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Two dimensional semisimple representation spaces of

the fundamental groups of algebraic manifolds, Part I

Kang Zuo

Abstract. Let X be a compact algebraic manifold. We construct a natural map from the two
dimensional semisimple representation space of the fundamental group of X to the moduli space of

line bundles over X. The fibres and the image of this map are discussed.
-

Introduction. Let X be a compact algebraic manifold and z € X a base point. We are interested

in the set of the semisimple representations of the fundamental group (X, 2) modulo conjugation
Sp = Hom(m(X,z),GL(r,C))"* /GL(r,C).

It is well known that =(X,z) is finitely presented, so there exists naturally a quasi projective
variety Mp parametrizing Sp, called the r-th Betti space of X and depends only on the topology
of X. Since X is an algebraic manifold, one expects that the underlying space of Mp should have
additional algebraic structures reflecting the algebraic structure on X. For example, looking at the
first Betti space, roughly saying, it is the first cohomology group H!(X,€). On the other hand,
one has the Hodge decomposition H!(X,C) = H%X,0%) & H'(X,Ox), which depends on the
algebraic structure on X and H!(X,0x)/H'(X,Z) parametrizes the flat line bundles over X.

For higher dimensional cases, recently, K. Corlette proved that a representation is semisimple if and
only if its associated flat vector bundle V has a harmonic Hermitian metric [9], [25]. J. Jost and S-T.
Yau [20] gave also some generalizations in this direction. In a canonical way, this metric makes V' into
a holomorphic vector bundle E and gives E a Higgs structure 8, namely, 0 € H°(X, QL End(E))
and 8 A6 = 0. The pair (E,8) is called a Higgs bundle [16], [25]. Similar to vector bundles, one
defines stable and poly-stable Higgs bundles by looking at #—invariant subsheaves of E and the set

Spet := { rank-r poly-stable Higgs bundles over X }/lsomorphisms.

Most important, there is a one to one correspondence Sg ~ Sp,. This theorem was proved in
a succession of generalizations by Corlette, Beilinson-Deligne, Donaldson, Hitchin, Narasimhan-
Seshadri, Simpson, Uhlenbeck and Yau cf. [25] for historical comments. Furthermore, Simpson
proved that there is a quasi projective variety Mp,; parametrizing Spo;, and there exists a locally
etale universal family [25], [26]. This moduli space provides an algebraic structure on the underlying
space of AMp, called the r-th Dolbeault space of X. In general, the Betti space and the Dolbeault

space are not isomorphic as algebraic varieties,



The exact sequence of group homomorphisms RY — GL(r,C) — SL(r,C) gives a splitting
Mpa = Mgol X HO(XI Qf\'):

the variety M}, parametrizes exactly all poly-stable Higgs bundles (#,6) with Tr# = 0. For
example, if » = 1, then M}, = Pic™(X), where Pic’(X) is the moduli space of topological trivial

line bundles over X.

In our paper we consider the first non-abelian case, namely , r = 2. By the Lefschetz hyperplane
section theorem we may assume that X is an algebraic surface with an ample line bundle H.

According 8 = 0 or # 0, The moduli space M, is divided into two subvarieties
MY, =M UMY
It is easy to see that A/® parametrizes exactly flat bundles coming from unitary representations.

Theorem A The moduli space M has naturally the following decomposition

Mt =| | MFul Mt
i i

Each component M;" corresponds to a fibration f; : X — C; so that for any representation

pE J’\/I,-+ its restriction to a generic fibre F; of this fibration

m(Fi ) —— m(X,z) —— SL(2,C),

splits into a direct sum of 1-dimensional unitary representations.
Each component MJ?" is naturally birational to a product space of a vector space and an abelian

variety.

The right way to understand the components in the first part is follows. The unitary splitting of
representations p € M; respect to a generic fibre F; means that p can be separated as a tensor prod-
uct of a pull back of a 2-dimensional representation of ” the orbiford fundamental group ©°™*(C;,c)
on the base curve C; and a direct sum of two 1-dimensional unitary representations of = (F;,z).
Recently, R. Brussee {7] determined the moduli spaces of semisimple SL(2,C) representations of
orbiford fundamental groups of curves. Like the original case, the analytic object corresponding the
semisimple representations of the orbiford fundamental group is called ” Parapolic poly-stable Higgs

bundles” by N. J. Hitchin [18]). We give the following examples to make this point clear.

