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1. Introduction

Let p ∈ N be a prime. Let r ∈ N. Let q := pr. Let k := Fq be the field with q
elements. Let k̄ be an algebraic closure of k. Let W (k) be the ring of Witt vectors with
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coefficients in k. Let B(k) := W (k)[ 1
p ] be the field of fractions of W (k). Let σ := σk be the

Frobenius automorphism of k, W (k), and B(k). The Honda–Serre–Tate theory classified
the isogeny classes of abelian varieties over k (see [Ta2, Thm. 1]) and in particular showed
that each abelian variety over k, up to an extension to a finite field extension of k and
up to an isogeny, lifts to an abelian scheme with complex multiplication over a discrete
valuation ring of mixed characteristic (0, p) (see [Ta2, Thm. 2]). We recall that an abelian
scheme of relative dimension d over an integral scheme is with complex multiplication if
its ring of endomorphisms has a commutative Z-subalgebra of rank 2d. Zink generalized
[Ta2, Thms. 1 and 2] to contexts which involve suitable abelian varieties endowed with
endomorphisms (see [Zi1, Thms. 4.4 and 4.7]). Special cases of loc. cit. were obtained or
announced previously (see [Ii1] to [Ii3], [La], and [Mi1]). To detail these contexts and to
prepare the background for our paper, we will use the language of reductive group schemes
and of crystalline cohomology.

We recall that a group scheme F over an affine scheme Spec(R) is called reductive
if it is smooth and affine and its fibres are connected and have trivial unipotent radicals.
We denote by F der and F ad the derived group scheme and the adjoint group scheme
(respectively) of F . If S is a closed subgroup scheme of F let Lie(S) be its Lie algebra
over R. For a finite, flat monomorphism R0 ↪→ R let ResR/R0

S be the group scheme over
R0 obtained from S through the Weil restriction of scalars (see [BT, Subsection 1.5] and
[BLR, Ch. 7, Subsection 7.6]). If R is moreover an étale R0-algebra, then ResR/R0

F is a
reductive group scheme over R0. The pull back of an object or a morphism † or †R0

(resp.
†∗ with ∗ an index) of the category of Spec(R0)-schemes to Spec(R) is denoted by †R (resp.
†∗R). If O is a free R-module of finite rank, let GLGLGLO (resp. SLSLSLO) be the reductive group
scheme over R of linear automorphisms (resp. of linear automorphisms of determinant 1)
of O. If f1 and f2 are two Z-endomorphisms of O let f1f2 := f1 ◦ f2.

1.1. Isogeny classes. Let D be a p-divisible group over k. Let (M,φ) be the (con-
travariant) Dieudonné module of D. Thus M is a free W (k)-module of finite rank and
φ : M → M is a σ-linear endomorphism such that we have an inclusion pM ⊆ φ(M). We
denote also by φ the σ-linear automorphism of End(M [ 1

p
]) that maps e ∈ End(M [ 1

p
]) to

φ(e) := φ ◦ e ◦ φ−1 ∈ End(M [ 1
p
]). Let G be a reductive, closed subgroup scheme of GLGLGLM .

We recall from [Va3] and [Va4] that the triple

C := (M,φ,G)

is called a Shimura F -crystal over k if there exists a direct sum decomposition M = F 1⊕F 0

such that the following two axioms hold:

(i) we have identities φ(M + 1
pF

1) = M and φ(Lie(GB(k))) = Lie(GB(k)), and

(ii) the cocharacter µ : Gm → GLGLGLM that acts trivially on F 0 and as the inverse of
the identical character of Gm on F 1, factors through G.

Until the end we will assume that C is a Shimura F -crystal over k and that M =
F 1 ⊕ F 0 is a direct sum decomposition for which the axioms (i) and (ii) hold.

The quadruple (M,F 1, φ,G) is called a Shimura filtered F -crystal over k. Either
(M,F 1, φ,G) or F 1 is called a lift of C (to W (k)). By an endomorphism of C (resp. of
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(M,F 1, φ,G)) we mean an element e ∈ Lie(G) fixed by φ (resp. fixed by φ and such that
we have an inclusion e(F 1) ⊆ F 1). We emphasize that the set of endomorphisms of C

(resp. of (M,F 1, φ,G)) is in general only a Lie algebra over Zp (and not a Zp-algebra).

Let P(C) be the set of elements h ∈ GLGLGLM (B(k)) for which the triple

(1) (h(M), φ,G(h))

is a Shimura F -crystal over k which can be extended to a Shimura filtered F -crystal
(h(M), h̃(F 1[ 1

p ])∩ h(M), φ,G(h)) over k, where h̃ ∈ G(B(k)) and where G(h) is the Zariski

closure of GB(k) in GLGLGLh(M). Let I(C) := P(C)∩ G(B(k)). It is easy to see that we have an
identity

I(C) = {h ∈ G(B(k))|∃u ∈ G(W (k)) such that u−1h−1φhuφ−1 ∈ G(W (k))}.

The reductive group scheme G(h) is isomorphic to G (if h /∈ I(C), then this follows from
[Ti2]). For i ∈ {1, 2} let hi ∈ I(C) and gi ∈ G(hi)(W (k)). By an inner isomorphism
between (h1(M), g1φ,G(h1)) and (h2(M), g2φ,G(h2)) we mean an element g ∈ G(B(k))
such that we have g(h1(M)) = h2(M) and gg1φ = g2φg.

By the isogeny class of C we mean the set I(C) of inner isomorphism classes of
Shimura F -crystals over k that are of the form (h(M), φ,G(h)) with h ∈ I(C). Ideally, one
would like to describe the set I(C) in a way which allows “the reading” of different Lie
algebras of endomorphisms of (ramified) lifts of its representatives. Abstract ramified lifts
of C (or of D with respect to G) are formalized in Subsection 3.3. In this introduction we
will only mention the abelian varieties counterpart of the ramified lifts.

1.1.1. Two geometric operations. Until Subsubsection 1.4.1 we will assume that D is
the p-divisible group of an abelian variety A over k.

By a Z[ 1
p ]-isogeny between two abelian schemes A1 and A2 over a given scheme we

mean a Q–isomorphism between A1 and A2 that induces an isomorphism A1[N ] ∼→A2[N ]
for all natural numbers N that are relatively prime to p. For each h ∈ P(C) there exists a
unique abelian variety A(h) over k which is Z[ 1

p
]-isogenous to A and such that under this

Z[ 1
p ]-isogeny the Dieudonné module of A(h) is identified with (h(M), φ). If h ∈ I(C), then

we say A(h) is G-isogenous to A. In all that follows we study the pair (A,G) only up to
the following two operations.

O1 The extension of A to a finite field extension of k.

O2 The replacement of A by an abelian variety A(h) over k which is G-isogenous to it.

1.2. Main Problem. Up to operations O1 and O2, find conditions which guarantee that
there exists a triple (V,AV ,G

′
V ), where V is a finite, discrete valuation ring extension of

W (k) of residue field k, AV is an abelian scheme over V that lifts A, and G′
V is a reductive,

closed subgroup scheme of GLGLGLH1
dR

(AV /V ), such that the following four conditions hold:

(a) the abelian scheme AV is with complex multiplication;

(b) under the canonical identification M/pM = H1
dR(A/V )/mVH

1
dR(A/V ), the

group scheme G′
V lifts Gk (here mV is the maximal ideal of V );
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(c) under the canonical identification H1
dR(A/V )[ 1

p ] = M⊗W (k)V [ 1
p ] (see [BO, Thm.

1.3]), the generic fibre of G′
V is the pull back to Spec(V [ 1

p ]) of GB(k);

(d) there exists a cocharacter Gm → G′
V that acts on F 1

V via the inverse of the
identical character of Gm and that fixes H1

dR(AV /V )/F 1
V , where F 1

V is the direct summand
of H1

dR(AV /V ) which is the Hodge filtration of AV .

If (c) holds, then the group schemes G′
V and GV are isomorphic (cf. [Ti2]). If only

(b) to (d) hold and V = W (k) (resp. and V 6= W (k)), then we refer to AV as a lift of A
(resp. as a ramified lift of A to V ) with respect to G.

Let e be the B(k)-span inside End(M [ 1
p ]) of those endomorphisms of (M,φ,G) which

are crystalline realizations of endomorphisms of A. It is the Lie algebra of a unique
connected subgroup E of GB(k). The uniqueness of E follows from [Bo, Ch. II, Subsection
7.1] and the existence of E is a standard application of the fact that the Q–algebra of Q–
endomorphisms of A is semisimple. The triple (V,AV ,G

′
V ) does not always exist (simple

examples can be constructed with G a torus). The reason for this is: in general the ranks
of E and GB(k) are not equal. Thus in order to motivate the Main Problem and to list
accurately conditions under which one expects that such a triple exists, next we will recall
some terminology pertaining to Hodge cycles and Shimura varieties.

1.2.1. A review. We use the terminology of [De3, Section 2] for Hodge cycles on
an abelian scheme B over a reduced Q–scheme Z. Thus we write a Hodge cycle v on
B as a pair (vdR, vét), where vdR and vét are the de Rham component and the étale
component (respectively) of v. The étale component vét as its turn has an l-component
vlét for each prime l ∈ N. For instance, if Z is the spectrum of a subfield E of Q̄ ⊆
C, then vpét is a suitable Gal(E)-invariant tensor of the tensor algebra of H1

ét(BQ̄,Qp) ⊕
(H1

ét(BQ̄,Qp))
∗ ⊕ Qp(1), where (H1

ét(BQ̄,Qp))
∗ is the dual vector space of H1

ét(BQ̄,Qp)
(i.e., it is the tensorization with Qp of the Tate module of BQ̄) and where Qp(1) is the
usual Tate twist. If E is a subfield of C, then the Betti realization vB of v corresponds to
vdR (resp. to vlét) via the standard isomorphism that relates the de Rham (resp. the Ql

étale) cohomology of BC with the Betti cohomology of the complex manifold B(C) with
Q–coefficients (see [De3, Sections 1 and 2]).

A Shimura pair (G,X) consists of a reductive group G over Q and a G(R)-conjugacy
class X of homomorphisms ResC/RGm → GR that satisfy Deligne’s axioms of [De2, Sub-
subsection 2.1.1]: the Hodge Q–structure of Lie(G) defined by any x ∈ X is of type
{(−1, 1), (0, 0),
(1,−1)}, Ad(x(i)) defines a Cartan involution of Lie(Gad

R ), and no simple factor of Gad

becomes compact over R. Here Ad : GR → GLGLGLLie(Gad
R

) is the adjoint representation. These

axioms imply that X has a natural structure of a hermitian symmetric domain, cf. [De2,
Cor. 1.1.17]. The most studied Shimura pairs are constructed as follows. Let W be a vec-
tor space over Q of even dimension 2d. Let ψ be a non-degenerate alternative form on W .
Let S be the set of all monomorphisms ResC/RGm ↪→ GSpGSpGSp(W ⊗Q R, ψ) that define Hodge
Q–structures on W of type {(−1, 0), (0,−1)} and that have either 2πiψ or −2πiψ as polar-
izations. The pair (GSpGSpGSp(W,ψ), S) is a Shimura pair that defines a Siegel modular variety,
cf. [Mi3, p. 161]. See [De1], [De2], [Mi4], and [Va1, Subsection 2.5] for different types of
Shimura pairs and for their attached Shimura varieties. We recall that (G,X) is called of
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Hodge type, if it can be embedded into a Shimura pair of the form (GSpGSpGSp(W,ψ), S). We
recall that Shimura varieties of Hodge type are moduli spaces of polarized abelian schemes
endowed with Hodge cycles, cf. [De1], [De2], [Mi4], and [Va1, Subsection 4.1].

In this paragraph we will assume that the adjoint group Gad is Q–simple. Let θ be
the Lie type of any simple factor of Gad

C . If θ ∈ {An, Bn, Cn|n ∈ N}, then (G,X) is said
to be of θ type. If θ = Dn with n≥ 4, then (G,X) is of one of the following three disjoint
types: DH

n , DR
n , and Dmixed

n (cf. [De2] and [Mi4]). If (G,X) is of DR
n (resp. of DH

n ) type,
then all simple, non-compact factors of Gad

R are isomorphic to SOSOSO(2, 2n − 2)adR (resp. to
SOSOSO∗(2n)adR ) and the converse of this statement holds for n≥ 5 (see [He, p. 445] for the
classical groups SOSOSO(2, 2n−2)adR and SOSOSO∗(2n)adR ). If moreover (G,X) is of Hodge type, then
(G,X) is of one of the following five possible types: An, Bn, Cn, DH

n , and DR
n (see [Sa1],

[Sa2], and [De2, Table 2.3.8]).

1.2.2. Conjecture. We assume that one of the following two conditions holds:

(i) the group E has the same rank as GB(k);

(ii) there exists an abelian scheme AW (k) over W (k) which lifts A and for which
there exists a family (wα)α∈J of Hodge cycles on its generic fibre AB(k) such that GB(k) is
the subgroup of GLGLGLM [ 1

p
] that fixes the crystalline realization tα of wα for all α ∈ J.

Then up to the operations O1 and O2, there exists a triple (V,AV ,G
′
V ) such that all

conditions 1.2 (a) to (d) hold.

If (i) (resp. (ii)) holds, then we refer to Conjecture 1.2.2 as Conjecture 1.2.2 (i) (resp.
Conjecture 1.2.2 (ii)). Conjecture 1.2.2 stems from the Langlands–Rapoport conjecture
(see [LR], [Mi2], [Mi3], [Pf], and [Re2]) on k̄-valued points of special fibres of (see [Va1] for
precise definitions) integral canonical models of Shimura varieties of Hodge type in mixed
characteristic (0, p). This motivic conjecture of combinatorial nature is a key ingredient
in the understanding of zeta functions of Shimura varieties of Hodge type and of different
trace functions that pertain to Ql-local systems on quotients of finite type of such integral
canonical models (for instance, see [LR], [Ko2], and [Mi3]; here l is a prime different from
p). Conjecture 1.2.2 (ii) is in fact only a slight refinement of an adequate translation
of a part of the Langlands–Rapoport conjecture. The Langlands–Rapoport conjecture is
known to be true for Siegel modular varieties (see [Mi2]) and for certain Shimura varieties
of A1 type (see [Ii2], [Ii3], and [Re1]).

We added Conjecture 1.2.2 (i) due to two reasons. First, if one assumes the standard
Hodge conjecture for complex abelian varieties (see [Le, Ch. 7]), then (ii) ⇒ (i). Second,
often due to technical reasons one assumes that Gder is simply connected and this excludes
the cases related to Shimura varieties of DH

n type (see [De2, Rm. 1.3.10 (ii)]). Thus to
handle Conjecture 1.2.2 (ii) in cases related to Shimura varieties of DH

n type one has to
first solve Conjecture 1.2.2 (ii) in cases related to Shimura varieties of C2n type and then
to appeal to relative PEL situations as defined in [Va1, Subsubsection 4.3.16] in order to
reduce Conjecture 1.2.2 (ii) to Conjecture 1.2.2 (i) for these cases related to the DH

n type.
In what follows we will also refer to the following two Subproblems of the Main Problem.

1.2.3. Subproblem. Same as Main Problem but with condition 1.2 (a) replaced by the
weaker condition that the Frobenius endomorphism of A lifts to an endomorphism of AV .
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1.2.4. Subproblem. Same as Main Problem but with condition 1.2 (a) replaced by
the weaker condition that the p-divisible group of AV is with complex multiplication (i.e.,
the image of the p-adic Galois representation associated to the Tate module Tp(AV [ 1

p
]) of

AV [ 1
p
], is formed by semisimple elements that commute).

1.3. The classical PEL context. This is the context in which there exists a princi-
pal polarization λA of A and there exists a Z(p)-subalgebra B of End(M) of crystalline
realizations of Z(p)-endomorphisms of A, such that the following two conditions hold:

(i) the W (k)-algebra B⊗Z(p)
W (k) is semisimple, self dual with respect to the perfect

alternating form λA : M ⊗W (k) M →W (k) defined by λA (and denoted similarly), and is
equal to the W (k)-algebra {e ∈ End(M)|e fixed by G};

(ii) the group GB(k) is the identity component of the subgroup C1(λA)B(k) of

GSpGSpGSp(M [ 1
p ], λA) that fixes each element of B[ 1

p ].

As A is with complex multiplication and the Q–algebra End(A)⊗Z Q is semisimple,
in this context the group E is reductive and has the same rank as GB(k); thus the condition
1.2.2 (i) holds. The existence up to operations O1 and O2 of a triple (V,AV ,G

′
V ) such that

all the conditions 1.2 (a) to (d) hold was proved (using a slightly different language) in [Zi1,
Thm. 4.4] for the cases when GB(k) = C1(λA)B(k) (strictly speaking, loc. cit. assumes that

B[ 1
p
] is a Q–simple algebra; but the case when B[ 1

p
] is not Q–simple gets easily reduced

to the case when it is so). Loc. cit. also shows that (even if p = 2) we can choose the
triple (V,AV ,G

′
V ) such that B lifts to a family of Z(p)-endomorphisms of AV and that λA

is the crystalline realization of a principal polarization of AV . Some refinements of loc.
cit., which are still weaker than the Langlands–Rapoport conjecture for the corresponding
Shimura varieties of PEL type, were obtained in [ReZ] and [Ko2].

1.4. On results and tools. The goal of this paper is to solve Conjecture 1.2.2 (i) and
Subproblems 1.2.3 and 1.2.4 in contexts general enough (see Corollary 8.3, Remark 8.4, and
Section 9) so that the work in progress of Milne and us can be plugged in to result for p≥ 5
in complete proofs of Conjecture 1.2.2 (ii) and of the Langlands–Rapoport conjecture for
Shimura varieties of Hodge type. The passage from the mentioned solutions to a solution
of Conjecture 1.2.2 (ii) for the case when p≥ 5 and Gder simply connected, is completely
controlled by [Va1] to [Va4] and by the following two extra things (see Remarks 9.2.1 (b),
9.4.2, and 9.8 (d) for a brief account):

(i) the weak isogeny property which says that each rational stratification of [Va3,
Subsection 5.3] has only one closed stratum;

(ii) announced results of Milne on abelian varieties over finite fields (see [Mi5]).

It is well known that the weak iosgeny property holds for Siegel modular varieties
(for instance, see [Oo]): the Newton polygon stratification of the Mumford moduli scheme
Ad,1,N over k̄ has only one closed stratum (the supersingular one); here d,N ∈ N, N ≥ 3,
and g.c.d.(N, p) = 1. The weak isogeny property requires methods different from the ones
of this paper and thus we will prove it (at least for p≥ 3) in a future work.
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The main tools we use in this paper are the following seven:

T1. The rational classification of Shimura F -crystals over k̄ achieved in [Va3].

T2. Approximations of tori of reductive groups over Q (see [Ha, Lem. 5.5.3]).

T3. A new theory of admissible cocharacters of extensions of maximal tori of GB(k)

contained in tori of GLGLGLM [ 1
p
] whose Lie algebras are B(k)-generated by crystalline realiza-

tions of Qp–endomorphisms of A. In its abstract form, the theory refines [RaZ, Subsections
1.21 to 1.25] for Shimura F -crystals in two ways. First, it is over k and not only over
k̄. Second, in many cases it works without assuming that all Newton polygon slopes of
(Lie(GB(k)), φ) are 0 and moreover it applies to all such maximal tori of GB(k). We em-
phasize that in connection to either this theory or loc. cit., [FR] does not bring anything
new.

T4. In some cases we rely on [Zi1, Thm. 4.4] (see Theorem 9.6 and Remark 9.8 (b)).

T5. The classification for p≥ 3 of isogeny classes of p-divisible groups over p-adic
fields (see [Br, Subsection 5.3]).

T6. The natural Zp structure GZp
of G defined by C (see Subsection 2.4) and the

structure of the pointed set H1(Qp,GQp
).

T7. The theory of [Va1, Subsection 4.3] of well positioned families of tensors.

See [Fo] for (weakly admissible or admissible) filtered modules over p-adic fields.
Next we exemplify how the tools T1 to T7 work under some conditions. We emphasize
that often we do have to perform either the operation O1 or the operation O2 but this will
not be repeated in this paragraph. Based on [Va3, Thm. 3.1.2 (b) and (c)], in connection
to Conjecture 1.2.2 (i) and to Subproblems 1.2.3 and 1.2.4 it suffices to refer to the case
when all Newton polygon slopes of (Lie(GB(k)), φ) are 0. Assuming that the condition 1.2.2
(i) holds, we show based on [Ha, Lem. 5.5.3] that there exist maximal tori of GB(k) as
mentioned in the tool T3 but with Qp replaced by Q. The essence of T3 can be described
as follows. Starting from any such maximal torus of GB(k) we show the existence of suitable

cocharacters of its extension to a finite field extension V [ 1
p ] of B(k) such that the resulting

filtered modules over V [ 1
p ] are weakly admissible. For this, in some cases related to Shimura

varieties of An, Cn, and DH
n types we rely as well on [Zi1, Thm. 4.4] and accordingly some

extra assumptions are imposed (roughly speaking we deal with Shimura varieties of Hodge
type constructed in [De2, Prop. 2.3.10] but in the integral contexts of [Va1, Sections 5 and
6]). Using the tool T5 we get an isogeny class of p-divisible groups over V (here we require
p≥ 3). Using the tool T6 we get natural choices of representatives of this isogeny class so
that we end up in the étale context with a reductive group scheme over Zp that corresponds
via Fontaine comparison theory to GV [ 1

p
] (for this part, we usually assume that the pointed

set H1(Qp,GQp
) has only one class). Using the tool T7 we “transfer backwards” (as in

[Va1, Subsections 5.2 and 5.3]) the mentioned reductive group scheme over Zp in order to
end up with a reductive group scheme G′

V in the de Rham context over V (here we require
p big enough; for applications to the Langlands–Rapoport conjecture and to Conjecture
1.2.2 (ii) the condition p≥ 5 suffices, cf. [Va1]).
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1.4.1. On contents. Motivated by general applications, in Sections 2 to 7 we work
abstractly. Thus we work with an arbitrary Shimura F -crystal C over k and, even if by
chance (M,φ) is the Dieudonné module of the p-divisible group of some abelian variety
A over k, most often we do not impose any geometric condition on the group scheme G

over W (k) (of the type of conditions 1.2.2 (i) and (ii) or 1.3 (i) and (ii)). In Section 2 we
develop a minute language that pertains to Subsection 1.1 and to the tool T3 which will
allow us to solve in many cases stronger versions of Conjecture 1.2.2 (i) and of Subproblems
1.2.3 and 1.2.4. Different abstract CM-isogeny classifications are formalized in Section 3.
In particular, Corollary 3.7.3 shows that if p≥ 3, then the set of ramified lifts of D with
respect to G (see Definition 3.7.2) are in natural bijection to the ramified lifts of C (see
Definitions 3.3.1). This is a stronger version of the classification of p-divisible groups
over V achieved for p ≥ 3 previously by Faltings, Breuil, and Zink (see [Fa], [Br], and
[Zi2]). In Sections 2 and 3 we introduce as well the principally quasi-polarized context (see
Subsubsection 3.3.3 for the corresponding variant of the set I(C)).

In Section 4 we state in the abstract context two basic results that pertain to the
tool T3 (see Basic Theorems 4.1 and 4.2) and three Corollaries (see Corollaries 4.3 to 4.5).
The basic results implicitly solve Subproblem 1.2.4 under certain conditions. Corollaries
4.3 to 4.5 are the very first situations of general nature where complete ramified CM-
classifications as defined in Subsubsection 3.3.3 are accomplished; to “balance” the focus
of [Zi1] on Shimura varieties of PEL type (and thus of either An or totally non-compact
Cn or DH

n type), they involve cases that pertain to Shimura varieties of Bn and DR
n types.

In Sections 5 to 7 we prove the results 4.1 to 4.5. In Sections 2 to 7 we also refer to
the most puzzling aspect (question) of the Subproblems 1.2.3 and 1.2.4: When we can
choose V to be of index of ramification 1 (i.e., to be a Witt ring)? The first applications
to abelian varieties are included in Section 8 (see Corollary 8.3 and Remark 8.4 for our
partial solutions to Conjecture 1.2.2 (i) and to Subproblems 1.2.3 and 1.2.4).

In Section 9 we introduce the integral context of moduli spaces of polarized abelian
varieties endowed with (specializations of) Hodge cycles. See Subsections 9.2 to 9.6 for
different properties and how they lead to generalizations of the results of Zink recalled in
Subsection 1.3. See Example 9.7 for the very first example of general nature that involve
compact Shimura varieties of Cn type which are not of PEL type and for which a stronger
isogeny property is implied by [FC, Ch. VII, Prop. 4.3] and therefore to which we can
already extend [Zi1, Thm. 4.4] (the extension of [Zi1, Thm. 4.7] is implicitly achieved by
[LR] and [Mi3, Subsections 4.1 to 4.6]).

We would like to thank University of Arizona, Tucson and Max-Planck Institute,
Bonn for good conditions with which to write this paper. We would also like to thank J.
S. Milne for his encouragements to write this paper and for sharing with us the fact that
the Milne conjecture used in Section 9 is a key tool in attacking the Main Problem and its
Subproblems 1.2.3 and 1.2.4.

2. Preliminaries

See Subsection 2.1 for our notations and conventions. Subsection 2.2 recalls some
descent properties for connected, affine, algebraic groups in characteristic 0. In Subsections
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2.3 and 2.4 we mainly introduce a language. In Subsections 2.5 and 2.6 we recall some
definitions and a basic result. In Subsection 2.7 we introduce W (k)-algebras that are
required for the ramified contexts of Sections 3 to 7.

2.1. Notations and conventions. Let R, F , and O be as before Subsection 1.1. We
refer to [Va3, Subsection 2.2] for quasi-cocharacters of F . Let Z(F ) be the center of F ;
we have F ad = F/Z(F ). Let Z0(F ) be the maximal torus of Z(F ); the quotient group
scheme Z(F )/Z0(F ) is a finite, flat group scheme over R of multiplicative type. Let
F ab := F/F der; it is the maximal abelian quotient of F . Let F sc be the simply connected
semisimple group scheme cover of F der. If S is a reductive, closed subgroup scheme of F ,
let CF (S) (resp. NF (S)) be the centralizer (resp. the normalizer) of S in F . Thus CF (S)
(resp. NF (S)) is a closed subgroup scheme of F , cf. [DG, Vol. II, Exp. XI, Cor. 6.11]. If
R is a finite, discrete valuation ring extension of W (k), then F (R) is called a hyperspecial
subgroup of F (R[ 1

p
]) (see [Ti2]). Let O∗ := HomR(O,R). A bilinear form on O is called

perfect if it induces naturally an isomorphism O ∼→O∗. We consider the free O-module

T(O) := ⊕s,t∈N∪{0}O
⊗s ⊗R O

∗⊗t.

We use the same notation for two perfect bilinear forms or tensors of two tensor algebras
if they are obtained one from another via either a reduction modulo some ideal or a
scalar extension. If F 1(O) is a direct summand of O, then F 0(O∗) := (O/F 1(O))∗ is
a direct summand of O∗. By the F 0-filtration of T(O) defined by F 1(O) we mean the
direct summand of T(O) whose elements have filtration degrees at most 0, where T(O)
is equipped with the tensor product filtration defined by the decreasing, exhaustive, and
separated filtrations (F i(O))i∈{0,1,2} and (F i(O∗))i∈{−1,0,1} of O and O∗ (respectively).
Here F 0(O) := O, F 2(O) := 0, F−1(O∗) := O∗, and F 1(O∗) := 0. We always identify
End(O) with O ⊗R O

∗. Thus End(End(O)) = End(O ⊗R O
∗) = O ⊗R O

∗ ⊗R O
∗ ⊗R O is

always identified by changing the order with the direct summand O⊗2 ⊗R O
∗⊗2 of T(O).

Let x ∈ R be a non-divisor of 0. A family of tensors of T(O[ 1
x ]) = T(O)[ 1

x ] is
denoted (uα)α∈J, with J as the set of indexes. Let O1 be another free O-module of finite
rank. Let (u1α)α∈J be a family of tensors of T(O1[ 1

x ]) indexed also by the set J. By
an isomorphism (O, (uα)α∈J) ∼→ (O1, (u1α)α∈J) we mean an R-linear isomorphism O ∼→O1

that extends naturally to an R-linear isomorphism T(O[ 1
x

]) ∼→T(O1[ 1
x

]) which takes uα to
u1α for all α ∈ J.

