Reciprocal cyclotomic polynomials

Pieter Moree

Abstract

Let ¥, (z) be the monic polynomial having precisely all non-primitive nth
roots of unity as its simple zeros. One has U, (z) = (2" — 1)/, (x),
with ®,,(z) the nth cyclotomic polynomial. The coefficients of ¥, (z) are
integers that like the coefficients of ®,(z) tend to be surprisingly small in
absolute value, e.g. for n < 561 all coefficients of ¥,,(z) are < 1 in absolute
value. We establish various properties of the coefficients of ¥,,(z).

1 Introduction

The nth cyclotomic polynomial ®,,(x) is defined by

©(n)
o, (z) = H (x — ¢) Zan ,
G

where ¢ is Euler’s totient function and (,, a primitive nth root of unity. The
coefficients a, (k) are known to be integral. The study of the a, (k) began with
the startling observation that for small n we have |a, (k)| < 1. The first coun-
terexample to this inequality occurs for n = 105: a05(7) = —2. The amazement
over the smallness of a,(m) was eloquently phrased by D. Lehmer [10] who wrote:
‘The smallness of a,(m) would appear to be one of the fundamental conspiracies
of the primitive nth roots of unity. When one considers that a,(m) is a sum of
(¢(")) unit vectors (for example 73629072 in the case of n = 105 and m = 7) one
realizes the extent of the cancellation that takes place’.
We define ¥,,(x) by

n—p(n)
b= [[ = ekt
1<j<n k=0

Note that ¥y (z) = (2" —1)/®,(x). The identity 2" —1 = ][, Pa(x) shows that

I @)

dln,d<n
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and thus the coeflicients of U, (x) are integers.
Note that for |z| < 1 we have

1

3. (7) =V, ()1 +a"+2"" +---).

Since n > n — p(n), it follows that the Taylor coefficients of 1/®,,(x) are periodic
with a period dividing n. This allows one to easily reformulate the results on the
coefficients of W, (x) obtained in this paper to the Taylor coefficients of 1/®,,(x)
as well.

The purpose of this note is to show that the non-primitive roots, like the
primitive ones, conspire and study the extent to which this is the case.

2 Some basics

Note that

o 1=T[ II - =[5 = [[oula). )
din dln

dn 1<i<n
(j,m)=d

It follows from this identity that

" —1
o) H Dy(z). (2)

d<n

W, (z) =

We infer that U, (z) € Z|x].

Lemma 1 Letn > 1. We have

U, (2) = — [J (1 — 2@,

dln
d<n

Proof. By applying Mébius inversion one deduces from (1) that

O, (z) = [J (=" — 1)) (3)

din

On using that }_, pu(n/d) = 0, we infer that ®,(z) = [[,, (1 — z)H3) | from
which the result follows on invoking (2). O

Let rad(n) = [],,
difficult to arrive at the next result, see e.g. Thangadurai [17] for the proof of
the corresponding result for @, (z).

p be the radical of n. From the previous lemma it is not

Lemma 2 Letn > 1. We have:

1) Uop(x) = (1 — 2™V, (—x) if n is odd;
2) Wyn(x) = W (a?) if pln;

3) Upn(z) = \Ijn(xp)q)nr(lx) if ptn;

4) W, () = Vrad(n) (27T )

5) Uy(z) = — n(% g o)



Put V,, = {cu(k) : 0 <k <n—¢p(n)}. If n > 1 then by part 5 of the latter lemma
we have that a € V,, implies that —a € V,,. It also gives that if n — ¢(n) is even,
then ¢,((n —¢(n))/2) = 0.

Lemma 3 Ifn =1, then V,, = {1}. If n is a prime, then V,, = {—1,1}. In the
remaining cases we have {—1,0,1} C V.