1) Suppose f: X — P! is a regular elliptic surface with x(®x) > 1. S. Bauer [2] proved that any
SU(2)—representation of m1(X,z) is a pull back of a SU(2)—representation of x°"*(P*, p). In fact,
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one can see, it is still true for any semisimple representation. This means exactly, the second part

in the decomposition in theorem A is empty and the first part has only one component.

2) Let X bea hyperelliptic surface of type L. It is constructed as a quotient of product of two elliptic
curves B x C by a Zz-action, which acts on B as the involusion and on C as the translation. X
has two elliptic fibration structures, one is over B/Z3 =: P! with four singular fibres of multiplicity
2. We denote MZ, (P!, 4, 2) by the moduli of rank-2 poly-stable parapolic Higgs bundles (E,8)
with 8 # 0, Tr@ = 0 over P! respcet to four marked points and multiplicity 2. One can show
M+ =~ €* x Jac(B) x Jac(C) ~ ME,, (P, 4, 2) x Jac(C).

In general, we have the following statement, the proof will be given in part II.
There exists naturally a birational map M;* ~ MZ, _.(C;) x A; up to an etale covering, where
A; C Jac(F;) x Jac(F;) is a subabelian variety satisfying some invariant properties under the

monodromy action of m;(C;, ¢).

For a trivial Higgs bundle {E,0) € M°, we may use its deformations to get a nontrivial Higgs bundle
(E,6) € M*. More precisely, this is the following construction

Proposition 1 Let M° — Pic"(X) be the map by sending E to det E, suppose
T*(M®/Pic™(X)) is the total space of the relative tangent space. Then there exists naturally an

inclusion

T*(M°/Pic™ (X)) — Mpa

by putting £ and its relative cotangent vector 0 € T (M°/Pic"(X)) >~ H°(X,Q)Endo(E))
togethere.

A consequence from theorem 1 and prop.l is the following theorem, which descripts the moduli

space of 2-dimensional unitary representations

Theorem B The total space of the relative cotangent bundle T*(M°/Pic™(X)) defined in prop.

1 has a natural decomposition
T (M°/Pic"(X)) = | | u| | T; u]_| Pic” (X,
i j E

where the comiponents T;, T; have the same properties as for M;, M; in theorem A. The last
components | |, Pic"(X)r come form by twisting 1-dimensional unitary representations with k

2-dimensional rigid unitary representations.

The proof of theorem A is divided into two steps. We will also see more geometry meaning of Mp,;.
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Theorem 1 Suppose (E,8) € M*, then there exists naturally a factor map

\ 3

E®L,

where L is a sub invertible sheaf of Q%, which is numerically semipositive and L? = 0. The map

fr does not vanish any where.
The main technique used in the proof is the well known lemma due to F. Bogomolov [23]

Lemma ( F. Bogomolov ) Suppose X is an algebraic surface and L is a sub invertible sheaf of

), then there is a positive constant a, so that A% X,L®") <an, VneN.
Using the above factor map we may naturally define a map
¢
Mt —— Pic(X)

by sending (E,8) to the equivalent class [L] € Pic(X). There is a stratification M+ = | |, M so
that the restriction g|M:. i3 a morphism. It can be seen by using the locally etale universal family

of Mt.

To the fibres of the map g. There are two kind algebraic descriptions to (E,8) € g~!([L]) according
det 8L =0 or #0.

1) det 8, = 0. The Kerfy =: MV is a line bundle. There is a exact sequence of vector bundles
0-MY =S E—-MQ@detE—0,
M®?®det E~ L and LH > 0. The map f is given by the composition map

EoM@det E~MYQ®L—+EQL.

2)  detfy # 0. On the double covering 7 : X — X ramified along the zero divisor (detdr) €
|L®2| there exists a line bundle M, so that m,M ~ E and 0 is given by taking direct image

m(7*(/det8y) : M — M @ n*L).

The gecond description is just a straight generalization of Hitchin’s description of generic Higgs

bundles over curves [5], [17). Same as in the curve case, the surface X is called the spectral surface
of (E,8).