If K is a field, let K̄ be an algebraic closure of K. If K is a p-adic field, see [Fo] for
de the Rham ring BdR(K) and for admissible Galois representations of the Galois group
Gal(K) := Gal(K̄/K). For the classification of Lie and Dynkin types we refer to [Bou1]
and [DG, Vol. III, Exp. XXII and XXIII]. Whenever we use a Dn type, we assume that
n≥ 4. Let Z(p) be the localization of Z at its prime ideal (p).

By a Frobenius lift of a flat Z(p)-algebra R we mean an endomorphism ΦR : R → R
which modulo p is the usual Frobenius endomorphism of R/pR. If φO : O → O is a
ΦR-linear endomorphism such that O[ 1

p ] is R[ 1
p ]-generated by φO(O), then we denote also

by φO the ΦR-linear endomorphism of each R-submodule of T(O)[ 1
p ] left invariant by

φO. We recall that φO acts on O∗[ 1
p ] via the rule: if f ∈ O∗[ 1

p ] and e ∈ O[ 1
p ], then
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φO(f)(φO(e)) = ΦR(f(e)) ∈ R[ 1
p ]. If φO becomes an isomorphism after inverting p and if

µO is a cocharacter of GLGLGLO[ 1
p
], then let φO(µR) := φOµOφ

−1
O .

Always C := (M,φ,G) (resp. (M,F 1, φ,G)) is a Shimura (resp. Shimura filtered)
F -crystal over k = Fq. We fix a cocharacter µ : Gm → G of C as in Subsection 1.1 (thus
it normalizes F 1); we call it a Hodge cocharacter of C and we say that it defines F 1. Let
P be the parabolic subgroup scheme of G which is the normalizer of F 1 in G. Let the sets
I(C), P(C), and I(C) be as in Subsection 1.1. Let

C := CGLGLGLM
(G).

If C is a reductive group scheme over W (k), then let C1 := CGLGLGLM
(C).

See [Va3, Subsubsections 2.2.1 and 2.2.3] for the Newton quasi-cocharacter of C.
Let P+

G
(φ), P−

G
(φ), and L0

G(φ)B(k) be the non-negative parabolic subgroup scheme, the
non-positive parabolic subgroup scheme, and the Levi subgroup (respectively) of C we
defined in [Va3, Lem. 2.3.1 and Def. 2.3.3]. Thus P+

G
(φ) is the parabolic subgroup scheme

of G which is maximal subject to the property that Lie(P+
G

(φ)B(k)) is normalized by φ

and all Newton polygon slopes of (Lie(P+
G

(φ)B(k)), φ) are non-negative, P−
G

(φ) is defined

similarly but by replacing non-negative with non-positive, and L0
G(φ)B(k) is the unique

Levi subgroup of either P+
G

(φ)B(k) or P−
G

(φ)B(k) with the property that Lie(L0
G(φ)B(k))

is normalized by φ and all Newton polygon slopes of (Lie(L0
G(φ)B(k)), φ) are 0. We have

P+
G

(φ)B(k) ∩ P
−
G

(φ)B(k) = L0
G(φ)B(k). Let U+

G
(φ) be the unipotent radical of P+

G
(φ). Let

L0
G(φ) be the Zariski closure of L0

G(φ)B(k) in G (or P+
G

(φ)); we emphasize that it is not

always a Levi subgroup scheme of P+
G

(φ). We say C is basic if all Newton polygon slopes

of (Lie(GB(k)), φ) are 0 (i.e., if P+
G

(φ) = P−
G

(φ) = G).

Always k1 is a finite field extension of k. For l ∈ {k1, k̄}, let W (l), B(l), and σl be
the analogues of W (k), B(k), and σk but for l instead of l. Let

C ⊗ l := (M ⊗W (k) W (l), φ⊗ σl,GW (l))

be the extension of C to l. We also refer as O1 to the operation of replacing k by k1 and C

by C ⊗ k1, and as O2 to the operation of replacing C by (h(M), φ,G(h)), where h ∈ I(C)
and G(h) are as in Subsection 1.1. For g ∈ G(W (k)) let

Cg := (M, gφ,G).

We have C = C1M
. Let F := {Cg|g ∈ G(W (k))} be the family of Shimura F -crystals over

k associated naturally to C. Let Y(F) := ∪g∈G(W (k))I(Cg). The (inner) isomorphism class
of some object F will be denoted as [F].

Though in this paper we deal only with Shimura F -crystals, Sections 2 to 4 are
organized in such a way that the interested reader can extend their notions to the context
of p-divisible objects with a reductive group over k used in [Va3] (often even over an
arbitrary perfect field of characteristic p).

2.2. Lemma. Let η ⊆ η1 be an extension of fields of characteristic 0. Let G be a
connected, affine, algebraic group over η. Let L be a Lie subalgebra of Lie(G). We assume
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that there exists a connected (resp. reductive) subgroup Sη1 of Gη1 whose Lie algebra is
L ⊗η η1. We have:

(a) there exists a unique connected (resp. reductive) subgroup S of G whose Lie
algebra is L (the notations match i.e., its extension to η1 is Sη1);

(b) if S is a reductive group and if G is the general linear group GLGLGLW of a finite
dimensional η-vector space W , then the restriction of the trace form on End(W ) to L is
non-degenerate.

Proof: We prove (a). The uniqueness part is implied by [Bo, Ch. I, Subsection 7.1]. Loc
cit. also implies that if S exists, then its extension to η1 is indeed Sη1 . It suffices to
prove (a) for the case when S is connected. We consider commutative η-algebras κ for
which there exists a closed subgroup scheme Sκ of Gκ whose Lie algebra is L ⊗η κ. Our
hypotheses imply that as κ we can take η1. Thus as κ we can also take a finitely generated
η-subalgebra of η1. By considering the reduction modulo a maximal ideal of this last
η-algebra, we can assume that κ is a finite field extension of η. Even more, (as η has
characteristic 0) we can assume that κ is a finite Galois extension of η. By replacing Sκ

with its identity component, we can assume that Sκ is connected. Due to the mentioned
uniqueness part, the Galois group Gal(κ/η) acts naturally on the connected subgroup Sκ

of Gκ. As Sκ is an affine scheme, the resulting Galois descent on Sκ with respect to
Gal(κ/η) is effective (cf. [BLR, Ch. 6, 6.1, Thm. 5]). This implies the existence of a
subgroup S of G whose extension to κ is Sκ. As Lie(S) ⊗η κ = Lie(Sκ) = L ⊗η κ, we
have Lie(S) = L. The group S is connected as Sκ is so. Thus S exists i.e., (a) holds.

To check (b) we can assume that η is algebraically closed. Using isogenies, it suffices
to prove (b) in the case when S is either Gm or a semisimple group whose adjoint is simple.
If S is Gm, then the S-module W is a direct sum of one dimensional S-modules. We easily
get that there exists an element x ∈ L \ {0} which is a semisimple element of End(W )
whose eigenvalues are integers. The trace of x2 is a non-trivial sum of squares of natural
numbers and thus it is non-zero. Thus (b) holds if S is Gm. If S is a semisimple group
whose adjoint is simple, then L is a simple Lie algebra over η. From Cartan solvability
criterion we get that the restriction of the trace form on End(W ) to L is non-zero and
therefore (as L is a simple Lie algebra) it is non-degenerate. Thus (b) holds. �

2.2.1. Example. We take η = Qp and η1 = B(?), where ? is a perfect field of charac-
teristic p. Let (W, ϕ) be an F -crystal over ?. Let G be the group over Qp which is the
group scheme of invertible elements of the Qp-algebra {e ∈ End(W)|ϕ(e) = e}. Let � be
a connected subgroup of Gη1 whose Lie algebra is η1-generated by elements fixed by ϕ.
From Lemma 2.2 (a) we get that � is the extension to η1 of the unique connected subgroup
�Qp

of G whose Lie algebra is {e ∈ Lie(�)|ϕ(e) = e}. We refer to �Qp
as the Qp-form of �

with respect to (W, ϕ).

2.3. Basic definitions. (a) We say C has a lift of quasi CM type if there exists a maximal
torus T of G such that we have φ(Lie(T)) = Lie(T).

(b) We say C is semisimple (resp. unramified semisimple) if the B(k)-linear auto-
morphism φr of M [ 1

p
] is a semisimple element of G(B(k)) (resp. is a semisimple element

of G(B(k)) such that an integral power of it has all its eigenvalues belonging to B(k̄)).
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(c) By a torus of GB(k) of Qp-endomorphisms of C we mean a torus T1B(k) of GB(k)

whose Lie algebra is B(k)-generated by elements fixed by φ. Let T1Qp
be the Qp-form

of T1B(k) with respect to (M [ 1
p ], φ), cf. Example 2.2.1. Let K be the smallest Galois

extension of Qp over which T1Qp
splits. Let K1 be the smallest unramified extension of K

which is unramified over a totally ramified extension K1r of Qp. Let K2 be the composite
field of K1 and B(k). Let K2u be the maximal unramified extension of Qp included in K2.

(d) By an E-pair of C we mean a pair (T1B(k), µ1), where T1B(k) is a maximal torus
of GB(k) of Qp-endomorphisms of C and µ1 : Gm → T1K1

is a cocharacter such that µ1K2
,

when viewed as a cocharacter of GK2
, is G(K2)-conjugate to µK2

. If µ1 is definable over an
unramified extension of Qp, then we refer to (T1B(k), µ1) as an unramified E-pair. By an
E-triple of C we mean a triple (T1B(k), µ1, τ), where (T1B(k), µ1) is an E-pair and where
τ = (τ1, . . . , τl) is an l-tuple of elements of Gal(K2/Qp) whose restrictions to K2u are all
equal to the Frobenius automorphism F2u of K2u whose fixed field is Qp. Here l ∈ N and
“E” stands for endomorphisms. For s ∈ N and j ∈ {1, . . . , l} let τsl+j := τj .

(e) We say an E-pair (T1B(k), µ1) of C satisfies the C condition if there exists an
E-triple (T1B(k), µ1, τ) of C such that the following condition holds:

(e1) the product of the cocharacters of T1K2
of the form τdlτdl−1 · · · τj(µ1K2

) with
j ∈ {1, . . . , dl}, factors through Z0(GK2

); here d ∈ N is the smallest number such that
µ1K2

is fixed by each element of Gal(K2/Qp) that can be obtained from the product
τdlτdl−1 · · · τ1 via a circular rearrangement of it.

If moreover l = 1 we say (T1B(k), µ1) satisfies the cyclic C condition.

(f) We assume that C is basic. We say R (resp. U) holds for C if there exists an
E-pair (resp. unramified E-pair) of C that satisfies the C condition. We say TR (resp.
TU) holds for C if each maximal torus T1B(k) of GB(k) of Qp-endomorphisms of C (resp.
maximal torus T1B(k) of GB(k) of Qp-endomorphisms of C which splits over B(k̄)) is part
of an E-pair (resp. of an unramified E-pair) of C that satisfies the C condition. We say
QR (resp. QU) holds for C if there exists a k1 and an E-pair (resp. unramified E-pair) of
C ⊗ k1 that satisfies the C condition. We say TTR (resp. TTU) holds for C if for each k1,
TR (resp. TU) holds for C ⊗ k1.

(g) We do not assume that C is basic. We say R (resp. U, TR, TU, QR, QU, TTR,
TTU) holds for C if there exists an element h ∈ I(C) such that the triple (h(M), φ, L0

G(h)(φ))

is a basic Shimura F -crystal over k and R (resp. U, TR, TU, QR, QU, TTR, TTU) holds
for it.

(h) We say that an E-pair (T1B(k), µ1) of C is admissible if the filtered module

(M [
1

p
], φ, F 1

K2
)

over K2 is admissible. Here F 1
K2

is the maximal direct summand of M ⊗W (k)K2 on which
µ1K2

acts via the inverse of the identical character of Gm.
(i) We say A holds for C if there exists an E-pair (T1B(k), µ1) of C which is admissible.

We say TA holds for C if each maximal torus T1B(k) of GB(k) of Qp-endomorphisms of C
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can be extended to an E-pair (T1B(k), µ1) of C which is admissible. As in (f), we speak
also about QA or TTA holding for C.

(j) We say C is U -ordinary if it has a lift F 1 such that L0
G(φ)B(k) normalizes F 1[ 1

p ]

(i.e., we have L0
G(φ)B(k) 6 PB(k)). We say C is IU -ordinary if there exist elements g ∈

G(W (k)) and h ∈ G(B(k)) such that Cg is U -ordinary and we have hφ = gφh.
(k) A principal bilinear quasi-polarization of C is a perfect bilinear form λM :

M ⊗W (k) M → W (k) whose W (k)-span is normalized by G and for which we have
λM (φ(x) ⊗ φ(y)) = pσ(λM (x⊗ y)) for all elements x, y ∈M.

2.3.1. Example. Let (T1B(k), µ1) be an E-pair of C such that the product of the cochar-
acters of T1K1

which belong to the Gal(K1/Qp)-orbit of µ1K1
, factors through Z0(GK1

).
We choose an element τ0 ∈ Gal(K2/Qp) whose restriction to K2u is F2u and whose order
o is the same as of F2u. Let {e1, . . . , es} be the elements of Gal(K2/K2u) listed in such
a way that es = 1K . Let e0 := es. We have Gal(K2/Qp) = {eaτ

b
0 |1 ≤ a≤ s, 1 ≤ b≤ o}. Let

l := os. We define τ = (τ1, . . . , τl) as follows. For i ∈ {1, . . . , l} we define τi := τ0 if o
does not divide i and we define τi := e−1

j−1ejτ0 if i = o(s + 1 − j), where j ∈ {1, . . . , s}.
As τlτl−1 · · · τ1 = 1K , let d := 1. As we have Gal(K2/Qp) = {τlτl−1 · · · τj|1 ≤ j ≤ l}, the
condition 2.3 (e1) holds (cf. our hypothesis on the E-pair (T1B(k), µ1) of C). Thus the
E-pair (T1B(k), µ1) of C satisfies the C condition.

2.3.2. Example. Let m ∈ N. We assume that the rank of M is 2m, that G is a
product G1 × · · · × Gm of m copies of GLGLGL2, that φ permutes transitively the Lie(Gi)[

1
p ]’s

with i ∈ {1, . . . ,m}, that for each i ∈ {1, . . . ,m} the image of µ in Gi does not factor
through Z(Gi), and that the representation of G on M is the direct sum of the standard
rank 2 representations of the m copies. The rank of F 1 is m and P = P1×· · ·Pm is a Borel
subgroup scheme of G. We also assume that there exists a maximal torus T = T1×· · ·×Tm
of P such that we have φ(Lie(T)) = Lie(T) and φ(Lie(P)) ⊆ Lie(P). This last assumption
implies that the Dieudonné module (M,φ) is ordinary.

Let g ∈ G(W (k)) be such that Cg is not basic. Thus P+
G

(gφ) =
∏m
i=1 P

+
G

(gφ)∩Gi is a

Borel subgroup scheme of G and therefore L0
G(φ)B(k) is a split maximal torus of GB(k). We

check that Cg is IU -ordinary. Based on [Va3, Thm. 3.1.2 (b) and (c)], up to a replacement
of gφ by hgφh−1 with h ∈ G(B(k)), we can assume that L0

G(φ) is a maximal torus of G

through which µ factors. Thus L0
G(φ) commutes with µ and therefore it is a maximal torus

of P. Thus Cg is U -ordinary.
We now take m = 3. Let w := (w1, w2, 1M ) ∈ G1(W (k)) × G2(W (k)) × G3(W (k))

be an element that normalizes T and such that for i ∈ {1, 2} the element wi takes Pi to
its opposite P

opp
i with respect to Ti. The Newton polygon slopes of (M,wφ) are 1

3 and 2
3

with multiplicities 3. We have L0
G(wφ) = T 6 P. Thus Cw is U -ordinary. Let U1 be the

unipotent radical of P
opp
1 ; it is a subgroup scheme of U+

G
(wφ). Let g1 ∈ U1(W (k)) such

that modulo p it is not the identity element. As g1 ∈ U+
G

(wφ)(W (k)), we have P+
G

(g1wφ) =

P+
G

(wφ). Thus Cg1w is not basic and therefore (cf. previous paragraph) it is IU -ordinary.
We show that the assumption that Cg1w is U -ordinary leads to a contradiction. It is easy to
see that this assumption implies that L0

G(g1wφ) is a maximal torus of P+
G

(g1wφ) = P+
G

(wφ)

which normalizes F 1/pF 1 (see proof of Proposition 3.2 below). Let b ∈ P+
G

(wφ)(W (k)) be

an element that normalizes F 1/pF 1 and such that b(L0
G(g1wφ))b−1 = T, cf. [Bo, Ch. V,
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Thm. 19.2] and [DG, Vol. II, Exp. IX, Thm. 3.6 and 7.1]. Thus bg1wφb
−1 = g2wφ, where

g2 ∈ P+
G

(wφ)(W (k)) normalizes T. Therefore g2 ∈ T(W (k)). But it is easy to see that

the natural images of g1 and g2 = bg1wφ(b−1)w−1 in T1(k)\G1(k)/T1(k) are equal. As g1
modulo p is a non-identity element of U1(k)), this contradicts the fact that g2 ∈ T(W (k)).
We conclude that Cg1w is IU -ordinary without being U -ordinary.

2.4. Some Zp structures. Let σφ := φ ◦ µ(p); it is a σ-linear automorphism of M . Let

MZp
:= {m ∈M ⊗W (k) W (k̄)|(σφ ⊗ σk̄)(m) = m}.

We have M ⊗W (k) W (k̄) = MZp
⊗Zp

W (k̄). Let � be a closed subgroup scheme of GLGLGLM
which is an integral scheme. We assume that both µ and φ normalize Lie(�B(k)). This
implies that σφ normalizes Lie(�). Thus �B(k̄) is the extension to B(k̄) of a connected
subgroup of GLGLGLMZp [ 1

p
], cf. Example 2.2.1. If �Zp

is the Zariski closure of �Qp
in GLGLGLMZp

,

then its extension to W (k̄) is �W (k̄). If � is a subgroup of G, then �Zp
is a subgroup of

GZp
.

As µ and φ normalize Lie(GB(k)), σφ normalizes Lie(G). Thus from the previous
paragraph we get the existence of a unique closed subgroup scheme GZp

of GLGLGLMZp
whose

extension to W (k̄) is GW (k̄); it is a reductive group scheme over Zp.

2.4.1. Two axioms. We introduce two axioms for C:

(i) there exists a family (tα)α∈J of tensors of T(M) fixed by φ and G and such that
G is the Zariski closure in GLGLGLM of the subgroup of GLGLGLM [ 1

p
] that fixes tα for all α ∈ J;

(ii) there exists a set of cocharacters of GW (k̄) that act on M ⊗W (k) W (k̄) via the

trivial and the inverse of the identical character of Gm and whose images in Gad
W (k̄)

generate

Gad
W (k̄)

.

Until the end of the paper we will assume that these two axioms hold for C. Ax-
iom (i) implies that φr ∈ G(B(k)) and that we have tα ∈ T(MZp

) for all α ∈ J. Thus
the pair (MZp

, (tα)α∈J) is a Zp structure of (M ⊗W (k) W (k̄), (tα)α∈J). The difference
between any two such Zp structures of (M ⊗W (k) W (k̄), (tα)α∈J) is measured by a class
γ ∈ H1(Gal(Zun

p /Zp),GZp
), where Zun

p is the maximal unramified, profinite discrete val-
uation ring extension of Zp. From Lang theorem (see [Se2, p. 132] and [Bo, Ch. V,
Subsections 16.3 to 16.6]) we get that this class is trivial. Thus the iosmorphism class
of the triple (MZp

,GZp
, (tα)α∈J) does not depend on the choice of the Hodge cocharacter

µ : Gm → G of C. Also by replacing φ with gφ, where g ∈ G(W (k)), the isomorphism class
of (MZp

,GZp
, (tα)α∈J) remains the same. From Lang theorem we also get that each torsor

of G is trivial. This implies that there exists an isomorphism

(2) iM : MZp
⊗Zp

W (k) ∼→M

that takes tα to tα for all α ∈ J. Thus G = GW (k) (i.e., our notations match) and we refer
to the triple (MZp

,GZp
, (tα)α∈J) as the Zp structure of (M,φ,G, (tα)α∈J).

Axiom (ii) is inserted for practical reasons i.e., to exclude situations that are not
related to Shimura varieties of Hodge type and to get the following properties.
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2.4.2. Theorem. We recall that C = CGLGLGLM
(G).

(a) The Lie algebra Lie(C) is W (k)-generated by elements fixed by φ.

(b) The closed subgroup scheme C of GLGLGLM is reductive.

(c) We assume that we have a principal bilinear quasi-polarization λM of C. Let
C1(λM )0 be the Zariski closure in GLGLGLM of the identity component C1B(k)(λM )0 of the
maximal subgroup C1B(k)(λM ) of C1B(k) that normalizes the B(k)-span of λM . Then the
Zariski closure Z0(C1(λM )0) in GLGLGLM of Z0(C1B(k)(λM )0) is a torus over W (k).

Proof: As φr ∈ G(B(k)) fixes Lie(C) and as φ(Lie(C)) = Lie(C), (a) holds. To prove
(b) we work only with the G-module M ; thus the below reduction steps do not pay any
attention to φ. To prove (b) we can assume that G is split and that Z0(G) = Z(GLGLGLM ). Let
M [ 1

p ] := ⊕ni=1Mi[
1
p ] be a direct sum decomposition into irreducible GB(k)-modules, cf. Weyl

complete reducibility theorem. Let Mi := M ∩Mi[
1
p ]. Thus ⊕ni=1Mi is a G-submodule

of M . Due to the axiom 2.4.1 (ii), each simple factor of Lie(Gder
B(k)) is of classical Lie

type and the representation of Lie(Gder
B(k)) on each Mi[

1
p ] is a tensor product of irreducible

representations which are either trivial or are associated to minuscule weights (see [Se1,
Prop. 7 and Cor. 1 of p. 182]). Thus the Gk-module Mi/pMi is absolutely irreducible and
its isomorphism class depends only on the isomorphism class of the GB(k)-module Mi[

1
p
],

cf. the below well known Fact 2.4.3 and [Ja, Part I, 10.9].

By induction on n ∈ N we show that we can choose the decomposition M [ 1
p ] :=

⊕ni=1Mi[
1
p ] such that we have M = ⊕ni=1Mi. The case n = 1 is trivial. The passage from

n to n+ 1 goes as follows. We have a short exact sequence 0 → M1 → M → M/M1 → 0
of G-modules. Using induction, it suffices to consider the case n = 1; thus the W (k)-
monomorphism M2 ↪→ M/M1 becomes an isomorphism after inverting p. If the GB(k)-

modules M1[ 1
p ] and M2[ 1

p ] are not isomorphic, then the Gk-modules M1/pM1 and M2/pM2

are not isomorphic and therefore the natural k-linear map M1/pM1⊕M2/pM2 →M/pM is
injective; this implies that we have M = M1⊕M2. We assume now that the GB(k)-modules

M1[ 1
p ] and M2[ 1

p ] are isomorphic. Thus M1 and M2 are isomorphic G-modules. If they
are trivial G-modules, then we can replace M2 by any direct supplement of M1 in M and
thus we have M = M1 ⊕M2. We now consider the case when M1 and M2 are non-trivial
G-modules. Let M̃ be a W (k)-lattice of M [ 1

p
] which contains M , which is a G-module

isomorphic to M1 ⊕M2, and for which the length of the torsion W (k)-module M̃/M is
the smallest possible value l ∈ N∪ {0}. Let M̃ = M̃1 ⊕ M̃2 be a direct sum decomposition
into irreducible G-modules. We show that the assumption l 6= 0 leads to a contradiction.
We can assume that the natural Gk-homomorphism M1/pM1 → M̃1/pM̃1 is non-trivial
and therefore injective. Thus M1 is a direct summand of M̃ and therefore we can assume
that M1 = M̃1. As M 6= M̃ , we have Im(M2/pM2 → M̃/pM̃) ⊆ Im(M1/pM1 → M̃/pM̃).
Thus we can replace M̃ by M̃1⊕pM̃2 and this contradicts the minimality of l. Thus l = 0.
Thus M = M̃1 ⊕ M̃2 and therefore as Mi we can take M̃i. This ends the induction.

Thus to prove (b) we can assume that M = ⊕ni=1Mi. As the isomorphism class of
Mi is uniquely determined by the isomorphism class of the GB(k)-module Mi[

1
p ], we can

write M = ⊕j∈JM
nj

j , where each Mj is isomorphic to some Mi, where nj ∈ N, and where
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for two distinct elements j1, j2 ∈ J the G-modules Mj1 and Mj2 are not isomorphic. Also
for two distinct elements j1, j2 ∈ J , the Gk-modules Mj1/pMj1 and Mj2/pMj2 are not
isomorphic. We easily get that the group scheme C is isomorphic to a product

∏
j∈J GLGLGLnj

and therefore it is a reductive, closed subgroup scheme of GLGLGLM . Thus (b) holds.
We prove (c). From (b) we get that C1 = CGLGLGLM

(C) is a reductive, closed subgroup
scheme of GLGLGLM . Thus Z0(C1(λM )) is the Zariski closure in Z0(C1) of a subtorus of
Z0(C1)B(k) and therefore it is a torus. �

2.4.3. Fact. Let H be a split, simply connected group scheme over Z whose adjoint is
absolutely simple and of classical Lie type θ. Let T be a maximal split torus of H. Let
ρ$ : H → GLGLGLZ be the representation associated to a minuscule weight $ of the root system
of the inner conjugation action of T on Lie(H) (thus Z is a free Z-module of finite rank,
cf. [Hu, Subsection 27.1]). Then the special fibres of ρ$ are absolutely irreducible.

Proof: We use the notations of [Bou1, planches I to IV]. The minuscule weights are: $i

with i ∈ {1, . . . , n} if θ = An, $n if θ = Bn, $1 if θ = Cn, $1, $n−1, and $n if θ = Dn
(see [Bou2, pp. 127–129] and [Se1, pp. 185–186]). Let W be the Weyl group of H with
respect to T. Let W$ be the subgroup of W that fixes $. We have dimZ(Z) = [W : W$],
cf. [Bou2, Ch. VIII, §7.3, Prop. 6]. Thus for each prime p, the absolutely irreducible
representation of HFp

associated to weight $ has dimension at least dimZ(Z). As it is
isomorphic to the representation of HFp

on a factor of the composition series of the fibre
of ρ$ over Fp, by reasons of dimensions we get that this fibre is absolutely irreducible. �

2.4.4. Extra groups. Let MQp
:= MZp

[ 1
p ]. Let CGQp

be the identity component of

NGQp
:= NGLGLGLMQp

(GQp
). The reductive group CGQp

is generated by GQp
and by CQp

:=

CGLGLGLMQp
(GQp

). Let

Π : End(MQp
) → End(MQp

)

be the projector on Lie(GQp
) along the perpendicular of Lie(GQp

) with respect to the trace
form T on End(MQp

), cf. Lemma 2.2 (b). The group NGQp
is the subgroup of GLGLGLMQp

that fixes Π. Based on (2) the group CGB(k) is naturally a subgroup of GLGLGLM [ 1
p
]: it is the

identity component of NGLGLGL
M[ 1

p
]
(GB(k)).

2.4.5. Plus (plus) admissibility. We say that an E-pair (T1B(k), µ1) of C is plus
admissible if it is admissible and if the class

(3) L ∈ H1(Qp,GQp
)

has a trivial image in H1(Qp, CGQp
). Here the class L is defined as follows. Let ρ :

Gal(K2) → GLGLGLW be the admissible Galois representation that corresponds to (M,φ, F 1
K2

).
Thus W is a free Qp-vector space and we have a Gal(K2)-isomorphism

(4) W ⊗Qp
BdR(K2) ∼→M ⊗W (k) K2 ⊗K2

BdR(K2)

which respects the tensor product filtrations (the filtration of W is trivial and the filtration
of M⊗W (k)K2 is defined by F 1

K2
). For α ∈ J, let vα ∈ T(W) be the tensor that corresponds
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to tα via (4) and Fontaine comparison theory. We take L to be the class of the right torsor
of GQp

that parameterizes isomorphisms between (MQp
, (tα)α∈J) and (W, (vα)α∈J) (such

a torsor exists, cf. (2) and (4)). If the class L is trivial, then we say that the E-pair
(T1B(k), µ1) of C is plus plus admissible.