Proof. If n = 1, then ¥,,(z) = 1. If nis a prime, then ¥, (z) = x—1. Next assume
that n has at least two (not necessarily distinct) prime divisors. Note that this
implies that n — ¢(n) > 2. Note that W, (z) is monic and that ¥, (0) = —1 by
Lemma 1. It thus remains to be shown that 0 € V,,. In case n is not squarefree
we have ¥, (z) = —1 + O(2?) by Lemma 1 and thus ¢,(1) = 0. If n is odd and
squarefree and p(n) = —1, then by Lemma 1 we find ¥, (z) = —1 + 2 + O(z2?%)
and hence ¢,(2) = 0 (here we use that n — ¢(n) > 2). If n is odd and squarefree
and p(n) =1, then by Lemma 1 we find

w, () = =y o)

where p is the smallest prime divisor of n and hence ¢, (p) = 0. Since p < n—g(n)
it follows that 0 € V,,. In case n is even and squarefree we invoke part 1 of Lemma
2 to complete the proof. O

It is not difficult to prove that, as x tends to infinty,

p(n) & _ 6
ZT C(2)  “x?

n<z

Thus the average degree of @, (z) and ¥, (z) is %n, respectively (1 — %)n We
have 5 = 0.60792710--- and 1 — % = 0.3920728 - - -.

2.1 (Reciprocal) cyclotomic polynomials of low order

We define the order of ®,(z) and U, (x) to be the number, w;(n), of distinct odd
prime divisors of n. Instead of saying that f has order 3, we sometimes say that
f is ternary. We define the height of a polynomial f in Zx], h(f), to be the
maximum absolute value of the coefficients of f. In case h(f) = 1 we say that f
is flat.

Low order examples (in the remainder of this section p < ¢ < r will be

primes):

Uy(z) = 1;

Uy(z) = =1+

U (r)=—-1—a—a%— ... —aP ' 4ot 420 4 4 gPTe L

These examples in combination with parts 1 and 4 of Lemma 2 establish the
correctness of the following result.

Lemma 4 [fV,(x) is of order < 2, then V,(z) is flat.



We like to point out that W,,(x) has a rather simpler structure than ®,,(z). It
can be shown, see e.g. Carlitz [7], Lam and Leung [9] and Thangadurai [17], that

q—1

14 o p—1
_ ip Jq _ .—Pq ip Jq
Q. () = g x g -z E x g x

1=p+1 j=o+1

q—2—p p—2—0c
— E:wa :qu T E P E:qu7

7=0 1=0 7=0

where p and ¢ are the unique nonnegative integers for which (p—1)(¢g—1) = pp+oq
(note that p < ¢ —2 and 0 < p —2). As a consequence we have the following
evaluation of the coefficients a,,(k).

Lemma 5 Let p < q be odd primes. Let p and o be the unique nonnegative
integers for which (p —1)(¢ — 1) = pp + oq. Then

—1 ifk=1+ip+7jq forsome0<1<q—2—p,0<7<p—2—o0;

1 if k =1ip+ jq for some 0 <i<p, 0<j<o;
apq(k) =
0 otherwise.

Using the latter lemma it is easy to show that if ®,(z) is of order < 2, then ®,,(x)
is flat.

For the convenience of the reader we will prove that there are unique non-
negative integers such that (p —1)(¢ — 1) = pp + oq (this proof is taken from
Ramirez Alfonsin’s book [15, p. 34|, with the observation that in case p and ¢ are
primes the auxiliary polynomial Q(z) equals ®,,(z)). We let 7(n) be the number
of representations of n in the form n = px + qy with x,y > 0. We have

G 1
=20 = Ty

=0

Note that R(z)(2P? — 1)(x — 1) = ®,,(x). By L’Hopital’s rule we find that
®,,(1) =1 and hence we have that

Ppy(z) — 1 "~ i
B D BRIOLS

with g(pg — p — ¢) = 1. On the other hand,

Dpgw) -1 —_ 1
— 1 = R(z)(x 1)+ 1_x
= Zr qu“—i-Zl—r
pal
= > (1—r(i) $+Z (i —pg) + 1 —r(i))"
=0 1=pq

On comparing the two expressions for (®,,(z) — 1)/ (:v 1) we arrive at various
conclusions. First of all we see that r((p—1)(¢ — 1)) = 1. Secondly it allows one
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to compute the Frobenius number g(p, q). Given relatively prime positive integers

ai, ..., a, the largest natural number that is not representable as a non-negative
integer combination of ay, ..., a, is called the Frobenius number and denoted by
g(ay,...,a,). On noting that r(i — pq) < r(i) comparison of the two expressions

for (®,,(z) —1)/(z — 1) shows that r(pg —p—¢) =0and r(pg —p—q+1i) > 1
for i > 1, which yields g(p,q) = pg—p — q.
By Lemma 1 we have

(x —1)(1 — aP?)(1 — 2P")(1 — 27)
(I —aP)(1 —29)(1 —2")

Wpgr (z) =

This can be written as

bt = D(Zon) (S (S

Alternatively we can write, by part 3 of Lemma 2,

Upgr (T) = Ppg(2) Wpe(z"). (5)
Let the denumerant be defined as the number of non-negative integer represen-
tations of m by aq, as, ..., a,. Denote it by d(m;ay,...,a,). For m < pq we infer

from (4) that ¢y (k) = d(m — 1;p,q) — d(m; p, q). For more on denumerants see
Chapter 4 of Ramirez Alfonsin [15].

