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NOTE TO THE READER

This i1s a preliminary version of this paper. We often speak of "when
the Leray Spectral sequence degenerates at the Ej-term”. We do not know
whether this ever occurs, or always. However, it is not a critical part of
our arguments: so we hope the reader will excuse this inaccuracy. We are
working on this presently.

After this was written, E. Viehweg brought the article "On Welerstraf
models" by N. Nakayama to my attention. He has independently proven some
of the results of §4., Combining his results with our's, the results of 84
can be strenghthened., We will incorporate these results in the final -draft
of this paper..

Furthermore, after comparing his results with mine I discovered
thatlhave implicitely (without stating it) assumed throughout
this paper, that all models are elliptically minimal at all points.-
This means, when the singular locus is I=z3} - 27z%, we assuue

nin (BvS(gz),Avs(ga))<12 for all seS. In particular, we assume
this to hold throughout §4. Nakayama proved that Theoren 43&. is
still true, without this assumption. The precise statements will

be incorperated in the final draft.



Elliptic 3-folds

Introduction

Although elliptic surfaces (i.e. a surface S with a holomorphic map
w:S —— A onto a curve A, such that the generic fibre is an elliptic
curve) were known to the Italien geometers, it was Kodaira who in a series
of papers ({Kol}, {Ko2}, {Ko3)) extensively studied them and founded a
rigerous theory. His approach was basically to view such an elliptic
surface S as a l-dimensional family of elliptic curves, that is,
deformation theory. The importance of elliptic surfaces stems from the
fact that any compact, complex, analytic surface with Kodaira dimension (or
algebraic dimension) equal to one, is an elliptic surface. Also, any
algebraic surface with trivial canonical bundle is a deformation of an
elliptic surface (see {(Ko3), Theorems 13 and 18). |

There is good reason to belleve that elliptic fibre spaces in higher
dimensions will also play an important role in classification theory (see
§1). Elliptic 3-folds have been studied by a number of authors, in
particular, {Kaw}, {Ue3}, {Mi}, {Ful)} and {Fu2). 1In this paper we continue
this work, and ultimately would like to answer some of the questlons
Kodaira answered so effectively for surfaces.

Chapter I, in spite of its lenghth, is concerned with only one relatively
simple problem: find a good model for an elliptic 3-fold. This is
absolutely necessary for further work, 1.e. calculating invariants, etc.
The solution 1is so difficult because in higher dimensions one has no good
theory of minimal models. Thus the discussion of Chapter I is more or less
a contribution to the theory of minimal models. 1In this respect we note

the following. In (Ful}, Fujita has shown the existance of a Zariski



decomposition on ellitpic 3-folds. By general theory (compare (V2} p.140)
this 1s closely related to the question of minimal models. Here we use a
more down to earth approach, explicitely showing how to get a (relatively)
minimal model.
Let X be a normal, compact, complex space. X is called a (3-dimensional)
elliptic fibre space, if there is a holomorphic map
» mX — S
onto a smooth, compact, complex analytic surface such that for all seS-Z, =
a pure divisor on S, n-l(s) is an elliptic curve. X is called the singular
locus of X. 1If Z has only normal crossings, then (Corollary 4.2.) X has
only canonical singularities. A family of elliptic fibre spaces is a
morphism
3 —— T

such that each fibre %t, teT, is an elliptic fibre space over a fixed

surface § with singular locus Ztc S. Our first result is

Theorem 1: Let 8 —— T be a Q-Gorenstein family of elliptic fibre spaces
(each %t is Q-Gorenstein). Assume that for t#to, Et has'normal crossings.

Then %t has canonical singularities.
o

Armed with this, we can apply Reid's crepant resolution to get (unique)
minimal models ({R2}, 0.6,0.7). The result is

Theorem 2: Let X —— S be a Q-Gorenstein 3-dimensional elliptic fibre
space. Assume:
a) S is projective algebraic and smooth
B) © C S moves in a linear system on S.
Conclusion: there is a crepant partial resolution
g:X'— X
such that (1) K,, is relatively nef (K., -C<0 for all curves C contracted

by g)

(ii) X' has only terminal singularities.
Yy g

Moreover, X' may be uniquely choosen (Reid's Choice).

The relavent definitions are given in §2 and 84. This result is
interesting in that X needn’t be projective (of even Moishezon). Thus we

have a satisfactory result for both «(X)=2 and a(X)=2.
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However, at least as far as calculations are concerned, we are not quite
satisfied with this model. It has two drawbacks: 1)it may be singular, and
2) the projection is not flat (there may be divisors in the fibres). To
remedy this we Iintroduce in &5 models with multiplicative reduction. This

AA I

is a model w#:B —— S covering the model X'—— S above:

A

R -

—
—_—

D+ W\

’

which has the following properties:
' (1) B 1s smooth (even projective algebraic)

(ii) n is flat and has a section

(111) B has only singularities of type I

(iv) B is a group variety over S.

k

Property (iv) is explained in 8§5. It is a 3-dimensional analogue of {Kol},
Theorem 9.1. It 1s precisely this group structure which led us to consider

the model B. Let B: denote the Jacobl fibering associated to B' The group

structure implies the existance of the following exact sequence of sheaves
on S:
0 —— § — O(f) — O(By) — O.

Here Q-R‘w*l is the homological invariant and £ is the normal bundle of the

section (pulled back to g). This yields the following long exact sequence
of cohomology groups, which is one of'our main objects of study:
0 —— HO(S,0(£)) —— HO(S,0(Bh)) — H'(S,8) — H'(5,0(£)) —...
.—— HY(S,0(Bh)) — H3(S,9) — HZ(5,0(£)) — ... ‘
..—— HZ(5,0(Bh)) — H(5,9) — 0.
Several of the groups in this sequence have geometric meanings, and the
exactness of the sequence relates them to one another. For fxample, if we

assume KS®0(-£) is positive in the sense of Kodaira (i.e. x(B)=2), then we

have

Theorem 3: (i) HO(S,0(B7)) = HY(S,$)

O # Q0 i

(ii) H*(S,0(B")) = ¥($,9) , tensored with €, is a subgroup of

H3(B,C).

This is in marked contrast with the elliptic surface case.

A

In §6, we calculate several invariants of the model B, including the

Hodge numbers, in terms of the following data: e(Ei) {(the euler

characteristic of the irreduclble components of the singular locus ), the
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number of intersectlons EiﬂEj, and r=rank HO(S,O(Bﬁ)). The invariant r is

arithmetical in character, and is probably very difficult to calculate.
The rest of Chapter II is concerned with thhe applications of a theorem
of {HM) to elliptic fibre spaces with trivial canonical bundle (or more

generally CT—O). Our main result is

Theorem 4: There are constants <y,, Yz, such that
Y1 S ca(X) £ 72
for any Moishezon elliptic 3-fold X with CT-U. Moreover,

v1<-756 and =112,

This confirms in part a conjecture of F. Hirzebruch, to the effect that
any Moishezon 3-fold X with c?-o has bounded euler number: Since the euler
number is a diffeomorphism invariant, it is constant in deformation
families. The following conjectures would confirm Hirzebruch’s conjecture
in full:

Conjecture 1l: Any Moishezon 3-fold with c?-o and h®2>1 is a deformation of
elliptic 3-fold. -
Conjecture 2: Any Moishezon 3-fold with c?-o and h?2=hl1=]1 is a deformation

of a non-singular complete intersection.

Finally, in §9? we give lots of examples-of Moishezon 3-folds with
trivial canonical bundle, in particular the examples with euler number ;756
and +112. Both of these examples have the structure of elliptic fibre
spaces.

I would like to thank E. Viehweg for discussions about the contents of
34. Also I want to thank A. Todorov for pointing out the necessity of
h®2>1 in the conjecture above. Finally, I acknowledge financial support of

the Arbeitsamt during the preperation of this paper.
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§1.Classification Theory
1.1. Iitaka’s Theorem
Let X be a compact, complex analytic (c.c.a.) N-fold. One defines the
algebraic dimension of X as a(X):-tranGK(X) < N.

Let KX be the canonical bundle, and

b X — W C pdim|mk]

the pluricanonical map. The Xodaira dimension is defined as follows:

£(X)=- 5 dim W or -w if |mk|=¢ for all m.
From the definitions it follows immediately that

x(X)<a(X)=N.

At the one extreme we have a(X)=N, in which case X 1s said to be Moishezon.
In this case X has the function field of an (projective) algebraic variety
of dimension N, so that X is birational to an algebraic variety. A Moish-
ezon X is Kaehler iff it is projective algebraic. At the other extreme
are c.c.a. N-folds with a(X)=0. In this case it is easily seen that the
geometric genus of X is 1 iff «x(X)=0, and the geometric genus is 0 iff
k{X)=-o | and in this case (pg(X)-O), X 1s necessarily noﬂ-Kaehler. |

The basic tool for studying the range Osx(X)<a(X)=<N-1 is the following:
Iitaka’s Thoerem: X as above, with «k(X)>0. Then there exists a c.c.a. X*
bimeromorphic to X, such that X* has the structure of fibre space:

' A X— W
‘which has the following properties:
i) x(F)=0 for a generic fibre F

ii) dim W=x(X), W algebraic and smooth

iii) X* is unique up to birational equivalence.
Furthermore, if X is smooth, X*———+ W is bimeromorphic to the pluricanon-
ical map.
Definition:A normal c.c.a. N-fold X is called an elliptic fibre space, .=

there exists a map 7 X W onto a smooth c¢.c.a. (N-1)-fold W such



that the generic fibre Xw is an elliptic curve.

