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NOTE TO THE READER

This is a preliminary version of this paper. We often speak af "when

the Leray Spectral sequence degenerates at the E2~terlll". We da not know

whether this ever occurs, or always. However, it is not a ·critical part of

our arguments, so we hope the reader will excuse this inaccuracy. We are

working on this presently.

After this was written, E. Viehweg brought the article "On Weierstraß

models" by N. Nakayama to my attention. He has independently proven some

of the results of §4. Combining his results with our's, the results of §4

can be strenghthened. We will incorporate these results in the final·draft

of this paper ..

Furthermore, after comparing his results \vith mine I discovered

thatlhave implicitely (without stating it) assumed throughout

this paper, that all models are elliptically minimal at all points.

This means, when the singular locus is L=5~ - 2?g~, we assume
ruin (3V

S
(g2),4V s

(g3))<12 for all ssS. In particular, we assume

this to hold throughout §4. Nakayama proved that Theorem 4Ji. is

still true, without this assu8ption. The precise stateffients will

be incorperated in the final draft.



Elliptic 3-folds

Introduction

Although elliptie surfaees (i.e. a surface S with a holomorphic map

~:S ~ 6 onto a curve 6, such that the generie fibre is an elliptie

eurve) were known to the Italien geometers, it was Kodaira who in aseries

of papers ({Koll, {Ko2], (Ko3]) extensively studied thern and founded a

rigerous theory. His approach was basieally to view such an elliptie

surfaee S as a l~dimensional family of elliptie eurves, that is,

deformation theory. The importanee of elliptie surfaees sterns from the

fact that any compaet, eomplex, analytic surfaee with Koqaira dimension (or

algebraie dimension) equa1 to one, is an elliptic surface. Also, any

a1gebraic surface with trivial canonical bundie is adeformation of an

ellipcic surface (see {K03}, Theorems 13 and 18).

There is good reason Co believe that elliptic fihre spaces in higher

dimensions will also play an important role in classification theory (see

§1). El1iptic 3-folds have been studied by a nurnber of authors, in

particular, {Kaw} , {De3}, {Mi}, {Ful} and {Fu2}. In this paper we continue

this work, and u1timate1y would like to answer some of the questions

Kodaira answered so effectively for surfaces.

Chapter I, in spite of its lenghth, is concerned with only one relatively

simple problem: find a good model for an elliptic 3-fo1d. This is

absolutely necessary for further work, i.e. ca1cu1ating invariants, etc.

The solution 1s so difficult because in higher dimensions one has no good

theory of minimal models. Thus che d1scussion of Chapter I 1s more or 1ess

a contribution to the theory of minimal models. In this respect we note

the fo110wing. In {Ful}, Fujita has shown the existance of a Zariski
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decomposition on ellitpic 3-folds. By general theory (compare {V2} p.140)

this 1s closely related to the question of minimal models. Here we use a

more down to earth approach, explicitely showing how to get a (relatively)

minimal model.

Let X be anormal, compact, complex space. X is called a (3·dimensional)

elliptic fibre space, if there is a holomorphic rnap

11':X ---+ S

onto a srnooth, compact, cornp1ex analytic surface such that for all SES-L, ~

a pure divisor on S, 11'- 1 (S) is an e11iptic ·curve. L ~s called the singular

locus of X. If L has only normal crossings, then (Corollary 4.2.) X has

only canonical singularities. A family of elliptic fibre spaces i8 a

morphism

cp:~ ---+ T

such that each fibre ~t' tET, is an elliptic fibre space over a fixed

surface S with singular locus L C S. Dur first result is
t

Theorem 1: Let ~ ---+ T be a ~-Gorenstein faml1y of ellipti~ fibre spaces

(each ~ 1s ~-Gorenste1n). Assume that for t~t, L has normal crossings.
tot

Then ~t has canonical singularities.
o

Armed with this, we can apply Reid's crepant resolution to get (unique)

minimal models ({R2}, 0.6,0.7). The result is

Theorem 2: Let X ---+ 5 be a ~·Gorenstein 3-dimensional ell1ptic fibre

space. Assume:

a) S is projective algebraic and smooth

ß) h C 5 moves in a linear system on S.

Conclusion: there is a crepant partial resolution

g:X'-----+ X

such that (i) K
X

' is relatively net (K
X

' ·C<O for all curves C contracted

by g)

(ii) X' has only terminal singularities.

Horeover, X' may be uniquely choosen (Reid's Choice).

The relavent definitions are given in §2 and §4. This result is

interesting in that X needn't be projective (of even Moishezon). Thus we

have a satisfactory result for both K(X)-2 and a(X)-2.
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However, at least as far as calculations are concerned, we are not quite

satisfied with this model. It has two drawbacks: l)it may be singular, and

2) the projection is not flat (there may be divisors in the fibres). To

remedy this we introduce in§S models with multiplicBtive reduction. This
A A A

is a model ~:B ~ S covering the model X'~ S above:
A A

B~S

J. +
X'~ S

which has the following properties:
A

(i) B is smooth (even projective algebraic)
A

(ii) ~ is flat and has a section
A

(iii) B has only singularities of type I k

Property (iv)

Theorem 9.1.

the model B.

(iv) B is a group variety over S.

is explained in §S. It is a 3-dimensional analogue of {Kol},

It is precisely this group structure which led us to consider

Let B# denote the Jacobi fibering associated to i· The group
o

structure implies the existance of the following exact sequence of sheaves

on S:
#o~ ~~ O(t) ~ O(Bo ) ~ O.

Here ~Rl~*Z is the homological invariant and t is the normal bundle of the

section (pulied back to S). This yields the following long exact sequence

of cohomology groups, which is one off our main objects of study:

o~ HO(S,O(ß» ~ HO(S,O(B~» ~ Hl(S,~) ~ H1(S,O(t» ~

~ Hl(S,O(B~» ~ H2(S,~) ~ H2 (S,O(t» ~ ...

...~ H2(S,O(B~» ~ H3(S,~) ~ O.

Several of the groups in this sequenee have geometrie meanings, and the

exaetness of the sequence relates thern to one another. For example, if we
A

assume KS0O(-t) is positive in the sense of Kodaira (i.e. ~(B)-2), then we

have

Theorem 3: (i) HO(S,O(B#» =Hl(S,~)
°

(ii) H1 (S,O(B#» =~(IJ~) I tensored with C, 1s a subgroup of
°

This is in rnarked contrast with the elliptie surfaee ease.

In §6, we ealeulate several invariants of the model BI ineluding the

Hodge numbers, in terms of the following data: e(Li ) (the euler

eharacteristie of the irreducible eomponents of the singular loeus L), the
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#
number of intersections ~inLj' and r-rank HO(S,O(Bo ». The invariant r is

arithmetical in character, and is probably very difficult to calculate.

The res~ of Chapter 11 is concerned with thhe applications of a theorem

of {HM} to elliptic "fibre spaces with trivial canonical bundle (ar more
ffi

generally c1-O). Dur main result is

Theorem 4: There are constants 11, 12, such thBe

11 ~ co(X) S 12
ffi

for any Moishezon el1iptic 3·fold X with C1-G. Moreover,

11~-756 and 12~112.

This confirms in part a conjecture of F. Hirzebruch, to the effect that
ffi

any Moishezon 3-fold X with C1-0 has bounded euler number. Since the euler

number is a diffeomorphism invariant, it is constant in deformation

families. The following conjectures would confirm Hirzebruch's conjecture

in full:

Conjecture 1: Any Moishezon 3·fold with
ffi

and h22>l deformationC1-0 is a of

elliptic 3-fold.

Conjecture 2: Any Moishezon 3-fold with
ffi

and h22_h 11 _l is adeformationC1-0

of a non· singular complete intersection.

Finally, in §9! we give lots of examples of Moishezon 3-folds with

trivial canonical bundle, in particular the examples with euler number ·756

and +112. Both of these examples have the structure of elliptic fibre

spaces.

I would like to thank E. Viehweg for discussions about the contents cf

§4. Also I want to thank A. Todorov for pointing out the necessity of

h22>1 in the conjecture above. Finally, I acknowledge financial support of

the Arbeitsamt during the preperation of this paper.
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§l.Classification Theory

1.1. Iitaka's Theorem

Let X be a eompact, eomplex analytic (e.e.a.) N-fold. One defines the

algebraic dimension of X as a(X):-tran~(X) ~ N.

Let ~ be ehe canonieal bundle, and

~mK:X ~ Wc WdimlmKl

the pluricanonieal map. The Kodslrs dimension is defined as foliows:

~(X)- m~x dirn W or -~ if ImKl~ for all m.

From the definitions it follows immediately that

It(X)::5a(X)SN.

At the one extreme we have a(X)-N, in which ease X 1s said to be Hoishezon.

In this ease X has the function field cf an (projective) algebraie variety

of dimension N, so that X is birational to an algebraie variety. A Moish­

ezon X 1s Kaehler iff it is projective algebraic. At the other extreme

are e.e.a. N-folds with a(X)-O. In this eBse it is easily seen that the

geometrie genus of X is 1 iff ~(X)-O, and the geometrie genus is 0 iff

It(X)--~ , and in this ease (p (X)-O), X is necessarily non-Kaehler.
g

The basic tool for studying the range O~~(X)::5a(X)5N-l 18 the follo~ing:

*Iitaka's Thoerem: X 8S above, with ~(X»O. Then there exists a c.c.a. X

*bimeromorphic to X, such thBt X has the structure of fibre spsce:

*X -----+ W

which has the following properties:

i) ~(F)-O for a generic fibre F

ii) dirn W-~(X), W algebraic and smooth

*iii) X is unique up to birational equivalence.

*Furthermore, 1f X 1s smooth, X~ W is bimeromorph1e to the plurieanon-

ieal map.

Defin1tion:A normal e.c.a. N-fold X is called an elliptie fibre space, :~

there exists a map ~:X~W onto a smooth e.c.a. (N-l)-fold W such
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)-2

)-1

that the generie fibre X is an elliptie curve.
w

From Iitaka's theorem above we get

Proposition 1.1:If ~(X)-N-l, then there is abirational (bimeromophic)

* *model of X, X such that X has the structure of elliptic fibre space

*X~ W with the following properties:

*1) the flbering X~ W is unique.

