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Two dinlensional sernisilnple repl'esentatioll spaces of

the fundanlelltal groups of algebraic nlallifolds, Part I

Kang Zuo

Abstract. Let X be a eompact aJgebraie manifold. We construct a natural map from tbe two

dimensional semisimple representation spaee of the fundamental group of X to the moduli space of

line bundles over X. The /ibres and the image of this map are diseussed .
•

Illtroduction. Let X be a compact algebraic manifold and x E X a base point. We are interested

in the set of the semisimple representations of the fundamental group 11"1 (X, x) modulo eonjugation

It is weIl known that 11"1 (X, x) is finitely presellted , so there exists naturally aquasi projeetive

variety MB parametrizing SB I ealled t he r-th Betti space of X and depends onIy on the topology

of X. Sinee X is an algebraic manifold, Olle expects that the underlying space of MB should have

additional algebraie strueturea reflecting the algebraic structure on X. For example, looking at the

first Betti space, roughly sayi ng, it ia the first cohomology groupHI (X, C). On the other hand,

one has the Hodge decomposition HI (X, C) = HO(X, 0\) $ H1(X, Ox), which depends on the

algebraic structure on X and H 1(X,Ox)/H 1(X,Z) parametrizes the flat line bundles over X.

For higher dimensional cases, recently, K. Corlette proved that a representation is semisimple if aod

only if its associated flat vector bundle V has a harmonie HermitialJ metrie [9], [25]. J. Jost and S-T.

Yau [20] gave also some generalizations in this direction. In a eanonieal way, this metric makes V into

a holomorphie vector bundle E and gives E a Higgs strueture B, namely, 0 E HO(X, O};End(E))

and 01\0 = O. The pair (E,O) is called a lIiggs bundle (16], [25]. Similar to veetor bundles, one

defines stable and poly-stable Higgs bundles by looking at O-invariant subsheaves of E and the set

SDol := { rank-r poly-stable Higgs bundles over X} /lsomorphisms.

Most important, there is a one to one eorrespondence SB :::::: SVol. This theorem was proved in

a suecession of generalizations by Corlette) Beilinson-Deligne, Donaldsoll J Hitchin, Narasimhan

Seshadri, Simpsoll, Uhlenbeek and Yau cf. [25] for historical comments. Furthermore, Simpson

proved that there is aquasi projective variety A1Do1 parametrizing SVol, and there exists a locally

etale universal family [25L [26]. This moduli spaee provides an algebraie strueture on the underlying

space of 1118, ealled the 1'-tlJ DolbeauIt spaee of X. In general, the Betti space and the Dolbeault

space are not isomorphie as algebraie varieties.
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The exact sequence of group homomorphisms R+ ---+ GL(r, C) ---+ 8L(r, C) gives a splitting

the variety MEol parametrizes exaetly a1l poly-stable Riggs bundles (E,O) with Tr 0 = O. For

example, if r = I, then MEol = Pie'" (X), where Pie'" (X) is the rnoduli space of topological trivial

line hundles over X.

In our paper we consider the first non-ahelian case, namely , r =2. By the Lefschetz hyperplane

section theorem we rnay assurne that X is an algebraic surface with an arnple line bundle H.

According B= 0 or f:. 0, The moduli space A1;}ol is divided into two subvarieties

It is easy to see that MO parametrizes exactly Aat hundles coming from unitary representations.

TheoreUl A The rnoduli space M+ has naturally the following decomposition

M+ = UA1t U UM/.
i j

Each component Mt corresponds to a fibration /. : X ---+ Ci so that for any representation

p E Mi+ its restriction to a generic fibre Fi of this fibration

p
- 8L(2,(;),

splits into a direct surn of I-dimensional unitary representations.

Each cornponent /1;1/ is naturally birational to a product space of a vector space and an abelian

variety.

The right way to understand the components in the first part is folIows. The unitary splitting of

representations p E Mi respect to a generic fibre Fi means that p can be separated as a tensor prod

uct of a puB back of a 2-dimensional representation of" the orbiford fundamental group 7I'"O'f'b(Ci, c)

on the base curve Ci and a direct sum of two I-dimensional unitary representations of 71'"1 (Fi , x).

Recently, R. Brussee (7] determined the moduli spaces of semisimple 8L(2, C) representations of

orbiford fundamental groups of curves. Like the original C8Se, the analytic object corresponding the

semisimple representations of the orbiford fundamental group is called " Parapolic poly-stahle Higgs

bundles" by N. J. Hitchin [18]. We give the following examples to make this point clear.

1) Suppose / : X ---+ pI is a regular elliptic surface with X(Ox) ~ 1. S. Bauer (2] proved that any

SU(2)-representation of 71'"1 (X, x) is a puB back of a SU(2)-representation of 1r
orb(pI, p). In fact,
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one ean see, it is still true for any semisimple representation. This means exactly, the Becond part

in the decomposition in theorem A is empty and the first part has only one eomponent.