We say +A (resp. + + A) holds for C if there exists an E-pair of C which is plus
(resp. plus plus) admissible. As in Definition 2.3 (i) we speak about Q+A, Q++A, T +A,
T + +A, TT + A, or TT + +A holding for C.

2.4.6. Lemma. Let ZGQp
be the subgroup of CGQp

generated by GQp
and the torus

Z(CGQp
). If Gder is simply connected and if the torus Z(CGQp

)/Z(Gder
Qp

) = ZGQp
/Gder

Qp
is

isomorphic to Z(CGQp
), then the pointed set H1(Qp, ZGQp

) has only one class.

Proof: The group Z(CGQp
) is the group scheme of invertible elements of an étale Qp-

subalgebra of End(MQp
). Thus it is a torus over Qp and moreover the (abstract) group

H1(Qp, Z(CGQp
)) is trivial. Therefore the group H1(Qp, ZGQp

/Gder
Qp

) is also trivial. The

pointed set H1(Qp,G
der
Qp

) has also only one class, cf. [Kn, Thm. 1]. As we have an

exact complex H1(Qp,G
der
Qp

) → H1(Qp, ZGQp
) → H1(Qp, ZGQp

/Gder
Qp

) of pointed sets, the
Lemma follows. �

2.4.7. The polarized context. We assume that there exists a principal bilinear quasi-
polarization λM : M ⊗W (k) M → W (k) of C; it give birth naturally to a symmetric
bilinear form λM on MZp

and therefore we can speak about the Qp-span of λM (inside
(MQp

⊗Qp
MQp

)∗). Let G0
Qp

be the identity component of the subgroup of GQp
that fixes

λM . Let DGQp
(resp. DG0

Qp
) be the identity component of the subgroup of CGQp

that

normalizes the Qp of λ (resp. that fixes λM ). We have GQp
6 DGQp

(resp. G0
Qp

6 DG0
Qp

).

Either G0
Qp

= GQp
or we have a short exact sequence 0 → G0

Qp
→ GQp

→ Gm → 0. Thus

the class L is the image of a class L0 ∈ H1(Qp,G
0
Qp

). We say that an E-pair (T1B(k), µ1) of

C is plus (resp. plus plus) admissible with respect to λM if and only if it is admissible and
moreover the image of L0 in H1(Qp, DG

0
Qp

) (resp. and moreover L0) is the trivial class.

As in Definition 2.3 (i) and Subsubsection 2.4.5 we speak about Q+ A, Q + +A, T + A,
T + +A, TT + A, or TT + +A holding for (C, λM ). If Q+ A (or Q+ +A, etc.) holds for
(C, λM ), then it also holds for C.

2.4.8. A reduction. We assume that there exists a non-trivial product decomposition
Gad

Zp
= V1 ×Zp

V2. Let φ0 = i−1
M φiM : MZp

⊗Zp
W (k) →MZp

⊗Zp
W (k) and µ0 = i−1

M µiM :

Gm → GW (k) 6 GLGLGLMZp⊗ZpW (k). We have φ0 = g(1MZp
⊗ σ)µ0( 1

p ), where g ∈ GZp
(W (k)).

Let G1
Zp

be a reductive, closed subgroup scheme of GZp
of the same rank and the same

Zp-rank as GZp
and whose adjoint group scheme is V1. By replacing iM with its composite

with an automorphism of MZp
⊗Zp

W (k) defined by an element of GZp
(W (k)), we can

assume that the cocharacter µ0 factors through G1
W (k), cf. [Bo, Ch. V, Thm. 19.2] and

[DG, Vol. II, Exp. IX, Thm. 3.6 and 7.1]. Let g0 ∈ Gder
Zp

(W (k)) be an element whose

image in V1(W (k)) is trivial and such that we have g0g ∈ G1
Zp

(W (k)). From the last two

sentences we get that the triple (MZp
⊗Zp

W (k), g0φ0,G
1
W (k)) is a Shimura F -crystal over

k. Both axioms 2.4.1 (i) and (ii) hold for (MZp
⊗Zp

W (k), g0φ0,G
1
W (k)). Argument: axiom
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2.4.1 (i) holds as G1
Zp

is the closed subgroup scheme of GZp
that fixes Lie(Z0(G1

Zp
)) and

axiom 2.4.1 (ii) holds as a maximal torus of G1
W (k̄)

is a maximal torus of GW (k̄). Thus from

many “adjoint” points of view, one can assume that Gad
Zp

is simple. We will use this fact
in Section 6.

2.5. Definitions. Let J0 be a subset of J.

(a) Let a ∈ N. If we have tα ∈ ⊕s,t∈{0,... ,a}M
⊗s⊗RM

∗⊗t for all α ∈ J0, then we say
that the family (tα)α∈J0

of tensors of T(M) (or T(MZp
)) is of partial degrees at most a.

(b) The family (tα)α∈J0
of tensors of T(MZp

) is called Zp-very well positioned for
GZp

if the following condition holds:

(*) For each faithfully flat, integral Zp-algebra R and for every free R-module O that
satisfies O[ 1

p ] = MZp
⊗Zp

R[ 1
p ] and such that we have tα ∈ T(O) for all α ∈ J0, the Zariski

closure G̃R of GR[ 1
p
] in GLGLGLO is a reductive, closed subgroup scheme of GLGLGLO.

Definition (b) is only a particular case of [Va1, Def. 4.3.4 and Rm. 4.3.7 1)].

2.6. Reduction to the basic context. Let g ∈ G(W (k)) and h ∈ G(B(k)) be such
that L0

G(gφ) is a reductive, closed subgroup scheme of G through which µ : Gm → G

factors and we have an equality hgφ = φh, cf. [Va3, Subsubsection 3.1.1 and Thm. 3.1.2].
Thus by performing the operation O2 (i.e., by replacing C with (h(M), φ,G(h))), in this
Subsubsection we will also assume that L0

G(φ) is a Levi subgroup scheme of P+
G

(φ) and that

µ factors through it. Therefore (M,F 1, φ, L0
G(φ)) is a Shimura filtered F -crystal over k and

(M,φ, L0
G(φ)) is basic. Thus in connection to Conjecture 1.2.2 and to Subproblems 1.2.3

and 1.2.4, we can always replace G by a Levi subgroup scheme of P+
G

(φ). However, often we
will not perform this replacement in Sections 5 to 7, as by keeping track of G we get extra
information on L0

G(φ) as follows. Let L0
G(φ)Zp

be the reductive, closed subgroup scheme of

GZp
which is the Zp structure of L0

G(φ) obtained as in Subsection 2.4 (for � =  L0
G(φ)).

2.6.1. Fact. We have L0
G(φ) = CG(Z0(L0

G(φ))). Moreover, L0
G(φ)Zp

is the centralizer of a
Gm subgroup scheme of GZp

in GZp
and (M,φ) is a direct sum of F -crystals over k which

have only one Newton polygon slope.

Proof: Both L0
G(φ) and CG(Z0(L0

G(φ))) are reductive, closed subgroup schemes of G (cf.
[DG, Vol. III, Exp. XIX, Subsection 2.8] for CG(Z0(L0

G(φ)))). Thus they coincide if and
only if their generic fibres coincide. But this follows from the fact that L0

G(φ)B(k) is the
centralizer of the cocharacter νB(k) of GB(k) which factors through Z0(L0

G(φ)B(k)) and
which is the Newton cocharacter of C (see [Va3, Subsection 2.3]). The cocharacter νB(k) is
fixed by φ and µ and thus it is the extension to B(k) of a cocharacter ν of Z0(L0

G(φ)Qp
).

As Z0(L0
G(φ)) is a torus, ν extends to a cocharacter of Z0(L0

G(φ)Zp
). Its centralizer in GZp

is a reductive, closed subgroup scheme of GZp
(cf. [DG, Vol. III, Exp. XIX, Subsection

2.8]) whose generic fibre is L0
G(φ)Qp

and therefore it is L0
G(φ)Zp

itself. As ν extends to a
cocharacter of Z0(L0

G(φ)Zp
), νB(k) extends also to a cocharacter of Z0(L0

G(φ)). This implies
that(M,φ) is a direct sum of F -crystals over k which have only one Newton polygon slope
�
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2.6.2. Corollary. We assume that (T1B(k), µ1) is an E-pair of C which is plus plus admis-
sible. Then (T1B(k), µ1) is also an E-pair of (M,φ, L0

G(φ)) which is plus plus admissible.

Proof: Let u ∈ Lie(Z0(L0
G(φ)Zp

)) be the image via dν of the standard generator of Lie(Gm).
Thus L0

G(φ)Qp
is the subgroup of GQp

that fixes u and (tα)α∈J. We use the notations
of Subsubsection 2.4.5. Let uét ∈ End(W) correspond to u via (4). We consider an
isomorphism i : MQp

∼→W that takes tα to vα for all α ∈ J. Two cocharacters of GQp
which

over Qp are GQp
(Qp)-conjugate, are GQp

(Qp)-conjugate. Thus we can choose i such that
i(u) = uét. Thus the E-pair (T1B(k), µ1) of (M,φ, L0

G(φ)) is plus plus admissible. �

Let now Z be the center of CGLGLGLM
(Z0(L0

G(φ))). Let ZZp
be the Zp structure of

Z obtained as in Subsection 2.4; it is a reductive, closed subgroup scheme of GLGLGLMZp
.

As φr ∈ G(B(k)) (cf. Subsubsection 2.4.1) normalizes P+
G

(φ)B(k) and P−
G

(φ)B(k), we

have φr ∈ L0
G(φ)(B(k)). Thus Lie(Z) is normalized by φ and fixed by φr. Therefore

Lie(Z) is W (k)-generated by its elements fixed by φ and thus we can identify naturally
Lie(Z) = Lie(ZZp

)⊗Zp
W (k). Let (tα)α∈J(0) be the family of all tensors which are elements

of Lie(ZZp
). The group scheme CG(Z0(L0

G(φ))) = L0
G(φ) is the Zariski closure in GLGLGLM of

the subgroup of GLGLGLM [ 1
p
] that fixes tα for all α ∈ J ∪ J(0).

2.6.3. Fact. If the family (tα)α∈J0
of tensors of T(MZp

) is Zp-very well positioned for GZp
,

then the family (tα)α∈J0∪J(0) of tensors of T(MZp
) is Zp-very well positioned for L0

G(φ)Zp
.

Proof: Let R, O, and G̃R be as in Definition 2.5 (b). We assume that we have tα ∈ T(O)
for all α ∈ J0 ∪ J(0). We know that G̃R is a reductive, closed subgroup scheme of GLGLGLO.
From [Va1, Subsubsection 4.3.13] applied in the context of Z0(L0

G(φ))Zp
and ZZp

, we get

that the Zariski closure of Z0(L0
G(φ))R[ 1

p
] in GLGLGLO is a torus. Its centralizer in G̃R is a

reductive, closed subgroup scheme of G̃R (cf. [DG, Vol. III, Exp. XIX, Subsubsection 2.8])
and thus it is the Zariski closure of L0

G(φ)R[ 1
p
] in GLGLGLO. Thus the Fact holds, cf. Definition

2.5 (b). �

2.7. Some W (k)-algebras. Let e ∈ N. Let X be an independent variable. Let R :=

W (k)[[X]]. Let R̃e (resp. Re) be the W (k)-subalgebra of B(k)[[X]] formed by formal
power series

∑∞
n=0 anX

n for which we have an
[
n
e

]
! ∈ W (k) for all n (resp. for which the

sequence bn := an
[
n
e

]
! is formed by elements of W (k) and converges to 0). Thus Re is a

W (k)-subalgebra of R̃e. Let ΦR, ΦRe, and ΦR̃e be the Frobenius lifts of R, Re, and R̃e
(respectively) that are compatible with σ and that take X to Xp. For m ∈ N let I(m) be
the ideal of R̃e formed by formal power series with a0 = a1 = · · · = am−1 = 0. The proof
of the following elementary Fact is left as an exercise.

2.7.1. Fact. We assume that p ≥ 3 (resp. p = 2). Let V be a finite, totally ramified
discrete valuation ring extension of W (k) of degree at most e. Let πV be a uniformizer of

V . Then there exist W (k)-epimorphisms R � V , Re � V , and R̃e � V (resp. R � V
and Re � V ) that map X to πV . Also, by mapping X to 0 we get W (k)-epimorphisms

R � W (k), Re � W (k), and R̃e � W (k) that respect the Frobenius lifts.

3. Unramified and ramified CM-isogeny classifications
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Let F = {Cg|g ∈ G(W (k))} be as in Subsection 2.1. By the strong CM-isogeny (resp.
by the CM-isogeny) classification of F we mean the description of the subset SZ(Y(F))
(resp. Z(Y(F))) of Y(F) formed by inner isomorphism classes of those Cg with g ∈ G(W (k))
which, up to the operation O2 (resp. up to the operations O1 and O2), have a lift of quasi
CM type.

Fact 3.1 and Proposition 3.2 present some necessary and sufficient conditions that
pertain to the statement “C ∈ Z(Y(F))”; their main goal is to motivate why such CM-
isogenies classifications are too restrictive and often too difficult to be accomplished and
therefore why in Subsection 3.3 we also introduce ramified lifts of C (or of D with respect
to G) and the (strong) ramified CM-isogeny classification of F. In Subsections 3.4 to 3.8
we include different properties required in Sections 5 to 9 and some remarks. In particular,
Corollary 3.7.3 checks that for p ≥ 3 (resp. for p = 2) the ramified lifts of D with respect to
G (see Definition 3.7.2) are in natural bijection to (resp. define naturally) abstract ramified
lifts of C. In this Section we will use the notations of Subsections 2.1 and 2.4. We recall
that the axioms 2.4.1 (i) and (ii) hold.

3.1. Fact. (a) If C has a lift of quasi CM type, then it is unramified semisimple.

(b) If there is a maximal torus of GB(k) of Qp-endomorphisms of C, then C is
semisimple.

Proof: We prove only (a) as the proof of (b) is very much the same. Let T be a maximal
torus of G such that we have φ(Lie(T)) = Lie(T). Thus φr ∈ G(B(k)) (see Subsubsection
2.4.1) normalizes T. Therefore we have φr ∈ NG(T)(B(k)). Let m ∈ N be such that
φrm ∈ T(B(k)). As the torus TW (k̄) is split, part (a) follows. �

3.2. Proposition. Let (MZp
,GZp

, (tα)α∈J) be as in Subsubsection 2.4.1. We assume
that C is unramified semisimple and quasi IU -ordinary. If all simple factors of Gad

Zp
are

Weil restrictions of PGLPGLPGL group schemes and if GZp
(Qp) surjects onto Gad

Zp
(Qp), then [C] ∈

Z(Y(F)).

Proof: It suffices to prove the Proposition under the extra assumptions that C is U -
ordinary, that L0

G(φ)B(k) is a subgroup of PB(k), and that µ is the inverse of the canonical
split cocharacter of (M,F 1, φ) defined in [Wi, p. 512]. The Lie algebra Lie(L0

G(φ)B(k̄)) is

B(k̄)-generated by elements which are fixed by φ⊗σk̄ and which leave invariant F 1[ 1
p
]. Due

to the functorial aspect of [Wi, p. 513] these elements as well as the tα’s are fixed by µB(k̄).

Thus µB(k) factors through Z0(L0
G(φ)B(k)). We check that L0

G(φ) is a reductive, closed
subgroup scheme of G. Let T 0 be the image of µ; it is a torus of the center of L0

G(φ). By in-

duction on i ∈ N we get the existence of a unique torus T i of the center of L0
G(φ) such that

we have Lie(T i) = φi(Lie(T 0)). Let T0 be the torus of G generated by T i’s. We claim that
L0

G(φ) is C0 := CG(T0). Obviously L0
G(φ) is a closed subgroup scheme of C0. As µ factors

through Z0(C0) we have φ(Lie(C0)) = Lie(C0). Thus Lie(C0B(k)) ⊆ Lie(L0
G(φ)B(k)) i.e.,

C0B(k) is a subgroup of L0
G(φ)B(k) (cf. [Bo, Ch. II, Subsection 7.1]). Therefore L0

G(φ) = C0

is a reductive, closed subgroup scheme of G.
We have φr ∈ C0(B(k)), cf. paragraph before Fact 2.6.3. By performing the opera-

tion O1 we can assume that C0 is split and that all eigenvalues of φr as an automorphism
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of either M [ 1
p ] or End(M [ 1

p ]) belong to B(k̄) and are not roots of unity different from 1.

Let I0 be the image of φr in Cad
0 (B(k)). Let C2 be the centralizer of I0 in Cad

0B(k); it is

a split reductive group over B(k). As Lie(Cder
2 ) is fixed by φr and normalized by φ, the

Lie algebra Lie(Cder
2 ) is B(k)-generated by elements fixed by φ. Let Cad

2Qp
be the adjoint

group over Qp whose Lie algebra is formed by such elements; its extension to B(k) is Cad
2 .

Let T2Qp
be a maximal torus of Cad

2Qp
which splits over B(k), cf. [Ti2, Subsection 1.10].

Let T1B(k) be the maximal torus of GB(k) which contains Z0(C0)B(k) and whose image

in Cad
0B(k) is generated by Z0(C2) and by the maximal torus of Cder

2B(k) that is naturally
isogenous to T2B(k). The torus T1B(k) is split and its Lie algebra is normalized by φ. As
φr acts trivially on Lie(T1B(k)), Lie(T1b(k)) is B(k)-generated by elements fixed by φ. Let

T1Qp
be the Qp-form of T1 with respect to (M [ 1

p
], φ); it splits over B(k). Thus let T1Zp

be the torus over Zp whose generic fibre is T1Qp
, cf. [Ti2]. We can identify naturally T1Qp

with a maximal torus of the subgroup GQp
of GLGLGLMQp

. Let T̃1Qp
be the inverse image of

T1Qp
in Z0(GQp

) × Gsc
Qp

. As above, let T̃1Zp
be the torus over Zp whose generic fibre is

T̃1Qp
. We check that there exists a reductive group scheme G̃Zp

over Zp whose generic

fibre is Z0(GQp
) × Gsc

Qp
and which has T̃1Zp

as a maximal torus. As Gsc
Qp

is a product of
Weil restrictions of SLSLSL groups, it suffices to check that if k3 is a finite field and if T3 is
a torus over W (k3) such that T3B(k3) is a maximal torus of SLSLSLB(k3)n , then there exists a
W (k3)-lattice M3 of B(k3)n such that T3 is a maximal torus of SLSLSLM3

. We take M3 such
that it is normalized by T3, cf. [Ja, Part I, 10.4]. It is easy to see that T3 is a maximal
torus of SLSLSLM3

(for instance, cf. [Va2, Thm. 1.1 (d)]).

As GZp
(Qp) surjects onto Gad

Zp
(Qp), there exists an element h ∈ GQp

(Qp) such that

we have hG̃sc
Zp

(Zp)h
−1 = Gsc

Zp
(Zp) (cf. [Ti2, Subsection 1.10]). Thus by performing the

operation O2 (i.e., by replacing MZp
with h−1(MZp

)) we can assume that the Zariski
closure of T1Qp

in GLGLGLMZp
is the torus T1Zp

. Obviously T1W (k̄) is the extension to W (k̄) of
a maximal torus of G whose Lie algebra is normalized by φ. Thus from the very definitions
we get that [C] ∈ Z(Y(F)). �

3.2.1. Remark. If Gad
Zp

has simple factors of Cn Dynkin type (n ≥ 2), then in general we
can not assume that up to the operation O2 the Zariski closure of T1Qp

in GZp
is a torus

(cf. [Va1, Rm. 3.1.2.2 1)]). This can be adapted to the Bn and Dn Dynkin types.

3.3. The ramified context. Let V be a finite, totally ramified discrete valuation ring
extension of W (k). Let K := V [ 1

p ] and let πV be a uniformizer of V . We assume that

e := [V : W (k)] ≥ 2. Let the W (k)-algebras R, Re, and R̃e be as in Subsection 2.7. For
m ∈ N let ΦRm

be the Frobenius lift of Rm := W (k)[[X1, . . . , Xm]] which is compatible
with σ and which takes Xi to Xp

i for all i ∈ {1, . . . ,m}. If m = 1 we drop it as an
index; thus R1 = R. The p-adic completion Ω∧

Rm
of ΩRm

is a free Rm-module that has
{dX1, . . . , dXm} as an Rm-basis. Let me : R � V be the W (k)-epimorphism which takes
X to πV . If p≥ 3 (resp. p≥ 2), we denote also by me the W (k)-epimorphism Re � V
(resp. R̃e � V ) defined by me (cf. Fact 2.7.1).
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3.3.1. Definitions. (a) By a lift of C to Rm we mean a quadruple

(5) (MRm
, F 1

Rm
, φMRm

,GRm
),

where MRm
is a free Rm-module of the same rank as M , F 1

Rm
is a direct summand of

MRm
, GRm

is a reductive, closed subgroup scheme of GLGLGLMRm
, and φMRm

: MRm
→MRm

is a ΦRm
-linear endomorphism, such that the following three axioms hold:

(i) the Rm-module MRm
is generated by φMRm

(MRm
+ p−1F 1

Rm
);

(ii) there exists a family of tensors (tRm
α )α∈J of the F 0-filtration of T(MRm

) defined
by F 1

Rm
such that we have φMRm

(tRm
α ) = tRm

α for all α ∈ J and GRm
is the Zariski closure

in GLGLGLMRm
of the closed subscheme of GLGLGLMRm [ 1

p
] that fixes tRm

α for all α ∈ J;

(iii) the extension of (MRm
, φMRm

,GRm
) via the W (k)-epimorphism m0 : Rm �

W (k) that maps each Xi to 0, is C.

(b) Let mm;e : Rm � V be a W (k)-epimorphism; if m = 1 we take m1;e := me.
Let F 1

V := F 1
Rm

⊗Rm mm;e
V . We refer to (MRm

, F 1
V , φMRm

,GRm
) as a lift of C to Rm with

respect to V .

(c) We say (MRm
, F 1

V , φMRm
,GRm

) is a lift of C to Rm of quasi CM (resp. of CM)
type with respect to V , if there exists a maximal torus TRm[ 1

p
] of GRm[ 1

p
] such that the

following two axioms hold:

(i) Lie(TRm[ 1
p
]) is normalized (resp. is Rm[ 1

p
]-generated by elements fixed) by φMRm

;

(ii) F 1
V [ 1

p
] is a Lie(TRm[ 1

p
])/Ker(mm;e)Lie(TRm[ 1

p
])-module.

(d) We have variants of (a) to (c), where we replace Rm by Re or R̃e (the W (k)-

epimorphisms from either Re or R̃e onto V being me). A lift of C to R̃e (which is of quasi
CM or of CM type) with respect to V is also called a ramified lift of C to V (of quasi CM
or of CM type).

(e) If we have a principal bilinear quasi-polarization λM : M ⊗W (k) M → W (k) of
C, then by a lift of (C, λM ) to Rm we mean a quintuple

(MRm
, F 1

Rm
, φMRm

,GRm
, λMRm

),

where (MRm
, F 1

Rm
, φMRm

,GRm
) is as in (a) and λMRm

is a perfect bilinear form on MRm

which lifts λM , whose Rm-span is normalized by GRm
, and for which we have an identity

λM (φMRm
(x) ⊗ φMRm

(y)) = pΦRm
(λMRm

(x⊗ y)) for all elements x, y ∈ MRm
. Similarly,

definitions (b) to (d) extend to the principal bilinear quasi-polarized context.

3.3.2. Remarks. (a) Let (MRm
, F 1

V , φMRm
,GRm

) be a lift of C to Rm of CM type
with respect to V . Let TRm[ 1

p
] be a maximal torus of GRm[ 1

p
] such that the two axioms

of Definition 3.3.1 (c) hold for it. Let T1B(k) be the pull back of TRm[ 1
p
] via the B(k)-

epimorphism Rm[ 1
p ] � B(k) that takes each Xi to 0. As Lie(TRm[ 1

p
]) is Rm[ 1

p ]-generated

by elements fixed by φMRm
, T1B(k) is a maximal torus of GB(k) of Qp-endomorphisms of C.
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Similarly, if C has a ramified lift to V of CM type, then there exist maximal tori of GB(k)

of Qp-endomorphisms of C.

(b) We refer to Definition 3.3.1 (a). The reductive group scheme GRm
over Rm lifts

G (cf. axiom (iii) of Definition 3.3.1 (a)) and thus (as Rm is complete in the (X1, . . . , Xm)
topology) it is isomorphic to G ×Spec(W (k)) Spec(Rm) (i.e., our notations match).

3.3.3. Ramified CM-isogeny classifications. By the strong ramified (resp. by the
ramified) CM-isogeny classification of F we mean the description of the subset

SZram(Y(F)) (resp. Zram(Y(F)))

of Y(F) formed by inner isomorphism classes of those Cg with g ∈ G(W (k)) for which, up
to the operation O2 (resp. up to operations O1 and O2), there exists a discrete valuation
ring V as in Subsection 3.3 and a ramified lift of Cg to V of quasi CM type. We have
Z(Y(F)) ⊆ Zram(Y(F)) and SZ(Y(F)) ⊆ SZram(Y(F)).

Let PSZram(Y(F)) (resp. PZram(Y(F))) be the subset of Y(F) formed by inner
isomorphism classes of those Cg with g ∈ G(W (k)) for which (resp. for which, up to the
operation O1,) there exists a discrete valuation ring V as in Subsection 3.3 and an element
h ∈ P(Cg) such that the Shimura F -crystal (h(M), φ,G(h)) over k has a ramified lift to V
of quasi CM type.

We assume now that we have a principal bilinear quasi-polarization λM : M ⊗W (k)

M →W (k) of C. Let

I(C, λM) := I(C) ∩AutAutAut(M,λM)(B(k)).

Let I(C, λM ) be the set of inner isomorphism classes of quadruples of the form (h(M), φ,G(h), λM)
with h ∈ I(C, λM ) (i.e., the set of such quadruples up to isomorphisms defined by ele-
ments of (G ∩ AutAutAut(M,λM ))(W (k))). Let Y(F, λM) := ∪g∈(G∩AutAutAut(M,λM ))(W (k))I(Cg, λM ).
As above, let SZram(Y(F, λM)) (resp. Zram(Y(F, λM))) be the subset of Y(F, λM) formed
by inner isomorphism classes of those (Cg, λM) with g ∈ (G ∩ AutAutAut(M,λM ))(W (k)) for
which, up to the operation O1 (resp. up to operations O1 and O2), there exists a discrete
valuation ring V as in Subsection 3.3 and a ramified lift of (Cg, λM ) to V of quasi CM
type.

3.4. Lemma. Let s ∈ N. Let g ∈ GLGLGLMRm
(Rm) be congruent to 1MRm

modulo psRm. From
[Fa, Thm. 10] we deduce the existence of a unique connection ∇0 : MRm

→MRm
⊗Rm

Ω∧
Rm

(resp. ∇1 : MRm
→MRm

⊗Rm
Ω∧
Rm

) on MRm
such that φMRm

(resp. gφMRm
) is horizontal

with respect to it; it is integrable and nilpotent modulo p. Let D0 (resp. D1) be the
unique (up to a unique isomorphism) p-divisible group over Rm/pRm whose F -crystal is
(MRm

, φMRm
,∇0) (resp. (MRm

, gφMRm
,∇1) (the uniqueness part is implied by [BM, Thm.

4.1.1] while the existence part is implied by [Fa, Thm. 10]). Then we have D0[ps] = D1[ps].

Proof: Let dΦRm∗/p be the differential map of ΦRm
divided by p. Let F 0

Rm
be a direct

supplement of F 1
Rm

in MRm
. We have ∇0(φMRm

(x)) = p(φMRm
⊗ dΦRm∗/p) ◦ ∇0(x)

if x ∈ F 0
Rm

and ∇0(φMRm
(x/p)) = (φMRm

⊗ dΦRm∗/p) ◦ ∇0(x) if x ∈ F 1
Rm

. Similar
equations are satisfied by ∇1. Let ∇01[ps] be ∇0−∇1 modulo ps; it is an Rm/p

sRm-linear
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map MRm
/psMRm

→ MRm
/psMRm

⊗Rm/psRm
ΩRm/psRm

. As MRm
is Rm-generated by

φMRm
(F 0
Rm

⊕ 1
p
F 1
Rm

) and as we have ΦRm
(Xi) = Xp

i , by induction on l ∈ N we get that

∇01[ps] is zero modulo the ideal (X1, . . . , Xm)l of Rm/p
sRm. Thus the connections on

MRm
/psMRm

defined by ∇0 and ∇1 coincide. Therefore we have D0[ps] = D1[ps], cf.
[BM, Prop. 1.3.3 and Thm. 4.1.1]. �

3.5. Theorem. We assume that p ≥ 3 and G = GLGLGLM . Then the ramified lifts of C to V
are in natural bijection to lifts of D to p-divisible groups over V .