11) W is proJectlve algebraic.

1.2. C1assification of a1gebraic 3-folds

We summarise the classification of algebraic 3-folds in the following

table (borrowed from (V) :

Theorem 1.2.: Every projective smooth 3-fold Xh has abirational model X,

such that

Structure of X

3 - general type

2 - f'X -----+ W dim(F)-l ~(F)-O

1 - f·X ---+ W dim(F)-2 ,IC(F)-O

0 ?????? I
!,

1
the albanese rnap

dim(F)-2, ,00; (F)-O}0
aX:X~ A(X)2 dim(F)-l, ,00; (F)-O

is
an etale fibre bundle

3 abelian variety

0 ? ? ? ?

the Stein factorisation dim(F)-2,

}
,00; (F)--co

-«I f:X~ W q(W)-q(X) dima(X

~1 of the albanese map ,00; (W)2:0

QX:X~ A(X) F-p 1 (lt)
} dima(Xq(W)-q(X)

has the property: ,oo;(W)~O
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Remark: Although ~(X)-2 is sufficient for X to be (bimeromorphie to) an

elliptie fibre spaee, it i5 of course not necessary. There are many

interesting examples of elliptie fibre spaees with ~(X)-O, and in fact help

to understand 3·folds with trivial eanonieal bundle (see§§7·9).

1.3. Some results of Fujiki

We now eonsider the situation where X 1s a c.c.a. man1fold with

O~a(X)sN·l,

where N-dimX. Let K(X) be the funetion field of X. It is weIl known that

K(X) is an algebraic field, i.e. there exists an algebraie manifold Y,

dim(Y)-a(X), such that K(X)~(Y).

Definition: An algebraic reduction of X is a meromorphic fibre spaee

f:X -.. Y

*such that K(X)-f K(Y).

Proposition 1.3. :((Fu},p.234) Let f:X-"Y be an a1gebraic reduction. Then:

i) ~(X )~O for any generic fibre of f
y

ii) a(X)-N·1 ~ X~ Y 1s an el1iptic fibre space

l1i) a(X)-N·2 ~ every smooth fibre of f is bimeromoph

ically equivalent to one of the fol1owing surfaces:

1) complex torus, 2) hyperelliptic surface, 3) K3

surface, 4) Enriques surface, 5) ruled surface of

genus 1, 6) rational sur!aces, 7) el1iptic surface

with trivial canonical bundle, 8) surface of type VII
o

In general, not mueh more ean be said. In ease X is Kaehler, however, mueh

stronger statements are possible. In fact, for this the Kaehler eondition

is not strietly neeessary.

Definition: A c.c.a. manifold X is in the class ~,:~ there exists a
1\

Kaehler spaee X and a surjective, meromorphie map
"

g:X -.. X.
"

Notiee that dirn X may be larger than dirn X.

Fujiki has derived some strong results in ease X is in the class~. The

following properties are basic for X E ~:

A) Funetorial Properties.

i) If VCX is any subvariety of X, then V is also in the elass ~.

ii) any meromorphie image of X is again in the elass ~.

B) Hodge deeomposition.

Hk(X ~) - m HP,q(X~), p+q-k "
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In particular the odd dimensional betti nurnbers are even.

C) Closedness of the Douady space ~x of X. (see {Fu}, {Ue4})

If X is compact in ~I then any irreducible component of ~X is

again compact and belongs to ~.

An application of the existance of the Douady space (for any complex space

X) is the theorem that the group of automorphisms of X carries a natural

complex structure, with respect to which it is a cornplex Lie group. If X

is in ~I then property C) above implies that there are only finitely many

conponents in any stability subgroup, and the identity component Aut (X) of
o

Aut(X) has a natural compactification.

1.4. Classification cf c.c.a. 3-folds in the class ~

We describe the classification given by Fujiki in the following table.

aex) Structure cf X

3 Moishezon

2

1

o

elliotic fibre soace

I. f:X ~ Y (algebraic reduction) is holomorphic

a) X ~ complex torus
y

ß) X ~ ~1-bundle ovar an elliptic curve
y

11. Quotient variety of SxC by a finite group aeting

diagonal Iv on SxC. S a surface C a eurve

I. Kwnmer

11. ~1-fibre space over a surfaee

111 simole and k(X)-O

The relevant definitions are as follows. X is Kummer, iff X is the quot­

ient cf a camplex torus by a finite group. X 1s simple, iff there exists na

covering fami1y {At}teT' of proper analytic subvarieties Ac of X with

dimAt>O. k(X)-O means that there is no surjective meromorphic roap of X

ento a Kummer manifold. In particular then q(X)-O.

11



§2. Minimal models of canonical 3-folds

2.1. Relatively minimal models

Let X be a complete, non-singular variety.

Definition: (i) X is a relatively minimal model,:~ any birational map

f:X ~ Y , which is everywhere defined (and Y is smooth) is actually an

isomorphism. (nothing can be smoothly blown down.)

(ii) X is an absolutly minimal model,:~ any birational map g:X ~ Y

(where Y is assumed smooth) is actually an isomorphism.

By Zariski's Main Theorem, the exceptional locus of any birational map

f:X~ Y as in (i) is a pure divisor. Therefore, to check that an

algebraic 3-fold is relatively minimal it suffices to check,that there are

no exceptional divisors (blow-ups at non-singular points or curves), and

these are all contained in the canonical divisor (considering the behavior

of canonical divisors under blow-ups). Relatively minimal models exist for

any algebraic variety, but in general there are no absolutely minimal

models. However, from the viewpoint of birational.geometry, the notion of

relatively minimal models is not at all weIl behaved, as the following

theorem exemplates (copied from (Ue3}):

Theorem 2.1.: Let X be a relatively minimal Hoishezon manifold of dimension

N>2. If X contains a rational curve (which may be singular), then there

exists 8 relatively minimal model of X whieh is not isomorphie to X. If X

eontains a ruled surface (which may be singular), then in its birational

class there are continuously many distinct relatively minimal models.

Because of this, we are forced to consider singular models - blowing down

the rational curve5. Rough1y speaking, the numerical expression of not

having these rational curves is that the canonical bundle (ar the canonical

divisor) be numerically effective. This i5 the background for M. Reid's

theory of minimal models, which we now bricfly review.
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2.2. Canonical singularities

Let X be anormal algebraic variety, ~X
Nits dualizing sheaf and nX the

sheaf of differentials. Then:

N **Wx - (ox) - j*(wx ) - O(~)
o

where XoCX is the smooth locus, ~-Weil divisor class representing wX.

N
This is a Weil divisor such that 0x (~) - 0x .

o 0

Definitions:l) X is locally ~-factorial :~ for any Weil divisor DCX,

there is a rEN, such that rD is a Cartier divisor.

2) X is ~-Gorenstein :~ for some rEN, r~ 1s a Cartier divisor.

3) X has only terminal (canon1cal) singularities, :~

i) X is m-Gorenstien

*ii) for any resolution f:X~ X, we have

*r~* - f (r~) + LviEi with vi>O (vi~O), all i.

4) X is a minimal model, :~

i) X has only terminal singularities

ii) ~ is nef (~'C~O for all effeetive eurves CCX).

In 3) we mean by resolution one in whieh the exeeptional loeus eonsists

only of divisors. Canonieal singularities may be isolated or non-isolated.
1If they are non·isolated, they are loeally of the form D x{Du-Val

stngularity} (D1 a disk). In addition to the non·isolated singularities

there are finitely many "dissidentslI, isolated eanonieal singularities ..

Examples of these are the terminal singularities, whieh are in fact

quotients of isolated eompound Du Val (eDV) points (see (RI}) Resolving

the terminal singularities introduees eurves C (these are Wl'S) with

~'C<O, whieh 1s why one doesn't resolve thern. See {RI} for more details

on eanonieal singularities.

2.3. Reid's Theorem

Reid's Theorem on minimal models ((R21.0.6): Let X be anormal

3-dimensional variety such that X has only canonical s1ngularities. Then:

*i) There is a partial resolution f:X~ X such that

*a) KX* 1s relat1vely nef and X 1s Cohen-Macauly

*b) X has only terminal slngularities.

*1i) This X can be choosen uniquely (Reid's choice).

Thus is ~ is nef (for example the eanonieal model), then X* 1s a minimal

model in the sense.above.



2.4. Kawamata's Theorem

This can be turned around by starting with a smooth Y and trying to blow

*down exceptional loci by abirational roap f:Y~ X such that ~* is

nef. This is the object of theorems due to S.Mori and Kawarnata. Let X be

a non-singular 3-fold, ~(X»O (for simplicity). We look for a minimal

model X in the category of ~-factorial Gorenstein schemes with only
m

terminal singularities, as foliows:

1) We have aseries of normal projective 3-folds

X-XOI Xl"" ,Xm

such that Xm has only terminal singularities, and ~ is nef.
m

2) for each i-I, ... ,m-l there is a map ~i such that either

Case a) ~i:Xi~ Xi +1 is abirational map with p(Xi)-P(Xi +l )+

1, in which case ~i is called an elementsry contraction.

(here p-Pieard number)

Case b) ~i:Xi~ Xi +l is an isomorphism in eodimension 1. ~i

is eal1ed an elementsry transformation in this ease.

The idea is the following. Tf ~ 1s not nef, let CCX be a curve such that

~'G<O. Then either

Gase a) C moves in a divisor D (we would like to contract this D), or

Gase ß) C doesn't mova in a divisor.

Kawamata's Theorem (Ka): In Gase a), there exists a contrsction. Thus Gase

a) csn be completed by induction.

Finally we remark that the existanee of minimal models alang these lines 15

still eonjeetural (beeause of Gase b)).

14



3.1. Homological Invariant

We consider the sheBf ~

§3. Structure of elliptic fibre spaces

In this paragraph, we gather results valid for any elliptic fibre space.