2) Let X be a hyperelliptie surface of type 1. It is construeted aB a quotient of produet of two elliptic

eurves B x C by a Z2-action, which acts on B as the involusion and on C as the translation. X

has two elliptic fibration structures, one is ,over B/Z2 =: pI with four singular fibres cf multiplicity

2. 'Ve denote Mtara(pl, 4, 2) by the moduli of rank-2 poly-stable parapolic Riggs bundles (E, B)

with B 1= 0, Tr B = 0 over pI respcet to four marked points and multiplicity 2. One ean show

M+ ::::: C· x Jac(B) x Jac(C):::::: Mtara(p l , 4,2) x Jac(C).

In general, we have the following statement, the proof will be given in part II.

There exists naturally a birationaf map Mt ::::: ~1'tara(Cd x Ai up to an etale eovering, where

Ai C Jac(Fi ) x Jac(Fä) is a Bubabelian variety satisfying Borne invariant properties under the

monodromy action of 11'"i(C., c).

For a trivial Higgs bundle (E,O) E A1°, we may use its deformations to get a nontrivial Higgs bundle

(E, B) E M+. More preeisely, this is the following eonstruetion

Proposition 1 Let Al° -+ PicT (X) be the map by sending E to det E, BUppOse

r(MO/ PicT(X» is the total space of the relative tangent space. Then there exists naturally an

indusion

by putting E and its relative cotangent vector 0 E 1[E](MO/ PicT(X)) ::::: HO(X, 01- Endo(E»

togethere.

A consequence from theorem 1 aod prop.l is the following theorem, which descripts the moduli

spaee of 2-di.l11ensional unitary representations

Theorem B The total spaee of the relative eotangent bundle T- (Mo / PicT (X)) defined in prop.

I has a natural decomposition

'r(MOjPicT(X)) = UT. U U7J U UPicT(X)k,
i j .i:

where the eorriponents 7i, Tj have the same properties as for Mi I Mj in theorem A. The last

eomponents Uk PicT (X)k eome form by twisting I-dimensional unitary representations with k

2-dimensional rigid unitary representations.

The proof of theorem A is divided irrto two steps. \\Te will also see more geometry meaning of AlDol.
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Theorem 1 Suppose (E, ()) E M+ I then there exists naturally a factor map

where L is a sub invertible sheaf of 0k, whieh is numerieally semipositive and L2 = O. The map

BL does not vanish any where.

The main teehnique used in the proof is the weIl known lemma due to F. Bogomolov [23]

Lem.ma ( F. Bogomolov) Suppose X ia an algebraie aurfaee and L is a sub invertible sheaf of

0k I then there is a positive eonstant a , so that hO(X, L0n ) ~ an, Vn E N.

Using the above faetor map we may naturally define a map

M+~ Pic(X)

by sending (E, B) to the equivalent class [L] E Pic(X). There is a stratifieation M+ = Uk Mt so

that the restrietion gL\-!+ is amorphism. It ean be seen by using the loeally etale universal family
10

To the fibres of the map g. There are two kind algebraic descriptions to (E,O) E g-l([L]) according

det BL = 0 or ;f O.

1) det 0L = O. The Ker () L =: A1v is a line bundle. There is a exact sequence of vector bundles

o-+ MV -+ E -+ M ® det E -+ 0,

M0 2 ® det E::::: Land LH > O. The map ()L ia given by the composition map

E -+ M (9 detE::::: MV ® L -+ E®L.

2) detlh;f O. On the double covering 1f' : X - X ramified along the zero divisor (detlh) E

IL02 1 there exists a line bundle M, so that 1f.M::::: E aIld BL is given by taking direct image

The second description is just a straight generalization of Hitchin's description of generic Riggs

bundles over curves [5], [17]. Same as in the curve case, the surface X ia called the spectral surface

of (E, B).
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It is natural to introduee the following abelian varieties; the etale eovering PicT(X) - PicT(X) by

taking 2-torsion points in PicT(X). Let HO(X, L02t be the nonzero seetions space of HO(X, L02 )

and X - X X HO(X,L02t be the double eovering by taking the square root of the universal

section in HO(X x HO(X, L02t ,piL02), we denate its relative Pieard graup of the projeetion

X - HO(X , L 02t by Pic(XIHO(X, L02 )-). Applying the above deseriptions we get easily

Corollary 1. There is a natural birational map on the fibre of the map 9

g-I([L]) :::::: PHo(X, ni (/) LV) x (U H 1 (X, LV) x Pic[(X) UUPicj(..f I HO(X, L02 y)),
i j

where Pic[(X) respeet Picj (X IHO(X, L0 2 )-) is a connected eomponent of PicT(X) respect

Pic( ..i: IHO(X, L02 y).

AB for the image of the map 9 we prove

Theorem 2 Let g(kf+) = Ui Pi U U;{Pi} u Uj {Pj} be the irreducible decomposition, where

the eomponent Pi hes positive dimension and the point Pi has the positive Kodaira-dimension

,,(X, Lpi ). Then eaeh eomponent Pi respect eaeh point Pi eorresponds a fibration Ii : X - Ci,

so that for any representation pE g-I(Pi ) respect pE g-l(Pi) its restriction to a generie fibre Fi

of fi splits into a direct sum of I-dimensional unitary representations of 11'"1 (Fi, x).