From Iitaka’s theorem above we get
Proposition 1.1:If E(X)—N-l, then there is a birational (bimeromophic)
model of X, X* such that X* has the structure of}elliptic fibre space
X*—— W with the following properties:

1) the fibering X*———* W is unique.

ii) W is projective algebraic.
1.2. Classification of algebraic 3-folds
We summarise the classification of algebraic 3-folds in the following

table (borrowed from (V})

Theorem 1.2.: Every projective smooth 3-fold X" has a birational model X,

such that
£ (X™) g (XM Structure of X
3 - general type
2 - £: X — W dim(F)=1, x(F)=0
1 - £ X — ¥ dim(F}m2, &(F)=0
0 222222 |
!
1 the albanese map Aim(F)=2, x(F)=0
0 a X — A(X)
2 X’ dim(F)=1, «(F)=0
is
an etale fibre bundle
3 abelian variety
0 .21
the Stein factorisation  dim(F)=2,
K(F)=-
- f: X — W q{W)=q (X} dima (X )=l
>1 of the albanese map w{W)=0
a, X — A(X) F=P*(C) } .
X d X)y=2
q(y=q(x) J im0
has the property: k(W)=0



Remark: Although x(X)=2 is sufficient for X to be (bimeromorphic to) an
elliptic fibre space, it 1Is of course not necessary. There are many
interesting examples of elliptic fibre spaces with «(X)=0, and in fact help

to understand 3-folds with trivial canonical bundle (see$87-9).

1.3. Some results of Fujiki
We now consider the situation where X is a c.c.a. manifold with
0=<a(X)=N-1,
where N=dimX. Let K(X) be the function field of X. It is well known that
K(X) is an algebraic field, i.e. there exists an algebraic manifold Y,
dim(Y)=a(X), such that K(X)=K(Y).
Definition: An algebraic reduction of X is a meromorphic fibre space
£f: X — Y
such that K(X)=f K(Y).

Proposition 1.3.:({(Fu),p.234) Let f:X—Y be an algebraic reduction. Then:
i) n(Xy)SO for any generic fibre of f

ii) a(X)=N-1 —> X —— Y is an elliptic fibre space

1ii) a(X)=N-2 == every smooth fibre of f is bimeromoph
ically equivalent to one of the following surfaces:
1) complex torus, 2) hyperelliptic surface, 3) K3
surface, 4) Enriques surface, 5) ruled surface of
genus 1, 6) rational surfaces, 7) elliptic surface

with trivial cancnical bundle, 8) surface of type VII0

In general, not much more can be said. In case X is Kaehler, however, much
stronger statements are possible. 1In fact, for this the Kaehler condition
is not strietly necessary.
" Definition: A c.c.a. manifold X is in the class €,:<= there exists a
Kaehler space i and a surjective, meromorphic map
g:i — X.
Notice that dim § may be larger than dim X,
Fujiki has derived some strong results in case X is in the class €. The
following properties are basic for X € ©:
A) Functorial Properties.
1) If VX is any subvariety of X, then V is also in the class 6.
i1i) any meromorphic image of X is again in the class €.

B) Hodge decomposition.
k - P.q P.q L 1 o
R0 =0 W ix0,  #ix0 - Pxo
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In particular the odd dimensional bettl numbers are even.

C) Closedness of the Douady space Ex of X. (see {Fu), {(Ueé&}))
If X is combaét in €, then any irreducible component of @X is

again compact and belongs to €.
An application of the existance of the Douady space (for any complex space
X) 1s the theorem that the group of automorphisms of X carries a natural
complex structure, with respect to which it is a complex Lie group. If X
is in €, then property C) above implies that there are only finitely many
conponents in any stabllity subgroup, and the identity component Auto(X) of

Aut(X) has a natural compactification.

1.4. Classification of c.c.a. 3-folds in the class €
We describe the classification given by Fujiki in the following table.

a(x) Structure of X
3 Moishezon
2 elliptic fibre space

I. £:X — Y (algebraic reduction) is holomorphic
a) xy = complex torus

1 _ B8) Xy

IT. Quotient variety of SXC by a finite group acting

iR

P*-bundle over an elliptic curve

diaponally on SxXC, S a surface, C a curve,

I. FKummer

II. P'-fibre space over a surface

IIT, simple and k(X)=0

The relevant definitions are as follows. X is Kummer, iff X is the quot-
ient of a complex torus by a finite group. X is simple, iff there exists no

covering family {Ac} of proper analytic subvarieties At of X with

teT’
dimAt>0. k(X)=0 means that there is no surjective meromorphic map of X

onto a Kummer manifold. In particular then q(X)=0,

11



§2. Minimal models of canonical 3-folds
2.1. Relatively minimal models

Let X be a complete, non-singular variety.

Definition: (i) X is a relatively minimal model,:&= any birational map
f:X —= Y , which is everywhere defined (and Y is smooth) is actually an
isomorphism. (nothing can be smoothly blown down.)

(ii) X is an absolutly minimal model,:<= any birational map g:X — Y
(where Y is assumed smooth) 1s actually an isomorphism.

By Zariéki's Main Theorem, the exceptional locus of any birational map
f:X —— Y as in (i) is a pure divisor. Therefore, to check that an
algebraic 3-fold is relatlvely minimal it suffices to check that there are
no exceptional divisors (blow-ups at non-singular points or curves), and
these are all contained in the canonical divisor (considering the behavior
of canonical divisors under blow-ups). Relatively minimal models exist for
any algebrailc variety, but in general there are no absolutely minimal
models. However, from the viewpoint of birational geometry, the notion of
relatively minimal models is not at all well behaved, as the following

theorem exemplates (copled from (Ue3}):

Theorem 2.1.: Let X be a relatively minimal Moishezon manifold of dimension
N>2, If X contains a rational curve (which may be singular), then there
exists a relatively minimal model of X which is not isomorphic to X. If X
contains a ruled surface (which may be singular), then in its birational

class there are continuously many distinct relatively minimal models.

Because of this, we are forced to consider singular models - blowing down
the rational curves. Roughly speaking, the numerical expression of not
having these rational curves is that the canonical bundle (or the canonical
divisor) be numerically effective. This is the background for M. Reid’s

theory of minimal models, which we now briefly review.
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2.2, Canonical singularities

Let X be a normal algebralc variety, w, 1its dualizing sheaf and ﬂg the

X
sheaf of differentials. Then:
N, **
w = 7= Syl ) = 00K
where XOCX is the smooth locus, KX-Weil divisor class representing Wy -
N
This 1s a Weil divisor such that UXO(KX) - OXO.

Definitions:1) X is locally Q-factorial :& for any Weil divisor DcX,
there is a reN, such that rD 1s a Cartier divisor.

2) X is Q-Gorenstein :&<= for some reN, rKX is a Cartier divisor.

3) X has only terminal (canonical) singularities, &=
i) X is Q-Gorenstien
‘ *
i1i) for any resolution f:X —— X, we have

TR ¥ - f*(rl(x) + T E, with v>0 (v,20), all i.

4) X is a minimal model, &
i) X has only terminal singularities )
ii) Kx is nef (KX~C20 for all effective curves CcX).

In 3) we mean by resolution one in which the excepﬁional locus consists
only of divisors. Canonical singularities may be isolated or non-isolated.
If they are non-isolated, they are locally of the form Dlx{Du-Val
singularity} (D1 a disk). In addition to the non-1isolated singularities
there are finitely many "dissidents", isolated canonical singularities..
Examples of these are the terminal singularities, which are in fact
quotients of isolated compound Du Val (cDV) points (see {R1}) Resolving
the terminal singularities introduces curves C (these are P!’s) with

KX-C<0, which is why one doesn’t resolve them. See {Rl) for more details

on canonical singularities.

2.3. Reid’s Theorem

Reid’s Theorem on minimal models ({R2},0.6): Let X be a normal

3-dimensional variety such that X has only canonical singularities. Then:
i) There is a partial resolution f:X*———ﬂ X such that

*
a) KX* is relatively nef and X 1Is Cohen-Macauly

*
b) X has only terminal singularities.
' *
1i) This X can be choosen uniquely (Reid’s choice),

*
Thus is KX is nef (for example the canonical model), then X 1is a minimal

model in the sense . above.



2.4, Kawamata'’s Theorem
This can be turned around by starting with a smooth Y and trying to blow
*
down exceptional loci by a birational map £f:¥Y —— X  such that Kx* is

nef. This 1s the object of theorems due to S.Mori and Kawamata. Let X be
a non-singular 3-fold, x(X)>0 (for simplicity). We look for a minimal

model Xm in the category of Q-factorial Gorenstein schemes with only

terminal singularities, as follows:

1) We have a series of normal projective 3-folds

X—Xo, Xl,....Xm
such that Xm has only terminal singularities, and KX is nef.
m
2) for each i=1,...,m-1 there is a map ¢i such that either

Case a) ¢i:xi—» X is a birational map with p(X )=p(X; 1)+

i+1

1, in which case ¢i is called an elementary contraction.

(here p=Picard number)

Case b) ¢1:Xi——* Xi+l is an Isomorphism in codimension 1. ¢i

1s called an elementary transformation in this case.

The idea is the following. If KX is not nef, let CcX be a curve such that
KX-C<0. Then either

Case a) C moves in a divisor D (we would like to contract this D), or
Case B) C doesn’'t move in a divisor. .
Kawamata's Theorem (Ka): In Case a), there exists a contraction. Thus Case
a) can be completed by induction.
Finally we remark that the existance of minimal models along these lines is

still conjectural (because of Case b)).
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§3. Structure of elliptic fibre spaces
In this paragraph, we gather results valid for any elliptic fibre space.
We therefore let =:X — W be an N-dimensional elliptic fibre space.
That is, we assume the following:
1) X is a compact, normal, complex space, N=dim X
2) Wis a c.c.a. manifold of dimension N-1

3) =ZcW, the degeneracy locus of x, is a pure divisor,

PIE § n.o
i 11

its decomposition into irreducible, reduced components Ei.

