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Abstract

Construction. For a dominating polynomial (or analytic) mapping F : Kn → Kl

with an isolated critical value at 0 (K = R or an algebraically closed field of characteristic
zero) we construct a closed bundle GF ⊂ T ∗Kn , restrict it over the critical points Sing(F )
of F in F−1(0) and partition Sing(F ) into ’quasistrata’ of points with the fibers of GF

of constant dimension. It turns out that T-W-a (Thom-Whitney-a) stratifications ’near’
F−1(0) exist iff the fibers of bundle GF are orthogonal to the tangent spaces of the
quasistrata (e. g. when l = 1); and are the orthogonal complements over an irreducible
component S of a quasistrata iff S is universal for the class of T-W-a stratifications,
meaning that for any {S′j}j in the class there is a component S′ of an S′j with S∩S′ being
open and dense in both S and S′ . Construction of GF involves Glaeser iterations of
replacing the fibers of the successive closures by the respective linear spans and stabilizes
after ρ(F ) ≤ 2n iterations, resulting in dim(GF ) = n for K 6= R .

Results. We prove that T-W-a stratifications with only universal strata exist iff
all fibers of GF are the orthogonal complements to the respective tangent spaces to the
quasistrata, and then the partition of Sing(F ) by the latter yields the coarsest universal
T-W-a stratification. (We relax condition of smoothness of strata to a continuity of their
Gauss maps and show it implies smoothness of their normalizations.) The proof relies on
an extension of a singular stratum to a subvariety with a continuous Gauss map and a
prescribed tangent bundle over the stratum (assuming a version of Whitney-a condition).
The key ingredient is a version of Sard-type Theorem for singular spaces. We provide
various examples including of F : K5 → K that does not admit a universal T-W-a
stratification and a family of Fn : K4n+1 → K with ρ(Fn) = n .

Question. We wonder whether there can ever be an irreducible component of bundle
GF of dimension smaller than n , e. g. for F : Cn → C ?

Introduction

We consider Thom-Whitney-a stratifications of critical points in an isolated critical fiber of
a dominating polynomial (or analytic) mapping F : Kn → K l , where K = R or is an alge-
braically closed field of characteristic zero. Our main goal is to identify ’universal strata’,
i. e. such that for every stratification of this type their open and dense subsets appear as
open dense subsets in appropriate strata of the latter. To that end we consider even a larger
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class of Thom-Whitney-a stratifications with the condition of smoothness of strata relaxed
to a weaker assumption of continuity of their Gauss mappings, which by definition (over the
smooth points) send points to the tangent spaces at these points. It turns out that singu-
larities of such strata are mild, in particular their normalizations are smooth. Besides being
Gauss regular we require strata to be open in their respective closures, pairwise disjoint and,
of course, to satisfy classical Thom and Whitney-a conditions (for the definitions of the latter
one may consult for instance [7] , [17] , [22]). Construction of the Glaeser bundle of the
mapping (i. e. of the restriction over the critical points of the subbundle of the cotangent
bundle which is minimal by inclusion among closed subbundles containing the differentials
of the component functions of our mapping) involves Glaeser iterations of replacing fibers
of the successive closures by their respective linear spans (see [8]). At the first glance it
seemed that the Glaeser bundle of the mapping could serve the purpose of identifying Thom-
Whitney-a Gauss regular stratifications with all strata being universal, namely: by means
of partitioning of the critical locus by dimension of its fibers. But it does not always work,
see example of Subsection 8.3. Nevertheless, the irreducible subsets (we call them Glaeser
components) over which the fibers of Glaeser bundle are of constant dimension equal their
respective codimension are universal even with respect to the class of Thom-Whitney-a Gauss
regular stratifications, see Corollary 2.5 . Thom-Whitney-a stratifications ’near’ the critical
fiber exist iff the fibers of Glaeser bundle are orthogonal to the tangent spaces of the quasis-
trata of points of constant dimension of fibers of Glaeser bundle (e. g. when l = 1, see [15]).
Our principal result states that Thom-Whitney-a Gauss regular stratifications with all strata
being universal essentially coincide with the ones derived from Glaeser bundles by means of
the partitioning into the quasistrata described above. The proof relies on our construction of
an extension of a smooth stratum of a singular locus of a variety to a Gauss regular subva-
riety with a prescribed tangent bundle over the stratum under the assumption of Whitney-a
condition on the pair. To that end our version of a Sard-type Theorem for singular varieties
is crucial. We provide various examples of mappings that admit universal Thom-Whitney-
a Gauss regular stratifications, but in general the question of recognition of an individual
universal stratum we address in a forthcoming manuscript: we will show that the universal
strata with respect to Thom-Whitney-a Gauss regular stratifications are precisely the Glaeser
components over which Glaeser bundle is of the same dimension as the source of the mapping.
The latter Glaeser components we refer to as Lagrangian components since off singular locus
the restriction of Glaeser bundle over such components is a Lagrangian submanifold of T ∗Kn

in the natural symplectic structure of the latter.

In abuse of notation we write Sing(F ) for the critical points of F in F−1(0) . We say that
an algebraic (or analytic respectively) set S open in its closure is Gauss regular provided that
there is a (unique) continuiation to all of S of the Gauss map from the regular points Reg(S)
of S , i. e. S 3 x 7→ Tx(S) , where Tx(S) denotes the tangent space to S at x . In abuse of
notation we will denote (for a Gauss regular S and a ∈ Sing(S) := S \Reg(S) ) by Ta(S) the
unique limiting position at a of the tangent spaces Tx(S) to S at the points x ∈ Reg(S) . We
consider Thom-Whitney-a stratifications {Si}i of the critical points Sing(F ) = ∪iSi with all
Si being Gauss regular (rather than smooth), open in their respective closures and pairwise
disjoint, and such that {Si}i satisfy Thom and Whitney-a conditions. For brevity sake we
call them TWG-stratifications and say that {Si}i is universal if all irreducible components S
of Si are universal, i. e. if for any other TWG-stratification {S′j}j of Sing(F ) = ∪jS

′
j there

exists (a unique) j and an irreducible component S′ of S′j such that S ∩ S′ is open and dense
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in both S and S′. Throughout the article by an irreducible component of a constructive set
we mean its intersection with an irreducible component of its closure.

Denote by GF ⊂ (Sing(F )) × (Kn)∗ the restriction to Sing(F ) ⊂ Kn of the minimal by
inclusion closed subbundle containing bundle {(x, Span{dfj(x)}1≤j≤l)}x∈Kn ⊂ Kn × (Kn)∗

of subspaces of (Kn)∗ over Kn , where Span denotes the K-linear hull of a family of vectors
in (TxK

n)∗ . Let ’quasistrata’ Gr ⊂ Kn consist of the points whose fibers of GF are vector
spaces of dimension r . Assuming Thom stratification ’near’ F−1(0) exists, cf. [15] (e. g.
when l = 1) it follows that r ≥ l and that the dimensions of quasistrata Gr are less or
equal n− r by virtue of Lemma 2.7 below. Constructed bundle GF is functorial with respect
to isomorphisms preserving fibers of F ’near’ its critical value 0 (including with respect to
C1 diffeomorphisms when K is C or R), see Section 2. Construction of Glaeser bundle GF

involves iterations (starting with {(x, Span{dfj(x)}1≤j≤l)}x∈Kn) of replacing the fibers of the
successive closures by their linear spans and stabilizes after ρ(F ) ≤ 2n iterations (see [4]),
resulting in dim(GF ) = n for K 6= R (see Claim 2.8 and Remark 2.9).

The principal purpose of the paper is to provide a constructive criterium of the existence of
a universal TWG-stratification {Si}i . Our main result states that Sing(F ) admits a universal
TWG-stratification if and only if manifolds Reg(GF |Gr) are Lagrangian in Kn× (Kn)∗ in the
natural symplectic structure of the latter. Moreover, for universal TWG-stratifications {Si}i

partitions {S(m)}m of Sing(F ) obtained by replacing all Si of the same dimension m with their
union S(m) results in a universal TWG-stratification and coincides with the functorial partition
{Gr}l≤r≤n of Sing(F ) , which is then the coarsest among all universal TWG-stratifications.

A simpler implication that if all Reg(GF |Gr) are Lagrangian then {Gk}l≤k≤n is a universal
TWG-stratification we establish in Section 3. When the latter takes place we would refer to
{Gk}l≤k≤n as a functorial TWG-stratification (with respect to F ).

A more difficult converse implication is proved in Sections 4 and 5. It relies on a
Proposition 4.10 of interest in its own right. A straightforward generalization of the latter in
Theorem 5.1 provides an extension of a (smooth) stratum G of a singular locus of a variety
S (algebraic or analytic, open in its closure and with G being essentially its boundary) to
a Gauss regular subvariety G+ of S with a prescribed tangent bundle TG over G (under
necessary assumptions of our version of Whitney-a condition for the pair of TG over G and S).
The key ingredient to both is our version of a Sard-type Theorem 5.3 for singular varieties.
Roughly speaking it asserts that for an irreducible Gauss regular algebraic (or analytic) set S
its intersection with an appropriate generic hypersurface (of the same class) is Gauss regular
and, more importantly, the angles between the tangent spaces to S and to the hypersurface
are uniformly separated from 0 on compacts (in a neighborhood of an open dense subset of
any irreducible component of S \ S).

In Section 6 we show that the normalization of a Gauss regular variety is smooth.
In Subsection 8.2 we introduce a family of examples of Fn : K4n+1 → K and prove

that the index of stabilization ρ(Fn) of Fn equals n . In Subsection 8.3 we prove that
F := AX2 + 2B2XY + CY 2 does not admit a universal TWG-stratification. Moreover, we
show that for an appropriate variation of the former example an arbitrary hypersurface ap-
pears as Gr for some r (see Remark 8.3). We also consider in Subsections 8.1, 8.4 (discriminant-
type) examples for which {Gr}r are functorial TWG-stratifications (and exhibit these strati-
fications explicitly).

In abuse of notation in the sequel we identify (occasionaly) the dual (Kn)∗ with Kn, the
cotangent bundle T ∗(Kn) with K2n and also denote dF (x) := Span{{dfi(x)}1≤i≤l}. We also
denote the variety of zeroes of a polynomial f by {f = 0} and for the sake of brevity refer
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to “Gauss regular” as “G-regular”.

1 Canonical Thom-Whitney-a stratifications

We recall that in a stratification {Si}i of the set Sing(F ) = ∪iSi of critical points of F in
F−1(0) (i. e. the points x ∈ F−1(0) such that dim(dF (x)) < l) each stratum Si is assumed
to be irreducible (for K = C and in the analytic case connected in the classical eucleadian
topology), open in its closure and assumed to fulfil the frontier condition: for each pair Si, Sj

if Si∩Sj 6= ∅ then Sj ⊂ Si , as is e. g. in [7]. Traditionally one assumes each Si to be smooth.
In the present article for the sake of a concept of universality (and a fortiori functoriality),

i. e. of a stronger version of canonicity, we relax condition of smoothness and allow Si to be
G-regular. We consider Gauss regular stratifications Sing(F ) = ∪iSi, i. e. all Si are G-regular,
open in their respective closures and pairwise disjoint (but neither necessarily irreducible nor
fulfil the frontier condition). The notions of Thom property with respect to a map F and
Whitney-a condition on stratifications naturally extend to Gauss regular stratifications.

Lemma 1.1 i) A Thom stratification exists iff the following condition holds:
(1) any irreducible constructive set S ⊂ Sing(F ) contains an open dense sub-

set So ⊂ Reg(S) such that if a sequence {(xm , dF (xm)) ⊂ K2n}m has a limit
limm→∞(xm , dF (xm)) = (x0 , V ), where x0 ∈ So, xm ∈ Kn \ Sing(F ) and V is an
l-dimensional linear subspace of (Kn)∗, then it follows V ⊥ Tx0(So);

ii) A Thom-Whitney-a stratification exists iff (1) and the following condition hold:
(2) for any smooth irreducible constructive set M ⊂ Sing(F ) and any irreducible con-

structive set S ⊂ Sing(F ) there is an open dense subset So ⊂ Reg(S) such that if a se-
quence {(xm , Vm) ⊂ Kn × (Kn)∗}m has a limit limm→∞(xm , Vm) = (x0 , V ), where
x0 ∈ So, xm ∈ M and subspaces Vm in (Kn)∗ are orthogonal to Txm(M) ⊂ Kn, then it
follows that subspace V ⊂ (Kn)∗ is orthogonal to Tx0(So) ⊂ Kn.

Proof. Since the proofs of i) and ii) are similar, we provide only a proof of ii). First
assume that {Si}i is a Thom-Whitney-a stratification. Once again the proofs of properties
(1) and (2) are similar and we provide only a proof of (2). Take a unique Si (respectively,
Sj) such that M ∩ Si (respectively, S ∩ Sj) is open and dense in M (respectively, in S). If
S \ Si is open and dense in S then the choice of So := (Sj ∩ Reg(S)) \ Si is as required in
(2). On the other hand the remaining assumptions of (2) can not hold which makes (2) valid,
but vacuous. (Property (1) holds due to the Thom property of {Si}i.) Otherwise S ⊂ Si

and the choice of So := Sj ∩ Reg(S) is as required in (1) and in (2) due to the Thom and
Whitney-a properties of {Si}i respectively. Indeed, it suffices to replace the sequence of (2)
by its subsequence for which exists limm→∞ Txm(M) =: W , and then to choose another
sequence {x′m}m of points in M ∩ Si with the ’distance’ between respective (xm , Txm(M))
and (x′m , Tx′m(M)) converging to zero. Then W = limm→∞ Tx′m(M) and is orthogonal to
V . On the other hand due to the Whitney-a property of the pair Si , Sj it follows that
W ⊃ Tx0(Si) ⊃ Tx0(S) and therefore also Tx0(S) is orthogonal to V , as required.