The main idea of the proof of theorem 2 is based on the following facts. Let us sketch them in the

few words. Like classieal harmonie form theorem on the trivial veetor bundle over a Kähler man

ifold, the harmonie operator induced by the harmonie Hermitian metrie on End(E) still satisfies

the higher Kähler identity, but to same special forms. Using the factar map in theorem I, we get

a nontrivial I-form W L E HO (X I ni 0 LV). Taki ng the complex conj ucation and using the higher

Kähler identity, we abtain a nontrivial class WL E HO(X ,L).

Considering the subvariety of line bundles in Pic(X) with nontrivial H 1(X, L). One has the fol

lowing lemma, which is a little bit modified version of a theorem due to M. Green and R. Lazarsfeld

[14]

LemnlR ( M. Green and R. Lazarsfeld ) Let the subvariety S := {[L] E Pic(X)j1I 1(X, L) ::f. O}.

Then there exists a stratification S =Uj Sj so that V [L] E Sj, Vt E Hl(X, L) and Vv E 7[L](Sj) ~

1[L](Pic(X)) :::::: H 1(X ,OX), it holds tU v =0 in H 2(X, L).

Applying this lemma to the line bundles L coming from the factor map in theorem 1 and the

classes WL E Hl(X, L), taking the complex eonjucation, we get an equality of I-forms WL A v = 0,

where v E HO(X,O}) eorresponds a tangent vector v E 1[L](Pi ) ~ H 1(X,Ox). Similar to the

Castelnuovo-De Franchis lemma, this equality produces a fi bration on X, whieh we j ust want.
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1. Harmonie Hermitian metrie on flat veetor bundles, harmonie forms and a general

izaition of the higher Kähler identity

Suppose (X,w) is a Kähler manifold. Let V is a rank-r flat vector bundle with the flat eonnection

D. Given a Hermitian metric K on V, there is an unique deeomposition D = DK + BK + BK,

where DK is a connection on V compatible with K, BK E A1,O(End(E)) and BK E AO,l(End(E))

is the eomplex conjueation of BK respect to !C

Let DK = Di< + D'k be the (I, 0) and (0, 1) parts deeomposition and A be the adjoint operator

of w. One has the following

Definition [25] A Herrnitian metrie K on V is harmonie if A(IYk + BK)2 = 0.

A Herrnitian metric on V ean be thought of as the multivalued map 4JK : X --+ GL(r,C)jU(r).

J( is harmonie if and only if the map cPK ia harmonie.

Theorem ( K. Corlette [9]) A flat veetor bundle has a harmonie Hermitian metrie if and only if

it comes from semisimple representaion of 1t'l(X, z). Such ametrie is unique.

Using the harmonie metric J(, we may make V into a Riggs bundle in a eanonieal way. First we

review the following

Lenuna ( P. Deligne [25]) J( is harmonie if and only if (D'k + BK)2 =0.

Given a harmonie hermitia metrie ](, the above lemma implies D'k'l =0, D'kBK + BK 1\ D'k =0

and BK 1\ BK = 0. Henee we get a holomorphie veetor bundle (V, D'k) =: E, a section BK =: B E

HO(X, l1k End(E)) and B1\ B= 0, so (E, B) is a Higgs bundle. \Ve see that the eonneetion DK is

eompatible with the metric J( and the holomorphie structure on E.

The harmonie Hermitian metrie J( on Einduces eanonieally a harmonie Herrnitian metrie j(

on End(E). Let Dj( = Die + Die be the connection compatible with i< and the holomorphie

strueture on End(E). The eonneetion Di< and the metric j'( induee two harmonie operators OD'
R

and ODII • It is eIear, the holomorphie form B is a OD" -harmonie form. Furthermore, we have
R R

LemIna 1.1 i) (J is a OD' - harmonie form.
R

ii) 't/ 0' E HO(X, n}), (J 1\ 0' is a OD' -harmonie form.
/?

Proof i) Looking at the deeomposition D = (ljK + B) + (D'k + Ö) of (1, 0) and (0, 1) parts.

Sinee D2 =0 and (J 1\ (J = 0, we get D'i: + Di<B + (J 1\ D~ =(DK+ (J)2 = O. Beeause DK is the

eonnection compatible with the metric !( and the holomorphic structure on E l we have D'i =0,
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henee DK8 + 81\ DK= O. Thia means that 8 ia a Dk-closed form.

Because D'R =-..;::f.(/\ D'Je - D'k /\J, D'kB =0 and /\ B=0 automatieally, we get IYk8 =O.

ii) Dk(B 1\ 0') =Dk(B) 1\ 0' - B/\ 80' =0, sinee Dk(B) =0 and 80' =O. Same 8S i) we show also

D'k(8/\ 0') =-..;::f.(/\ D'k(O 1\ a) - IYR/\(0 /\ 0')) = O. •

In the classical harmonie theorem on Kähler manifolds, it is weil known that the harmonie operators

Da and Da on the trivial vector bundle satisfy the higher Kähler identity, namely Da = Da.

This means that a form is Da-harmonie if and only if it is Da-harmonie. Our lemma says, the

harmonieal operators indueed by the harmonie Hermitian metrie still have such property for sorne

special forms.

The next lemma is due to M. Itoh, whieh will be used in the proof of therem 2.

