes this bound is actually optimal, for example for the Chernick Carmichael numbers (see Lemma 13).

Theorem 7 Let ρ and σ be the unique non-negative integers such that one has $(p-1)(q-1)=\rho p+\sigma q$. Put $\tau=(p-1)(q+r-1)$. If $q r>\tau$, then the height of $\Psi_{p q r}(x)$ is at most $\max \{\min (\rho+1, \sigma+1), \min (q-1-\rho, p-1-\sigma)\}$.

Corollary 2 If either $q \equiv-2(\bmod p)$ or $q \equiv 2(\bmod p)$ and $q>p+2$, then the height of $\Psi_{p q r}(x)$ is at most $(p+1) / 2$.

Proof. One easily checks that $q r>\tau$. We compute that

$$
\sigma= \begin{cases}\frac{p-3}{2} & \text { if } q \equiv-2(\bmod p) ; \\ \frac{p-1}{2} & \text { if } q \equiv 2(\bmod p)\end{cases}
$$

Proof of Theorem 7. We have to show that $\left|c_{p q r}(k)\right|$ does not exceed the bound stated. The conditions of Lemma 7 are satisfied and by property (6) we may take $k \leq \tau / 2<(p-1) r$. Now choose $0 \leq m \leq p-2$ such that $m r \leq k<(m+1) r$. By Lemma 7 we have

$$
c_{p q r}(k)=-\sum_{v=0}^{m} a_{p q}(k-v r) .
$$

Let us consider the worst case where $m=p-2$ and a priori $\left|c_{p q r}(k)\right| \leq p-1$. We determine the maximum number of v with $0 \leq v \leq p-2$ for which $a_{p q}(k-v r)=1$. Let us suppose that for v_{1}, \ldots, v_{t} we have $a_{p q}\left(k-v_{j} r\right)=1$ and hence, by Lemma 5, we have

$$
\left\{\begin{array}{l}
k-v_{1} r=i_{1} p+j_{1} q \\
k-v_{2} r=i_{2} p+j_{2} q \\
\cdots \\
k-v_{t} r=i_{t} p+j_{t} q
\end{array}\right.
$$

where each j_{m} satisfies $0 \leq j_{m} \leq \sigma$. Now if $t>\sigma+1$ two of the j_{m} must be equal. On subtracting the corresponding equations it would follow that $p \mid r$, a contradiction that shows that $t \leq \sigma+1$. On using that $q \nmid r$, we likewise infer that $t \leq \rho+1$. We infer that $c_{p q r}(k) \geq-\min (\rho+1, \sigma+1)$. Note that the same inequality actually holds for all $k<(p-1) r$.

We determine the maximum number of w with $0 \leq w \leq p-2$ for which $a_{p q}(k-w r)=-1$. Let us suppose that for w_{1}, \ldots, w_{t} we have $a_{p q}\left(k-w_{j} r\right)=1$ and hence, by Lemma 5, we have

$$
\left\{\begin{array}{l}
k-w_{1} r=1+i_{1} p+j_{1} q ; \\
k-w_{2} r=1+i_{2} p+j_{2} q ; \\
\cdots \\
k-w_{t} r=1+i_{t} p+j_{t} q,
\end{array}\right.
$$

where each j_{m} satisfies $0 \leq j_{m} \leq p-2-\sigma$. Now if $t>p-1-\sigma$ two of the j_{m} must be equal. On subtracting the corresponding equations it would follow that $p \mid r$, a contradiction that shows that $t \leq p-1-\sigma$. Likewise we infer that $t \leq q-1-\rho$. We infer that $c_{p q r}(k) \leq \min (q-1-\rho, p-1-\sigma)$. On combining this with $c_{p q r}(k) \geq-\min (\rho+1, \sigma+1)$ we are done.

4 Further flatness results

In this section we present some further (near) flatness results.
Lemma 9 If $r>(p-1)(q-1)$, then $\Psi_{p q r}(x)$ is flat.
Proof. Note that if f and g are flat polynomials and $m>\operatorname{deg}(f)$, then $f(x) g\left(x^{m}\right)$ is flat. By (5) we have $\Psi_{p q r}(x)=\Phi_{p q}(x) \Psi_{p q}\left(x^{r}\right)$. The assumption on r implies that $r>\operatorname{deg}\left(\Phi_{p q}(x)\right)=(p-1)(q-1)$. Since both $\Phi_{p q}(x)$ and $\Psi_{p q}(x)$ are flat, the result now follows.

A variation of the latter proof making use of the identity $\Psi_{p n}(x)=\Psi_{n}\left(x^{p}\right) \Phi_{n}(x)$ if $p \nmid n$ (this is part 3 of Lemma 2), yields the following lemma.

Lemma 10 Let p be a prime. Let h_{1}, h_{2} be the height of $\Phi_{n}(x)$, respectively $\Psi_{n}(x)$. If $p>\varphi(n)$, then $\Psi_{n p}(x)$ is of height $h_{1} h_{2}$.

