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In this note we want to establish the hard Lefschetz theorem for the cases of concave and
convex algebraic manifolds over € . This classes of varieties admit a nice Hodge theory for
the singular cohomology groups Hn(U,C) with certain restrictions on n . "Nice" means
that we have a behavior just like in the compact smooth case (see for instance [BK],

[BK],, [KK]). The results are the following

Theorem I (hard Lefschetz in the concave case). Let X be an trreducible projective
C—scheme, Y C X a closed subscheme such that U := X\Y is smooth and let U" be the

associated complez manifold. If ¢ € Pic(X) is an ample line bundle on X with first

Chern class w € H2(Xan,4:) , then there is a natural isomorphism

LT dem X—r(Ua.n’c) Hgim X+I(Uan,¢)



for each r 2 dim Y+1 which, composed with the canonical map
Hé(Uan,C) —H '(Ua‘n,f.) , 18 the 1—fold cup product with w| Uit

Moreover, this map tnduces bijections
L*: B 0') — B (U 01
for i+j < codim (Y, X)~1.

Theorem II (hard Lefschetz in the convex case). Let X be an irreducible smooth projective
C—scheme, Y C X an effective divisor and U := X\Y . We assume that the normal bundle
Ny X of Y in X isk—ample in the sense of Sommese. If ¥ € Pic(X) 1is an ample line
bundle on X with characteristic class w , then the r—fold cup product with w| U2" induces

an isomorphism

14:) _—

for each 12 k+1.

Moreover, the induced mappings
L' : B)(U*" ) — Bt (uRn o't
are bijective for i+j < dim X—k-1 .

Corollary. In the situation of Theorem 11, the canonical maps



Hy(U%",¢) — BY(U*,0),
H)(U* 0" — B (U0

are injective for n < dim X—k—1 resp. i+j < dim X—k—1.

Some remarks to the proofs of Theorem I, II: For Theorem I we give two proofs. The first
one depends on results obtained in [KK] whilst the second one, which is rather short,
reduces the assertion to the hard Lefschetz theorem for intersection cohomology (compare

[BBD]). Theorem II is shown by induction on k . The case k=0 follows quite easily from

[N].
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1. Comparing cohomology and iniersection cohomology
Let X denote a pure dimensional reduced complex space and & the intersection

cohomology complex associated to the constant sheaf €y on X with respect to a fixed

perversity p . Adopting the notations as in the book [B], we take a stratification



X, =(X;3X;3)..) of X such that
and
is a pure real (m—k)—dimensional manifold or empty. Moreover, let

iU = Upyy
' Spx = Urny

be the canonical inclusions.

(1.1) Lemma. For the natural maps

ap :BY(U , &) — BY(U,, #),
.qV v
'3‘1:‘ Hc(Uk’ G”)_"Hc(UlHl' )

the following assertions hold:
(i) ai’ i3 bijective for v < p(k) and injective for v = p(k)+1,
(ii) b"l: i3 bijective for v 2 p(k)+m—k+2 and surjective for v = p(k)+m-k+1 .

Proof. Part (i) has already been established in [BK],,, section 3. We only mention that it
is a formal consequence of the distinguished triangle (in the derived category)



# = ARGyl ¢

and the vanishing
| '
a?"(nk &), =0, for x€5 _, and v<p(k)+1 .

For the proof of (ii), we use the triangle

GGy ¢

y
['1\ /
A L F
(i) (&)

and the vanishing

HKY(#)=0 for j> p(k) ,
see for instance [B] p. 86. The spectral sequence

Eyd = H(S 4o #( )3 H (S, )

gives now

H:;(S #)=0 for v»> p(k)+m-k .

m—k’

Since H'c/(Uk ey ( _]k),(_]k)' o) = H:;(Uk, o) for all v, the assertion follows. g



(1.2) Corollary. Let n, 2 2 be an integer such that

Uy=U,=..=0_CU C

2= Vs ng - mgtl T

Then, for the natural maps

o¥ : 1_HY(X,€) — HY(U_ ,€)
p ng

i H‘C’(Uno,c) S— IpH‘c’(x,C)

the following holds:
(i) a” is bijective for v < p(no) and tnjective for v = p(n0)+1 .
(i) B is bijective for v > p(n0)+m—n0+2 and surjective for

v = p(n,)+m-n,+1.

(1.3) Proposition. Let X be a pure dsmenstonal reduced complez spaceand Y(CX a

*
closed complez subspace such that X\Y is smooth. Then we have for the natural maps )

a”  IHY(X,€) — BY(X\Y,0) ,
F”: B (X\Y,0) — IHY(X,C)

the following assertions:

*
) Here we take the middle perversity.
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(i) o is bijective for v < codimc(Y,X)—l and injective for v = codimc(Y,X) ,
(ii) BY is bijective for v > dimcx + dimCY + 1 and surjective for

Proof. We take a complex—analytic Whitney stratification X. such that Y =X 1 with
0

ng = 2 codim¢(Y,X) . Since the middle perversity is given here by p(k) = (k—2)/2, the

assertion follows from (1.2). o [

2. Proof of the hard Lefschetz theorem in the concave case

Our first proof goes by induction with respect to dim Y . So let us assume dim Y =0.1In

this case we take a resolution
X —X

where X is smooth and proper over € and x is an isomorphism outside Y . Let

E:= 1r_1(Y) denote the exceptional divisor. Moreover, we fix an ample divisor D’ on X
such that supp(D’) = r-l(supp(D)) UE and denote by 5 € Hz(x,C) the class of D”.")
For simplicity we assume that 7|U = w|U . Then there is a natural commutative diagram

with exact lines

0 — HE_I(X) —s B (X)) — B (U) —s 0
ﬂ’Ul (1) lan

0 —m Hn+r(E) — gotI (X) — H2+I(U) —0

’-) . — = -— - B — ————

—_— - - - —

| *) we may assume & OX(D) with an effective divisor D .

o e . e amem— » - - 5 e - X ..
— — = -~ e —— i S et ——
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if r2 1. The two vertical maps are bijective. This follows from [N] Prop. (5.1), (6.1).