Lemma 1.2 ( M. Itoh) Let E be a holomorphie vector bundle with a Hermitian metric hand

i : F<.....+ E be a holomorphic subbundle. The restriction hIp gives F a Hermitian metric. Let D

and Dp denote the connections on E and F compatible with the holomorphie strueture and the

metric. Suppose 'P E AP,q(F). If i(lr') E AP,q(E) is OD,-harmonie, then Ir' is DD' -harmonie.
F'

Proof (M. Itoh) Looking at the slllooth splitting E = Fe FJ.. Let CF E AI(X, Hom(F, FJ.))

be the Beeond fundamental form respeet to D and DF. Narnely, for each smooth section S of

F, DI,I(s) =DFI,I(s) + O'I,I(s), v is a tangent veetor of X, where DFv(s) and O'I,I(s) are the F

and FJ.-components of Dv(s) in E. The equation DD,(ilp) =0 means exactly D'(i'P) = 0 and

D'·(ilr') =O. Write 'P as

Ir' = L: 'Pi l".i p ] 1''']' dZ i1
/\ ... /\ dzi, 1\ diit ... 1\ dii'l ,

ij

with lr'i1 .. .i J"I ... J" = L~= I Ir'~ ,."'f J"'f ea , where {eI,'''' eJ, eJ+ I, ... , en } is a unitary frame of E, and
p 'l 01··· pJ 1··· 'l

is written in terms of D F and 0' 88

Hence D F(Ir') = O. On the other hand from the weil known formula

( see [21], Th 5.2 ) we have similarly

- L:L: (gfl: DF b 'PI; ,i:l ...J,)dzi:l 1\ ... /\ dzi 'l = 0,
1;,' iJ ~f

that is D'F1r' = O. So <p is OD~ -harmonie. •
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2. An algebraic geometry descriptioll ofrank-2 Riggs bundles conling from the semisim

pIe representations of 1r1(X, x), proofs of theorenl 1, corollary 1 sud prop.1

Befor the proof of theorem 1 we want to show the following lemma about rank-2 Higgs bundles,

whieh are not necessary coming from representations of 1r1(X,X).

LeIDDla 2.1 Let (E,8) be a rank-2 Riggs bundle and (J "I 0, Tr (J = O. Then we have the factar

map

9

E - E®Ok

~r
E0L,

where L is a sub invertible sheaf of nk' The map (J L has on ly isolated zero locus.

Prüof Taking Ioeal frarns of E and E@ 0k, the map (J is written aB Mldzl + A1'ldz2, here Mi

are 2 x 2 matrix of holomorphie functions. The eondition /\2
(J =0, and Tr 8 =0 means exactly

MI M'l - M2MI = 0 and TrMi = O. Prom the fact of linear algebra we see that there are two

holomorphic functions Al, "\2 non vanishing at the same time and Al MI + A2M2 = O. This follows

that the map End(E) -+ Ol induced by (J has I-dimensional image L 0 I~ ........ 0k, where L is a

sub invertible sheaf of Ük and I z is the ideal sheaf of a D-dimensional subscheme Z of X. So we

complete the proof. •

Loo~ing at the maps

~L 9d~I

E - E~L - E0L0 'l,

these maps is a complex and away from the zero loeus of (J L, is exact aB vector bundles map.

esse 1. det eL =O. Since Tr (J L = O. Let MV := Ker (J L, then we have the exact sequence

o-+ MV -+ E -+ M ~ det E 0 Iz -+ 0,

where I.. is the ideal sheaf of the zero locus of (JL and M@'J 0 det E :::::::: L. The map OL is exactly

the comp05ition map

E -+ M 0 det E 0 I~ :::::::: MV 0 L ® Iz -+ E 0 L.

Case2. detBL -:# O. Themap (JL: E -+ E@L induces an Sym(LV)/I-moduieon E, here I isthe

ideal sheaf generated by the map det OL : LV02 -+ Ox and Spec(Sym(LV)/I)) -+ X is simply the

double covering 1r : X -+ X by taking the square root of det 0L. Using the general correspondence

theorem ( {12], Ckapter 2, prop. 5.2 and [5] Prop. 3.6. ) there is a rank-l torsion free sheaf N on

Y so timt 1r.N:::::: E, the singular locus of N is supported at the invers image of the zero locus of

oL ( [12] Lenuna (5.21). The map 0L is just the direct image 11". (:zr.(~) : N -+ N 0 :zr- L).
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After the above discussion we see, to complete the proof of theorem 1 and corollary 1 we just need

to show the follows

Lemma 2.2 Suppose (E,O) is arising from semisimple representations of 1rl(X, x), Then the line

bundle L ia numerically semipositive and the map 0L does not vanish any where.

Proof 1) det OL = O. We consider the exact sequence in CMe 1. Applying the poly-stability

of E to the Higgs-subline bundle MV we get M H 2: 0 and AIH = 0 iff M is topologically

trivial. The calculation of the ehern classes gives A12 = lz1 ;::: O. If M 2 > °and M H > 0, then

by the Riemann-Roch theorem we see hO(X, (M@2 t&l det E)@n) ~ an2 • On the other hand since

M@2 ® det E :::::: L c........ 0 k, by the Bogomolov lemma we have hO(X, (M@2 t&l det E)@n) ~ an + b. So

M 2 = Izl = O.