Set: W'=W-Z,
4) nlw,:X'——4 W' is a smooth fibre bundle with fibre an elliptic
curve.

3.1. Homological Invariant

We consider the sheaf 4 = R‘n*l on W, This is a locally free sheaf on
W' with stalk H‘(XW,Z)-ZQZ over a point weW'’, called the homological

invariant of the eliiptic fibre space m:X — W . This sheaf is
equivalent to the representation of the fundamental group (W’ ,*)

defined as follows. Let vy, yz be a base of the stalk ¢ , where * is a

fixed base point on W'. By continously translating this base along a path
BEm, (W' ,*), v; and vy, transform by an automorphism of the stalk, i.e.:
pimy (W, %) —— Aut(ZoZ)=SL(2,Z)

a, b
g — B B
c, d
B B
*
where S [71]- aﬁ71+bﬁ72 . This representation is called the monodromy
12 Cﬁ71+dﬂ72

representation and the image of p, a subgroup of finite index, is called

the monodromy group. The monodromy determines the type of singularities

15



(at least over smooth points s€ZcW) or types of singular fibres, respect-

ively. (Since we are not assuming X to be smooth, both cases are possible).

3.2. Gaug-Manin Connection
Consider the Leray spectral sequence of the map n:X — W. For elliptic

fibre spaces, the sequence degenerates in many cases at the E2 term :
HP (x,©) =3 P9

For example we have
H*(X,C)=E2' °@E3’ '@E3 ‘2
EZ ' O=H?(W,R%x C)

E3' '=H*(W,R'x C)
EZ’ 2=H° (W,R?x C)

Now consider the differential of the spectral sequence,

df'*:R'r,C — 0&®UWR1w*@

It turns out that this 1s an (integrable) connection, called the Gauss-Man-

in connection (see (KO)). Since R‘W*C is a rank 2 vector bundle on W, att

is a differential operator with two linearly independent solutions, w; and
wyz, which one assumes fulfill Ui/wze # = upper half-plane. The precise
form of d3’! has been determined by Stiller ({S}):

2
Af—%;ﬁ+P(w)%l—Q(w)f—0

where P(w) and Q(w)eK(W) are rational functions on W. Such a differential
equation need not be unique, but the equation Af=0, together with a mero-
morphic, many-valued quotient w = wi/wz of two solutions determines
uniquely an elliptic surface and vice-versa. Notice that this is a dif-
ferential equation for periods, i.e. a Picard-Fuchs equation (see (Ka}).
In fact, the (many-valued) holomorphic function w may also be defined in
the following manner:
f71,waw /
/'

where ﬂw is the unique holomorphic l-form on the fibre Xw and v;,w, Y2,W
form a base of Hi(Xw,Z). By analytic continuation along a path feW', w
transforms by fractional linear transformations:

a, wlw)ib

w(B(w)) = cﬂw(w)+dﬁ’

16



g

determined by w is (in PSL(2,Z) conjugate to) the projective monodromy

a, b
where [cﬁ ﬁ] = p(B) 1s the monodromy of pen, (W' ,*). Thus, the monodromy

representation.

3.3. Functional Invariant
-Let J be the elliptic modular function on the upper half-plane #. Then
F(w) 1=J (w(w))
is a single-valued map on W, and is in fact a meromorphic function on W
(see {Kol},7.3.). ¢ is called the functional invariant of the elliptic

fibre space X. The differential equation above can be written explicitly in

[dj’]z ?[dzj‘] [d}']
2 Sal T T2 el
Af— g_g dw dw .df + dw

(2Ls- 1]

144 36

—-— f=0
dw

dw 2r4_ 142
?[g_i F2(3-1)

terms of %:

From this one sees that the differential equation has regular singular
points. Actually this is true quite generally for the Gauf-Manin connec-
tion. The singularities of X lie over points weW such that.

1) #(w)=0,1 or =

2) The monodromy around w in non-trivial
(We are assuming there are no multiple fibres.)

The relationship between the monodromy representation p and the map w is
easy to see in case -1¢T', T'=Im(p) the monodromy group. Since w as defined
above 1s many-valued, it can be 1lifted to a single-valued, holomorphilc "
function on W:={universal cover of W'} into #:

wiW —— A
E'
l | 1 ,////nr
, E
w':W'———*F\ﬁ - AF r
N N n
w W ——hwr\ﬂ‘- AF
Since w is I-invariant the above diagramm commutes. Let Ef be the ellip-

tic modular surface associated to ' (here we need -14I') on Af and EF——ﬂ AF

its compactification. Then w’ may be viewed as the classifying map for
X'— W', since, as is easily seen, X' is the (elliptically minimal) bundle

over W' induced by w’. The monodromy 1s now just the Induced map on homo-

topy pgroups:

w (W— AP

Wiy (W' %) ——my (\ID)=T.



3.4. Basic Elliptic Fibre Spaces
From now on we make the following assumptions :
1) # has no points of indeterminacy
2) ICW is a normal crossings divisor.
The first assumption is crucial; it means that at any double point of Z,

say zinzj, the singular fibres (or singularities) along both components Ei

and Z, must have the same $-invarilant. These are listed in the following

J
table:
* * * *
fibre type IT, I1 . IV, IV ITT, IIT Ik or Ik

value of ¢ 0 1 pole of order k

Let n:X —— W be an elliptic fibre space satisfying the two conditions
above, with homological and functional invariants 4 and §, respectively.
Let W be the universal cover of W'. The data (W',%,%) determines an es-
sentially unique elliptic fibre space p:B'—— W' possesing a global holo-
morphic section
o:W—— B',

which is easily constructed as a quotient of WxC. Indeed, if

pimy (W' )—TcSL(2,Z)
is the monodromy represéntation, let

G(@,?):-wl(W',*)><pZ®Z

(semi-direct product). This operates in a standard fashion on WxC:

G($,2) > (B, (,0)) — (BGR), (c w(@)+d,) L (c4mw(@)+mz));

B B

the action is free and G(%,})\me 1s easily seen to be an elliptic fibre
space w':B'—— W', The holomorphlc section o:W'—— B' is the obvious
zero section which is just the image of Wx{0).
~ Without going int& details, we indicate briefly how B’ can be (uniquely)
compactified to a complex épace B (which will be singular along Z):

B'c B

4 3

W'c W.
Since ¥ is a normal croséings divisor, we can find local coordinates

(wl""’wN-l) on W such that Ei-(wi—O}, Einzj-[wi-wj-O],..., Eiln....

AN = {w, =, .. =W =0). We can cover W by coordinate patches Ui and

g 1 i

W-UUi, where
i
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Ui-tubular neighborhood of =

i
Uij-tubular neighborhood of zinzj
u =neighborhood of Z, Nn...NT
bty ! N1
On the cover of (U17 U Uij) in WxC, G(%,%) has a purely codimension one
j=i
fix point set with singular quotilent which can be glued to B’. On the
cover of (U,,- u U,. ) in WxC, G(4,%) has a purely codimension 2 fix
ij ijk
ki, j
point set, and this is glued on to the (Ui- U Uik)— C/G(4,%) and the
kri
(Uj- v Ujk)~xE/G(§,$) where (..)  denotes the universal cover of (..).

k]

For example, if W is a surface, this looks as follows:

We remark that the resolution of the singuarities over singular points of =
1s by no means a trivial matter, whereas over the smooth points we can use
a more or less "canonical resolution". We will discuss this in the

3-dimensional case below.

3.5. Families of elliptic fibre spaces _

Let n#:X — W, my:Xy—— W; be two elliptic fibre spaces. We say X and
Xy are elliptically bimeromorph, 1ff there are bimeromorphic maps respect-
ing the fiberings:

x £ x,
T+ N 1
W —B— W,

In this case the functional and homological invariants of X correspond
(uniquely) to those of X; (see for example (Kaw},p.l135). Let W be a c.c.a.
manifold of dimension N-1, # a meromorphic function on W and 9 a locally
free sheaf with generic stalk Z®Z, which fulfill:
1) ¥ belongs to_% , 1.e. the many-valued function w —J-10$
transforms with % in the sense above.

2) ? has no points of indetermancy
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3) © = locus of (weWI%w#ZQZ} is a normal crossings divisor.

Definition:the family of elliptic fibre spaces over W with invariants § &
$: .
all equivalence classes of elliptically bimero. ellip-

* *
tic fibre spaces w*:X —— W  with homological and

*
functional invariants corresponding (under g:W —— W)
to ¥ and % such that:

4
CHE - (i) 7 is flat

(i1) X" is elliptically minimal

\ (111) X" has no multiple fibres.

X* elliptically minimal means there are no generically contractible divi-
sors in the fibres. By the results of the last section, there is a unique
(class of) basic elliptic fibre space B — W in F(#,%) which has a

global holomorphic section. As in (Kaw},p.135, we get

Proposition 3,1,.: Every element Xe ¥(f,8) can be constructed by reglueing

the basic member B —+ W.

Remark: One might define ¥(#,9¥) slightly differently, for example, all
classes of elliptic fibre spaces w*:X* —— W over some fixed W.
However, if one uses this definition, then to get a good model of a given
X, one may have to change families. (See for example Miranda’s flat smooth

model).