Proof: To a p-divisible group DV over V that lifts D one associates uniquely a ramified
lift of C to V as follows. Let

(MR̃e, φMR̃e
,∇)

be the extension via the W (k)-monomorphism Re ↪→ R̃e of (the projective limit indexed
by n ∈ N of the evaluation at the thickening naturally attached to the closed embedding
Spec(V/pV ) ↪→ Spec(Re/pnRe) of) the Dieudonné F -crystal over V/pV of DV ×Spec(V )

Spec(V/pV ) (see [Me], [BBM], [BM], and [dJ, Subsection 2.3]). Thus MR̃e is a free R̃e-

module of the same rank as D, ∇ : MR̃e →MR̃e ⊗R̃e R̃edX is an integrable and nilpotent
modulo p connection on MR̃e, and φM

R̃e
is a ΦR̃e-linear endomorphism of MR̃e which

is horizontal with respect to ∇. If F 1(MR̃e) is the inverse image in MR̃e of the Hodge
filtration F 1

V of MR̃e/Ker(me)MR̃e = H1
dR(DV /V ) defined by DV , then the restriction of

φM
R̃e

to F 1(MR̃e) is divisible by p and MR̃e is R̃e-generated by φM
R̃e

(MR̃e + 1
pF

1(MR̃e)).

Thus the quasruple (MR̃e, F
1
V , φMR̃e

,GLGLGLM
R̃e

) is the ramified lift of C to V associated to
DV . Due to this and to the fully faithfulness part of [Fa, Thm. 5], to prove the Theorem
it suffices to show that every ramified lift of C to V is associated to a p-divisible group over
V which lifts D. As p≥ 3, each lift of (M,φ,GLGLGLM ) is associated to (i.e., it is the filtered
F -crystal of) a unique p-divisible group over W (k) that lifts D (cf. Grothendieck–Messing
deformation theory of [Me, Chs. IV and V]). Thus each lift of C to Rm is associated to
a unique p-divisible group over Rm that lifts D, cf. [Fa, Thm. 10]. Thus the Theorem
follows from the following general result (applied with p≥ 3, G = GLGLGLM , and J = ∅). �

3.6. Theorem. We assume that p ≥ 2 but do not assume that G is GLGLGLM . We take m
to be dim(Gder

B(k)). Then each lift (MR̃e, F
1
R̃e
, φM

R̃e
,GR̃e) of C to R̃e is the extension via a

W (k)-homomorphism Rm → R̃e of a lift of C to Rm (this makes sense, cf. the uniqueness
of connections in Lemma 3.4).

Proof: Let (tR̃eα )α∈J be a family of tensors of the F 0-filtration of T(MR̃e) defined by F 1
R̃e

which has the analogue meaning of the family of tensors (tRm
α )α∈J of Definition 3.3.1

(a). Not to introduce extra notations, we can assume that the extension of CR̃e :=

(MR̃e, F
1
R̃e
, φM

R̃e
, (tR̃eα )α∈J) via the W (k)-epimorphism m0 : Rm � W (k) of Definition

3.3.1 (a) is of the form CW (k) = (M,F 1
0 , φ, (tα)α∈J). Let

CRm := (M ⊗W (k) Rm, F
1
0 ⊗W (k) Rm, g

der
univ(φ⊗ ΦRm

), (tα)α∈J),

24



where gder
univ : Spec(Rm) → Gder is a universal morphism which identifies Spf(Rm) with the

formal completion of Gder along the identity section. Let ∇univ be the unique connection
on M ⊗W (k) Rm such that gder

univ(φ ⊗ ΦRm
) is horizontal with respect to it. Let δ0 be the

flat connection on M ⊗W (k) Rm that annihilates M ⊗ 1.
We have γuniv := ∇univ − δ0 ∈ Lie(G)⊗W (k) Ω∧

Rm
, cf. [Fa2, §7, Rm. ii)]. For the sake

of completeness, we include a proof of the last result. We view T(M) as a module over
the Lie algebra (associated to) EndW (k)(M) and we denote also by ∇univ the connection

on T(M ⊗W (k) Rm[ 1
p ]) which extends naturally the connection ∇univ on M ⊗W (k) Rm.

Each tensor tα ∈ T(M ⊗W (k) Rm[ 1
p ]) is fixed under the natural action of gder

univ(φ ⊗ ΦRm
)

on T(M ⊗W (k) Rm[ 1
p ]). Thus we have ∇univ(tα) = (gder

univ(φ ⊗ ΦRm
) ⊗ dΦRm

)(∇univ(tα)).

As we have dΦRm
(Xi) = pXp−1

i dXi for each i ∈ {1, . . . ,m}, by induction on s ∈ N we
get that ∇univ(tα) = γuniv(tα) ∈ T(M) ⊗W (k) (X1, . . . , Xm)sΩ∧

Rm
[ 1
p
]. As Rm is complete

with respect to the (X1, . . . , Xm)-topology, we get that ∇univ(tα) = γuniv(tα) = 0. But
Lie(GB(k)) ∩ EndW (k)(M) is the Lie subalgebra of EndW (k)(M) that centralizes tα for all
α ∈ J. From the last two sentences we get that γuniv ∈ Lie(G) ⊗W (k) Ω∧

Rm
.

Next we list three basic properties of the W (k)-algebra R̃e:

(i) we have R̃e = proj.lim.m∈NR̃e/I(m), the transition W (k)-epimorphisms being
the logical ones (see Subsection 2.7 for I(m)’s);

(ii) the W (k)-module I(m)/I(m+ 1) is free of rank 1 for all m ∈ N;

(iii) we have an inclusion I(m)2 + ΦR̃e(I(m)) ⊆ I(m+ 1) for all m ∈ N.

Thus the arguments of [Fa, Thm. 10 and Rm. (iii) of p. 136] apply entirely to give

us that CR̃e is the extension of CRm through a W (k)-homomorphism Rm → R̃e that maps
the ideal (X1, . . . , Xm) to I(1) (this extension is well defined as the connection ∇univ exists
and is unique). Strictly speaking, loc. cit. is stated in terms of a universal element of G

and not of Gder. But the image of the Kodaira–Spencer map of ∇univ is the same regardless
if we work with Gder or G (this follows easily from the relation γuniv ∈ Lie(G) ⊗W (k) Ω∧

Rm
)

and therefore loc. cit. applies in our present context of Gder as well. �

3.6.1. Corollary. Let (MR̃e, F
1
R̃e
, φM

R̃e
,GR̃e) be a lift of C to R̃e. If p≥ 3, let DV be the p-

divisible group over V that lifts D and that corresponds to (MR̃e, F
1
R̃e

⊗R̃eme
V, φM

R̃e
) via the

natural bijection of Theorem 3.5. If p = 2, we assume that there exists a p-divisible group
DV over V which lifts D and such that the triple (MR̃e, F

1
R̃e

⊗R̃eme
V, φM

R̃e
) is associated to

it as in the proof of Theorem 3.5. Let TR̃e[ 1
p
] be a maximal torus of GR̃e[ 1

p
] such that φM

R̃e

leaves invariant Lie(TR̃e[ 1
p
]) and F 1

K := F 1
R̃e

⊗R̃e[ 1
p
] K is a Lie(TR̃e[ 1

p
]) ⊗R̃e[ 1

p
] K-module.

Then by performing the operation O1 we can assume that Lie(TR̃e[ 1
p
]) is R̃e[ 1

p ]-generated

by elements fixed by φM
R̃e

and thus that C has ramified lifts to V of CM type. Thus, up to
the operation O1, the p-divisible group DV is with complex multiplication.

Proof: There exists a canonical and functorial (in DV ) identification

(6) (M ⊗W (k) R̃e[
1

p
], φ⊗ ΦR̃e) = (MR̃e[

1

p
], φM

R̃e
)
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under which the pull back of the natural B(k)-epimorphism R̃e[ 1
p ] � B(k) that takes

X to 0 is the identity automorphism of (M [ 1
p ], φ) (see [Fa, Section 6] for the existence

part; the uniqueness part follows from the fact that no element of End(M [ 1
p ] ⊗B(k) I(1)

is fixed by φ ⊗ ΦR̃e). Therefore via (6), we can identify F 1
K with a direct summand of

M ⊗W (k) K = H1
dR(DV /V )[ 1

p
] = [MR̃e/Ker(me)MR̃e][

1
p
].

Let T1B(k) be the pull back of TR̃e[ 1
p
] to a maximal torus of GB(k). Under the identifi-

cation (6), Lie(T1B(k))⊗B(k) R̃e[
1
p ] gets identified with Lie(TR̃e[ 1

p
]). Thus F 1

K is a Lie(T1K)-

module. The triple (M [ 1
p ], φ, F 1

K) is the filtered Dieudonné module of DV and thus it is

an admissible filtered module over K. The triple (Lie(T1B(k)), φ, 0) is an admissible fil-

tered submodule over K of End(M [ 1
p ], φ, F 1

K). Therefore all Newton polygon slopes of

(Lie(T1B(k)), φ) are 0. As φ normalizes Lie(T1B(k)), it is easy to see that by performing
the operation O1 we can assume that Lie(T1B(k)) is B(k)-generated by elements fixed by
φ.

Let t̃ ∈ Lie(TR̃e[ 1
p
]) be an element which lifts an element t ∈ Lie(T1B(k)) fixed by φ

and for which we have t̃(MR̃e) ⊆ MR̃e. As ΦR̃e(X) = Xp, the sequence (φsM
R̃e

(t))s∈N

converges in the topology of the R̃e[ 1
p
]-module End(MR̃e)[

1
p
] defined by the sequence

(I(m)End(MR̃e)[
1
p ])m∈N of R̃e[ 1

p ]-submodules to an element t0 ∈ Lie(TR̃e[ 1
p
]) which is fixed

by φM
R̃e

and which lifts t. This implies that Lie(TR̃e[ 1
p
]) is R̃e[ 1

p ]-generated by elements

fixed by φM
R̃e

. This proves the first part. As t0 leaves invariant F 1
K , an integral p-power

of it corresponds naturally to an endomorphism of DV (even if p = 2). Thus the second
part follows from this and the first part. �

3.7. Connection to the Main Problem. Let DV be a p-divisible group over k that
lifts D. Let (MR̃e, F

1
V , φMR̃e

) be associated to DV as in the proof of Theorem 3.5 (even if
p = 2). Under the identification (6), we can naturally view GR̃e[ 1

p
] as a subgroup scheme of

GLGLGLM
R̃e[ 1

p
]. Let G′

R̃e
be the Zariski closure in GLGLGLM

R̃e
of GR̃e[ 1

p
] (in general it is not a closed

subgroup scheme of GLGLGLM
R̃e

). We have the following Corollary of Theorem 3.6.

3.7.1. Corollary. We assume that the Zariski closure G̃′
V of m∗

e(G
′
R̃e

)K in GLGLGLM
R̃e⊗R̃emeV

is a reductive group scheme over V whose special fibre, under the canonical identifi-
cation MR̃e ⊗R̃e k = M/pM , is Gk. We also assume that there exists a cocharacter

µ̃V : Gm → G̃′
V that acts on F 1

V via the inverse of the identical character of Gm and
that fixes [MR̃e/Ker(me)MR̃e]/F

1
V = H1

dR(DV /V )/F 1
V . Then G′

R̃e
is a reductive, closed

subgroup scheme of GLGLGLM
R̃e

isomorphic to GR̃e and (MR̃e, F
1
V , φMR̃e

,G′
R̃e

) is a ramified lift
of C to V .

Proof: For s ∈ {1, . . . , e} we have R1,s := R̃e/I(s) = W (k)[[X]]/(Xs). By induction on

s ∈ {1, . . . , e} we show that the Zariski closure G̃′
R1,s

of GB(k)[[X]]/(Xs) in GLGLGLM
R̃e
/I(s)M

R̃e

is a reductive, closed subgroup scheme of GLGLGLM
R̃e/I(s)MR̃e

. The case s ≤ p − 1 is obvious
as the ideal (X)/(Xs) of R1,s has a nilpotent divided power structure. More precisely, the
reduction modulo I(s)[ 1

p ] of the identification (6) gives birth to a canonical identification
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(M ⊗W (k) R1,s, φ ⊗ ΦR1,s) = (MR̃e, φMR̃e
) ⊗R̃e R̃e/I(s), where Φ1,s is the Frobenius lift

of R1/(X
s) = R1,s which is compatible with σ and which annihilates X modulo (Xs). If

p− 1 ≤ s≤ e− 1, then the passage from s to s+ 1 goes as follows.

Let mV be the maximal ideal of V . Under the canonical identification MR̃e ⊗R̃e k =

M/pM , we can also identify F 1
V /mV F

1
V = F 1/pF 1 and G̃′

V = Gk; therefore we can assume
view both µ̃V modulo mV and µk as cocharacters of Pk. By replacing µ with a P(W (k))-
conjugate of it, we can assume that µ̃V modulo mV commutes with µk. As µ̃V modulo
mV and µk are two commuting cocharacters of Pk that act in the same way on F 1/pF 1

and (M/pM)/(F 1/pF 1), they coincide. Let µ̃R1,s
: Gm → G̃′

R1,s
be a cocharacter that lifts

both µ̃V modulo mV and µ, cf. [DG, Vol. II, Exp. IX, Thms. 3.6 and 7.1]. Let F 1
R1,s

be the direct summand of MR̃e/I(s)MR̃e which lifts F 1
V /mV F

1
V = F 1/pF 1 and which is

normalized by µ̃R1,s
.

Let m := dim(Gder
B(k)). From [Fa, proof of Thm. 10 and Rm. (iii) of p. 136] we get

that the quadruple (MR̃e/I(s)MR̃e, F
1
R1,s

, φM
R̃e
, (tα)α∈J) is induced from CRm via a W (k)-

homomorphism js : Rm → R1,s that maps the ideal (X1, . . . , Xm) to the ideal (X)/(Xs).
Here we denote also by φM

R̃e
its reduction modulo I(s). As the ideal (Xs)/(Xs+1) of R1,s+1

has naturally a trivial divided power structure and as js lifts to a W (k)-homomorphism
js+1 : Rm → R1,s+1 that maps the ideal (X1, . . . , Xm) to the ideal (Xs)/(Xs+1), the
triple (MR̃e/I(s + 1)MR̃e, φMR̃e

, (tα)α∈J) is the extension of (MRm
, φMRm

, (tRm
α )α∈J) via

such a homomorphism js+1. Thus G̃′
R1,s+1

is the pull back of GRm
via the morphism

js+1 : Spec(R1,s+1) → Spec(Rm) defined by js+1 (and denoted in the same way) and it
is therefore a reductive, closed subgroup scheme group scheme of GLGLGLM

R̃e
/I(s+1)M

R̃e
. This

ends the induction.

Let µ̃R1,e
: Gm → G̃′

R1,e
be a cocharacter that lifts both µ and the reduction

modulo p of µV , cf. [DG, Vol. II, Exp. IX, Thms. 3.6 and 7.1]. Let F 1
R1,e

be the

direct summand of MR̃e/I(e)MR̃e which lifts F 1
V /mV F

1
V = F 1/pF 1 and which is nor-

malized by µ̃R1,e
. From [Fa, proof of Thm. 10 and Rm. (iii) of p. 136] we get that

(MR̃e/I(e)MR̃e, F
1
R1,e

, φM
R̃e
, (tα)α∈J) is induced from CRm via a W (k)-homomorphism

je : Rm → R1,e that maps the ideal (X1, . . . , Xm) to the ideal (X)/(Xe). Here we
denote also by φM

R̃e
its reduction modulo I(e).

Let Duniv be the p-divisible group over Rm/pRm whose F -crystal is (M ⊗W (k)

Rm, g
der
univ(φ ⊗ ΦRm

),∇univ) (see proof of Theorem 3.6). A second induction on s ∈
{1, . . . , e} shows (based on Grothendieck–Messing deformation theory) that there is a
W (k)-homomorphism js : Rm → R1,s that maps the ideal (X1, . . . , Xm) to the ideal
(X)/(Xs) and such that the pull back of Duniv via the morphism Spec(k[[X]]/(Xs)) →
Spec(Rm) defined by js is DV ×Spec(V ) Spec(k[[X]]/(Xe)). Taking s = e we get that we
can assume that DV ×Spec(V ) Spec(V/pV ) is the extension via je modulo p of Duniv. This

implies that the triple (MR̃e, φMR̃e
, (tα)α∈J) is the extension of (M ⊗W (k) Rm, g

der
univ(φ ⊗

ΦRm
), (tα)α∈J) via a (any) W (k)-homomomorphism Rm → R̃e which lifts je modulo p (the

fact that under such an extension and the identification (6), each tα is maped into tα follows
from the fact that no element of T(M [ 1

p ])⊗B(k)I(e)[ 1
p ] is fixed by φ⊗ΦR̃e). Thus the closed

embedding G′
R̃e

↪→ GLGLGLM
R̃e

is the pull back of the closed embedding GRm
↪→ GLGLGLM⊗W (k)Rm
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via a morphism Spec(R̃e) → Spec(Rm) which lifts je modulo p. As GRm
is a reductive,

closed subgroup scheme of GLGLGLM⊗W (k)R−m, we conclude that G′
R̃e

is a reductive, closed
subgroup scheme of GLGLGLM

R̃e
.

As G′
R̃e

is smooth over R̃e and due to the property (i) of the proof of Theorem 3.6,
there exists a cocharacter µR̃e of G′

R̃e
that lifts both µ and µ̃V (to be compared with [Va1,

Lem. 5.3.2]). Let F 1
R̃e

be the direct summand of MR̃e that lifts F 1
V and that is normalized

by µR̃e. The quadruple (MR̃e, F
1
R̃e
, φM

R̃e
, G̃R̃e) is a lift of C to R̃e (the analogue for R̃e

of the axiom (iii) of Definition 3.3.1 holds for this quadruple due to the very definition of
G̃R̃e). Thus (MR̃e, F

1
V , φMR̃e

, G̃R̃e) is a ramified lift of C to V . �

3.7.2. Definition. Let DV be a p-divisible group over V that lifts D. We say that DV

is a ramified lift of D to V with respect to G if (to be compared with the Manin Problem
1.2) the following three axioms hold:

(a) under the canonical identification H1
dR(DV /V )[ 1

p
] = M ⊗W (k) V [ 1

p
] (see proof of

Theorem 3.6), the Zariski closure G′
V of GK in GLGLGLH1

dR
(DV /V ) is a reductive, closed subgroup

scheme of GLGLGLH1
dR

(DV /V );

(b) under the canonical identification M/pM = H1
dR(DV /V )/mVH

1
dR(A/V ), the

group scheme G′
V lifts Gk (here mV is the maximal ideal of V );

(c) there exists a cocharacter Gm → G′
V that acts on F 1

V via the inverse of the
identical character of Gm and that fixes H1

dR(DV /V )/F 1
V , where F 1

V is the direct summand
of H1

dR(DV /V ) which is the Hodge filtration of DV .

3.7.3. Corollary. We assume that p≥ 3. Then the ramified lifts of C to V are in natural
bijection to the ramified lifts of D to V with respect to G.

Proof: Let (MR̃e, F
1
R̃e
, φM

R̃e
,GR̃e) be a ramified lift of C to V . Let F 1

V := F 1
R̃e

⊗R̃e me
V .

Let DV be the p-divisible group over V that corresponds to (MR̃e, F
1
V , φMR̃e

) via Theorem
3.5. From Definitions 3.3.1 (a) and (d) we get that DV is a ramified lift of D to V with
respect to G. Thus the Corollary follows from Theorem 3.5 and Corollary 3.7.1. �

3.8. Remarks. (a) Sections 2.7, 3.5, and 3.7 hold with k replaced by an arbitrary perfect
field of characteristic p. Theorem 3.5 was first obtained in [Br] and [Zi2] (strictly speaking

these references worked with Re instead of R̃e but as ΦR̃e(R̃e) ⊆ Re it is easy to see that

for p ≥ 2 there exists a natural bijection between lifts of C to Re and lifts of C to R̃e). The
results 3.6, 3.7.1, and 3.7.3 are not in the reach of either [Br] or [Zi2].

(b) Often in this paper the principally quasi-polarized contexts are treated as variants
of non–polarized contexts. This is so due to the following two reasons. First, often the
principally quasi-polarized context is handled by making small (if any at all) modifications
to the contexts that involve only C. There exists no element of M ⊗W (k) I(1) fixed by
φ ⊗ ΦR̃e. Thus if we have a principal quasi-polarization λM : M ⊗W (k) M → W (k) of C

and if in Theorem 3.6 we have a lift (MR̃e, F
1
R̃e
, φM

R̃e
,GR̃e, λMR̃e

) of (C, λM ) to R̃e, then

the W (k)-homomorphism Rm → R̃e of Theorem 3.6 takes automatically λM to λM
R̃e

.
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To explain the second reason we assume that G is generated by Z(GLGLGLM ) and by a
reductive, closed subgroup scheme G0 of SLSLSLM and that the intersection Z(GLGLGLM ) ∩ G0 is
either µµµ2 or Spec(W (k)). Then for most applications we can replace C by the direct sum
C⊕C∗(1) := (M⊕M∗(1), φ⊕p1M∗ ◦φ,G), where M∗(1) := M∗ and where G is a reductive,
closed subgroup scheme of GLGLGLM⊕M∗(1) such that G0 acts on M∗(1) via its action on M∗

and Z(GLGLGLM ) is naturally identified with Z(GLGLGLM⊕M∗(1)). Let λM⊕M∗(1) be the natural
principal alternating quasi-polarization of C ⊕ C∗(1). Then each ramified lift of C to V
gives birth naturally to a unique ramified lift of (C ⊕ C∗(1), λM⊕M∗(1)) to V .

4. The basic results

In this Section we state our basic results pertaining to the (ramified) CM-classifications
of Section 3 (see Basic Theorems 4.1 and 4.2). Corollaries 4.3 to 4.5 are practical applica-
tions of Basic Theorems 4.1 and 4.2 for contexts related to Shimura varieties of either Bn
or DR

n type. Let (MZp
,GZp

, (tα)α∈J) be as in Subsubsection 2.4.1.

4.1. Basic Theorem. We assume that C is semisimple and basic. We have:

(a) If [C] ∈ Z(Y(F)), then QU holds for C.

(b) R (resp. QR, TR, or TTR) holds for C if and only if A (resp. QA, TA, or
TTA) holds for C.1

(c) We assume that p≥ 3, that Q+A holds for C, and that there exists a subset J0 of
J such that the family (tα)α∈J0

of tensors of T(MZp
) is of partial degrees at most p−2 and

is Zp-very well position for G (see Definitions 2.5 (a) and (b)). Then [C] ∈ PZ ram(Y(F)).
Moreover, if either Q+ +A holds for C and Z0(G) = Z0(C1) or G = NC1

(G), then in fact
we have [C] ∈ Zram(Y(F)).

4.2. Basic Theorem. (a) We assume that C is basic and semisimple. We also assume
that each simple factor of Gad

W (k̄)
is of Bn, Cn, or Dn Lie type. Then TTR holds for C.

(b) We assume that C is semisimple and that each simple factor of Gad
W (k̄)

is of Bn

or Dn Lie type. If Gad
W (k̄)

has a simple factor V of Dn Lie type, then we also assume that

the centralizer in V of the image of µW (k̄) in it is either V itself or it is of Dn−1 Lie type

and, in the case n = 4, that Vsc is naturally a normal, closed subgroup scheme of Gder
W (k̄)

.

Then TTR holds for C.

In Sections 5 and 6 we prove Basic Theorems 4.1 and 4.2 (respectively). The following
three Corollaries are abstract extensions of [Zi1, Thm. 4.4] for p > 3 and for contexts
related to Shimura varieties of either Bn or DR

n type. They are also the very first situations
where complete ramified CM-classifications are accomplished. Their proofs are presented
in Section 7. Let T be the restriction to Lie(Gder) of the trace form on End(M). Let K be
the Killing form on Lie(Gder).

1 We expect that the (b) part is well known.
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4.3. Corollary. We assume that all simply factors of Gad
W (k̄)

are of Bn or D2n+1 Lie type,

that Gder is simply connected, that Z0(G) = Z0(C1), that the natural isogeny Z0(G) → Gab

can be identified with the square isogeny 2 : Z0(G) → Z0(G), that p > 3 and that the
symmetric forms T and K on Lie(Gder) are perfect. Then for an element g ∈ G(W (k)) we
have [Cg] ∈ Zram(Y(F)) if and only if Cg is semisimple.

4.3.1. Example. Let n ∈ N. We assume that the representation G → GLGLGLM is a product
of spin representations of GSpinGSpinGSpin2n+1 group schemes. Thus all simply factors of Gad

W (k̄)
are

of Bn Lie type, Gder is simply connected, and Z0(G) = Z0(C1). We also assume that p > 3
does not divide n − 1. Then the symmetric forms T and K on Lie(Gder) are perfect, cf.
[Va1, Lem. 5.7.2.1]. Thus for an element g ∈ G(W (k)) we have [Cg] ∈ Zram(Y(F)) if and
only if Cg is semisimple, cf. Corollary 4.3.

4.4. Corollary. We assume that p > 3, that all simply factors of Gad
W (k̄)

are of Dn Lie type,

that Gder is simply connected, that the symmetric forms K and T on Lie(Gder) are perfect,
and that Z0(G) = Z0(C1) is a torus of rank 2 times the number of simply factors of Gad

W (k̄)
.

If n is odd we also assume that (M,φ, G̃) is a Shimura F -crystal over k, where G̃ is the
closed subgroup scheme of G generated by Gder and by the maximal subtorus Z00(G) of Z0(G)
with the property that the representation on M ⊗W (k) W (k̄) of each normal, semisimple,
closed subgroup scheme of GW (k̄) whose adjoint is simple, is a direct sum of trivial and

of spin representations on which Z00(G)W (k̄) acts via scalar multiplications. Then for an
element g ∈ G(W (k)) we have [Cg] ∈ Zram(Y(F)) if and only if Cg is semisimple.

4.5. Corollary. We assume that p > 3, that Gder is simply connected, that each sim-
ple factor of Gad

W (k̄)
is of Bn or Dn Lie type, that the symmetric forms K and T on

Lie(Gder) are perfect, and that we have a principal bilinear quasi-polarization λM of C.
Let C1(λM )0 be as in Theorem 2.4.2 (c). Let G0

Zp
be the maximal reductive, closed sub-

group scheme of GZp
that fixes λM . We also assume that Z0(G) = Z0(C1(λM )0) and that

the group H1(Qp,G
0ab
Qp

) is trivial. Then for an element g ∈ (G ∩ SpSpSp(M,λM ))(W (k)) we

have [(Cg, λM )] ∈ Zram(Y(F, λM)) if and only if Cg is semisimple.

5. Proof of Basic Theorem 4.1

In this Section we assume that C is basic and semisimple. In Subsections 5.1, 5.2,
and 5.3 we prove Theorems 4.1 (a), 4.1 (b), and 4.1 (c) (respectively).

