MULTIPLICITY OF COMPLEX HYPERSURFACE SINGULARITIES, ROUCHÉ SATELLITES AND ZARISKI'S PROBLEM

CHRISTOPHE EYRAL AND ELIZABETH GASPARIM

ABSTRACT. Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be reduced germs of holomorphic functions. We show that f and g have the same multiplicity at 0, if and only if, there exist reduced germs f' and g' analytically equivalent to f and g, respectively, such that f' and g' satisfy a Rouché type inequality with respect to a generic 'small' plane circle around 0. As an application, we give a reformulation of Zariski's multiplicity question and a partial positive answer to it.

1. INTRODUCTION

Let $f, g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be reduced germs (at the origin) of holomorphic functions, with $n \geq 2, V_f, V_g$ the corresponding germs of hypersurfaces in \mathbb{C}^n , and ν_f, ν_g the multiplicities at 0 of V_f, V_g respectively. By the multiplicity ν_f we mean the number of points of intersection, near 0, of V_f with a generic (complex) line in \mathbb{C}^n passing arbitrarily close to 0 but not through 0. As we are assuming that f is reduced, ν_f is also the order of f at 0, that is, the lowest degree in the power series expansion of f at 0. We denote by $C(V_f), C(V_g)$ the tangent cones at 0 of V_f, V_g , that is, the zero sets of the initial polynomials of f and g respectively (cf. [13]).

In Section 1, we prove that $\nu_f = \nu_g$, if and only if, there exist reduced germs f' and g'analytically equivalent to f and g, respectively, such that |f'(z) - g'(z)| < |f'(z)|, for all $z \in \dot{D}$, where \dot{D} is the boundary of a generic 'small' plane disc around 0 (Theorem 2.6). We call such an inequality a *Rouché inequality* and we say that g' is a *Rouché satellite* of f'.

In Section 2, we apply this result to Zariski's multiplicity question. In particular, we show that the answer to Zariski's question is *yes*, if and only if, for any two topologically equivalent reduced germs f and g there exist reduced germs f' and g' analytically equivalent to fand g, respectively, such that g' is a Rouché satellite of f' (Theorem 3.6). In addition, we answer positively Zariski's question, in the special case of 'small' homeomorphisms, for Newton nondegenerate isolated singularities (Corollary 3.3) and one-parameter families of isolated singularities (Corollary 3.5).

2. Multiplicity and Rouché satellites

Let *L* be a line through 0 in \mathbb{C}^n not contained in $C(V_f) \cup C(V_g)$ (equivalently, $L \cap (C(V_f) \cup C(V_g)) = \{0\}$). Then ν_f (respectively ν_g) is the order at 0 of $f_{|L}$ (respectively $g_{|L}$), and 0 is an isolated point of $L \cap V_f$ and $L \cap V_g$ (cf. [2]). In particular, there exists a closed disc $D \subseteq L$ around 0 such that, for any closed disc $D' \subseteq D$ around 0, $D' \cap (V_f \cup V_g) = \{0\}$. We shall call such a disc D a good disc for f and for g.

¹⁹⁹¹ Mathematics Subject Classification. 32S15.

Key words and phrases. Complex hypersurface singularity, multiplicity, Rouché satellite, Zariski's multiplicity question.

This research was supported by the Max-Planck Institut für Mathematik in Bonn.

Definition 2.1. We say that g is a *Rouché satellite* of f if there exists a good disc D (for f and for g) such that f and g satisfy a *Rouché inequality* with respect to the boundary \dot{D} of D, that is,

$$|f(z) - g(z)| < |f(z)|$$

for all $z \in \dot{D}$.

Theorem 2.2. If g is a Rouché satellite of f, then $\nu_q = \nu_f$.

Proof. Let $D \subseteq L$ be a good disc for f and for g (for some line L through 0 not contained in $C(V_f) \cup C(V_g)$) such that $|f_{|L}(z) - g_{|L}(z)| < |f_{|L}(z)|$ for all $z \in \dot{D}$. By Rouché theorem (cf. e.g. [7, Chapter VI, Theorem 1.6]), $f_{|L}$ and $g_{|L}$ have the same number of zeros, counted with their multiplicities, in the interior of D. Thus, since $f_{|L}$ and $g_{|L}$ vanish only at 0 on D, the orders at 0 of $f_{|L}$ and $g_{|L}$ are equal. In other words, $\nu_f = \nu_g$.