Using this result we easily infer the following one.
Lemma 11 Let $3<q<r<s$ be primes such that $s>2(q-1)(r-1)$. Then 1) $\Psi_{3 q r s}(x)$ is of height at most 4 .
2) If $r \equiv q(\bmod 3)$ and $r \equiv \pm 1(\bmod 3 q)$, then $\Psi_{3 q r s}(x)$ is flat.

Proof. 1) Beiter [5] has shown that $\Phi_{3 q r}(x)$ is of height at most 2. By Theorem 5 we know that also $\Psi_{3 q r}(x)$ is of height at most 2 . Now apply the previous lemma with $n=3 q r$ and $p=s$.
2) Follows from the previous lemma, Theorem 5 and the result due to Kaplan [8, Theorem 1] (who extended on earlier work by Bachman [3]) that $\Phi_{3 q r}(x)$ is flat if $r \equiv \pm 1(\bmod 3 q)$.

Remark. Since $h\left(\Psi_{3 \cdot 11 \cdot 17 \cdot 331}(x)\right)=4$, we see that the 4 above cannot be replaced by a smaller number.

Recall that smallest n for which $\Phi_{n}(x)$ is non-flat is $n=105$.
Lemma 12 The smallest n for which $\Psi_{n}(x)$ is non-flat is $n=561$.
Proof. By computation one finds that $c_{561}(17)=-2$. By Lemma 4 it suffices to check that $\Psi_{n}(x)$ is flat for every odd squarefree $n \leq 560$ with $\omega_{1}(n) \geq 3$. This leaves us with the sets

$$
\mathcal{A}=\{105,165,195,231,255,273,285,345,357,399,435,465,483,555\}
$$

and $\mathcal{B}=\{385,429,455\}$, where the set \mathcal{A} has all its elements divisible by 15 or 21. On applying part 1 of Theorem 6 we infer that $\Psi_{n}(x)$ is flat for every $n \in \mathcal{A}$.

By direct computation we find that $\Psi_{385}(x), \Psi_{429}(x)$ and $\Psi_{455}(x)$ are flat.

Since 561 is the smallest Carmichael number and the smallest number m for which $h\left(\Psi_{m}(x)\right)>1$, one might wonder whether perhaps $h\left(\Psi_{C}(x)\right)>1$ for every Carmichael number C. The answer is no, as the example $c=2821$ shows. However, for the Chernick Carmichael numbers the answer turns out to be yes. In 1939 Chernick proved that if $k \geq 0$ is such that $6 k+1,12 k+1$ and $18 k+1$ are all primes, then $C=(6 k+1)(12 k+1)(18 k+1)$ is a Carmichael number. Examples occur for $k=1,6,35,45,51,56, \ldots$..

Lemma 13 If $C=(6 k+1)(12 k+1)(18 k+1)$ is a Chernick Carmichael number, then $c_{C}(24 k+2)=-2$ and $h\left(\Psi_{C}(x)\right)=2$.

Proof. Put $p=6 k+1, q=12 k+1$ and $r=18 k+1$. We find $\rho=1$ and $\sigma=p-2$. By Theorem 7 we infer that $h\left(\Psi_{C}(x)\right) \leq 2$. By Lemma 5 we have $a_{C}(2 q)=1$ and $a_{C}(p)=1$. Now $c_{C}(2 q)=-a_{C}(2 q)-a_{C}(2 q-r)=-a_{C}(2 q)-a_{C}(p)=-2$. Thus $c_{C}(2 q)=c_{C}(24 k+2)=-2$ and $h\left(\Psi_{C}(x)\right)=2$.

5 Sizable coefficients

The history of sizable coefficients goes back to Schur who in a letter in 1931 to Landau (see e.g. E. Lehmer [11]) proved that the $a_{n}(k)$ are unbounded. It is not difficult, see Suzuki [16], to adapt his argument so as to show that every integer shows up as a coefficient, that is $\left\{a_{n}(k): n \geq 1, k \geq 0\right\}=\mathbb{Z}$. Bungers [6], in his Ph.D. thesis proved that under the assumption that there are infinitely many twin primes, the $a_{n}(k)$ are also unbounded if n has at most three prime factors. E. Lehmer [11] eliminated the unproved assumption of the existence of infinitely twin primes from this. The strongest result in this direction to date is due to Bachman, who proved a result ([2, Theorem 1]), which implies that

$$
\left\{a_{p q r}(k): 3 \leq p<q<r \text { primes }\right\}=\mathbb{Z} .
$$

A minor variation of Suzuki's argument gives $\left\{c_{n}(k): n \geq 1, k \geq 0\right\}=\mathbb{Z}$. Since the next result is stronger, the details are left to the interested reader.

Theorem 8 We have $\left\{c_{p q r}(k): 3 \leq p<q<r\right.$ primes $\}=\mathbb{Z}$.
Proof. By Dirichlet's theorem on arithmetic progressions for every prime p there is a $q_{0}(p)$ such that for every $q>q_{0}(p)$ with $q \equiv \pm 1(\bmod p)$, there exists $r \equiv q(\bmod p)$ with $q<r<(p-1)(q-1) /(p-2)$. The proof is then completed on invoking Theorem 4.