5.1. Proof of 4.1 (a). To prove Theorem 4.1 (a) we can assume that there exists a
maximal split torus T of G such that we have φ(Lie(T)) = Lie(T). We can also assume
that Lie(T) is generated by elements fixed by φ (see proof of Proposition 3.2). Thus CT :=
CGLGLGLM

(T) is a reductive, closed subgroup scheme of GLGLGLM such that we have φ(Lie(CT)) =
Lie(CT). This implies that F 1/pF 1 is a Lie(CTk)-module. As CT(W (k̄)) is naturally a
subset of Lie(CTW (k̄)), the group CTk normalizes F 1/pF 1. Thus Tk is a maximal torus of
Pk. Let T0 be a maximal torus of P through which the cocharacter µ : Gm → G factors.
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From [DG, Vol. II, Exp. IX, Thms. 3.6 and 7.1] and [Bo, Ch. V, Thm. 15.14] we deduce
the existence of an element g ∈ G(W (k)) which modulo p belongs to P(k) and for which
we have an identity g(T0)g−1 = T. By replacing µ with its inner conjugate through g we
can assume that µ factors through T. Thus Lie(T) is W (k)-generated by elements fixed
by σφ := φµ(p). Let TZp

be the torus of GZp
whose Lie algebra is formed by elements of

Lie(T) fixed by σφ (cf. beginning of Subsection 2.4 applied with � = T); its extension to
W (k̄) is TW (k̄) and TQp

is the Qp-form of TB(k) with respect to (M [ 1
p , φ). As C is basic,

the product of cocharacters of T of the orbit of µ under integral powers of σφ (equivalently
of φ) factors through Z0(G). Thus (TB(k), µB(k)) is an unramified E-pair of C that satisfies
the cyclic C condition. This proves Theorem 4.1 (a). �

5.2. Proof of 4.1 (b). To prove Theorem 4.1 (b) we can assume that C is basic. It
is enough to show that an E-pair (T1B(k), µ1) of C is admissible if and only if U holds
for it. If an E-pair (T1B(k), µ1) is admissible, then (as C is basic) from [Ko1, Subsections
2.4 and 2.5] and [RaZ, Prop. 1.21] (see also [RR, Thm. 1.15]) we get that the product
of the cocharacters of T1K1

which belong to the Gal(K1/Qp)-orbit of µ1 factors through
Z0(GK1

). Thus the E-pair (T1B(k), µ1) of C satisfies the C condition, cf. Example 2.3.1.
Thus R holds for C.

We now show the the converse holds i.e., we prove that if

(T1B(k), µ1, τ = (τ1, τ2, . . . , τl))

is an E-triple of C such that the condition 2.3 (e1) holds and if K2 and F 1
K2

are as in

Definitions 2.3 (d) and (h), then the filtered module (M [ 1
p ], φ, F 1

K2
) over K2 is admissible.

It is enough to show that the filtered module (M [ 1
p ], φ, F 1

K2
) over K2 is weakly admissible,

cf. [CF, Thm. A]. Let K̄2 be the subfield of B(k̄) generated by B(k̄) and K2. For
i ∈ {1, . . . , l} let Mi := M . Let

O := (⊕li=1Mi) ⊗W (k) K2.

Let Ō := O⊗K2
K̄2. Let K00 := {x ∈ K2|τi(x) = x ∀i ∈ {1, . . . . , l}}; it is a totally ramified

finite field extension of Qp. Let K0 be the smallest subfield of K2 which contains K00 and
such that the cocharacter µ1K2

: Gm → T1K2
is fixed by all elements of Gal(K2/K0). Let

d ∈ N be as in the condition 2.3 (e1).
We denote also by τ the σ-linear automorphism

τ : O ∼→O

which takes mi⊗v2 ∈Mi⊗W (k)K2 to φ(mi)⊗τi(v2) ∈Mi+1⊗W (k)K2, where Ml+1 := M1.

We view naturally Tl1K2
:=

∏l
i=1 T1K2

(resp. GlK2
:=

∏l
i=1 GK2

) as a subtorus (resp. as a
reductive, closed subgroup scheme) of GLGLGLO. We embed T1K2

(resp. GK2
) diagonally into

Tl1K2
(resp. GlK2

). Let µ2 be the cocharacter of Tl1K2
which normalizes each Mi ⊗W (k) K2

and which acts on Mi ⊗W (k) K2 identified with M ⊗W (k) K2 as µ1K2
does. We consider

the σ-linear automorphism
σ2 := τµ2(p) : O ∼→O.
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We denote also by τ and σ2 their σk̄-linear extensions to Ō. The actions of τ and σ2 on
cocharacters of Tl1K2

are the same. As C is basic, the Newton quasi-cocharacter ν of C

factors through Z0(GB(k)) (see [Va3, Cor. 2.3.2]). We consider the quasi-cocharacter ν2 of

Tl1K2
which is the mean average of the orbit of µ2 under integral powers of τ . It factors

through Z0(Gl1K2
), cf. property 2.3 (e1). Strictly speaking we get directly this only for the

first factor G1K2
of Gl1K2

. However, due to the circular aspect of τ and of the condition

2.3 (e1), this extends automatically to all the other l− 1 factors G1K2
of Gl1K2

. As each τi

extends the Frobenius automorphism F2u of K2u, the image of ν2 in (GlK2
)ab =

∏l
i=1 Gab

K2

is such that its natural projections on Gab
K2

are all the same and equal to the composite of ν

with the natural epimorphism GK2
� Gab

K2
. As ν2 factors through Z0(Gl1K2

), from the last
sentence we get that in fact ν2 factors through T1K2

and this factorization coincides with the
factorization of ν through T1K2

. As for each u ∈ N we have σu2 = [(
∏u
m=1 τ

m(µ2))(p)]τu,
we easily get that all Newton polygon slopes of (O[ 1

p ], σ2) are 0. Thus Ō is K̄2-generated

by elements fixed by σ2. Let O00 be the K00-vector subspace of Ō formed by such elements.
Its dimension t equals to dimK2

(O) = lrkW (k)(M), cf. the definitions of K00 and τ . Let
O0 := O00 ⊗K00

K0. The torus T1K00
is naturally a subtorus of GLGLGLO00

and therefore we
have τ(O0) ⊆ O0. We denote also by τ its restriction to O0.

5.2.1. Proposition. There exists a K0-basis B = {e1, . . . , et} of O0 and a permutation
π of {1, . . . , t} such that for all i ∈ {1, . . . , t} we have τ(ei) = pnieπ(i), where ni ∈ {0, 1}

is 1 if and only if we have ei ∈ (⊕li=1F
1
K2

) ⊗K2
K̄2.

Proof: For i ∈ {1, 2, . . . , dl} and j ∈ {0, 1} let iF j be the K0-vector subspace of O0 on
which τ i(µ2) acts trivially if j = 0 and via the inverse of the identical character of Gm if
j = 1. For a function f̄ : {1, 2, . . . , dl} → {0, 1} let

Ff̄ :=
⋂

i∈{1,2,... ,dl}

iF f̄(i).

Let Q be the set of such functions f̄ with Ff̄ 6= 0. As τ i(µ2)’s commute (being cocharacters

of Tl1K0
) we have a direct sum decomposition O0 = ⊕f̄∈QFf̄ . Let

τ̄ : Q → Q

be the bijection defined by the rule: τ̄(f̄)(i) = f̄(i− 1), where f̄(0) := f̄(dl).
Let I0

τ̄ := {f̄ ∈ Q|τ̄(f̄) = f̄}. Let τ̄ =
∏
j∈Iτ̄

τ̄j be written as a product of disjoint
cyclic permutations. We allow trivial cyclic permutations i.e., we have a disjoint union

Iτ̄ = I1
τ̄ ∪ I

0
τ̄

with the property that j ∈ Iτ̄ belongs to I1
τ̄ if and only if τ̄j is a non-trivial permutation.

If j ∈ I1
τ̄ , then each function f̄ ∈ Q such that we have τ̄j(f̄) 6= f̄ is said to be associated

to τ̄j . Also f̄ ∈ I0
τ̄ is said to be associated to τ̄f̄ . As τ̄dl = 1Q, the order dj of the cyclic

permutation τ̄j divides dl. For each j ∈ Iτ̄ we choose arbitrarily an element f̄j of Q which is

32



associated to τ̄j . We have τdj (Ff̄j
) = σ

dj

2 (Ff̄j
) = Ff̄j

. Let pFf̄j
:= {x ∈ Ff̄j

|σ
dj

2 (x) = x}.

Let K0(f̄j) be the maximal subfield of K0 such that pFf̄j
is a K0(f̄j)-vector space. It

contains K00. By reasons of dimensions we have Ff̄j
= pFf̄j

⊗K0(f̄j) K0.

For each j ∈ Iτ̄ we choose a K0(f̄j)-basis {es|s ∈ Bj} for pFf̄j
; we also view it as a

K0-basis for Ff̄j
. For each cyclic permutation τ̄j of length ≥ 2 (i.e., for when we deal with

a j ∈ I1
τ̄ ) and for every element f̄ ∈ Q associated to τ̄j but different from f̄j , let u(f̄) ∈ N

be the smallest number such that f̄ = τ̄u(f̄)(f̄j) and let nu(f̄),j :=
∑u(f̄)
i=1 f̄j(i). We get a

K0-basis { 1
p

n
u(f̄),j

τu(f̄)(es)|s ∈ Bj} for Ff̄ . The expressions of nu(f̄),j ’s are a consequence

of the following iteration formula τu(f̄) = [(
∏u(f̄)
m=1 σ

m
2 (µ2))( 1

p )]σ
u(f̄)
2 .

Let B = {e1, . . . , et} be the K0-basis for O0 obtained by putting together the chosen
K0-bases for Ff̄ ’s with f̄ ∈ Q. Let π be the unique permutation of {1, . . . , t} such that for
all i ∈ {1, . . . , t} we have τ(ei) ∈ K0eπ(i). From constructions we get that τ(ei) = pnieπ(i),
where ni is as mentioned in the Proposition. �

5.2.2. End of the proof of 4.1 (b). Let V0 and V̄2 be the ring of integers of K0 and K̄2

(respectively). Let W0 be the V0-lattice of O0 generated by elements of B. Let F 1
0 be its

direct summand generated by elements of B∩ ((⊕l
i=1F

1
K2

)⊗K2
K̄2). Let W̄2 := W0⊗V0

V̄2.

We consider an arbitrary B(k)-submodule F of M [ 1
p ] which is normalized by φ. Let

W̄ 0
2 := W̄2 ∩ (⊕li=1F ⊗B(k) K̄2); it is a V̄2-module which is a direct summand of W̄2 left

invariant by τ . As in Mazur theorem of [Ka, Thm. 1.4.1] we get that the Newton polygon
of l copies of (F, φ) is below the Hodge polygon of (W̄ 0

2 , W̄
0
2 ∩(F 1

0 ⊗V0
V̄2)). But this Hodge

polygon coincides with the Hodge polygon of l copies of (F, φ, (F⊗B(k)K2)∩F 1
K2

). Thus
the Newton polygon of (F, φ) is below the Hodge polygon of (F, φ, (F⊗B(k) K2)∩ F 1

K2
).

Therefore the filtered module (M [ 1
p
], φ, F 1

K2
) over K2 is weakly admissible. Thus Theorem

4.1 (b) holds. �

5.3. Proof of 4.1 (c). We begin the proof of Theorem 4.1 (c) with some étale consider-
ations. To prove Theorem 4.1 (c) we can assume that there exists an E-pair (T1B(k), µ1)
of C which is plus admissible. Let T1Qp

, K2 and F 1
K2

be as in Definitions 2.3 (b), (d), and

(h). The torus Z0(GQp
) is naturally a subtorus of T1Qp

. The triple (M [ 1
p ], φ, F 1

K2
) is an

admissible filtered module. Let MQp
, CGQp

, ρ, W, L, and (vα)α∈J be as in Subsubsec-
tions 2.4.5 and 2.4.6. As p≥ 3, from [Br, Cor. 5.3.3] we get that the Galois representation
ρ : Gal(K2) → GLGLGLW is associated to an isogeny class of p-divisible groups over the ring of
integers V2 of K2. Let J1 := Lie(T1Qp

). For α ∈ J1 let tα := α. To prove Theorem 4.1 (c)
we can assume that

(7) J ∩ J1 = Lie(Z0(GQp
)) ⊆ Lie(T1Qp

)

and that for each α ∈ J ∩ J1 the two definitions of tα define the same tensor of T(M [ 1
p
]).

Let J2 := J∪ J1. Let G′
Qp

be the subgroup of GLGLGLW that fixes vα for all α ∈ J; it is an inner

form of GQp
. As ρ factors through G′

Qp
(Qp), by enlarging J we can assume that there exists

a subset J3 of J such that CGQp
is the subgroup of GLGLGLMQp

that fixes tα for all α ∈ J3.
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The image of L in H1(Qp, CGQp
) is the trivial class, cf. Subsubsection 2.4.5. Thus

there exists a Qp-linear isomorphism

J : MQp

∼→W

that takes tα to vα for all α ∈ J3. We use it to identify naturally GQp
= G′

Qp
(this is

possible as CGQp
normalizes GQp

). Let G′
Zp

be the Zariski closure of G′
Qp

in L := J(MZp
);

we identify it with GZp
.

5.3.1. Crystalline considerations. We now apply the crystalline machinery of [Fa]
and [Va1, Subsection 5.2] to show first that [C] ∈ PSZram(Y(F)). Let K3 be a finite field
extension of K2 such that ρ(Gal(K3)) normalizes L and its ramification index e is at least
2. Let DK3

be the p-divisible group over K3 defined by the representation

ρ1 : Gal(K3) → GLGLGLL

induced naturally by ρ. It extends to a p-divisible group DV3
over the ring of integers V3 of

K3 (cf. the isogeny class part of the first paragraph of Subsection 5.3) and this extension
is unique (cf. [Ta1]).

We use the notations of Subsection 2.7. To avoid extra notations, (by performing
the operation O1) we can assume that the residue field of K3 is k. We fix a uniformizer

π3 of V3. Let R̃e � V3 be a W (k)-epimorphism defined by π3, cf. Fact 2.7.1. Let

(MR̃e, φMR̃e
,∇)

be the Dieudonné F -crystal over R̃e/pR̃e of DV3
×Spec(V3) Spec(V3/pV3) (see the proof of

Theorem 3.5).
Let B+(V3) be the crystalline Fontaine ring of V3 as defined in [Fa]. We recall that

B+(V3) is an integral, local W (k)-algebra which is endowed with a decreasing, exhaustive,
and separated filtration (F i(B+(W (k)))i∈N∪{0}, with a Frobenius lift F, and with a natural
Galois action by Gal(K3). Moreover we have a natural W (k)-epimorphism compatible with
the natural Galois actions by Gal(K3)

sV3
: B+(V3) � V3

∧
,

where V3
∧

is the p-adic completion of the normalization V3 of V3 in B(k). We refer to loc.
cit. for the natural W (k)-monomorphism R̃e ↪→ B+(V3) which respects the Frobenius lifts
(and which is associated to the uniformizer π3). We apply Fontaine comparison theory to
DV3

(see loc. cit. and [Va1, Subsection 5.2]). We get a B+(V3)-monomorphism

iDV3
: MR̃e ⊗R̃e B

+(V3) ↪→ L ⊗Zp
B+(V3)

which has the following two properties:

(a) It respects the tensor product filtrations (the filtration of L is defined by:
F 1(L) = 0 and F 0(L) = L).
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(b) It respects the Galois actions (the Galois action on MR̃e ⊗R̃e B
+(V3) is defined

naturally via sV3
and the fact that Ker(sV3

) has a natural divided power structure).

The existence of J and our hypothesis on the subset J0 of J implies that the family of
tensors (J(tα))α∈J0

of T(L) is Zp-very well position for G′
Zp

. For α ∈ J0 (resp. α ∈ J2 \ J0)

let uα ∈ T(MR̃e) (resp. uα ∈ T(MR̃e[
1
p
])) be the tensor that corresponds to J(tα) via iDV3

,

cf. [Fa, Cor. 9] and the fact that the family of tensors (J(tα)α∈J0
) is of partial degrees at

most p− 2. As in [Va1, Subsubsections 5.2.12 to 5.2.17] we argue that the Zariski closure
G̃R̃e in GLGLGLM

R̃e
of the closed subgroup scheme of GLGLGLM

R̃e
[ 1

p
] that fixes uα for all α ∈ J, is a

reductive subgroup scheme.
The tensorization of (MR̃e[

1
p ], φM

R̃e
) with the natural epimorphism R̃e[ 1

p ] � B(k)

that takes X to 0, is the F -isocrystal of D (cf. the very definition of DV3
) and thus it is is

canonically isomorphic to (M [ 1
p ], φ). Under the resulting identification (MR̃e[

1
p ], φM

R̃e
)⊗R̃e

B(k) = (M [ 1
p ], φ), uα is identified with tα for all α ∈ J3 ∪ J1. This implies that under

the identification (6), uα gets identified with tα for all α ∈ J3 ∪ J1. In particular, we get
that there exists a maximal torus of G̃R̃e[ 1

p
] whose Lie algebra is R̃e[ 1

p
]-generated by those

uα with α ∈ J1 (i.e., which corresponds to the maximal torus T1B(k) of G1B(k) via the
identification (6)).

Due to the existence of the cocharacter µ1K2
: Gm → T1K2

that acts on F 1
K2

via the
inverse of the identical character of Gm, as in [Va1, Subsubsection 5.3.1 and Lem. 5.3.2]
we argue that there exists a cocharacter µ̃R̃e : Gm → G̃R̃e such that the following two
properties hold:

(c) there exists a direct sum decomposition MR̃e = F 1
R̃e

⊕F 0
R̃e

such that F 1
R̃e

lifts the

Hodge filtration F 1
V3

of MR̃e ⊗R̃e V3 defined by DV3
and for each i ∈ {0, 1}, every element

β ∈ Gm(R̃e) acts on F i
R̃e

through µ̃R̃e as the multiplication with β−i;

(d) µ1K3
and the pull back of µ̃R̃e to a cocharacter of G̃K3

= GK3
are GK3

(K3)-

conjugate (the identification G̃K3
= GK3

used here is the one defined naturally by the
tensorization of (6) with K3 over R̃e[ 1

p ]).

Let (M1, F
1
1 ,G1, µ̃) := (MR̃e, F

1
R̃e
, G̃R̃e, µ̃R̃e) ⊗R̃e W (k). We have two identifications

M1[ 1
p ] = M [ 1

p ] and G1B(k) = GB(k) and moreover the pair (M1, φ) is a Dieudonné module.

As φM
R̃e

(MR̃e + 1
pF

1
R̃e

) = MR̃e, the cocharacter µ̃ is a Hodge cocharacter of (M1, φ,G1).

Thus (M1, F
1
1 , φ,G1) is a Shimura filtered F -crystal over k. Moreover the triple

(MR̃e, F
1
V3
, φM

R̃e
, G̃R̃e)

is a ramified lift of (M1, φ,G1) to V3. It is of CM type, cf. the existence of the maximal
torus T1R̃e[ 1

p
] of G̃R̃e[ 1

p
]. Let h ∈ GLGLGLM (B(k)) be such that we have h(M) = M1. Due

to the property (d), it is easy to see that there exists an element h̃ ∈ G(B(k)) such
that we have F 1

1 = h̃(F 1[ 1
p
]) ∩M1. Therefore we have h ∈ P(C) as well as an identity

(M1, φ,G1) = (h(M), φ,G(h)). As h ∈ P(C) and as (MR̃e, F
1
V3
, φM

R̃e
, G̃R̃e) is a ramified lift

of (M1, φ,G1) = (h(M), φ,G(h)) to V3 of CM type, we have [C] ∈ PSZram(Y(F)). Thus
the first part of Theorem 4.1 (c) holds.
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5.3.2. End of the proof. To end the proof of Theorem 4.1 (c) we have to show that
if G = NC1

(G) (resp. if Z0(G) = Z0(C1) and L is the trivial class), then we can can
choose J : MQp

∼→W such that there exists an element h ∈ G(B(k)) with the property
that h(M) = M1. The below arguments will not rely on the way we constructed M1; they
will only use the fact that the Zariski closure G1 of GB(k) in GLGLGLM1

is a reductive group
scheme over W (k). Under the identification (6) we have tα = uα for all α ∈ J3 (resp. we
can assume that we have tα = uα for all α ∈ J, as we can choose J such that we have
J(tα) = vα for all α ∈ J). The Lie algebra Lie(C) is the Lie algebra defined by a semisimple
W (k)-subalgebra S of End(M). Let SZp

:= {s ∈ S|φ(s) = s}. We have S = SZp
⊗Zp

W (k),
cf. Theorem 2.4.2 (a). We can assume that there exists a subset J4 of J such that
{tα|α ∈ J4} = SZp

. Let S1Zp
be the semisimple Zp-subalgebra of End(M1) that corresponds

to J(SZp
) via Fontaine comparison theory. The group CGQp

normalizes the group scheme
CQp

of invertible elements of SQp
(the notations match i.e., the extension of CQp

to B(k)
is the generic fibre of C). As the image of L in H1(Qp, CGQp

) is the trivial class, from
the previous sentence we get that we can identify naturally SZp

[ 1
p
] = S1Zp

[ 1
p
] =: SQp

. The
abstract groups H and H1 of invertible elements of SZp

and respectively S1Zp
are two

(resp. are the same) hyperspecial subgroups (resp. subgroup) of the group CQp
. Thus

there exists an element c ∈ CQp
(Qp) such that cHc−1 = H1, cf. [Ti2, Subsection 1.10] and

the fact that the group CQp
(Qp) surjects onto Cad

Qp
(Qp) (resp. for c := 1M [ 1

p
] ∈ CQp

(Qp)

we have cHc−1 = H1).
By replacing (M1, φ) with (c−1(M1), c−1φc) = (c−1(M1), φ) we can assume that

SZp
= S1Zp

. The map SZp
→ SZp

which takes tα to uα for α ∈ J4 is an automorphism
of SZp

and thus by performing a similar replacement defined this time by an element
c1 ∈ H(Zp) (resp. by c1 = 1M ) we can assume that we have tα = uα for all α ∈ J4. But
the subgroup of GLGLGLM [ 1

p
] that fixes tα for all α ∈ J3 ∪ J4 (resp. for all α ∈ J) is GB(k), cf.

the identity G = NC1
(G) (resp. cf. the definition of J). Thus we can assume that we have

tα = uα for all α ∈ J. In particular, we get that M1 is a C-module.
The existence of the element h ∈ G(B(k)) is expressed in terms of a right torsor

of G being trivial. As G is smooth, we can work with the flat topology instead of the
étale topology of Spec(W (k)). Thus to show the existence of the element h ∈ G(B(k)) we
can tensor M and M1 over W (k) with V (k̄), where V (k̄) is an arbitrary finite, discrete
valuation ring extension of W (k̄). Thus as the hyperspecial subgroups G(W (k̄)) and {g ∈
G(B(k̄))|g(M1 ⊗W (k) W (k̄)) = M1 ⊗W (k) W (k̄)} of G(B(k̄)) are Gad(B(k̄))-conjugate (see

[Ti2, p. 47]) and as each element of Gad(B(k̄)) is the image in Gad(V (k̄)[ 1
p ]) of some

element of G(V (k̄)[ 1
p ]) for a suitable choice of V (k̄), by replacing W (k) with V (k̄) we

can assume that these two hyperspecial subgroups are equal. The reason we deal with a
discrete valuation ring V (k̄) whose residue field is k̄ and not k is that we want to pass from
inclusions of hyperspecial subgroups to closed monomorphisms between reductive group
schemes and this is possible in general only if we have residue fields which are infinite (see
[Va1, Prop. 3.1.2.1 a) and b)]). Thus to show the existence of the element h ∈ G(B(k))
we can assume that GV (k̄) is a closed subgroup scheme of GLGLGLM1⊗W(k)V (k̄).

Let TG be the reductive, closed subgroup scheme of GLGLGLM generated by G and by
a maximal torus of C. By performing O1 we can assume that TG is split. Thus we can
write M = ⊕i∈IG

Oi as a direct sum of absolutely irreducible TG-modules. For i ∈ IG
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the representation ρki of CGk on Oi/pOi is absolutely irreducible, cf. proof of Theorem
2.4.2 (b). Moreover, if i1, i2 ∈ IG are two distinct elements, then ρki1 and ρki2 are
unequivalent representations of TGk. Thus as TG(V (k̄)) normalizes both M ⊗W (k) V (k̄)
and M1 ⊗W (k) V (k̄), we have

M1 ⊗W (k) V (k̄) = c(M ⊗W (k) V (k̄)),

where c ∈
∏
i∈IG

Z(GLGLGLOi)(V (k̄)[ 1
p ]) acts on Oi ⊗W (k) V (k̄) by multiplication with πni

V (k̄)
;

here ni ∈ Z and πV (k̄) is a fixed uniformizer of V (k̄). As CV (k̄) normalizes both M ⊗W (k)

V (k̄) and M1 ⊗W (k) V (k̄), we have ni1 = ni2 for all elements i1, i2 ∈ IG such that

the representations of G on Oi1 and Oi2 are isomorphic. Thus c ∈ Z0(C1)(V (k̄)[ 1
p ]) ⊆

Z0(G)(V (k̄)[ 1
p ]). Thus the desired element h ∈ G(B(k)) exists. This ends the proof of

Theorem 4.1 (c). �

5.3.3. Simple facts and variants. (a) We assume that we have a principal bilinear
quasi-polarization λM : M⊗W (k)M →W (k) of C. Then J(λM ) : L⊗Zp

L → Zp gives birth
via Fontaine comparison theory to a principal bilinear quasi-polarization λM1

of (M1, φ).
Let G0

Qp
, DGQp

, DG0
Qp

, and L0 be as in Subsubsection 2.4.7. If the image of L in

H1(Qp, DGQp
) is the trivial class, then in Subsubsection 5.3.1 we can choose J such that

we have λM1
∈ Gm(Qp)λM . If the image of L0 in H1(Qp, DG

0
Qp

) is the trivial class, then
we can choose J such that in fact we have λM = λM1

.
Moreover, we have [(C, λM)] ∈ Z(Y(F, λM)), provided we also assume that L0 is the

trivial class and Z0(G) = Z0(C1(λM )0). Argument: with the notations of Theorem 2.4.2
(c) we only have to add that as λM defines perfect bilinear forms on both M and M1, in
the end of Subsubsection 5.3.2 we have c ∈ Z0(C1(λM )0)(V (k̄)[ 1

p ]) ⊆ Z0(G)(V (k̄)[ 1
p ]) and

in fact c fixes λM .

(b) We refer to Subsubsection 5.3.1. Each element of End(M [ 1
p ]) fixed by φ and

T1B(k) defines an endomorphism of (M [ 1
p ], φ, F 1

K2
) and therefore a Qp-endomorphism of

DV3
. Thus the homomorphism ρ3 of Subsubsection 5.3.1 factors through the group of Zp-

valued points of the Zariski closure in GLGLGLL of the subtorus of G̃Qp
that fixes the Qp-étale

realizations of the Qp-endomorphisms of DV3
that correspond to those tα with α ∈ J1.

Therefore DV3
is with complex multiplication.

6. Proof of Basic Theorem 4.2

In this Section we prove Theorem 4.2. Let (MZp
,GZp

, (tα)α∈J) be the Zp structure of
(M,φ,G, (tα)α∈J), cf. Subsection 2.4. Each simple factor of Gad

Fp
is of the form Resk0/Fp

G0
k0

,

where k0 is a finite field and G0
k0

is an absolutely simple, adjoint group over k0 (cf. [Ti1,

Prop. 3.1.2]). Thus each simple factor of Gad
Zp

is of the form ResW (k0)/Zp
G0, where G0 is an

absolutely simple, adjoint group over W (k0) whose special fibre is G0
k0

(cf. [DG, Vol. III,
Exp. XXIII, Prop. 1.21]). Until Section 8 we will assume that each such group scheme G0

is of Bn, Cn, or Dn Dynkin type.
By performing the operation O1 we can assume that G is split. Thus the field k

contains each such field k0. We assume that there exists a maximal torus T1B(k) of GB(k)
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of Qp-endomorphisms of C. Let T1Qp
, K, K1, and K2 be as in Definition 2.3 (c). Until

Section 8 we will also assume that L0
G(φ) is a Levi subgroup scheme of P+

G
(φ) and that

µ : Gm → G factors through a maximal torus T of L0
G(φ) contained in a Borel subgroup

scheme B of P, cf. Subsection 2.6. Let L0
G(φ)Zp

be the Zp structure of L0
G(φ) obtained as

in Subsection 2.4. It is a reductive, closed subgroup scheme of GZp
which is the centralizer

of the rank 1 split torus of GZp
whose extension to B(k) is the image of the Newton

cocharacter of C, cf. Fact 2.6.1. In Subsection 6.1 we include some reduction steps. In
Subsection 6.2 we include few simple properties. In Subsection 6.3 (resp. Subsection 6.4)
we deal with the cases related to Shimura varieties of Bn and DR

n (resp. Cn and DH
n ) type.

The proof of Theorem 4.2 ends in Subsection 6.5.

