THE CONFIGURATION OF A FINITE
 SET ON SURFACE

by

Xu Mingwei

Max-Planck-Institut
Institute of Mathematics
für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3
Federal Republic of Germany
Academia Sinica
Beijing
China

The configuration of a finite set on surface

Xu Mingwei
Institute of Mathematics, Academia Sinica
Max-Planck-Institut für Mathematik

§ 0. Introduction

Let S be a smooth surface in $\mathbb{P}^{\mathbb{I}}$ and m be an integer with $n \geq m \geq 2$. For any m different points on S, if they are linearly dependent we say this set is special. Let M be the collection of all these special sets, then M is a scheme with a natural algebro-geometric structure. We can show that, when $n=3 m-2$ and S in general position, M is a finite scheme. Denote the degree of M by $\nu(\mathrm{s})$ which is intuitively the number of points in M possibly with multiplicities.
S.K. Donaldson posed a conjecture about this case in [2]:
"Conjecture 5. There is a universal formula for expressing $\nu(s)$ in terms of m, the Chern numbers of S, the degree of S in $\mathbb{P}^{3 \mathrm{~m}-2}$, and the intersection number of the canonical class of S with the restriction of the hyperplane class."

He pointed out this enumerative problem has something to do with Yang-Mills invariants.

In this paper we give an affirmative answer for the conjecture. But the formula for expressing $\nu(\mathrm{s})$ is complicated for writing down explicitely though there is an algorithm for computing it.

In § 1 we explain the meaning of "general position" in the present case and give the basic construction for computing $\nu(\mathrm{s})$. In § 2, all of the objects considered in § 1 are lifted to some projective vectors bundle where it is comparatively easy for computation. In § 3 we construct the blowing-up which is needed for computing some Segre class and finally in § 4 we prove the main result.

Author thanks K.C. Mong for showing him this problem and thanks R. Piene for the profitable discussion with her.
§ 1.

In sequels we assume the ground field is algebraically closed with arbitrary characteristic $>\mathrm{m}$ or characteristic 0 , where m is given as follows.

Let $m \geq 2$ be an integer and $n=3 m-2$.

Let $\mathbf{Y}=\left(\mathbb{P}^{\mathbf{n}}\right)^{\mathrm{m}}$, the cross product of m times $\mathbb{P}^{\mathbf{n}}$ and $\mathrm{X}=(\mathrm{S})^{\mathrm{m}}$ where S is a smooth surface in $\mathbb{P}^{\mathbf{n}}$ which is in general position in a sense as follows.

Proposition 1.1. Let $\mathrm{i}: \mathrm{S} \longrightarrow \mathbb{P}^{\mathbf{n}}$ be a non-degenerate embedding then there exists an embedding $j: S \longrightarrow \mathbb{P}^{\mathrm{n}+1}$ such that
(i) $\mathbf{i}(\mathrm{S})$ is the image of $\mathrm{j}(\mathrm{S})$ via a certain projection from $\mathbb{P}^{\mathbf{n + 1}}$ to $\mathbb{P}^{\mathbf{n}}$ with a point as center; but all the hyperplanes passing the center may have a common component on $\mathrm{j}(\mathrm{S})$
(ii) on the image of $j(S)$ via a generic projection, every set of m points is linearly independent except for a finite number of these sets which span (m-2)-spaces.
(iii) the k-osculating space of $j(S)$ at any point with $2 \leq k \leq m$ and any other $\mathrm{m}-\mathrm{k}$ points on $\mathrm{j}(\mathrm{s})$ span a ($\mathrm{m}-1$)-هpace.

Proof. Let i ${ }^{*} \mathbb{P}^{\mathbf{n}^{(1)}}=O(1)$. We shall show, there exists an integer N_{0} such that for every $\mathrm{N} \geq \mathrm{N}_{0}$ and the embedding φ determined by $O(\mathrm{~N})$, every m points on $\varphi(\mathrm{S})$ are linearly independent.

In fact, let Z be a subscheme of m points on S with reduced structure and J_{Z} be the sheaf of ideal defining Z. From the exact sequence

$$
\begin{aligned}
0 \longrightarrow & H^{0}\left(\mathrm{~S}, \mathrm{~J}_{\mathrm{Z}}(\mathrm{~N})\right) \longrightarrow \mathrm{H}^{0}(\mathrm{~S}, O(\mathrm{~N})) \longrightarrow \mathrm{H}^{0}\left(\mathrm{~S}, O_{\mathrm{Z}}(\mathrm{~N})\right) \\
\longrightarrow & \mathrm{H}^{1}\left(\mathrm{~S}, \mathrm{~J}_{\mathrm{Z}}(\mathrm{~N})\right) \longrightarrow \mathrm{H}^{1}(\mathrm{~S}, O(\mathrm{~N})) \longrightarrow 0
\end{aligned}
$$

We see that if $H^{1}\left(S, J_{Z^{\prime}}(N)\right)=0$ for every (reduced) subscheme $Z^{\prime} C Z$, then these m points are linearly independent. By Cartan-Serre Theorem B the condition is satisfied for every $N \geq N_{0}$ with a certain N_{0}. Now we have to show that N_{0} can be chosen only depending on m and not on their position on S.

As a standard method we take Z as a subscheme of $\mathbb{P}^{\mathbf{n}}$ and show that we may replace the ideal defining Z in $\mathbb{P}^{\mathbf{n}}$ for J_{Z} in the above argument. But in \mathbb{P}^{n} we can prove the above assertion directly. Then the vanishing of $\mathrm{H}^{1}\left(\mathrm{~S}, \mathrm{~J}_{\mathrm{Z}}(\mathrm{N})\right)$ is independent of the position of the points.

Continue to prove the proposition.

Let $\mathrm{r}+1=\mathrm{H}^{0}\left(\mathrm{~S}, \mathrm{O}\left(\mathrm{N}_{0}\right)\right)$ and $\psi: \mathrm{S} \longrightarrow \mathbf{P}^{\mathrm{r}}$ be the embedding determined by $O\left(\mathrm{~N}_{0}\right)$. We show that for $r \geq n+2=3 \mathrm{~m}$ a generic projection from $\mathbb{P}^{\mathbf{r}}$ to \mathbf{p}^{r-1} gives an embedding of S into \mathbb{p}^{r-1} and preserves the independence of arbitrary m points on S. Indeed, the subscheme consisting of all the ($m-1$)-planes in $\mathbb{P}^{\mathbf{n}}$ spanned by some m points on S has dimension $3 \mathrm{~m}-1$ and the subscheme consisting of all the ($\mathrm{m}-1$)-planes in \mathbb{P}^{n} spanned by a k-osculating and any other ($m-k$) points has dimension at most $3(m-1)$, thus a projection with a generic point as center meets our need. We proceed like this till we arrive at $\mathbb{P}^{3 \mathrm{~m}-1}$. Since for $\mathrm{m}=2$ this proposition is true automatically we may assume $m \geq 3$. Then taking a generic point in $\mathbb{P}^{3 m-1}$ as center will give a projection which preserves the independence of m points on S except for a finite number of these sets. And anyone of these exceptional sets spans a (m-2)-plane. The reasons for that are (i) a generic point in $\mathbb{P}^{3 m-1}$ is in a finite number of all ($m-1$)-plane spanned by m points on S; (ii) a generic point in $\mathbb{P}^{3 m-1}$ gives an embedding and preserves the independence of arbitrary $\mathrm{m}-1$ points on S.

Hereafter the words "a surface in general position" means the sense of Proposition 1.1.