Now we assume that (1) and (2) are valid. We construct strata S1, S2, . . . by induction
on their codimensions, i. e. codim(S1) ≤ codim(S2) ≤ · · · . So assume that S1, . . . , Sk are
already produced with codim(Sk) = r, set Sing(F )\ (S1∪· · ·∪Sk) =: Z being of codim(Z) :=
r1 > r and that Thom and Whitney-a properties are satisfied for stratification {Si}1≤i≤k of
Sing(F ) \ Z. Subsequently for every irreducible component S of Z of codim(S) = r1 (and
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by making use of the noetherian property of the Zariski topology of S) we choose a maximal
open subset of Reg(S) which satisfies both property (1) and the property (2) with respect
to the choices of sets Si, for 1 ≤ i ≤ k, as the set M of (2). By additionally choosing each
subsequent Sj in Sing(F ) \ (S1 ∪ · · · ∪Sj−1) for k < j ≤ k1 we produce strata Sk+1, . . . , Sk1 of
codimensions r1 with codim((Sing(F ) \ (S1 ∪ · · · ∪Sk1)) > r1. Such choice ensures Thom and
Whitney-a properties of stratification {Si}1≤i≤k1 of set ∪1≤i≤k1Si, as required in the inductive
step, which completes the proof of ii).

Remark 1.2 It is not true that for l > 1 and 0 being an isolated critical value of a
dominating polynomial mapping F : Kn → K l a stratification that satisfies Thom condition
with respect to F necessarily exists, e. g consider the ’local’ blowing up of the origin:

F : (z1, ..., zn) 7→ (z1 , z1 · z2 , . . . , z1 · zn) .

The statement (2) holds, see [25], [23], [14], [24]. For l = 1 statement (1) holds, see [15],
and for l > 1 see e. g. [15], [7], [16] for conditions on F .

Remark 1.3 Fix a class of stratifications. A stratification {Si}i of Sing(F ) = ∪iSi is called
canonical (or minimal), e. g. in [7] and [21], if for any other stratification {S′i}i of Sing(F ) =
∪iS

′
i in this class with codim(S1) ≤ codim(S2) ≤ · · · and codim(S′1) ≤ codim(S′2) ≤ · · · it

follows (after possibly renumbering {S′i}) that S′1 = S1, . . . , S
′
k = Sk and S′k+1 ( Sk+1. Con-

structed in the proof of Lemma 1.1 Thom and Thom-Whitney-a stratifications are canonical
in the corresponding classes. These respective canonical stratifications are clearly unique. We
extend to Gauss regular stratifications the concepts and constructions introduced above for
stratifications.

2 Dual bundles of vector spaces of TWG-stratifications

In the sequel we will repeatedly apply the following construction. Let M , N be constructive
sets open in their Zariski closures (by default we consider Zariski topology, sometimes in the
case of K being C or R we also use euclidean topology). In the analytic case we assume
alternatively that M , N are analytic manifolds. Let V , W be vector spaces. For a subset
T ⊂ M × V we denote T (0) = T and by T (1) ⊂ M × V a bundle of vector spaces whose
fiber T (1)

x at a point x ∈ M is the linear hull of the fiber (T )x of the closure T ⊂ M × V
[8]. Defining in a similar way T (p+1) starting with T := T (p) , for p ≥ 0 , results in an
increasing chain of (not necessary closed) bundles of vector spaces and terminates at T (ρ)

such that T (ρ) = T (ρ+1) with ρ ≤ 2 dim(V ) . We denote Gl(T ) = T (ρ) and refer to the
smallest ρ = ρ(T ) as the index of stabilization. The so called ’Glaeserization’ Gl(T ) of T is
the minimal closed bundle of vector spaces which contains T . We apply this construction to
T = {(x, dF (x))} where x ranges over all noncritical points of F . The result we denote by
G(p) := G

(p)
F := T (p)|Sing(F ) , for p ≥ 0 , and G := GF := Gl(T )|Sing(F ) (and still refer to the

smallest ρ = ρ(F ) as the index of stabilization). We mention that Thom stratification with
respect to F exists iff dim(G(0)) ≤ n, see [15], [12].

Denote Gx := π−1(x)∩G , where π : T ∗(Kn)|Sing(F ) → Sing(F ) is the natural projection.
The proofs of the following Proposition and its corollary are straightforward.

Proposition 2.1 Let TM ⊂M × V, TN ⊂ N ×W and h−1 : N →M,H : N ×W →M × V
be homeomorphisms which commute with the natural projections N ×W → N, M×V →M .
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Assume in addition that H is linear on each fiber of these projections and that H(TN ) = TM .
Then H(Gl(TN )) = Gl(TM ), moreover H(T (i)

N ) = T
(i)
M for every i.

Corollary 2.2 Let M , N be nonsingular, TM ⊂ T ∗M, TN ⊂ T ∗N . If h : M → N
is an isomorphism such that for the pullback D∗h by h we have (D∗h)(TN ) = TM then
(D∗h)(Gl(TN )) = Gl(TM ). Moreover, (D∗h)(T (i)

N ) = T (i)
M for every i.

When K is C or R it suffices to assume that h is a C1-diffeomorphism and then con-
structed bundle GF and partition {Gr}l≤r≤n of Sing(F ) are functorial with respect to C1

diffeomorphisms preserving fibers of F ’near’ its critical value 0 .
(For an arbitrary K replace “C1 diffeomorphisms” above by “isomorphisms”.)

With any Gauss regular stratification S = {Si}i , where Sing(F ) = ∪iSi , we associate
a subbundle B = B(S) of T ∗(Kn)|Sing(F ) of vector subspaces of (Kn)∗ such that for every i

and a smooth point a ∈ Si the fiber Ba := (Ta(Si))⊥ ⊂ (Kn)∗ and for a singular point a of
Si the fiber Ba is defined by continuity, by making use of Si being G-regular. Note that the
dimension of fibers dim(Ba) = codim(Si) for a ∈ Si .

Remark 2.3 Note that for any Gauss regular stratification S = {Si}i of Sing(F ) bundle
B(S) = ∪iB(S)|Si and for any irreducible component S of an arbitrary Si bundle B(S)|S is
an irreducible n-dimensional Gauss regular set open in its closure.

Proposition 2.4 A Gauss regular stratification S satisfies Thom-Whitney-a condition with
respect to F iff G ⊂ B and B is closed.

Proof. It follows by a straightforward application of definitions that Thom and Whitney-a
properties for any Gauss regular stratification S = {Si}i of Sing(F ) are equivalent to
G(1) ⊂ B(S) and, respectively, that set B(S) is closed. Due to the definition of bundle G
proposition follows.

Corollary 2.5 It follows due to the preceding Remark and Proposition that all n-dimensional
irreducible components of G appear as irreducible components of B(S) for any
TWG-stratification S = {Si}i of Sing(F ). Therefore every irreducible component G of Gr

with G|G being n-dimensional is a universal stratum.

Note that dim(G) = n for K 6= R (see Claim 2.8 and Remark 2.9).

Remark 2.6 Let {Si}i be a TWG-stratification of Sing(F ). Then for every 0 ≤ m ≤ n the
union

⋃
dim(Si)=m Si coincides with (

⋃
dim(Si)≥m Si) \ (

⋃
dim(Si)>m Si) and therefore is open in

its closure. Also due to Proposition 2.4 it is G-regular. Moreover, if we replace any subfamily
of {Si}i of the same dimension m by its union S, we would again obtain a TWG-stratification
if only S is open in its closure.

Lemma 2.7 The following three statements are equivalent:
• a Thom-Whitney-a stratification exists;
• a TWG-stratification exists;
• condition (2) of Lemma 1.1 and the following property hold:
(1’) any irreducible constructive set S ⊂ Sing(F ) contains an open dense subset S0 ⊂

Reg(S) such that for any x0 ∈ S0 we have Tx0(S) ⊥ Gx0.
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Proof. For the proof of (1’) above note that property (1’) with Gx0 being replaced by
G

(1)
x0 is a straightforward consequence of the Thom property of stratification S with respect

to F and condition (1) of Lemma 1.1 , which Thom property implies. By making use then of
condition (2) of Lemma 1.1 consecutively property (1’) with Gx0 being replaced by G(p)

x0 , for
p ≥ 1 , follows and implies property (1’) as stated, since G = G(p) for p = ρ(F ) . Otherwise
the proof is similar to that of Lemma 1.1 with the exception that we replace Reg(S) with
the maximal (by inclusion) open subset U of S to which by continuity the Gauss map of S
uniquely extends from Reg(S).

Lemma 1.1 implies (assuming Thom-Whitney-a stratification of Sing(F ) exists) that r :=
n− dim(Sing(F )) ≥ mina∈Sing(F ){dim(Ga)} ≥ l.

Claim 2.8 Assume that Thom stratification of Sing(F ) exists (e. g. if l = 1 , see [15]),
and that K 6= R , then Sing(F ) = ∪j≥rGj . Also, then quasistrata Gj are open and dense in
irreducible components of Sing(F ) of dimension n−j (if such exist). In particular, appropriate
open subsets of the latter are Lagrangian components of the former with their union being
dense in Sing(F ) , quasistratum Gr 6= ∅ and dim(GF ) = n .

Remark 2.9 In the example of F : R2 → R defined by F := x3 + x · y4 the critical
points Sing(F ) = {0}, the fiber at 0 of the Glaeser bundle GF is spanned by dx , i. e. is
1-dimensional, and therefore dim(GF ) = 1 < 2 =: n .

Proof of Claim. The openness is due to (1’) of Lemma 2.7 and the upper semicontinuity
of the function g : x → dim(Gx) . Therefore it suffices to verify that a generic point a of an
irreducible component Z of Sing(F ) of dimension n− j belongs to Gj .

We first reduce to the case of l = 1 by making use of the existence of a TWG-stratification,
which is true due to Remark 1.2, Lemma 1.1 and Lemma 2.7. Indeed, let U be an open set
such that U ∩Sing(F ) is smooth, irreducible and of dimension n−j . We may assume w.l.o.g.
that 0 ∈ U ∩Sing(F ) and that for the 1-st component f := f1 of F : Kn → K l the differential
df(0) = 0 (which anyway holds after a linear coordinate change in the target K l of map F ).
We may also assume by shrinking U and replacing 0 , if needed, that 0 ∈ Reg(Sing(f)) .
Inclusions Sing(f) ⊂ Sing(F ) and (Gf )a ⊂ (GF )a , for a ∈ Sing(f) , are straightforward
consequences of the definitions. By making use of (1’) of Lemma 2.7 and of the reduction
assumption for f (the case of l = 1) it follows that (Gf )0 is the orthogonal complement of the
tangent space T0(Sing(f)) ⊂ T0(Sing(F )) , while (GF )0 is orthogonal to T0(Sing(F )) due to
(1’) of Lemma 2.7 applied to F . Therefore (GF )0 = (Gf )0 and T0(Sing(f)) = T0(Sing(F )) ,
in particular implying that dim(U∩Sing(f)) = dim(U∩Sing(F )) . Hence also (U∩Sing(f)) =
(U ∩ Sing(F )) , which suffices by making use of the established above inclusions.

In the case of l = 1 and by once again making use of (1’) of Lemma 2.7 it suffices w.l.o.g.
to consider the case of the restriction of F to a plane of dimension j intersecting transversally
Z at a , thus reducing the proof to the case of l = 1 and of a being an isolated critical point.
In the latter case it suffices to show that (GF )a = Kn .

If K is algebraically closed our claim follows since for any c2 , . . . , cn ∈ K due to
Fi(a) := ∂F

∂xi
(a) = 0 , 1 ≤ i ≤ n , the germ at a of Γ := {Fi − ci · F1 = 0 , 2 ≤ i ≤ n} is at

least 1-dimensional, thus producing dx1 + c2 · dx2 + · · · + cn · dxn in (G(0)
F )a ⊂ (GF )a by

means of limits of dF (a)/||dF (a)|| along Γ , as required.
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3 Universality and Lagrangian bundles

Now we introduce a partial order on the class of TWG-stratifications with respect to F
(note that it differs from the order defined in Ch.1 [7]). For any pair S = {Si}i , S ′ =
{S′j}j , Sing(F ) = ∪iSi = ∪jS

′
j of TWG-stratifications of Sing(F ) and for every i there

exists a unique j = j(i) such that Si ∩ S′j is open and dense in Si , reciprocately for every j
there exists a unique i = i(j) such that Si∩S′j is open and dense in S′j . We say that S is larger
than S ′ (i. e. is ’almost everywhere’ finer than S) if for every i equalities j0 = j(i) , i = i(j0)
hold. Thus universal TWG-stratification means the largest one.

Proposition 3.1 For a pair of TWG-stratifications S is larger than S ′ iff the bundle B =
B(S) ⊂ B′ = B(S ′).

Proof. Let S be larger than S ′. For each i we have that Si ∩ S′j0 (where j0 = j(i)) is
open and dense in both Si, S

′
j0

, while dim(Si ∩S′j0) = dim(Si) = dim(S′j0). Therefore, for any
point a ∈ Si ∩ S′j0 we have Ta(Si) = Ta(S′j0) , i. e. B(Si)a = B(S′j0)a . Hence for any point
b ∈ Si we obtain Bb = B(Si)b ⊂ B′b since the Gauss map of Si is continuous on Si and B′ is
closed due to Proposition 2.4.