3.6. Welerstraf Normal Form

Let B -—-— W be the basic member of a family JF(#,¥) as above. Since B
has a section, it can be described by a single equation as follows. Let {£
be the bundle along the fibres of B — W, that is the normal bundle to the

*
section, NBa, viewed as a bundle on W via o, and set L=f£ . L is a complex

line bundle over W. B, viewed as an elliptic curve over the function field
of W, can be given by the equation
y2=4%7-g2x-go
where x € T['(L?), y € T(L®)
gz € T'(W,0(L4)), ga € I'(W,0(L8)).
The singular locus XCW is the divisor corresponding to the discriminant:

A = g3-27g3 € T(W,0(L'3)).
a
The #-invariant is then: ¢ = gz/A. Let Gz, Gz, and D be the reduced
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divisors corresponding to g», ga and A, respectively. The assumption that
# has no points of indeterminancy implies the following: If Gz and G

meet, then they have a component in common. If W is a surface, this looks

as follows: /
[a] _
Gz Ga [G2] - (Ga]
% has point of inde- % has no point of
termanancy at p indetermanancy

Also, the type of singularity over smocoth points of Zi is determined by the

orders of vanishing of g,, ga and A, as in the following table:

* +* * *

fibre (sing. ) type: 11 11T IV 1V IT1 11 Ik Ik
v, (82) >1 1 22 >3 3 >4 )
v, (8a) 1 > 2 4 >5 5 0 3

vy (&) 2 3 4 8 9 10 L k+6

Because of this, the Weierstraf form is very convienient to work with.
Also, these consideratlions are valid over any field, not just C. The sing-
ular points lying over singular points of X can also be determined, see
{Mi},Prop. 2.1.

Remark: If we are given an elliptic fibre space X — W with W not alge-
braic (Moishezon), then such a representation may not be possible. Indeed,
there might be no line bundle L on W such that L%, L®, and L!'? all have

sections.
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§4. Models of elliptic 3-folds
In this paragraph we study the case where W=S is a compact, complex ana-
lytic surface. Lét B —— S be the basic member of some family F(%,%9) of
elliptic fibre spaces over S with given functional and homological invar-
iants # and ¢, respectively. In this dimension, Kawai ({Kaw)}) has proved

the following

Theorem 4.1.:(i) B is projective algebraic if 5 is (but of course singular
along Z)

(ii) m:B — S is flat with a holomorphic section o¢:S —— B.

4.1, Ueno’s Resolution

In (Ue3}, Ueno has constructed an explicit resolution B —— B, which

again fibers over S (that is, the resolution does not modify S):

B— B

N A,

5
B has the following properties:

A) If SEZS then the singularity of B over s is of the type

mooth’
Cx(Du Val} and the fibre ;'l(s) on B is one of the fibres in
Kodaira's list, except for the following:

Kodaira’s fibre Fibre on Ueno’s Resolution
mr 2N/ 2 -1
i ;k:i -4 -4 -2
v 2 ;2 -1
-2 a3 -3

B) If sEESing, then the fibre ﬂ-l(S) congists of ruled surfaces.

C) The canonical divisor of B is given by the formula

K = 7 (R#[F]) + [G] + [H],

where [F], [G], [H) are effective’ and

*Q-divisors
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a) [G) is based on fibres over double points of Z
b) [H] is contalned in fibres of type III and IV as
described above.

In particular, B has the properties 1) B is not minimal (KE is not nef), 2)

7 1s not flat, and 3) B is not elliptically minimal. From the fact that G
and H are effective, we see that they are divisors resolving terminal sing-
ularities. This is in fact one of the earliest occurences of terminal

singularities in the literature. From this same fact we also get
Corollary 4.2.: The basic memnber B has only canonical singularities.

4.2. Canonical Singularities
We first rephase the corollary above.
Proposition: If m:X — C is a local elliptic fibre space with Cx{Du Val}

singularity over Dl-{x-O} and D_={y=0), then the singularity at (0,0) is

2
canonical.
Or, taking into account §2, we might say a "normal crossings collision" of
canonical singularities is canonical. By our assumption to the effect that
# has no points of indeterminancy, we may also express this as follows (see
{Mi}, 2.1.): any hypersurface singularity of the form

y2-4x3 _ Sattﬂix . Saztﬁz
is canonical. We are interested in generalising this by dropping the

"normal crossings" assumption.

Theorem 4.4.: Let m:X — A be an (affine) elliptic fibre space with a
local section o:6 — X over a neighborhoed of (0,0) in C?, and assume X
is Q-Gorenstein. Suppose the singular locus ICU has an isolated sing-
ularity at the origin. The the 3-fold X has a canonical singularity over
(0,0). |
proof: Let

x'-B— x

! 4

a'—L— a c €2
be an embedded resolution of T at (0,0). Then we have

KA'—p*(KA)+§Ei’ Ei-the exceptional curves of the resolution

*
= (K, +L'), L'=conormal bundle of a section A'— X'
AI

-1' (p (KA)+§Ei+p (L)), L=" " " A — X
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* % ,* .
=-p (KA+L) + 7 (E i)

* *
-p (Kx) + n' (}Ei).

which proves the theorem since the coefficients of the Ei are 20,

Remarks: 1) This may also be formulated as follows: any hypersurface
singularity

y% = 4x® - ga(s,t)x - ga(s,t)
which is @Q-Gorenstein is actually canonical.
2) It may be possible that such an X is automatically @-Gorenstein® At
any rate, it would be interesting to find sufficient conditions (in terms

of the types of singularities of X over the components Ei of © and the

singularities of £ at the origin) for X to be Q-Gorenstein.

The proof above actually shows the following

Corollary 4.5.: Let % —— DcC be a Q-Gorenstein family of elliptic
3-folds, i.e. each fibre %c is a Q-Gorenstein elliptic fibre space %t -

S over a fixed surface S with singular locus ZCCS and teDcC. Suppose for

t#to, Zt is a normal crossings divisor. Then the central fibre Qt has
o

only canonical singularities.

*
Thus, we may alow £ to aquire any singularities whatsoever,#fequiring only

that S be smooth and %t to be Q-Gorenstein. Thus, in some sense, the
o )

singularities are of a quite general kind.
We now give an example to show that this need not hold if the base sur-
face S has singularities, This example is a Fermat cover (see 39 or (H}

for details on this).

" Example 4.6.: Take the arrangement Ai(lO) consisting of the 4 faces and 6

sym-metry planes of the tetrahedron in P3(®). Delete one of the faces,

The resulting arrangement has the data (with notations as in (H}):

t3(l)—7 t6-2 t6,3'8 t6,2—6
tz(l)-ls : t5-3 t5,3-6 t5,2-12
t3-3 th-s

Let X — P%®(C) be the. (singular) Fermat cover defined by the Kummer

extension
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C(x‘/x

2 ) [(12/11>1/ Lo Y ?|

of the rational function field. X is a 28-sheeted branched cover of P3,
branched along the 9 hyperplanes {11-0},...,l19-0}. Let P3 denote P3

blown up at one of the 6-fold points of the arrangement, and X the 1lift:

X — X
4 i
53 3

P> —— P

Since PB fibres over the exceptional Pz, X fibres over the exceptional

divisor covering the exceptional Pz. Since the induced arrangement In this

Pz is //

the exceptional divisor covering it is the elliptic modular surface T'(4),
(see Shioda ({SH}), with all 16 sections (-2 curves) blown down to ordinary
A, -singularities. The fibering ; —— T'(4) is elliptic. It is not dif-
ficult to see that at each A -singularity, 3 components of the singular
locus meet. On the other hand, the fibres of the elliptic fibre space over
the A,-singularities contain singular points of ﬁ covering the 6-fold point
of the arrangement we didn't blow up, and by 2.4.2. in (H} we know that
these are not canonical. -
Looking back at the proof of the above Corocllary, we can see where the

proof breaks down in this case. Since the section is singular, the conorm-

*
al bundle does not lift naturally (i.e. p L=L’), KA will not contain the Ei

with positive coefficient, and the exceptional curves will occur with

negative coefficients in the formula above.

4.3, Reid’s Minimal Model
Armed with the above theorems we can use Reid's crepant resolution (§2)

to get unique minimal models.

Theorem 4.7.: Let X — S be a 3-dimensional elliptic fibre space, and
assume:.
a) S is a projective algebraic surface.

B) the singular locus Z moves in a linear system on S.
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Conclusion: there 1s a crepant partial resolution
g:X'— X

such that: 1) KX’ is relatively nef
ii) X' has only terminal singularities.

Moreover, X' can be choosen uniquely (Reld’s choice).

Proof: Let B — S be the basic member in the family to which X belongs.
By a), Kawai's theorem implies B is projective algebraic, in fact normal.
Thus we can apply Reid’s resolution (82). We get a unique minimal model

B'—— B for which KB' is relatively nef. Now if X is reglued from pieces
of B ({Kaw},p.135) by functions
-1
A.A U NU
Jk 773

we get a unique minimal model X' for X by reglueing B’ by functions

2. .2
" Aut(T%)~T

-~ =-1 _-1 -1 2

AjAk : £ (Uj)nf (Uk)———ﬂT
where Kj:-AjOf. Also KX’ will be nef if KB‘ is and the singularities on
X' will be the same as on KB" q.e.d.

Remarks:1l) If S is not algebraic we should proceed differently, but here
the situation is much simpler.
A) a(S)=1l. S is an elliptic surface § —— A, with no section.
The only curves on S are the fibres, and they don’t meet.
The only intersections of curves are therefore intersections
of components of singular fibres (in partilcular, normal
crossings).
B) a(8)=0. 1In this case there are only finitely many curves on
' S (compare (Kol},85), and the #-invariant reduces to a
constant. These possibilities could be checked explicitly.

2) Obviously one cannot expect KX' to be nef in general, for example if

k(X)=-», If, however, K, is nef, or more generally if K_+L is nef, then we

s
will get minimal models'(KX, nef)

S

3) We would like to emphasis that the statement of the theorem is very
strong. It settles the question of minimal models completely for x(X)=2
and a(X)=2.