In the table below (part of a much large table computed by Yves Gallot) the minimal n, n_{0}, such that $c_{n_{0}}(k)=m$ for some k is given. The third column gives the degree of $\Psi_{n_{0}}(x)$. The fourth column gives the smallest k, k_{0}, for which $\left|c_{n_{0}}\left(k_{0}\right)\right|=m$.

Table 1: Minimal n and k with $\left|c_{n}(k)\right|=m$

m	n_{0}	$\operatorname{deg}\left(\Psi_{n_{0}}\right)$	k_{0}	$c_{n_{0}}\left(k_{0}\right)$
1	1	0	0	+1
2	$561=3 \cdot 11 \cdot 17$	241	17	-2
3	$1155=3 \cdot 5 \cdot 7 \cdot 11$	675	33	-3
4	$2145=3 \cdot 5 \cdot 11 \cdot 13$	1185	44	+4
5	$3795=3 \cdot 5 \cdot 11 \cdot 23$	2035	132	-5
6	$5005=5 \cdot 7 \cdot 11 \cdot 13$	2125	201	-6
7	$5005=5 \cdot 7 \cdot 11 \cdot 13$	2125	310	-7
8	$8645=5 \cdot 7 \cdot 13 \cdot 19$	3461	227	-8
9	$8645=5 \cdot 7 \cdot 13 \cdot 19$	3461	240	+9
10	$11305=5 \cdot 7 \cdot 17 \cdot 19$	4393	240	-10
11	$11305=5 \cdot 7 \cdot 17 \cdot 19$	4393	306	+11

For $m=10, \ldots, 21$ it turns out that $n_{0}=11305$.
Acknowledgement. As in many papers before this one, impressive computational assistance was provided by Yves Gallot. I am deeply grateful for all the work he did for me. Paul Tegelaar proofread an earlier version and Gennady Bachman updated me on recent results on the flatness of $\Phi_{3 q r}(x)$.

In the context of assigning student projects to Alexander Bridi, Andreas Decker, Patrizia Dressler, Silke Glas and Thorge Jensen (and earlier Christine Jost and Janina Müttel), I considered cyclotomic polynomials. I thank them all for their enthusiasm and cheerful presence which added to the already pleasant atmosphere at the Max-Planck-Institut für Mathematik.

My belief that 561 is a boring number was expelled by Don Zagier who remarked that, on the contrary, it is interesting since it is the smallest Carmichael number. I thank him for this and several other helpful remarks.

References

[1] G. Bachman, On the coefficients of ternary cyclotomic polynomials, J. Number Theory 100 (2003), 104-116.
[2] G. Bachman, Ternary cyclotomic polynomials with an optimally large set of coefficients, Proc. Amer. Math. Soc. 132 (2004), 1943-1950 (electronic).
[3] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53-60.
[4] A.S. Bang, Om Ligningen $\varphi_{n}(x)=0$, Nyt Tidsskrift for Mathematik (B) 6 (1895), 6-12.
[5] M. Beiter, Magnitude of the coefficients of the cyclotomic polynomial $F_{p q r}$. II, Duke Math. J. 38 (1971), 591-594.
[6] R. Bungers, Über die Koeffizienten von Kreisteilungspolynomen, Dissertation, Göttingen, 1934, pp. 14.
[7] L. Carlitz, The number of terms in the cyclotomic polynomial $F_{p q}(x)$, Amer. Math. Monthly 73 (1966), 979-981.
[8] N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory, to appear (available already electronically).
[9] T.Y. Lam and K.H. Leung, On the cyclotomic polynomial $\Phi_{p q}(X)$, Amer. Math. Monthly 103 (1996), 562-564.
[10] D.H. Lehmer, Some properties of cyclotomic polynomials, J. Math. Anal. Appl. 15 (1966), 105-117.
[11] E. Lehmer, On the magnitude of the coefficients of the cyclotomic polynomials, Bull. Amer. Math. Soc. 42 (1936), 389-392.
[12] H. Möller, Über die Koeffizienten des n-ten Kreisteilungspolynoms, Math. Z. 119 (1971), 33-40.
[13] K. Molsen, Zur Verallgemeinerung des Bertrandschen Postulates, Deutsche Math. 6 (1941), 248-256.
[14] P. Moree, Bertrand's Postulate for primes in arithmetical progressions, Comput. Math. Appl. 26 (1993), 35-43.
[15] J.L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005.
[16] J. Suzuki, On coefficients of cyclotomic polynomials, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), 279-280.
[17] R. Thangadurai, On the coefficients of cyclotomic polynomials, Cyclotomic fields and related topics (Pune, 1999), 311-322, Bhaskaracharya Pratishthana, Pune, 2000.

Max-Planck-Institut für Mathematik,
Vivatsgasse 7, D-53111 Bonn, Germany.
e-mail: moree@mpim-bonn.mpg.de

