The hard Lefschets theorem for concave

and convex algebraic manifolds

Siegmund Kosarew

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3
SFB 170 "Geometrie und Analysis" Mathematisches Institut der Universität
Bunsenstraße 3/5
D-3400 Göttingen
Federal Republic of Germany

The hard Lefschetz theorem for concave and convex algebraic manifolds

by

Siegmund Kosarew

Sonderforschungsbereich 170 "Geometrie und Analysis"
 Mathematisches Institut der Universität
 Bunsenstraße 3/5
 D-3400 Göttingen

Federal Republic of Germany

In this note we want to establish the hard Lefschetz theorem for the cases of concave and convex algebraic manifolds over \mathbb{C}. This classes of varieties admit a nice Hodge theory for the singular cohomology groups $H^{n}(U, C)$ with certain restrictions on n. "Nice" means that we have a behavior just like in the compact smooth case (see for instance [BK] ${ }_{1}$, $\left.[\mathrm{BK}]_{2},[\mathrm{KK}]\right)$. The results are the following

Theorem I (hard Lefschetz in the concave case). Let X be an irreducible projective C-scheme, $\mathrm{Y} \subset \mathrm{X}$ a closed subscheme such that $\mathrm{U}:=\mathrm{X} \backslash \mathrm{Y}$ is smooth and let U^{an} be the associated complex manifold. If $\mathscr{L} \in \mathrm{Pic}(\mathrm{X})$ is an ample line bundle on X with first Chern class $\omega \in \mathrm{H}^{2}\left(\mathrm{X}^{\text {an }}, \mathbb{C}\right)$, then there is a natural isomorphism

$$
\mathbf{L}^{\mathrm{r}}: \mathrm{H}^{\operatorname{dim} \mathrm{X}-\mathrm{r}}\left(\mathrm{U}^{\mathrm{an}}, \mathbb{C}\right) \longrightarrow \mathrm{H}_{\mathrm{c}}^{\operatorname{dim} \mathrm{X}+\mathrm{r}}\left(\mathrm{U}^{\mathrm{an}}, \mathbb{C}\right)
$$

for each $\mathrm{r} \geq \operatorname{dim} \mathrm{Y}+1$ which, composed with the canonical map $\mathrm{H}_{\mathrm{c}}^{*}\left(\mathrm{U}^{\mathrm{an}}, \mathbb{C}\right) \longrightarrow \mathrm{H}^{*}\left(\mathrm{U}^{\mathrm{an}}, \mathbb{C}\right)$, is the r -fold cup product with $\omega \mid \mathrm{U}^{\mathrm{an}}$. Moreover, this map induces bijections

$$
L^{r}: H^{j}\left(U^{a n}, \Omega^{i}\right) \longrightarrow H_{c}^{j+r}\left(U^{a n}, n^{i+r}\right)
$$

for $\mathrm{i}+\mathrm{j}<\operatorname{codim}(\mathrm{Y}, \mathrm{X})-1$.

Theorem II (hard Lefschetz in the convex case). Let X be an irreducible smooth projective $\mathbb{C}-$ scheme, $\mathrm{Y} \subset \mathrm{X}$ an effective divisor and $\mathrm{U}:=\mathrm{X} \backslash \mathrm{Y}$. We assume that the normal bundle $\mathrm{N}_{\mathrm{Y} \mid \mathrm{X}}$ of Y in X is k -ample in the sense of Sommese. If $\mathscr{L} \in \operatorname{Pic}(\mathrm{X})$ is an ample line bundle on X with characteristic class ω, then the r -fold cup product with $\omega \mid \mathrm{U}^{\text {an }}$ induces an isomorphism

$$
L^{r}: H_{c}^{\operatorname{dim} X-r}\left(U^{a n}, \mathbb{C}\right) \longrightarrow H^{\operatorname{dim} X+r}\left(U^{a n}, \mathbb{C}\right)
$$

for each $\mathbf{r} \geq \mathbf{k}+1$.
Moreover, the induced mappings

$$
L^{r}: H_{c}^{j}\left(U^{a n}, n^{i}\right) \longrightarrow H^{j+r}\left(U^{a n}, \Omega^{i+r}\right)
$$

are bijective for $\mathrm{i}+\mathrm{j} \leq \operatorname{dim} \mathrm{X}-\mathrm{k}-1$.