4) This thoerem does away with the assumption "Z normal crossings", which,

as we will see in 89, 1is not natural.
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4.4, Miranda’s flat model

Miranda has in (Mi} used a completely different approach to the problem,
and we explain this breifly, as one of his small resolutions will be used
in the next section. Miranda constructs a smooth model B'’'—— B of the
basic member in some family %(#,¥), the basic member of which is ﬁ —_ 5,
where S 1s assumed to be an algebraic surface. B’'’ has the following prop-
erties:

i) B''—— 8'' is elliptically minimal over a surface

B''—— B

S'' which is birational to §.
' :

Gl g ii) B’'—— S8’’ has a global holomorphic section
111) B''—— S'' is flat.
B'' is constructed in 2 steps:
1st Step: Modify S along double points of Z until the col-
lisions are only of certain types (listed in (Mi}).
2nd Step: Resolve the remaining singularities over double
points of ¥ with small resolutions.
This approach has the disadvantage of modifying S more than necessary. We

now describe one type of small resolution which will be used in the next

section. Let El and 22 be two components of Z meeting at a point pe&sS.

Suppose the singular fibre types are Ik and Ik over Zl and Ez, respect-
1 2

ively. There is a small resolution of the 3-fold singularity over peS such
that the resulting fibre 1s again a Kodaira fibre, and in fact of type

I . If one of k, is even and the other odd, then the resolution is not
k1+k2 i

unique; if both are even or both are odd, then the resolution is also

unique. In both cases the small resolution stays in the projective cate-

gory.

27



§5 Multiplicative Reduction and the Group Variety
In this paragraph we introduce a minimal model with multiplicative re-
duction which is a model of special type which greatly facilitates the
calculation of most invariants of an elliptic fibre space. To motivate

things, we start with a review of the group structure on elliptic surfaces.

5.1. Analytic fibre systems of abelilan groups
Let B — A be the basic elliptic surface in some family F(%,98) of el-
liptic fibre spaces over A with homological and functional invariants 9 and

#, respectively, A'-A-{al,...ak) the open subset of A over which all fibres

are smooth. On B'— A’ there is an obvious structure of groups, in the
following sense:
Definition: B'— A’ has the structure of analytic fibre system of abelian
groups, iff:

i) each fibre Bé is an abelian group

ii) the complex structure of the fibre as a submanifold of
B’ 1s identical with the complex group structure.
i1ii) group multiplication is a holomorphic map of B’
Now let B#-B‘U{the union of compenents of singular fibres of multiplicity 1
with all singular points deleted). Then the structure of groups on B’ can
be extended to B# ({KoZ},Theoreﬁ 9.1). The group structures on the sing-
ular fibres are listed in the following table:

® w * * *

fibre I I, I I1.11° |_III.IIT° |_Iv.IV
O K K

group CxZpxZy (B*xlk CXZ o, C CxZ, CxZ,
or
CxZ,

*
Notice that the group of a singular fibre 1s € iff the singular fibre is

of type I In this case B is said to have multiplicative reduction, since

K’
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in this case the group structure Is multiplicative. Set Bﬁ-B'U{those gom-
ponents of singular fibres which the section hits with singular points

i *
deleted}. Thus a fibre of Bﬁ is either an elliptic curve, € or C . Now

let £ be the bundle along the fibres of B, i.e. the normal bundle to the
section. Each fibre ﬂx is the tangent space to the group fibre (Bﬁ)x , and

there is a natural exponential map
exp:£, — (Bo),
which yields a map of sheaves:
e:0(£) — 0(BY).
This in turn yields an exact sequence of sheaves on & ({Ko2}, Theorem
11.2):
‘ 0 — 4 — 0(f) — 0(Bg) — O.
The corresonding long exact cohomology sequence is one of the most inter-
esting objects of study of elliptic surfaces:
0 —— HO(A,0(Bh)) — H'(a,8) — H!(A,0(£)) —. ..
L— H‘(A,O(Bﬁ)) —— H%(A,8) — O
All of these groups have geometric meanings:
HO(A,O(Bﬁ))— group of sections (knowledge of which allows
calculation of the Picard number of B).
H'(a,9)eC - H‘ ((G.C%), where G=m, (8’ %).

Hi(a, 0(£))— H°(B f1?)=vector space of holomorphic 2-forms on B.

HE(A,0(B0))= F(2,9).

H%(A,6)=finite group (if $rconst.) of "characteristic classes" of

elliptic surfaces in the family F(%,9).
We also remark that H'(A,0(£)) can be identified with a space of mixed cusp
forms (see {HM)}). Therefore the map
H'(4,9) — H'(4,0(£))

is closely related to the theory of automorphic forms and has a very arith-

metical meaning.

5.2. The covering trick

Let B ——+ S be the basic 3-dimensional elliptic fibre space in the
family #($,%). Let B'—— B be Reid’'s choice of minimal model as discussed
in §4,

Theorem 5.1.: There exists a finite Galois covering S —— S such that the

fibre product B'-SxaB': B'—— B!
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has only multiplicative reduction, i.e. only singular fibres of type Ik'

Proof: Let G=mn;(S-Z,*) and p:G —— SL(2,Z) the monodromy representation.

Let ﬁl,...ﬂt be a systemm of generators for G, and set
ni-order of the semi-simple part of p(ﬁi), i=1,...,¢t.
n n
Then ﬂll,...,ﬂtt €G

generate a normal subgroup NCG. N defines the covering
s — s
which is a Galoils cover since N is normal. The model g' can be explicitly
constructed by compactifying
};") - Uxm/Z@ZadN,

where U=~{universal cover of S§-3}, and then desingularising.

Remark: Although tﬁis 1s satisfactory from a theoretical standpoint, it is
not from the computational. 1In principal at least, if we know all invar-
Iants of Q' we can calculate those of B’, but in practice this may be al-
most impossible. This is because, although we know the branching locus and
branching degrees of the branched cover ; —— S, it is difficult to de-
termine the degree (=[G:N]}) of this covering, since G/N = Gal(g/S) will not

be abelian in general.

5.3. Minimal models with multiplicative reduction

In this section we define a certain type of model of elliptic fibre
space, which admits also a group structure as do elliptic surfaces, and
which will be used in §6 to calculate invariants and study the long exéct
sequence. By construction, the elliptic fibre space g' — ; has sing-
ularities only over double points of ZcS. At these double points, we have

collisions of the type I, & I and we can apply Miranda's small resoclu-

k)" Tk

tion to get a smooth elliptic fibre space

n:B —— §
which has the following properties:

a) nm is flat and there is a section

B) singular fibres at all points are of type Ik

v) the singular fibres over double points of T where two

components with singular fibres of types Ik and Ik
’ 1 2

meet are of type Ik1+k2'

We call B a minimal model with multiplicative reductlion.
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5.4. The group structure
let B —— S ‘be a minimal model with multiplicative reduction as in the

last section.

A

Theorem 5.2.: B admits a unique structure of analytic system of abelian
A

groups over S.

Proof: This is a local calculation which must only be checked at singular
points of the singular locus 3CS. Consider two branches of Z which meet at

peES:

over X;. Then the fibre type

over Z; and I

Suppose the fibre type is Ik
1

over is I . Let U be the universal covering of the'o en set
P ky+kp p & P

Uyi2-(Z4UZ3) In the figure above, with coordinates &,, {5, and ¢ (the fibre

ko

coordinate) in €. Set:
ZﬂiLi 2ﬂiL2 2ﬂi§
: To=e ) .

Ty =e and w=e

Assume (ry=0}=3;, {rp=0)=32;. According to Kodaira ({Ko2},pp.597-600) U,

€1) (1)
¢

is covered by k; open sets Wj , Uz is covered by k, open sets

ky
(2) (2) : * *
Wic', ... W , and Uyo 1s covered by k;+k; open sets W,,...,W , where .
ko kyt+kso
W(i) has coordinates

]

- (r1,72,w(modrki))

((ry,72,w) i

(1)
)5

with the identifications

(revr2,) [ (rairawr T (D

*
and W, has coordinates ((71.T2.W))j3' (%1,12,w(modr$1152)) with the

N

identifications

((re,72,0) = ((ra,r2,urd o)

The group structure is given by :

over Iy (0,72,w)) - (0,72, v)) " = (<0.r2,wv'l>>g15

over 22 ((Ti,O,W))ﬁz)-((Ti,O,V))EZJ - ((Tlso)wvcl))&?j
-1

over p ((O:va))k = ((O,O’V))j = ((0,0,WV ))k'j
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On the intersections, we ldentify

-k

Ulznui ((TierIW))k+k2- ((fitTZ:wrl ))ii)t kezk1
-k

UianZ ((71:72,w))k+k1- ((71.f2,W72 ))52)l kezkz

hence on U;snUy

((Tl!Tz:w))k+k2-((T?'fZIV))j+k2- ((Ti’TZDWT;k)):i)'((TiITZ’VT;j));il

.+ 3-k
- ((ry,72,wv " ] Y

- -1
((fi,Tz,WV ))k'j+k2
and on U;3NUsp
(2)

((Tl,fz’W))k+k1-((T1'TZ’V))j+k1- ((Ti'TZ’Wf;k))iZ)-((fi,fz,VT;j))l

- ((ry,12,uv ) Ky

- ((finfsz-

1))k-j+k1'
so the group structure 1s an analytic extension on U;,nU; and UyanUs,
q.e.d.

Argueing the same way as in {Ko3},p.4, we get .