6.1. Some reductions and notations. Let µad : Gm → Gad be the composite of the
cocharacter µ : Gm → G with the natural epimorphism G � Gad. As G is split, each
cocharacter of Gad

K2
which is Gad(K2)-conjugate to µad

K2
, lifts uniquely to a cocharacter of

GK2
which is GK2

(K2)-conjugate to µK2
. Below we will consider only E-pairs of C which

are as in Example 2.3.1. Thus based on the last two sentences, on Subsubsection 2.4.8, and
on the fact that the statements 4.2 (a) and (b) pertain only to images in Gad

K2
of suitable

products of cocharacters of GK2
that factor through T1K2

, to prove Theorem 4.2 we can
assume that the adjoint group scheme Gad

Zp
is Zp-simple and that the cocharacter µad

K2
is

non-trivial. Thus Gad
Zp

= ResW (k0)/Zp
G0. If G0 is of Dn Dynkin type, then it splits over

W (k02), where k02 is the quadratic extension of k0 (cf. [Se1, Cor. 2 of p. 182]).
Let m ∈ N be such that k0 := Fpm . We write

Gad =
m∏

i=1

Gi,

where Gi is a split, absolutely simple, adjoint group scheme over W (k) and the numbering
of Gi’s is such that we have φ(Lie(Gi[

1
p ])) = Lie(Gi+1[ 1

p ]) for all i ∈ {1, . . . ,m}. Here and in

all that follows the left lower or upper index m+1 has the same role as 1 (thus Gm+1 := G1,
etc.). Let Gi be the semisimple, normal, closed subgroup scheme of Gder which is naturally
isogenous to Gi. We view the isomorphism (2) of Subsubsection 2.4.1 as an identification
and therefore we can write φ = g(1MZp

⊗ σ)µ( 1
p ), where g ∈ G(W (k)) (to be compared

with Subsubsection 2.4.8). Let gad ∈ Gad(W (k)) be the image of g. For α ∈ Q let Dα be
the central division algebra over B(k0) of invariant α.

6.1.1. Fact. To prove the Theorem 4.2 we can also assume that we have a direct sum
decomposition

M = ⊕mi=1Mi

into G-modules such that the following two conditions hold:

(i) if i ∈ {1, . . . ,m} and j ∈ {1, . . . , i − 1, i + 1, . . . ,m}, then Mi has no trivial
Gi-submodule and Mj is a trivial Gi-module;

(ii) we have an identity Z(G) =
∏m
i=1 Z

i, where each Zi is a torus of GLGLGLM that acts
trivially on ⊕j∈{1,... ,i−1,i+1,... ,m}Mj.
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Proof: The arguments for this Fact are the same as the ones of the proof of [Va1, Thm.
6.5.1.1 or Subsubsection 6.6.5] but much simpler as we are over Zp and not over Z(p) and
as we do not have to bother about quasi-polarizations or Hodge Q–structures. We recall
the essence of loc. cit.

We first assume that G0 is of Bn Lie type. Thus G0 is split. We consider the spin
faithful representation G0sc ↪→ GLGLGLM0

over W (k0). Let GSpinGSpinGSpin be the closed subgroup
scheme of GLGLGLM0

generated by G0sc and Z(GLGLGLM0
). Let G′

Zp
:= ResW (k0)/Zp

GSpinGSpinGSpin. We

consider its faithful representation on M ′
Zp

, where M ′
Zp

is M0 but viewed as a Zp-module.

We identify naturally Gad
Zp

= G′ad
Zp

. Let M ′ := M ′
Zp

⊗Zp
W (k). Let G′ := G′

W (k). We

have a unique direct sum decomposition M ′ = ⊕mi=1M
′
i of G′-modules which are also

W (k0)⊗Zp
W (k)-modules. Let g′ ∈ G′(W (k)) be such that its image in G′ad(W (k)) is gad.

Let µ′ be a cocharacter of G′ such that the cocharacter of G′ad = Gad it defines naturally
is µad and the triple C′ := (M ′, g′(1′MZp

⊗ σ)µ′( 1
p ),G′) is a Shimura F -crystal over k. Let

T′
1B(k) be the maximal torus of G′

B(k) whose image in G′ad
B(k) is the same as of T1B(k); it is

a maximal torus of G′
B(k) of Qp-endomorphisms of C′. Thus C′ is semisimple, cf. Fact 3.1

(b). Let µ′
1 be the cocharacter of T′

K1
which over K2 is G′(K2)-conjugate to µ′

K2
and such

that it defines the same cocharacter of G′ad
K1

= Gad
K1

as µ1. The E-pair (T′
1B(k), µ

′
1) of C′

satisfies the C condition if and only if the E-pair (T1B(k), µ1) of C satisfies the C condition.
Similarly, TTR holds for C′ if and only if it holds for C. Thus to prove Theorem 4.2 for
the case when G0 is of Bn Lie type, we can replace C by C′. As the two conditions (i) and
(ii) obviously hold if C is C′, the Fact holds if G0 is of Bn Lie type.

If G0 is of either Cn or Dn Dynkin type, we will only list the modifications required
to be performed to the previous paragraph. If G0 is of Cn Lie type, then the spin repre-
sentation has to be replaced by the standard rank 2n faithful representation G0sc ↪→ GLGLGLM0

over W (k0). If G0 is of Dn Dynkin type, then we have two disjoint subcases (related to
Shimura varieties of DH

n and respectively of DR
n type). The second case can be defined

rigurously by the following two properties:

(iii.a) the adjoint group scheme of the centralizer of µad in Gad is a product of split,
simple groups of either Dn or Dn−1 Lie type;

(iii.b) if n = 4, then for each i ∈ {1, . . . ,m} the non-trivial images of the cocharac-
ters φs(µ) : Gm → G with s ∈ Z in Gi are Gi(W (k))-conjugate.

In the first subcase the spin representation has to be replaced by the standard rank 2n
faithful representation G1 ↪→ GLGLGLM0

over W (k0). Here G1 is an isogeny cover of G0 for
which such a representation is possible; its existence is implied by the fact that G0 splits
over W (k02). If n > 4, then G1 is unique. If n = 4, then we choose G1 such that the
construction of µ′ is possible (we have only one choice for G1, due to the fact that the
two subcases are disjoint). The second subcase is in essence the same as the previous
paragraph (the only difference being that G0sc is not necessarily split; however, as it splits
over W (k02), its splin representation is well defined over W (k0)). �

6.2. Simple properties. We first consider the case when L0
G(φ) is a torus (i.e., we have

L0
G(φ) = T). Thus we have T1B(k) = TB(k) and K1 ⊆ B(k). Let τ1 ∈ Gal(K1/Qp) be
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the restriction of σ to K1. The E-triple (T1B(k), µB(k), τ1) satisfies the condition 2.3 (e1)
and is obviously admissible. Thus Theorem 4.2 holds if L0

G(φ) is a torus. From now on
until Section 7 we will assume that L0

G(φ) is not a torus (i.e., we have L0
G(φ) 6= T). Let

L0 be the Qp-form of L0
G(φ)B(k̄) with respect to (M [ 1

p
], φ). The tori Z0(GQp

) and T1Qp
are

subtori of L0. We have a direct sum decomposition

(8) Lie(L0) ⊗Qp
B(k0) = Lie(Z0(L0)) ⊗Qp

B(k0)
m⊕

i=1

Li0,

where Li0 := (Lie(Lder
0 )⊗Qp

B(k0))∩ Lie(GiB(k̄)). Each Li0 is a semisimple Lie algebra and

thus it is also the Lie algebra of a semisimple group Li0 over B(k0). Moreover, we have
φ(Li0) = L

i+1
0 . Based on this and (8) we get that each p-adic field over which L0 splits

must contain B(k0). Therefore B(k0) ⊆ K1.

6.2.1. Lemma. We assume that p≥ 3. Let H1 := Gal(K1/Qp). Let H0 be a subgroup of
H0

1 := Gal(K1/B(k0)) of even index. If m is odd, then there exists an element τ1 ∈ H1

such that the following two conditions hold:

(i) all orbits under τm1 of the left translation action of H1 on H1/H0 have an even
number of elements;

(ii) the action of τ1 on the residue field l1 of K1 is the Frobenius automorphism of
l1 whose fixed field is Fp.

Proof: For s ∈ N ∪ {0} let H1s be the s-th ramification group of H1. Thus H1 = H10,
H1/H11 is cyclic, and the subgroup H12 of H1 is normal and (as p≥ 3) has odd order. By
replacing H1 with H1/H12, we can assume that H12 = {1K1

}. Thus H11 is a subgroup
of Gm(l1) and therefore it is cyclic. By replacing H1 with its quotient through a normal
subgroup of H11 of odd order, we can assume that H11 is of order 2t for some t ∈ N∪ {0}.
The case t = 0 is trivial and therefore we can assume that t≥ 1. Let H01 be the image
of H0 in H0

1/H11 and let a be its index in H0
1/H11. If a is even, then the condition (i) is

implied by (ii) and therefore we can choose any element τ1 ∈ H1 for which the condition
(ii) holds. If a is odd, then by replacing H1 with its quotient through the subgroup of
H11 of order 2t−1 we can assume that t = 1. Thus H11 has order 2. As H11 is a normal
subgroup of H1 of order 2, it is included in the center of H1. Thus H1 is either cyclic
or isomorphic to H11 × H1/H11. If H1 is cyclic, then we can take τ1 ∈ H1 such that it
generates H1 and the condition (ii) holds. If H1 is isomorphic to H11 ×H1/H11, then we
can take τ1 = (τ11, τ12) such that τ11 ∈ H11 and τ12 ∈ H1/H11 generate these groups and
the condition (ii) holds. In both cases the condition (i) also holds. �

6.2.2. Factors. Let N be the set of those elements i ∈ {1, . . . ,m} for which the image
of µad : Gm → Gad in Gi is non-trivial. Let M := {1, . . . ,m} \ N. If i ∈ N (resp. i ∈ N),
then Gi is called a non-compact (resp. compact) factor of Gad with respect to µad. As µad

is non-trivial, the set N is non-empty. To simplify notations we will assume that 1 ∈ N.
Let v be the number of elements of N. We will choose the cocharacter µ : Gm → G such
that Gm acts via µ trivially on Mi for all i ∈ M.
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6.3. Case 1. Until Subsection 6.4 we will assume that G0 is of either Bn or Dn Dynkin
type and that Gder is simply connected (under these assumptions, one can assume that the
representation of Gi on Mi is the spin representation). Let G01 → G0 be an isogeny such
that G01 is the SOSOSO group scheme of a quadratic form on a free W (k0)-module O0 of rank
r. Here r is either 2n+ 1 or 2n depending on the fact that G0 is of Bn or Dn Dynkin type.
Let SSS := (ResW (k0)/Zp

G01) ×Zp
W (k); it is a semisimple group scheme over W (k) whose

adjoint group scheme is Gad. Let µ0 : Gm → SSS be the unique cocharacter that lifts µad.
Let SOSOSO(Oi, bi) := G01 ×W (k0) W (k), where the Zp-embedding W (k0) ↪→W (k) is the same
as the one that defines Gi = G0 ×W (k0) W (k). We have SSS =

∏m
i=1 SOSOSO(Oi, bi). We have an

identification O0 ⊗Zp
W (k) = ⊕mi=1Oi of W (k0) ⊗Zp

W (k)-modules. For i ∈ {1, . . . ,m},
let Wi := Oi ⊗W (k) K2.

Let Bi := {ei1, . . . , e
i
r} be a K2-basis for Wi such that the following two conditions

hold:

(i) if a, b ∈ {1, . . . , r} with a < b, then the value of bi(e
i
a, e

i
b) is 0 or 1 depending on

the fact that the pair (a, b) belongs or not to the set {(1, 2), . . . , (2n− 1, 2n)};

(ii) the torus T1K2
normalizes each K2e

i
a.

The natural action of Gal(K2/Qp) on cocharacters of T1K2
defines naturally an action

of Gal(K2/Qp) on B := ∪mi=1Bi. For ? ∈ Gal(K2/Qp), let π? be the permutation of B

defined by ?. For each i ∈ {1, . . . ,m}, the set Bi is normalized by Gal(K2/B(k0)).
If there exists an element g0 ∈ SSS(W (k)) whose image in Gad(W (k)) is gad, then

φ0 := g0(1O0
⊗ σ)µ( 1

p ) is a σ-linear automorphism of O0 ⊗Zp
B(k). By a natural passage

to k̄ we can always assume that such an element g0 exists, cf. [Va3, Fact 2.6.3].
Let T0B(k) be the maximal subtorus of SSSB(k) whose image in SSSad

B(k) = Gad
B(k) is

T′
0B(k) := Im(T1B(k) → Gad

B(k)). Let T0Qp
be the Qp-form of T0B(k̄) with respect to

(O0 ⊗Zp
B(k̄), φ0 ⊗ σk̄); it is a form of T0B(k) whose Lie algebra is {x ∈ Lie(T0B(k)) =

Lie(T′
0B(k))|φ(x) = x}. Let T′

0Qp
be the Qp-form of T′

0B(k) which is the quotient of T0Qp

by its finite subgroup whose extension to B(k) is T0B(k) ∩ Z(SSSB(k)).
Until Subsubsection 6.3.4 we will assume that C is basic. Thus L0

G(φ) = G and
therefore L0 is a Qp-form of GB(k̄). To show that there exists an E-pair (T1B(k), µ1) of C

as in Example 2.3.1, we first prove the following Lemma.

6.3.1. Lemma. We recall that C is basic. The action of Gal(K2/B(k0)) on B1 has an
orbit that contains {e12a1−1, e

1
2a1

} for some element a1 ∈ {1, . . . , n}.

Proof: In this proof by orbit we mean an orbit of the action of Gal(K2/B(k0)) on B1.
Suppose there exists an orbit õ1 whose elements are pairwise perpendicular with respect to
b1. To fix the notations, we can assume that there exists a ∈ {1, ..., n} such that e12a−1 ∈ õ1.
Let õ2 be the orbit that contains e12a. The orbit decomposition of B1 corresponds to a
direct sum decomposition of O1[ 1

p ] in minimal B(k)-vector subspaces normalized by T1B(k)

and, in the case when the element g0 exists, by φm0 . Let O1,1 and O1,2 be the B(k)-
vector subspaces of O1[ 1

p ] that correspond to õ1 and õ2 (respectively). The intersection

L1
0 ∩ (End(O1,1 ⊕ O1,2)) ⊗B(k) B(k̄)) is the Lie algebra of a split semisimple group of Ds

Lie type over B(k0), where s is the number of elements of õ1. Argument: we can assume

41



that the element g0 ∈ SSS(W (k)) exists and thus the statement is an easy consequence of
the fact that (as C is basic) all Newton polygon slopes of (O1,s[

1
p
]⊗B(k0)B(k), (φ0⊗σk)m)

are 0 (here s ∈ {1, 2}).
Thus if the Lemma does not hold, then L1

0 split torus of rank n and therefore it
is a split group over B(k0). Thus to prove the Lemma we only have to show that the
semisimple group L1

0 is non-split. This is a rational statement. Thus to check it, based on
[Va3, Thm. 1.3.3 and Subsection 2.5] we can assume that φ(Lie(T)) = Lie(T) and (in order
to use the above notations on Bi’s) that T1B(k) = TB(k). Thus K2 = B(k) and the actions
of πσFp

and φ on cocharacters of T coincide. We can also assume that µ0 : Gm → SSS fixes

eia if either i ∈ M or a≥ 3. Let g1 ∈ NG(T)(W (k)) be such that g1φ(Lie(B)) ⊆ Lie(B),
cf. [Va3, Subsection 2.5]. Let w1 ∈ NG(T)(W (k)) be such that its image in Gad(W (k))
belongs to G1(W (k)) and takes the image of B in G1 to its opposite with respect to the
image of T in G1. As Gder is simply connected of either Bn or Dn Dynkin type, w1 takes the
cocharacter of G1 defined by µad to its inverse. Thus the Shimura F -crystal (M,w1g1φ,G)
over k is basic (to be compared with [Va3, Cases 1 and 2 of Subsubsection 4.2.2]). Thus
based on [Va3, Prop. 2.7.1] we can assume that w1g1 = 1M and therefore that:

(iii) πmσFp
restricted to B1 fixes e1a for a≥ 3 and permutes e11 and e12.

Thus the group L1
0 has a split torus T 1

1;n−1 of rank n − 1: it is the torus of SSS that
fixes e11 and e12 and that normalizes B(k0)e1a for each a ∈ {3, . . . , r}. The centralizer of
T 1

1;n−1 in L1
0 is a non-split torus, cf. property (iii). Thus the group L1

0 is non-split. �

6.3.2. The choice of µ1 for the basic context. Let a1 be as in Lemma 6.3.1. Let o
be the orbit of e12a1−1 under Gal(K2/Qp). For i ∈ N \ {1} let ai ∈ {1, . . . , n} be such that
{ei2ai−1, e

i
2ai

} ⊆ o. Let µ2 : Gm → SSSK2
be the cocharacter that fixes all eia’s except those

of the form ei2ai−1+u, where i ∈ N and u ∈ {0, 1}, and that acts as the identical (resp.
as the inverse of the identical) character of Gm on each K2e

i
2ai

(resp. K2e
i
2ai−1) with

i ∈ N. To define the cocharacter µ1 : Gm → T1K1
it is enough to define the cocharacter

µ1K2
: Gm → T1K2

. Let µ1K2
: Gm → T1K2

be the unique cocharacter such that the
cocharacter of Gad

K2
(resp. of Gab

K2
) it defines naturally is the composite of µ2 with the

isogeny SSSK2
→ Gad

K2
(resp. is the one defined by µK2

). As {ei2ai−1, e
i
2ai

} ⊆ o, the product
of the cocharacters of T1K2

that belong to the Gal(K2/Qp)-orbit of µ1K2
factors through

Z0(GK2
). Thus the E-pair (T1B(k), µ1) of C satisfies the C condition, cf. Example 2.3.1.

6.3.3. Remark. If m is odd and the action of Gal(K2/B(k0)) on B1 has only one orbit,
then it is easy to check based on Lemma 6.2.1 that there exists an E-pair (T1B(k), µ1) of
C that satisfies the cyclic C condition.

6.3.4. The non-basic context. Until the end of Case 1 we will assume that C is
non-basic. We use the previous notations of Subsection 6.3. Let T0

0B(k) be the subtorus

of T0B(k) whose image in Gad
B(k) is the same as the image of Z0(L0

G(φ))B(k). As L0
G(φ)Zp

is the centralizer in GZp
of a rank 1 split torus (see beginning of Section 6), the group

CSSSB(k)
(T0

0B(k)) is a product

(9)

m∏

i=1

mf∏

j=1

SOSOSO(Oi,j, bi,j),
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where Oi[
1
p ] = ⊕

mf

j=1Oi,j is the minimal direct sum decomposition normalized by T0
0B(k)

and bi,j is the restriction of bi to Oi,j . We emphasize that mf ∈ N does not depend on
i and that, in the case when bi,j = 0, we define SOSOSO(Oi,j , bi,j) := GLGLGLOi,j

. We choose the
indices such that we have φ(End(Oi,j)) = End(Oi+1,j).

We define a cocharacter µ2 : Gm → SSSK2
that factors through T0K2

as follows. Let
j ∈ {1, . . . ,mf}. We first assume that b1,j 6= 0. If Gm acts via µ0 trivially (resp. non-
trivially) on ⊕mi=1Oi,j , then we define the action of Gm via µ2 on Oi,j⊗B(k)K2 to be trivial
(resp. to be obtained as in Subsubsection 6.3.2 but working with ⊕m

i=1Oi,j instead of with
Oi).

Until Case 2 we assume that b1,j = 0. Let j̃ ∈ {1, . . . ,mf}\{j} be the unique element
such that Oi,j̃ is not perpendicular on Oi,j with respect to bi. Let o1, . . . , os be the orbits
of the action of Gal(K2/Qp) on B ∩ (⊕mi=1Oi,j) ⊗B(k) K2. Let dj := dimB(k)(O1,j). Let
S+,j (resp. S−,j) be the set of those elements i ∈ N with the property that µ0 acts via
the inverse of the identical (resp. via the identical) character of Gm on a non-zero element
of Oi,j . Let c+,j (resp. c−,j) be the number of elements of S+,j (resp. of S−,j). We have
S+,j ∩S−,j = ∅ as otherwise b1,j 6= 0. Thus c+,j + c−,j ≤ v (see Subsubsection 6.2.2 for v).

Let pj ∈ Z and qj ∈ N be such that g.c.d.(pj, qj) = 1 and (c+,j − c−,j)qj = djpj . If
the element g0 ∈ SSS(W (k)) exits, then the only Newton polygon slope of (Oi,j , φ

m
0 ) is

pj

qj
and

therefore qj divides dj . Thus the B(k0)-subalgebra {x ∈ End(Oi,j)⊗B(k)B(k̄)|(φ⊗σm
k̄

(x) =

x} is (isomorphic to) Mdj/qj
(D pj

qj

), cf. Dieudonné classification of F -crystals over k̄ (see

[Ma, Section 2]; we recall that after a passage to k̄ we can assume that the element
g0 ∈ SSS(W (k)) exists). Thus for each l ∈ {1, . . . , s} there exists el ∈ N such that the
number of elements of ol ∩ B1 is qjel. We have qj(

∑s
l=1 el) = dj . For each l ∈ {1, . . . , s}

we choose numbers c+l,j , c
−
l,j ∈ N ∪ {0} such that the following three relations hold:

(i) c+l,j − c−l,j = pjel;

(ii)
∑s
l=1 c

+
l,j = c+,j ;

(iii) c+l,j + c−l,j ≤ v.

For instance, if pj ≥ 0 we can choose c−1,j = · · · = c−s−1,j = 0 and c−s,j = c−,j , the

numbers c+l,j ’s being now determined uniquely by the relation (i). We define the action of
Gm via µ2 on (Oi,j ⊕Oi,j̃)⊗B(k)K2 as follows. Let l ∈ {1, . . . , s}. Let i ∈ {1, . . . ,m} and

a ∈ {1, . . . , r} be such that eia ∈ ol. The action of Gm via µ2 on K2e
i
a is:

(iv) via the identical character of Gm if a is the smallest number in {1, . . . , r} such

that eia ∈ ol and i is the sthi number in S−,j , where si ∈ {1 +
∑l−1

x=1 c
−
x,j , . . . ,

∑l
x=1 c

−
x,j};

(v) via the inverse of the identical character of Gm if a is the smallest number
in {1, . . . , r} such that eia ∈ ol and i is the sthi number in S+,j , where si ∈ {1 +∑l−1
x=1 c

+
x,j , . . . ,

∑l
x=1 c

+
x,j};

(vi) trivial otherwise.

The action of Gm via µ2 on a K2-vector subspace K2e
i
a of Oi,j̃ is defined uniquely

by the requirement that µ2 factors through the image of T0K2
in GLGLGL(Oi,j⊕Oi,j̃)⊗B(k)K2

.
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Due to the relation (i) the product of the cocharacters of T0K2
of the orbit un-

der Gal(K2/Qp) of the factorization of µ2 through T0K2
gives birth to a cocharacter of

GLGLGL(Oi,j⊕Oi,j̃)⊗B(k)K2
that factors through Z(GLGLGLOi,j⊗B(k)K2

) ×K2
Z(GLGLGLOi,j̃⊗B(k)K2

). Thus
choosing µ1 as in Subsubsection 6.3.2 we get that the product of the cocharacters of T1K2

which belong to the orbit under Gal(K2/Qp) of µ1K2
factors through Z0(L0

G(φ)K2
), cf.

(9). Thus the E-pair (T1B(k), µ1) of (M,φ, L0
G(φ)) satisfies the C condition, cf. Example

2.3.1.

6.4. Case 2. Until Subsection 6.5 we assume that G0 is of Cn or Dn Dynkin type, that
Mi has rank 2n, and that C is basic. This Case 2 is very much the same as the Case 1 for
C basic. We mention only the differences. The first differences are:

(i) we can assume that Oi = Mi and thus that Gm acts via µ trivially on Oi for all
i ∈ M;

(ii) we have r = 2n and for the Cn Dynkin type the form bi is alternating and not
symmetric.

As Mi = Oi let B, Bi, e
i
a, and π? with ? ∈ Gal(K2/Qp) be as in Subsection 6.3. Let

o1, . . . , os be the orbits of the action of Gal(K2/Qp) on B numbered in such a way that
there exists s0 ∈ {0, . . . , s} such that for an element l ∈ {1, . . . , s} the orbit ol contains
the set {e12a1−1, e

1
2a1

} for some number a1 ∈ {1, . . . , n} if and only if l ≤ s0. The difference
s− s0 is an even number. We can also assume that if s1 ∈ {1, . . . , s−s02 }, then the union
os0+2s1−1 ∪ os0+2s1 contains the set {e12a1−1, e

1
2a1

} for some number a1 ∈ {1, . . . , n}. If
l ≤ s0 (resp. l > s0) let ul ∈ N be such that the number of elements of the set õl := ol∩B1

is 2ul (resp. ul). Lemma 6.3.1 gets replaced by the following weaker one.

6.4.1. Lemma. We assume that v is odd. Then ul is even for l > s0.

Proof: As C is basic, all Newton polygon slopes of (O1, φ
m) are v

2 . From this the Lemma
follows. �

To define µ1 it is enough to define µ1K2
. We consider two Subcases:

6.4.2. Choice of µ1 for v odd. We know that ul is even for l > s0, cf. Lemma 6.4.1.
Thus if l > s0 we write ol = ol,1 ∪ ol,2, where ol,1 and ol,2 have ul

2 elements. Not to
introduce extra notations we will assume that if l− s0 ∈ 1 + 2N, then the sets ol,1 ∩Bi and
ol+1,2 ∩ Bi are perpendicular with respect to bi for all i ∈ {1, . . . ,m}. We choose µ1K2

such that Gm acts through it:

(i) trivially on eia if i ∈ M;

(ii) trivially on eia ∈ ol,j if i ∈ N, l ∈ {s0 + 1, . . . , s}, and j ∈ {1, 2} with l − s0 − j
even;

(iii) trivially on eia ∈ ol if i ∈ N, l ≤ s0, and a is odd;

(iv) via the inverse of the identical character on all other elements of B.

Thus µ1K2
acts non-trivially on precisely half of the elements of the set {ol|l ∈

{1, . . . , s}}. Therefore the product of the cocharacters of T1K2
which belong to the
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Gal(K2/Qp)-orbit of µ1K2
factors through

∏m
i=1 Z(GLGLGLMi

) = Z0(GK2
). Thus (T1B(k), µ1)

satisfies the C condition, cf. Example 2.3.1.

6.4.3. Choice of µ1 for v even. Let N0 be a subset of N that has v
2

elements. Let
N1 := N \ N0. Let eia ∈ ol. If l ≤ s0, then we define the action of Gm via µ1K2

on K2e
i
a

as in Subsubsection 6.4.2. If l > s0, then we define the action of Gm via µ1K2
on K2e

i
a

to be via the inverse of the identical character of Gm (resp. trivial) if and only if i ∈ Nj ,
where j ∈ {0, 1} is congruent to l − s0 modulo 2. Thus the number of elements of ol on
whose K0-spans Gm acts via µ1K2

as the inverse of the identical character of Gm is ul
(resp. is ul

2 ) if l ≤ s0 (resp. if l > s0). Therefore the Gal(K2/Qp)-orbit of µ1K2
factors

through
∏m
i=1 Z(GLGLGLMi

) = Z0(GK2
). Thus again the E-pair (T1B(k), µ1) of C satisfies the

C condition.

6.4.4. Remark. We assume that G0 is of D4 Dynkin type. Then Subsubsection 6.3.4 ex-
tends automatically to the present context rkW (k)(Mi) = 8 of Case 2. The only difference:
we have Mi = Oi.

6.5. End of the proof of 4.2. We recall that Subsection 6.1 achieves the reduction to
Cases 1 and 2 of Subsections 6.3 and 6.4. Thus Theorem 4.2 (a) (resp. Theorem 4.2. (b))
follows from Subsubsections 6.3.2, 6.4.2, and 6.4.3 (resp. from Subsubsection 6.3.4). �

6.5.1. Remark. The approach of Subsubsection 6.3.4 extends in many cases to the case
when C is basic and G0 is of An Dynkin type. However, one has to deal not with only two
sets S+,j and S−,j but with n analogue sets and therefore in general it is much harder to
show the existence of corresponding numbers c+l,u,j , where u ∈ {1, . . . , n} is a third index.
This is the reason why in Subsection 6.4 we dealt only with the basic context (and why in
Theorem 9.6 below we will rely as well on [Zi1, Thm. 4.4]).