Let $p=\left(p_{1}, \ldots, p_{m}\right) \in Y$ and $p_{i}=\left(z_{i 0}, \ldots, z_{i n}\right)$ be the homogeneous coordinates of p_{i} in \mathbb{P}^{n}. We say p is a special point if $\operatorname{rk}\left(z_{i j}\right) \leq m-1$ namely, p_{1}, \ldots, p_{m} are in the same hyperplane of $\mathbb{P}^{\mathbf{n}}$. The ideal generated by the m-minors of $\left(z_{i j}\right)$ defines a subscheme GC $\mathbb{P}^{\mathbf{n}}$ which represents all of the special points in $\mathbb{P}^{\mathbf{n}}$.

Lemma 1.2. G is a variety with codimension 2 m .

Proof. Let $H_{i}=q_{i}^{*} O_{\mathbb{P}^{n}}(1)$ where q_{i} is the ith projection from Y to \mathbb{P}^{n}, and $\varphi_{i}: O_{\mathbb{P}^{\mathbf{n}}}(-1) \longrightarrow 0^{\mathrm{n}+1}$ be the canonical embedding of the universal line bundle into the
trivial bundle. Therefore on Y we have a homomorphism

$$
\varphi=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{q}_{\mathrm{i}}^{*} \varphi_{\mathrm{i}}: \mathrm{H}_{1}^{-1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{m}}^{-1} \longrightarrow O_{\mathrm{Y}}^{\mathrm{n}+1}
$$

We recall that in [1] or [5], a generic determinantal variety $M_{k}(m, n)$ is the locus of matrices of rank at most k and the ideal for defining M_{k} in $M(m, n) \simeq A^{m n}$ is generated by the $(k+1) \times(k+1)$ minors. The present situation is essentially the case of a generic determinal variety.

Indeed, over a point $p \in Y, \varphi$ is represented by the matrix $\left(z_{i j}\right)$, and the m-minors defines a variety M_{m-1} on vector bundle $\bar{H}_{1}^{-1} \oplus \ldots \oplus H_{m}^{-1}$ with codimension $2 m$. On the other hand, every m -minor is homogeneous with respect to each row of it and thus there is a scheme, which is exactly G, with $q^{-1}(G)=M_{m-1} \quad$ where $\mathrm{q}: \mathrm{H}_{1}^{-1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{m}}^{-1} \longrightarrow \mathrm{Y}$ is the structure morphism. By the faithful flatness of $\left.\mathrm{q}\right|_{M_{m-1}}$ we have shown G is a variety with codimension $2 m$.

Remark 1.3. G can be described by the desingularization of M_{m-1}, that means, if letting $\hat{M}_{\mathrm{m}-1}=\left\{(\mathrm{A}, \mathrm{W}) \in\left(\underset{\mathrm{i}=1}{\mathrm{~m}} \mathrm{H}_{\mathrm{i}}^{-1}\right) \times \mathbb{P}\left(\oplus \bar{H}_{\mathrm{i}}\right) \mid \mathrm{A} \cdot \mathrm{w}=0\right\}$, then $\hat{M}_{\mathrm{m}-1}$ is mapped by the projection onto M_{m-1} properly, and by the another projection, M_{m-1} is mapped onto a subvariety G of $P=\mathbb{P}\left(\oplus \bar{H}_{i}\right)$, which is defined by the degeneracy $D_{m-1}(\psi)$ of ψ and where ψ is the composition of the canonical homomorphism $O_{p}(-1) \longrightarrow \oplus \bar{H}_{i}^{-1}$ and φ. It is clear that, the projection from P to Y maps G onto G.

We shall use this description in § 2.

Usually the next step should be the computation for the intersection of G and X, but in the present case this intersection $V=G \times_{Y} X$ has an excess part i.e. they meet in a higher dimensional subscheme than that in the general case. Therefore we have to exclude the "bad" points from $X \cdot G$ which is caused by the excess part.

Lemma 1.4.

(i) $\mathrm{V}=\mathrm{V}_{0} \Perp \mathrm{~V}_{1}$, where V_{0} is the finite subscheme representing the special points on Y and V_{1} is a connected subscheme.
(ii) As a scheme-theoretic union, $V_{1}=\underset{0<i<j<m}{U} S_{i j} U_{i<j<k}^{U} S_{i j k}^{a}{ }^{\mathbf{3}} U \ldots U S_{1}^{a}{ }_{1}^{m} \ldots m$ with multiplicities $a_{\ell} \geq 1$ (Since the symmetry of $s_{i, \ldots, i_{\ell}}$ with respect to its subscripts in V, every multiplicity for $\mathrm{s}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\ell}}$ is same.), where $\mathrm{s}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\ell}}$ is the image of the mapping

$$
\Delta_{\mathrm{i}_{1} \ldots \mathrm{i}} \times(\mathrm{id})^{\mathrm{m}-\ell}: \mathrm{S}^{\mathrm{m}-\ell+1} \longrightarrow \mathrm{~s}^{\mathrm{m}}
$$

and which is isomorphic to $S^{m-\ell+1}$ under this mapping where $\Delta_{i_{1} \ldots i_{\ell}}$ is the diagonal morphism for the $\mathrm{i}_{1}, \ldots, \mathrm{i}_{\ell}-$ th factors.
(iii) a_{ℓ} only depends on m for every $2 \leq \ell \leq m$.

Proof. Let $p \in V$, then $r k\left(z_{i j}(p)\right) \leq m-1$. If p_{1}, \ldots, p_{m}, the components of p, are m different points in $\mathbb{P}^{\mathbf{n}}$, then by Proposition 1.1 they span a linear space of dimension $\mathrm{m}-2$, i.e. $\quad \mathrm{rk}\left(\mathrm{z}_{\mathrm{ij}}(\mathrm{p})\right)=\mathrm{m}-1$, and the number of such p 's is finite. Denote this finite scheme by V_{0}. The other points of V must have at least two of $\left\{p_{1}, \ldots, p_{m}\right\}$ being a same point and the inverse statement is valid too. Therefore, they form a subscheme V_{1} supporting on $U^{i j}$ - (i) follows.

Before starting the proof of (ii) and (iii) we make some conventions. As done above we still fix a same coordinate system in each factor of Y, and for the coordinates $\left(z_{k_{0}}, \ldots, z_{\mathbf{k}_{n}}\right)$ of a point $p_{k} \in \mathbb{P}^{\mathbf{n}}$, sometimes we take it as the affine coordinates and thus mention the Kähler differential of p_{k}, denoted by $D^{1} p_{k}$. We use D^{ℓ} to denote the l-th Kähler differential.

We see from the proof of Lemma 1.3, V is defined in G by ideal \mathfrak{a} generated by the m-minors of matrix

$$
\left[\begin{array}{l}
\mathrm{p}_{1} \\
\vdots \\
\mathrm{p}_{\mathrm{m}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{z}_{10}\left(\mathrm{p}_{1}\right), \ldots, \mathrm{z}_{1 \mathrm{n}}\left(\mathrm{p}_{1}\right) \\
\cdots{ }_{\mathrm{m} 0}\left(\mathrm{p}_{\mathrm{m}}\right), \ldots, \mathrm{z}_{\mathrm{mn}}\left(\mathrm{p}_{\mathrm{m}}\right)
\end{array}\right]
$$

for $p \in X$.
We are going to compute the multiplicity of any point Q of $S_{i j} \backslash \underset{k}{ } S_{i j k}$ in V. The differential of a is generated by the m-minors of $\left[\begin{array}{r}Q_{1} \\ D Q_{1} \\ 1\end{array}\right]$. By Proposition 1.1 (iii), we see that the matrix is non-degenerated at Q . Therefore, Q has multiplicity 1 in V and so does $S_{i j}$. Moreover, since Q is an arbitrary point in $S_{i j} \backslash U S_{i j k}$ we deduce that there does not exist any embedded component over $S_{i j} \backslash U S_{i j k}$.