The poly-stability of (E,O) implies that AI is numerically semipositive. Since L =Al@2 ® det E,

80 L is numerically semipositive.

In fact, M H > O. Otherwise, we would have (E,O) :::::: (MV ,w)$(M0det E,-w), W;tO E HO(X, O}).

This follows det OL 1= 0, a contradiction.

2) detBL f; O. We take a blowing up u : X ..... X at the singularities of the zero divisorn

(det 0L)O satisfying the conditiOll: Each irreducib le component in the puIl back u· (det 0L)O is a

smooth curve and the components with add multiplisities are disjoint.

The puB back u· I~ = I~, ® 0x(- Li Ei), here z' is a O-dimensional subscheme of X aod Li Ei

are some exceptional curves of the blowing up. Let L' := u· L ® 0x(- Li E;), then we have the

fador map

and 0Li has onIy isolated zero locus Zl. We look at the double covering 1r : X ..... X by taking the

square root~ and furthermore, by taking its normalizition we obtain the smooth covering

surface X',

...... q

x-x.

Let ,\ := p'·v'det Ou E HO(X',p'" L'), its zero divisor is exactly supported on pl-l«det Ov)o).
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Similar to case 1, we have the zero composition map on je

The above two maps have I-dimensional images and have only O-dimensional zero locus exactly

supported at p'-I(ZI), therefore, away from this O-dimensional subseherne these two maps are exact

as veetor bundles maps. Let MN := Ker (p'. ()LI - ..\) and i be the involusioo on XI, then i· Nt IV =

Ker(p'·OL' +..\). Similar to case 1, we have an exact sequence on X'

Claim Ei Ei =0, L2 = 0 and kflp. L = O.

Proof We have pi. LI 02 ~ 0XI(pl·(det OL' )0) =0XI(Ej njpl·(Cj)red), here pl*(Cj)red are

smooth curves on XI. Beeause, the harmonie Hermitian metric goes to harmonie Hermitian metrie,

the puB hack (p. E, p.OLl) is still poly-stahle, henee its the restrietion to i· (Cj hed is again poly

stahle. Noting MlVlpl.(Cjh.d is a Higgs-subline bundle, we get M'p'·(Cj)red ~ O. This implies

iflpi. L' ~ 0 henee i· /;fI pi. L' ~ O. Using the above isomorphism we get p'·(L')'J ;;:: 0.

Beeause L,2 ;;:: 0 and Ei Ei are exceptional eurves of the blowing up U , noting L' = u· L 0

CJx(- Li Ei) we obtain L2 = L I2
- (Ei Ei)'J ~ O. On the other hand, beeause L C-.....+ S1k and L02

ia effeetive, the Bogomolov lemma says L 2 :'5 O. So we get Ei Ei = 0, L 2 = 0 and NI' p. L = O.

The claim is proved. ....

We look at again the above exact sequence, where M12 = Iz"l ~ 0 and z~ = (p. z)red' slllee

Li Ei = 0. "Ve must show M,2 = O. Suppose Mf1. > O. Sinee M'p. L = 0 and (p. L)2 = 0, the

Hodge index theorem foBows p. L is topologieally trivial line bundle. In particular, 0 = p. Hp· L =
p. H MI + p. H i· MI = 2p· H M'. Using the Hodge index theorem again, we get MI"J :'5 O. This is a

eontradietion.

To see L ia numerieally semipositive, it ie enough to show p. Lp·C ;::: 0, 'TI Ce X. Looking at again

the exact sequence, the poly-stability of (p. E, p. (J) follows M'p. (C) ;;:: 0, heuce i·MIp. C ;;:: O.

Noting p. L = M' 0 i·M' 0 det p. E, we get p. Lp·C ~ O. 2) is also proved. •

Proof (Prop.l) Let E E MO, wejust need to show 7[S]{Mo/Pic"{X)) ~ HO(X,S1kEndo(E))

and VO E 7[E](MO / Pic"(X)), it holds 0 1\ °= O. Looking at the Kuranishi obstruction map

4J : H 1(X, Endo(E)) -+ H2(X, Endo(E)), the relative tangent space 7(E](MO/PicT(X)) is con

tained in Ker4J via the Kodaira-Spenee deformation map. Beeause E is coming from the unitary

representation of 71"1 (X I x), Endo(E) has a flat metric. By taking the Dolbeult-isomorphism and
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harmonie forms respeet to this ßat metrie we see, the harmonie operator satisfies the higher Kähler

identity, henee under the eomplex conjueation respeet to the flat metrie the harmonie form goes to

the harmonie form. Therefore we obtain the following anti-isomporphisms

1[E](MO / Pic"C,Y.)) ~ H 1(X, Endo(E))

-1

- 2
and 4J just sends 0 to A O. •

-

H 2(X, Endo(E)))

1-

2. Deformations of sub invertible sheaves in f2l-, the splitting property of two dinlen

sional semisimple representatioIlS of 1t'l(X, x) along fibres of fibrations on X and the

proof of theorelll 2.