Conversely, let B ⊂ B′ . For every Si take j0 = j(i) , then Si ∩ S′j0 is open and dense in
Si . It follows that for any point a ∈ Si ∩ S′j0 inclusion Ta(Si) ⊂ Ta(S′j0) holds and therefore
Ba ⊃ B′a implying that Ba = B′a and dim(Si) = dim(S′j0) , hence Si ∩ S′j0 is open and dense
in S′j0 , i. e. i(j0) = i .

Proposition 3.1 and Remark 2.6 imply the following corollary.

Corollary 3.2 i) If for a pair of TWG-stratifications S = {Si}i and S ′ = {S′j}j (with respect
to F ) equality B(S) = B(S ′) holds then the unions S(m) :=

⋃
dim(Si)=m Si =

⋃
dim(S′j)=m S′j

coincide and are G-regular;
ii) If a universal TWG-stratification S = {Si}i exists then for every 0 ≤ m ≤ n the union

S(m) is independent of a choice of a universal TWG-stratification and {S(m)}0≤m≤n is a
universal TWG-stratification and is the coarsest universal in the following sense: for any
universal TWG-stratification S ′ = {S′j}j and every 0 ≤ m ≤ n an equality S(m) = S ′(m) holds.

For a (constructive) closed subbundle B ⊂ T ∗(Kn) of vector spaces (in the sequel we
shortly call them bundles) we consider its ’quasistrata’, i. e. the constructive sets (open in
their respective closures due to the upper-semicontinuity of the function dimK(Bx))

Bk := {x ∈ Kn : dimK(Bx) = k}, 0 ≤ k ≤ n.

Applying this construction to the bundle G we obtain quasitrata Gk.

Definition 3.3 We say that irreducible components B of quasistrata Bk , 0 ≤ k ≤ n , are
Lagrangian if for points x ∈ Reg(B) the tangent spaces Tx(B) are the orthogonal comple-
ments of Bx . We call bundle B Lagrangian if all irreducible components of Bk , 0 ≤ k ≤ n ,
are Lagrangian.

Remark 3.4 For any bundle B Lagrangian components of its quasistrata Bk are G-regular
(cf. Remark 2.6) and of dimension n− k .
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Proposition 3.5 If bundle B is Lagrangian then there is a bijective correspondence between
the irreducible components of its quasistrata Bk , 0 ≤ k ≤ n , and the irreducible components
of B. Also, the irreducible components B̃ of B are of dimension n and Reg(B̃) are Lagrangian
submanifolds of T ∗(Kn) in the natural symplectic structure of the latter.

Proof. As a straightforward consequence of Definition 3.3 bundle B is a union of n-
dimensional (constructive) setsB|B with B being the irreducible components of the quasistrata
Bk , 0 ≤ k ≤ n , and Reg(B|B) are Lagrangian submanifolds of T ∗(Kn) . Therefore the
closures of B|B are the irreducible components B̃ of B implying the remainder of the claims
of Proposition 3.5 as well.

Theorem 3.6 The first two of the following statements are equivalent and imply the third:
(i) bundle G is Lagrangian;
(ii) Thom stratification of Sing(F ) exists and each irreducible component of Gk ,

r ≤ k ≤ n , is of dimension n− k ;
(iii) each irreducible component of G is of dimension n .

Remark 3.7 In the example of Remark 8.2 there are only 2 irreducible components of G and
both are of dimension n , but G is not Lagrangian.

Proof of Theorem 3.6. First (i) implies (ii) since quasistrata {Gk}r≤k≤n form a
TWG-stratification due to Proposition 2.4 and Remark 3.4. Now assume (ii). Then (1’)
of Lemma 2.7 implies that for any irreducible component G̃ of Gk there is an open dense
subset G̃(0) ⊂ G̃ such that Tx(G̃) ⊥ Gx holds for any point x ∈ G̃(0) . Since dim(G̃) = n− k it
follows Gx is the orthogonal complement to Tx(G̃) for any point x ∈ G̃(0) , which implies (i).
Finally, (i) implies (iii) is proved in Proposition 3.5.

In the previous section with every TWG-stratification S (with respect to F ) we have
associated a bundle B(S) such that B(S) ⊃ G (see Proposition 2.4). By construction bundle
B(S) is Lagrangian. Conversely, if B ⊃ G is a Lagrangian bundle then S(B) := {Bk}k is a
TWG-stratification due to Proposition 2.4 and Remark 3.4. We summarize these observations
in the following

Theorem 3.8 There is a bijective correspondence between TWG-stratifications (with respect
to F ) and closed Lagrangian subbundles of T ∗(Kn)|Sing(F ) (which contain G).

Moreover Propositions 3.1, 2.4, Theorem 3.6 and Corollary 3.2 imply

Corollary 3.9 If G is Lagrangian then the corresponding TWG-stratification {Gk}r≤k≤n is
functorial and is the coarsest universal.

In the next section we establish the converse statement.

4 A constructive criterium of universality

Results of this and of the following section essentially depend on the validity of the conclusions
of Claim 2.8 (which are, in general, not valid for K = R , cf Remark 2.9). We therefore
additionally assume in the case of K = R for the remainder of this article that bundle G|F
is n-dimensional over open dense subsets of every irreducible component of Sing(F ) . The
latter assumption replaces references below (for K 6= R) to Claim 2.8.

The following Theorem and its Corollary justify the title of the paper.
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Theorem 4.1 If there exists a universal TWG-stratification of Sing(F ) then G is Lagrangian.

Combining with Corollary 3.9 it follows

Corollary 4.2 If there exists any universal TWG-stratification of Sing(F ) then {Gk}r≤k≤n

is the coarsest universal (and is functorial).

Proof of Theorem 4.1. Assume the contrary and let G be an irreducible component of
some Gk , r ≤ k ≤ n which is not Lagrangian and with a (lexicographically) maximal possible
pair (n− k , m := dim(G)) . We recall (see Claim 2.8) that the minimal r for which Gr 6= ∅
equals r = n − dim(Sing(F )) . Therefore all irreducible components of Gr are Lagrangian
since Gr is open in Sing(F ) , in particular k > r . We have m = dim(G) < n − k (see
Theorem 3.6) because condition (1’) of Lemma 2.7 implies that dim(Gt) ≤ n− t , r ≤ t ≤ n .
Denote by S = {Si}i a universal TWG-stratification of Sing(F ) = ∪iSi whose existence is the
assumption of Theorem 4.1 . Below by an irreducible component of S we mean an irreducible
component of an Si .

Let R ⊂ Sing(F ) . In the sequel we denote by G⊥|R ⊂ T (Kn)|R the bundle of vector spaces
whose fibers are the orthogonal complements to the fibers of subbundle G|R ⊂ T ∗(Kn)|R .

Denote by W the union of all Lagrangian irreducible components of {Gt}r≤t≤k . Due to
the choice of G we have ∪r≤t<kGt ⊂W . On the other hand, W is the union of all Lagrangian
irreducible components of {Gt}r≤t≤n with dimensions greater or equal to n − k . Hence
dim(Sing(F ) \W ) < n− k .

Remark 4.3 One can produce following the construction in the proof of Lemma 1.1 (cf.
Remark 1.3) a TWG-stratification S ′ = {S′j}j of Sing(F ) = ∪jS

′
j extending the family of all

irreducible components contained in W . Then B({Si}i)|W = G|W due to Propositions 2.4
and 3.1. Similarly, B({Si}i)|L = G|L for L being the union (dense in Sing(F )) of all open in
Sing(F ) Lagrangian components of appropriate quasistrata Gj (cf. Claim 2.8).

Claim 4.4 Let Q be an irreducible component of S . Then either Q ∩W = ∅ or Q is an
open and dense subset of a Lagrangian component P ⊂ W . In particular, W coincides with
the union of an appropriate subfamily of irreducible components of {Si}i .

Proof. Indeed, first consider an irreducible component Q of S such that Q ∩W is dense in
Q and denote t := n − dim(Q) . Since Q is G-regular, B(S) ⊃ G and B(S)|Q∩W = G|Q∩W

it follows that Q ⊂ ∪q≤tGq and Q ∩ W ⊂ Gt (in particular t ≤ k). On the other hand,
set G(t) := ∪q≥tGq is closed (since function g : x → dim(Gx) is upper semicontinuous) and
therefore Q ⊂ Q ∩W ⊂ G(t) . Hence Q ⊂ Gt .

Consider an irreducible component P of Gt such that Q∩P is dense in our Q . The latter
implies that dim(P) ≥ n − t and since P ⊂ Gt it follows ( n − t ≥ dim(P) and therefore)
dim(P) = n − t . Thus P is Lagrangian and P ⊂ W (since t ≤ k). We conclude that
Q ⊂ (Q∩ P) ∩ Gt ⊂ P ∩ Gt = P ⊂W and dim(Q) = n− t = dim(P) , as required.

Now, assume that an irreducible component Q of S has a non-empty intersection with
a Lagrangian irreducible component P ⊂ W of Gt (and therefore dim(P) = n − t for some
t ≤ k). Then, using B(S)|P∩Q = G|P∩Q and in view of the definition of B(S) , it follows that
dim(Q) = n − t . As we have shown above dim(Sing(F ) \W ) < n − k ≤ n − t . Therefore
Q∩W is dense in Q . In the latter case we have already proved that Q ⊂W , which completes
the proof of the claim.
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Corollary 4.5 Let Q be an irreducible component of S with dim(Q) > dim(G) and Q ⊃ G
then Q ⊂ Gn−q , where q = dim(Q) > n− k > dim(G) , and Q ⊂W .

Proof. Due to our assumptions either G∩Q or G∩(Q\Q) is dense in G . If Q∩W = ∅ then
either Q ⊂ G(k−1) or Q∩(Gk \W ) is dense in Q . In the latter case dim(Q) ≤ dim(Gk \W ) =
dim(G) , which is contrary to the choice of Q . And in the former case G ⊂ Q ⊂ G(k−1)

contrary to G being an irreducible component of Gk . Hence Q∩W 6= ∅ and due to the claim
above Q ⊂W .

Consider the union S∪ of all irreducible components Q of S of the smallest possible
dimension s with Q \ Q containing G .

Remark 4.6 Due to the upper semi-continuity of function g : x → dim(Gx) and Claim 2.8
(or the replacing it assumption when K = R) the following inclusions hold G ⊂ ∪r≤t<kGt ⊂
W . Therefore Claim 4.4, Corollary 4.5 and Remark 2.6 imply repectively that S∪ is not
emply, S∪ ⊂ (Gn−s ∩W ) = Gn−s and that S∪ is G-regular.

Claim 4.7 Let W be an irreducible component of S∪ \ S∪ such that W contains G . Then G
is dense in W . (Hence such W is unique). In particular, G is an irreducible component of
S∪ \ S∪ and thus on an appropriate open neighbourhood G coincides with its own closure and
with S∪ \ S∪ .

Proof. Assume the contrary. Then dim(W) > dim(G) . Denote by tW the minimal
value of g : x → dim(Gx) on W (attained on an open dense subset of W in view of the
upper semicontinuity of function g). Then tW ≥ t := n − s = dim(Gx) for x ∈ S∪ ⊂ W
because W ⊂ (S∪ \ S∪) . Pick an irreducible component Q of S such that W ∩Q is dense
in W . Then Q ⊃ G and since dim(Q) ≥ dim(W) > dim(G) inclusion Q ⊂ W holds due to
Corollary 4.5, implying (W ∩G) ⊃ (Q∩G) . Since G ⊂ (Gk \W ) it follows Q∩G is empty, i. e.
G ⊂ (Q\Q) . Since also Q ⊂W and due to the choice of s we conclude that dim(Q) ≥ s . On
the other hand n− dim(Q) = dim(Gx) = tW for x ∈ (W ∩Q) by making use of Remark 4.3
and Claim 4.4, which implies s = n − t ≥ n − tW = dim(Q) . Therefore s = dim(Q) and
both Q ⊂ S∪ and, due to Q ∩ W 6= ∅ , inequality Q ∩ (S∪ \ S∪) 6= ∅ holds, leading to a
contradiction.

Corollary 4.8 Let Q be an irreducible component of S of dim(Q) = s with Q \Q ⊃ G . Let
S∗ := Q∩S∪ ⊃ Q . Then S∗ is an irreducible subset of W∩Gn−s = Gn−s and S∗\S∗ = G = G
in an open neighbourghood UG .

Proof. Inclusion S∗ ⊂ S∪ ⊂W ∩Gn−s = Gn−s is the main content of Corollary 4.5. Note
that S∗ is irreducible since S∗ = Q ⊃ G and that sets G ∩ S∪ and (S∗ \ S∗) ∩ S∪ are both
empty. Therefore S∗ ∩ G = ∅ and (S∪ \ S∪) ⊃ (S∗ \ S∗) ⊃ G . Hence due to Claim 4.7 also
S∗ \ S∗ coincides with G on an open neighbourhood of an open dense subset of G .

Remark 4.9 We may choose an open neighbourhood UG of G so that G∩UG = G∩UG . Since
Q ∩ UG ⊃ G ∩ UG 6= ∅ it follows that Q ∩ UG 6= ∅ . Consider S := S∗ ∩ UG ⊃ Q ∩ UG (as in
Corollary 4.8). Then Q ⊃ S ⊃ Q ∩ UG = Q = S∗ (due to Q being irreducible) and therefore
S = S∗ and S is irreducible. Hence G ∩UG = (S∗ \S∗)∩UG ⊃ (S \S)∩UG ⊃ G ∩UG , which
implies

(S \ S) ∩ UG = G ∩ UG = G ∩ UG (1)
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and that S is open in its closure. Finally, S is G-regular (and is a dense subset of a Lagrangian
component of Gn−s) since S ⊂W ∩ Gn−s = Gn−s .

In the remainder of this and in the following Section we use notation G for G ∩ UG and
S for S ∩ UG from Remark 4.9.