We therefore let ~:X ~ W be an N-dimensional elliptic fibre space.

That is, we assume the fellowing:

1) X is a compact, normal, complex space, N-dim X

2) W is a c.c.a. manifold of dimension N-1

3) DcW, the degeneracy locus ef ~t is a pure divisor,

L - ~ n.L
ii'l 1

its decomposition into irreducib1e, reduced components ~i'

Set: W'-W-~.

4) ~Iw' :X'~ W' is a smooth fibre bundle with fihre an elliptic

curve.

Rl~*l on W. This 1s n locally frec shanf on

W' with stalk H1 (X ,l)-zml over a point wEW' t called the homologlcal
w

invariant of the elliptic fibre space ~:X ~ W. Ihis sheaf is

equivalent to the representBtion of the fundamental group ~l(W' ,*)

"defined as fellows. Let 11' 12 be a base of the stalk ~*' where * is a

fixed base point on W'. By continously translating this base along a path

ßE~1(W' ,*), 11 and 12 transforrn by an automorphism of the stalk, i.e.:

P"l (W' •*; ~[~;t~:](!)71)"SL(2' l)
c
ß

d
ß

where ß*[~:)_(aß11+bß12]. This representation is called the monodromy
Cß11+dß12

representation and the image cf p, a subgroup of finite index, is called

the monodromy group. The monodromy determines the type of singularities

15



(at least over smooth points sELcW) or types of singular fibres, respeet­

ively. (Sinee we are not assuming X to be smooth, both eases are possible).

3.2. Gauß-Hanin Connection

Consider the Leray spectral sequence of the map ~:X ~ W. For elliptic

fibre spaees, the sequenee degenerates in many cases at the E2 term

HP(X lL)-<DEq,P-q, q 2

For example we have

H2(X,lL)_E~·omE~,1®Eg·2

E2 ,o_H2 (W R0 1f lL)
2 '*

Now consider the differential of the speetral sequence,

dO ,1'R11f lL ~ ~~@ R1~ lL
1 • * -~ 0 *

W

It turns out that this is an (integrable) connection, called the Gauss-Man­

in connection (see (KO}). Since R11f*~ is a rank 2 veetor b~ndle on W, d~1

is a differential operator with two linearly independent solutions, Wl and

W2, which one assumes fulfill W1/W2E ~ - upper half-plane. The precise

form of d?,l has been determined by Stiller ({S}):

d2f df
Af dW2+P(w)~(w)f-O

where P(w) and Q(w)EK(W) are rational funetions on W. Such a differential

equation need not be unique, but the equation Af-O, together with a mere­

morphic, many-valued quotient w - Wl/W2 of twe solutions determines

uniquely an elliptic surface and vice-versa. Netice that this is a dif~

ferential equation for periods, i.e. a Pic~rd~Fuchs equation (see (Ka}).

In fact, the (many-valued) holomarphic function w mayaiso be defined in

ehe following manner:

where 8 is the unique holomorphic I-form on ehe fihre X and 11,W, 12,W
W W

form a base of H1 (X ,Z). By analytic continuation alang a path ßEW', W
w

transforms by fractional linear transformations:
II w(w)+b

w(ß(w)) ß ß
- cßw(w)+dß'

16



where [aß bß) _ p(ß) is the monodromy of ße~l(W' ,*). Thus, the monodromy
c
ß

d
ß

determined by w is (in PSL(2,~) conjugate to) the proJective monodromy

representation.

3.3. Functional Invariant

. Let J be the elliptic modular function on the upper half-plane~. Then

1(w) :-J (w(w»

is a single-valued map on W, and is in fact a meromorphic function on W

(see (Kol},7.3.). 1 is called the functional invariant of the e11iptic

fibre space X. The differential equation above can be written explicitly in

terms of 1:

From this one sees that the differential equation has regular singular

points. Actually this is true quite generally for the Gauß-Manin connec­

tion. The singularities of X 1ie over points weW such that.

1) 1(w)-O,l or <Xl

2) The monodromy around w in non-trivial

(We are assuming there are no multiple fibres.)

The relationship between the monodromy representation p and the map w is

easy to see in case -l~r, r-Im(p) the monodromy group. Since w as defined

above is many-valued, it can be lifted to a single-valued, holomorphie·

function on W:-{universal cover of W'} into ~:

;:;:W~ ~

1 1 /~r
w' :W'~ \~ - ~r,/Er

n rn n

w : W ---+r\'Jt - .6r
Since w is r- invariant 'the above diagramm commutes. Le t Er be the e11ip­

tie modular surface aS50ciated to r (here we n:ed -l~r) on .6r and Er~ .6r

its compactification. Then w' may be viewed as the classifying m8p for

X'~ W', since, as is easi1y seen, X' is the (e1liptically minimal) bundle

over W' induced by w'. Thc monodromy i5 now just thc induccd Illflp on homo­

topy groups:



3.4. Basic Elliptic Fibre Spaces

From now on we make the following assumptions :

1) , has nD points of indeterrninacy

2) LeW is anormal crossings divisor.

The first assurnption is erucial; it means that at any double point of L,

say EinL
j

, the singular fibres (or singularities) along both eomponents Ei

• aud L
j

must have the same '·invariant. These are listed in the following

table:

* *--:=:fo..:::i::.::b;.:r=e:.....::::t~yp-=e .....I:::I..lICI-,&...-o:I:I,.CI,I I V, IV *111. 111

value cf t o I pole of order k

Let ~:X ~ Wbe an elliptie fibre spaee satisfying the two eonditions

above, with homological and functional invariants ~ and 1, respeetively.

Let W be the universal cover of W'. The data (W' ,~,1) determines an es­

sentially unique elliptie fibre space P:B'~ W' possesing a global holo­

marphic section

a:W'~B',

which is easily constructed as a quotient of Wx~, Indeed, if

P:~1(W')~rcSL(2,~)

is the monodromy repres~ntation, let

G(~"):-~l(W' ,*)>4 Zm~
P

(serni-direct product). This operates in a standard fashion on W~:

- - - ·1 -G(~,1) j (ß,(w,r» ~ (ß(w),(cßw(w)+d
ß

) (r+ffilW(w)+m2»;

the action is free and G(~,t)\WX~ is easi1y seen to be an elliptie fibre

space ~' :B'~ W'. The holomorphie seetion a:W'~ B' is the obvious

zero section which is just the image of WX(O}.

Without going into details, we indicate briefly how B' can be (uniquely)

compactified to a complex spaee B (which will be singular along E):

B'e B
-1. J.
W'e W,

Sinee L is anormal crossings divisor, we ean find loeal coordinates

(w1 ',·· ,wN. 1 ) on W such that Li-{Wi-O}, Li~j-(Wi-Wj-O}"", Li n .. "
1

,~ ,nLi - (wi -" ,-wi -O). We can cover W by coordinate patches U. and
N-l 1 N-1 J.
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Ui-tubular neighborhood of ~i

Uij-tubular neighborhood of Li~j

Ui i -neighborhood of Li n ... nLi
1'" N-1 1 N-1

On the eover of (Ui-.. U Uij ) in W~, G(~,i) has ,a purely codimension one
J""i

fix point set with singular quotient which ean be glued to B'. On ·the

cover of (U.
j

- U U. 'k) in W~, G(~,1) has a purely codimension 2 fix
1. k".!i,j 1.J

point set, and this is glued on to the (U.- U Uik)- ~/G(~,i) and the
1. kJ"li

(U
j

- U U'k)-X~/G(~,l) where ( .. )- denotes the universal cover of ( .. ).
kJ"lj J

For example, if W is a surface, this looks as fo11ows:

[.
J

We remark that the resolution of the singuarities over singular points of L

is hy no means a trivial matter, whereas over the smooth points we can use

a more or 1ess "eanonica1 resolution". We will discuss this in the

3-dimensional ease below.

3.5. Families of elliptic fibre spaces

Let ~:X ~ W, ~l:Xl~ Wl be two elliptic fihre spaees. We say X and

Xl are elliptiCBlly bimeromorph, iff there are himeromorphic maps respect­

ing the fiberings:

In this ease the funetiona1 and homologica1 invariants of X correspond

(unique1y) to those of Xl (see for example (Kaw},p.135). Let W be a c.c.a.

manifold of dimension N-1, 1 a meromorphic function on W and ~ a locally

free sheaf with generie stalk lID~, which fulfil1:
-11) i belongs to. ~ , i.8. the many-valued function w -J 01

transforms with ~ in the sense above.

2) 1 has no points of indetermaney

19



3) L - loeus of {wEWI~ ~ZmZ} is anormal erossings divisor.
w

Definition:the family of elliptic fibre spaces over W with invariants 1 &

~:

all equivalenee classes of elliptically bimero. ellip­

* * *tic fibre spaces ~:X ~ W with homological and

*functional invariants corresponding (under g:W~ W)

to ~ and 1 such that:

*(i) ~ is flat

*(ii) X is elliptically minimal

*(iii) X has no multiple fibres.

*X elliptically minimal means there are no generically contractible divi·

sors in the fibres. By the results of the last section, there is a unique

(class of) basic elliptic fibre space B~ W in ~(~,~) which has a

global holomorphic section. As in {Kaw},p.135, we get

Proposition ~: Every element XE ~(t,~) can be constructed by reglueing

the basic member B ~ W.

Remark: One might define ~(t,~) slightly differently, for example, all

* *classes of elliptie fibre spaces n:X ~ W over some fixed W.

However, if one uses this definition, then to get a good model of a given

X, one may have to change families. (See for example Miranda's flat smooth

model).

3.6. Weierstraß Normal Form

Let B~ W be the basic member of a family $(1,W) as above. Sinee B

has a section, it can be described by a single equation as folIows. Let t

be the bundle along the fibres of B~ W, that is the normal bundle to the

*section, NBu, viewed as a bundle on Wvia u, and set L-t. L is a complex

line bundle over W. B, viewed as an elliptic curve over the funetion field

of W, can be given by the equation

2 4'3Y - X -g2x -g3

where x E r(L2
), y E r(L3

)

g2 E r(W,O(L~», g3 E r(W,O(L~».