It i3 natural to introduce the following abelian varieties; the etale covering PiﬂX) — Pic"(X) by
taking 2-torsion points in Pic"(X). Let H(X, L®?)* be the nonzero sections space of H°(X, L®?)
and ¥ — X x H°(X,L®%)* be the double covering by taking the square root of the universal
section in HO(X x HO(X,L®%)" p1L®?), we denote its relative Picard group of the projection
X — HO(X,L®%)" by Pic(X/H®(X,L®%)*). Applying the above descriptions we get easily

Corollary 1. There is a natural birational map on the fibre of the map ¢

g~ (L) = PHO(X, Q) ® LY) x (| |H'(X,LY) x PicT(X)U | | Picj(¥/H (X, L®%)")),
; i

where Pi:::-’?X) respect PiCj(zf/Ho(X,Lm)") is a connected component of Pi’c_"—(—X) respect
Pic(X/HY(X, LO2)*).

As for the image of the map g we prove

Theorem 2 Let gM*) = U, PBulU{pi} U U;{p;} be the irreducible decomposition, where
the component P; has positive dimension and the point p; has the positive Kodaira-dimension
k(X, Lp;). Then each component P; respect each point p; corresponds a fibration f; : X — Ci,
so that for any representation p € g~*(P;) respect p € g7 (p;) its restriction to a generic fibre F;

of f; splits into a direct sum of 1-dimensional unitary representations of m(F;,z).

The main idea of the proof of theorem 2 is based on the following facts. Let us sketch them in the
few words. Like classical harmonic form theorem on the trivial vector bundle over a Kéhler man-
ifold, the harmonic operator induced by the harmonic Hermitian metric on End(E) still satisfies
the higher Kahler identity, but to some special forms. Using the factor map in theorem 1, we get
a nontrivial 1-form wy € H°(X,Q} ® LY). Taking the complex conjucation and using the higher
Kahler identity, we obtain a nontrivial class @z € H%(X, L).

Considering the subvariety of line bundles in Pic(X) with nontrivial H!(X, L). One has the fol-
lowing lemma, which is a little bit modified version of a theorem due to M. Green and R. Lazarsfeld
(14]

Lemma ( M. Green and R. Lazarsfeld ) Let the subvariety § := {[L] € Pic(X)|H}(X,L)#0}.
Then there exists a stratification $ = | |; S; so that V[L] € S;,Vt € H'(X, L) and Vv € Tyy(S;) €
Ti)(Pie(X)) ~ HY(X,Ox), it holds tUv =0 in H*(X,L).

Applying this lemma to the line bundles L coming from the factor map in theorem 1 and the
classes @y, € H'(X, L), taking the complex conjucation, we get an equality of 1-forms wy A% = 0,
where v € H%(X,Q)) corresponds a tangent vector v € Ti)(P;) € H'Y(X,Ox). Similar to the

Castelnuovo-De Franchis lemina, this equality produces a fibration on X, which we just want.
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1. Harmonic Hermitian metric on flat vector bundles, harmonic forms and a general-

izaition of the higher Kihler identity

Suppose (X,w) is a Kahler manifold. Let V is a rank-r flat vector bundle with the flat connection
D. Given a Hermitian metric K on V, there is an unique decomposition D = Dg + 0k + O,
where Dy is a connection on V compatible with K, 8x € AY°(End(E)) and 0 € A% (End(E))
is the complex conjucation of fx respect to K.

Let Dg = Dy + DY, be the (1, 0) and (0, 1) parts decomposition and A be the adjoint operator
of w. One has the following

" Definition [25] A Hermitian metric K on V is harmonic if A(D} + 8x)% = 0.

A Hermitian metric on V can be thought of as the multivalued map ¢x : X — GL(r,C)/U(r).

K is harmonic if and only if the map ¢x is harmonic.

Theorem ( K. Corlette [9] ) A flat vector bundle has a harmonic Hermitian metric if and only if

it comes from semisimple representaion of 73(X,z). Such a metric is unique.

Using the harmonic metric K, we may make V into a Higgs bundle in a canonical way. First we

review the following
Lemma ( P. Deligne [25]) K is harmonic if and only if (D} +8x)% = 0.

Given a harmonic hermitia metric K, the above lemma implies D} =0, D40k + 0k AD% =0
and fx A fg = 0. Hence we get a holomorphic vector bundle (V, DY) =: E, a section g =: 8 €
HX, QY End(E)) and A0 =0, so (E,0) is a Higgs bundle. We see that the connection Dk is
compatible with the metric X and the holomorphic structure on E.

The harmonic Hermitian metric X on E induces canonically & harmonic Hermitian metric K
on End(E). Let Dg = D} + D be the connection compatible with K and the holomorphic
structure on End(E). The connection Dz and the metric K induce two harmonic operators DD:Q

and DD;. It is clear, the holomorphic form 6§ is a DDK' —harmonic form. Furthermore, we have

Lemma 1.1 i)f isa Dpk— harmonic form.

il)Vae Ho(X,Q%), fAa isa Dpk —harmonic form.