Proposition 4.10 There is an irreducible G-regular constructive set G+ open in its closure
such that G+ ⊂ S , dim(G+) = n− k and G+ contains an open dense subset of G . Finally

G⊥|G+∩G = T (G+)|G+∩G .

Deduction of Theorem 4.1 from Proposition 4.10. The bundle of vector spaces
associated (as in Section 2) with a family

W1 =
⋃
Q⊂W

(Q \ G+) ∪ {G+}

(where the union ranges, as above, over all irreducible components Q of S such that Q ⊂W )
coincides over W1 \ G+ with G, is Lagrangian and due to Proposition 4.10 is closed. Since
W \W1 ⊂ G+ \ G+ and dimensions of (G+ \ G+) and (Sing(F ) \W ) are less than n − k it
follows that dim(Sing(F ) \W1) < n− k . Therefore, as in the Remark 4.3, the latter family
extends to a TWG-stratification {S̃j}j of Sing(F ) = ∪jS̃j .

As we have established above in Claim 4.4 set W and therefore Sing(F ) \ W are the
unions of several irreducible components of S . Hence there exists an irreducible component
P of S such that (Sing(F ) \W ) ⊃ P and G ∩ P is open and dense in G . Since being
universal TWG-stratification {Si}i is larger than {S̃j}j it follows by Proposition 3.1 that for
any point x ∈ G ∩ G+ ∩ P there is an inclusion B(P)x ⊂ B(G+)x = Gx for the fibers of
G ; hence dim(B(P)x) ≤ dim(Gx) = k and dim(P) ≥ n − k . But on the other hand
dim(P) ≤ dim((Sing(F ) \W ) < n− k . Thus the assumption (on the first lines of the proof
of Theorem 4.1) of the existence of a non Lagrangian component G in {Gj}j leads to a
contradiction, i. e. G is Lagrangian.

5 Sard-type Theorem for singular varieties

Proof of the more difficult implication of our main result Theorem 4.1 we complete in this
section. To that end we prove here Proposition 4.10, which essentially provides an extension
of a (smooth) singular locus of an algebraic variety to a smooth subvariety with a prescribed
tangent bundle over singularities. The main ingredient is our Sard-type Theorem for singular
varieties.

To begin with we introduce a generalization of Whitney-a property for a pair G , S of
smooth irreducible algebraic (or analytic respectively) sets closed in a nonsingular ambient
variety UG , and in UG \ G respectively, with G being the boundary of S in UG . Our gener-
alization requires additional data of a subbundle TG over G of the tangent bundle T (UG)|G
of UG (restricted over G) that contains the tangent bundle of G . (To apply the notion in the
setting of Proposition 4.10 we allow S to be Gauss regular.) Then our generalized Whitney-a
condition is as follows:

W-a) if a sequence {(xi, Txi(S)) ⊂ S×T (UG)|S}i has a limit limi→∞(xi, Txi(S)) = (x0, V ) ,
where x0 ∈ G and subspace V ⊂ Tx0(UG) , then it follows that subspace V ⊃ (TG)x0 .
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Theorem 5.1 Assume G , S , UG and TG ⊂ T (UG)|G are as in the preceding paragraph
and satisfy generalized Whitney-a condition W-a). Then there is an irreducible Gauss regular
closed subvariety G+ of S in an open subset U ′G of UG that contains an open dense subset
G ∩ U ′G of G and such that

TG |G+∩G = T (G+)|G+∩G .

Remark 5.2 Theorem 5.1 is a straightforward generalization of Proposition 4.10 and a
straightforward extension of the proof of the latter below applies to the former.

Proof of Proposition 4.10. Throughout the proof of the Proposition we assume that
the field K = C or R , and afterwards extend the proposition to an arbitrary algebraically
closed field employing the Tarski-Lefschetz principle.

First we construct a (k + m) × n matrix M = (Mj,i)1≤j≤k+m,1≤i≤n with the entries
being polynomials over K = C (or R) in n variables such that for a suitable open subset
U ⊂ G we have

G⊥|U = T (G)|U ⊕Ker(M)|U .

In particular, the rank of M equals k +m at all points of U .
Consider a Noether normalisation π : G → Km being a restriction of a linear projection

π : Kn → Km . Assuming that Km ⊂ Kn, one can represent Kn = Km ⊕ Kn−m with
Kn−m = Ker(π) and Km = π(Kn) . We may assume w.l.o.g. that the first m coordinates
are the coordinates of the first summand and the last n−m coordinates are the coordinates
of the second summand. We choose in the tangent space to Kn the respective to these
X-coordinates a basis of ∂

∂Xi
. In abuse of notation we denote Kn−m = Tx(Kn−m) ⊂ Tx(Kn)

for points x ∈ Kn−m .
Take an open subset U ⊂ Km such that for V := π−1(U) ∩ G the dimension of any fiber

of the bundle
G⊥|V ∩ (V ×Kn−m)

equals n − k −m , e. g. any open V over which tangent spaces to G are mapped onto Km

isomorphically would do. Note that since G = G ∩ UG it follows that π(UG ∩ V ) = U . Then
there is a (k +m)× n matrix M such that

Ker(M)|V = G⊥|V ∩ (V ×Kn−m) .

Of course we may assume w.l.o.g. that Mj,i = δj,i for 1 ≤ j ≤ m , 1 ≤ i ≤ n (where δ
denotes the Kronecker’s symbol). This provides a required matrix M and a set V .

One can construct (by means of an interpolation in Kn−m parametrized by points in U ′ ,
see Appendix) rational in the first m (and polynomial in the last n−m) coordinates functions
Lj(X) , 1 ≤ j ≤ k , and an open subset U ′ ⊂ U such that all Lj , 1 ≤ j ≤ k , vanish on
V ′ := π−1(U ′) ∩ G (while their denominators do not) and for every point x ∈ V ′ equalities

∂Lj

∂Xi
(x) = Mj+m,i(x) , 1 ≤ j ≤ k , m+ 1 ≤ i ≤ n ,

hold. Multiplying by the common denominator and keeping the same notation for polynomials
Lj , 1 ≤ j ≤ k we conclude that all Lj vanish on G , their differentials dLj(x) , 1 ≤ j ≤ k
are linearly independent for any x ∈ V ′ and⋂

1≤j≤k

Ker(dLj)|V ′ = G⊥|V ′ . (2)
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Therefore by shrinking neighbourhood UG if necessary we may assume w.l.o.g. that UG ⊂
π−1(U ′) and that differentials dL1, . . . , dLk are linearly independent at every point in UG .

A collection of varieties forms a normal crossings at a point a provided that in appropriate
analytic local coordinates centered at this point every variety from this collection and passing
through a is a coordinate subspace. Of course this property is open with respect to the choice
of points a. Due to our choice above, collection of hypersurfaces Hj := {Lj = 0}∩UG , 1 ≤ j ≤
k , forms normal crossings in UG , i. e. at every point of UG . Moreover, since S is irreducible
(see Remark 4.9) it follows that the set Reg∗(S) of points of S ∩ UG at which collection of
{Hj}1≤j≤k with S forms normal crossings is an open and dense subset of Reg(S ∩UG) (since
Reg∗(S) ⊃ Reg(S) \

⋃
Hj 6⊃S Hj 6= ∅). In the sequel we denote Sing∗(S) := S ∩ UG \ Reg∗(S).

To complete the proof of our Proposition we will need a Sard-type Theorem for singu-
lar varieties. We observe that due to Proposition 2.4 and S being dense in a Lagrangian
component of Gn−s (see Remark 4.9) inclusion

T (S)⊥|G ⊂ G|G

holds. In a version of Sard-type Theorem below assuming the latter inclusion and (1) we
construct in S a codimension one G-regular subvariety Ŝ−1 := Ŝ−1(S) ⊂ S with (Ŝ−1 ∩ S) =
Ŝ−1 , such that Ŝ−1 ⊃ G and inclusion

T (Ŝ−1)⊥|G ⊂ G|G

holds (thus, the pair Ŝ−1 , G behaves similarly to the pair Ŝ−0 := S ,G , cf. items iii)-vi) be-
low). Our exposition of this Theorem is for the case of K = C or R (e. g. items ii) and v) ),
but there is a straightforward algebraic generalization for an arbitrary K.

In the Sard-type Theorem below G , S , UG and bundle TG := G|⊥G are as constructed
above, i. e. satisfy the assumptions of Theorem 5.1. Also functions Lj , 1 ≤ j ≤ k , on UG
are as constructed above, i. e. vanish on G and satisfy (2) with V ′ = G .

Theorem 5.3 (A Sard-type Theorem on singular varieties)

For a generic linear combination L =
∑

1≤j≤k cjLj with coefficients c = (c1, . . . , ck) ∈ Kk

the following properties hold:
i) intersection {L = 0} ∩ Reg∗(S) is not empty, dense in S−1 := {L = 0} ∩ S and is

smooth of dimension dim(S)− 1 ;
ii) for any compact (in Euclidean topology on Kn) set C ⊂ (S ∩ UG) and all points

a ∈ {L = 0} ∩ Reg∗(S) ∩ C the norms of d(L|S)(a) = dL(a)|Ta(S) are separated from 0 by a
positive constant (depending on C);

iii) the boundary (S−1 \ S−1) ∩ UG of set S−1 in UG coincides with G ;
iv) Reg(S−1) ⊃ (S−1 ∩ Reg(S)) and S−1 is G-regular in UG ;
v) for every sequence of points in S−1 converging to a point a ∈ G such that their tangent

spaces to S−1 converge to a subspace Q in the respective Grassmanian inclusions Ta(Kn) ⊃
Q ⊃ G⊥a are valid and therefore also

T (S−1)⊥|G ⊂ G|G ;

vi) replacing S−1 by an irreducible component Ŝ−1 of S−1 whose boundary contains G the
properties iii)-v) remain valid.
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Remark 5.4 For the sake of clarity we include though do not make use of the following:
• Of course in ii) of the Lemma above we may equivalently replace ”the norms of

d(L|S)(a) = dL(a)|Ta(S) are separated from 0” by ”the angles between gradient gradL(a)
of L at a and tangent spaces Ta(S) to S at a are separated from π/2 ”.

• Due to S being irreducible and {L = 0} ∩ S 6= S it follows that irreducible components
of S−1 are equidimensional.

Deduction of Proposition 4.10 from Theorem 5.3. We construct sets Ŝ−i :=
Ŝ−1(Ŝ−i+1) , 1 ≤ i ≤ e := dim(S) − n + k , consecutively applying e times Theorem 5.3.
Then due to iii) of Theorem 5.3

(Ŝ−e \ Ŝ−e) ∩ UG = G (3)

and, moreover,

T (Ŝ−e)⊥|G = G|G (4)

since the Gauss map of Ŝ−e extends (uniquely) as a continuous map to all of G (due to v) of
Theorem 5.3). Indeed, for every sequence of points from Ŝ−e converging to a point a ∈ G such
that their tangent spaces to Ŝ−e converge to a subspace Q (in the respective Grassmanian),
inclusions Ta(Kn) ⊃ Q ⊃ G⊥a hold, but dim(Q) = dim(G⊥a ) = n − k, and hence Q = G⊥a .
Therefore due to (3) Ŝ−e can be enlarged to an irreducible, G-regular and open in Ŝ−e subset
G+ := Ŝ−e ∪ G of dimension n− k satisfying (4), as required in Proposition 4.10.

Proof of Theorem 5.3: Property vi) follows from iii)-v) is straightforward using
that S−1 is open in its closure (see Remark 4.9).

We prove iii) for an arbitrary choice of c ∈ Kk. Inequalities dim((S−1)a) ≥ dim(S)−1 ≥
n − k > m = dim(G), where (S−1)a denotes the germ at a ∈ G of S−1 as an analytic set.
Using a similar notation (G)a for G it follows that (G)a ⊂ ((S ∩ {L = 0}) \ G)a. On the other
hand, ((S ∩ {L = 0}) \ G)a = ((S \ G) ∩ {L = 0})a = (S−1)a , since (S)a = (S \ G)a due to
(1). Thus G ⊂ (S−1 ∩ UG) and since also S ∩ G = ∅ , it follows that (S−1 \ S−1) ⊃ G . Using
(1) it follows that G = (S \ S) ∩ UG ⊃ (S−1 \ S−1) ∩ UG ⊃ G , as required in iii).

Properties i) and ii) of Theorem 5.3 imply both iv) and v). Inclusion Reg(S−1) ⊃
{L = 0} ∩ Reg(S) = (S−1 ∩ Reg(S) is a straightforward consequence of i) and ii). The re-
mainder is a consequence of the following property: if the limits of two sequences of subspaces
of Kn exist, then the limit of the respective intersections of these subspaces also exists and
coincides with the intersection of the limits of the sequences, provided that the angles between
the respective subspaces in the sequences are separated from 0 by a positive constant.

Thus it remains to prove i) and ii).

Proof of i). We have constructed an open in Kn set UG and a G-regular irreducible dense
subset S ⊂ W ∩ UG of a Lagrangian component of {Gt}r≤t≤k whose boundary S \ S = G in
UG (see Remark 4.9). We may assume w.l.o.g. that

d(S) := dimK(Span{Lj |S}1≤j≤k) ≥ 2 ,

where Span denotes the K-linear hull of a family of functions. Indeed, since dim(S) > n− k
(Corollary 4.5) it follows that d(S) > 0 . It remains to exclude the case of d(S) = 1. In the
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latter case we may assume w.l.o.g. that dim(Span{Lj |S}2≤j≤k) ≥ 1 and then change L1 by
adding to it an appropriate generic element of the square of the ideal IG of all polynomials
vanishing on G. This would not change the value of dL1 at the points of G , but on the other
hand d(S) for the new choice of L1 will increase due to dimension of I2

G/IS as a vector space
over K being infinite, as required.