The singular locus LCW is the divisor corresponding to the discriminant:

6 - g~-27g5 E r(W,O(L12».
3

The $-invariant is then: 1 - g2/6 . Let G2 , G3 , and D be the reduced
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divisors corresponding to g2, g3 and 6, respectively. The assumption that

i has no points of indeterminaney implies the following: If G2 and G3

meet, then they have a eomponent in eommon. If W is a surfaee, this looks

1 has point of inde·

termananey at p

1 has no point of

indetermanancy

E
P

Also, the type of singularity over smooth points of ~i is determined by the

orders of vanishing of g2, g3 and 6, as in the following table:

* * * *fibre (sing.) type: 11 111 IV IV 111 11 ~k I k
lIW(g2)

~ ~2 ~3 3 ~4 0

lIW(g3)
~2 2 4 0 3

v (6)
2 3 4 8 9 10 k k+6W

Beeause of this, the Weierstraß form is very eonvienient to work with.

Also, these considerations are valid over any field, not just~. The sing­

ular points lying over singular points of ~ can also be determined, see

{Mi} ,Prop. 2. 1 .

Remark: If we are given an elliptic fibre spaee X~ W with W not a1ge­

braie (Moishezon). then such a representation may not be possible. Indeed,

there might be Da line bundle L on W such that L4, L6, and L1 2 all have

seetions.
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§4. Models of elliptic 3-folds

In this paragraph we study the ease where W-S is a compaet, comp1ex ana~

lytic surface. Let B~ S be the basic member of some fami1y ~(t,~) of

elliptic fibre spaees over S with given funetiona1 and homo1ogical invar­

iants 1 and~, respeetively. In this dimension, Kawai ({Kaw») has proved

the following

Theorem 4.1. :(i) B is projective algebraic if S is (but of course singular

along L)

(ii) ~:B ~ S is flat with a holomorphic section a:S~ B.

4.1. Ueno's Resolution

In (Ue3), Ueno has eonstructed an explicit resolution B~ B, which

again fibers over S (that is, the resolution does not modify S):

B~B

-;'\.. I
7f S 7f

-2-4·4

-l--if----t-----I---111

B has the fo11owing properties:

A) If sEL h' then the singularity of B over s is of the typesmoot
-·1 -[X{Du Val} aud the fibre 7f (s) on B is one of the fibres in

Kodaira's list, exeept for the fol1owing:

Kodaira's fibre Fibre on Ueno's Resolution

-2X -2

-l-~t---+---~I---

eonsists cf ruled surfaees.

-3-3·3

IV .~2-2
-2

·1
B) If sEL i J then the fibre ~ (s)

s ng

C) The eanonieal divisor cf B is given by the formula
-*KB- ~ (~+[F]) + [G] + [H] I

where [F], [G], [H] are effective; and
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a) [G] is based on fibres over double points of L

b) [H] is contained in fibres of type 111 and IV as

described above.

In particular, B has the properties 1) B is not minimal (KB is not nef) , 2)

~ is not flat, and 3) B is not elliptically minimal. From the fact that G

and H are effective, we see that they are divisors resolving terminal sing­

ular1ties. This is in fact one of the earliest occurences of terminal

singularities in the literature. From this same fact we also get

Corollary 4.2.: The basic memnber B has only canonical singularities.

4.2. Canonical Singularities

We first rephase the corollary above.

Proposition: If ~:X ~ ~ 1s B local elliptic fibre space with ~(Du Val)

singularity over Dl-{x-O} and D2-{y-0} , then the singularity st (0,0) is

canonical.

Or, taking into aeeount §2, we might say a "normal .erossings collision" of

eanonieal singularities is canonieal. By our assumption to the effect that

, has no points of indeterminaney, we mayaiso express this as follows (see

(Mi), 2.1.): any hypersurface singularity of the form
y2-4x3 _ saltßlx _ sa2t ß2

is canonieal. We are interested in generalising this by dropping the

lI normal erossings" asswnption.

Theorem 4.4.: Let ~:X ~ Ö be an (affine) elliptic fibre space with a

local section a:ö~ X over a neighborhood of (0,0) in C2
, and assume X

1s ~·Gorenstein. Suppose the singular locus LeU has an isolated sing­

ularity st the origin. The the 3-fold X has a canonical singularity over

(0,0).

proof: Let

x,-E....-. X
.L. .L.
ö,....L. fj, c (L2

be an embedded resolution of L at (0,0). Then we have

K6.-P*(K6)+2Ei' Ei-the exceptional curves of the resolution

*~,-~' (Kfj,,+L'), L'-conormal bundle of a section fj,'~ X'

* * .'\ *-11"' (p (Kfj,)+LEi+P (L», 1- 11
11 " fj, ~ X
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* * * \-p ~ (Kö+L) +~' (LEi)

-p*(~) + ~'*(2Ei)'

which proves the theorem since the coefficients of the Ei are ~O.

Remarks: 1) This mayaiso be fermulated as fellows: any hypersurface

singularity

y2 _ 4x3
- g2(S,t)X . g3(S,t)

which is ~-Gorenstein 1s actually canonical.

2) It may be possible that such an X is automatically ~-Gorenstein~ At

any rate, it would be interesting to find sufficient conditions (in terms

of the types of singularities of X over the components Li of Land the

singularities of L at the origin) for X to be ~-Gorenstein.

The proof above actually shows the following

Corollary 4.5.: Let ~ ~ D~ be a ~-Gorenstein family of elliptic

3-folds, i.e. each fibre ~t 1s a m·Gorenstein elliptic fibre space ~ ~
t

S over a fixed surface S with singular locus Ltes and tE~. Suppose for

t~t I ~ is anormal crossings divisor.
o t

Then the central fibre ~
t

o
has

only canonical singularities.

i'tit
Thus, we may alow L to aquire any singularities whatsoever, requiring only

that S be smooth and ~t to be ~·Gorenstein. Thus, in some sense, the
o

singularities are of a quite general kind.

We now give an example to show that this need not hold if the base sur­

face S has singularities. This example is a Fermat cover (see §9 or {H}

for details on this).

the data (with notations as in {H) ) :

t 6 3-8 t 6 ,2-6,

t s 3-6 t s 2-12, ,

3
Example 4.6.: Take the arrangement Al(lO) consisting cf the 4 faces and 6

sym-metry planes of the tetrahedron in W3(~). Delete one of the faces.

The resu1ting arrangement has

t 3-3 t 4-6

Let X~ W3(~) be the. (singular) Fermat cover defined by the Kummer

extension

'* This is. i..... tC\ef ihe ca~e. ) P-<dVlYl bj
N. No.ko'jo.MQ.

24 ~if l.-u,cle.,. tl,t. a~~u"",p'L'on aJ t({Ltl.'t- t'l1ittt.·Vo(4~tJ,

Set. "N.h to iJ.t. ""~Qd(.,..I'.



~(X1/X ,X2 /X ,xo/x )[(12/1 )1/2, ... ,(19/1 )1/2]
000 11

B 3of the rational funetion field. X is a 2 -sheeted branched cover of W ,
"3 3

branched along the 9 hyperplanes {ll-Ol, ... ,(lg-Ol. Let W denote W

blown up at one of the 6-fold points of the arrangement, and X the lift:
"

Sinee the indueed arrangement in this

over the exeeptional

X-x
.J- .J-

"3 3
W -W

2 "W , X fibres
"3

Sinee W fibres over the exeeptional
2divisor covering the exeeptional W •

1P2 is

the exceptional divisor covering it is the elliptie modular.surface r(4),

(see Shioda (SHl), with all 16 seetions (-2 eurves) blown down to ordinary
"

A1 -singularities. The fibering X - r(4) is e11iptie. It is not dif-

fieult to see that at eaeh A1 -singularity, 3 eomponents of the singular

loeus meet. On the other hand, the fibres of the elliptic fibre space over

the A1 -singularities contain singular points of X covering the 6-fold point

of the arrangement we didn't blow up, and by 2.4.2. in (HJ we know that

these are not eanonical.

Looking back at the proof of the above Corollary, we ean see where the

proof breaks down in this ease. Since the section is singular, the eonorm­

*al bundle does not lift naturally (i.e. p ~L'), K~ will not eontain the Ei

with positive coeffieient, and the exeeptional curves will oeeur with

negative eoeffieients in the formula above.

4.3. Reid's Minimal Model

Armed with the above theorems we can use Reid's erepant resolution (§2)

to get unique minimal models.

Theorem 4.7.: Let X ~ S be a 3-dlmenslonal eillptlc fibre space, and

assume:

a) S is a projective algebraic surface.

ß) ehe singular locus E moves in a linear system on S.
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such that:

Conclusion: there is a crepant partial resolution

g:X'- X

i) K
X

' is relatively nef

ii) X' has only terminal singularities.

Horeover, X' can be choosen uniquely (Reid's choice).

Proof: Let B - 5 be the basic rnember in the family to which X belongs.

By a), Kawai's theorem implies B is projective algebraic, in fact normal.

Thus we can apply Reid's resolution (§2). We get a unique minimal model

B'~ B for which K
B

, is relatively nef. Now if X is reglued from p1eces

of B ({Kaw},p.13S) by functions
wl 2 2

AjAk :UjnUk~ Aut(T )-T

we get a unique minimal model X' for X by reglueing B' by functions
- --1 -1 wl 2
AjAk:f (Uj)nf (Uk)~T

where Aj:-AjOf. A1so~, will be nef if KB, is and the singularities on

X' will be the same as on K
B

" q.e.d.

Remarks:l) If S 1s not algebraic we should proceed differently, but here

the situation is much simpler.

A) a(5)-1. 5 1s an elliptic surface 5~ ö, with no section.

The only curves on 5 are the fibres, and they don't meet.

The only intersections of curves are therefore intersections

of components of singular fihres (in particular, normal

crossings).