By the commutativity of (I), we obtain immediately a projection Hn-l-r(x) D U H::"H(U)
whose composition with the natural map .chl"'r(U) Hn'”(U) is the usual restriction
from X to U. By construction p o (5'U) factorizes over H™ T(U) which gives us our
desired bijection

LB = E Uy, 121,
Now assume dim(Y) >0.Let D be very ample, .= 0y(D) (which isnot a

restriction) and X —— IPI;:I the induced embedding. We fix a general hyperplane section
X’ of X suchthatfor Y/ :=X'nY, U’ :=X’\Y’ the following holds

(i) U’ is smooth,
(ii) dim Y’ =dimY -1, codim(Y’,X’) = codim(Y,X),
(iii) the restriction map HY(U) —— HY(U’) is bijective for

v € codim (Y,X)-1.

These properties can be achieved, compare [BK] o section 3. By induction hypothesis, we

have an isomorphism

. 7 ~ H /
LT Hd1m X —r(U;) Hng X +r(U/)

for 12 dim Y’ +1 (where we take ¢/ := #|X’ as an ample line bundle). Now we

consider the composition



. . — 9 —
. . s | . L .
Hdlm X—-r(U) a Hdnn X—r(U; ) .L~ H(:lm X+r—2(U;) b Hglm X+r(U)

for r2 dim Y+1 . By property (iii), the maps a and b are bijective for this range and

consequently we get an isomorphism on U

Lr. Hdim X—r(U) v ngm X+r(U) .

The interpretation of L' as an r—fold cup product with | U is seen also by induction
and using the natural commutative diagram (the horizontal maps are Gysin

homomorphisms)

B 2(U') ——— BY(U)

|

B 2(U’') — 5 HY(U)

w U
HV—2(U) /

.

Our second proof is based on the following commutative diagram (n := dim X)

I
BT (U,¢) -—— L mMT(U, )

a[ lﬁ

18T (X, 0) S TEMTI(X,C) .

Tu

By the choice of r and (1.3), the maps a and S are bijective. So our Lefschetz theorem

is equivalent to that in intersection cohomology in the appropriate range.
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The second statement in Theorem I can be verified by taking into account the fact that the

differentials di_’j in the spectral sequence
EY = B(U0) 3 BH(U,0)
are zero for r 2 1, i+j < codim(Y,X)-1 and, by duality, also those of

JEpd = B(U,0) 3 B F(U,0)
for r21, i+j> dim X 4+ dim Y + 1. Moreover, « induces in a natural way a
cohomology class in HI(U,QI) which we denote again by w|U . This class is algebraic, so
all di’l vanish on it and therefore er__ is compatible with the two spectral sequences

(which carry a multiplicative structure). The Hodge filtration is respected by L'

L": FPE") — FHEit), 520
modulo shift by r. Obviously, it suffices to show that this map is bijective for
r > dim Y+1 and all s. Now this may be seen by induction on dim Y as above (where
Y = ¢ is the first step here) and the calculation in section 4 of [KK] together with the
weak Lefschetz result in [BK] o Prop. (3.1.4). -

3. Proof of the hard Lefschetz theorem in the convez case

We proceed by induction on k . In the case k=0, the complement U of Y in X isa

1—convex complex manifold, so it has a compact exceptional analytic subset E C U. From
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this we may conclude that the natural maps between cohomology groups (with

C—coefficients)

B (V) —H(U)
H*(U) —— BYH(E)

are bijective for every r2 1 (n = dim U) . In fact the first map is the Poincaré dual of the

second one. For this we have the identifications with de Rhan cohomology
B¥(U,€) —~— BY(U, 1)
|
A

BY(E,Q) “— BY(E, () ) .

Now go” i bijective for v 2 n+1 by a spectral sequence argument together with the fact
that

. . AL A
HJ(U:n'[lJ) BE— HJ(U:(QII_]’) E)

is an isomorphism for all i and j2 1. The result of [N] Prop. (6.1) tells us that
WU : BR (V) — BV(E)

is always bijective which implies immediately the assertion.

Now let k 2 1. We want to use induction by taking "good" hyperplane sections D on X

with 2w ﬂx(D) . We consider the natural commutative diagram
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Hg—r(U) U , go+T (V)
al Ib
BT (D) p= B *~2(p,)

where DU :=UND and a is the restriction map with the Poincaré dual b. It is no
restriction to assume that Ny o ID i8 (k—1)-ampleon YN D (compare [BK], proof
of (5.2)) and so U s bijective by induction. Moreover we have the following

commutative diagram

0—— HY "(U) —— H' 77 (X) — B"7(Y)

' | |

0 — Hy "(Dyy) — B (D) —— B"7(YND)

which has exact lines by [BK], Prop. (5.2). Since r 2 2, the map
H* (X) —— H* (D) is bijective and H* (Y) —— H™ T(YND) is still injective, see
[GNPP] p. 85, Cor. 3.12 (iii). Consequently a and also b are bijections which gives the

first assertion of Theorem II.
The second part of the statement can also be verified by induction on k . The case k=0
follows from [F] (1.6). The induction step is achieved by the same argument which was

used in section 2, together with the El—degeneration results. g

Proof of the corollary. This is a trivial consequence of the commuting diagram
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I
HV(U) w U — HV+2I'(U)

N

B”(U)

(similarly for the second arrow in the assertion) together with Theorem II. g
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