We start with an embedded desingularization σ : N → UG of S ∩ UG ⊂ UG by means of
successive blowings up along smooth admissible centers [13], [1], [3] with ’declared exceptional’
hypersurfaces Hj , 1 ≤ j ≤ k , which we may so declare since the latter are smooth and they
form normal crossings in UG . In particular, the following properties hold:

0. σ : N \ σ−1(Sing∗(S)) → UG \ Sing∗(S) is an isomorphism;
1. the (so-called) strict transform N := σ−1((S ∩ UG) \ σ(Sing(σ))) of S ∩ UG is smooth;
2. Sing∗(S) = σ(Sing(σ)) and Sing(σ) = σ−1(σ(Sing(σ))) = ∪i≥1Hi+k , where each

Hi+k is a smooth (so-called) exceptional hypersurface and in addition each Hi+k is the strict
transform of the set of the critical points of the successive i-th intermediate blowing up;

3. each Hi ∩N, i ≥ 1 , is smooth and dim(Hi ∩N) = dim(N)− 1 for i ≥ k + 1 ;
4. the family {Hi}i≥0 , where we denote H0 := N , forms a normal crossings in N .

For any hypersurface {f = 0} ⊂ UG one considers the strict transform of {f = 0}

Λ(f) = σ−1({f = 0}) \ Sing(σ) ⊂ N

under map σ.

Remark 5.5 Due to property 2. above the local equation of Λ(f) can be constructed by factor-
ing out from f ◦σ the maximal monomial in exceptional hypersurfaces. In particular, assume
that f depends on parameter c ∈ Kk and map σ̃ := σ × id : N × Kk → UG × Kk . With
f |c being the evaluation of f at c, hypersurfaces Λ(f |c) ⊂ N and Λ(f) ⊂ N × Kk being the
strict transforms under maps σ and σ̃ respectively, it follows that if for a particular value of
c hypersurface Λ(f)|c := Λ(f) ∩ (N × {c}) ⊂ N is smooth then

Λ(f |c) = Λ(f)|c , (5)

where N × {c} is identified with N . Of course for a sufficiently generic value of c ∈ Kk

equality (5) holds in any case.

To simplify notation we let Λj := Λ(Lj) , 1 ≤ j ≤ k , and Λ := Λ(L) (all these hypersurfaces
being the strict transforms under maps σ and σ̃ respectively). Hypersurfaces Λj , 1 ≤ j ≤ k ,
are smooth and together with Sing(σ) form normal crossings in N due to the choice of
admissible centers of blowings up (see e. g. [1] or [3]). In addition, for each j , 1 ≤ j ≤ k ,
the difference between the divisors of Lj ◦σ and Λj is the exceptional divisor Ej supported on
Sing(σ) = ∪i≥k+1Hi ⊂ N (each divisor being of the form Ej =

∑
i nj,i[Hi] and all integers

nj,i ≥ 0).
We now, starting with N , will apply ’combinatorial‘ blowings up, i. e. with centers of

all successive blowings up being the intersections of some of the accumulated exceptional
hypersurfaces (possibly including some among Λj , 1 ≤ j ≤ k ). By means of such blowings
up we achieve that the pull back of ideal I generated by Lj , 1 ≤ j ≤ k , is principal and,
moreover, is locally generated at any point a by one of the Lj ◦ σ , 1 ≤ j ≤ k [1]. (For
such j = j(a) it follows that a 6∈ Λj .) Note that the ’combinatorial part of desingularization’
preserves properties 0.-4. (listed above) of embedded desingularization of S ∩ UG ⊂ UG .
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It follows that Λ is nonsingular. Indeed, for any point (x, c) ∈ Λ there exists j , 1 ≤ j ≤ k ,
for which ideal I = (Lj ◦σ) in a neighbourhood of point (x, c) . As a consequence, the partial
derivative with respect to cj of function

λ :=

∑
1≤i≤k ci(Li ◦ σ)

Lj ◦ σ

at (x, c) equals 1 and {λ = 0} = Λ .
The standard version of Sard’s Theorem implies that for a choice of an appropriate generic

c = (c1, . . . , ck) the fiber Λc of the restriction to Λ of the natural projection p : Λ → Kk is
nonsingular in σ−1(UG) . Note that Sard’s Theorem applies because if x ∈ N \ Sing(σ) and
c 6= 0 then a straightforward calculation (making use of the linear independence of differentials
dLj , 1 ≤ j ≤ k , in UG ) shows the rank of the Jacobian matrix of the projection p at
(x, c) ∈ Λ equals k .

To complete the proof of i) we apply Sard’s Theorem to the restriction of p to Λ∩(N×Kk) .
Note that Λ ∩ (N ×Kk) = {(x, c) ∈ N ×Kk : λ(x, c) = 0} in local coordinates on N ×Kk

chosen as above and is nonsingular (since the partial derivative of λ with respect to cj at
(x, c) equals 1 ). Due to our choice above

d(N) := dimK(Span({Lj ◦ σ|N}1≤j≤k)) = d(S) ≥ 2 .

Pick Lj1 |S , Lj2 |S , 1 ≤ j1 < j2 ≤ k , being linearly independent over K. It follows that
there is a point x ∈ N \ Sing(σ) and cj1 , cj2 ∈ K such that

cj1Lj1(σ(x)) + cj2Lj2(σ(x)) = 0 , cj1(dLj1)(σ(x)) + cj2(dLj2)(σ(x)) 6= 0

holds. Such point x ∈ N \Sing(σ) exists since otherwise it follows that for all x ∈ N \Sing(σ)

(Lj2(dLj1)− Lj1(dLj2))(σ(x)) = 0 ,

which would imply a linear dependence of Lj1 |S , Lj2 |S contrary to their choice. Set cj = 0
for all j 6= j1 , j2. Then again by means of a straightforward calculation the rank of the
Jacobian at (x, c) of projection p : Λ∩(N×Kk) → Kk equals k and therefore Sard’s Theorem
implies that Λc ∩ N is nonsingular for appropriate generic c , where N is identified with
N × {c}. Since σ is an isomorphism off Sing∗(S) (i. e. property 0. of σ) it follows that if
{L = 0}∩Reg∗(S) 6= ∅ then it is a smooth hypersurface of Reg∗(S) of dimension dim(S)−1 .
To complete the proof of i) it suffices to show that Λc ∩N 6⊂ Sing(σ) = ∪i≥1Hi+k and that,
moreover, Λc ∩N \ Sing(σ) is dense in Λc ∩N .

Both properties follow by specifying an appropriate generic choice of c further, e. g. a
choice of c such that Λc intersects transversally every HJ×{c} would do, where HJ = ∩j∈JHj

for any acceptable index set J ⊂ {i ≥ 0} . We achieve the latter by once again applying
Sard’s Theorem to the restriction of projection p to Λ∩ (HJ ×Kk). Of course, for J such that
p(Λ∩(HJ×Kk)) is not dense in Kk a generic choice of c ∈ Kk implies that Λc∩(HJ×Kk) = ∅ ,
which suffices, and otherwise Sard’s Theorem applies and implies for an appropriate generic
choice of c the desired transversality, which completes the proof of i).

Proof of ii). We summarize consequences of application of Sard’s Theorem in the fol-
lowing
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Remark 5.6 For a choice of an appropriate generic c ∈ Kk it follows that the family {Hi}i≥0

with Λc form a normal crossings in N := N × {c} .

For a point a ∈ Kn denote La := Span({gradLj(a)}1≤j≤k) ⊂ Kn. Then La +Ta(S) = Kn

for all a ∈ S near any point b ∈ G . (Indeed, recall that Gb = L∗b := Span({dLj}1≤j≤k) , due
to (2), implying that k = dim(L∗b) = dim(L∗a), and that T ⊃ G⊥b if the limit T = lima→b Ta(S)
exists, using for the latter inclusion that S is a dense subset of a Lagrangian component of
{Gt}r≤t≤k , see Remark 4.9.) Hence dim(La ∩ Ta(S)) = k + dim(S)− n.

There is a natural isomorphism of

Ωa := L∗a/(L∗a ∩ Ta(S)⊥) ⊂ Ta(S)∗

with La ∩ Ta(S) via realization of the functionals on Ta(S) by means of a scalar product on
Kn. In particular, dim(Ωa) = k + dim(S) − n , dim(L∗a ∩ Ta(S)⊥) = n − dim(S) and both
dimensions do not depend on a.

We introduce on L∗a a metric equivalent to the standard one (over any compact subset of
the points a ∈ Kn with dim(L∗a) = k ) by declaring dL1, . . . , dLk to be an orthonormal basis
in L∗a .

For any point b̃ ∈ Λc ∩ Sing(σ) ⊂ N and points ã ∈ N \ Sing(σ) nearby b̃ we introduce
a metric in Tã(N )∗ as follows. In a neighbourhood of b̃ the smooth variety N admits a
coordinate chart C with the origin at b̃ and every exceptional hypersurface H intersecting C
by a coordinate hyperplane {xH = 0} of C, unless the intersection is empty (one may use here
a traditional complex analytic coordinate chart, or alternatively the notion of an affine ’etale’
coordinate chart as in [1], [2]). In a neighbourhood of b̃ the local ideal Ib̃ is generated by a
single Lj ◦ σ for a suitable j (as was achieved by the desingularization above), 1 ≤ j ≤ k ,
and the function h := λ|c has a non-vanishing differential at b̃ , since Λc∩N is nonsingular due
to the choice of c as shown in the proof of i). We shrink the neighbourhood C so that dh does
not vanish at all points of C. In addition, due to Remarks 5.6 and 5.5, we may assume that h
is one of the non-exceptional coordinates on C. We define an auxiliary norm on Tã(N )∗ via
imposition of the following:{

dxH

xH
, dxi

}
H,i

is an orthonormal basis on Tã(N )∗ , (6)

where {xH , xi}H,i are the coordinates in C with the former ones corresponding to the ex-
ceptional hypersurfaces and the latter {xi}i being remaining coordinate functions (including
function h ). A straightforward calculation shows that the Hermitian (Riemannian for K = R)
metrics on C \ Sing(σ) that we have introduced by means of (6) do not depend on the coor-
dinate choices preserving exceptional hypersurfaces, i. e. isomorphic for such choices (we do
not make use of this fact), for the case of Hermitian metrics cf. [9].

We now will complete the proof of Theorem 5.3 relying on the following lemma, which is
stated in the notations of the preceding paragraph.

Lemma 5.7 The norm of d(L|c ◦σ)|ã ∈ Tã(N )∗ equals |Lj ◦σ(ã)| , which also majorates the
norm of the linear map σ∗ã : Ωa → Tã(N )∗ (up to a constant factor depending only on a choice
of C) and where ã ∈ (Λc ∩ C) \ Sing(σ) with a = σ(ã).

Remark 5.8 The norm of the map σ∗ã : L∗a → Tã(N )∗ equals the norm of σ∗ã : Ωa → Tã(N )∗,
because the latter map is the composite of the former one with the natural map L∗a → Ωa;
therefore it suffices to majorate only the norm of the former map by |Lj(a)|.
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Lemma 5.7 implies a lower bound depending only on a choice of C on the norms of (dL)|S
at the points of {L = 0} ∩ Reg∗(S) ∩ σ(C) = Reg∗(S) ∩ σ(Λc ∩ C). Since σ is a proper map
the item ii) of Theorem 5.3 follows.

Proof of Lemma 5.7. As mentioned above Lj ◦σ coincides (up to an invertible function)
with

∏
b̃∈H xnH

H in C (w.l.o.g. we may assume that they coincide). Due to Remark 5.5 and
using h(ã) = 0 it follows that

d(L|c ◦ σ)|ã = d((Lj ◦ σ) · h)|ã = Lj(a) · dh|ã .

Due to the choice of the norms on Tã(N )∗ (see (6)), for ã ∈ C \ Sing(σ) , it follows that the
norm of dh|ã equals 1 . Thus, the norm of d(L|c ◦ σ)|ã is |Lj(a)| , as required.

It remains to bound the norm of σ∗ã : L∗a → Tã(N )∗ (see Remark 5.8). We observe that
the norms of all d(Li ◦ σ)|ã , 1 ≤ i ≤ k , are majorated by |Lj(a)| (up to a constant factor
depending only on a choice of C) because Lj ◦ σ is a common factor of all Li ◦ σ , 1 ≤ i ≤ k ,

in C and the norm of d(Lj ◦σ)|ã equals
√∑

b̃∈H n2
H |Lj(a)| , see (6). This implies the required

upper bound on the norm of σ∗ã : L∗a → Tã(N )∗ , since the latter is bounded by the maximum
of the norms of the images of the orthonormal basis {dLi}i in L∗a .

6 Smoothness of normalisation of a Gauss regular variety

In this section our results are formulated for the case of K = C or R . One can extend them
to an arbitrary algebraically closed field K by means of Tarski-Lefshetz principle.

Theorem 6.1 Let X be an algebraic (or analytic) variety G-regular at a ∈ X and let φ :
X → X be its normalization. Then φ−1(a) ⊂ Reg(X ) .

By definition Nash blowing up of X is the projection η : Y → X of the closure Y of the
graph of the Gauss map of X. Variety Y is commonly as well refered to as the Nash blowing
up of X.

Lemma 6.2 If X is G-regular at a then its Nash blowing up η : (Y, η−1(a)) → (X, a), where
(Y, η−1(a)) and (X, a) are the germs of Y and of X at η−1(a) and a respectively, is dominated
by its normalisation, i. e. in germs ’over a’ the composite of η with the normalization of Y
is the normalisation of X.