Lemma 6 Let p < g < r be odd primes. If 0 < k < r, then we have cpg (k) =
—ay,(k) € {—1,0,1}.

Proof. Immediate from (5), ¥,,(0) = —1 and Lemma 5. O

The following result also relates cpq-(k) to a,,(k) in case k > r. (If k is outside
the range [0,...,¢(n)] respectively, [0,...,n — ¢(n)], then we put a,(k) = 0,
respectively ¢, (k) = 0.

Lemma 7 Let p < q < r be odd primes. Put = (p—1)(r+q—1). Suppose
that qr > 7. If k < 7, then

Cpgr(K) = — Z apq(k = jr),
=0

with m the unique integer such that mr < k < (m+ 1)r. Furthermore,

Cpqr(T — k) = Cpgr(K) (6)
and cpgr(k 4 qr) = —cper (k). If T < k < qr, then cpq (k) = 0.

Proof. We have

Uy (1) = Bpg () (14 2" 4. ..+ xP7I7) (207 — 1), (7)



Write

T

Cpp()(L 42"+ ..+ 2P =" e (k)" (8)

k=0

Note that the polyniomal in (8) of degree 7 and selfreciprocal. If &k < 7, then
Cpgr (k) = —epgr(k) and cpgr(k + gr) = epgr(k). On combining all these observa-
tions the result easily follows. O

In 1895 Bang [4] proved that (P, (z)) < p—1. The same bound applies to the
height of W, ().

Theorem 1 The height of U, (x) is at most p — 1. More precisely, we have

(@) < [P D] 4
Proof. By (5) we find that
[k/7]
Cpar(k) = Z apg(k — J7)Cpg(J). (9)

The number of j for which 0 < k — jr < p(pq) is

- [cp(pQ)] 1o [(p— (g —1)

L) ]+1§p—2—|—1:p—1.
T T

The proof is finished since |a,,(k — jr)| <1 by Lemma 5 and |cp,(7)| < 1 by the
identity W, (z) = —1—2 — 2% — ... —aP ' 4 27+ 29T 4 . 4 Pt L a

We have seen that on average the degree of ®,,(x) is less than that of U, (x). It is
left to the reader to show that if p < ¢ < r are odd primes, then deg(V,, (z)) <
deg (P4 (7)), except when pgr € {105, 165,195}

3 Beiter’s conjecture and its reciprocal analogue

In 1971 Sister Marion Beiter [5] put forward the conjecture that if p < ¢ < r
are odd primes, then ®,,.(z) is of height at most (p + 1)/2. As she pointed
out, her conjecture is true for p < 5. She also showed that the height is
< p — |p/4]. Bachman [1] showed that if either ¢ or r is congruent to £1 or
+2 modulo p, then the height is < (p 4+ 1)/2. H. Moller [12] gave explicit ex-
amples of polynomials ®,,, (), for every p, with a prescribed coefficient equal to
(p + 1)/2. This shows that the conjecture is best possible, if true. More pre-
cisely, Méller showed that if ¢ = —2(mod p), r = —(p — 1)(¢ — 1)/2(mod pq),
then a,q((p — 1)(gr +1)/2) = (p + 1)/2. For further results and references see
Bachman [1, 2]. In general Beiter’s conjecture remains unresolved.

The following result gives the analogue of the Beiter conjecture for the recip-
rocal polynomials.



Theorem 2 Let p < g < r be odd primes. Then h(V,,-(z)) =p— 1 iff

(p—1)
(p—2)

g=r==+l(mod p) and r <

(g=1).
In the remaining cases h(V,q(z)) < p— 1.

Corollary 1 Suppose that h(V,,.(z)) = p — 1 and ¢+ 2p is a prime, then also
h(Wpq(g+ap) () =p — 1.