Now suppose $Q \in S_{123} \backslash \bigcup_{k \geq 4}^{U} S_{123 k}$. We shall compute the multiplicity of Q in the scheme defined by $\left.\mathfrak{a}\right|_{\mathrm{S}_{12}}$. Noticing that, the ideal defining S_{12} is generated by the 2-minors of $\left[\begin{array}{l}z_{10}, \ldots, z_{1 n} \\ z_{20}, \ldots, z_{2 n}\end{array}\right]$ and the restriction of them to S_{12} gives the generators of $\Omega_{S_{12}}$, then $\left.{ }^{a}\right|_{S_{12}}$ is generated by (m-1)-minors of the matrix

$$
\begin{gathered}
-8- \\
{\left[\begin{array}{c}
\mathrm{P}_{1} \\
\mathrm{DP} \\
3 \\
\vdots \\
\mathrm{P}_{\mathrm{m}}
\end{array}\right]}
\end{gathered}
$$

over S_{12}. Therefore the differentials of these generators at Q are the ($m-2$)-minors of

$$
\left[\begin{array}{c}
Q_{1} \\
\mathrm{D}^{2} \mathrm{Q}_{1} \\
\mathrm{Q}_{4} \\
\vdots \\
\mathrm{Q}_{\mathrm{m}}
\end{array}\right]
$$

By Proposition 1.1 again we see the matrix is non-degenerated, and thus Q has multiplicity 1 in $\left.{ }^{a}\right|_{S_{12}}$. This means the multiplicity of Q in V equals the multiplicity of any point $Q^{\prime}=\left(Q_{1}^{\prime}, Q_{1}^{\prime}, Q_{1}^{\prime}, Q_{4}, \ldots, Q_{m}\right) \in M_{m-2}(m, n)$ in $M_{m-1}(m, n)$, and thus it only depends on m.

With the same trick we work with $S_{i_{1}}, \ldots, \mathrm{i}_{\ell}$ inductively and then get our conclusion for (ii) and (iii).

Note. We can prove that $a_{\ell}=\ell-2$ for $\ell \geq 3$.

Proposition 1.5. As a 0-cycle,

$$
\left[\mathrm{V}_{0}\right]=\mathrm{X} \cdot \mathrm{G}-\left(\left.\mathrm{c}\left(\mathrm{~N}_{\mathrm{X}} \mathrm{Y}\right)\right|_{\mathrm{v}_{1}} ^{\left.n_{\mathrm{s}}\left(\mathrm{~V}_{1}, \mathrm{G}\right)\right)_{0} \in \mathrm{~A}_{0}(\mathrm{~V}),}\right.
$$

where $X \cdot G$ is the intersection cycle of X and G in Y, c is the Chern operator, $N_{X} Y$
is the normal bundle of X in $Y, s\left(V_{1}, G\right)$ is the Segre class of V_{1} in $G, A_{*}(V)$ is the Chow ring of V and ()$_{0}$ denotes the 0 -part of a cycle in the bracket.

All of these symbols and their meaning can be found in [5].

Proof. Since $\mathrm{i}: \mathrm{X} \longrightarrow \mathrm{Y}$ is a regular embeddimg, then by the definition of the refined Gysin morphism [5] we have

$$
\begin{aligned}
& \mathrm{i}^{!} \cdot \mathrm{G}=\mathrm{X} \cdot \mathrm{G} \\
& =\left(\left.c\left(N_{X} \mathrm{Y}\right)\right|_{V}{ }^{\mathrm{n}} \mathrm{~s}(\mathrm{~V}, \mathrm{G})\right)_{0} \\
& \left.=\left.\left(\left.c\left(N_{X} Y\right)\right|_{V_{0}}{ }^{\left.n s\left(V_{0}, G\right)\right)_{0}+\left(c \left(N_{X}\right.\right.}{ }^{\mathrm{Y}}\right)\right|_{V_{1}}{ }^{n s\left(V_{1}, G\right)}\right)_{0} .
\end{aligned}
$$

By Lemma 1.4, $\quad V_{0}$ is the scheme of special points on $(S)^{m}$ and then, $\left(\left.\mathrm{c}\left(\mathrm{N}_{\mathrm{X}} \mathrm{Y}\right)\right|_{\mathrm{V}_{0}} \cap \mathrm{~s}\left(\mathrm{~V}_{0}, \mathrm{G}\right)\right)_{0}$ gives the cycle $\left[\mathrm{V}_{0}\right]$.

Definition. $\nu(\mathrm{S})=\frac{1}{\mathrm{~m}!} \operatorname{deg}\left[\mathrm{V}_{0}\right]$.

Because of symmetry of the special points on $(S)^{m}$ with respect to its components, the definition gives the number of special points on S.

§ 2.

Though it is easy to compute $X \cdot G$ but it seems difficult to compute $s\left(V_{1}, G\right)$. So we would like to lift all of the objects in consideration up to certain (projective) vector bundles.

From Remark 1.3, we see $\mathbf{G}=D_{m-1}(\phi)$, where ψ is a composition of morphisms:

$$
\psi: O_{\mathrm{p}}(-1) \longrightarrow \mathrm{H}_{1}^{-1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{m}}^{-1} \longrightarrow O_{\mathrm{P}}^{\oplus(\mathrm{n}+1)}
$$

ψ induces a section $r: P \longrightarrow O_{P}(1)^{\oplus(n+1)}$ and \bar{G} is exactly the 0-locus of r.

Therefore we have a diagram as follows:
(*)

where r_{0} is the 0 -section of P in $O_{P}(1)^{\oplus(n+1)}, Q=i^{*} P$, and every square with solid lines in (*) is a fiber product.

Denote $V_{1} \times_{G} G$ by $J_{1} \subset J$, which is $\left(\alpha^{\prime} g\right)^{-1}\left(V_{1}\right)$.

Lemma 2.1.
(i) $\mathrm{X} \cdot \mathrm{G}=\left(\alpha^{\prime} \mathrm{g}\right)_{*}(\mathrm{Q} \cdot \mathrm{G})$,
(ii) $\mathrm{s}\left(\mathrm{V}_{1}, \mathrm{G}\right)=\left(\alpha^{\prime} \mathrm{g}\right)_{*} \mathrm{~s}\left(\mathrm{~J}_{1}, \overline{\mathrm{G}}\right)$

Proof. By Remark 1.3, ($\pi \mathrm{f})_{*} \mathbf{G}=\mathrm{G}$. Since j is a regular embedding with codim $\mathrm{j}=$ codim i , then by using Excess Intersection Theorem in [5] we have

$$
\begin{aligned}
X \cdot G & =i^{!} G=i^{!}\left(\pi^{\prime} f\right)_{*} \bar{G}=\left(\alpha^{\prime} g\right)_{*}!^{!} \bar{G} \\
& =\left(\alpha^{\prime} g\right)_{*} j^{!} G .
\end{aligned}
$$

(i) has been proved. As for (ii), we claim first that \bar{G} is birationally isomorphic to G. Since \bar{G} and G both are varieties and the morphism from G to G is surjective, it is enough to show that for a generic point $p \in G,\left(\pi^{\prime} f\right)^{-1}(p)$ is a single point.

In fact, if p is a point in G such that the matrix corresponding to p has rank $m-1$ and $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}$ are different then the kernel of $\varphi(\mathrm{p})$ has dimension 1 and thus the degeneracy of ψ in $\pi^{-1}(\mathrm{p})$ is a single point. The claim is true.

We see from [5] the Segre class is birationally invariant and thus

$$
\left(a^{\prime} \mathrm{g}\right)_{*} \mathrm{~s}\left(\mathrm{~J}_{1}, \overline{\mathrm{G}}\right)=\mathrm{s}\left(\mathrm{~V}_{1}, \mathrm{G}\right)
$$

We wish to transfer the objects further into the left square in (*).