Corollary 6.3 If X is G-regular at a then its Nash blowing up η : Y → X is finite over
η−1(a) and the Gauss map of Y is continuous at points of the fiber η−1(a) .

Proof of Theorem 6.1. The result of [18] states that η is an isomorphism at a iff
X is smooth at a . We use the Noetherian property of the local ring OX,a of (X, a) and
the finiteness of the ring OX ,φ−1(a) of (X , φ−1(a)) as a module over OX,a , via φ∗ . Then
it follows from Lemma 6.2 and Corollary 6.3 that for a composite ψ : Z → X of a finite
number of Nash blowings up starting with X the resulting variety Z is smooth at every
point c ∈ ψ−1(a) . It also follows that ψ is dominated (over a) by the normalization of X
and therefore ψ : (Z,ψ−1(a)) → (X, a) is finite and, (Z,ψ−1(a)) being smooth, is also a
normalization of (X, a) , as required.
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Proof of Lemma 6.2. We may assume w.l.o.g. that (X, a) ⊂ (Kn, a) and that
codim(X) =: m . Then there is a germ of a proper closed subset (Z, a) ⊂ (X, a) and
polynomials (or analytic functions near a respectively) g1, . . . , gm such that

(X \ Z, a) = {x ∈ (Kn \ Z, a) : g1(x) = · · · = gm(x) = 0} 6= ∅

and rk
(

∂g
∂x

)
(x) = m for all x ∈ (X \Z) ∩U , where U is an open in Kn neighborhood of a.

In particular, (X \Z)∩U ⊂ Reg(X) and η is an isomorphism over (X \Z)∩U . It suffices to
verify that the Gauss map of Y extends to a continuous map on η−1(U) for an appropriate
U . The Gauss map over (X \Z)∩U can be defined as sending points x to the tangent spaces
Tx(X) of X at x viewed as points of a Grassmanian of all (n − m)-dimensional subspaces
of Kn , which is a smooth variety. Equivalently (in Plücker coordinates) the Gauss map
sends points x to the sequences of all m ×m minors δI of matrix

(
∂g
∂x

)
(x) as homogeneous

coordinates of points in PN , where N =
(

n
m

)
− 1 , i. e. x→ [· · · : δI : · · · ] .

The assumption of the continuity at a of the Gauss map of X implies that for one of the
minors, say δ(x) , all ratios |δI(x)/δ(x)| are bounded from above on (X \ Z) ∩ U (for an
appropriate U ). It follows that neighborhood η−1(U) of Y embeds into respective affine chart
Kn ×KN := {δ 6= 0} of Kn × PN as the closure over U ⊂ Kn of the graph of the following
realization of the Gauss map

Γ : (X \ Z) ∩ U 3 x 7→ (x, · · · , δI(x)/δ(x), · · · ) ∈ Kn ×KN .

The boundedness of ratios δI(x)/δ(x) implies that each δI(x) is in the integral closure of
the ideal generated by δ(x) in O(X,a) , see a criterium in Appendix to [20], i. e. there are
polynomials

PI(α, x) = αdI +
∑

1≤k≤dI

cI,kα
dI−k

such that each coefficient cI,k is in the ideal generated by (δ(x))k in the local ring O(X,a) and
PI(δI(x), x) = 0 in O(X,a) . We may assume w.l.o.g. that integers dI are minimal possible.
Then each ∂PI

∂z (δI(x), x) 6= 0 and therefore each discriminant discPI
(x) of PI(α, x) (with

respect to α) does not vanish in O(X,a) . The discriminant of each

QI(α, x) = αdI +
∑

1≤k≤dI

c̃I,k(x)αdI−k ∈ O(X,a)[α] ,

where c̃I,k(x) := (δ(x))−k · cI,k , for 1 ≤ k ≤ dI , coincides with (δ(x))−dI(dI−1)/2 · discPI
(x)

and therefore does not vanish in O(X,a) . Also QI(δI(x)/δ(x), x) = 0 for every I . It follows
that for any b ∈ η−1(a) the germ (Y, b) of Y at b is an irreducible component at b of the
following equidimensional and reduced space

{(x,w) ∈ (X, a)×KN : QI(wI , x) = 0 for all I} ,

and by definition of normalization of (X, a) all ratios δI(x)/δ(x) ∈ OX ,φ−1(a) , i. e. are regular
functions on normalization, which implies Lemma 6.2.

Proof of Corollary 6.3. As a straightforward consequence of Lemma 6.2 it follows that
map η : η−1(X ∩ U) → X ∩ U dominated over X ∩ U by the normalization of X is finite.

Since η is an isomorphism over (X \Z)∩U and the roots wI ∈ K of QI(wI , x) = 0 on an
open subset V := ∩I{x ∈ (X \ Z) ∩ U : discQI

(x) 6= 0} of X ∩ U ⊂ U ⊂ Kn are (locally)
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complex analytic functions of x it follows that the equations defining an open in Y set η−1(V )
in U × KN are the equations gj = 0 , 1 ≤ j ≤ m , and QI(wI , x) = 0 , for all I , where
wI are the coordinates of w ∈ KN . Therefore (in Plücker coordinates) the Gauss map of
Y over η−1(V ) sends points (x,w) from η−1(V ) to the sequences (as points in PM , where
M =

(
n+N
m+N

)
− 1 ) of all (m+N)× (m+N) minors ∆J(x,w) of matrix

M :=
∂(g,Q)
∂(x,w)

(x,w) .

A straightforward calculation shows that every minor ∆J which does not include all of the
last N columns of the matrix M vanishes identically and that the remaining N + 1 minors
are proportional to the N + 1 minors of matrix ∂g

∂x(x) (the product of all ∂QI
∂wI

(wI , x) being
a common factor) and thus is the value of the Gauss map of X at x in PN (in Plücker
coordinates). Therefore the continuity of the Gauss map of Y in η−1(X ∩U) follows from the
continuity of the Gauss map of X in X ∩ U provided that the closure of η−1((X \ V ) ∩ U)
contains η−1(X ∩ U) , which is true due to the finiteness of η : η−1(X ∩ U) → X ∩ U and
X ∩ U being the closure in U of (X \ V ) ∩ U , as required.

7 Complexity of functorial TWG-stratifications

One can construct a chain of bundles of vector spaces G(0) ⊂ G(1) ⊂ · · · ⊂ G(ρ) = G applying
an algorithm for quantifier elimination [10] to proceed from G(p) to G(p+1) , 0 ≤ p < ρ . This
yields an upper bound R(O(1))dnO(ρ)

on complexity for construction of G, where deg(F ) < d
and R majorates the bit-size of the coefficients of components fi , 1 ≤ i ≤ l , of F = (f1, ···, fl)
assuming that the coefficients are, say, algebraic numbers. Note that ρ ≤ 2n (see [4]). Then
one can construct quasistrata Gk within the same complexity bound and, if G is Lagrangian,
a functorial TWG-stratification as well (see Corollary 3.9). Note that in an example from
Subsection 8.2 the index of stabilization ρ grows linearly with n .

We mention that a similar double-exponential complexity bound on stratifications (though
without properties of universality nor functoriality) was obtained in [6], [21], [5]. On the other
hand, there is an obvious exponential complexity lower bound.

It would be interesting to understand, whether this double-exponential bound is sharp?

8 Examples

8.1 A family of F : KN → K which admit functorial TWG-stratifications

First we give an example of a family of polynomials f , i. e. l = 1 and F = (f) : KN → K ,
that admit functorial TWG-stratifications, which are de facto (in this example) stratifications.
(Also, G(1) = G , i. e. the index of stabilization ρ(f) = 1 .)

Let
f = fn =

∑
1≤i≤j≤n

Ai,jXiXj ∈ K[{Ai,j}, {Xi}].

Of course Sing(f) = {Xi = 0}1≤i≤n . For the sake of brevity let B denote the bundle G(1) of
the construction in section 2 that corresponds to F := (f) : KN → K , where N = n+

(
n+1

2

)
,

and G := GF .
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Any nonsingular n×n matrix C over K induces an isomorphism of KN → KN , which for
brevity we also denote C , and the latter preserves the rank of quadratic forms. Therefore,
for any particular quadratic form f (0) =

∑
1≤i≤j≤n a

(0)
i,j XiXj of a rank q the dimension of the

fiber Bf (0) at a point a(0) = ({a(0)
i,j }, {0}) ∈ Sing(f) coincides with the dimension of the fiber

B
f
(0)
q

of the quadratic form f
(0)
q =

∑
1≤i≤q X

2
i , e. g. due to Corollary 2.2.

We identify the set of all quadratic forms of rank q with a constructive subset Bk(q) =
({ai,j}, {0}) of Sing(f) . A straightforward calculation shows that dim(Bk(q)) = qn −
q(q − 1)/2 . Once again by means of Corollary 2.2 (and of an appropriate isomorphism
C : KN → KN ) it follows that Bk(q) is smooth and that fibers Gy are of the same dimension
k(q) at all the points y ∈ Bk(q). (Since l = 1 Thom stratification of Sing(F ) exists by [15] and
therefore due to (1’) of Lemma 2.7 inequality k(q) ≤ codimBk(q) holds.) Below we calculate
k(q) , which would allow us to conclude by making use of Theorem 3.6 that each Bk(q) is
Lagrangian and therefore that B = G , Bk(q) = Gk(q) and that stratification {Bk(q)}k(q) , by
rank, is a functorial TWG-stratification.

Consider curves K 3 t 7→ KN with f (0)
q at t = 0 and defined for any x(0) ∈ Kn as follows:

Xi = t3x
(0)
i , 1 ≤ i ≤ q ; Xj = t2x

(0)
j , q < j ≤ n; Aii = 1 , 1 ≤ i ≤ q ;
Ajj = t , q < j ≤ n ; Aij = 0 , i 6= j

A straightforward calculation of the limit along this curve of the normalized differential
df/||df || shows that

∑
1≤i≤n x

(0)
i dXi ∈ B

f
(0)
q

. Consider similarly limits along curves with

the origin at f (0)
q and defined as follows: Aii = 1 , 1 ≤ i ≤ q , for all the other pairs

of i , j with 1 ≤ i ≤ j ≤ n we set Aij = t2 and also Xi = 0 , 1 ≤ i ≤ q and
Xj = tx

(0)
j , q < j ≤ n . A straightforward calculation implies that the ‘coordinate’ projec-

tion of B
f
(0)
q

to the subspace spanned by {dAij}1≤i≤j≤n contains the image under the degree

2 Veronese map of a point with coordinates x(0) = ({0} , {x(0)
j }q<j≤n) ∈ Kn . It follows that

subspace B
f
(0)
q

of (KN )∗ contains vectors dXi , 1 ≤ i ≤ n , and dAj,s , q < j ≤ s ≤ n , i. e.
k(q) ≥ (n+(n−q)(n−q+1)/2) = codimBk(q) , and therefore k(q) = codimBk(q) . The latter
implying that each (de facto smooth) quasistratum Bk(q) is Lagrangian, G = B and, due to
Theorem 3.8 and its Corollary 3.9, partition {Bk(q)}k(q) , where 0 ≤ q ≤ n , is the functorial
Thom-Whitney-a stratification of Sing(f) . We summarize in the following

Proposition 8.1 For

f = fn =
∑

1≤i≤j≤n

Ai,jXiXj ∈ K[{Ai,j}, {Xi}]

the index of stabilization ρ(f) = 1 and strata Bk(q) = {({aij}, {0}) : rk(f) = q} ⊂ Sing(f)
form a functorial Thom-Whitney-a stratification with respect to f .

8.2 A family of examples of Fn : K4n+1 → K with universal
TWG-stratifications and the index of stabilization ρ(Fn) = n

Let q(x, y, u, v, w) := u · x2 + 2w · x · y + v · y2 and consider the following polynomials:
q1 := q(x1 , y1 , u1 , v1 , w) , qk+1 := q(xk+1 , yk+1 , uk+1 , vk+1 , qk(·)) , k ≥ 1 . Denote
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f(~x , ~y , ~u , ~v , w) := qn(~x , ~y , ~u , ~v , w) ,
where ~x = (x1 , . . . , xn) and similarly for ~y , ~u , ~v , i. e. f depends onN = 4n+1 independent
variables, and let hk := uk·vk−q2k−1(·) , 1 ≤ k ≤ n . Then f = un·x2

n+2qn−1·xn·yn+vn·y2
n and

Sing(f) = {xn = yn = 0} . By making use of Corollary 2.2 and example from Subsection 8.1
it follows that for points a ∈ Sing(f) with dqn−1(a) 6= 0 the fibers of bundle G(1) are

1. G(1)
a = Span{dxn ; dyn} if hn(a) 6= 0 , i. e. G2 = Sing(f) \ {hn = 0} off {dqn−1 = 0} ;

2. G
(1)
a = Span{dxn ; dyn ; dhn} if hn(a) = 0, dhn(a) 6= 0 , i. e. off {dqn−1 = 0}

quasistratum G3 = Sing(f) ∩ {hn = 0} \ {dhn 6= 0} ;
3. G

(1)
a = Span{dxn ; dyn ; dun ; dvn ; dqn−1} , if hn(a) = 0 , dhn(a) = 0 , i. e.

G5 = Sing(f) ∩ {hn = 0 , dhn = 0} off {dqn−1 = 0} .
4. In the cases 1. and 2. fibers G(1)

a = (G(0))a , but in the case 3. fibers G(1)
a 6= (G(0))a ={

ω = Undun + Vndvn +Qn−1dqn−1 +Xndxn + Yndyn : Un · Vn = (Qn−1/2)2
}
, where ω de-

notes a 1-form at a . Denote D1 := Span{dxn ; dyn ; dun ; dvn} . Note that

df = x2
ndun + y2

ndvn + 2xnyndqn−1 + 2(unxn + qn−1yn)dxn + 2(qn−1xn + vnyn)dyn .