B) a(5)-0. In this case there are only finite1y many curves on

5 (compare (Ko1),§S), and the '-invariant reduces to a

constant. These possibilities cou1d be checked explicitly.

2) Obviously one cannot expect ~, to be nef in general, for examp1e if

~(X)--~. If, however, K
5

is nef, or more generally if K
5

+L 1s nef, then we

will get minimal models· (~, nef)

3) We would like to emphasis that the statement of the theorem is very

strong. It settles the question of minimal models completely for ~(X)-2

8nd a(X)-2.

4) This thoerem does away with the assurnption II L normal cross1ngs", which,

as we will see in §9, 15 not natural.
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4.4. Miranda's flat model

Miranda has in (Mi) used a completely different approach to the problem,

and we explain this breifly, as one of his small resolutions will be used

in the next section. Miranda constructs a smooth model B' I~ B of the

basic member in some family ~($,~), the basic member of which is B~ S,

where S is assumed to be an algebraic surface. B" has the following prop­

erties:

i) B"~ S" is elliptically minimal over a surface
B"~ B S' , which is birational to S.
+ + ii) B"~ S' , has a global holomorphic section
S"~ S

iii) B"-. S' , is flat.

B" is constructed in 2 steps:

1st Step: Modify S along double points of ~ until the col·

lisions are only of certain types (listed in (Mi)).

2nd Step: Resolve the remaining singularities over double

points of L with small resolutions.

This approach has the disadvantage of modifying S more than necessary. We

now deseribe one type of small resolution whieh will be used in the next

seetion. Let LI and ~2 be two cornponents of L meeting at a point pES.

Suppose the singular fibre types are I k
1

and I k over LI and ~2' respeet­
2

ively. There is a small resolution of the 3-fold singularity over pES such

that the resulting fibre is again a Kodaira fibre, and in fact of type

I k1+k2 · If one of k
i

is even and the other odd, then the resolution i5 not

unique; if both are even or both are odd, then the resolution is also

unique. In both cases the small resolution stays in the projeetive eate·

gory.
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§5 Multiplicative Reduction and the Group Variety

In this paragraph we introduce a minimal model with multiplicstive re­

duction which is a model of special type which greatly facilitates the

calculation of most invariants of an elliptic fibre space. To motivate

things, we start with a review of the group structure on elliptic surfaces.

5.1. Analytic fibre systems of abelian groups

Let B ~ ß be ehe basic elliptic surfBce in some fami1y ~(1,~) of e1­

liptic fibre spaces ovar ß with homological and funceional invariants ~ and

" respectively, ß'-ß-{al , ... a
k

} ehe open subset of ß over which all fibres

are smooeh. On B'~ ß' there is an obvious structure of groups, in ehe

following sense:

Definition: B'~ ß' has the structure of analytic fibre system of abelian

groups, iff:

i) each fibre B' is an abelian group
x

[;x7l2

or
O:;x71'l

Notice that the group of a singular fibre i5 ~* iff the singular fibre i5

of type I k . In this case B is said to have multiplicstive reduction, since
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in this case the group structure is multiplic8tive ..

ponents of singular fibres which the seetion hits with singular points

deleted} . Thus a fibre of B# is either an elliptic curve, ~ ar ~*. Now
o

let ß be the bundle alang the fibres of B, i.e. the normal bundle to the

section. Eaeh fibre ß is the tangent space to the group fibre (B#) ,and
x 0 x

there is a natural exponential map

exp:ßx ~ (B~)x

which yields a map of sheaves:

e:O(ß) ~ O(B~).

This in turn yields an exaet sequence of sheaves on ß «(K02), Theorem

11.2):

o~ ~ ~ O(ß) ~ O(B~) ~ O.

The corresonding long exact cohomology sequence is one of the most inter­

esting objects of study of elliptic surfaces:

o~ HO(ß,O(B~» ~ Hl(ß,~) ~ H1 (ß,O(ß» ~
#...~ H1 (ß,O(Bo » ~ H2(ß,~) ~ 0

All of these groups have geometrie meanings:

HO(ß,O(B~»- group of seetions (knowledge of whieh allows

caleulation of the Pieard nurnber of B).

Hl(ß,~)~ - H~ar(G,~2), where G-~l(ß' ,*).

H1 (ß,O(ß»= HO(B,02)-vector space of holomorphic 2-forms on B.

Hl(ß,O(B~»~ ~(1,~).

H2 (ß,<tl)-finite group (if :1r'const.) of "eharacteristic classes" of

elliptic surfaces in the family ~(1,~).

We also remark that H1 (ß,O(ß» ean be identified with aspace of mixed eusp

forms (see (HM)). Therefore the map

Hl(ß,~) ~ H1 (ß,O(ß»

is closely related to the theory of automorphic forms and has a very arith­

metieal meaning.

5.2. The eovering trick

Let B~ S be the basic 3-dimensional elliptic fibre space in the

family ~(1,~). Let B'~ B be Reid's choice of minimal model as discussed

in §4.

Theorem 5.1.: There exists
" "

fibre produet B'-Sx B':
a

a finite Galois covering
"
B'~ B'

* J-
"
S

a
S---+

s~ S such that the



has only multiplicBtive reduction, i.e. only singular fibres of type I
k

.

Proof: Let G-~1(S-h,*) and p:G~ SL(2,Z) the monodromy representation.

Let ß
l

, .. . ß
t

be a system of generators for G, and set

ni-order of the semi-simple part of p(ß i ), i-I •... ,t.

Then

generate anormal subgroup NcG. N defines the covering
A

S- S
A

which is a Galois cover since N is normal. The model B' can be explicitly

constructed by compactifying
A Uxf;
B' - I7Jqo.71. >4 No I~ ,

where U-{universal cover of S-h}, aud then desingularising.

Remark: Although this 1s satisfactory from a theoretical standpo1nt, it is

not from the computational. In principal at least, if we know all invar-
"

iants of B' we can calculate those of B', but in practice this may be al­

most impossible. This is because, althou~h we know the branching locus and

branching degrees of the branched cover S~ S, it is difficult to de-
A

termine the degree (-[G:N]) of this covering, since G/N - Gal(S/S) will not

be abelian in general.

5.3. Minimal models with multiplicative reduction

In this sectian we define a certain type of model of elliptic fibre

space, which admits also a group structure as do elliptic surfaces, and

which will be used in §6 to calculate invariants and study the long exact
A A

sequence. By construction, the elliptic fibre space B' ~ S has s~ng­

ularities only over double points of LCS. At these double points, we have

collisions of the type I
k

& I k ' and we can apply Miranda's small resolu-
1 2

tion to get a smooth elliptic fibre space
" "
~:B ~ S

which has the following properties:
A

a) ~ is flat and there is a section

ß) singular fibres at all points are of type I
k

~) the singular fibres over double points cf h where two

components with singular fibres of types I
k

and I
k1 2

meet are of type I k k'
1+ 2

A

We caii B a minimal model with multiplicBtive reduction.
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5.4. The group structure
~ ~

Let B~ S "be a minimal model with multiplicative reduction as in the

last section.

Theorem 5.2.: B admiCs a unique sCructure of analytic system of abelian

groups over S.

Proof: This is a loeal ealculation which must only be eheeked at singular

points of the singular locus ICS. Consider twe branches of h which meet at

pES:

Suppose the fibre type is I
k1

over ~1 and I
k2

over ~2' Then the fibre type

over p is I k k' Let U be the universal covering of the open set
1+ 2 P

U12 -(hl Uh2) in the figure abeve, with coordinates LI, L2 , and r (the fibre

coordinate) in ~.

aud

Assume (TI-0)-hl," {T2-0)-h2. According to Kodaira ((Ko2),pp.597-600) U1

is covered by k 1 open sets W~I) I'" ,w~:), U2 1s covered by k2 open sets

W(2) W(2) d'U i d b k k W* W* h1 , ... , k
2

I an 12 s covere y 1+ 2 open sets 1,···, k
1
+k

2
' w ere,

w(i) has coordinates
j

(i) k
«TII T2,W»j - (TII T2,w(modT i i»

with the identifications
(i) k-j (i)

«T1,T2,W)')j - «Tl,T2,WT i »k

* (' k 1 k 2and Wj has coordinates «TIIT2,W»j:- Tl,T2,W(modTI T2 » with the

identifications

«
kl k 2

«Tl,T2,W»j- Tl,T2, WT 1 T2 »k1+k
2
-j'

The group structure is given by

over hl «O,T2,W»~1).«O,T2,V»jl)

over h2 «Tl,O,W»~2)_«Tl,O,V»j2)

over P «O,O,w»k - «O,O,v»j
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On the intersections, we identify

-k (1) -j (1)
( (T 1 , T 2, w) ) k+k

2
- ( (T 1., T 2, v) ) j +k

2
- « Tl, T 2, WT 1 )) 1 - ( ( Tl, T 2, VT 1 )) 1

(
.1 j-k))(l)

(Tl,T2'WV Tl 1

snd on U12nU2

( -k (2) -j (2)
«Tl,T2,W))k+k

1
-«T1,T2,V))j+k

1
- ( Tl,T2, WT 2 ))1 -«Tl,T2, VT 2 ))1

~1 j - k) ) ( 2)
«Tl,T2,WV T2 ~

- «Tl,T2,WV·
1
))k_j+k

1
'

so the group structure is an analytic extension on U12nU 1 and U12nU2 ,

q.e.d.

Argueing the same way as in (K03},p.4, we get
"

Corollary 5.3.: We have an exact sequence of sheaves on 5,
"#o~ ~~ O(t).~ O(Bo ) ~ 0
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§6. Invariants

In this paragraph we shall ealeulate a number of invariants of an ellip·

tie fibre space whieh we assume is a minimal model with multiplicative

reduction as in 5.3., by utilizing the long exaet sequence coming from the

exact sequence of sheaves on the base surface S derived in the corollary

above. In this §6, we denote by B~ S the smooth minimal model with

multiplicative reduction described in 5.3.