Corollary. In the situation of Theorem II, the canonical maps

$$
\begin{aligned}
& H_{c}^{n}\left(U^{a n}, \mathbb{C}\right) \longrightarrow H^{n}\left(U^{a n}, \mathbb{C}\right) \\
& H_{c}^{j}\left(U^{a n}, \Omega^{i}\right) \longrightarrow H^{j}\left(U^{a n}, \Omega^{i}\right)
\end{aligned}
$$

are injective for $\mathrm{n} \leq \operatorname{dim} \mathrm{X}-\mathrm{k}-1$ resp. $\mathrm{i}+\mathrm{j} \leq \operatorname{dim} \mathrm{X}-\mathrm{k}-1$.

Some remarks to the proofs of Theorem I, II: For Theorem I we give two proofs. The first one depends on results obtained in [KK] whilst the second one, which is rather short, reduces the assertion to the hard Lefschetz theorem for intersection cohomology (compare [BBD]). Theorem Π is shown by induction on \mathbf{k}. The case $\mathbf{k}=0$ follows quite easily from [N].

Acknowledgements. The results of this paper were established during a stay at the Max-Planck-Institut für Mathematik in Bonn. Special thanks go to T. Ohsawa with whom I had many fruitful discussions about these topics. Moreover, I want to thank also H. Flenner who originally asked me about the validity of a hard Lefschetz theorem in the framework of concave and convex algebraic manifolds.

1. Comparing cohomology and intersection cohomology

Let X denote a pure dimensional reduced complex space and \mathscr{A} the intersection cohomology complex associated to the constant sheaf \mathbb{C}_{X} on X with respect to a fixed perversity p. Adopting the notations as in the book [B], we take a stratification
$X_{.}=\left(X_{2} \supset X_{3} \supset \ldots\right)$ of X such that

$$
\mathrm{U}_{\mathbf{k}}:=\mathrm{X} \backslash \mathrm{X}_{\mathrm{k}}
$$

and

$$
S_{\mathrm{m}-\mathrm{k}}:=\mathrm{U}_{\mathrm{k}+1} \backslash \mathrm{U}_{\mathrm{k}}=\mathrm{X}_{\mathrm{k}} \backslash \mathrm{X}_{\mathrm{k}+1}, \quad \mathrm{~m}:=\operatorname{dim}_{\mathbb{R}} \mathrm{X},
$$

is a pure real (m - k)-dimensional manifold or empty. Moreover, let

$$
\begin{aligned}
& \mathrm{j}_{\mathrm{k}}: \mathrm{U}_{\mathrm{k}} \longrightarrow \mathrm{U}_{\mathrm{k}+1} \\
& \mathrm{i}_{\mathrm{k}}: \mathrm{S}_{\mathrm{m}-\mathrm{k}} \longrightarrow \mathrm{U}_{\mathrm{k}+1}
\end{aligned}
$$

be the canonical inclusions.
(1.1) Lemma. For the natural maps

$$
\begin{aligned}
& \alpha_{\mathrm{k}}^{\nu}: \mathrm{H}^{\nu}\left(\mathrm{U}_{\mathrm{k}+1}, \mathscr{A}\right) \longrightarrow \mathrm{H}^{\nu}\left(\mathrm{U}_{\mathrm{k}}, \mathscr{\mathscr { f }}\right) \\
& \beta_{\mathrm{k}}^{\nu}: \mathrm{H}_{\mathrm{c}}^{\nu}\left(\mathrm{U}_{\mathrm{k}}, \mathscr{f}\right) \longrightarrow \mathrm{H}_{\mathrm{c}}^{\nu}\left(\mathrm{U}_{\mathrm{k}+1}, \mathscr{f}\right)
\end{aligned}
$$

the following assertions hold:
(i) $\quad \alpha_{\mathrm{k}}^{\nu}$ is bijective for $\nu \leq \mathrm{p}(\mathrm{k})$ and injective for $\nu=\mathrm{p}(\mathrm{k})+1$,
(ii) β_{k}^{ν} is bijective for $\nu \geq \mathrm{p}(\mathrm{k})+\mathrm{m}-\mathrm{k}+2$ and surjective for $\nu=\mathrm{p}(\mathrm{k})+\mathrm{m}-\mathrm{k}+1$.