Example 2.3. Consider the germs $f, g: (\mathbb{C}^3, 0) \to (\mathbb{C}, 0)$ defined by

$$f(z_1, z_2, z_3) = z_1^2 + z_2^3 + z_3^3 + z_1^3 + z_2^4$$
 and $g(z_1, z_2, z_3) = z_1^2 + z_2^3 + z_3^3 + z_1^4 + z_2^6$.

Then g is a Rouché satellite of f. Indeed, set $L = \{(z_1, 0, z_3) \in \mathbb{C}^3 \mid z_1 = z_3\}$; then

$$V_f \cap L = \left\{ (0,0,0), \left(-\frac{1}{2}, 0, -\frac{1}{2}\right) \right\}$$
 and $V_g \cap L = \{ (0,0,0), (a,0,a), (\bar{a},0,\bar{a}) \},$

where $a = (-1 - i\sqrt{3})/2$ and \bar{a} is the complex conjugate of a. So, the disc $D \subseteq L$ of radius 1/4 is good for f and for g, and, for all $z \in D$,

$$|f(z) - g(z)| \le \frac{5}{4^4} < \frac{2}{4^3} \le |f(z)|.$$

Hence g is a Rouché satellite of f. In fact, here, f is also a Rouché satellite of g. Indeed, for all $z \in \dot{D}$, we have

$$|f(z) - g(z)| \le \frac{5}{4^4} < \frac{11}{4^4} \le |g(z)|.$$

Of course, in general, g may be a Rouché satellite of f without f being a Rouché satellite of g. For example, take g = f/2. Also, it is not difficult to construct f and g such that $\nu_f = \nu_g$ but neither g is a Rouché satellite of f nor f a Rouché satellite of g. Take for example g = -f. Nevertheless, such an unpleasant situation is resolved by Theorem 2.5 below.

Definition 2.4. If there exists a germ of homeomorphism $\varphi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that:

- (1) $\varphi(V_q) = V_f$ then f and g are called topologically equivalent (denoted $f \sim_t g$);
- (2) $\varphi(V_g) = V_f$ and φ is an analytic isomorphism, then f and g are called *analytically* equivalent (denoted $f \sim_a g$);
- (3) $g = f \circ \varphi$ then f and g are called topologically right equivalent (denoted $f \sim_{tr} g$).

Note that the definition makes sense only for *reduced* germs. In the special case of an isolated singularity, the hypothesis ' $n \ge 2$ ' automatically implies that the germ is reduced. Note also that $(2) \Rightarrow (1)$ and $(3) \Rightarrow (1)$.

Theorem 2.2 has the weak following converse.

Theorem 2.5. If $\nu_f = \nu_g$, then there exist reduced germs $f' \sim_a f$ and $g' \sim_a g$ such that g' is a Rouché satellite of f'.

Proof. By an analytic change of coordinates, one can assume that the z_n -axis, Oz_n , is not contained in the tangent cones $C(V_f)$, $C(V_g)$, so that $f(0, \ldots, 0, z_n) \neq 0$ and $g(0, \ldots, 0, z_n) \neq 0$, for any $z_n \neq 0$ close enough to 0. By the Weierstrass preparation theorem, for z near 0, the germ

f(z) can be represented as a product f(z) = f'(z) f''(z), where f''(z) is a germ of holomorphic function which does not vanish around 0 and where f'(z) is of the form

$$f'(z_1,\ldots,z_n) = z_n^{\nu_f} + z_n^{\nu_f-1} f_1(z_1,\ldots,z_{n-1}) + \ldots + f_{\nu_f}(z_1,\ldots,z_{n-1})$$

with, for $1 \leq i \leq \nu_f$, $f_i \in \mathbb{C}\{z_1, \ldots, z_{n-1}\}$, $f_i(0) = 0$ and the order of f_i at 0 is $\geq i$. Similarly g(z) = g'(z)g''(z), with $g''(z) \neq 0$ for all z near 0, and