Results above rely on elementary calculations of Subsection 8.1 summarized below:

hn = det
(

un qn−1

qn−1 vn

)
and for any sequence of points from KN converging to a point

a ∈ Sing(f) the following holds
i) the size of { ∂f

∂xn
; ∂f

∂yn
} dominates {x2

n , y
2
n , 2xn · yn} at a if hn 6→ 0 ,

ii) the limits of df/||df || are the 1-forms ω = Undun + Vndvn +Qn−1dqn−1 +Xndxn + Yndyn

with Un · Vn = Q2
n−1/4 , since the coefficients of df at dun , dvn , dqn−1 satisfy

x2
n · y2

n = (2xn · yn)2/4 .

When hn(a) = 0 the latter also follows from the orthogonality of ω ∈ G(1)
a to Ta({hn = 0})

(see (1’) of Lemma 2.7) and dhn = vn · dun + un · dvn + 2qn−1 · dqn−1 , implying that ω is
proportional to dhn , while un · vn = q2n−1 for points in {hn = 0}.

We now turn to a simple, but crucial observation that the coefficients of df at
dun , dvn , dqn−1 satisfy inequality

√
|xn|2 + |yn|2 ≥ (

√
2)−1 · |2xn · yn| and therefore the

limits of df/||df || evaluated at points from KN that converge to Sing(f)∩{dqn−1 = 0} are the
1-forms with vanishing coefficients at all differentials of the independent variables on which
qn−1(·) depends. In particular, combining with the preceding summary of the arguments of
Subsection 8.1 properties 1. and 2. follow without making assumption dqn−1(a) 6= 0 and also

5. G(1)
a = D1 for a ∈ Zn−1 := Sing(f) ∩ {hn = 0, dhn = dqn−1 = 0} ⊂ {qn−1 = 0}

holds.
Summarizing G2 = Sing(f) \ {hn = 0} , G3 = Sing(f) ∩ {hn = 0 , dhn 6= 0} and with

G′5 := Sing(f) ∩ {hn = 0 , dhn = 0 , dqn−1(a) 6= 0} bundle G(1)|G2∪G3∪G′5 = G|G2∪G3∪G′5 . Also
G′5 = {xn = yn = un = vn = qn−1 = 0 , dqn−1 6= 0} , and
Zn−1 = {xn = yn = un = vn = xn−1 = yn−1 = 0} = Sing(f) \ (G2 ∪ G3 ∪ G′5) .

Detour. The two Remarks-Examples below are straightforward consequences of the latter
observation and the preceding it summary of the arguments of Subsection 8.1.
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Remark 8.2 With notations G = Gf̃ , G
(p) = G

(p)

f̃
for a function

f̃ := u · x2 + 2w2 · x · y + v · y2

depending on 5 variables the following hold:
inequality dimG

(1)
a ≤ 4 for all a ∈ Sing(f̃) ; bundles G and G(1) coincide; quasistrata

G2 = {x = y = 0 , u · v − w4 6= 0} , G3 = {x = y = 0 , u · v − w4 = 0 , (u , v) 6= 0} and
G4 = {0} are smooth and form Thom-Whitney-a stratification S of Sing(f̃) , but quasistratum
G4 is not Lagrangian (dimG4 = 0 < 5 − 4 !). Also, G|G2 and G|G3 are 5-dimensional
irreducible components of G and G|G4 is in the closure of G|G3 .

Remark 8.3 Let non-zero polynomial g ∈ K[z1, . . . , zm] and fg := f̃(u, v, x, y, g(z)) , where
f̃ is from the preceding Remark. Denote G := Gfg , G

(p) := G
(p)
fg

. Then for polynomial fg

depending on m+ 4 variables the following hold:
inequality dimG

(1)
a ≤ 4 for all a ∈ Sing(fg) ; bundles G and G(1) coincide; the quasistrata

are G2 = {x = y = 0 , u·v−g(z)4 6= 0}, G3 = {x = y = 0 , u·v−g(z)4 = 0 , (u, v) 6= 0} and
G4 = {x = y = u = v = g(z) = 0}; only quasistratum G4 is not Lagrangian; the irreducible
components G|G2 and G|G3 of G are (m+4)-dimensional and G|G4 is in the closure of G|G3 .
Curiously, an arbitrarily chosen hypersurface {g = 0} appears as a quasistratum.

We now turn to calculation of fibers of G(2) for f . Note that dqn−1− 2xn−1yn−1dqn−2 =

x2
n−1dun−1 + y2

n−1dvn−1 + 2(un−1xn−1 + qn−2yn−1)dxn−1 + 2(qn−2xn−1 + vn−1yn−1)dyn−1

and bundles G = G(2) = G(1) off Zn−1 ⊂ {xn−1 = yn−1 = 0} . It follows by making use of
Corollary 2.2 and of the calculations like in the summary of the arguments of Subsection 8.1
that for points b from G′5 converging to a point a ∈ Zn−1 ⊂ {qn−1 = 0 , dqn−1 = 0} with
dqn−2 6= 0 the span of the limits of the 1-forms from the fibers Gb of G , which includes the
limits of dqn−1/||dqn−1|| , coincides with the fibers of bundle G(2) , namely:

1’. G(2)
a = Span{dxn−1 ; dyn−1} ⊕D1 if hn−1(a) 6= 0 , i. e. G6 = Zn−1 \ {hn−1 = 0} off

{dqn−2 = 0} ;
2’. G(2)

a = Span{dxn−1 ; dyn−1 ; dhn−1} ⊕ D1 if hn−1(a) = 0, dhn−1(a) 6= 0 , i. e. off
{dqn−2 = 0} quasistratum G7 = Zn−1 ∩ {hn−1 = 0} \ {dhn−1 6= 0} ;

3’. G
(2)
a = Span{dxn−1 ; dyn−1 ; dun−1 ; dvn−1 ; dqn−2} ⊕ D1 , if hn−1(a) = 0 ,

dhn−1(a) = 0 , i. e. G9 = Zn−1 ∩ {hn−1 = 0 , dhn−1 = 0} off {dqn−2 = 0} .
4’. In the cases 1’. and 2’. fibers G(2)

a = (G(1))a , but in the case 3’. fibers G(2)
a 6⊂ (G(1))a

and the latter consists of all 1-forms ω ∈ G
(2)
a with coefficients Un−1 , Vn−1 , Qn−2 at

dun−1 , dvn−1 , dqn−2 that satisfy equation Un−1 · Vn−1 = (Qn−2/2)2 . Denote D2 :=
Span{dxn−1 ; dyn−1 ; dun−1 ; dvn−1} ⊕D1 .

Once again, due to the observation that the coefficient of dqn−1 at dqn−2 is dominated
by its coefficients at dun−1 , dvn−1 , it follows that for points b ∈ Sing(f) converging to a
point a ∈ {dqn−2 = 0} the limits of the 1-forms from fibers G(1)

b , which include the limits
of dqn−1/||dqn−1|| , consist only of 1-forms with vanishing coefficients at all differentials of
the independent variables on which qn−2 depends. In particular, properties 1’. and 2’. follow
without making assumption dqn−2(a) 6= 0 and the fiber of bundle G(2) at a is

5’. G(2)
a = D2 for a ∈ Zn−2 := Zn−1 ∩ {hn−1 = 0 , dhn−1 = dqn−2 = 0} ⊂ {qn−2 = 0} .
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Summarizing G5 = G′5 , G6 = Zn−1 \ {hn−1 = 0} , G7 = Zn−1∩{hn−1 = 0 , dhn−1 6= 0}
and with G′9 := Zn−1 ∩ {hn−1 = 0 , dhn−1 = 0 , dqn−2 6= 0} bundle G(2)|G6∪G7∪G′9 =
G|G6∪G7∪G′9 . Also G′9 = Zn−1 ∩ {un−1 = vn−1 = qn−2 = 0 , dqn−2 6= 0} , and
Zn−2 = Zn−1 ∩ {un−1 = vn−1 = xn−2 = yn−2 = 0} = Zn−1 \ (G6 ∪ G7 ∪ G′9) .

Thus G(1) 6= G(2) and G = G(2) off Zn−2 . Calculation of fibers of G(p) , p > 2 for points
from Zn−2 is similar (recursively on p), in particular implying that G9 = G′9 . Summarizing

Proposition 8.4 Quasistrata {Gr}r for polynomial f (in 4n + 1 independent variables)
are smooth, Lagrangian, form a Thom-Whitney-a stratification and hence a universal
TWG-stratification. The index of stabilization ρ(f) of f equals n .

8.3 Example of F : K5 → K with no universal TWG-stratification

For f̃ from Remark 8.2 we have shown that there is a non Lagrangian quasistratum and
therefore Sing(f̃) by our main Theorem 4.1 does not admit a universal TWG-stratification.
For polynomial f̃ we will reprove this claim illustrating the proof of Theorem 4.1. In this
example G = G4 , construction of G+ is elementary and we provide it explicitly (cf. Section 5).
We choose G+ to be a curve defined parametrically by {x = y = 0 , u = v = t2 , w = t} .
Then partition of Sing(f̃) by sets B2 := G2 , B3 := G3\G+ , B4 := G+ forms Thom-Whitney-a
stratification S̃ with the associated bundle B(S̃) 6= B(S) .

Finally we show that there does not exist a universal TWG-stratification with respect
to f̃ . Assume the contrary, say S(0) is a universal TWG-stratification. Denote by B(S(0))
its bundle of vector spaces. Proposition 2.4 and Proposition 3.1 imply that G ⊂ B(S(0)) ⊂
(B(S) ∩ B(S̃)). It follows that Ga = B(S(0))a = B(S)a for any point a ∈ B2 ∪ B3 , while
G0 = B(S(0))0 = B(S̃)0 is 4-dimensional and is orthogonal to vector ∂

∂w ∈ T0(K5) . (On the
other hand B(S)0 = (K5)∗ ). Therefore, S(0) being universal should coincide with S , but the
origin 0 is not a Lagrangian stratum of S(0) . Thus our assumption leads to a contradiction.
Summarizing, we obtain the following proposition.

Proposition 8.5 There is no universal TWG-stratification with respect to the polynomial
f̃ = u · x2 + 2w2 · x · y + v · y2 .

8.4 Multiplicities of roots and another functorial TWG-stratification

Let
f := fq+2 =

∑
0≤i≤q

AiX
iY q−i ∈ K[A0, . . . , Aq, X, Y ] ,

where ([A0 : · · · : Aq], X, Y ) ∈ Pq(K)×K2 . In particular, in this example for every affine chart
{Ai 6= 0} ' Kq ×K2 , 0 ≤ i ≤ q of Pq(K)×K2 we consider mapping F := f : Kn → K ,
where n := q+ 2 . Then Sing(F ) admits Thom stratification and (ii) of Theorem 3.6 applies
provided that all irreducible components of Gk , n− dim(Sing(F )) ≤ k ≤ n are of dimension
n− k , which we show below.

Similarly to the preceding examples Sing(f) = {X = Y = 0}. Here, in the original
notations of Section 2, we prove for G := Gfn (and G(p) := G

(p)
fn

) that index of stabilization
ρ(fn) = 2 , i. e. that G(1) 6= G(2) = G , bundle G = Gfn is Lagrangian and that {Gk+2}0≤k≤q/2

is a universal (and hence functorial) TWG-stratification with respect to fn .
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Let us fix a point a(0) = ([a(0)
0 : · · · : a(0)

q ], 0, 0) ∈ Sing(f) , for the time being, then
polynomial

f (0) =
∑

0≤i≤q

a
(0)
i XiY q−i =

∏
j

(bjX − cjY )mj . (7)

We first verify that for each factor bjX − cjY with the multiplicity mj ≥ 2 the fiber of the
closure (G(0))a(0) contains

vj := v([cj : bj ]) =
∑

0≤i≤q

cijb
q−i
j dAi.

Consider a line defined (parametrically) as follows:

Ai(t) = a
(0)
i , 0 ≤ i ≤ q ; X(t) = cjt , Y (t) = bjt .

Then limt→0 df/||df || along this line equals vj . Conversely, let v =
∑

0≤i≤q hidAi+cdX+bdY
with a non-vanishing (h0, . . . , hq) 6= 0 being the limt→0 df/||df || along a curve

({Ai(t)}0≤i≤q, X(t), Y (t)) ⊂ Pq(K)×K2

with the origin at a(0) . Making a suitable K-linear homogeneous transformation C of the
2-dimensional plane and applying Corollary 2.2 we may assume w.l.o.g. that ordt(X(t)) >
ordt(Y (t)) and it suffices to show that X2|f (0) . Assume otherwise, then

ordt

{
∂f (0)

∂X
,
∂f (0)

∂Y

}
= (q − 1) ordt(Y (t)) < ordt(XiY q−i), 0 ≤ i ≤ q ,

which contradicts to (h0 , . . . , hq) 6= 0 .
Since vectors {vj}j form a van-der-Mond matrix and therefore are linearly independent,

it follows

Lemma 8.6 For any point a(0) ∈ Sing(f) fiber (G(1))a(0) of bundle G(1) of vector spaces
coincides with the linear hull of vectors dX, dY and {vj}j for all j with the multiplicity of the
factor bjX − cjY in f (0) being mj ≥ 2 and, moreover, dim((G(1))a(0))− 2 being the number
of such j .

For every v = v([c : b]) let D(l)(v) denote the linear hull of{
∂lv

∂ci∂bl−i

}
0≤i≤l

.