Proof i) Looking at the decomposition D = (D + 8) + (D% + ) of (1, 0) and (0, 1) parts.
Since D=0 and 6 A8 =0, we get D2 + Dy0+46 A Dy = (Dy +6)? = 0. Because Dy is the

connection compatible with the metric X and the holomorphic structure on E, we have D{ =
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hence Dy 6+ 6 A Dy =0. This means that § is a D, —closed form.

Because D = —v-1A Dy ~ D A), D8 =0 and A® =0 automatically, we get D78 = 0.
i) Dp(0Aa) =D (0)Aa—08Ada =0, since D(6) =0 and do = 0. Same as i) we show also
Di(0Aa)=—/-1(ADg(0Aa) - DEA(OA))=0. &

In the classical harmonic theorem on Kahler manifolds, it is well known that the harmonic operators
Os and O on the trivial vector bundle satisfy the higher Kahler identity, namely O, = Oj.
This means that a form is Op—harmonic if and only if it is Oz—harmonic. Our lemma says, the
harmonical operators induced by the harmonic Hermitian metric still have such property for some

special forms.

The next lemma is due to M. Itoh, which will be used in the proof of therem 2.

Lemma 1.2 ( M. Itoh ) Let E be a holomorphic vector bundle with a Hermitian metric h and
i: F— FE be a holomorphic subbundle. The restriction h|p gives F a Hermitian metric. Let D
and Dp denote the connections on E and F compatible with the holomorphic structure and the

metric. Suppose ¢ € AP(F). If i(p) € AP9(E) is Op:—harmonic, then ¢ is Op; —harmonic.

Proof (M. Itoh ) Looking at the smooth splitting £ = F @ FL. Let ¢ € AY(X,Hom(F, F1))
be the second fundamental form respect to D and Dp. Namely, for each smooth section s of
F, D,(s) = Dp,(s) + o,(5), v is a tangent vector of X, where Dp,(s) and o,(s) are the F—
and F*—components of Dy(s) in E. The equation Clp(ip) = 0 means exactly D’(ip) = 0 and
D™(ip) = 0. Write ¢ as

=3 0 57,470 A AdZ AdE L AdETS,
i,j
with ¢; i3 3 = S _ w? .+ e, where {e1,...,€5,€441,...,€,} 18 a unitary frame of E, and
1---4pd1--0g =1%iy.4p71..0q £es
{e1,..,es} is & unitary frame of F. Then D'(ip) = 37, 3, . (D#S".',...i,}.._},)dzi Adz! A .d7ie

is written in terms of Dp and o as

; - . »
5 :E :(DF ;f,,-‘Pin---"rL--Jqdz Adz'. Ade+ Zk: E . O';e‘_w.-,m,-’;l._,;'dz Adzl..dze,
115

E o4

Hence D%z(¢) = 0. On the other hand from the well known formula

D" (ip) = — Z Z(QHD;% Pk ia.. 3,042 A . A dES

Bl i

( see [21], Th 5.2 ) we have similarly

- ZZ(grkDF —of-rsok.l.:n-;')d?a ALLA di-" = 0,
I '

that is Dz =0. So ¢ is Op, —harmonic. W



2. An algebraic geometry description of rank-2 Higgs bundles coming from the semisim-

ple representations of m1(X,z), proofs of theorem 1, corollary 1 and prop.1

Befor the proof of theorem 1 we want to show the following lemma about rank-2 Higgs bundles,

which are not necessary coming from representations of =;(X,z).

Lemma 2.1 Let (E,8) be arank-2 Higgs bundle and # # 0, Tré = 0. Then we have the factor

map

a .
E—— E®Qk

N

where L is a sub invertible sheaf of Q. The map 8, has only isolated zero locus.

Proof Taking local frams of E and E® Q}r, the map @ is written as Mdz; + Madze, here M;
are 2 x 2 matrix of holomorphic functions. The condition /\20 =0, and Tréd = 0 means exactly
MiM; — MoM, = 0 and TrM; = 0. From the fact of linear algebra we see that there are two
holomorphic functions A;, Az non vanishing at the same time and A; M; + Az M3 = 0. This follows
that the map End(E) — Q) induced by 8 has 1-dimensional image L® I; — Q}r, where L isa
sub invertible sheaf of Q% and I, is the ideal sheaf of a 0-dimensional subscheme z of X. So we

complete the proof. W

Looking at the maps
e 8.QI
E — E®@L —— E®L®?,

these maps is a complex and away from the zero locus of 8, is exact as vector bundles map.