7. Proofs of Corollaries 4.3, 4.4, and 4.5

In this Section we will assume that p > 3 and that the semisimple group scheme
Gder is simply connected. In Subsections 7.1, 7.2, and 7.3 we prove the Corollaries 4.3, 4.4,
and 4.5 (respectively). If [Cg] ∈ Zram(Y(F)), then by performing O1 we can assume that
there exists a maximal torus of GB(k) of Qp-endomorphisms of Cg (see Remark 3.3.2 (a)
and Corollary 3.6.1). Thus as in Subsection 5.1 we get that there exists m ∈ N such that
(gφ)rm is a semisimple element of G(B(k)). Therefore the element (gφ)r ∈ G(B(k)) is also
semisimple i.e., Cg is semisimple. Thus to end the proofs of Corollaries 4.3 to 4.5, we only
have to show that under the assumptions of either Corollary 4.3 or Corollary 4.4 (resp.
Corollary 4.5) we have [C] ∈ Zram(Y(F)) (resp. we have [(C, λM )] ∈ Zram(Y(F, λM)))
provided C is semisimple.

7.1. Proof of 4.3. We can assume that there exists a subset J0 of J such that (tα)α∈J0

is the family of tensors of T(MZp
) formed by the following three types of tensors:

(i) all elements of Lie(CZp
) := {e ∈ Lie(C)|φ(e) = e};

(ii) the projector Π of Subsubsection 2.4.4 (it is also a projector of End(MZp
) as the

trace form T is perfect);
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(iii) the endomorphism End(MZp
) → End(MZp

)∗ whose restriction to Ker(Π) is 0
and which induces the isomorphism Lie(Gder

Zp
) ∼→Lie(Gder

Zp
)∗ defined naturally by K.

The family of tensors formed by the tensors of (i) (resp. of (ii) and (iii)) is Zp-
very well positioned for Z0(GZp

) (resp. for Gder
Zp

), cf. [Va1, Subsubsection 4.3.13] (resp.

[Va1, Prop. 4.3.10 b) and Rm. 4.3.10.1 1)]). Thus from [Va1, Rm. 4.3.6 2)] we get that
the family (tα)α∈J0

of tensors of T(MZp
) is Zp-very well positioned for GZp

. As the tori
Z0(GQp

) and Gab
Qp

are isomorphic (cf. our hypothesis on the isogeny Z0(G) → Gab), the

set H1(Qp,GQp
) has only one class. This follows from Lemma 2.4.6 (with the notations of

Lemma 2.4.6 we have GQp
= ZGQp

, as Z0(G) = Z0(C1)).

To prove Corollary 4.3, we can assume that L0
G(φ) is a reductive group scheme

(cf. Subsection 2.6). We can also assume that there exists a maximal torus T1B(k) of
Qp-endomorphisms of (M,φ, L0

G(φ)). Let (T1B(k), µ1) be an E-pair of (M,φ, L0
G(φ)) that

satisfies the C condition, cf. Theorem 4.2 (b). Thus the E-pair (T1B(k), µ1) of C is admis-
sible, cf. Theorem 4.1 (b). It is plus plus admissible, cf. previous paragraph. Thus as
Z0(G) = Z0(C1), Corollary 4.3 follows from Theorem 4.1 (c). �

7.2. Proof of 4.4. The proof of Corollary 4.4 is very much the same as the proof of
Corollary 4.3. Only the argument for the plus plus admissibility part has to be changed
slightly. Let H be a split, simply connected semisimple group scheme of Dn Lie type over
a field of characteristic 0.

If n is even, then Z(H) is µ2 × µ2. Moreover we can assume that the kernel of the
first (resp. second) half spin representation of H is the first (resp. the second) factor of this
product. Thus the isogeny Z0(GQp

) → Gab
Qp

is the square isogeny 2 : Z0(GQp
) → Z0(GQp

).

Thus as in Subsection 7.1 we argue that the set H1(Qp,GQp
) has only one class.

If n is odd, then the half spin representations of H have trivial kernels and are dual
to each other (see [Bou2, p. 210]). Thus based on our hypothesis on Z00(G), the isogeny
Z00(GQp

) → G̃ab
Qp

is the square isogeny 2 : Z00(GQp
) → Z00(GQp

). Here G̃Qp
and Z00

Qp
are the

subgroups of GQp
which are the Qp forms of G̃B(k) and Z00(GB(k)) (respectively) obtained

as in Subsection 2.4. The torus Z00(GQp
) is the group scheme of invertible elements of an

étale Qp-algebra. Thus as in Subsection 7.1 we argue that the set H1(Qp, G̃Qp
) has only

one class. But the class L of Subsubsection 2.4.5 is the image of a class L1 ∈ H1(Qp, G̃Qp
).

This is a consequence of the fact that G̃1Qp
is the subgroup of GLGLGLMQp

that fixes a family

of tensors (tα)α∈J̃
of T(MQp

), cf. [De3, Prop. 3.1 c)]. Therefore L is the trivial class.

Regardless of the parity of n, as in Subsection 7.1 we argue that there exists an
E-pair (T1B(k), µ1) of C which is plus plus admissible. Thus as Z0(G) = Z0(C1), Corollary
4.4 follows from Theorem 4.1 (c). �

7.3. Proof of 4.5. The proof of Corollary 4.5 is the same as the proof of Corollary 4.3. As
the group H1(Qp,G

0ad
Qp

) is trivial and as G0der
Qp

is simply connected, the set H1(Qp,G
0
Qp

) has

only one class. Therefore each E-pair (T1B(k), µ1) of C which is admissible, is in fact plus
plus admissible with respect to λM . The rest is the same, only the reference to Theorem
4.1 (c) has to be supplemented by the variant 5.3.3 (a). �
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8. First applications to abelian varieties

Pairs of the form (‡, λ‡) will denote polarized abelian schemes. By abuse of notations,
we also denote by λ‡ the different forms on the cohomologies (or homologies) of ‡ induced by
λ‡. We now apply the results 4.1, 4.2, and 5.3.3 to the geometric context of Subsubsections
1.1.1 and 1.2. Applications to Conjecture 1.2.2 (i) and to Subproblems 1.2.3 and 1.2.4 are
included in Corollary 8.3 and Remark 8.4. If 4 is an algebra, let 4opp be its opposite
algebra.

8.1. Geometric setting. Until the end we assume that D is the p-divisible group of an
abelian variety A over k, that C = (M,φ,G) is a Shimura filtered F -crystal over k such
that axioms 2.4.1 (i) and (ii) hold, and that there exists a polarization λA of A whose
crystalline realization (denoted in the same way) λA : M ⊗W (k) M → W (k) has a W (k)-
span normalized by G. Let F 1 and µ be as in Subsection 2.1. Let GZp

be as in Subsection
2.4. By performing the operation O1 we can assume that the Zariski closure T(φ) of the
group {φrm|m ∈ Z} in GB(k) is a torus over B(k). This implies that we have an identity
End(A) = End(Ak̄). We identify

EA := End(A)opp ⊗Z Q

with a Q–subalgebra of {x ∈ End(M [ 1
p
])|φ(x) = x}.

Let Π be as in Subsection 2.4.4. Let eQp
:= (EA ⊗Q Qp) ∩ Im(Π). Let e⊥Qp

:=

(EA ⊗Q Qp) ∩ Ker(Π). As Π is fixed by φ, we have a direct sum decomposition

EA ⊗Q Qp = eQp
⊕ e⊥Qp

of Qp-vector spaces. Let C(φ)Q be the reductive group over Q of invertible elements of EA;
thus Lie(C(φ)Q) is the Lie algebra associated to EA. A classical theorem of Tate says that
C(φ) := C(φ)B(k) is the centralizer of φr in End(M [ 1

p ]). Thus e := eQp
⊗Qp

B(k) is the Lie

algebra of the centralizer CGB(k)
(φ) of φr in GB(k). Let E1

A be a semisimple Q–subalgebra

of EA which (inside End(M [ 1
p ])) is formed by elements fixed by GB(k) and which is stable

under the involution of EA defined naturally by λA.

8.2. Lemma. Let T1B(k) be a maximal torus of GB(k) of Qp-endomorphisms of C. Then

there exists a maximal torus T
big
1B(k) of GLGLGLM [ 1

p
] of Qp-endomorphisms of (M,φ,GLGLGLM ) and

there exists an element u ∈ C(φ)Q(Qp) such that the following four conditions hold:

(i) the element u normalizes M (i.e., we have u(M) = M) as well as any a priori
fixed W (k)-lattice of M [ 1

p ];

(ii) the torus uTbig
1B(k)u

−1 is the extension to B(k) of a maximal torus of C(φ)Q;

(iii) the element u fixes λA and each element of E1
A;

(iv) we have T1B(k) = Z0(Tbig
1B(k) ∩ GB(k)).
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Proof: Let C(φ)1Q be the identity component of the subgroup of C(φ)Q that normalizes

the Q–span of λA and that centralizes E1
A. It is a reductive group over Q. Let T1

Qp

be a maximal torus of C(φ)1Qp
that contains the Qp-form T1Qp

of T1B(k) with respect to

(M [ 1
p
], φ). From [Ha, Lem. 5.5.3] we deduce the existence of an element u ∈ C(φ)1

Q(Qp)

such that the condition (i) holds and uT1
Qp
u−1 is the extension to Qp of a maximal torus

T1
Q of C(φ)1Q. We choose such an element u which also fixes λA. Thus the condition (iii)

holds. Let T
1big
Q be a maximal torus of C(φ)Q that contains T1

Q. The conditions (ii) and

(iv) hold for T
big
1B(k) := u−1T

1big
B(k)u. �

We have the following geometric consequences of Theorem 4.1 (c) and variant 5.3.3
(a).

8.3. Corollary. We assume that p≥ 3 and that Q + +A holds for C. We also assume
that there exists a subset J0 of J such that the family (tα)α∈J0

of tensors of T(MZp
) is of

partial degrees at most p− 2 and is Zp-very well position for GZp
.

(a) Then by performing the operation O1 we can assume there exist an element
h ∈ P(C) and an abelian variety A(h) over k such that the following two conditions hold:

(i) the abelian variety A(h) is Z[ 1
p ]-isogenous to A and, under this Z[ 1

p ]-isogeny, the

Dieudonné module of its p-divisible group is (h(M), φ) and is a direct sum of F -crystals
over k that have only one Newton polygon slope;

(ii) there exists an abelian scheme A(h)V3
with complex multiplication over a finite,

totally ramified discrete valuation ring extension V3 of W (k) which is a ramified lift of
A(h) to V3 with respect to the Zariski closure G̃(h) of G̃B(k) in GLGLGLh(M), where G̃ is a

GLGLGLM (W (k))-conjugate of G such that the triple (M,φ, G̃) is a Shimura F -crystal over k.

(b) We also assume that the polarization λA is of degree prime to p, that Z0(G) =
Z0(C1(λA)0), and that Q + +A holds for (C, λA). Then by performing the operation O1

we can assume that there exists an element h ∈ I(C, λA) and an abelian variety A(h) over
k such that the condition (i) and the following new condition (iii) hold:

(iii) there exists an abelian scheme A(h)V3
over a finite, totally ramified discrete

valuation ring extension V3 of W (k) which lifts A(h) in such a way that the Frobenius
endomorphism of A(h) also lifts to it, which is a ramified lift of A(h) to V3 with respect to
G(h), and whose p-divisible group D(h)V3

is with complex multiplication.

Proof: We can assume that C is basic, cf. Corollary 2.6.2 and Fact 2.6.3. Let (T1B(k), µ1)

be an E-pair of C which is plus plus admissible. We first proof (a). Let T
big
1B(k) and u

be as in Lemma 8.2; thus u is fixed by φ. Let G̃, T̃
big
1B(k), T̃1B(k), µ̃1, and (t̃α)α∈J be the

inner conjugates of G, T
big
1B(k), T1B(k), µ1, and (tα)α∈J (respectively) through the element

u ∈ GLGLGLM (B(k)). Let C̃ := (M,φ, G̃). The Lie algebra Lie(T̃big
1B(k)) is B(k)-generated by

elements of EA and (T̃1B(k), µ̃1) is an E-pair of C̃ which is plus plus admissible.

We apply the proof of Theorem 4.1 (c) to C̃ and (T̃1B(k), µ̃1) (see Subsection 5.3). We

deduce the existence of an element h ∈ P(C̃) such that the p-divisible group D(h) over k
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whose Dieudonné module is (h(M), φ) has a lift D(h)V3
to a finite, discrete valuation ring

extension V3 of W (k) such that each endomorphism of D(h) whose crystalline realization is

an element of Lie(T̃big
1B(k)) fixed by φ lifts to an endomorphism of D(h)V3

(cf. also property

5.3.3 (b)). Let A(h) be the abelian variety over k defined by the condition (i). Let A(h)V3

be the abelian scheme over V3 defined by D(h)V3
, cf. Serre–Tate deformation theory. The

fact that A(h)V3
is indeed an abelian scheme (and not only a formal abelian scheme over

Spf(V3)) is implied by the fact that we are in a polarized context, cf. variant 5.3.3 (a)
and property 8.2 (iii). By performing the operation O1 we can assume that V3 is a totally
ramified extension of W (k). We can also assume that A(h)V3

is a ramified lift of A(h) to
V3 with respect to G̃(h), cf. Corollary 3.7.1 and Subsubsection 5.3.1. As C̃ is basic, the
part of the condition (i) on F -crystals over k holds (to be compared with [Va3, Subsection
4.1]). Thus the condition (i) holds. This proves (a).

To prove (b) we first remark that λA : M ⊗W (k) M → W (k) is a principal quasi-
polarization of C. Part (b) follows from the proof of Theorem 4.1 (c) applied in the context
of an E-pair (T1B(k), µ1) of C which is plus plus admissible with respect to λA. We get
the existence of an element h ∈ I(C, λA), of a finite, discrete valuation ring extension V3 of
W (k), and of a p-divisible group D(h)V3

over V3 that is a ramified lift of D(h) to V3 with
respect to (h(M), φ,G(h)) and that has the property that each endomorphism of D(h)
whose crystalline realization is an element of Lie(T1B(k)) ∩ End(M) fixed by φ lifts to an
endomorphism of D(h)V3

(cf. Subsubsections 5.3.1, 5.3.2, and 5.3.3 (b)). By performing
the operation O1 we can assume that V3 is a totally ramified extension of W (k). Let A(h)
and A(h)V3

be obtained as above. From the property 5.3.3 (b) we get that the p-divisible
group D(h)V3

is with complex multiplication. As φr ∈ T1B(k)(B(k)) leaves invariant h(M),
the Frobenius endomorphism of A(h) lifts to A(h)V3

(cf. also property 5.3.3 (b) and Serre–
Tate deformation theory). As above we argue that the condition (i) holds. As D(h)V3

is a
ramified lift of D(h) to V3 with respect to (h(M), φ,G(h)), the abelian scheme A(h)V3

is a
ramified lift of A(h) to V3 with respect to G(h). �

8.4. Remark. Corollary 8.3 (b) is our partial solution to Subproblems 1.2.3 and 1.2.4.
We refer to Corollary 8.3 (a). If Lie(T1B(k)) is B(k)-generated by elements of eQ, then
we can take u to be 1M . If moreover the assumptions of Corollary 8.3 (b) hold, then the
condition (ii) holds with h ∈ I(C, λA) and thus with G̃(h) = G(h). This solves Conjecture
1.2.2 (i) under all assumptions of Corollary 8.3.

9. The context of standard Hodge situations

If (G,X) is a Shimura pair, let E(G,X) be the subfield of C which is its reflex field,
let (Gad,Xad) be its adjoint Shimura pair, and let Sh(G,X) be the canonical model over
E(G,X) of Sh(G,X) (see [De1], [De2], [Mi3, Subsections 1.1 to 1.8], and [Va1, Subsections
2.2 to 2.8]). Let Sh(G,X)/K be the quotient of Sh(G,X) by a compact subgroup K of
G(Af ). See [Va1, Subsection 2.4] for injective maps between Shimura pairs. For general
properties of Shimura varieties of PEL type we refer to [Zi1], [LR], [Ko2, Ch. 5], [Mi3,
p. 161], and [RaZ] (we emphasize that in [Mi3, p. 161] one has to add that the axiom
[De2, 2.1.1.3] holds). The injective maps in Siegel modular varieties that define Shimura
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varieties of PEL type as used in these references, will be referred as PEL type embeddings.
Let O(w) be the localization of the ring of integers of a number field with respect to a finite
prime w of it.

In Subsection 9.1 we mainly introduce notations and a setting. Different “properties”
pertaining to the setting of Subsection 9.1 are introduced in Subsection 9.2. In Subsections
9.3 to 9.6 we prove results which fully support the point of view that the two things 1.4 (i)
and (ii) are indeed the last ingredients required to complete the proof of the Langlands–
Rapoport conjecture for p≥ 5 and for Shimura varieties of An, Bn, Cn, and DR

n type (cf.
also Remark 9.8 (b)). The main results are Theorems 9.4, 9.5.1, and 9.6. Not to make this
paper too long, we include only one example (see Example 9.7) of how the new techniques
of Subsections 9.2 to 9.6 apply to Shimura varieties of Hodge type which are not of PEL
type (and thus to which the techniques of [Zi1] and [Ko2] do not apply).

9.1. Standard Hodge situation. We recall part of the setting of [Va3, Section 5]
pertaining to good reduction cases of Shimura varieties of Hodge type. We start with an
injective map

f : Sh(G,X) ↪→ Sh(GSpGSpGSp(W,ψ), S)

of Shimura pairs. Here the Shimura pair (GSpGSpGSp(W,ψ), S) defines a Siegel modular variety,
cf. Subsubsection 1.2.1. We consider a Z-lattice L of W such that ψ induces a perfect
form ψ : L⊗Z L→ Z. Let L(p) := L⊗ Z(p). Until the end we will assume that:

the Zariski closure GZ(p)
of G in GSpGSpGSp(L(p), ψ) is a reductive group scheme over Z(p).

It is easy to see that the group scheme G0
Z(p)

:= GZ(p)
∩ SpSpSp(L(p), ψ) is reductive (cf. [Va3,

Subsection 5.1, Formula (11)]). Let Kp := GSpGSpGSp(L(p), ψ)(Zp); it is a hyperspecial subgroup
of GSpGSpGSp(W,ψ)Qp

(Qp). As GZ(p)
is a reductive group scheme over Z(p), the intersection

H := GQp
(Qp)∩Kp is a hyperspecial subgroup of GQp

(Qp). Let v be a prime of the reflex
field E(G,X) that divides p; it is unramified over p (cf. [Mi4, Prop. 4.6 and Cor. 4.7]). Let

k(v) be the residue field of v. Let r := dimQ(W )
2

∈ N. Let Af (resp. A
(p)
f ) be the Q–algebra

of finite adèles (resp. of finite adèles with the p-component omitted). We have an identity

Af = A
(p)
f × Qp.

For integral canonical models of (suitable quotients of) Shimura varieties we refer
to [Va1, Subsubsections 3.2.3 to 3.2.6]. It is well known that the Z(p)-scheme M that
parameterizing isomorphism classes of principally polarized abelian schemes of relative
dimension r over Z(p)-schemes which have compatible level-N symplectic similitude struc-
tures for all natural numbers N relatively prime to p, together with the natural action of

GSpGSpGSp(W,ψ)(A
(p)
f ) on it, is an integral canonical model of Sh(GSpGSpGSp(W,ψ), S)/Kp (for instance,

see [De1, Thm. 4.21] and [Va1, Ex. 3.2.9 and Subsection 4.1]). These structures and this
action are defined naturally via the Z-lattice L of W (see [Va1, Subsection 4.1]). It is
known that Sh(G,X)/H is a closed subscheme of ME(G,X) = Sh(GSpGSpGSp(W,ψ), S)E(G,X)/Kp,
cf. [Va1, Rm. 3.2.14].

Let N be the normalization of the Zariski closure of Sh(G,X)/H in MO(v)
. Let

(A,ΛA) be the pull back to N of the universal principally polarized abelian scheme over
M. Let (vα)α∈J be a family of tensors of T(L∗

(p)) such that G is the subgroup of GLGLGLW
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that fixes vα for all α ∈ J (cf. [De3, Prop. 3.1 c)]). As G contains Z(GLGLGLW ), we have
vα ∈ ⊕∞

n=0L
∗⊗n
(p) ⊗Z(p)

L⊗n
(p) for all α ∈ J, The choice of L and (vα)α∈J allows a moduli inter-

pretation of Sh(G,X) (see [De1], [De2], [Mi4], and [Va1, Subsection 4.1 and Lem. 4.1.3]).

For instance, the set Sh(G,X)/H(C) is naturally identified with GZ(p)
(Z(p))\(X×G(A

(p)
f ))

(see [Mi4, Prop. 4.11 and Cor. 4.12]) and therefore it is the set of isomorphism classes of
complex principally polarized abelian varieties of dimension r that carry a family of Hodge
cycles indexed by the set J, that have compatible level-N symplectic similitude structures
for all natural numbers N relatively prime to p, and that satisfy certain axioms (see [Va1,
Subsection 4.1]). This moduli interpretation endows naturally the abelian scheme AE(G,X)

with a family (wA
α )α∈J of Hodge cycles (the Betti realizations of pull backs of wA

α via
C-valued points of NE(G,X) correspond naturally to vα).

Let H0 be a compact, open subgroup of G(A
(p)
f ) that has the following three prop-

erties:

(a) there exists N0 ∈ N such that (N0, p) = 1, N0 ≥ 3, and we have an inclusion

H0 ×H ⊆ K(N0) := {g ∈ GSpGSpGSp(L, ψ)(Ẑ)|g ≡ 1L⊗ZẐ
moduloN0};

(b) the triple R := (A,ΛA, (w
A
α )α∈J) is the pull back of an analogue triple R(H0) =

(AH0
,ΛAH0

, (w
AH0
α )α∈J) over N/H0, where (AH0

,ΛAH0
) is the pull back via the natural

morphism N/H0 → M/Kp(N0) of the universal principally polarized abelian scheme over

M/Kp(N0) (here Kp(N0) is the unique subgroup of GSpGSpGSp(W,ψ)(A
(p)
f ) such that we have

K(N0) = Kp(N0) × Kp);

(c) the scheme N is a pro-étale cover of N/H0 (cf. [Va1, Prop. 3.4.1]).

9.1.1. Some notations. Let k = Fq be a finite field that contains k(v). We consider a
W (k)-morphism z : Spec(W (k)) → N/H0. Let

(AW (k), λAW(k)
, (wα)α∈J) = z∗(R(H0)).

Let y : Spec(k) → Nk(v)/H0 and (A, λA) be the special fibres of z and (AW (k), λAW(k)
)

(respectively). Let (M,φ, λA) be the principally quasi-polarized Dieudonné module of
(A, λA). Let F 1 be the Hodge filtration of M defined by AW (k). For α ∈ J let tα ∈ T(M [ 1

p
])

be the de Rham component of the Hodge cycle wα on AW (k). Let G̃ be the Zariski closure
in GLGLGLM of the subgroup of GLGLGLM [ 1

p
] that fixes tα for all α ∈ J. Until the end we will

assume that the triple (f, L, v) is a standard Hodge situation in the sense of [Va3, Def.
5.1.2]. Therefore the following two properties hold:

(a) the O(v)-scheme N/H0 is smooth;

(b) for each point z ∈ N/H0(W (k)), G̃ is a reductive, closed subgroup scheme of
GLGLGLM and the triple (M,φ, G̃) is a Shimura F -crystal over k.

Let G := GW (k) and G0 := G0
W (k). Each tensor tα is fixed under the natural action

of φ on T(M [ 1
p ]), cf. [Va3, Cor. 5.1.6]. By performing the operation O1 we can assume
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that G̃ is isomorphic to G. By multiplying each vα by a fixed integral power of p we can
assume that for all points z ∈ N/H0(W (k)) we have tα ∈ T(M) for all α ∈ J. To match
the notations with those of Sections 1 to 8, we will identify (non-canonically) G̃ = G. Thus
let C := (M,φ,G). Obviously the axiom 2.4.1 (i) holds for C. The fact that the axiom
2.4.1 (ii) holds for C is implied by [De2, axiom 2.1.1.3]. The triple C depends only on y
and not on z (cf. [Va3, paragraph before Subsubsection 5.1.7] and therefore we call it the
Shimura F -crystal attached to the point y ∈ Nk(v)/H0(k). Let z∞ : Spec(W (k̄)) → N be
such that the resulting W (k̄)-valued point of N/H0 factors through z. We refer to C ⊗ k̄
as the Shimura F -crystal attached to the special fibre y∞ : Spec(k̄) → Nk(v) of z∞. We
also refer to y∞ (resp. z∞) as an infinite lift of y (resp. of z). We also refer to F 1 as the
lift of C defined by the point z ∈ N/H0(W (k)) that lifts y ∈ Nk(v)/H0(k).

If we have another point yj ∈ N/H0(k), then (Aj , λAj
), Cj = (Mj, φj ,Gj, λAj

), yj∞,
and (tjα)α∈J will be the analogues of (A, λA), C, y∞, and (tα)α∈J obtained by replacing y
with yj .

9.1.2. PEL type embeddings. Let CQ := CGLGLGLW
(G). Let G1 be the identity component

of C1Q := GSpGSpGSp(W,ψ)∩CGLGLGLW
(CQ); it contains G. Let X1 be the G1(R)-conjugacy class of

homomorphisms ResC/RGm → G1R that contain the composites of elements of X with the
monomorphismGR ↪→ G1R. We get a PEL type embedding f1 : (G1,X1) ↪→ (GSpGSpGSp(W,ψ), S)
through which f factors. We call it the PEL-envelope of f , cf. [Va1, Rm. 4.3.12].

Let G2Z(p)
:= CGSpGSpGSp(L(p),ψ)(Z

0(GZ(p)
)); it is a reductive group scheme over Z(p) (cf.

[DG Vol. III, Exp. XIX, Subsection 2.8]). Let G2 be the generic fibre of G2Z(p)
; it

contains G1 and moreover we have Z0(G1) = Z0(G2). As in the previous paragraph we
get an injective map f2 : (G2,X2) ↪→ (GSpGSpGSp(W,ψ), S) through which both f and f1 factor
naturally.

Let i ∈ {1, 2}. Let Hi := GiQp
(Qp)∩Kp. Let vi be the prime of the subfield E(Gi,Xi)

of E(G,X) which is divided by v. Let Ni be the normalization of the Zariski closure of
Sh(Gi,Xi)/Hi in MO(vi)

. By replacing H0 with a compact, open subgroup of it we can
assume that:

(a) there exists a compact, open subgroup H0i of Gi(A
(p)
f ) which is contained in

Kp(N0), which contains H0, and for which the quotient morphism Ni → Ni/H0i is a
pro-étale cover (see proof of [Va1, Prop. 3.4.1]).

We can also assume that H01 is a subgroup of H02. The injective map fi is a PEL
type embedding. The triple (f2, L(p), v2) is a standard Hodge situation (this well known
fact follows from either [Zi1, Subsection 3.5] or [LR]). Let (Ai,ΛAi

) be the pull back to Ni

of the universal abelian scheme over M. Let Gi be the integral, closed subgroup scheme of
GLGLGLM which has the analogue meaning of G = G̃ but obtained working with the k-valued
point yi of Ni/H0i defined by y. The group scheme G2 is reductive.1

We use the notations of Subsection 8.1 and (by performing the operation O1) until
the end we will assume that T(φ) is a torus. Let E1A := EA ∩Lie(G1B(k)). Identifying the
opposite of the Q–algebra that defines Lie(CQ) with a semisimple Q–subalgebra of EA, we

1 If either p > 3 or p = 2 and C1Q is connected, then it is easy to see that Theorem
2.4.2 (b) implies that G1 is also a reductive group scheme (see [LR] and [Ko2]).
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get that E1A is the maximal Q–vector subspace of EA that centralizes Lie(CQ) and that
leaves invariant the Q–span of λA. We can assume that Z1A := Lie(Z0(G1Z(p)

)), when
viewed as a set, is included in {vα|α ∈ J}.

9.1.3. Rational stratification. Let Srat be the rational stratification of Nk(v) defined
in [Va3, Subsection 5.3]. We recall that if y1 ∈ N/H0(k), then y1∞ and y∞ are k̄-valued
points of the same (reduced) stratum of Srat if and only if there exists an isomorphism
(M1⊗W (k)B(k̄), φ1⊗σk̄) ∼→ (M ⊗W (k)B(k̄), φ⊗σk̄) that takes t1α to tα for all α ∈ J. The

number of strata of Srat is finite, cf. [Va3, Rm. 5.3.2 (b)]. Let s0 be the G(A
(p)
f )-invariant

reduced, closed subscheme of Nk(v) defined by the following property: the point y∞ factors
through s0 if and only if C is basic. Obviously s0 is a union of strata of Nk(v).