Proof. Part (i) has already been established in $[\mathrm{BK}]_{2}$, section 3 . We only mention that it is a formal consequence of the distinguished triangle (in the derived category)

and the vanishing

$$
\mathscr{H}^{\nu}\left(\mathrm{i}_{\mathbf{k}}!\mathscr{f}\right)_{\mathrm{x}}=0, \text { for } x \in \mathrm{~S}_{\mathrm{m}-\mathbf{k}} \text { and } \nu \leq \mathrm{p}(\mathrm{k})+1 .
$$

For the proof of (ii), we use the triangle

and the vanishing

$$
\mathscr{H}^{\nu}(\mathscr{O})=0 \quad \text { for } j>p(k),
$$

see for instance [B] p. 86. The spectral sequence

$$
\mathrm{E}_{2}^{\mathrm{i}, \mathrm{j}}=\mathrm{H}_{\mathrm{c}}^{\mathrm{i}}\left(\mathrm{~S}_{\mathrm{m}-\mathrm{k}}, \mathscr{\not} \mathscr{f}^{\mathrm{j}}(\mathscr{H})\right) \Rightarrow \mathrm{H}_{\mathrm{c}}^{\nu}\left(\mathrm{S}_{\mathrm{m}-\mathrm{k}}, \not \mathscr{O}^{\prime}\right)
$$

gives now

$$
\mathrm{H}_{\mathrm{c}}^{\nu}\left(\mathrm{S}_{\mathrm{m}-\mathrm{k}}, \mathscr{\prime}\right)=0 \quad \text { for } \quad \nu>\mathrm{p}(\mathrm{k})+\mathrm{m}-\mathrm{k} .
$$

Since $\mathrm{H}_{\mathrm{c}}^{\boldsymbol{\nu}}\left(\mathrm{U}_{\mathrm{k}+1},\left(\mathrm{j}_{\mathbf{k}}\right)_{!}\left(\mathrm{j}_{\mathbf{k}}\right)^{!} \mathscr{\mathscr { C }}\right)=\mathrm{H}_{\mathbf{c}}^{\boldsymbol{\nu}}\left(\mathrm{U}_{\mathbf{k}}, \mathscr{\mathscr { C }}\right)$ for all ν, the assertion follows.
(1.2) Corollary. Let $\mathrm{n}_{0} \geq 2$ be an integer such that

$$
\mathrm{U}_{2}=\mathrm{U}_{3}=\ldots=\mathrm{U}_{\mathrm{n}_{0}} \subset \mathrm{U}_{\mathrm{n}_{0}+1} \subset \ldots .
$$

Then, for the natural maps

$$
\begin{aligned}
& \alpha^{\nu}: \mathrm{I}_{\mathrm{p}} \mathrm{H}^{\nu}(\mathrm{X}, \mathbb{C}) \longrightarrow \mathrm{H}^{\nu}\left(\mathrm{U}_{\mathrm{n}_{0}}, \mathbb{C}\right) \\
& \beta^{\nu}: \mathrm{H}_{\mathrm{c}}^{\nu}\left(\mathrm{U}_{\mathrm{n}_{0}}, \mathbb{C}\right) \longrightarrow \mathrm{I}_{\mathrm{p}} \mathrm{H}_{\mathrm{c}}^{\nu}(\mathrm{X}, \mathbb{C})
\end{aligned}
$$

the following holds:
(i) $\quad \alpha^{\nu}$ is bijective for $\nu \leq \mathrm{p}\left(\mathrm{n}_{0}\right)$ and injective for $\nu=\mathrm{p}\left(\mathrm{n}_{0}\right)+1$,
(ii) β^{ν} is bijective for $\nu \geq \mathrm{p}\left(\mathrm{n}_{0}\right)+\mathrm{m}-\mathrm{n}_{0}+2$ and surjective for $\nu=\mathrm{p}\left(\mathrm{n}_{0}\right)+\mathrm{m}-\mathrm{n}_{0}+1$.
(1.3) Proposition. Let X be a pure dimensional reduced complex space and Y C X a closed complex subspace such that $\mathrm{X} \backslash \mathrm{Y}$ is smooth. Then we have for the natural maps ${ }^{*}$)

$$
\begin{aligned}
& \alpha^{\nu}: \mathrm{IH}^{\nu}(\mathrm{X}, \mathbb{C}) \longrightarrow \mathrm{H}^{\nu}(\mathrm{X} \backslash \mathrm{Y}, \mathbb{C}), \\
& \beta^{\nu}: \mathrm{H}_{\mathrm{c}}^{\nu}(\mathrm{X} \backslash \mathrm{Y}, \mathbb{C}) \longrightarrow \mathrm{IH}_{\mathrm{c}}^{\nu}(\mathrm{X}, \mathbb{C})
\end{aligned}
$$

the following assertions:

[^0](i) $\quad a^{\nu}$ is bijective for $\nu \leq \operatorname{codim}_{\mathbb{C}}(\mathrm{Y}, \mathrm{X})-1$ and injective for $\nu=\operatorname{codim}_{\mathbb{C}}(\mathrm{Y}, \mathrm{X})$,
(ii) β^{ν} is bijective for $\nu \geq \operatorname{dim}_{\mathbf{C}} \mathbf{X}+\operatorname{dim}_{\mathbb{C}} \mathbf{Y}+1$ and surjective for $\nu=\operatorname{dim}_{\mathbb{C}} \mathbf{X}+\operatorname{dim}_{\mathbb{C}} \mathbf{Y}$.

Proof. We take a complex-analytic Whitney stratification X. such that $Y=X_{n_{0}}$ with $\mathrm{n}_{0}=2 \operatorname{codim}_{\mathbb{C}}(\mathrm{Y}, \mathrm{X})$. Since the middle perversity is given here by $\mathrm{p}(\mathrm{k})=(\mathrm{k}-2) / 2$, the assertion follows from (1.2).

2. Proof of the hard Lefschetz theorem in the concave case

Our first proof goes by induction with respect to $\operatorname{dim} Y$. So let us assume $\operatorname{dim} Y=0 . \operatorname{In}$ this case we take a resolution

$$
\pi: \tilde{\mathrm{X}} \longrightarrow \mathrm{X}
$$

where \mathbb{X} is smooth and proper over \mathbb{C} and π is an isomorphism outside Y. Let $\mathrm{E}:=\pi^{-1}(\mathrm{Y})$ denote the exceptional divisor. Moreover, we fix an ample divisor D^{\prime} on \mathbb{X} such that $\operatorname{supp}\left(\mathrm{D}^{\prime}\right)=\pi^{-1}(\operatorname{supp}(\mathrm{D})) \cup E$ and denote by $\eta \in \mathrm{H}^{2}(\tilde{X}, \mathbb{C})$ the class of $\left.\mathrm{D}^{\prime} .^{*}\right)$ For simplicity we assume that $\eta|\mathrm{U}=\omega| \mathrm{U}$. Then there is a natural commutative diagram with exact lines

${ }^{*}$) We may assume $\mathscr{L} \cong O_{\mathrm{X}}(\mathrm{D})$ with an effective divisor D .
if $\mathrm{r} \geq 1$. The two vertical maps are bijective. This follows from [N] Prop. (5.1), (6.1). By the commutativity of (I), we obtain immediately a projection $H^{n+r}(\mathbb{X}) \xrightarrow{p} H_{c}^{n+r}(U)$ whose composition with the natural map $H_{c}^{n+r}(U) \longrightarrow H^{n+r}(U)$ is the usual restriction from X to U. By construction $p \circ\left(\eta^{r} U\right)$ factorizes over $H^{n-r}(U)$ which gives us our desired bijection

$$
\mathrm{L}^{\mathrm{r}}: \mathrm{H}^{\mathrm{n}-\mathrm{r}}(\mathrm{U}) \xrightarrow{\sim} \mathrm{H}_{\mathrm{c}}^{\mathrm{n}+\mathrm{r}}(\mathrm{U}), \quad \mathrm{r} \geq 1
$$

Now assume $\operatorname{dim}(\mathrm{Y})>0$. Let D be very ample, $\mathscr{L}=0_{\mathrm{X}}(\mathrm{D})$ (which is not a restriction) and $X \longrightarrow \mathbb{P}_{\mathbb{C}}^{N}$ the induced embedding. We fix a general hyperplane section X^{\prime} of X such that for $\mathrm{Y}^{\prime}:=\mathrm{X}^{\prime} \cap \mathrm{Y}, \mathrm{U}^{\prime}:=\mathrm{X}^{\prime} \backslash \mathrm{Y}^{\prime}$ the following holds
(i) U^{\prime} is smooth,
(ii) $\quad \operatorname{dim} \mathrm{Y}^{\prime}=\operatorname{dim} \mathrm{Y}-1, \operatorname{codim}\left(\mathrm{Y}^{\prime}, \mathrm{X}^{\prime}\right)=\operatorname{codim}(\mathrm{Y}, \mathrm{X})$,
(iii) the restriction map $H^{\nu}(U) \longrightarrow H^{\nu}\left(U^{\prime}\right)$ is bijective for $\nu \leq \operatorname{codim}(\mathrm{Y}, \mathrm{X})-1$.