Case 1. det&. = 0. Since Trf, = 0. Let MY := Kerfr, then we have the exact sequence
0-MY -~ E-MQ@detEQI, — 0,

where I, is the ideal sheaf of the zero locus of #; and M®2 @ det E ~ L. The map 8 is exactly

the composition map

E-M@dtEQ@,~MY®L®I, - E®L.

Case 2. detf; # 0. Themap 8 : E — E®L induces an Sym(L"Y)/Z -module on E, here Z is the
ideal sheaf generated by the map det 0y : LV®? — Ox and Spec(Sym(LV)/Z)) — X is simply the
double covering 7 : X =X by taking the square root of detf;. Using the general correspondence
theorem ( {12], Ckapter 2, prop. 5.2 and [5] Prop. 3.6. ) there is a rank-1 torsion free sheaf N on
Y so that m,N =~ E, the singular locus of N is supported at the invers image of the zero locus of

0 ( [12) Lemma (5.21). The map 8 is just the direct image 7.(x*(v/detfL): N = N®=*L).

9



After the above discussion we see, to complete the proof of theorem 1 and corollary 1 we just need

to show the follows

Lemma 2.2 Suppose (F,8) is arising from semisimple representations of m;(X,z), Then the line

bundle L is numerically semipositive and the map 87 does not vanish any where.

Proof 1) detfy = 0. We consider the exact sequence in case 1. Applying the poly-stability
of E to the Higgs-subline bundle MY we get MH > 0 and MH = 0 iff M is topologically
trivial. The calculation of the Chern classes gives M2 = |z] > 0. If M2 >0 and MH > 0, then
by the Riemann-Roch theorem we see h°(X,(M®? @ det E)®") ~ an?. On the other hand since
M®2®det E ~ L — 1%, by the Bogomolov lemma we have A%(X,(M®?2®det E)®") < an+b. So
M?=|z|=0.

The poly-stability of (£,6) implies that A is numerically semipositive. Since L = M®? @ det E,
so L is numerically semipositive. '

Infact, M H > 0. Otherwise, we would have (E,0) =~ (M",w)®(M@det E, —w), wgo € H(X, Q}).
This follows det §, # 0, a contradiction,

2) detfp # 0. We take a blowing up o : X — X at the singularities of the zero divisorn
(detf.)o satisfying the condition: Each irreducible component in the pull back o*(detf.), is a
smooth curve and the components with odd multiplisities are disjoint.

The pull back ¢"I, = I} @ O (— T, Ei), here 2’ is a 0-dimensional subscheme of X and ¥, E;
are some exceptional curves of the blowing up. Let L' := ¢*L @ O3(— 3, Ei), then we have the

factor map

End(e” E) ——— Q1
T
Y

and 8;+ has only isolated zero locus z’. We look at the double covering = : X — X by taking the
square root +/det@r, and furthermore, by taking its normalizition we obtain the smooth covering

surface X',

Let A := p/*/det 0./ € HD(X",p"L’), its zero divisor is exactly supported on p'~!((det 61/)o).
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Similar to case 1, we have the zero composition map on X'

8= "8+
P E p__L.._.._., p*EQprI/ (Pt

p—E @P“ L!@Z.

The above two maps have 1-dimensional images and have only 0-dimensional zero locus exactly
supported at p'~1(z’), therefore, away from this 0-dimensional subscheme these two maps are exact
as vector bundles maps. Let M’V := Ker (p" 6z — A) and i be the involusion on X', then i*M’Y =

Ker(p"* 0z + A). Similar to case 1, we have an exact sequence on X'
0= MY 5 p"E=M@p det E® I,n — 0,
where 2/l = (p'"2')req and M @i*M Qptdet Ex~p”L — Q},.

Claim Y, E;=0, L? =0 and M'p*L = 0.