Lemma 2.2.

$$
\begin{aligned}
& \text { (i) } \mathrm{Q} \cdot \mathrm{G}=[\mathrm{Q}]^{2} \in A_{0} \mathrm{~J} \\
& \text { (ii) }\left(\mathrm{g}^{*} \mathrm{c}\left(\mathrm{~N}_{\mathrm{Q}} \mathrm{P}\right) \cap \mathrm{s}\left(\mathrm{~J}_{1}, \overline{\mathrm{G}}\right)\right)_{0}=\left(\mathrm{g}^{*} \mathrm{c}\left(\mathrm{~N}_{Q}\left(O_{Q}(1)^{\oplus(\mathrm{n}+1)}\right) \cap \mathrm{s}\left(\mathrm{~J}_{1}, \mathrm{Q}\right)\right)_{0}\right.
\end{aligned}
$$

Proof. For (i), since $\operatorname{codim}_{P} \bar{G}=2 m$, then r and r_{0} intersect properly at \bar{G} and thus $\mathrm{N}_{\mathbf{G}} \mathrm{P}=\mathrm{f}^{*} \mathrm{~N}_{\mathrm{P}}\left(o_{\mathrm{P}}(1)^{\oplus(n+1)}\right)$. Therefore,

$$
\begin{aligned}
Q \cdot G & =j^{!} \cdot G=j^{!} \cdot\left(c_{n+1}\left(O_{P}(1)^{\oplus(n+1)}\right) \cap[P]\right) \\
& =c_{n+1}\left(O_{Q}(1)^{\oplus(n+1)}\right) \cap i^{!}[P] \\
& =c_{n+1}\left(O_{Q}(1)^{\oplus(n+1)}\right) \cap[Q] \\
& =[Q]^{2} .
\end{aligned}
$$

Proof of (ii). Since j and f both are regular embeddings, then

$$
\mathrm{g}^{*} \mathrm{c}\left(\mathrm{~N}_{\mathrm{Q}} \mathrm{P}\right) \cap \mathrm{s}\left(\mathrm{~J}_{1}, \mathrm{Q}\right)=\mathrm{k}^{*} \mathrm{c}\left(\mathrm{~N}_{\mathrm{G}} \mathrm{P}\right) \cap \mathrm{s}\left(\mathrm{~J}_{1}, \mathrm{Q}\right) .
$$

Additionally,

$$
\begin{aligned}
\mathbf{k}^{*} \mathrm{c}\left(\mathrm{~N}_{\mathrm{G}} \mathrm{P}\right) & =\mathrm{k}^{*} \mathrm{f}^{*} \mathrm{c}\left(O_{\mathrm{P}}(1)^{\oplus(n+1)}\right)=\mathrm{g}^{* *} \mathrm{c}\left(O_{\mathrm{P}}(1)^{\oplus(n+1)}\right) \\
& =\mathrm{g}^{*} \mathrm{c}\left(O_{\mathrm{Q}}(1)^{\oplus(\mathrm{n}+1)}\right)
\end{aligned}
$$

hence the conclusion follows.

Lemma 2.1 and 2.2 tell us $\left[\mathrm{V}_{0}\right]=(\alpha \mathrm{g})_{*}\left([\mathrm{Q}]^{2}-\left(\left.\mathrm{g}^{*} \mathrm{c}\left(\mathrm{N}_{\mathrm{Q}} \mathrm{O}(1)^{\oplus(\mathrm{n}+1)}\right)\right|_{\mathrm{J}_{1}} \cap \mathrm{~s}\left(\mathrm{~J}_{1}, \mathrm{Q}\right)\right)_{0}\right)$. So hereafter we always work with the left square in (*).

Let $\mathrm{i}^{*} \mathrm{H}_{\ell}=\mathrm{H}_{\ell}$ then $\mathrm{Q}=\mathbb{P}\left(\oplus \mathrm{H}_{\mathrm{i}}\right)$ and J is the 0 -locus of section t induced by r .

For computing $s\left(\mathrm{~J}_{1}, \mathrm{Q}\right)$ we have to know more about the structure of J_{1}.

Let us denote $\alpha^{\prime-1}\left(s_{i j}\right)$ by $Q_{i j}$, then it is easy to see
$\mathrm{Q}_{\mathrm{ij}}=\mathbb{P}\left(\mathrm{H}_{1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{i}} \oplus \ldots \mathrm{H}_{\mathrm{i}} \oplus \ldots \mathrm{H}_{\mathrm{m}}\right)$. Denote $\mathrm{g}^{-1}\left(\mathrm{Q}_{\mathrm{ij}}\right)$ by W_{ij}. From Lemma 1.4, W_{ij} is exactly the degeneracy of the restriction of ψ to $Q_{i j}$. In other words every point of $W_{i j}$ is an 1-dimensional subspace of $H_{1}^{-1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{i}}^{-1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{i}}^{-1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{m}}^{-1}$ which is the kernel of $\left.\varphi\right|_{Q_{\mathrm{ij}}}$ (fiberwisely). But $\left.\varphi\right|_{\mathrm{Q}_{\mathrm{ij}}}$ is represented fiberwisely by matrix $\left(\mathrm{z}_{\mathrm{ij}}\right)$ and thus an 1-dimensional subspace if it is contained in $\mathrm{H}_{1}^{-1} \oplus \mathrm{H}_{\mathbf{i}}^{-1}$ must be the diagonal subspace i.e. the image of $H_{i}^{-1} \longrightarrow H_{i}^{-1} \oplus H_{i}^{-1}$ with $h \longmapsto(h, h)$.

Therefore W_{ij} is the image of
$\mathbb{P}\left(\mathrm{H}_{1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{i}} \oplus \ldots \oplus \hat{H}_{j} \oplus \ldots \oplus \mathrm{H}_{\mathrm{m}}\right) \longrightarrow \mathbb{P}\left(\mathrm{H}_{1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{i}} \oplus \ldots \oplus \mathrm{H}_{\mathrm{i}} \oplus \ldots \oplus \mathrm{H}_{\mathrm{m}}\right) \quad$ induced by the diagonal homomorphism.

As a conclusion we have

Lemma 2.3. $J_{1}=\underset{1 \leq i<j \leq m}{U} W_{i j} U W_{i j k}^{a_{3}} U \ldots U W_{12}^{a^{m}} \ldots m$, where $W_{i_{1} \ldots i_{\ell}}$ will be defined in the beginning of $\S 3$.

Lemma 2.4. $W_{i j}$ is a divisor on Q_{ij} and the corresponding inverse sheaf is $\mathrm{H}_{\mathrm{i}}^{-1} \otimes O(1)$.

Proof. It is a standard fact from § 8 of Ch . II in [3].
§ 3.