The proof of theorem 2 will be divided into two lemmas. Let 9 : M+ -f. Pic(X) be the map defined

in the introduction. Looking at the irredueible deeomposition g(M+) =Ui Pi U U;{vd uUj {Vj},

where the eomponent Pi has positive dimension. The point Pi has the positive Kodaira-dimension,

i.e. there is an n E N so that hO(X, L~in) :2:: 2.

Lemma 3.1 Let the seetion WL E H°(.X, f2l- 0 LV) induees by the embedding L e......., f2k in

theorem 1. Then there exists a stratifieation Pi = Uj PiJ 60 that VL E l-t(Pi,j) and Vv E

1[L](Pij ) ~ T[L](Pic(X)) ~ H 1(X, Ox) we have WL A V =0 in HO(X, f2l- 0 LV).

Proof Leoking at the diagram in theorem 1, the dual of 0L induees a veeter bundles embedding

i : LV e......., End(E). Let KLv he the Hermitian metrie on LV indueed by the harmonie Hermitian

metrie K on Encl(E) via the embeclding i. Applying lemmas 1.1 and 1.2, we see that WL and

WL A 0', Va E HO(X, nk) are Dn , -harmonie forms on L 1/. Hence under the complex conju-
KLv

eation respect to [(LV, we see that WL and WL A Ci are DD IJ - harmonie forms on L.
KL

By using the Green-Lazarsfeld lemma to the subvariety Pi ~ S, we have the stratification Pi =

Uj Pi n Sj =: Uij PiJ and WL U V = 0 in H 2(X, L), VL E g-l(Pij), Vv E 1[LJ(PiJ). Taking the

complex conjucation, we get WL A ii =O. •

Similar to the weIl known Castelnuovo-De Franchis lemma, through the equality of I-forrns WL Av =
o we eonstruct a nontrivial family of curves on X, then show that it induces a fibration on X. (See

[4] for the ease, L is a topologically trivial line bundle.) Looking at the stratification g-l(pi,j) =

12



Ul: MiJ,1: I where MiJ,J: is an irreducible variety and 9 : 1I1iJ ,J: - Pic(X) is amorphism. We take

an irredueible eurve BQ C MiJ,1:1 whose image g(BO) =: D
Q

is a eurve. We define two families of

eurves on X with the parameter spaee BO as folIows:

{Fwt> := I-dimensional zero loeus of Wb : Lb '-+ nkl bE BO},

Claim One of the above families sweeps a nonempty Zariski open set of X.

Proof The full sub invertible sheaf of Wb : Lb '-+ nj; respeet Vg(b) : Ox '-+ 01- is L 00x(FwJ

respeet Ox(Ful1(t»' The equality Wb" Vg(b) = 0 in lemma 3.1 follows that their full sub invertible

sheaves are linear dependent in 01; I hence there is an isomorphism Lb 0 0 X (Fwt» ~ "x (Fcl1 (t»)'

Suppose the both families are supported on some eurves on X. This would imply that the family of

line bundles {LlIl b E BQ} has onIy finitely many isomorphie classes by using the above isomorphism.

On the other hand, we knew already that its isomorphie classes forms the eurve DO. This is a

eontradietion. ....

Suppose we get such a farnily, whieh sweeps a nonempty Zariski open set of X. Taking the Zariski

doure of an irreducible eomponent of the graph of this family Z C X X B, then Z - X is a

generie finite map. After a suitable extension of funetion fields K(Z) C J«Z') we may assume ,

J«X) C /(Z') is a Galois-extension

,-z i B- \

·1 1i-
't

Z BI-----10 I

'·1
I
I

. -J- J.
X -- - - --; C,

where Z is a smooth resolution of Z and f is the fibration from the Stein-factorlization of the

projeetion Z - B.

Lelllma 3.2 i) The fibration f desends to a fibration f: X - C, which satisfies the properties

A) Vb E BO I the sub invertible sheaves Wb : Lb '-+ 0i- and df : f'"Oh '-+ nj; are linear

dependent.

B) Lb is f-vertical , i.e. L~ = 0 and ~blF ~ OF for a generie fibre F of f.

ü) The component Pi eorresponds a fibration fi : X - Ci so that Ym E g-l(p;} the line bundle

Lm has the properties A and B respeet to li.

13



iii) The point Pi corresponds a fibration Ji : X - Ci so that 'tim E g-l(Pi) the line bundle has

the properties A and B.

Proof i) Pushing forward the family {Fil b E iJ} to X, we obtain a family {T(Pb)1 b E iJ} on

X aod (T(pb»2 ~ O. We want to show (T(Pi )? =O. It can be seen by the following argument:

1) Suppose {Fw,,} is such a family. Since a generic curve T(Pb) is a component of Fw", there

is an embedding Lb C9 OX(T(Fb» <.....+ Lb C9 Ox(Fw ,,) <.....+ 0i. By the Bogomolov lemma we get

hO(X,(LbC9 OX(T(Fi»0n) ::5 an +b, \In E N.

On the other hand, because Lb is numerically semi-positive, L~ =0 and (T(Ft;)2 ;::: 0, we have

(Lb+T(F'b»2 ;::: O. The equality holds irr LbT(Fb) =0 and T(Fb)2 = O. Suppose the inequality holds.