These properties can be achieved, compare $[\mathrm{BK}]_{2}$ section 3. By induction hypothesis, we have an isomorphism

$$
\mathrm{L}^{\mathrm{r}}: \mathrm{H}^{\operatorname{dim} X^{\prime}-\mathrm{r}}\left(\mathrm{U}^{\prime}\right) \xrightarrow{\sim} \mathrm{H}_{\mathrm{c}}^{\operatorname{dim} X^{\prime}+\mathrm{r}^{\prime}\left(\mathrm{U}^{\prime}\right)}
$$

for $\mathrm{r} \geq \operatorname{dim} \mathrm{Y}^{\prime}+1$ (where we take $\mathscr{L}^{\prime}:=\mathscr{L} \mid \mathrm{X}^{\prime}$ as an ample line bundle). Now we consider the composition

for $\mathrm{r} \geq \operatorname{dim} \mathrm{Y}+1$. By property (iii), the maps a and b are bijective for this range and consequently we get an isomorphism on U

$$
L^{\mathrm{r}}: \mathrm{H}^{\operatorname{dim} \mathrm{X}-\mathrm{I}}(\mathrm{U}) \longrightarrow \mathrm{H}_{\mathrm{c}}^{\mathrm{dim}} \mathrm{X}+\mathrm{r}(\mathrm{U}) .
$$

The interpretation of $L^{\mathbf{r}}$ as an r-fold cup product with $\omega \mid \mathrm{U}$ is seen also by induction and using the natural commutative diagram (the horizontal maps are Gysin homomorphism8)

Our second proof is based on the following commutative diagram ($\mathrm{n}:=\operatorname{dim} \mathrm{X}$)

By the choice of r and (1.3), the maps α and β are bijective. So our Lefschetz theorem is equivalent to that in intersection cohomology in the appropriate range.

The second statement in Theorem I can be verified by taking into account the fact that the differentials $d_{r}^{i, j}$ in the spectral sequence

$$
E_{1}^{i, j}=H^{j}\left(U, \mathrm{R}^{\mathrm{j}}\right) \Rightarrow \mathrm{H}^{\mathrm{i}+\mathrm{j}}(\mathrm{U}, \mathrm{C})
$$

are zero for $\mathrm{r} \geq 1, \mathrm{i}+\mathrm{j}<\operatorname{codim}(\mathrm{Y}, \mathrm{X})-1$ and, by duality, also those of

$$
c^{E_{1}^{i, j}}=H_{c}^{j}\left(U, \Omega^{i}\right) \Rightarrow H_{c}^{i+j}(U, C)
$$

for $\mathrm{r} \geq 1, \mathrm{i}+\mathrm{j}>\operatorname{dim} \mathrm{X}+\operatorname{dim} \mathrm{Y}+1$. Moreover, ω induces in a natural way a cohomology class in $H^{1}\left(U, \Omega^{1}\right)$ which we denote again by $\omega \mid U$. This class is algebraic, so all $d_{I}^{1,1}$ vanish on it and therefore $\omega^{T} U_{-}$is compatible with the two spectral sequences (which carry a multiplicative structure). The Hodge filtration is respected by $\mathbf{L}^{\mathbf{r}}$

$$
L^{r}: F^{8}\left(H^{n-r}\right) \longrightarrow F^{s+r}\left(H_{c}^{n+r}\right), \quad s \geq 0
$$

modulo shift by r. Obviously, it suffices to show that this map is bijective for $r>\operatorname{dim} \mathrm{Y}+1$ and all 8 . Now this may be seen by induction on $\operatorname{dim} \mathrm{Y}$ as above (where $Y=\phi$ is the first step here) and the calculation in section 4 of [KK] together with the weak Lefschetz result in $[\mathrm{BK}]_{2}$ Prop. (3.1.4).