By the above theorem and Dirichlet’s theorem on arithmetic progressions it fol-
lows that for every prime p > 3 there are infinitely many pairs (g, r) such that
h(quqr(x» =p—1

Theorem 2 follows from two theorems that deal with the necessity, respectively
sufficiency part of its iff statement in combination with Theorem 1.

Theorem 3 If h(V,,(x)) =p—1, then
(p—1)
(p—2)

Proof. Let jmin be the smallest j such that k — jr < ¢(pq) and jnax be the largest
j such that £ — jr > 0. Then we can write (9) as

g=r==+l(mod p) and r <

(q—1).

Jmax
Cpar(k) = Z apq(k = Jr)cpq(d)-
J=Jmin
From k — jmax” > 0 and & — jninr < (p— 1)(¢ — 1) we infer that (jmax — Jmin)7 <
(p—1)(¢g—1) < (p—1)r and hence jmax — Jmin < p — 2. In order to have
Cpgr (k) = p—1 for some k we must have jmax — Jmin = P —2. Thus (Jmax — Jmin )7 =
(p—2)r < (p—1)(g—1). Since (p—2)ris odd and (p—1)(¢g—1) is even it follows

that v-1)
D—
Let k be such that |cp, (k)] = p — 1. Then we must have that c,,(j) # 0 for

Jmin < J < Jmax. It follows from this that the pair (jmin, jmax) must be one of
the following: (0,p —2), (1,p—1), (¢,¢q+p—2), (¢+1,¢g+p— 1), and that

r <

Cpg(Jmin) = Cpg(Jmin + 1) = ... = Cpg(Jmax). Thus we have
jmax
p—1=|ey(k)| = ) S aplk —jr)‘.
j:jmin

We now make a case distinction according to whether a,,(k — jr) = 1 for jmm <
j < jmaxa or apq(k - ]T) = —1 for every jmin < ] < jmax‘
First case. For every jmin < J < Jmax We have a,,(k — jr) = 1.
By Lemma 5 it follows that there must be non-negative integers 7,, and 7,, with
0<i, <pand0<j, <o such that

k — jmax'r :le + jIQ7

k— jminr :ip—lp + jp—IQ>



Now if we would have j,,, = jn, for m; # my by subtracting the corresponding
equations we infer that p|r, a contradiction. Thus we must have {ji,..., 5,1} =
{0,1,...,p — 2} and hence 0 = p — 2. It follows that ¢ = —1(mod p) and
p = (¢q—p+1)/p. Now select m; and ms such that j,,, = jm, +1. On substracting
the corresponding equations we infer that ar = Gp+ ¢ for some integers o and (3
with —p < 3 < p. Notethat p—1 < fBp+qg <2¢—p+1 < 2r. It follows that
a=1and r = fp+ q and hence r = ¢ = —1(mod p).

Second case. For every jmin < J < jmax We have a,,(k — jr) = —1.

By Lemma 5 it then follows that there must be non-negative integers ¢,, and 7j,,
with 0 <14, <q¢—2—pand 0 < j,, <p—2— 0 such that

k— jmaxr =1+ le + ]lqv
k— (jmax - 1)T =1 + Z2p +]2C]7

k — JjminT =1+ ip_1p + Jp-14,

For the same reason as above we must have {j1,...,7,-1} = {0,1,...,p — 2}
This implies o = 0. It follows that ¢ = 1(mod p) and p = (p — 1)(¢ — 1)/p and
thus p' := ¢—2—p = (¢—p—1)/p. Now select m; and my such that j,,, = jm, +1.
On substracting the corresponding equations we infer that ar = Bp + ¢ for some
integers av and [ with —p’ < 6 < p/. Note that p+1 < Bp+q<2¢—p—1<2r.
It follows that @« = 1 and r = 8p + ¢ and hence r = ¢ = 1(mod p). O

Theorem 4 Let p < q < r be odd primes such that r < (p—1)(¢ — 1)/(p — 2).
If g = —1(mod p) and r = —1(mod p), then

—1—-m for0<m<p-—2, k=mr;
Cpgr (k) =< 0 fork=2;
m+1  for0<m<p—2k=(m+q)r,

and ‘/pqr = {_(p_ 1)7 _(p - 2)7 Y 2 27p - 1}
If ¢ = 1(mod p) and r = 1(mod p), then

1+m  forO<m<p—2,k=1+mr;
Cpgr (k) =< 0 fork=2;
—1—m for0<m<p—-2 k=14 (m+q)r,

and ‘/pqr - {_(p_ 1),_(]7_2),,}9_2,]7_ 1}

Proof. From the proof of Lemma 3 it follows that ¢, (2) = 0.