$$g'(z_1,\ldots,z_n) = z_n^{\nu_g} + z_n^{\nu_g-1}g_1(z_1,\ldots,z_{n-1}) + \ldots + g_{\nu_g}(z_1,\ldots,z_{n-1}),$$

with, for $1 \leq i \leq \nu_g$, $g_i \in \mathbb{C}\{z_1, \ldots, z_{n-1}\}$, $g_i(0) = 0$ and the order of g_i at 0 is $\geq i$. Clearly f'and g' are reduced, and, since $V_f = V_{f'}$ and $V_g = V_{g'}$, $f' \sim_a f$ and $g' \sim_a g$. On the other hand, since $\nu_f = \nu_g$, $f'_{|Oz_n} = g'_{|Oz_n}$. But for any disc $D \subseteq Oz_n$ around 0 (in particular for any good disc in Oz_n for f' and g'), $|f'(z)| = r^{\nu_f} \neq 0$ for all $z \in \dot{D}$, where r is the radius of D.

Since the multiplicity is an invariant of the (embedded) reduced analytic type, we can summarize Theorems 2.2 and 2.5 as follows.

Theorem 2.6. The multiplicities ν_f and ν_g are the same, if and only if, there exist reduced germs $f' \sim_a f$ and $g' \sim_a g$ such that g' is a Rouché satellite of f'.

3. Applications to Zariski's multiplicity question

In [14], Zariski posed the following question: if $f \sim_t g$, then is it true that $\nu_f = \nu_g$? The question is, in general, still unsettled (even for hypersurfaces with isolated singularities). The answer is, nevertheless, known to be *yes* in several special cases the list of which can be found in the recent first author's survey article [3]. In particular, Ephraim [2] proved that multiplicity is preserved by ambient C^1 -diffeomorphisms; his paper inspired some of our proofs. In this section, we give a partial positive answer to Zariski's question, in the special case of 'small' homeomorphisms, for Newton nondegenerate isolated singularities and one-parameter families of isolated singularities. In addition, we give an equivalent reformulation of Zariski's question in terms of Rouché satellites.

Definition 3.1. Given $\varepsilon > 0$, a germ of homeomorphism $\varphi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ is called ε -small if, for all z,

$$|z - \varphi(z)| < \varepsilon.$$

The next result asserts that if f and g are topologically right equivalent via a sufficiently small homeomorphism, then they have the same multiplicity.

Theorem 3.2. Suppose $f \sim_{tr} g$, that is, $g = f \circ \varphi$ for some homeomorphism φ . There exists $\varepsilon > 0$ such that, if φ is ε -small, then $\nu_f = \nu_g$.

Proof. Since f is uniformly continuous on a compact small ball $B_r \subseteq \mathbb{C}^n$ around 0, there exists $\eta > 0$ such that, for any $z, w \in B_r$,

$$|z-w| < \eta \ \Rightarrow \ |f(z)-f(w)| < \inf_{u \in \dot{D}_o} |f(u)|,$$

where D_{ϱ} is a good disc at 0 for f with radius $\varrho \leq r/2$. Let $\varepsilon := \inf\{\eta, \varrho\}$. If φ is ε -small, then, for all z in the closed ball $B_{\varrho} \subseteq \mathbb{C}^n$ (in particular for all $z \in \dot{D}_{\varrho}$), $\varphi(z) \in B_r$ and

$$|f(z) - f \circ \varphi(z)| < \inf_{u \in \dot{D}_{\varrho}} |f(u)| \le |f(z)|.$$

Therefore $f \circ \varphi$ is a Rouché satellite of f. Then, by Theorem 2.2, $\nu_f = \nu_{f \circ \varphi}$.