Corollary 5.3.: We have an exact sequence of sheaves on S,

0 —— 9 —— O(f) — O(BY) — 0 .
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§6. Invariants
In this paragraph we shall calculate a number of invariants of an ellip-
tic fibre space which we assume is a minimal model with multiplicative
reduction as in 5.3., by utilizing the long exact sequence coming from the
exact sequence of sheaves on the base surface S derived in the corollary
above. In this 36, we denote by B —— S the smooth minimal model with

multiplicative reduction described in 5.3.

6.1. The long exact sequence
In 5.4. we derlved the existance of the following exact sequence of
sheaves on S:
0 — ¢ — 0(f) — 0(BF) — o.
From this we get the following long exact sequence of cohomology groﬁps:
0 —— HO(S,0(£)) — HO(S,0(B3)) — HI(S,9) — H'(S,0(£))
— . ...— H(S,0(Bh)) — HZ(5,9) — HZ(S,0(8)) — .
. —— H2(5,0(Bh)) — H(5,9) — 0

Let KS be the canonical bundle on S. In what follows we shall assume

KS®0(-£) is positive in the sense of Kodaira. This assumption is almost

always fulfilled; if not, one should consider the above sequence seperat-

ely. Since KS®0(-£) is positive it follows from Serre duality that

R

HO(S,0(£)) = H*(S,K80(-£)) = 0

n

H'(S,0(£)) = R'(5,K®0(-£)) = 0

Thus the long exact sequence above splits into two shorter ones,
0 —— HO(S,0(Bp)) — H'(S,8) — O
0 —— H1(S,0(By)) —— HZ(S,8) — H2(S,0(£)) — ..
. —— HZ(5,0(Bp)) — H(S,8) — O.
From our decription of %(%,%) we have
H'(5,0(88)) 2 %(2,9).
Also in analogy with elliptic surfaces we have
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HZ(S,0(£)) = HO(S,K80(-£)) = HO(S,m . Ky) ~ HO(B,Kp)

is the vector space of hoiomorphic 3-forms on B, The second term in the
second sequence turns up in the decomposition of H%(B,C) arising from the
Leraj spectral sequence (which we assume for the moment degenerates at the
Ez-term.):
H?(B,C) = H'(S,R*xr C)® H?(S,R'n €)® H®(S,R% C)
- Hl(S,RZW*C)@HZ(S,@®®)®H3(S,@).

The second exact sequence above therefore implies that the family F(%,9)

{(which is a Z-module), when tensored with C, can be identified with a sub-

group of H?(B,C). Likewise, H®(S,¥) occurs in the Leray decomposition,
H*(B,C) = H?(5,R*r C)@ HP(S,R'x C)o H*(S,Rx C)

IR

Hz(S,Rzﬁ*G)Q H?(5,%eC)® H*(S,T)

The term HZ(S,U(Bﬁ)) in the sequence above arouses curlosity. We have no

idea what it has for a geometric meaaning.

6.2. Hodge numbers

We now proceed to some calculations. For the geometric genus pg(B) of B
we have pg(B) = dim HZ(S,0(£)). Since both H(O(£)) and H°(O(£L)) vanish,
we can use Riemann-Roch to calculate dim H2(S,0(£)): pg(B) = dim H3(S,0(£))

- x(5,08)) =T e B Ke s,00)
2

To calculate the first term we make use of the Welerstraf form for B
(84.6.):

y#=tx®-gax-ga
g2€ T'(S,0(L*)), ga€ I'(S,0(L%))
where L-ﬂ*. We have for the singular locus 3CS,
T w (8), &= g3-27g2 € I'(S,0(L'2)).

Write ¥ as a sum of irreducible, reduced components,

S
1 li i

which implies the fibre over T, is of type I . In H2(S,Z) we have the
i

relation ¢, (L2) = }nizi.

Set Ei-C‘(Li)' and insert this into the above:

12C1(L) - }nici (Li)
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and calculate,
l4b4cZ(L) = Ench(L ) + 2§n n.cy (L,)cy (L))
i i 11 1 { jiJ i J
1201(]..) 'KS bl }101(131) ’KS

so cF(L)+e, (L) Kg = %{ }ni(cf(Li) + ey (L) -KS>} * }ni{"i'lz} e (L)

144
1
and applying adjunction,

.._1_ (2 ) + _le}.zz + 1'_.. n.n.'=
12/1%4%1 i\ 144 i 7 72/

This gives a formula for the geometric genus of B. Now suppose x{(B)=2.

Then, since the fibering is unique, we get for the Hodge numbers h®' and
h02
q(S) £ not trivial
h01 - {

q(8)+1 £ trivial
p_(S) £ not trivial
ho2 { 4

Pg(5)+q(S) £ trivial

From this and the formula above we get

Theorem 6.1.: Let B ——— S be an elliptic model with multiplicative
reduction with x(B)=2, and assume £ is not trivial. Then the arithmetic

genus of B is given by the formula:

ci(f) - i (£)Kg
X(BDOB) -—_—- 2

Euler Number: Let e(B) denote the Euler-Poicare characteristic of B,
Since B'—— S'=S-Z 1is a smooth fibre bundle of elliptic curves (which
have euler number =0), e(B) is just the euler number of the singular

fibres. In terms of the data Zi,

e(B) = Sﬂ e(Z;)
i li i

On the other hand we have by definition
e(B) = 2 - 2by +2by -bg,
= 2 - 4q(B) + 4gz(B) + 2h''(B) - 2pg(B) - 2h21(B)

where of course bi-ith betti number. From this we see: we need only cal-

culate one of the numbers h'! and h®!, and the other can be calculated from
e(B). We try h''(B). By definition,
h**(B) = by - 2g2(B),
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and we can try to calculate b, from the Leray decomposition,
H?(B,C) = HO(S,R*n,C)e H'(S,%C)® H?(S,R C)

bz = bz(S) + r + dim H°(S,R?x ),

r=rank of H°(S,0(Bg)) is the rank of the group of sections. To calculate
H°(S,R2ﬂ*$) we use Mayer-Vitoris. Let U be a tubular neighborhood of X,

§S=S'UU, D=S'NU = disk bundle over Z. Set g-sz*C. We have the sequence:

0 — H9(5,%) — H"(s',szls,)ca H°(U,¥

We infer readily that dim H°(S,¥) = 1 + §(ni-l) , SO
i&=1

b2 - bz(s) +r+ 1+ E(ni"l).

and this in turn yields a formula for h*!(B) (in terms of r)
h*'! = b,(S) - 2pg(S) +r+ 1+ }(ni-l)

= h*(S) +r + 1+ }(ni-l)

From this, as mentioned above, one can calculate h?!(B), so all Hodge

numbers have been calculated.
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§7. A finiteness theorem
7.1. The theorem for surfaces
The formula we derived above for the geometric genus of B has as two-
dimensional analogue
py(E) = x(E,0p) + q(E) - 1
e(E)
12

where E —— A denotes an elliptic surface. Suppose now we are given k

+ g(a) - 1,

points 81,...,8 on A; what can we say about the possible pg? With a
little care one can derive the following inequality: (compare {HM})
k
(1) P (E) S 28(8) - 2 + 3.

This has the following interesting corollary:

Corollary 7.1.: Given a .,a, € A, the set of all elliptic surfaces

1’7 k

, & and

E —+ A (with section) which have singular fibres over a k

770

F#const. is a finite set.

7.2, N-dimenslonal case
It would be interesting to generalise the inequality (1) above to higher

dimensions. At any rate, the corollary generalises readily:

Theorem 7.2.: Let W be a smooth, projective (N-1)-fold. Given 'El,...,Zk
k

divisors on W such that Z -§Ei is normal crossings, the set of all
i1

elliptic N-folds X L~ W with singular fibres over the Ei (X smooth,

say, and with section) is a finite set.

Proof: Let DcW be an ample divisor. Then DN-ZCW is a curve which by

Nakal’s criterium meets each component Ei. The theorem follows from the
-1, N-2 N-2

corollary above applied to = (D )y — D , since the fibre type on

each Ei is locally constant.



§8. A bound on the euler number
8.1. Theorem for elliptic 3-folds

Theorem 8.).: There are constants Ty Voo such that
715 c3(X) 572

holds for any elliptic 3-fold X —— S with KX trivial.

Proof: First we may assume ICS has normal crossings, since modifying §

until ¥ 1s normal crossings adds fixed components to KX' Thus, X belongs

to a family %(#,%) and has the same singular fibres as the basic member
B e %(¢,%. Thus we may assume n:X —— § admits a section o:5 — X,
with the corresponding Weierstraf form
y2=4x?-gax-ga
g2 € T'(S,0(L%)), goa € I'(S,0(LY))
A = g3-27g3 € I'(S,0(L*?))
and by the formula for the canonical bundle
0, = K, = 7 (KBL)
which implies : Ks = -1, (linear equivalence)
and writing LzEHiLi as above we have: ‘

EniLi = Kgr  eully) = %

for any elliptic fibre space X —— § with singular fibres along Ei and

trivial canonical bundle. There are only finitely many combinations of

linear equivalence classes for Ei which fulfill the conditions above.

Given any Z = Enizi which has the right linear equivalence class, there

are only finitely many possibilities for singular fibres by the theorem
above.
Now notice there are only two possible birational classes for §. In

fact, since h°(S,-3KS), h°(s.-axs) and hO(S,-l2KS) must all be positive, it

follows that S must be birational to
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a) P

b) E x Pl; E an elliptic curve.
In the second case, we have g;(B)» 0, and it follows from general theorems
(compare {V2}, Proposition 8.2) that B is an etale fibre bundle, (i.e. no

singular fibres) so e(B)=0. The theorem now follows from the following

Lemma 8.2.: The number of possible types of singular fibres over Ei (and by

our formula for c¢;(X), the euler number of X) is uniformly bounded for all

S§' birationally equivalent to S, 1.e.