Proof We have p*L'®2 ~ Oy, (p"(det 0L/ )o) = O.(3; 1jp"*(Cj)red), here p'*(Cj)red are
smooth curves on X’. Because the harmonic Hermitian metric goes to harmonic Hermitian metric,
the pull back (p*E, p*8;:) is still poly-stable, hence its the restriction to p"*(Cj)req is again poly-
stable. Noting M'Vipr.[cj)"d is a Higgs-subline bundle, we get M’p"*(Cj)rea > 0. This implies
M'p™ L' > 0 hence i*M’'p"* L’ > 0. Using the above isomorphism we get p'*(L')? > 0.

Because L'? > 0 and Y ; E; are exceptional curves of the blowing up o, noting L' = ¢*L ®
04 (—Y; Ei) weobtain L? = L'? — (T, E;)? > 0. On the other hand, because L — Q% and L®?
is effective, the Bogomolov lemma says L? < 0. So we get 3, £; =0, L? =0 and M'p*L = 0.

The claim is proved. &

We look at again the above exact sequence, where M'? = [z”] > 0 and zleqg = (P"2)red, since
> Ei = 0. We must show M’ = 0. Suppose M2 > 0. Since M'p*L = 0 and (p°L)? = 0, the
Hodge index theorem follows p* L is topologically trivial line bundle. In particular, 0 = p*Hpg*L =
p*HM' + p*Hi*M’' = 2p* HM'. Using the Hodge index theorem again, we get M’? < 0. This is a
contradiction.

To see L is numerically semipositive, it is enough to show p*Lp*C > 0,VC C X. Looking at again
the exact sequence, the poly-stability of (p*E,p"8) follows M'p*(C) > 0, hence i*M’p*C > 0.
Noting p*L = M’ ® i"M’ @ det p*E, we get p*Lp*C > 0. 2) is also proved. W

Proof (Prop.l) Let E€ M°, we just need to show Tjpy(M°/Pic™(X)) C H°(X, Q% Endo(E))
and V8 € [b](MD/Pic"(X)), it holds # A8 = 0. Looking at the Kuranishi obstruction map
¢ : H'(X,Endo(E)) — H?(X,Endo(E)), the relative tangent space Tig(M°/Pic™(X)) is con-
tained in Ker¢ via the Kodaira-Spence deformation map. Because E is coming from the unitary

representation of 71(X,z), Endg(E) has a flat metric. By taking the Dolbeult-isomorphism and
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harmonic forms respect to this flat metric we see, the harmonic operator satisfies the higher Kahler-
identity, hence under the complex conjucation respect to the flat metric the harmonic form goes to
the harmonic form. Therefore we obtain the following anti-isomporphisms

Ty (M®/ Pic™(X)) € HV(X,Endo(E)) ——— H(X,Endo(E)))

_l 1_

Ti (M°/ Pic” (X)) C HO(X, 2 Endo(E)) . HO(X, 02 Endy(E))

and @ just sends 8 to A%0. W

2. Deformations of sub invertible sheaves in Q), the splitting property of two dimen-
sional semisimple representations of =,(X,z) along fibres of fibrations on X and the

proof of theorem 2.

The proof of theorem 2 will be divided into two lemmas. Let g : Mt — Pi¢(X) be the map defined
in the introduction. Looking at the irreducible decomposition g(M+} = U; P U Ui{p:} v U;{p;},
where the component FP; has positive dimension. The point p; has the positive Kodaira-dimension,
i.e. there is an n € N so that h°(X, L") > 2.

Lemma 3.1 Let the section wy € H°(X,Q% ® LY) induces by the embedding L — Q% in
theorem 1. Then there exists a stratification P; = |_|J- P;j so that VL € f‘l(P,-Ij) and Vv €
Tir)(Pij) € Tiny(Pie(X)) = HY(X,Ox) we have wy A7 =0 in H%(X,0% ® LY).

Proof Looking at the diagram in theorem 1, the dual of f induces a vector bundles embedding
i: LY — End(F). Let Kpv be the Hermitian metric on LV induced by the harmonic Hermitian
metric K on End(E) via the embedding i. Applying lemmas 1.1 and 1.2, we see that w; and
wpAa, Vae HYX,QL) are DD;ch —harmonic forms on LY. Hence under the complex conju-
cation respect to Kpv, we see that @y and @y A& are DD?& — harmonic forms on L.