6.1. The long exact sequence

In 5.4. we derived the existanee of the following exact sequenee of

sheaves on S:

From this we get the following long exact sequence of eohomology groups:

o~ HO(S,O(ß» ~ HO(S,OeB~» ~ Hl(S,~) ~ H1 eS,Oeß»

~ Hl(S,OeB~» ~ H2(S,~) ~ H2(S,O(ß» ~ .,.

~ H2eS,O(B~» ~ H3(S,~) ~ 0

Let K
S

be the canonical bundle on S. In what follows we shall assume

K
S
0O(·ß) is positive in the sense of Kodaira. This assumption is almost

always fulfilled; if not, one should eonsider the above sequenee seperat­

ely. Sinee K
S
0O(-ß) is positive it follows from Serre duality that

HO(S,O(ß» ~ H2 (S,KS0O(-ß» - 0

H1 (S,OeC» ~ Hles.Ks00e-ß» - 0

Thus the long exact sequenee above splits into two shorter ones,

.0~ HoeS,OeB~» ~ H1eS,~) ~ 0

o~ HleS,OeB~» ~ H2eS,~) ~ H2eS,O(C» ~ ...

~ H2eS,O(B~» ~ H3eS,~) ~ O.

From our decription of ~(1,~) we have

HleS,OeB~» ~ ~(1,~).

Also in analogy with elliptic surfaces we have
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is the vector space of holomorphic 3-forms on B. The second term in the

second sequence turns up in the decomposition of H3(B,~) arising from the

Leray spectral sequence (which we assume for the moment degenerates at the

Ez-term.):

H3(B,~) ~ Hl(S,R2~*~)ID H2(S,Rl~*~)ID H3(S,Ro~*~)

122 3
- H (S,R ~*~)IDH (S,~)@H (S,~).

The second exact sequence above therefore implies that the family ~(',~)

(which is a Z-module), when tensored with~, can be identified with a sub­

group of H3(B,~). Likewlse, H3(S,~) occurs in the Leray decomposition,

H4 (B,C) ~ H2(S,R2~*~)ID H3(S,Rl~*C)$ H4(S,Ro~*~)

- H2(S,R2~*~)m H3(S,~)ID H4(S,~)

The term H2(S,O(B~)} in the sequence above arouses euriosity. We have no

idea what it has for a geometrie meaaning.

6.2. Hodge numbers

P (B)g

- X(S,O(ß» - c~(t)-cl(ß)'KS + X(S,OS)
2

We now proceed to same calculations. For the geometrie genus p (B) of B
g

Since both Hl (O(ß» and HO(O(ß» vanish,we have p (B) - dirn H2 (S,O(ß».g

we can use Riemann-Roch to calculate dirn H2 (S,O(ß»:

Ta calculate the first term we make use of the Weierstraß form for B

(§4.6.):

24 3Y - X -g2x -g3

g2E r(S,O(L4», g3E r(S,O(L6 »

*where L-ß. We have for the singular locus LeS,

L. (6), 6 - gg-27g5 E r(S,O(L12».

Write L as a SUffi of irredueible, redueed components,

L - ~~iLi
i~

which implies the fibre over Li is of type I
n.

1

relation cl(L12 ) - ~.L ..Llll 1

In H2 (S,Z) we have the

Set Li-cl (Li) , and insert this into the above:

12c,(L) - 2niC1 (Li)
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and ealeulate,

and applying adjunetion,

--i22mie (Li ) + 2mi~i~~2}.L~ + ~22minjEi·Ej.
This gives a formula for the geometrie genus of B. Now suppose K(B)-2.

Then, sinee the fibering is unique, we get for the Hodge numbers hai and

h02

{
q(S) t not trivial

hai
q(S)+l ß trivial

- {
p (5) ß not trivial

h02 g
p (S)+q(S) t trivial

g

From chis and the formula above we get

Theorem 6.1.: Let B~ S be an elliptic model with multiplicative

reduction with K(B)-2, and assume t i5 not trivial. Then the arithmetie

genus of B 15 given by the formula:

Eu1er Number: Let e(B) denote the Euler-Poieare eharaeteristie of B.

Sinee B'~ S'-S-L i5 a smooth fibre bundle of elliptie eurves (which

have euler number -0), e(B) is just the euler number of the singular

fibres. In terms of the data ~i'

e(B) - ~ie(Ei)i4
On the other hand we have by definition

e(B) - 2 - 2b i +2b 2 -b3 ,

- 2 - 4q(B) + 4g2 (B) + 2h ii (B) - 2p (B) - 2h2i (B)
g

where of course b.-ith betti number. From this we see: we need only eal­
~

eulate one of the numbers h ii and h2i , and the ather ean be ealeulated fram

e(B). We try h 11 (B). By definition,

h 11 (B) - b 2 - 2g2 (B),
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and this in turn yie1ds a formula for

h 11 - b 2 (S) - 2p (S)
g

- h 11 (S) + r + 1

and we can try to ca1cu1ate b2 from the Leray decomposition,

H2 (B,t) - HO(S,R2~*~)ffi H1(St~)ffi H2(S,Ro~*~)

b2 - b2 (S) + r + dirn HO(S,R2~*~),

r-rank of HO(S,O(B~)) is the rank of the group of sections. To ca1culate

HO(S,R2~*~) we use Mayer-Vitoris. Let U be a tubu1ar neighborhood of L,

S-S'uU, D-S'nU - disk bund1e over L. Set ~_R2~*~. We have the sequence:

o~ HO(S,~) ~ HO(S' '~Is,)m HO(U'~lu) ~ HO(D'~ID) ~ ...

We infer readily that dirn HO(S,~) - 1 + ~(n -1) , so
iLl i

b2 - b 2 (S) + r + 1 + 2(n i -l).

h 11 (B) (in terms of r)

+ r + 1 + 2(n i -l)

From this, as mentioned above, one can calculate h21 (B), so all Hodge

numbers have been calcu1ated.
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§7. A finiteness theorem

7.1. The theorem for surfaces

The formu1a we derived above for the geometrie genus of B has as two­

dimensional ana10gue

Pg(E) - X(E,OE) + q(E) . 1

e(E)
- ~ + g(6) - 1,

where E~ 6 denotes an elliptie surfaee. Suppose now we are given k

points al""'~ on 6; what ean WB say about the possible Pg? With a

little eare one ean derive the following inequa1ity: (eompare (HM})

(1) Pg(E) ~ 2g(6) - 2 + ~.

This has the fo110wing interesting eor011ary:

Coro11ary 7.1.: Given a
1

, ... ,a
k

E 6, the set of B11 e11iptic surfaces

E ~ 6 (with section) which have singular fibres over BI"" ,ak and

t~const. is a finite set.

7.2. N-dimensiona1 ease

Tc wou1d be interesting to genera1ise the inequality (1) above to higher

dimensions. At any rate, the eoro11ary generalises readily:

Theorem 7.2.: Let W be a smooth, projective (N-l)-fold. Given ~h1'" .,h
k

k

divisors on W such that h _\~. is normal crossings, the set of Bl1
i'lL

e1liptic N-folds x~ W with singular fibres over the h.
L

(X smooth,

say, Bnd with section) i5 B finite set.

Proof: Let DcW be an ample divisor. Then DN- 2cW is a eurva whieh by

Nakai's criterium maats aaeh component ~i' The theorem follows from the

corollary above appl1ed to ~-l(DN-2) ~ DN- 2 , since the fihre type on

aach ~. 1s locally eonstant.
1



§8. Abound on the euler number

8.1. Theorem for elliptic 3-folds

Theorem 8.1.: There are constants 1
1

, 1
2

, such that

'"'fIS c3 CX) S12

holds for any elliptic 3-fold X~ S with K
X

trivial.

Proof: First we may assume LeS has normal erossings, sinee modify1ng S

until L 1s normal erossings adds fixed eomponents to~. Thus, X belongs

to a family ~C1,~) and has the same singular fibres as the basic member

B E ~C'I~)' Thus we may assume ~:X ~ S admits a seetion o:S~ X,

with the eorresponding Weierstraß form
2 4 :JY - X -g2x -g:J

g2 E rCS,OCL:J)), g:J E rCS,OCL1
))

~ - gg-27g~ E rcs,OCL12
))

and by the formula for the eanonieal bundle

*0x - ~ - 1r (KS0L)

whieh impl1es :

and writing ~lniLi

K
S

~ -L Clinear equivalenee)
~

as above we have:

lniLi = -KS ' cl(Li ) - Ei

for any elliptie fibre spaee X~ S with singular fibres along Li and

trivial eanonieal bundle. There are only finitely many eombinations of

linear equivalenee elasses for Li whieh fulfill the eonditions above.

Given any E - lniEi which has the right linear equivalence class, there

are only finitely many possibilities for singular fibres by the theorem

above.

Now notiee there are only two possible birational elasses for S. In

fact, sinee hOCS,-3KS)' hOCS,-4Ks) and h O CS,-12KS) must all be positive, it

follows that S must be birational to
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a) IP2

b) E x IP1 ; E an elliptie eu~e.

In the seeond ease, we have g1(B»0, and it follows from general theorems

(compare {V2}, Proposition 8.2) that B is an etale fibre bundle, (i.e. no

singular fibres) so e(B)~O. The theorem now follows from the following

Lemma '8.2.: The number of possible types of singular fibres ovar~. (and by
1.

our formola for co(X), the euler number of X) is uniformly bounded for all

S' birstionally equivalent to S, i.e.

3 0 V S'E 'IJ(S) {
# possible singular } :s 0

fibres on X

Proof: Let S'~ S"~ S be a sequenee of blow-ups followed by, blow

downs. Let DeS' be a smooth, irreducible curve meeting each Li but none

of the points blown up , and let Li' denote thier proper transforms. Then

the proper transforrn of D meets each ~i' t and the corollary in 7.2. can be

-1applied to ~ (D). Thus it suffices to consider the induced fibrations
1over the exeeptional IP '5. These are either generically smooth and then

eontribute nothing to e(X), or are IP1X{Kodaira fibre}. In the latter case

this fibre type is determined by the components of L' meeting at the point

blown up (eompare the discussion of "collisions" in Miranda's article).