First case. Assume that ¢ =r = —1(mod p).

Note that p = (¢ —p+1)/p and 0 = p— 2. Notice furthermore that we can write
r = ap+q with @ = (r—q)/p > 0. The condition r < (p—1)(¢—1)/(p—2) ensures
that (p — 2)a < p. Let 0 < m < p — 2 be arbitrary. We have mr = map + mgq
with 0 <ma < (p—2)a<pand 0 < m <o =p—2. By Lemma 5 we then infer
that a,,(mr) = 1. On invoking Lemma 7 and Theorem 1 the proof of this case is
then completed.

Second case. Assume that ¢ = r = 1(mod p).

We claim that r(p —2) < (p — 1)(¢ — 1) — 2. By assumption we have r(p — 2) <



(p—1)(¢—1). Suppose that r(p—2) = (p—1)(¢—1)—1. By considering this equa-
tion modulo p we see that it is impossible and thus r(p —2) < (p—1)(¢ — 1) — 2.
Note that 0 = 0 and p = (p — 1)(¢ — 1)/p. We can write r = ap + ¢ with
a = (r—gq)/p > 0. The condition r(p —2) < (p —1)(qg — 1) — 2 ensures that
(p—2)a<qg—2—p Let 0 < m < p—2 be arbitrary. We have 1 + mr =
l+map+mqgwith0 <ma < (p—2)a<q¢g—2—pand0<m<p—-2—0c=p—2.
By Lemma 5 we then infer that a,,(1 + mr) = 1. On invoking Lemma 7 and
Theorem 1 the proof of this case is then also completed. ad

Remark. (Y. Gallot.) The above result suggests perhaps that in case n is of order
at least two, V,, is always of the form {—a, —(a—1),---,—1,0,1,---,(a—1),a} for
some positive integer a. However, this is not the case. The smallest n for which
V,, is not of this form is n = 23205 =3-5-7-13-17. Here the height is 13, but
12 (and -12) are not included in V,,. Further examples (in order of appearance)
are 46410 (height 13, £12 not there), 49335 (height 34, £33 not found), 50505
(height 15, £14 not found). There are also examples where a whole range values
smaller than the height is not in V.

3.1 The case where p =3

In the case where p = 3 we can always explicitly compute V3, on invoking
Theorem 3, Theorem 4 and Lemma 3. We obtain the following result.

Theorem 5 Let 3 < g < r be odd primes.

If g = 1(mod 3), r = 1(mod 3) and r < 2q— 7, then Vs, = {—2,-1,0,1,2}. In
particular, cso(r +1) =2 and c3q (r + 14 qr) = —2.

If g = 2(mod 3), r = 2(mod 3) and r < 2q — 3, then Vs, = {—2,—1,0,1,2}. In
particular, csg(r) = —2 and csq (r + qr) = 2.

In the remaining cases Vag = {—1,0,1} and then Vs, (x) is flat.

Remark. The quoted results only give r < 2¢ — 3. Note, however, that if
g=r =1(mod 3) and r < 2¢ — 3, then r < 2¢ — 7.

We now infer some consequences of Theorem 5. For this we need the following
generalisation of Bertrand’s Postulate.

Lemma 8 If q is any prime, then the interval (q,2q — 7] contains primes p; and
po with p; = i(mod 3).

Proof. Molsen [13], cf. Moree [14], has shown that for 2 > 199 the interval (z, 2]
contains primes p; and py with p; = i(mod 3). From this the result follows after
some easy computations. O

Theorem 6

1) Let r be any prime, then Vi5,.(x) and Yoy,.(x) are flat.

2) Let ¢ > 11 be a prime. Then W3y, is flat for all primes r > 2q — 1. However,
there is at least one prime v such that Ws,.(z) is non-flat.

3) Let 3 < q <1 be primes. For k <16 we have |c3q (k)| < 1.



Proof. 1) An immediate consequence of Theorem 5 and Lemma 4.

2) A consequence of Theorem 5 and Lemma 8.