By using the Green-Lazarsfeld lemma to the subvariety P, C S, we have the stratification FP; =
L; PinS; = 10i; P and &y Uv =0 in H*(X,L), VL € g7'(P;;), Vv € Tip;(P: ;). Taking the

complex conjucation, we get wy Av=0. N

Similer to the well known Castelnuovo-De Franchis lemma, through the equality of 1-forms wp Av =
0 we construct a nontrivial family of curves on X, then show that it induces a fibration on X. (See

[4] for the case, L is a topologically trivial line bundle.) Looking at the stratification g~( 2 ;) =
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Llx M j&, where M, ; is an irreducible variety and g : M;; z — Pic{X) is a morphism. We take
an irreducible curve B® C M;j, whose image g(B?) =: D° is a curve. We define two families of

curves on X with the parameter space B as follows:
{ F,, := 1-dimensional zero locus of wy : Ly — Q% |b€ B°},

{F{;,(.) := 1-dimensional zero locus of ¥y;y : Ox — Q}ﬂvg(b) € Tg(;,)(Do), be B°}.

Claim One of the above families sweeps a nonempty Zariski open set of X.

Proof The full sub invertible sheaf of w : Ly < Q) respect T,y : Ox — QY is L ® Ox(F.,)
respect Ox(Fy,,,). The equality wy A iy) = 0 in lemma 3.1 follows that their full sub invertible
sheaves are linear dependent in ), hence there is an isomorphism Ly ® Ox(F,,) ~ Ox(Fo,q))-
Suppose the both families are supported on some curves on X. This would imply that the family of
line bundles { L;| b € B°} has only finitely many isomorphic classes by using the above isomorphism.
On the other hand, we knew already that its isomorphic classes forms the curve D°. This is a

contradiction. A

Suppose we get such a family, which sweeps a nonempty Zariski open set of X. Taking the Zariski-
cloure of an irreducible component of the graph of this family Z C X x B, then Z — X is a
generic finite map. After a suitable extension of function fields K{(Z) C K(Z') we may assume,
K(X)c K(Z') is a Galois-extension

where Z is a smooth resolution of Z and f is the fibration from the Stein-factorlization of the

projection Z — B.

Lemma 3.2 1) The fibration f desends to a fibration f: X — C, which satisfies the properties
A) Vb € B° the sub invertible sheaves wy : Ly — Q) and df : f*QL — Q) are linear
dependent.

B) L; is f-vertical, ie. L =0 and Ly|p = OF for a generic fibre F of f.

ii) The component P; corresponds a fibration f; : X — C; so that Ym € g~!(5) the line bundle
L, has the properties A and B respect to f;.



iii) The point p; corresponds a fibration f; : X — C; so that ¥m € g~!(p;) the line bundle has
the properties A and B.

Proof i) Pushing forward the family { 5|5 € B} to X, we obtain a family {r(F})|% € B} on
X and (7(F3))% > 0. We want to show (7(F;))? = 0. It can be seen by the following argument:

1) Suppose { F.,} is such a family. Since a generic curve r(F;) is a component of F,,, there
is an embedding L; ® Ox(r(F.';)) — Ly ® Ox(F,,) — Q%. By the Bogomolov lemma we get
hO(X,(Ls ® Ox(7(F))®") < an+b,Vn€N.

On the other hand, because L, is numerically semi-positive, L} =0 and ('r(I?',;))2 > 0, we have
(Ly+7(F))? > 0. The equality holds iff L;,‘r(i‘;) =0 and *r'(f':',-,)2 = 0. Suppose the inequality holds.
By the Riemann-Roch theorem we get h%(X,(Ly ® Ox(7(F;)))®") ~ an?. This is a contradiction.

2) Suppose { Fyg,,, } is such a family, then a generic curve 7(F) is a component in the zero locus

of the 1-form %,;y. The Bogomolov lemma and Riemann-Roch theorem follows (-Jr'(I‘:';))2 <0.

The difference r*(F}) — LoneGal(Z)X) n(F;) =: E is some exceptional curves contracted to points

by 7. Hence E? <0 and T"'T(ﬁ';)E = (. Noting n(ﬁ‘;)q’(ﬁ‘;) >0,Vn, v € Gal(Z/X) we get

0> E*=(BE~rr(F))=( S a(f)>o.
ne€Gal(Z}X)

Thus E = 0 and Fyn(F;) = 0. This implies that the fibration §: Z — B is Gal(Z/X )-invariant
and it can be desent to a fibration f: X — B/Gal(Z/X) =: C. Its fibres are just r(ﬁ‘g).

To prove i) A). Since wy : Ly — Q% and 9yu) : Ox <« Q)% are linear dependent, we just need to

prove the 1-form #;y is a pull back from C.