3 s v S'e @US) { # possible singular } <
fibres on X
Proof: Let §S'+ s’ * S be a sequence of blow-ups followed by blow

downs. Let DCS' be a smooth, irreducible curve meeting each Ei but none

of the points blown up , and let Zi' denote thier proper transforms. Then

ir

i
applied to n-l(D), Thus it suffices to consider the induced fibrations

the proper transform of D meets each Z!', and the corollary in 7.2. can be

over the exceptional Pl's. These are either generically smooth and then
contribute nothing to e(X), or are Plx{Kodaira fibre}. 1In the latter case
this fibre type is determined by the components of X' meeting at the point
blown up (compare the discussion of "collisions" in Miranda's article).

This discussion applies equally well to S' and §, so the lemma is proved.

Corollary 8.3.: Let m:X —— S be any elliptic 3-fold with CT(X)-O. Then
the conclusion of 8.1. holds.
Proof: Since c? =0, there is some finite covering X'—— X such that X'

‘has trivial canonical bundle. Thus 8.1. applies.

8.2. Discussion of an N-dimensional analogue

The Lemma we have just proved applies to higher dimensional varieties X,
assuming that X is normal. This implies that codim(singX)z2 which means we
can find a curve on X not meeting all exceptional divisors, and the corol-
lary of 7.2. can be applied to the elliptic fibering over the curve. How-
ever, it does not seem so obvious that the other part of the argument is
true in higher dimensions.
Question: Are there at most finitely many birational equivalence classes of
(N-1)-dimensional algebraic varieties with

ho(W,-BKW), h°(w,-4xw) and hO(W,-lzKW) are all > 1?
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If this were so then the theorem above holds for elliptic N-folds X with
trivial canonical bundle.

In another vien, the following seems quite plausible,
Question: Let X be an N-fold with trivial canonical bundle. Does X have a
deformation Y such that Y has the structure of elliptic fibre space.?
If the answer here were affirmative as well as the question above 1t, the
following would follow formally:
Question: Let X be a Moishezon N-fold with trivial canonical bundle. Is
the euler number of X bounded from above and below?

The interest in this theorem is the general conjecture that there will
only be finitely many deformation families of N-folds with trivial canon-
ical bundle. This clearly would imply all of the aone.
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§9. Examples of 3-folds with trivial canonical bundle
In this paragraph we give many examples of smooth algebraic 3-folds with
trivial canonical bundle, including the two examples with the highest
(lowest) known euler numbers. We use two methods, Fermat covers of PJ and

elliptic 3-folds over P* defined with the help of a Weierstraf form.

9.1. Fermat covers
This is a construction originally due to Hirzebruch, and studied in

detail in {H) for the dimension 3. Let Hl""’Hk

The quotients Lz/bi N ,Lk/L1

be k hyperplanes in P®

defined by k linear forms Li,...,Lk.
define global meromorphic functions on P?., We can adjoin any roots of
these elements to the function field of P?, and this Kummer extension

S S ST (L P R AN G V7P by

defines (the birational class of) an algebraic 3-fold X, which is a ram-

1

with branching degree n along each. X has singularities where the arrange-

ified cover of P° of degree nk-l, branched along the k planes H

ment (the union of the k planes) has singularities, by which we mean

a) more than 3 of the Hi meet at some point

or b) more that 2 of the Hi meet in some line,

X can be resolved by a smooth Y such that the following diagramm commutes:

Y — X

+ 4

Po—s P
where @a denotes some moniodal transformation of P?, To construct Y it is
sufficient to name some arrangement and an n€lN. This is what we do in this
section. In {H}, (atrocious!) formula for the characteristic numbers of Y
were given in dependance on the combinatorial data of the arrﬁngement and

n. For Y with trivial canonical bundle, however, the only non-vanishing

Chern number is the euler number, and this can often be calculated by

41



ad-hoc methods, which we will do for the most part here.

To get trivial canonical bundle, we consider arrangements with either
k=8 and n=2 or k-6 and n=3. If the arrangement is in general position,
then the cover X will alfeady be smooth, and is a smooth complete inter-
section (of Fermat hypersurfaces) of the types listed below. In this case
also the euler numbers are well-known and easily calculated:

k=8, n=2 (2,2,2,2) in P7 e(X)=-128

k=6, n=3 (3,3) in P® e(X)=-144
To get interesting examples, we may allow canonical singularities which are
not terminal (see §2). These are singularities of the arrangements as fol-
lows:

n=2

3-fold line
5-fold point

n=3 4-fold point
In addition, for n=2, a 4-fold point is an ordinary double point (which is
a terminal singularity), given by the equation
xZ4y2+z24w?=0

and we can use the small resolutions described by Brieskorn. These resolu-
tions are gotten by blowing down either of the rulings of the resolving
P'xP'. This process retalns the property of trivial canonical bundle
(since the resolving set has codimension 2), but has the disadvantage that
the resolution need ﬁot be projective. 1In fact, it can occur that the
resolving P! is homologous to zero, in which case the small resolution

cannot be Kaehler, so in particular not projective.

Example 9.1: Take an arrangement of 6 planes with 1,2 or 3 4-fold points.
The arrangement with 3 4-fold points, for example, 1s the arrangement of
the facet planes of a cube in P?. Let Yi be the (desingularisation of the
. singular) Fermat cover for n=3, with i 4-fold points. The euler number can
be calculated as follows. Consider Yi as a degeneration of a smooth (3,3)
complete Intersection Y. Over each singular point of the arrangement lie 3
singular points, each belng resolved by a cubic surface with euler number
9. In local coordinates each singularity has the form:

x4y 2+z% 4w =0
which has Milnor number 16. It follows that the euler number increases by
24 per slngular point, i.e. e(Y!)=-72, e(¥?)=0, and e(Y?)=72. Yi has the
structure of elliptic 3-fold over a cubic surface. Y1 —— § is flat (i.e.
éll fibres are one dimensional), but Y2 and Y? are not (since they will

have cubic surfaces in the fibres). It is easy to describe the elliptic
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fibering on Y'. Consider the diagramm

Yi— PO

4 !

s — P2
S 1s a cover of P? of degree 27, branched over the union of 4 lines in
general position in P?. It is easy to see that the degeneracy locus on S
will be p*(h) (h the hyperplane class on P?) which is the proper transform
of the plane in P? through the 4-fold point and the line where Hg and Hg
meet, where Hsand Hg are the two planes of the arrangement not passing
through the singular 4-fold point. p*(h) is the intersection of S with
another cubic surface, a smooth, irreducible curve C with euler number -18.
The degenerate fibre over every point of C is of type IV (in Kodaira's

list). So we can check the calculation above, since

e(¥Y')=e(C).e(IV)=(-18) (4)=-72.

Example 9.2: Take an arrangement of 8 planes with 1,2 or 3 5-fold points.
Let Yi be the (smooth) Fermat cover for n=2, with i 5-fold points. On Yi
there are 4 singular points lying over each singular point of the arrange-
ment. In local coordinates these singularities are given by te following
two equations:
22 + 22 + 23 + 22 +2z2 =0

€122 + 222 + caz2 + c422 + cg2z€ = 0
One can compute the Milnor number of this singularity to be 9. On the
other hand, each singular point on Yi 1s resolved by a (2,2) complete

intersection in P*, which has euler number 8. Therefore the euler numBer

will increase from -128 by 16 per singular point. This yields:

e(Y')= -64
e(¥®)= 0
e(Ya)- 64,

These examples also have the structure of elliptic fibre spaces. For
example, Y' fibres over the resolving surface S, which is a (2,2) complete
intersection in P® (a del Pezzo surface). The degeneracy locus on S is
seen to be the intersection of S wth 3 other quadrics in P?, a curve with 3
components, each one qf which has euler number -8. These meet 3 at a time
at the 16 inverse images of a point p&S. The singular fibres are of type
I2, over the smooth locus of the curve C. Over the singular points (points

of intersection of 3 components), the singular fibres look as follows:



This fibre 1s not in Kodaira’s 1list. This is to be expected, since the
degeneracy locus is not a normal crossings divisor. This exotic fibre has
the euler number 5, so we can check the calculation above,

e(Y!) = 3(-8-16)2 + 16-5 = -144 + 80 = -64.

Example 9.3: Consider an arrangement of 8 planes with onme or two 3-fold

lines and otherwise in genergl position. Let Yi be the (smooth) Fermmat

cover for n=2, covering the arrangement with 1 singular lines. We have
e(Y') = -48, e(Y%) = -96

Yi fibres onto a P! with fibre a K3-surface. Y! has 96 Ay -singularities in

the fibres, Y2 has l44.

Example 9.4: This example 1s due to Hirzebruch. Using small resolutions of

singularities covering 4-fold points for n=2, we can also achieve KY triv-

ial. Let L be the arrangement consisting of the 8 facet planes of the
octahedron. This arrangement has 12 4-fold points. There are 12.8 = 96
singularities which have Milnor number 1. The small resolution therfore
increases the euler number by 2/singularity, yielding

e(Y) = -128 + 192 = 64,

Example 9.5: We can combine 5-fold points and 4-fold points (n=2), using
big and little resolutions, respectively, to get smooth (but mabye not
projective) 3-folds with trivial canonical bundle. For example, take the 6
facet planes of the cube, add the plane at infinity and one further plane
passing through 3 of the corners of the cube. This is an arrangement with
3 5-fold points and 3 4-fold points. If Y is the smooth Fermat cover (with
KY#OY) we have e(Y)=160, and blowing down the terminal P‘fo's to P*’s, we

get the small resolution Y’'. Here we have e(Y’')=112, which is to date the
highest known euler number for a 3-fold with trivial canonical bundle, Y-’
also has the structure of elliptic fibre space over the same (2,2) complete

intersection. This example 1s in fact a further degeneration of example 2.