By the Riemann-Roch theorem we get hO(X,(LbC90X(T(F'b»)0n) ~ an2. This is a contradiction.

2) Suppose {Fo.(,,)} is such a family, then a gelleric curve T(F'b) is a component in the zero locus

of the I-form Vg(b)' The Bogomolov lenuna and Riemann-Roch theorem follows (T(Fb»2 ::5 O.

The difference T·T(Fb) - L:"EGal(Z/X) ry(Fb) =: E is some exceptional curves contracted to points

by T. Hence E 2 ::5 0 and T·T(Fb)E = O. Noting ry(F;Jryl(Fb);::: 0, 'tIry, ryl E Gal(ZjX) we get

°;::: E2 =(E - T·T(Fb»2 =( I: ry(Fb»2 ;::: O.
f/EGal(Z/X)

Thus E = 0 and Fi1J(Fb) = O. This implies that the fibration 9 : Z - B is Gal(Z'/X)-invariant

and it can be desent to a fibration J : X - BjGal(Zj..-Y) =: C: Its fibres are just T(Fi)'

To prove i) A). Since Wb : Lb <.....+ 0k and Vn(b) : Ox <.....+ 0i- are linear dependent, we just need to

prove the I-form Vg(b) is a puB back from C.

1) Suppose the fibratioll f : X - C induced by {Fw,,}. For a generic fibre Fe of f we have

Lb ® Ox(Fw.,) = Lb C9 Ox(Fe + F~,J :::::: Ox(Fog(.) <.....+ 11k, the the Bogomolov lemma follows

hO(X, (L b C9 Ox(Fe + F;(b»)0n) ::5 an + b. Looking at hO(X, ((Lb C9 0 x(Fe»0m C9 Ox (F~.»0n) :5

hO(X, (Lb C9 Ox(Fc + F~.J)0mn), where m is fixed but sufficiently large. Because Lb and Fe are

numerically semi-positive, (L b + Fc)2 =0 and FI.. ;::: 0, using the niemann-Roch theorem we see

easily (Lb + Fe)F~b = 0, hence FcF~b =°and Fe Ff1Q (b) = 0. This implies that F~", FUg(b) are

contained in fibers of fand Lb + Fe is a f-vertical divisor of positive degree.

Hence hO(X, (Lb @ Ox{Fe + F~,,»0Jl) = hO(X, FJ:~» ~ an. This follows that FfJQ (,,) contains at

least one complete fibre of f. Because the I-form Vg(b) vanishes along this complete fibre, it is weil

known that Vg(b) is puH back of a I-form on C.

2) Suppose f : X - C comes from {FOQ(b)}' Because Vg(b) vanishes along a fibre F:, Hence Vg(b)

is a puB back from C.
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To prove i) B) We saw already that L b is f-vertical in the above proof.

Proof ii) Looking at the stratifications Pi =Uj PiJ and g-l(PiJ) =U.t Mi,j,.t, suppose Mi,o,o

is a subvariety so that g(A1i,O,O) ~ Pi is a Zariski open set. we fix a point bo E A1i,o,o and take

an irreducible curve BO ~ Mi,O,O passing through bo. Using i) we get a fibration fi : X - Ci

so that two sub invertible sheaves wbo : Lbo C-....+ 0i and dji : ftnh; C-....+ 0i are linear dependent

aud Lbo is gi-vertical. For any b E Mi,o,o we may find an irreducible curve B O' connecting bo

and b. Applying i) again, we get a fibration II : X - CI so that three sub invertible sheaves

Wbo : Lbo C-....+ O}, Wb : Lb ~ 0k and dJi : Irnh: C-....+ n} are linear dependent with each other

and L bo ) Lb is II, -vertical. Hence the puH back of two cotangent bundles nb aud Oh: are linear

dependent in oi) this implies li = fI. Therefore, Lb is also li-vertical.

For any [L] E Pi we may find a sequence {[Ln]} C Mi,o,o, which convergence to [L]. This foHows

L is also li-vertical.

Because [L] E Pi is ji-vertical of positive degree, we find a nontrivial section 8 E HO(X, L0n ) for

some nE N. By taking the n-th roots of 8 we get a covering

T

Y ---+ X

j;l 11;

Ci ---+ C.

The puH back T" (y'8) is a seetion in HO (Y, T" L) with the zero locus Li Fi .

Because T"WL E HO(y,O~,(- Li Fi», so T"WL is a puH back of a I-form on Ci. This means that

T"WL : T* L C-...+ n~ and d!i : !tn~; '-+ n~ is linear dependent, hence WL : L ~ O} and

dJi : f*Ob C-....+ O~ are also linear dependent.

Proof iü) Two linear independent sections from HO(X, L0n ) give a nontrivial family of curves

on X. By using the same arguments in the proof of i), we get also such a fibration. •

Proof of theorem 2 Suppose fi : X - Ci is the fibration in lemma 3.2 ii) or iii). Ir det BL = 0,

then we restriet the exact sequence in corollary I to a generic fibre F of Ii. Since L is li-vertieal,

so deg(MV IF) = O. Beeause (ElF, i'F 0) is poly-stable aud W L : L ~ ni, d/i : It Oh; '-+ n}; are

linear dependent, therefore, (ElF, ipB) =(MV IF EB (M 0 det E)lp, 0).