In this section we shall reconstruct the blowing-up of Q with respect to J_{1}. For that we make an observation of $S_{i j}, Q_{i j}$ and $W_{i j}$.
(**)
(1) $S_{i j}$ (resp. $Q_{i j}, \dot{W}_{i j}$) is smooth for all $1 \leq i<j \leq m$
(2) (a) Let $S_{i j} \cap S_{j k}=S_{i j k}$, which is defined as the image of $\Delta_{\mathrm{ijk}} \times(\mathrm{id})^{\mathrm{m}-3}:(\mathrm{S})^{\mathrm{m}-2} \longrightarrow(\mathrm{~S})^{\mathrm{m}}$ where Δ_{ijk} is the diagonal mapping with respect to the ith, jth and k th factors.
(b) Let $Q_{i j} \cap Q_{j k}=Q_{i j k}$, which is defined as $\left(\Delta_{i j k} \times(i d)^{m-3}\right)^{*} Q$.
(c) Let $W_{i j} \cap W_{j k}=W_{i j k}$, which is defined as the image of $\mathbb{P}\left(\mathrm{H}_{1} \oplus \ldots \oplus \mathrm{H}_{\mathrm{i}} \oplus \ldots \mathrm{H}_{\mathrm{j}} \oplus \ldots \oplus \mathrm{H}_{\mathrm{k}} \oplus \ldots \oplus \mathrm{H}_{\mathrm{m}}\right) \longrightarrow \dot{Q}_{\mathrm{ijk}} \quad$ induced \quad by $\mathrm{H}_{\mathrm{i}}^{-1} \longrightarrow \mathrm{H}_{\mathrm{i}}^{-1} \oplus \mathrm{H}_{\mathrm{i}}^{-1} \oplus \mathrm{H}_{\mathrm{i}}^{-1}$ with $\mathrm{h} \longmapsto(\mathrm{h}, \mathrm{h}, \mathrm{h})$.

All of the intersections in (a), (b) and (c) are proper and every $\mathrm{S}_{\mathrm{ijk}}$ (resp. $\mathrm{Q}_{\mathrm{ijk}}, \mathrm{W}_{\mathrm{ijk}}$) is smooth.

In a similar way we can define $\mathrm{S}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\mathbf{k}}}$ (resp. $\mathrm{Q}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\mathbf{k}}}, \mathrm{W}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\mathbf{k}}}$) for $4 \leq \mathrm{k} \leq \mathrm{m}$ if necessary. We call k the length of $S_{i_{1} \ldots i_{k}}$ (resp. $Q_{i_{1} \ldots i_{k}}, W_{i_{1} \ldots i_{k}}$).
(3) (a) $S_{i_{1} \ldots i_{k}} \simeq(S)^{m-k+1}$ in an obvious way.
(b) Under the isomorphism of (a),$W_{i_{1} \ldots i_{k}} \simeq Q_{m-k+1}$ which denotes the space constructed in (*) with $\mathrm{m}-\mathrm{k}+1$ replacing m .

Let $\beta: \mathrm{B} \longrightarrow \mathrm{Q}$ be the blowing-up of Q with respect to J_{1}. We are going to reconstruct β.

In the following construction we shall use some basic facts about blowing-up. Let us list them below.
(A) If $V, W \subset Q$ are two algebraic subschemes, then in $B \mathcal{V} \cap W \mathbb{V} \cap \mathbb{W}=\phi$, where ${ }^{B} \ell_{V \cap W} Q$ denotes the blowing-up of Q with respect to $V \cap W$ and \tilde{V}, \mathcal{W} denote the strict transforms of V and W respectively under this blowing-up.
(B) Besides the assumptions in (A) there is a subscheme $\mathrm{UCV} \cap \mathrm{C}$. Then in $B \ell_{U}{ }^{Q}$ $V \cap W=B \ell_{U}(W \cap V)$.
(C) If $V_{1}, \ldots, V_{\ell} \subset Q$ meet properly, that is, $\operatorname{codim}_{Q}\left(V_{i_{1}} \cap \ldots \cap V_{i_{k}}\right)=\sum_{t=1}^{\mathbf{k}} \operatorname{codim} V_{i_{t}}$ for every $k \leq \ell$, then $B \ell V_{1} U \ldots U V_{\ell} Q \longrightarrow Q$ can be realized step by step. Each step is a blowing-up with respect to a strict transform of some V_{i}.

In particular, if $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\ell}$ are disjoint we can get $\mathrm{BL}_{\mathrm{V}_{1}} \mathrm{U} \ldots \mathrm{UV}_{\ell} \mathrm{Q}$ by blowing up along all V_{i} simultaneously.

Our reconstruction is divided into some steps.
$\left(\mathrm{R}_{\mathrm{m}}\right): \quad$ Blowing Q up along $\mathrm{W}_{12 \ldots . \mathrm{m}}$ we arrive in $\beta_{\mathrm{m}}: \mathrm{B}_{\mathrm{m}} \longrightarrow \mathrm{Q}$ and denote the exceptional divisor of β_{m} by $\mathrm{W}_{12 \ldots \mathrm{~m}}^{\prime} \cdot \mathrm{B}_{\mathrm{m}}$ is smooth. Since any two of $\left\{\mathrm{W}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\mathrm{m}-1}}\right\}$ intersect at $\mathrm{W}_{12 \ldots \mathrm{~m}}$ then by (A) their strict transforms $\left\{\mathrm{W}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\mathrm{m}-1}}^{\prime}\right\}$ are disjoint.
$\left(R_{m-1}\right)$: Blowing B_{m} up along all $\left\{W_{i_{1} \ldots i_{m-1}^{\prime}}^{\prime}\right\}$ simultaneously we arrive in $\beta_{\mathrm{m}-1}: \mathrm{B}_{\mathrm{m}-1} \longrightarrow \mathrm{~B}_{\mathrm{m}}$ by using (C). Let $\beta_{\mathrm{m}-1}^{\prime}=\beta_{\mathrm{m}} \beta_{\mathrm{m}-1}, \quad \mathrm{~W}_{\mathrm{i}_{1} \cdots \mathrm{i}_{\mathrm{m}-1}^{\prime}}$ be the exceptional divisors, and $W_{1 \ldots m}^{\prime \prime}, W_{i_{1} \ldots i_{k}}^{\prime \prime}$ with $k \leq m-2$ be the strict transforms of $W_{1 \ldots m}^{\prime}$ and $W_{i_{1} \ldots i_{k}}^{\prime}$ respectively. The situation of
$\left\{W_{i_{1} \ldots i_{m-2}}^{\prime \prime}\right\}$ is different from that of $\left\{W_{i_{1} \ldots i_{m-1}^{\prime}}\right\}$ in $\left(R_{m}\right)$.

In fact, if $W_{i_{1} \ldots i_{m-2}}$ and $W_{j_{1} \ldots j_{m-2}}$ meet at $W_{1 \ldots m}$ or $W_{k_{1} \ldots k_{m-1}}$ they are disjoint by (A), but they may intersect elsewhere properly. The later case happens if and only if $\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{m}-2}\right\} \cap\left\{\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}-2}\right\}=\phi$. Taking into account the situation when we blow B_{m-1} up we should go by several steps from (C) though we write them down in a single step ($\mathrm{R}_{\mathrm{m}-2}$).

Continuing in this way, suppose we have arrived in $\left(R_{k}\right)$, i.e. $\beta_{k}: B_{k} \longrightarrow B_{k+1}$. Let $\beta_{\mathbf{k}}^{\prime}: \mathbf{B}_{\mathbf{k}} \longrightarrow \mathrm{Q}$ be the composition of $\left\{\beta_{\ell}\right\}, \ell=\mathrm{m}, \mathrm{m}-1, \ldots, \mathbf{k}$. We denote the "strict transform" of $W_{\mathrm{i}_{1} \mathrm{i}_{2} \ldots \mathrm{i}_{\ell}}$ under $\beta_{\mathrm{k}}^{\prime}$ still by $\mathrm{W}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\ell}}^{\prime}$, where the "strict transform" means that we take the usual strict transform of $\mathrm{W}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\ell}}$ successively under each β_{ℓ}, $\ell=\mathbf{m}, \ldots, \mathbf{k}$ if it is not a center of β_{ℓ}, and take its inverse image if it is a center of β_{ℓ}.