3. Proof of the hard Lefschetz theorem in the convex case

We proceed by induction on k. In the case $k=0$, the complement U of Y in X is a 1-convex complex manifold, so it has a compact exceptional analytic subset E C U . From
this we may conclude that the natural maps between cohomology groups (with C-coefficients)

$$
\begin{aligned}
& H_{E}^{n-r}(U) \longrightarrow H_{c}^{n-r}(U), \\
& H^{n+r}(U) \longrightarrow H^{n+r}(E)
\end{aligned}
$$

are bijective for every $r \geq 1(n=\operatorname{dim} U)$. In fact the first map is the Poincaré dual of the second one. For this we have the identifications with de Rhan cohomology

Now φ^{ν} is bijective for $\nu \geq \mathrm{n}+1$ by a spectral sequence argument together with the fact that

$$
H^{j}\left(U, \Omega_{U}^{i}\right) \longrightarrow H^{j}(U),\left(\Omega_{U}^{i}\right){ }^{\wedge} E_{)}
$$

is an isomorphism for all i and $\mathrm{j} \geq 1$. The result of [N] Prop. (6.1) tells us that

$$
\omega^{\mathrm{r}} \mathrm{U}: \mathrm{H}_{\mathrm{E}}^{\mathrm{n}-\mathrm{r}}(\mathrm{U}) \longrightarrow \mathrm{H}^{\mathrm{n}+\mathrm{r}}(\mathrm{E})
$$

is always bijective which implies immediately the assertion.

Now let $\mathrm{k} \geq 1$. We want to use induction by taking "good" hyperplane sections D on X with $\mathscr{L} \cong 0_{\mathbf{X}}(\mathrm{D})$. We consider the natural commutative diagram

where $D_{U}:=U \cap D$ and a is the restriction map with the Poincaré dual b. It is no restriction to assume that $\mathrm{N}_{\mathrm{Y} \cap \mathrm{D} \mid \mathrm{D}}$ is (k-1)-ample on $\mathrm{Y} \cap \mathrm{D}$ (compare $[\mathrm{BK}]_{2}$ proof of (5.2)) and so $\omega^{\mathrm{r}-1} \mathrm{U}$ is bijective by induction. Moreover we have the following commutative diagram

which has exact lines by $[\mathrm{BK}]_{2}$ Prop. (5.2). Since $\mathrm{r} \geq 2$, the map $H^{n-r}(X) \longrightarrow H^{n-r}(D)$ is bijective and $H^{n-r}(Y) \longrightarrow H^{n-r}(Y \cap D)$ is still injective, see [GNPP] p. 85, Cor. 3.12 (iii). Consequently a and also b are bijections which gives the first assertion of Theorem II.

The second part of the statement can also be verified by induction on \mathbf{k}. The case $\mathbf{k}=0$ follows from [F] (1.6). The induction step is achieved by the same argument which was used in section 2, together with the E_{1}-degeneration results.

Proof of the corollary. This is a trivial consequence of the commuting diagram

(similarly for the second arrow in the assertion) together with Theorem II.

References

[BBD] Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100 (1982)
[BK] ${ }_{1}$ Bauer, I., Kosarew, S.: On the Hodge spectral sequence for some classes of non-complete algebraic manifolds. Math. Ann. 284, 577-593 (1989)
[BK] ${ }_{2}$ Bauer, I., Kosarew, S.: Some aspects of Hodge theory on non-complete algebraic varieties. Mathematica Gottingensis 38 (1989) (to appear in Proc. Conf. in Katata 1989 Taniguchi Found., Springer Lect. Notes in Math.)
[B] Borel, A. et al.: Intersection Cohomology. Progress in Math., Birkhäuser V., Boston-Basel-Stuttgart 1984
[F] Flenner, H.: Extendability of differential forms on non-isolated singularities. Invent. math. 94, 317-326 (1988)
[GNPP] Guillén, F., Navarro Aznar, V., Pascual-Gainza, P., Puerta, F.: Hyperrésolutions cubiques et descente cohomologique. Lect. Notes in Math. 1335, Springer V., Berlin Heidelberg New York London Paris Tokyo 1988
[KK] Kosarew, I., Kosarew, S.: Kodaira vanishing theorems on non-complete algebraic manifolds. Mathematica Gottingensis 18 (1989) (to appear in Math. Z. 1990)
[N] Navarro Aznar, V.: Sur la théorie de Hodge des variétés algébriques à
singularités isolées. In: Systèmes différentielles et singularités. Astérisque 130 (1985), 272-307

[^0]: ${ }^{*}$) Here we take the middle perversity.