3) By part 1 and Theorem 5 we infer that the smallest r for which V3, #
{=1,0,1} is r = 17. By Lemma 6 the proof is then completed. O

3.2 Reciprocal polynomials of intermediary height

A variation of the methods used to establish Theorem 2 yields the following upper
bound for h(V,,(x)). Sometimes this bound is actually optimal, for example for
the Chernick Carmichael numbers (see Lemma 13).

Theorem 7 Let p and o be the unique non-negative integers such that one has
(p—1)(¢g—1)=pp+o0q. PutT=(p—1)(gq+7r—1). If qr > 7, then the height
of Upyr(x) is at most max{min(p+ 1,0 + 1), min(¢ — 1 —p,p—1—0)}.

Corollary 2 If either ¢ = —2(mod p) or ¢ = 2(mod p) and q > p+ 2, then the
height of W, () is at most (p +1)/2.

Proof. One easily checks that qr > 7. We compute that

U_{p—;?’ if ¢ = —2(mod p);

p_;l if ¢ = 2(mod p).

Proof of Theorem 7. We have to show that |c,,. (k)| does not exceed the bound
stated. The conditions of Lemma 7 are satisfied and by property (6) we may take
k<T7/2< (p—1)r. Now choose 0 < m < p — 2 such that mr < k < (m+ 1)r.
By Lemma 7 we have

Cpgr(k) = — Z apg(k — o).
v=0

Let us consider the worst case where m = p —2 and a priori |cp,- (k)] < p—1. We
determine the maximum number of v with 0 < v < p—2 for which a,,(k—vr) = 1.
Let us suppose that for vy, ..., v; we have a,,(k —v;r) = 1 and hence, by Lemma
5, we have

k —uvir =i1p + jig;

k — var = iap + jag;

k —wvir =1ip + Juq,

where each j,, satisfies 0 < 7,, < 0. Now if ¢ > o + 1 two of the j,, must be
equal. On subtracting the corresponding equations it would follow that p|r, a
contradiction that shows that t < ¢ 4+ 1. On using that ¢ 1 r, we likewise infer
that ¢ < p+ 1. We infer that ¢, (k) > —min(p + 1,0 4+ 1). Note that the same
inequality actually holds for all £k < (p — 1)r.

We determine the maximum number of w with 0 < w < p — 2 for which
apq(k —wr) = —1. Let us suppose that for wy, ..., w; we have a,,(k — w;r) =1
and hence, by Lemma 5, we have

k—wir =14 141p+ jiq;
k —war =1+ 19D + jag;

kE—wr =1+4up+ jiq,

10



where each j,, satisfies 0 < j,, < p—2—0. Nowift > p—1— o two of the
Jm must be equal. On subtracting the corresponding equations it would follow
that p|r, a contradiction that shows that ¢ < p — 1 — ¢. Likewise we infer that
t < gq—1—p. We infer that ¢, (k) < min(¢ — 1 — p,p —1 — o). On combining
this with ¢,q(k) > —min(p + 1,0 + 1) we are done. O

4 Further flatness results

In this section we present some further (near) flatness results.
Lemma 9 Ifr > (p—1)(¢— 1), then U, (x) is flat.

Proof. Note that if f and g are flat polynomials and m > deg(f), then f(z)g(z™)
is flat. By (5) we have W, () = ®,,(2)¥,,(2z"). The assumption on r implies
that r > deg(®,,(x)) = (p—1)(¢ —1). Since both ®,,(z) and V,,(x) are flat, the
result now follows. O

A variation of the latter proof making use of the identity U, (z) = U, (2?)®, ()
if p tn (this is part 3 of Lemma 2), yields the following lemma.

Lemma 10 Let p be a prime. Let hy,hy be the height of ®,(x), respectively
U, (z). If p> @(n), then U,,(x) is of height hyhs.

Using this result we easily infer the following one.

Lemma 11 Let 3 < g <1 < s be primes such that s > 2(q — 1)(r —1). Then
1) Wsys(z) is of height at most 4.
2) If r = q(mod 3) and r = £1(mod 3q), then Vs,(x) is flat.

Proof. 1) Beiter [5] has shown that @3, () is of height at most 2. By Theorem 5
we know that also W3, () is of height at most 2. Now apply the previous lemma
with n = 3¢qr and p = s.

2) Follows from the previous lemma, Theorem 5 and the result due to Kaplan [8,
Theorem 1] (who extended on earlier work by Bachman [3]) that @3, (z) is flat
if r = £1(mod 3¢q). O

Remark. Since h(W3.11.17.331(x)) = 4, we see that the 4 above cannot be replaced
by a smaller number.
Recall that smallest n for which @, (z) is non-flat is n = 105.