Now the relation between $W_{i_{1} \ldots i_{k-1}}^{\prime}$ and $W_{j_{1} \cdots j_{k-1}}^{\prime}$ is divided into different cases: (***)
(i)

If $\mathbf{k}-1<\#\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathbf{k}-1}, \mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathbf{k}-1}\right\}<2(\mathrm{k}-1)$ they are disjoint. Since in this case $W_{\mathrm{i}_{1} \ldots \mathrm{i}_{k-1}} \cap \mathrm{~W}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{k}-1}}=\mathrm{W}_{\mathrm{s}_{1} \ldots \mathrm{~s}_{\ell}}$ for some $\ell \geq \mathrm{k}$ and thus $\mathrm{W}_{\mathrm{s}_{1} \ldots \mathrm{~s}_{\ell}}$ is a center in step $\left(R_{\ell}\right)$, from (A) the assertion follows. This is true for two variables with different length too.
(ii) If $\#\left\{i_{1}, \ldots, i_{k-1}, j_{1}, \ldots, j_{k-1}\right\}=2(k-1)$ they intersect properly.
(iii) If $\#\left\{i_{1}, \ldots, i_{k-1}, j_{1}, \ldots, j_{k-1}\right\}=k-1$, they coincide.

Finally we arrive at $\left(\mathrm{R}_{2}\right): \quad \beta^{\prime}=\beta_{2}^{\prime}: \mathrm{B}^{\prime}=\mathrm{B}_{2} \longrightarrow \mathrm{Q}$.

Proposition 3.2. $B \simeq B^{\prime}$ over Q.

Proof. By the universal property of blowing-up we have a unique morphism from B^{\prime} to B over Q taking $\sum\left[\beta^{-1}\left(\mathrm{~W}_{\mathrm{ij}}\right)\right]+\sum\left[\beta^{-1}\left(\mathrm{~W}_{\mathrm{ijk}}^{\mathrm{a}}\right)\right]+\ldots\left[\beta^{-1}\left(\mathrm{~W}_{1}{ }_{1}^{\mathrm{m}} \ldots \mathrm{m}\right)\right]$ to $\sum\left[\beta^{\prime-1}\left(\mathrm{~W}_{\mathrm{ij}}\right)\right]+\ldots+\left[\beta^{\prime-1}\left(\mathrm{~W}_{1}^{\mathrm{a}} \mathrm{m} \ldots \mathrm{m}\right)\right]$. We need to show there is a morphism from B to B^{\prime} over Q which is the inverse of the above morphism. Indeed, since $\beta^{-1}\left(W_{1 \ldots m}\right)$ is a divisor then we have a unique morphism from B to B_{m} over Q. In the following diagram

we see that each $W_{i_{1} \ldots \mathrm{i}_{\mathrm{m}-1}}^{\prime}$ has a divisor as inverse image in B, then using Lemma 3.1 again there exists a unique morphism from B to B_{m-1} over B_{m} and hence over Q. Inductively we have got a unique morphism from B to B^{\prime} over Q and which meets our requirement.
§ 4.

In this section we shall compute the Segre class $s\left(J_{1}, Q\right)$ and prove the main theorem. In the following computation we shall constantly use some new facts about blowing up.
(D) Let V,W C Q be three smooth varieties and VNW be smooth too. Let $\pi: \mathrm{B} \longrightarrow \mathrm{Q}$ be the blowing -up of Q with respect to W , then
(i) If V $\cap W C V$ is a proper subvariety of V, then $\pi^{*} N_{V} Q \simeq N_{V}$, B, where V^{\prime} is the strict transform of V under π.
(ii) If WCV, $\mathrm{N}_{\mathrm{V}^{\prime}} \mathrm{B} \simeq\left(\boldsymbol{x}^{*} \mathrm{~N}_{\mathrm{V}} \mathrm{Q}\right) \odot O(-1) \mid \mathrm{V}^{\prime}$.

In B constructed in § 3, let $\mathcal{W}_{i_{1} \ldots i_{k}}$ be the strict transform of $W_{i_{1} \ldots i_{k}}$ in a sense we explained in § 3. By the definition of $\mathrm{g}\left(\mathrm{J}_{1}, \mathrm{Q}\right)$ it is

$$
\begin{gathered}
\beta_{*} \sum_{k=1}(-1)^{k-1}\left(\sum\left[\beta^{-1} W_{i j}\right)\right]+\ldots+\left[\beta^{-1}{W_{1}}^{a} \ldots . . m=\right. \\
=\sum_{k=1}(-1)^{k-1} \beta_{*}\left(\sum_{i<j} \hat{W}_{i j}+b_{3} \sum_{i<j<k} \tilde{W}_{i j k}+. .+b_{\ell} \sum_{i_{1}<\ldots<i_{\ell}} \hat{W}_{i_{1} . . i_{\ell}}+. . b_{m} \hat{W}_{12 . . m}\right)^{k},
\end{gathered}
$$

where $b_{\ell}=a_{\ell}+\frac{\ell(\ell-1)}{2}$.

Proposition 4.1. Let M be a monomial of variables $\hat{W}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\mathbf{k}}}$ with $2 \leq \mathrm{k} \leq \mathrm{m}$, then $\beta_{*} \mathrm{M}$ is a cycle in which each term can be written as some Chern classes of the normal bundles of $W_{i_{1} \ldots \mathrm{i}_{\mathbf{k}}}$ in Q or of $\mathrm{W}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{t}}}$ in $\mathrm{W}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{s}}}$ with $\mathrm{s}<\mathrm{t}$ acting on some $\mathrm{W}_{\mathrm{h}_{1} \ldots \mathrm{~h}_{\mathrm{r}}}$ or $W_{h_{1} \ldots h_{r}} \cap \ldots \cap W_{k_{1} \ldots k_{\ell}}$ with disjoint subscripts.

Proof. We shall prove this inductively.

Assume $\mathrm{m}=2$, then M is simply the form $\hat{W}_{12}^{\mathrm{i}}$ if $\mathrm{i} \leq 2$ then $\beta_{*} \hat{W}^{\mathrm{i}}=0$; if $\mathrm{i} \geq 3$, $\beta_{*} \mathcal{W}_{12}{ }^{\mathrm{i}+3}=(-1)^{\mathrm{i}} \frac{1}{\mathrm{c}\left(\mathrm{N}_{\mathrm{W}_{12}} \mathrm{Q}\right)_{\mathrm{i}}} \cap\left[\mathrm{W}_{12}\right]$ so the assertion is true in this case.

Now suppose the assertion is true for the cases $\leq m-1$.

Given a monomial M on B, we arrange the variables in M by their length. If the first non-trivial variables in M is $\hat{W}_{\mathrm{i}_{1} \ldots \mathrm{i}_{\ell}}^{\mathbf{s}} \cdot \ldots \cdot \hat{W}_{\mathrm{j}_{1} \ldots \mathrm{j}_{\ell}}$ then if $\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\ell}\right\}, \ldots,\left\{\mathrm{j}_{1}, \ldots, \mathrm{j}_{\ell}\right\}$, are not disjoint this intersection will be zero by ($* * *$). This fact is also true for the intersection of any two variables with the same length. Therefore we may assume that any two variables appearing in M with same length have disjoint indices; for two variables with different length, for example $\hat{W}_{i_{1} \ldots i_{k}}, \tilde{W}_{j_{1} \ldots j_{r}}$ with $r>k$, if $\left\{i_{1}, \ldots, i_{k}\right\}$ and $\left\{\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{T}}\right\}$ are not disjoint and $\left\{\mathrm{i}_{1} \ldots \mathrm{i}_{\mathrm{k}}\right\} \subset\left\{\mathrm{j}_{1} \ldots \mathrm{j}_{\mathrm{T}}\right\}$ then the intersection of them must be zero by ($* * *$) . Therefore, without loss of generality we write down M as

Since $W_{12 \ldots \ell}$ has been blown up in step $\left(\mathrm{R}_{\ell}\right) \quad\left(\beta_{\ell+1}\right)_{* \ldots}\left(\beta_{2}\right)_{*} \mathrm{M}$ does not change its shape on B_{ℓ} and in abuse of notations, we use the same expression as in B.