Example 9.6: Our final example of Fermat cover combines all of the above.
Take the arrangement A$(10) and delete 2 of the symmetry planes through
opposite edges of the tetrahedron. This is an arrangement with the follow-

ing data (notations as in (H)}; tq(l)- #q-fold lines, tp- #p-fold points);
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k=8 c3(1)-4 t. =4 t. ,=8 t. =16

5 5,3 5,2
t2(1)-16 th_l t4’2-6
t3-4.

Let Y be the Fermat cover for n=2, Then e(¥Y) = 96, and KY contains only

the resolving P*xP!'s of the 4-fold point. Blowing down each P'xP' in one
direction or the other, we get a 3-fold Y’ with trivial canonical bundle

and e(Y') = 80. Y' also has the structure of elliptic fibre space.

- 2 L3
922. Elliptic 3-folds over P* with KX Ox

In this section we describe elliptic 3-folds over P? with trivial canon-
ical bundle. We do not want to blow up P? to get a good model, so we are
looking for elliptic 3-folds with either

a) = ¢ P? is irreducible
or b) The singularities over the double points of I have
small resolutions.

From the considerations above the Welerstraf form will be:

L=3H, H hyperplane class on P?

g€ HO(P%,12H), gae HO(P?,18H)

and & = g3-27g3 € HO(P?,36H).

So we are looking for polynomials of degrees 12, 18 and 36, respectively.
The singular fibres are determined by the order of vanishing of g, gz and

A (see 3.6). Consider first case b), 1.e. % is reducible,

z -nZTEIn+ E(m+6)zI; + 2211 + BEIII + AEIV + BEIV* + 92111* + 10211*

where ZX 1s the union of components over which the singular fibres are of

type X. Small resolutions exist for the following collisions:

collision resolving fibre euler #
* 1 2 a

II & Ig bz =2 4
%

II & IV o2 s s 6

I1 & IV ; § 3
*

IV & Io a2 5
*

III & Ig ; ; g f ; 6

I .

ki & Ik9 ¥kaik9 kitko
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We insert here a general consideration. Let § be the functional invariant
of an elliptic 3-fold Y over a surface S. If ¥rconst., then ¢ has zeros,

therefore also poles, which implies Y has fibres of type I If the sing-

ular locus ¥ contains two components X; and Z,, such that along Z; we have

* *
fibres of type Ik' and along Z; we have fibres of type III,III or IV,IV ,-

II,II*, then the functional invariant $ will be completel& indeterminant at
the intersection points of ¥; and Z. To get a smooth model, one would
have to modify S.

Applying this general consideration to the case at hand, we see that we
must have elther

A) All fibres of type I

OR B) $=const.

We now list the possible collisions, and the implications of the above

*
Fibres of types II, IV and Io

Here, since $=const., necessarily #=0 g2=0.
ga ~ fII'(flv)z'(fI*)a
)

4 6
4 - '27(f11)2'(f1v) -(fI:)

*
with 2degfII + Adegﬁlv + 6degIo-36 and the fx are irreducible.

ex.# degfII degfIV degfI* e(X) f[ex.# degfII degflv degfI* e(X)
-1 18 - - =540 19 6 3 2 -156
2 16 1 - -436 20 5 5 1 -168
3 15 - 1 -408 21 k] 2 =132
4 14 2 - -384 22 4 Vi - -196
5 13 1 -336 23 4 4 2 -132
6 12 - 2 -300 24 4 1 4 -120
¥i 12 3 - -324 25 3 - 2 -120
8 11 2 1 -276 26 3 6 1 -156
9 10 4 - =244 27 3 3 3 -108
10 10 1 2 =240 28 2 g - =204
11 9 - 3 -162 29 2 3 2 -120
12 9 3 1 -228 30 2 2 4 -96
13 8 > - =240 31 1 7 1 -156
14 8 2 2 -192 32 1 4 3 -106
15 7 4 1 -192 33 1 L 3 -96
16 7 1 3 -182 34 - 3 4 -84
17 6 - 4 =132 35 - 6 2 -120
18 6 6 - -216 36 - 9 - -216
37 - - 6 -108




Fibres of types

*
II & IV

. 4 2 8
Here again we have go=0, ga= fII-(fIV*) , A= (fII) -(fIV*) .
example # deg £ . deg £ * e (X)
TT IV
38. 2 4 -60
39, 6 3 -108
40, 10 2 -204
41, 14 1 -348
*
Fibres of type III & Io
example # deg £ .. depg f_* euler (X)
TIT Io
42 2 5 -84
43 4 4 -84
[ 6 3 -108
45 8 2 -156
46 10 1 -228
47 12 0 -324
. Flbres of type Ik
ex., # deg fI # cusps # double points e(X)
1
48 36 216 0 -756
49 36 216 36 -648
50 36 216 72 -540
51 36 216 108 -432
52 36 216 144 -324

We just explain the last table. Here we are posed with the following prob-

lem. Given a polynomial A of degree 36 in the projective plane, are there
polynomials of degrée 12 and 18, respectively, relatively prime to A, such
that
A=g3-27g37

Furthermore, in order to get a smooth model, we must require the following
(see (Mi},2.1.):

1) go must be irreducible

2) where A is singular, we must have

a) the zero set of g, and g5 meet transversally
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B) gz is smooth there.
This problem is closely related to the problem of finding all elliptic

surfaces S over P! with only fibres of type I, and x(S)=3. Indeed, restric-

k
ting an elliptic 3-fold over P? to some line gives an elliptic surface S
over P! with euler number 36, i.e. x(S)=3. For an elliptic surface over P!
with <3 singular fibres we have x(S)=s2, (see {S5-H)) so the reduced discrim-
inant must have degree 4. But we can say more about A:

.

Lemma 9.1.: A is singular where ga=gg=0.

Proof: We are assuming gz 1s irreducible and smooth at go=ga=0. Therefore
in local coordinates we have:
ga=(x3=0), ga={x5=0)

SO A = xgy-27x% and A has a (3v,2)-cusp at ga=ga=0.
Remark: Here we are allowing the #-invariant to have points of
indeterminancy (see §3.6.).

Now let G, Gy and D denote the reduced divisors of g,, ga and A, respec-
tively. Then, counting multiplicity, D must have at least 216 cusps, so by

the Pluecker formula, (assuming D is irreducible for the moment)

g(D) = (d'lé d-2) _ 9160 = d.= 2.

So if D is irreducible, then A is automatically reduced. We can refine

this line of argument. Let A& = Eniai- be the decomposition of A into

irreducible, reduced factors. Let o, =# cusps on A di-deg Ai’ Then .

i
ga,) = Mo 120
i 2 i

il

(1) (di-l)(di-l)a 532.
We also have: (2) Enidi'- 36. There are only finiteiy many sol-
utions to (1) & (2). The most obvious one is k=1, d;=36, ny;=1, an example

of which we now give.

.Example 9.7: Let w,t be inhomogenous coordinates on P?. Consider a Fermat
quadric and cubic:

g2 = w2 + t2 + 1

go = wo + t% + 1

Claim: A = g3 - 27g3 is an irreducible sextic with 6 cusps at the inter-

section points of {g2=0} and (gg=0), and otherwise smoocb.
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Proof: Since g and gz are irreducible, relatively prime and meet trans-
'versally, we have in local coordinates x; ={g=0)} and =Xz = {gs=0}. Then
A has a simple cusp at thier intersections. Since A hag 6 cusps, it fol-

lows from the Pluecker formula that
A is reducible <> A ={line U quintic)
since quadrics can have no cusps, cubics at most one, quartics at most 3

and quintics at most 6. We have:

A _ 4 2882 .,  8ga
dx 3g2 ox >4 g“ax
8A _ ,.2.882 ., 48
dA 3A
Setting P-5§ Ty we get

P = (x-y)(6g3 - 162g5(x+y) = (x-y)-P;.
If A is the union of a quintic and a line, there will be 5 singular points
(=points of intersection). It is easy to see this cannot occur: If x=y,
8a A

then é)-{ - éy

zeroes on common with A (euclidean algorithm), unless it divides A. But

is a polynomial of degree 5, which therefore has at most 4

this is absurd:

2
BA _y on _afen L 9%A _ 8f o

A=ERT & iy R ax f

a contradiction. So A is irreducible. 1In fact, it is smooth except for

the 6 cusps. To see this, write

3A
ax " x(6g3 - 162gox) = x-P,
Then we have A = 1/6g5Py - 27g5 + 27gagax

= 1/6g2P> + 27g3(g2%x-ga).
From this, if A = P; = 0, then
E2X = Bo
The reader may check that this condition implies x=0, via symmetry y=0,
which does not lie on A=0. So A is smooth except for cusps.
Now consider the 6-th power map:
@:P2—— P?
(2z0,21,22) — (25,2%,23)
Then ¢ ~*(A), which we also denote by A, is a plane curve of degree 36, with
216 cusps (since the cusps do not lie on the coordinate axi) and otherwise
smooth (since the sextic A meets the coordinate axi transversally). The
Weierstrag elliptic 3-fold defined by A is smooth (compare the last remark
in {Mi), p.132). It has fibres of type I, over A, which is a curve of
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genus 379, which makes for the euler number -756. It follows that the
elliptic 3-fold Y has e(Y)=-756. We may modify this by taking different
irreducible gz, ga's. If A (the sextic in the plane) has X double points
(As4) in addition to the 6 cusps, then ¢ '(A) will have 36-) double points
(assuming the double points do not lie on the coordinate axi). We the get
an elliptic 3-fold over P?, which is smooth if g, and gs both vanish at the
double points and gz is smooth there, with fibres of type I, over the doub-
le points of A.
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