Suppose det BL =I O. Looking at the spectral surface X of (E,OL) and its resolution of singulatities

X' p
---+ X

j;l 11;

Ci ---+ Ci

beeause L is a ji-vertical line bundle, there is a splitting p* F = FI + F2 for a generic fibre F of

15



fi. On X' we have the exact sequenee

where MN = Ker(p· (8L) - I ® p.(~) and M' 0 i·M' 0 det E :::::: p. L. Restricting the exact

sequence to FI we have MNFI =M'V p. F/2 = -p. Lp· F/4 = O. Similar to the first esse, we get

(ElF, ipB) ~ (MN IFl $ (M' 0 p. det E)I Fl ,0). •

16



References

[1] M. F. Atiyah: An introduction to Jones-Witten theory. Oxford Seminar on Jones-Witten The

ory. Michaelmas Term 1988.

[2] S. Bauer: Parabolic bundles, elliptic surfaces and SU(2)-representation spaces of genus zero

Fuchsian groups. Preprint, MPI.

[3] S. Bauer aod Ch. Okonek: The algebraic geometry of representation spaces associated to Seifert

fibered homology 3-spheres. Math. Ann. 286 (1990), 45-76.

[4] A. Beauville: Annullation du Hl et systemes paracanoniques sur les surfaces. Crelle J. 388

(1988), 149-157.

[5] A Beauville, M. S. Narasimhhan and S. Rammann: Spectral curves and the generalised theta

divisor. J. reine angew. Math. 398 (19S9)} 169-179.

[6] E. Bombieri and F. Catanese: The tricanonical map of a surface with 1(2 = 2 Pi = O.

Reprinted from C. P. Ramanujam-A Tribute. Studies in Mathematics} No. S Tate Institute of

Fundamental Research, Bombay 1975.

[7] R. Brussee: On the space of representationB in 5L(2, C) of the orbifold fundamental group of

a curve. Preprint} Leiden University.

[8] F. Catanese: Moduli and classification of irregular Kähler manifols and algebraic variety with

Albanese general type fibrations. Preprint} Universita di Pisa.

[9] K. Corlette: Flat G-bundles with canonical metries. J. Diff. Geo. 28 (1988), 361-382.

[10] S. K. Denaidson: Anti self dual Yang-Mills connections over complex algebraic surfaces and

stable vector bundles. Proc. Londen Math. Soc. (3) 50 (1985), 1-26.

[11] S. K. Donaldson: Infinite dterminants, stable bundles, and curvature. Duke Math. J. 54

(1987),231-247.

[12] S. K. DonaIdson: Polynornial invariants for smooth four-manifolds. Topology Vol. 29} No. 3}

(l990)} 257-315.

[13] J. Eells and J. H. Sampson: Har monic mappings of Riemannian man ifolds. Amer. J. Math.

86 (1964)} 109-160.

[14] M. Green aod R. Lazarsfeld: Deformation theory} generic vanishing theorems and some con

j ectures of Enriques, Catanese aod Beauville. Inv. 90 (1987). 389-407.

17



[15] R. Hartshorne: Algebraic geometry.

New York Heidelberg Berlin 1977.

Graduate texts in Mathematics 52. Springer-Verlag

[16] N. J. Hitchin: The self-duality equations on aRiemann surface. Proc. London Math. Soc.

(3) 55. (1987), 59-126.

[17] N. J. Hitchin: Stable bundles and integrable systems. Duke Math. J. 54 (1987), 91-114.

[18] N. J. Hitchin: Reduction to the Abelian case. Oxford Seminar on Joneg.Witten Theory.

Michaelmas Term 1988.

[19] M. Hoh: Private communications.

[20] J. J ost and S-T Yau: Harmonie maps and group representations: Preprint l Bonn Universi ty.

[21] K. Kodaira and J. Morrow: Complex manifolds. HOLT, RINEHART and WINSTON, INC.

[22] M. S. Narasimhan and C. S. Seshadri. Stable and unitary bundles on a compact Riemann

surface. Ann. of Math. 82 (1965), 540-564.

[23] M. Reid: BogomoloYs theorem ci :5 4c:2. Intl. Symp. on Algebraic geometry. Kyoto (1977),

623-642.

[24] C. T. Simpson: Construeting variations of Bodge structure using Yang-Mills theory and ap

plications to uniformization. J. of the A. M. S. 1 (1988), 867-918.

[25] C. T. Simpson: Riggs bundles and local systems. Preprint, Princeton Ulliversity.

[26] C. T. Simpson: Moduli of represelltations of the fundamental group of a smooth projective

variety. Preprint, Princeton University.

[27] Y. T. Siu: Strong rigidity for Kähler manifolds and contruction of bounded holomorphic func-

tions. Discrete groups and Analysis. R. Howe ed Birkhauser (1987), 124-151.

[28] K. K. Uhlenbeck and S. T. Yau: On the existence of Hermitian-Yany-Mills connections in

stable vector bundles. Comm. Pure aod Appl. Mnth. 39-S (1986), 257-293.

18