Because $\{1,2, \ldots, \ell\}, \ldots,\{s+1, \ldots, s+\ell\}$ are disjoint, $W_{1 \ldots \ell}^{\prime} \ldots, W_{s+1 \ldots s+\ell}^{\prime}$ meet properly on $\mathrm{B}_{\ell-1}$, where W^{\prime} denotes the strict transform of W in $\mathrm{B}_{\ell-1}$. Therefore by (C) in § $3 \beta_{\ell}$ can be realized by successive blowing-ups, each time taking a $W_{1 \ldots \ell}^{\prime}$ as center. On the other hand $\mathcal{W}_{1 \ldots \ell \ldots \mathrm{t}}=\beta_{\ell}^{*} W_{1 \ldots \ell . . . \mathrm{t}}^{\prime}$ for every variable with a longer length. So

$$
\beta_{\ell *} M=\epsilon \mathrm{s}_{\mathrm{h}_{1}}\left(\mathrm{~N}_{\mathrm{W}_{12 \ldots \ell}^{\prime}} \mathrm{B}_{\ell-1}\right) \cap\left[\mathrm{W}_{1 \ldots \ell}^{\prime}\right]_{\mathrm{h}_{k}}\left(\mathrm{~N}_{\mathrm{W}_{s+1 \ldots s+\ell}^{\prime}} \mathrm{B}_{\ell-1}\right) \cap\left[\mathrm{W}_{\mathrm{s}+1 \ldots \mathrm{~s}+\ell}^{\prime}\right]
$$

where $\quad \epsilon=(-1)^{\mathrm{i}_{\ell} \ell^{-1+\ldots+\mathrm{j}_{\ell}-1}}, \quad \mathrm{~h}_{1}=\mathrm{i}_{\ell}-3(\ell-1), \ldots, \mathrm{h}_{\mathrm{k}}=\mathrm{j}_{\ell}-3(\ell-1)$. (Note, since codim $W_{1 \ldots \ell}=3(\ell-1)$, for every $1<i_{\ell}<3(\ell-1) \quad \beta_{\ell_{*}} M=0$. We always exclude this trivial case).

In the expression, $\left[W_{1 \ldots \ell}^{\prime}\right] \ldots\left[W_{s+1 \ldots s+\ell}^{\prime}\right]=\left[W_{1 \ldots \ell}^{\prime} \cap \ldots \cap W_{s+1 \ldots s+\ell}^{\prime}\right]$ since they meet properly. Using the isomorphism of (3) (b) in (**), we have $W_{1 \ldots \ell} \cap \ldots \cap W_{s+1 \ldots s+\ell} \simeq Q_{m-k(\ell-1)} \quad$ where $\quad k \quad$ is the number of $W_{1 \ldots \ell}, \ldots, W_{s+1 \ldots s+\ell}$ appearing in M and $W_{1 \ldots \ell}^{\prime} \cap \ldots \cap W_{s+1 \ldots s+\ell}^{\prime}$ corresponds the blowing-up of $Q_{m-k(\ell-1)}$ with respect to its own J_{1} (Intuitively what we are doing is simply replacing $1, \ldots, \ell-$ th factor of $(S)^{m}$ (resp. $\oplus H_{i}^{-1}$) with their diagonal. Thus we return to the original situation but replacing m with $m-k(\ell-1)$). At the same time $W_{1 \ldots \ell \ldots t}^{\prime}$ is identified with $W_{1 \ldots t-\ell+1}$ and so on.

On the other hand from (D) in this section we have

$$
s_{h}\left(N_{W_{1 \ldots \ell}^{\prime}} B_{\ell-1}\right)=\sum_{i=0}^{h}(-1)^{h-i}\left[\begin{array}{c}
e+h \\
\mathrm{e}+\mathrm{i}
\end{array}\right] \mathrm{s}_{\mathrm{i}}\left(\beta_{\ell-1}^{\prime *} \mathrm{~N}_{W_{1 \ldots \ell}} Q\right)\left(-\sum_{j} \mathrm{~W}_{1 \ldots \ell j}^{\prime}-\sum_{\mathrm{j} \delta} \mathrm{~W}_{1 \ldots \ell j s \ldots}^{\prime}\right)
$$

where the last factor on the right side is the exceptional divisor of the blowing-up of $Q_{m-k(\ell-1)}$ with respect to its J_{1}, and $e+1$ is the rank of N i.e., $e=3(\ell-1)-1$.

Therefore except for $M=\not \mathcal{W}_{12 \ldots \mathrm{~m}}^{\ell}$ we use the inductive hypothesis to deduce our conclusion. And $\beta_{*} \tilde{W}_{1}^{\ell+3(\mathrm{~m}-1)}=\epsilon \mathrm{s}_{\ell}\left(\mathrm{N}_{\mathrm{W}_{1 \ldots \mathrm{~m}}} \mathrm{Q}\right) \cap\left[\mathrm{W}_{1 \ldots \mathrm{~m}}\right], \epsilon=(-1)^{\ell+3 \mathrm{~m}}$.

Theorem 4.2. $\nu(S)$ can be expressed by a polynomial of the Chern number of S, the de-
gree of S in $\mathbb{P}^{3 \mathrm{~m}-2}$ and the intersection number of the canonical class of S with the restriction of the hyperplane class; the coefficients and the degree of the polynomial depend only on m .

Proof. We have proved in § 2 that

$$
\mathrm{m}!\nu(\mathrm{S})=\operatorname{deg}(\alpha \mathrm{g})_{*}\left([\mathrm{Q}]^{2}-\mathrm{g}^{*}\left(\left(1+\mathrm{c}_{1}\left(0_{\mathrm{Q}}(1)\right)\right)^{\mathrm{n}+1} \cap \mathrm{~s}\left(\mathrm{~J}_{1}, \mathrm{Q}\right)\right)_{0}\right)
$$

Now

$$
\begin{aligned}
(\alpha \mathrm{g})_{*}[\mathrm{Q}]^{2} & =\alpha_{*} \mathrm{c}_{\mathrm{n}+1}(O(1))^{\mathrm{n}+1} \cap[\mathrm{Q}] \\
& =\left[\frac{1}{\left(1-\mathrm{h}_{1}\right) \ldots\left(1-\mathrm{h}_{\mathrm{m}}\right)}\right]_{2 \mathrm{~m}} \cap\left[(\mathrm{~S})^{\mathrm{m}}\right]
\end{aligned}
$$

where $h_{i}=c_{1}\left(H_{i}\right)$. Hence

$$
\operatorname{deg}(a \mathrm{~g})_{*}[\mathrm{Q}]^{2}=\operatorname{deg}\left(\mathrm{h}_{1}^{2} \cdots \mathrm{~h}_{\mathrm{m}}^{2}\right)=\mathrm{d}^{\mathrm{m}}
$$