This discussion applies equally weIl to S' and S, so the lemma is proved.

Corollary 8.3.: Let ~:X ~ S be any elliptic 3-fold with c~(X)-O. Then

the conclusion of 8.1. holds.
IRProof: Sinee C1 -0, there is some finite covering X'~ X such that X'

has trivial canonical bundle. Thus 8.1. applies.

8.2. Discussion of an N-dimensional analogue

The Lemma we have just proved applies to higher dimensional varieties X,

assuming that X i5 normal. This implies that codim(singX)~2 which means we

can find a curve on X not meeting all exceptional divisors, and the corol­

lary of 7.2. ean be applied to the elliptic fibering over the curve. How­

ever, it does not seem 'So obvious that the other part of the argument is

true in higher dimensions.

Question: Are there at most finitely many birational equiva1ence c1asses of

(N-l)-dimensional algebraic varieties with
000h (W,-3KW) ' h (W,-4KW) and h (W,-12Kw) are all ~ 17
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If this were so then the theorem above holds for elliptie N·folds X with

trivial eanonieal bundle.

In another vien, the following seems guite plausible,

Question: Let X be an N-fold with trivial canonical bundle. Does X have a

deformation Y such thst Y has the structure of eillptlc fibre space.?

If the answer here were affirmative as weIl ss the question above it, the

following would follow formally:

Question: Let X be a"Hoishezon N-fold with trivial canonical bundle. 15

the euler number of X bounded from above and below?

The incerest in chis theorem i5 the general conjecture that there will

only be finitely many deformation families of N~folds with trivial eanon­

ieal bundle. This clearly would imply all of the above.
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§9. Examples of 3-folds with trivial eanonieal bundle

In this paragraph we give many examples of smooth algebraie 3-folds with

trivial eanonieal bundle, ineluding the two examples with the highest
3(lowest) known euler numbers. We use two methods, Fermat covers of Wand

elliptic 3-folds ovar 'pz defined with the help of a Weierstraß form.

9.1. Fermat covers

This is a eonstruction originally due to Hirzebruch, and studied in

detail in {H} for the dimension 3. Let H
l

, ... ,Hk be k hyperplanes in W3

1.. 2 L Jdefined by k linear forms 1.. 1 "" ,I..k ' The quotients /1.. 1 , •••• , k/~l

defiue global meromorphie functions on W3
• We can adjoin any roots of

these elements to the function field of W3
, and this Kummer extension

~(Xl/X ,x2/x ,x3/x ) [(L2/1.. 1)1/n, ... ,(Lk/1.. 1)1/n]
000

defines (the birational class of) an algebraic 3-fold X, whieh is a ram-
3 k-lified cover of W of degree n ,branched along the k planes H

1
,··· ,Hk

with branehing degree n along each. X has singularities where the arrange­

ment (the union of the k planes) has singularities, by whieh we mean

a) more than 3 of the H
i

meet at some point

or b) more that 2 of the H
i

meet in some line.

X ean be resolved by a smooth Y such that the following diagramm eommutes:

y-X

+ +
W3 _ 1P3

where W3 denotes some moniodal transformation of W3
• To eonstruet Y it is

sufficient to name some arrangement and an n~. This is what we do in this

section. In {H}, (atrocious!) formula for the characteristic numbers of Y

were given in dependance on the eombinatorial data of the arrangement and

n. For Y with trivial eanonieal bundle, however, the only non-vanishing

ehern number is the euler number, and this can often be ealeulated by
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ad-hoe methods, whieh we will do for the most part here.

To get trivial eanonical bundle, we eonsider arrangements with either

k-8 and n-2 or k-6 aud n-3. If the arrangement is in general position,

then the cover X will already be smooth, and is a smooth complete inter­

section (of Fermat hypersurfaees) of the types listed below. In this ease

also the euler numbers are well-known and easily caleulated:

k-8, n-2 (2,2,2,2) in ~7 e(X)--128

k-6, n-3 (3,3) in pB e(X)--144

To get interesting examples, we rnay allow canonical singularities which are

not terminal (see §2). These are singularities of the arrangements as fol­

lows:

~3

{
3-fold line
5-fold point

4-fold point

In addition, for n-2, a 4-fold point is an ordinary double point (whieh is

a terminal singularity), given by the equation

X2+y2+Z2+W2_0

and we ean use the small resolutions described by Briesko~n. These resolu­

tions are gotten by blowing down either of the rulings of the resolving

~lxWl. This process retains the property of trivial canonical bundle

(since the resolving set has codimension 2), but has the disadvantage that

the resolution need not be projective. In fact, it ean occur that the

resolving ~1 is homologous to zero, in which case the small resolution

cannot be Kaehler, so in particular not projective.

Example 9.1: Take an arrangement of 6 planes with 1,2 or 3 4-fold points.

The arrangement with 3 4-fold points, for example, is the arrangement of

the facet planes of a ,cube in ~3. Let yi be the (desingularisation of the

singular) Fermat cover for n-3, with i 4-fold points. The euler number can

be calculated as follows. Consider yi as adegeneration of a smooth (3,3)

complete intersection Y. Over each singular point of the arrangement lie 3

singular points, each being resolved by a cubic surface with euler number

9. In local coordinates each singularity has the form:

X3+y3+Z3+W3_0

which has Milnor number 16. It follows that the euler number increases by

24 per singular point, i.e. e(yl)--72, e(y2)_O, and e(y3)-72. yi has the

structure of elliptic 3-fold over a cubic surface. yl~ S is flat (i.e.

all fibres are one dimensional), but y2 and y3 are not (since they will

have cubic surfaces in the fibres). It i5 easy to describe the elliptic
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fibering on y1. Consider the diagramm
A

y1~ ~3

~ ~

S~ ~2 •

S is a cover of ~2 of degree 27, branched over the union of 4 lines in

general position in ~2. It is easy to see that the degeneracy locus on 5

*will be p (h) (h the hyperplane class on ~2) which i5 the proper transform

of the plane in ~3 through the 4-fold point and the line where H5 and H6

meet, where H5 and H6 are the two planes of the arrangement not passing

*through the singular 4-fold point. p (h) is the intersection of S with

another cubic 'surface. a smooth. irreducible curve C with euler number -18.

The degenerate fibre over every point of C is of type IV (in Kodaira's

list). So we ean check the calculation above. since

e(y1)-e(C).e(IV)-(-18)(4)--72.

Example 9.2: Take an arrangement of 8 planes with 1.2 or 3 S-fold points.
i iLet Y be the (smooth) Fermat cover for n-2. with i 5-fold points. On Y

there are 4 singular points lying over each singular point ~f the arrange­

ment. In local coordinates these singularities are given by te following

two equations:

z~ + z~ + z5 + z: + z~ - 0

C1Z~ + e2z~ + C3Z5 + C4Z~ + e6z~ 0

One can compute the Milnor number of this singularity to be 9. On the
1other hand. each singular point on Y 1s resolved by a (2,2) complete

intersection in ~4, which has eu1er number 8. Therefore the euler number

will increase from ·128 by 16 ,per singular point. This yields:

e(y1)_ -64

e(y2)_ 0

e(y3)_ 64.

These examples also have the structure of elliptic fihre spaces. For

example, y1 fihres over the resolving surface S. which is a (2,2) cornplete

intersection in ~3 (a.de1 Pezzo surface). The degeneracy locus on S is

seen to be the intersection of S wth 3 other quadrics in ~3, a curve with 3

components, each one of which has euler number -8. These meet 3 at a time

at the 16 inverse images of a point pES. The singular fibres are of type

12 over the smooth locus of the curve C. Over the singular points (points

of intersection of 3 cornponents). the singular fibres look as fol10ws:



This fibre is not in Kodaira's list. This is to be expected, since the

degeneracy locus is not anormal crossings divisor. This exotic fibre has

the eu1er number 5, so we can check the calcu1ation above,

e(yl) - 3(-8-16)2 + 16·5 - -144 + 80 - -64.

Example 9.3: Consider an arrangement of 8 planes with one or two 3-fold

lines and otherwise in gener~l position. Let yi be the (smooth) Fermmat

cover for n-2, covering the arrangement with i singular lines. We have

e(yl) _ -48, e(y2) - -96

yi fibres onto a W1 with fibre a K3-surface. yl has 96 A1 -singularities in

the fibres, y2 has 144.

Example 9.4: This example is due to Hirzebruch. Using small resolutions of

singu1arities covering 4-fo1d points for n-2, we can also achieve Ky triv-

ia1. Let L be the arrangement consisting of the 8 facet planes of the

octahedron. Ihis arrangement has 12 4-fo1d points. There are 12·8 - 96

singularities which have Milnor number 1. The small resolution therfore

increases the euler number by 2/singu1arity, yielding

e(Y) - -128 + 192 - 64.

Example 9.5: We can combine 5-fold points and 4-fold points (n-2) , using

big and little resolutions, respectively, to get smooth (but mabye not

projective) 3-folds with trivial canonica1 bund1e. For examp1e, take the 6

facet planes of the cube, add the plane at infinity and one further plane

passing through 3 of the corners of the cube. This is an arrangement with

3 5-fold points and 3 4-fold points. If Y is the smooth Fermat cover (with

~Oy) we have e(Y)-160, and blowing down the terminal W1 xW 1 ,S to W1 ,s, we

get the small resolution Y'. Here we have e(Y')-112, which is to date the

highest known euler number for a 3-fold with trivial canonical bundle. Y'

also has the structure of elliptic fibre space over the same (2,2) complete

~ntersection. This example 1s in fact a further degeneration of example 2.

Examp1e 9.6: Dur final examp1e of Fermat cover combines all of the above.