Lemma 12 The smallest n for which V,,(x) is non-flat is n = 561.

Proof. By computation one finds that c561(17) = —2. By Lemma 4 it suffices to
check that U, (x) is flat for every odd squarefree n < 560 with w(n) > 3. This
leaves us with the sets

A = {105,165, 195, 231, 255, 273, 285, 345, 357, 399, 435, 465, 483, 555 },

and B = {385,429,455}, where the set A has all its elements divisible by 15 or
21. On applying part 1 of Theorem 6 we infer that W, (x) is flat for every n € A.
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By direct computation we find that Wsgs(x), Wasg () and Wys5(x) are flat. O

Since 561 is the smallest Carmichael number and the smallest number m for
which A(V,,(z)) > 1, one might wonder whether perhaps h(¥¢(z)) > 1 for
every Carmichael number C'. The answer is no, as the example ¢ = 2821 shows.
However, for the Chernick Carmichael numbers the answer turns out to be yes.
In 1939 Chernick proved that if £ > 0 is such that 6k + 1, 12k + 1 and 18k + 1
are all primes, then C' = (6k + 1)(12k + 1)(18k + 1) is a Carmichael number.
Examples occur for k = 1,6, 35,45,51,56, .. ..

Lemma 13 IfC = (6k+1)(12k+1)(18k+1) is a Chernick Carmichael number,
then cc(24k +2) = =2 and h(Ve(z)) = 2.

Proof. Put p=6k+1,q=12k+1andr = 18k+1. Wefindp=1and o = p—2.
By Theorem 7 we infer that A(¥¢(x)) < 2. By Lemma 5 we have ac(2¢) = 1
and ac(p) = 1. Now cc(29) = —ac(29) — ac(2q — 1) = —ac(2q) — ac(p) = —2.
Thus cc(2q9) = cc(24k +2) = —2 and h(V(z)) = 2. O

5 Sizable coefficients

The history of sizable coefficients goes back to Schur who in a letter in 1931 to
Landau (see e.g. E. Lehmer [11]) proved that the a, (k) are unbounded. It is not
difficult, see Suzuki [16], to adapt his argument so as to show that every integer
shows up as a coefficient, that is {a,(k) : n > 1, k > 0} = Z. Bungers [6], in
his Ph.D. thesis proved that under the assumption that there are infinitely many
twin primes, the a, (k) are also unbounded if n has at most three prime factors.
E. Lehmer [11] eliminated the unproved assumption of the existence of infinitely
twin primes from this. The strongest result in this direction to date is due to
Bachman, who proved a result (|2, Theorem 1]), which implies that

{apgr(k) : 3 <p < g <r primes} =Z.

A minor variation of Suzuki’s argument gives {c,(k) : n > 1, k > 0} = Z.
Since the next result is stronger, the details are left to the interested reader.

Theorem 8 We have {cpy- (k) : 3 <p < g < r primes} = Z.

Proof. By Dirichlet’s theorem on arithmetic progressions for every prime p there
is a qo(p) such that for every ¢ > ¢o(p) with ¢ = £1(mod p), there exists
r = g(mod p) with ¢ < r < (p —1)(¢ — 1)/(p — 2). The proof is then com-
pleted on invoking Theorem 4. O

In the table below (part of a much large table computed by Yves Gallot) the
minimal n, ng, such that ¢, (k) = m for some k is given. The third column
gives the degree of W, (x). The fourth column gives the smallest k, ko, for which
|Cno(k0)‘ =m.
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Table 1: Minimal n and k& with |c,(k)| =m

i deg(Wyy) | ko | Cng(ko)
1 0 0 +1
561 =3-11-17 241 17 —2
1155=3-5-7-11 675 33 -3

2145=3-5-11-13 1185 44 +4

3795 =3-5-11-23 2035 132 -5
5005 =5-7-11-13 2125 201 —6
5005 =5-7-11-13 2125 310 -7
8645 =5-7-13-19 3461 227 -8
8645 =5-7-13-19 3461 240 +9

11305 =5-7-17-19 4393 240 | —10
11305 =5-7-17-19 4393 306 | +11

= =
D S| oo | o] ot| kx| wo|po| = 3

For m = 10,...,21 it turns out that ng = 11305.
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