From Proposition 4.1 we see that $s\left(J_{1}, Q\right)$ is a combination of some Chern classes of certain normal bundles acting on $\left[W_{1 \ldots \ell}\right]$ for some ℓ or $W_{1 \ldots \ell} \cap \ldots \cap W_{k \ldots k+r}$ with disjoint subscripts. In fact in the proof of Proposition 4.1 we have shown that the Chern
 $\mathrm{s}<\mathrm{r}$ and $\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{r}}\right\} \subset\{1,2, \ldots, \ell\}$. But $\left[\mathrm{W}_{12 \ldots \mathrm{~s}}\right]=\left(\mathrm{c}_{1}(O(1))-\mathrm{h}_{1}\right)^{\mathrm{s}-1} \cap\left[\mathrm{Q}_{12 \ldots \mathrm{~s}}\right]$ (as a subscheme it is a complete intersection in $Q_{12 \ldots 8}$), and $c\left(N_{Q_{12 \ldots s}} Q\right) \simeq c\left(\alpha^{*} \Omega_{S}^{* \oplus \Theta_{\mathrm{s}-1}}\right)$. Hence $c\left(N_{W_{1 \ldots r}} W_{1 \ldots s}\right)=\left(1+c_{1}(O(1))-h_{1}\right)^{\mathrm{r}-8} \mathrm{c}\left(\alpha^{*} \cap_{8}^{*}\right)^{\mathrm{r}-\mathrm{s}}$, and

$$
\begin{gathered}
(\alpha \mathrm{g})_{*}\left[\mathrm{q}^{*}\left(1+\mathrm{c}_{1}(O(1))^{3 \mathrm{~m}-1} \cap\left[\frac{1}{\mathrm{c}\left(a^{*} \mathrm{~N}_{W_{1}} \mathrm{Q}\right)}\right]_{\mathrm{i}_{1}} \ldots\left[\frac{1}{\mathrm{c}\left(\alpha^{*} \mathrm{~N}_{W_{1}} \mathrm{~W}_{1 \ldots \mathrm{r}}\right)}\right]_{\mathrm{i}_{\ell}} \cap\left[\mathrm{W}_{1 \ldots \ell}\right]\right]_{0}\right. \\
=(\alpha)_{*}\left[\left(1+\mathrm{c}_{1}(O(1))\right]^{3 \mathrm{~m}-1}\left[\frac{1}{\left(1+\mathrm{c}_{1}(O(1))-\mathrm{h}_{1}\right) \mathrm{c}\left(\alpha^{*} \Omega_{S}^{*}\right.}\right)_{\mathrm{i}_{1}} \ldots\right. \\
\left.\ldots\left[\frac{1}{\left(1+\mathrm{c}_{1}(O(1))-\mathrm{h}_{1}\right)^{\mathrm{r}} \mathrm{c}\left(a^{*} \mathrm{n}^{*}\right)^{\mathrm{r}}}\right]_{\mathrm{i}_{k}}\left(\mathrm{c}_{1}(O(1))-\mathrm{h}_{1}\right)^{\ell-1} \cap\left[\mathrm{Q}_{1 \ldots \ell}\right]\right)_{0}
\end{gathered}
$$

where i_{k}, r we write them at random since this has nothing to do with our proof.

Developing the expression and taking the 0-part we find the general term of it (neglecting coefficients for the time being) is

$$
\alpha_{*}\left[c_{1}(O(1))^{(\mathrm{m}-1)+\mathrm{r}} \mathrm{~L}\left(\mathrm{~h}_{1}, \mathrm{~h}_{1}^{2}, \mathrm{~K}, \mathrm{~K}^{2}, \mathrm{~h}_{1} \mathrm{~K}, \mathrm{c}_{2}(\mathrm{~S})\right) \cap\left[\mathrm{Q}_{1 \ldots \ell}\right]\right]_{0}
$$

where L is a linear combination with integer coefficients. For the constant term we have

$$
\begin{gathered}
\alpha_{*}\left[c_{1}(o(1))^{(m-1)+2(m-\ell+1)} \cap\left[Q_{1 \ldots \ell}\right]\right]= \\
=\left[\frac{1}{\left(1-h_{1}\right)^{\ell}\left(1-h_{\ell+1}\right) \ldots\left(1-h_{m}\right)}\right]_{2(m-\ell+1)}^{n(S)^{m-\ell+1}=(\ell+1) h_{1}^{2} h_{\ell+1}^{2} \ldots h_{m}^{2}}
\end{gathered}
$$

and thus the degree is $(\ell+1) \mathrm{d}^{\mathrm{m}-\ell+1}$.

For the term $a h_{1}+b K$ we have

$$
\alpha_{*}\left(c_{1}(o(1))^{(m-1)+2(m-\ell)+1}\left(\mathrm{ah}_{1}+\mathrm{bK}\right) \cap\left[\mathrm{Q}_{1 \ldots \ell}\right]\right)
$$

$$
\begin{gathered}
=\left[\frac{1}{\left(1-h_{1}\right)^{\ell} \ldots\left(1-h_{m}\right)}\right]_{2(m-\ell)+1}\left(\mathrm{ah}_{1}+\mathrm{bK}\right) \cap(S)^{\mathrm{m}-\ell+1} \\
=\ell\left(a h_{1}^{2}+b h_{1} K\right) h_{\ell+1}^{2} \cdots \mathrm{~h}_{\mathrm{m}}^{2}
\end{gathered}
$$

and thus the degree is $a \ell d^{m-\ell+1}+b \ell\left(h_{1} K\right) d^{m-\ell}$.

Finally for the term of linear combination $a h_{1}^{2}+b K^{2}+e \cdot c_{2}(S)$. We have in the same way

$$
\left(\mathrm{ah}_{1}^{2}+\mathrm{bK}^{2}+\mathrm{e} \mathrm{c}_{2}(\mathrm{~S})\right) \mathrm{h}_{\ell+1}^{2} \ldots \mathrm{~h}_{\mathrm{m}}^{2}
$$

and the degree is $\left(a h_{1}^{2}+b K^{2}+e c_{2}(S)\right) d^{m-\ell}$.

As for the coefficients in the expression for $m!\nu(s)$ they come from the coefficients in the self-intersection of the exceptional divisor on B and from the coefficients in some Chern class formula. All of them only depend on m.

The computation for other possible terms is similar, so the theorem follows.

Remark 4.3. We can write this formula with a little bit more precisely,

$$
\mathrm{m}!\nu(\mathrm{S})=\mathrm{d}^{\mathrm{m}}+\mathrm{F}_{1} \mathrm{~d}^{\mathrm{m}-1}+\mathrm{F}_{2} \mathrm{~d}^{\mathrm{m}-2}+\ldots+\mathrm{F}_{\mathrm{m}}
$$

where F_{k} is a polynomial in variables $h K, K^{2}, c_{2}(S)$ of degree at most $\left[\frac{k}{2}\right]$.

Example 1. The case $\mathrm{m}=2$.

Then we have $\nu(\mathrm{S})=0$, but the computation (like we did in the proof of Theorem) gives

$$
2 \nu(S)=\mathrm{d}^{2}-10 \mathrm{~d}-5 \mathrm{hK}+\mathrm{c}_{2}(\mathrm{~S})-\mathrm{K}^{2}
$$

Therefore $\nu(\mathrm{S})=0$ is simply the well-known condition for a smooth surface embedded in \mathbb{P}^{4}.

Example 2. The case $\mathrm{m}=3$.

The computation for this simple case is a little complicated:

$$
\begin{aligned}
6 \nu(S)= & d^{3}-138 d^{2}-d\left(165(h K)+105\left(\mathrm{~K}^{2}-\mathrm{c}_{2}\right)+56392\right) \\
& -138104(\mathrm{hK})-105723 \mathrm{~K}^{2}+116159 \mathrm{c}_{2}
\end{aligned}
$$

References

[1] E. Arbarello, M. Cornalba, P. Griffith and J. Harris, Geometry of algebraic curves, Springer-Verlag, 1985.
[2] S.K. Donaldson, Instantons in Yang-Mills theory, in Interaction between particle physics and Mathematics, Oxford University Press, 1989, 59-75.
[3] A. Grothendieck, EGA II, IHES, 1961.
[4] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
[5] W. Fulton, Intersection Theory, Springer-Verlag, 1984.