1) Suppose the fibration f : X — C induced by {F.,, }. For a generic fibre F, of f we have
Ly ® Ox(Fu,) = Ly @ Ox(Fc + F[,) = Ox(Fy,,,) — %, the the Bogomolov lemma follows
RO(X,(Ly @ Ox(Fs + Fg'(b)))@") < an+b. Looking at h°(X,((Ly @ Ox(F.))®™ @ Ox(F.,))®") <
RO(X,(Ly @ Ox(F. + F;,‘))Qm"), where m is fixed but sufficiently large. Because L; and F, are
numerically semi-positive, (Ly 4+ F)2 = 0 and Fp, >0, using the Riemann-Roch theorem we see
easily (Ly + Fe)F), = 0, hence F.F/, = 0 and F.Fy,,, = 0. This implies that F, | Fy, ) are
contained in fibers of f and Ly + F, is a f-vertical divisor of positive degree.

Hence h°(X,(Ly ® Ox(F. + F.,))®") = hO(X,F?;a) ~ an. This follows that Fg ., contains at
least one complete fibre of f. Because the 1-form ¥,(;) vanishes along this complete fibre, it is well
known that ;) is pull back of a 1-form on C.

2) Suppose f: X — C comes from { Fy,,, }. Because Ty;) vanishes along a fibre F,, Hence 9,

o(b)
is a pull back from C.
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To prove i) B) We saw already that L, is f-vertical in the above proof.

Proof ii) Looking at the stratifications P; = U_,' P, ; and g=Y(P:j) = LIy Mijx, suppose Moo
is a subvariety so that g(M;o0) C P; is a Zariski open set. we fix a point by € Mg, and take
an irreducible curve B? C M; 0,0 passing through by. Using i) we get a fibration f; : X — C;

so that two sub invertible sheaves wy, : Ly, — Q% and df; : f1Qp, — Q) are linear dependent

o
and Ly, is gi-vertical. For any b € M, we may find an irreducible curve BY connecting bo
and b. Applying i) again, we get a fibration f/ : X — C! so that three sub invertible sheaves

wh ¢ Ly — %, wy: Ly = Q% and dff : fI*QL, «— Q4 are linear dependent with each other
and Ly,, Ly is f{ —vertical. Hence the pull back of two cotangent bundles QL. and QL, are linear

dependent in %, this implies f; = f/. Therefore, L; is also f;-vertical.

For any [L] € P; we may find a sequence {[Ln]} C Mj 0, which convergence to [L]. This follows
L is also fj—vertical.

Because [L] € F; is fi—vertical of positive degree, we find a nontrivial section s € H°(X, L®") for

some n € N. By taking the n-th roots of & we get a covering

S

T
—

o)
P —— =<
Qe
-

|

The pull back 7*(%/3) is a section in HO(Y,7*L) with the zero locus 3, F;.

Because T*wr € HO(Y, Q4 (- ¥, ), so 7wy, is a pull back of a 1-form on €;. This means that
T"wp : "L — Q} and df; : .’?."Qé-.. — Q) is linear dependent, hence wy : L — Q% and
df; : f"Qéi — Q% are also linear dependent.

Proof iii) Two linear independent sections from H°(X,L®") give a nontrivial family of curves

on X. By using the same arguments in the proof of i), we get also such a fibration. W

Proof of theorem 2 Suppose f; : X — C; is the fibration in lemma 3.2 ii) or iii). If det8; =0,
then we restrict the exact sequence in corollary 1 to a generic fibre F of f;. Since L is fi-vertical,
so deg(MY|r) = 0. Because (E|p,i}0) is poly-stable and wp : L — Q%, dfi: f7QL, — Q% are
linear dependent, therefore, (Elp,ip8) = (MY |r & (M ® det E)|r,0).

Suppose det 8 # 0. Looking at the spectral surface X of (E, ;) and its resolution of singulatities

- rd .
X — X

i.-l lfs

Ci — G
because L is a fi-vertical line bundle, there is a splitting p*F = Fy + F3 for a generic fibre F of
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f;- On X’ we have the exact sequence
0= MY = p'E— M @p*detE — 0,

where M"Y = Ker(p*(8L) — I ® p"(v/det L) and M’ @ i*M’' ® det E ~ p*L. Restricting the exact
sequence to Fy we have M'VF, = MV p*F/2 = —p"Lp* F/4 = 0. Similar to the first case, we get
(Elp,ip8) ~ (M"Y & (M'® p* det E)|;,0). W
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