The interest in topologically right equivalent germs with regard to Zariski's question comes from the following. By theorems of King [4], Perron [8], Saeki [11] and Nishimura [9], if fhas an *isolated* singularity at 0 and a nondegenerate Newton principal part, then the relation $f \sim_t g$ implies $f \sim_{tr} g$. On the other hand, by another theorem of King [5], for a one-parameter holomorphic family of *isolated* singularities $(f_s)_s$ in \mathbb{C}^n , with $n \neq 3$, if the relation $f_s \sim_t f_0$ holds for all s near 0, then so does $f_s \sim_{tr} f_0$. So, when considering isolated Newton nondegenerate singularities or *families* of isolated singularities, the Zariski problem refers immediately to right equivalent germs.

Corollary 3.3. Assume that f has an isolated critical point at 0 and a nondegenerate Newton principal part, and suppose $g \sim_t f$. In this case, $g = f \circ \varphi$ for some homeomorphism φ . There exists $\varepsilon > 0$ such that, if φ is ε -small, then $\nu_f = \nu_g$.

Remark 3.4. If, in addition, f is convenient (cf. [6]), then the hypothesis of having an isolated singularity at 0 is automatically satisfied (cf. [10]).

Corollary 3.3 is complementary to the result of Abderrahmane and Saia–Tomazella concerning μ –constant *families* of convenient Newton nondegenerate (isolated) singularities (cf. [1] and [12]).

Corollary 3.5. Let $(f_s)_s$ be a topologically constant (or μ -constant) one-parameter holomorphic family of isolated hypersurface singularities, with $n \neq 3$. In this case, for all s near 0, $f_s = f_0 \circ \varphi_s$ for some homeomorphism φ_s . There exists a family $(\varepsilon_s)_s$ of numbers $\varepsilon_s > 0$ such that, if, for all s near 0, φ_s is ε_s -small, then $(f_s)_s$ is equimultiple (i.e., for all s near 0, $\nu_{f_s} = \nu_{f_0}$).

We conclude with the following nice consequence of Theorem 2.6 which is reformulation of Zariski's multiplicity question in terms of Rouché satellites.

Theorem 3.6. The answer to Zariski's multiplicity question is yes, if and only if, the relation $f \sim_t g$ implies that there exist reduced germs $f' \sim_a f$ and $g' \sim_a g$ such that g' is a Rouché satellite of f'.

References

- 1. O. M. Abderrahmane, On the deformation with constant Milnor number and Newton polyhedron, Preprint (Saitama University, 2004).
- 2. R. Ephraim, C¹ preservation of the multiplicity, Duke Math. J. 43 (1976) 797–803.
- 3. C. Eyral, Zariski's multiplicity question A survey, Preprint (Max-Planck Institut für Mathematik, 2005).
- 4. H. King, Topological type of isolated critical points, Ann. of Math. 107 (1978) 385-397.
- 5. H. King, Topological type in families of germs, Invent. Math. 62 (1980) 1-13.
- 6. A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976) 1–32.
- S. Lang, Complex analysis, Graduate Texts in Mathematics 103 (Springer-Verlag, corrected second printing, 1995).
- B. Perron, Conjugaison topologique des germes de fonctions holomorphes à singularité isolée en dimension trois, Invent. Math. 82 (1985) 27–35.
- 9. T. Nishimura, A remark on topological types of complex isolated singularities of hypersurfaces, private communication between O. Saeki and T. Nishimura as cited in [11].
- M. Oka, Non-degenerate complete intersection singularity, Actualités Mathématiques (Hermann, Paris, 1997).
- 11. O. Saeki, Topological types of complex isolated hypersurface singularities, Kodai Math. J. 12 (1989) 23-29.
- M.J. Saia and J.N. Tomazella, Deformations with constant Milnor number and multiplicity of complex hypersurfaces, Glasg. Math. J. 46 (2004) 121–130.
- H. Whitney, Complex analytic varieties, Addison-Wesley publishing company, Reading, Mass.-Menlo Park, Calif.-London-Don Mills, Ont, 1972.
- 14. O. Zariski, Open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971) 481-491.

MAX-PLANCK INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, 53111 BONN, GERMANY *E-mail address*: eyralchr@yahoo.com

Department of Mathematical Sciences, New Mexico State University, Las Cruces NM 88003-8001, USA

 $E\text{-}mail\ address:\ \texttt{gasparim@nmsu.edu}$