Take the arrangement AI(lO) and delete 2 of the symmetry planes through

opposite edges of the tetrahedron. This is an arrangement with the follow­

ing data (notations as in (H); t (1)- #q-fo1d lines, t - #p-fold points);
q p
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k-8 t 3(1)-4 t -4 t s 3-8 t s 2-16
S , ,

t 2(1)-16 t -1 t 4 2-6
4 ,

t 3-4·

Let Y be the Fermat cover for n-2. Then e(Y) - 96, and K.y contains on1y

the reso1ving ~1xW1,S of the 4-fo1d point. B10wing down eaeh ~1xW1 in one

direction or the other, we get a 3-fold Y' with trivial eanoniea1 bund1e

and e(Y') - 80. Y' also has the strueture of elliptic fibre space.

9.2. Elliptic 3-folds over ~2 with ~- 0x

In this section we deseribe elliptie 3-folds over ~2 with trivial eanon­

ieal bundle. We do not want to blow up ~2 to get a good model, so we are

looking for elliptic 3-folds with either

a) h C W2 is irredueible

er b) The singularities over the double points of h have

small resolutions.

From the eonsiderations above the Weierstraß form will be:

L-3H, H hyperplane class on ~2

g2E HO(W2 ,12H), g3E HO(W2 ,18H)

and ß - gg-27g~ E HO(W2 ,36H).

SO we are looking for polynomials of degrees 12, 18 and 36, respeetively.

The singular fihres are determined by the order of vanishing of g2, g3 aud

ß (see 3.6). Consider first ease b), i.6. h is reducible,

~ - \nY1 + 2(rn+6)~I* + 2~II + 3~III + 4~IV + 8~IV* + 9~III* + lO~II*
~iu... n m

where ~ is the union of eomponents over which the singular fibres are of

type x. ,Small resolutions exist for the following eollisions:

eellision resolving fihre euler #

* 1 2 :I11 & 1 0 0--0--0 4

* 1 2 :3 4 211 & IV
0--0--0--0--0 6

11 & IV 1 2
0--0 3

* 1 2 4 2IV & 10 o--x--o--o 5

* 1 2 :3 2 1111 & 1 0 o--x--o--o--o 6
I

k1
& I

k2
I

k 1tl2_k 1 ±lc2
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We insert here a general consideration. Let $ be the functiona1 invariant

of an e11iptic.3-fo1d Y over a surface S. If t~const., then ~ has zeros,

therefore also poles, which implies Y has fibres of type I k . If the sing-

ular locus ~ contains two components Li and ~2. such that along ~i we have

* *fibres of type I
k

, and along ~2 we have fibres of type 111,111 or IV,IV

*11,11 , then the functional invariant 1 will be completely indeterminant at

the intersection points of ~i and ~2' To get a smooth model, one would

have to modify S.

Applying this general eonsideration to the ease at hand, we see that we

must have either

A) All fibres of type I
k

OR B) .1'-eons t.

We now list the possible eollisions, and the imp1ications of the above

Fibres of types 11, IV and r*
o

Hare, sinee t-eonst., neeessarily 1a O J g2-Ü.

go - fII'(fIV)2'(fI*)O
o

6. - - 27 (f ) 2. (f )
4 . (f *) 6

11 IV I
o

*with 2degfII + 4deg~IV + 6deglo-36 and the f X are irreducible.

ex.# degfrr degfrv degfr * e(X) ex.# degflr degfrv degfr* e(X)

-- -- --
1 18 - - -540 19 6 3 2 -156

2 16 1 ~ -456 20 5 5 1 -168

3 15 - 1 -408 21 5 2 3 -132

4 14 2 - -384 22 4 7 - -196

5 13 1 1 -336 23 4 4 2 -132

6 12 - 2 -300 24 4 1 4 -120

7 12 3 - - 32l. 25 3 - 5 -120

8 11 2 1 -276 26 3 6 1 -156

9 10 4 - -244 27 3 3 3 -108

10 10 1 2 -240 28 2 8 - -204

11 9 - 3 -162 . 29 2 5 ? -120

12 9 3 1 -228 30 2 2 4 -96

13 8 5 - -240 31 1 7 1 ~156

14 8 2 2 -192 32 1 4 3 -106

15 7 4 1 -192 33 1 1 5 -96

16 7 1 3 -182 34 - 3 4 -84

17 6 - 4 -132 35 - 6 2 -120

18 6 6 - -216 36 - 9 - -216

37 - - 6 -108



*Fibres of types II & IV

Here again we have g2-0, ga- f II · (f *)4 ß (f
II

)2'(f
IV

*)8.
IV '

examp1e # deg f
lI I deg fIVU eCX) I-

38. 2 4 ·60

39. 6 3 -lOB

40. 10 2 ·204

41 14 1 -348

Fibres of type *III & I o

examole # de~ f de~ f 1* euler (X)
J.J.J.

0

42 2 5 -84

43 4 4 -B4

44 6 3 -108

45 B 2 -156

46 10 1 -228

47 12 0 -324

. Fibres of type I
k

ex # de~ f # cusos # double Doints e(X)
..L1

48 36 216 0 -756_

49 36 216 36 -648

50 36 216 72 -540

51 36 216 lOB -432

52 36 216 144 -324

We just exp1ain the last table. Here we are posed with the fo11owing prob­

lem. Given a polynomial 11 of degree 36 in the projective plane, are there

polynomials of degree 12 and 18, respective1y. relatively prime to ß, such

that

l1-g~.27g3?

Furthermore, in order to get a smooth model. we must require the following

(see {Mi} ,2.1.):

1) ga must be irreducible

2) where 11 1s singular. we must have

a) the zero set of g2 and ga meet transversally
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ß) ga is smooth there.

This problem 1s closely related to the problem of finding all elliptic

surfaces S over Wt with only fibres of type I
k

and X(S)-3. Indeed, restric-

ting an elliptic 3-fold over W2 to some line gives an elliptic surface S

over Wt with euler number 36, i.e. X(S)-3. For an elliptic surface over Wt

with 53 singular fibres we have X(S)~2, (see (S-H}) so the reduced d1scrim­

inant must have degree ~4. But we can say more about ~:

Lemma 9.1.: ß is singular where g2-ga-O.

Proof: We are assuming g3 i8 irreducible and smooth at g2-g3-0. Therefore

in local coordinates we have:
v

g3-{Xt-O), g2-{X2-0}
3v 2

so ~ - X2 -27Xt and ß has a (3v,2)-cusp at g2-g3-0.

Remark: Here we are allowing the 1-invariant to have points of

indeterminancy (see §3.6.).

Now let G2 , G3 and D denote the reduced divisors of g2, g3 and ~, respec­

tively. Then, counting multiplicitYI D must have at least 216 CU8pS, so by

the Pluecker formu1a l (assuming D"is irreducible for the moment)

g(D) - (d-l~(d-2) - 216 ~ 0 ~ d·~ 24.

So if D is irreducible, then ~ i8 automatica11y reduced. We can refine

this 1ine of argument. Let 6 - lni6i' be the decomposition of 6 into

irreducible, redueed faetors. Let 0i-# eusps on 6 il di-deg ß i · Then

~ 2 d-1g(ß i ) - [( i 2 )-oi] ~ 0

(1) (di-l)(di·l)~ 532.

We also have: (2) lnidi'- 36. There are on1y finiteiy many s01-

utions to (1) & (2).

of which we now give .

The most obvious one is k-l," d t-36, nt-I, an exarnple

.Example 9.7: Let w,t be inhomogenous coordinates on WZ . Consider a Fermat

quadrie and cubic:

gz - w2 + t
2 + 1

g3 - w3 + t
a + 1

Claim: ß - gg . 27g~ is an irreducible sextic with 6 cusps at the lnter­

section points of {gz-O} and (g3-0 ), and otherwise smoo~h.
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Since n has 6 cusps, it fol-
f

Proof: Since gz and g3 are irreducible, relatively prime and meet trans~

versally, we have" in local coordinates Xl -{gz-O} and Xz - {g3-0}. Then

n has a simple cusp at thier intersections.

lows from the Pluecker formula that

n is reducible ~ n -{line U quintic}

since quadrics can have no cusps, cubics at most one, quartics at most 3

and quintics at most 6. We have:

8ß _ 3g~ ~
ax ax

~ 3g2.~. 54.g~~
ay 2 ay vay

8ß a6.
Setting P-ax . 8y , we get

P - (x-y)(6g~ - l62g3 (x+y) - (X-Y)'Pl'

If Ä is the union of a quintic and a line, there will be 5 singular points

(-points of intersection). It is easy to see this eannot occur: If x-y,
86. 86.

then äx - äy i8 a polynomial of degree 5, which therefore has at most 4

zeroes on common with 6 (euclidean algorithm), unless It divides 6. But

this is absurd:

::::::> af _ 1 f - °8y ,

Then we have

a contradiction. So ß is irreducible. In fact, it is smooth except for

the 6 cusps. To see this, wr1te

a6. _ x(6g~ - l62g3x) - X.P2
8x

Ä - 1/6g2 P2 - 27g5 + 27gzg3x

1/6g2 P2 + 27g3 (g2X -g3)'

From this, if 6 - P2 - 0, then

g2x - g3

The reader may check that this condition implies x-O, via symmetry y-O,

which does not lie on 6.-0. So Ä is smooth except for cusps.

Now consider the 6-th power map:
cp:1P2__ 1P2

(ZO,Zl,22) ~ (zg,z~,z~)

Then cp-l(6), which we also denote by 6, is a plane curve of degree 36, with

216 cusps (since the cusps do not lie on the coordinate axi) and otherwise

smooth (since the sextic Ä meets the coordinate axi transversally). The

Weierstraß elliptic 3-fold defined by 6. i8 smooth (compare the last remark

in {Mi}, p.132). It has fibres of type 1 1 over 6., which 1s a curve of
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genus 379, which makes for the euler number -756. 1t follows that the

elliptic 3-fold Y has e(Y)--756. We may modify this by taking different

irreducib1e g2, go's. If A (the sextic in the plane) has A double points

(As4) in addition to the 6 cusps, then ~-1(A) will have 36'A double points

(assuming the double points do not lie on the coordinate axi). We the get

an e11iptic 3-fo1d over W2
, which is smooth if g2 and go both vanish at the

double points and go is smooth there, with fibres of type 12 over the doub­

le points of A.
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