Then {v} = D(0)(v) ⊂ D(1)(v) ⊂ · · · due to the Euler’s formula. W.l.o.g. we may assume
that b = 1 (if b = 0 we exchange the roles of b and c) and then D(l)(v) is the linear hull of the
derivatives {∂iv

∂ci }0≤i≤l , implying dim(D(l)(v)) = l + 1 , 0 ≤ l ≤ q .
Below we calculate the limit limt→0(G(1))a(t) . To that end we consider a curve {a(t)}t ⊂

Sing(f) with the origin at a(0) , and assume w.l.o.g. that a(t)
q = 1 for all t . Due to Lemma 8.6

we may assume (also w.l.o.g.) that for any t 6= 0 the multiplicity of every factor of polynomial

26



f (t) =
∑

0≤i≤q a
(t)
i XiY q−i does not exceed 2 and these multiplicities are independent on t 6= 0 .

We may factorise
f (t) =

∏
j

∏
p

(X − (cj + ej,p(t))Y )mj,p ,

where 1 ≤ mj,p ≤ 2 and ej,p(t) are the appropriate algebraic functions of t with ej,p(0) = 0
for all j , p . Then

∑
pmj,p = mj for each j (see (7)) and we denote mj =

∑
p[mj,p/2] ,

where by [mj,p/2] we mean the integral part of mj,p/2 . Due to Lemma 8.6 it follows that
dim((G(1))a(t)) =

∑
j mj + 2 for any t 6= 0 and that collection

{v([cj + ej,p(t) : 1])}mj,p=2 ∪ {dX, dY } (8)

is a basis of the fiber (G(1))a(t) .
We claim that

lim
t→0

(G(1))a(t) =
⊕

j

D(mj−1)(v([cj : 1]))⊕ Span{dX, dY } . (9)

To that end we observe that the right-hand side of (9) is indeed the direct sum of the vector
spaces due to the Hermite’s interpolation (which interpolates uniquely a polynomial in terms
of the values of its several consecutive derivatives at the given points, cf. Appendix). Therefore
the dimension of the right-hand side equals

∑
j mj + 2 and to complete the proof of (9) it

suffices to verify that the left-hand side of (9) contains its right-hand side.
To this end fix j , denote m := mj and let

E(i) := ({eij,p(t)}1≤p≤m)T ∈ Km , i ≥ 0 ,

where all p satisfy mj,p = 2 (see (8)). Let E be the m ×m van-der-Mond matrix with the
columns E(i) , 0 ≤ i ≤ m − 1 . Consider an arbitrary w = (w0 , . . . , wm−1) ∈ Km

and let u := ({up}1≤p≤m) := wE−1 . Since E−1E(i)(0) = 0 for every i ≥ m it follows for
u(i)(t) := u · E(i)(t) that u(i)(0) = 0 . Therefore

∑
1≤p≤m

upv([cj + ej,p(t) : 1]) =
∑

0≤s≤m−1

ws

s!
dsv([cj : 1])

dcs
+

∑
m≤i≤q

u(i)

i!
div([cj : 1])

dci
.

Claim (9) follows by letting t = 0 in the right-hand side of the latter (in view of the choice of
w as an ’arbitrary’ in Km).

We now specify the choice of curve {a(t)}t so that for every j equality mj = [mj/2]
holds (see (7)), in other words mj,p = 2 for mj number of p’s and, moreover, in the case
when number mj is odd that mj,p0 = 1 for a single p0 . Then due to (9) it follows

Proposition 8.7 For any point a(0) ∈ Sing(f) the fiber

(G(1))a(0) =
⊕

j

D([mj/2]−1)(v([cj : 1]))⊕ Span{dX, dY }

is a vector space of the dimension
∑

j [mj/2] + 2 (see (7)). In particular, bundle

G := Gf = G(1) .
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Finally, we establish that G is Lagrangian. For every k , 0 ≤ k ≤ q/2 , let

G(0)
k+2 := {a(0) ∈ Sing(f) : f (0) =

∏
1≤j≤k

(X − cjY )2 ·
∏

k<s≤q−k

(X − csY )} ,

i. e. f (0) has k factors of multiplicity 2 and q − 2k factors of multiplicity 1 . Proposition 8.7
implies that G(0)

k+2 ⊂ Gk+2 (see Definition 3.3) and, moreover, that G(0)
k+2 is dense in Gk+2.

On the other hand, G(0)
k+2 is open and is isomorphic to the set of all orbits of the group

Sym(k)× Sym(q − 2k) acting on a set

Z := Kq−k \ (
⋃

1≤i<j≤q−k

{Zi = Zj}) ,

where Sym(k) permutes the first k coordinates Z1 , . . . , Zk and Sym(q − 2k) permutes
the last q − 2k coordinates Zk+1 , . . . , Zq−k . It follows dim(G(0)

k+2) = q − k . Moreover,

G(0)
k+2 = H(Z) , where H maps Z1 , . . . , Zk to double roots of f (0) and Zk+1 , . . . , Zq−k to

single roots. It follows that G(0)
k+2 is irreducible. Finally, since in this example Sing(F ) admits

Thom stratification, quasistrata Gk+2 are irreducible and of dimension n− k − 2 item (ii) of
Theorem 3.6 and hence Corollary 3.9 apply and imply the following

Theorem 8.8 Index of stabilization ρ(fq+2) = 2 , bundle G = Gfq+2 is Lagrangian and
{Gk+2}0≤k≤q/2 is a functorial TWG-stratification with respect to fq+2 .

9 Appendix. Complexity of extension to a Gauss regular sub-
variety with a prescribed tangent bundle over singularities

Here we estimate complexity of an algorithm of extending of a (smooth) singular locus of
an algebraic variety to a Gauss regular subvariety with a prescribed tangent bundle over the
singularities of the variety (see Section 5). We follow the notations of Sections 4, 5 with an
exception that we useK rather than C . The input for this algorithm is a family of polynomials
gp , Mj+m,i+m ∈ K0[X1, . . . , Xn] with p ≥ 0 , i , j for a subfield K0 ⊂ K . For the sake of
complexity bounds we assume that elements of K0 can be represented algorithmically, e. g.
one may use here the field of rational or algebraic numbers in place of K0 , cf. [10]. We
assume the following representation for an algebraic variety S = {g0 · g1 6= 0 , gp = 0}p≥2

and its (smooth) singular locus G = {g0 6= 0, gp = 0}p≥1 , which also is its boundary in
{g0 6= 0} (see Remark 4.9). The output of the algorithm is a Gauss regular subvariety G+ of
S ∩ {g0 6= 0} (see Proposition 4.10).

Basically the algorithm consists of 3 subroutines. The first one is choosing a Noether
normalisation π for G . The second one is an implicit parametric interpolation of polynomials
Lj from Section 5. (We refer to the latter as implicit because the interpolation data are given
over the subsets of points from G and thus the data appear implicitly.) The third subrou-
tine is a construction of G+ proper. To this end we may exploit a choice of algebraically
independent coefficients c1, . . . , ck at each consecutive application of Theorem 5.3 and there-
after to construct an irreducible component containing G of the resulting intersection with
S ∩ {g0 6= 0} (cf. vi) of Theorem 5.3 and the deduction of Proposition 4.10). Complexity
bounds for Noether normalisation and for constructing irreducible components one may find
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in [19], and in [10] respectively. We observe that the third subroutine depends only on the
complexity of finding irreducible components. We therefore focus on an algorithm for a para-
metric interpolation. In fact, we design an algorithm for interpolation over the parameters
varying in Km , whereas for the purposes of Section 5 it suffices to have the parameters
varying in an open subset U ′ ⊂ Km , which would have simplified the algorithm.

To formulate the complexity bounds we assume that deg(gp) < δ , deg(Mj+m,i+m) < ∆
for all p , i , j and the total number of bits in representation of the coefficients (in K0) of
polynomials gp , Mj+m,i+m does not exceed R. Our main result here is the following

Proposition 9.1 One can interpolate polynomials Lj as required in Section 5 and, moreover,
under assumptions listed in the preceding paragraph deg(Lj) < ∆δO(n) is a bound on the de-
grees of the resulting Lj . Complexity bound for this interpolation algorithm is (R∆nδn2

)O(1).

Combining with the complexity bounds for the first and the third subroutines it follows

Corollary 9.2 The complexity of the algorithm constructing G+ is bounded by

RO(1)(∆δ)nO(1)
.

Proof of Proposition 9.1. We first consider a non-parametrical interpolation.

Lemma 9.3 Let v1, . . . , vt ∈ Kn−m and w
(i)
q ∈ K , 1 ≤ q ≤ t , 0 ≤ i ≤ n −m . There

exists a polynomial A ∈ K[Xm+1, . . . , Xn] of deg(A) < 2t(n−m) such that

A(vq) = w(0)
q ,

∂A

∂Xi+m
(vq) = w(i)

q , 1 ≤ q ≤ t , 1 ≤ i ≤ n−m .

Proof. By making an appropriate linear change of the coordinates in Km we may assume
w.l.o.g. that v

(i)
q1 6= v

(i)
q2 , 1 ≤ q1 < q2 ≤ t , 1 ≤ i ≤ n−m , where vq = (v(1)

q , . . . , v
(n−m)
q ) , 1 ≤

q ≤ t . Consider a polynomial

Aq0 =
∏

q 6=q0,1≤i≤n−m

(Xi+m − v(i)
q )2 ·

 ∑
1≤i≤n−m

ai(Xi+m − v(i)
q0

) + a0

 , 1 ≤ q0 ≤ t

with indeterminate coefficients ai , 0 ≤ i ≤ n−m . Then Aq0(vq) = ∂Aq0
∂Xi+m

(vq) = 0 , 1 ≤ i ≤
n −m , for every q 6= q0 . Equation Aq0(vq0) = w

(0)
q0 uniquely determines a0 . Furthermore

equation ∂Aq0
∂Xi+m

(vq0) = w
(i)
q0 uniquely determines ai , 1 ≤ i ≤ n −m . Finally we let A :=∑

1≤q≤tAq.

Of course one can in the same vain interpolate the higher derivatives as well.
We now consider a parametric interpolation. Due to Bézout inequality deg(G) < δn , we

introduce a polynomial

A =
∑

0≤e1+···+en−m≤2(n−m)δn

AEX
e1
m+1 · · ·X

en−m
n
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with indeterminate coefficients a := {AE}E , E = (e1, . . . , en−m) and a quantifier-free formula
Φ(u, v, a) of the theory of algebraically closed fields which says that

if v ∈ G , π(v) = u ∈ Km then A(v) = 0 ,
∂A

∂Xi+m
(v) = Mj+m,i+m(v) , 1 ≤ i ≤ n−m

for some j , 1 ≤ j ≤ k (we fix j for the time being). Then the formula ∀u ∃a ∀v Φ is true
due to Lemma 9.3.

An algorithm from [11] yields a representation of π−1(u) ∩ G commonly refered to as a
“shape lemma”. Applied to a system {gp = 0, g0 6= 0}p>0 the output of this algorithm is a
partition of Km = ∪βUβ into constructible subsets such that for each β there are a linear
combination α =

∑
1≤i≤n−m αi,βv

(i) of coordinates v(i) , 1 ≤ i ≤ n − m , with integer
coefficients αi,β and rational functions φ , φi ∈ K0(X1, . . . , Xm)[Y ] , 1 ≤ i ≤ n − m , for
which the following holds:

• for any u ∈ Uβ and any v = (u, v(1) , . . . , v(n−m)) ∈ π−1(u) ∩ G equalities
v(i0) = φi0(u , α) , 1 ≤ i0 ≤ n − m , take place, i. e. α is a primitive element of the
field K0(u , v(1) , . . . , v(n−m)) over K0(u) ;

• the roots of a univariate polynomial φ(u, Y ) are exactly the values of α while ranging
over points v ∈ π−1(u) ∩ G .

Furthermore, in formula Φ we replace v(i0) , 1 ≤ i0 ≤ n−m , by φi0(u, α) and divide the
resulting polynomials A(α) and

(
∂A

∂Xi+m
(α)−Mj+m,i+m(α)

)
by polynomial φ(u, α) (with the

remainders as polynomials in α). Then system Φ1 obtained by equating to zero all coefficients
of the remainders at the powers of α is equivalent to formula ∀v Φ , for any u ∈ Uβ .

One may consider Φ1 as a linear system with respect to variables a and apply to Φ1

an algorithm of parametric Gaussian elimination (see e. g. [10], [11]). It yields a refinement
Km = ∪β′U

′
β′ of partition ∪βUβ into constructive subsets such that for each β′ and for every

multiindex E there is rational function aE ∈ K0(X1, . . . , Xm) such that for any u ∈ U ′β′ the
array of coefficients a(u) = {aE(u)}E fulfils Φ1 . For a choice of the unique β′ for which U ′β′
is dense in Km the rational function

Lj =
∑

0≤e1+···+en−m≤2(n−m)δn

aEX
e1
m+1 · · ·X

en−m
n

corresponding to this β′ is as required in Section 5.
Finally we address the complexity issue. In the construction of the “shape lemma” above

deg(φ) , deg(φi) are bounded by δO(n) as well as the degrees of the polynomials representing
{Uβ}β , while the number of {Uβ} , the total sum of sizes of the coefficients of these poly-
nomials and the complexity of the algorithm do not exceed RO(1)δO(n2) [11]. Therefore the
degrees of the polynomials occuring in Φ1 are bounded by ∆δO(n) , while the number of the
polynomials, the total sum of sizes of their coefficients and the complexity of constructing Φ1

do not exceed (R∆nδn2
)O(1) . At the stage of applying the parametric Gaussian elimination

to Φ1 the bounds are similar. Proposition is proved.
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