9.2. Some properties. Let h ∈ I(C, λA) ⊆ G0(B(k)). Let A(h) be as in Subsubsection
1.1.1. We denote also by λA the principal polarization of A(h) defined naturally by λA.
Let

y(h) : Spec(k) → MFp
/Kp(N0)

be the morphism defined by (A(h), λA) and its level-N0 symplectic similitude structure
induced naturally from the one of (A, λA) defined by the point y ∈ Nk(v)/H0(k). Let
y(h)∞ : Spec(k̄) → MFp

be an infinite lift of y(h).

(a) For p≥ 3 (resp. p = 2) we say the isogeny property holds for (f, L, v) if for
each point y ∈ Nk(v)/H0(k) and for every element h ∈ I(C, λA), the (resp. up to the
operation O1 the) morphism y(h) factors through Nk(v)/H0 and there exists a point z(h) ∈
N/H0(W (k)) which lifts this factorization (denoted in the same way) y(h) : Spec(k) →

Nk(v)/H0 and for which tα is the de Rham realization of z(h)∗(w
AH0
α ) for all α ∈ J.

(b) We say the weak isogeny property holds for (f, L, v) if Srat has only one closed
stratum which is s0 itself.

(c) We say the Milne conjecture holds for (f, L, v) if for each point y ∈ Nk(v)/H0(k)
there exists a symplectic isomorphism (M,λA) ∼→ (L∗⊗Z W (k), ψ∗) that takes tα to vα for
all α ∈ J. Here ψ∗ is the alternating form on L∗ defined naturally by ψ.

(d) We say the ST property holds for (f, L, v) if there exists an open, dense, G(A
(p)
f )-

invariant subset O of Nk(v) such that whenever we have y ∈ O/H0(k), there exists a
unique Hodge cocharacter µcan of C whose generic fibre factors through the torus of GB(k)

generated by Z0(GB(k)) and Z0(CGB(k)
(T(φ))) and moreover the lift F 1

can of C defined by
µcan is the lift defined by a unique point z ∈ N/H0(W (k)) that lifts y. Here ST stands for
Serre–Tate.

(e) Suppose that p≥ 3. We say the GFT property holds for (f, L, v) if there exists
a subset J0 of J such that (vα)α∈J0

is a family of tensors of T(L∗
(p)) of partial degrees at

most p− 2 and, when viewed as a family of tensors of T(L∗
(p) ⊗Z(p)

Zp), it is also Zp-very
well position for GZp

. Here GFT stands for a good family of tensors.

9.2.1. Remarks. (a) In [Va6] it is proved that for p≥ 3 the Milne conjecture holds for
(f, L, v). In [Va4] it is proved that for p≥ 3 the ST property holds for (f, L, v). The GFT
property holds for (f, L, v) in most cases (like if p≥ max{5, r}, cf. [Va1, Cor. 5.8.6]).
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(b) The isogeny property was announced in [Va1, Subsubsection 1.7.1]. We outline
the very essence of one way to prove it for p≥ 3. We assume that the weak isogeny property
holds for (f, L, v) at least if p≥ 3. Due to this, standard specialization arguments show
that to prove that the isogeny property holds for (f, L, v) it suffices to prove it only for
those points y ∈ Nk(v)/H0(k) for which C is basic. If Gder is simply connected, then the
motivic theory of [Mi5] when combined with (a), Proposition 9.3, and Subsubsection 9.4.1
will imply that the isogeny property holds for such a point y (see also Remark 9.4.2). But
the part of the Main Problem that pertains to DH

n types and to relative PEL situations
will allow us to remove the assumption that Gder is simply connected (to be compared
with the paragraph before Subproblem 1.2.3).

(c) For each β ∈ Gm(W (k)) there exists an element g ∈ G(W (k)) that acts on
the W (k)-span of λA via multiplication with β. Thus if there exists an isomorphism
(M, (tα)α∈J) ∼→ (L∗ ⊗Z W (k), (tα)α∈J), then there exists also an isomorphism of the form
(M, (tα)α∈J, λA) ∼→ (L∗ ⊗Z W (k), (tα)α∈J, ψ

∗). Moreover, as G0 is smooth and has a con-
nected special fibre, such isomorphisms (M, (tα)α∈J, λA) ∼→ (L∗⊗ZW (k), (tα)α∈J, ψ

∗) exist
if and only if they exist in the flat topology of W (k).

9.2.2. Theorem. If Z0(G) = Z0(G1), then the Milne conjecture holds for (f, L, v).

Proof: It is known that we can identify (H1
ét(AB(k)

,Zp), λA) = (L∗
(p)⊗Z(p)

Zp, ψ
∗) in such a

way that the p-component of the étale component of wα := z∗B(k)(w
A
α ) is vα for all α ∈ J (see

[Va1, top of p. 473]). Strictly speaking loc. cit. mentions a Gm(Zp)-multiple β(p) of ψ∗; as
the complex 0 → G0

Zp
(Zp) → GZp

(Zp) → Gm(Zp) → 0 is exact, we can assume that β(p) =

1. Thus as B(k̄) is a field of dimension ≤ 1 (see [Se2]) and due to Fontaine comparison
theory, there exists an isomorphism jA : (M ⊗W (k) B(k̄), λA) ∼→ (L∗

(p) ⊗Z(p)
B(k̄), ψ∗) that

takes tα to vα for all α ∈ J. As Z0(G) = Z0(G1), we have Z0(G) = Z0(C1(λA)) (cf.
Theorem 2.4.2 (c)); here Z0(C1(λA)) is defined as in Theorem 2.4.2 (c) but for the pair
(C, λA). As in Subsubsections 5.3.2 and 5.3.3 (a) we argue that we can assume that
jA(M ⊗W (k) W (k̄)) = L∗

(p) ⊗Z(p)
W (k̄). Thus the Milne conjecture holds for (f, L, v), cf.

last sentence of Remark 9.2.1 (c). �

9.3. Proposition. We assume that the Milne conjecture holds for (f, L, v).

(a) Then s0 is a stratum of Srat which is closed.

(b) We also assume that Gder is simply connected and that y factors through s0/H0.
Let y0 ∈ s0/H0(k). Let y0∞ : Spec(k̄) → Nk(v) be an infinite lift of y0. Then up to the

operation O1, there exist elements t ∈ G2(A
(p)
f ) and h ∈ I(C, λA) such that we have an

identity y0∞t = y(h)∞ of k̄-valued points of Mk(v).

Proof: The connected components of N are permuted transitively by G(A
(p)
f ), cf. [Va1,

Lem. 3.3.2]. Thus to prove the Proposition, we can assume that y ∈ s0/H0(k) and that
both y∞ and y0∞ factor through the special fibre of the same connected component N0 of
N. Let π (resp. π0) be the Frobenius endomorphism of A (resp. of A0). See [Ch, Subsection
3.a] for the Frobenius tori Tπ and Tπ0

over Q of π and π0 (respectively). The crystalline
realization of π is φr ∈ G(B(k)) and therefore we have an identity T(φ) = TπB(k). Each
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element b ∈ Z1A defines naturally a Z(p)-endomorphism of any pull back of A, A1, or A2,
to be denoted also by b. Thus we view Z0(G) and Tπ as subtori of C(φ)Q.

We prove (a). As y ∈ s0/H0(k), the Newton quasi-cocharacter of (M,φ,G) factors
through Z0(GB(k)) (see [Va3, Cor. 2.3.2]) and thus it can be identified with a quasi-
cocharacter µ0 of Z0(GB(k)). This quasi-cocharacter depends only on the Gal(Qp)-orbit of

the composite µab : Gm → Gab of µ with the canonical epimorphism G � Gab. Moreover
µab is uniquely attached to X, cf. [Va3, Subsubsections 5.1.1 and 5.1.8]. We conclude that,
as the notation suggests, µ0 does not depend on the point y ∈ N/H0(k).

The torus Tπ is the smallest subtorus of C(φ)Q with the property that µ0 is a quasi-
cocharacter of TπB(k), cf. Serre’s result of [Pi, Prop. 3.5]. Thus Tπ is naturally identified
with a subtorus of Z0(G) uniquely determined by X. Applying this also to y0 we get
Tπ = Tπ0

. Thus π0 ∈ Q[π] is such that its image in each number field factor F0 of Q[π] is
non-trivial. Therefore from [Ta2] we get that the images of π and π0 in F0 are both Weil
q-integers. Thus π

π0
is a root of unity and therefore by performing the operation O1 we

can assume that π = π0 ∈ Tπ(Q) = Tπ0
(Q) 6 Z0(G)(Q). Let i : A→ A0 be the Q–isogeny

defined by this equality, cf. [Ta2]. Let (M0[ 1
p ], φ) ∼→ (M [ 1

p ], φ0) be the isomorphism defined
by i; we will view it as a natural identification.

Let G0′
Qp

be the Qp-form of G0
B(k) with respect to (M [ 1

p ], φ). We have G0′ab
Qp

= G0ab
Qp

and therefore let G0′ab
Zp

:= G0ab
Zp

.

As the Milne conjecture holds for (f, L, v), there exists an element j ∈ GLGLGLM (B(k))
such that j(M) = M0 and j takes λA to λA0

and takes tα to t0α for all α ∈ J. Thus j
commutes with φr = φr0 ∈ Z0(GB(k))(B(k)). We can also assume that j takes a Hodge
cocharacter of C to a Hodge cocharacter of C0 (to be compared with [Va3, Lem. 5.1.8]).
Thus we can identify j−1φj = gφ, where g ∈ G0(W (k)). From [Va3, Prop. 2.7.1 and
Subsection 4.7] we deduce the existence of an element h ∈ G0(B(k̄)) such that we have
g(φ⊗σk̄) = h−1(φ⊗σk̄)h. In other words, there exists an isomorphism (M0⊗W (k)B(k̄), φ0⊗
σk̄, (t0α)α∈J) ∼→ (M ⊗W (k) B(k̄), φ⊗ σk̄, (tα)α∈J). Thus s0 is a stratum of Srat; it is closed
by its very definition. Thus (a) holds.

We probe (b); thus Gder is simply connected. As j commutes with φr we get that
φr = (j−1φj)r = (gφ)r. Thus g defines a class γg ∈ H1(Gal(B(k)/Qp),G

0′
Qp

) whose

image in H1(Gal(B(k)/Qp),G
0′ab
Qp

) factors through H1(Gal(W (k)/Zp),G
0′ab
Zp

) = 0. As the

group H1(Gal(W (k)/Zp),G
0′ab
Zp

) is trivial (cf. Lang theorem) and as the homomorphism

G0(W (k)) → G0ab(W (k)) is surjective, we can assume that we have g ∈ Gder(W (k)).
Thus γg is the image of some class γder

g ∈ H1(Gal(B(k)/Qp),G
′der
Qp

). As Gder is simply

connected, the class γder
g is trivial (cf. [Kn, Thm. 1]). Thus we can assume that h ∈

Gder(B(k)). Therefore gφ = h−1φh and thus we have h ∈ I(C, λA) and j−1φj = h−1φh.
Let h̃ := hj−1 ∈ GLGLGLM (B(k)); it is fixed by φ and thus it is a Qp-valued point of C(φ)Qp

.
Let ZC(φ)Q be the reductive subgroup of C(φ)Q that fixes λA and Z1A[ 1

p
]. We now

check that we can assume that i takes b to b for all b ∈ Z1A[ 1
p
] and takes λA to λA0

. Let

γ ∈ H1(Q, ZC(φ)Q) be the class that “measures” the existence of such a choice of i. Let l
be a rational prime. We check that the image of γ in H1(Ql, ZC(φ)Ql

) is the trivial class.
If l = p (resp. if l 6= p), then this is so due to the previous paragraph (resp. due to the
existence of all level-lm symplectic similitude structures of A with m ∈ N and on the fact
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that π = π0 ∈ Tπ(Q) = Tπ0
(Q) 6 Z0(G)(Q)). The triples (A, λA, Z1A) and (A0, λA0

, Z1A)
lift to characteristic 0. But all pull backs of (A,ΛA, Z1A) via complex valued points of
N0 are R-isogenous (as each connected component of X is a G0(R)-conjugacy class). Thus
(A, λA, Z1A) and (A0, λA0

, Z1A) are R-isogenous. Thus the image of γ in H1(R, ZC(φ)R)
is also the trivial class.

The group ZC(φ)C is isomorphic to the centralizer of a torus of SpSpSp(W,ψ)C. Thus
it is the product of some GLGLGLn groups with either a trivial group or with a SpSpSp2n group
(the ranks n do depend on the factors of such a product). Therefore we have a product
decomposition ZC(φ)Q = Z1 ×Q Z2, where:

(i) there exists a semisimple Q–algebra Z11 with involution ι11 such that Z1 is the
group scheme of invertible elements of Z11 fixed by ∗;

(ii) Z2 is either trivial or a simple connected semisimple group of Cn Dynkin type.

The pair (Z11, ι11) is a product of semisimple Q–algebras endowed with involutions which
are either trivial or of second type. Thus Z1 is a product of Weil restrictions of reductive
groups whose derived groups are forms of SLSLSLn groups (n ∈ N) and whose abelianizations
are of rank 1. This implies that the Hasse principle holds for Z1 (even if some n’s are
even). It is well known that the Hasse principle holds for Z2. We conclude that:

(iii) the Hasse principle holds for ZC(φ)Q and therefore the class γ is trivial (cf.
previous paragraph).

It is well known that Z1(Q) is dense in Z1(Qp). As ZC(φ)B(k) is CSpSpSp(M [ 1
p
],λA)(T(φ))

and as Z0(G) splits over a finite unramified extension of W (k), the group Z2B(k̄) is split.
Thus Z2(Q) is dense in Z2(Qp), cf. [Mi4, Lem. 4.10]. Thus we get:

(iv) the group ZC(φ)Q(Q) is dense in ZC(φ)Q(Qp).

Due to the property (iii), we can assume that j ∈ G0(B(k)). Thus h̃ ∈ G(B(k))
is a Zp-isomorphism between the principally quasi-polarized Dieudonné modules with en-
domorphisms associated to (A(h), λA, Z1A) and (A0, λA0

, Z1A). Let s ∈ N. A Theorem
of Tate says that Homk(A0, A(h)) ⊗Z Zp is the set of Zp-homomorphisms between the
Dieudonné modules of the p-divisible groups of A(h) and A0 (see [Ta2, p. 99]; the passage
from Qp coefficients to Zp coefficients is trivial). Based on this and the property (iv) we

get that there exists a Z(p)-isomorphism h̃(p) between (A0, λA0
, Z1A) and (A(h), λA, Z1A)

whose crystalline realization is congruent modulo ps to h̃.

Due to existence of the Z(p)-isomorphism h̃(p), there exists an element t ∈ GSpGSpGSp(W,ψ)(A
(p)
f )

such that we have an identity y0∞t = y(h)∞ of k̄-valued points of Mk(v) (cf. also [Mi2,

Section 3]). The fact that we can take t ∈ G2(A
(p)
f ) is checked easily by considering the

level-lm symplectic similitude structures of y∗0∞(A,ΛA) and (y(h)∞)∗(A,ΛA) (here l is a
prime different from p and m ∈ N). �

9.4. Theorem. We assume that the Milne conjecture, the isogeny property, and the ST
property hold for (f, L, v). We also assume that p≥ 3, that Gder is simply connected, and
that y factors through s0/H0. Then in Proposition 9.3 (b) we can assume that in fact we

have t ∈ G(A
(p)
f ).
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Proof: Let N0
t be the right translation of N0 through t i.e., the normalization of MO(v)

in

the right translation of N0
E(G,X) through t. It is a finite scheme over MO(v)

, cf. proof of

[Va1, Prop. 3.4.1]. As the isogeny property holds for (f, L, v), the point u := y(h)∞ is a
k̄-valued point of Nk(v) that factors also through N0

tk(v). We can identify the principally

quasi-polarized Dieudonné module associated to u∗(A,ΛA) with D(h) := (h(M) ⊗W (k)

W (k̄), φ⊗ σk̄, λA). Let F 1
h be the lift of (h(M) ⊗W (k) W (k̄), φ⊗ σk̄,G(h)W (k̄)) defined by

a W (k̄)-valued point of N that lifts both u and a point z(h) ∈ N/H0(W (k)) as in the
property 9.2 (a).

As y0∞t = u we can identify naturally M0 ⊗W (k) W (k̄) = h(M) ⊗W (k) W (k̄). Thus
G0W (k̄) is the reductive, closed subgroup scheme of GLGLGLh(M)⊗W (k)W (k̄) that fixes t0α for all

α ∈ J. Let F 1
0 be a lift of (h(M) ⊗W (k) W (k̄), φ ⊗ σk̄,G0W (k̄)) defined by a W (k̄)-valued

point of N0
t that lifts u.

The closed subgroup schemes G(h)W (k̄) and G0W (k̄) of GLGLGLh(M)⊗W (k)W (k̄) are conjugate

under an element h0 ∈ SpSpSp(h(M), λA)(W (k̄)) which is fixed by φ⊗σk̄ and which is congruent
modulo ps to 1h(M)⊗W (k)W (k̄) (see the last part of the proof of Proposition 9.3 (b)). Let

d := dimW (k)(G
der). Let Rd := W (k̄)[[x1, . . . , xd]]. Let ΦRd

be the Frobenius lift of Rd
that is compatible with σk̄ and that takes each xi to xpi for all i ∈ {1, . . . , d}.

The local deformation space D (resp. Dt) of u∗(A,ΛA) defined by NW (k̄) (resp.

N0
tW (k̄)

) depends only on G(h)der
W (k̄)

(resp. Gder
0W (k̄)

), cf. [Va1, Subsubsections 5.4.4 to

5.4.8 and Subsection 5.5]. More precisely the principally quasi-polarized filtered F -crystal
over Rd/pRd defined by the pull back of (A,ΛA) via a formally smooth W (k̄)-morphism
Spec(Rd) → N (resp. Spec(Rd) → N0

t ) that lifts u is isomorphic to

(10) (h(M) ⊗W (k) Rd, F
1
h ⊗W (k̄) Rd, g

der
univ(φ⊗ ΦRd

), λA,∇h)

(resp. (h(M) ⊗W (k) Rd, F
1
0 ⊗W (k̄) Rd, g

der
0univ(φ ⊗ ΦRd

), λA,∇0h)). Here gder
univ : Rd →

G(h)der
W (k̄)

and gder
0univ : Rd → Gder

0W (k̄)
are formally étale morphisms which (due to the

previous paragraph) coincide modulo ps. Thus the special fibres of D (resp. Dt) coincide,
cf. Lemma 3.4 and Serre–Tate deformation theory. Thus the images in Mk(v) of the
connected components Ut and U of N0

tk(v) and Nk(v) (respectively) through which u factors,
are the same.

Let O be as in the property 9.2 (d). Let OU be the image of O ∩ U in Mk(v). Let
(Mo, φo, λAo

) be the principally quasi-polarized Dieudonné module associated naturally to
a point yo∞ ∈ OU(k̄). A k̄-valued point of either U or Ut that factors through yo∞, will
be also denoted by yo∞.

As the ST property holds for (f, L, v), each such k̄-valued point yo∞ of U (resp. of Ut)
has a unique W (k̄)-lift zo∞ (resp. zot∞) to N (resp. to N0

t ) such that there exists a Hodge
cocharacter µo (resp. µot) of the Shimura F -crystal (Mo, φo,Go) (resp. (Mo, φo,Go0))
attached to yo∞ ∈ U(k̄) (resp. to yo∞t

−1 ∈ N0(k̄)) whose generic fibre factors through the
center of the subgroup of GLGLGLMo[ 1

p
] that commutes with Z0(Go)B(k̄) = Z0(Go0)B(k̄) and with

the integral powers of the Frobenius endomorphism of yo
∗(AH0

); here yo is an Fpm -valued
point of O/H0 that has yo∞ as an infinite lift, for some m ∈ N which is big enough. As µo
and µot commute, the two lifts of (Mo, φo,GLGLGLMo

) they define coincide. Thus as p≥ 3, we
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have an identity zo∞ = zot∞ of W (k̄)-valued points of MO(v)
. The normalization of the

Zariski closure of these zo∞ = zot∞ points in MO(v)
is on one hand a connected component

of N and on the other hand it is N0
t .

But N(C) = GZ(p)
(Z(p))\(X × G(A

(p)
f )) and its analogue holds for N2(C), cf. [Mi4,

Prop. 4.11 and Cor. 4.12]. Thus as N0
t is a connected component of N we easily get

that t ∈ G2Z(p)
(Z(p))(Z(p))G(A

(p)
f ). Thus to prove the Theorem, we can assume that

t ∈ G2Z(p)
(Z(p)). By considering level-lm symplectic similitude structures with l 6= p fixed

and with m ∈ N varying, we get that t ∈ GZ(p)
(Z(p)). �

9.4.1. An interpretation. As Milne conjecture is assumed to hold for (f, L, v), the Zp
structure of C is isomorphic to (L∗⊗Z Zp, GZp

, (vα)α∈J). Thus the condition [Va3, 5.2 (b)]
holds for (f, L, v). Thus from [Va3, Subsubsection 4.2.2 and the proof of Thm. 5.2.3] we
get the existence of a point z0∞ ∈ N(W (k̄)) that lifts a k̄-valued point of s0 and such that
the Mumford–Tate group of each complex extension of z∗0∞(A) is a torus. By enlarging
k we can assume that the W (k̄)-valued point of N/H defined by z0∞ factors through a
point z0 ∈ N/H(W (k)). Thus Theorem 9.4 can be interpreted as follows. If y ∈ s0/H0(k)
and if we work under the assumptions of Theorem 9.4, then up to the operations O1 and
O2 we can assume that the lift z ∈ N/H0(W (k)) of y is such that AW (k) is with complex
multiplication.

9.4.2. Remark. We assume that the hypotheses of Proposition 9.3 (b) hold. Let t ∈

G2(A
(p)
f ) and h ∈ I(C, λA) be such that we have an identity y0∞t = y(h)∞ of k̄-valued

points of Mk(v), cf. Proposition 8.3 (b). We also assume that e (see Subsection 8.1) is
the extension to B(k) of the Lie algebra of a subgroup E(φ)Q of C(φ)Q (for instance, this
holds if the cycle Π of Subsection 8.1 is the crystalline realization of an algebraic cycle of
AW (k)). Let E(φ)0Q be the subgroup of E(φ)Q that fixes λA; it is a Q–form of G0

B(k) and

thus it is connected. The group E(φ)0Q(Q) is dense in E(φ)0Q(Qp), cf. [Mi4, Lem. 4.10].

Thus as in the proof of Proposition 9.3 we get the existence of an element h1 ∈ E(φ)0Q(Q)
such that by denoting also by h1 its crystalline realization, we have h1(h(M)) = M . This

implies that we can choose y(h)∞ to be the translation of y∞ by an element of G(A
(p)
f )

defined naturally by h1. Thus y(h) factors through Nk(v)/H0. This implies directly that

t ∈ G(A
(p)
f ).

In future work we will show independently of [Mi5] i.e., based mainly on the weak
isogeny property and on [Va1], that for p≥ 3 the point y(h) factors through N/H0 if either
k(v) = Fp or if all simple factors of (Gad,Xad) are of An, Bn, Cn, or DR

n type.

9.5. The non-basic context. In this Subsection we assume that the isogeny property and
the GFT property hold for (f, L, v), that p≥ 3, and that C is not basic. We also assume
that Q + +A holds for (C, λA) and that Z0(G) = Z0(G1). Thus the Milne conjecture
holds for (f, L, v), cf. Theorem 9.2.2. All assumptions of Corollary 8.3 hold (cf. also
Subsubsection 9.1.1) and therefore we will use the notations of Corollary 8.3, with h ∈
I(C, λA) ⊆ G0(B(k)). Let (T1B(k), µ1) be the E-pair of C which is plus plus admissible
and which was used in the proof of Corollary 8.3 (b). Let T1Qp

and K2 be as in Definition
2.3 (c). We know that L0

GLGLGLh(M)
(φ) is a reductive, closed subgroup scheme of GLGLGLh(M), cf.
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property (i) of Corollary 8.3 (a). Let Zh(φ) be the split rank 1 subtorus of Z(L0
GLGLGLh(M)

(φ))

such that the Newton quasi-cocharacter of C factors through Zh(φ)B(k); it is a torus of
G(h).

As the property 9.2 (a) holds for y and h, we can assume that y(h) ∈ Nk(v)/H0(k).
Let V̄3 := V3 ⊗W (k) W (k̄). Let λA(h)V3

be the principal polarization of A(h)V3
that lifts

λA(h) = λA. Let z̃∞ : Spec(V̄3) → MO(v)
be the morphism that lifts the composite of y(h)∞

with the morphism Nk(v) → Mk(v) and that is defined by the pull back of (A(h)V3
, λA(h)V3

)

to V̄3. Let z(h)∞ ∈ N(W (k̄)) be a point that lifts y(h)∞. The part of the proof of Theorem
9.4 that pertains to (10) holds even if C is not basic, cf. [Va1, Subsubsections 5.4.4 to
5.4.8 and Section 5.5]. Thus as p≥ 3, from Theorem 3.6 and Corollary 3.7.3 we get that
z̃∞ factors through N. We fix an E(G,X)-embedding i3 : V̄3[ 1

p ] ↪→ C and we use it to

naturally identify B(k) with a subfield of C.
We identify H1

ét(A(h)
B(k)

,Zp) = H1(A(h)C,Z(p)) ⊗Z(p)
Zp (cf. [AGV, Exp. XI])

and H1(A(h)C,Z(p)) = L∗
(p) in such a way that vα becomes the p-component of the étale

component of z̃∗∞(wA
α ) for all α ∈ J (cf. [Va1, pp. 472–473]). Thus we can identify the

Mumford–Tate group of A(h)C with a reductive subgroup G̃3 of G. Let G3 be a reductive
subgroup of G which is maximal under the properties that it contains G̃3 and we have
Gder

3 = G̃der
3 . As the Frobenius endomorphism of A(h) lifts to AV3

, it defines naturally a
Q–valued point π of Z0(G3). Let X3 be the G3(R)-conjugacy class of the homomorphism
ResC/RGm → G3R that defines the Hodge Q–structure on W defined by A(h)C. The pair
(G3,X3) is a Shimura pair.

Let Z3 be the subtorus of GLGLGLH1
ét

(A(h)
B(k)

,Zp) that corresponds to Z0(LGLGLGLh(M)
(φ))

via Fontaine comparison theory for A(h)V3
. It exists as p≥ 3 and as we can identify it

naturally with the group scheme of invertible elements of the semisimple Zp-subalgebra
of End(h(M)) formed by elements of Lie(Z0(LGLGLGLh(M)

(φ))) fixed by φ. Its generic fibre
commutes with G3Qp

. The subtorus Zh(φ)ét of Z3 that corresponds to Zh(φ) via Fontaine
comparison theory for A(h)V3

, is a Gm subgroup scheme of the Zariski closure of Z0(G3Qp
)

in GLGLGLH1
ét

(A(h)
B(k)

,Zp) = GLGLGLL∗

(p)
⊗Z(p)

Zp
. Let T3 be a maximal torus of G3 such that the

following two things hold (cf. [Ha, Lem. 5.5.3]):

(i) the torus T3R is the extension of a compact torus by Z(GLGLGLW⊗QR);

(ii) there exists an element g ∈ Gad
3 (Qp) such that gT3Qp

g−1 is the subtorus of G3Qp

which is isomorphic to T1Qp
and which corresponds to T1V3[

1
p
] via Fontaine comparison

theory for A(h)V3
.

Let µ3 : Gm → T3C be the cocharacter such that gµ3g
−1 is obtained from µ1 by

extension of scalars under the restriction iK2
: K2 ↪→ C of i3 to K2. From the property

(ii) we get:

(iii) the cocharacter µ3 is G3(C)-conjugate to the Hodge cocharacters of GLGLGLW⊗QC

that define Hodge Q–structures on W associated to points x3 ∈ X3.

Let S3C be the subtorus of T3C generated by Z(GLGLGLW⊗QC) and Im(µ3). As the torus
T3R/Z(GLGLGLW⊗QR) is compact, S3C is the extension to C of a subtorus S3R of T3R. From
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the property (iii) we get that we can identify SwR = ResC/RGm and thus we get a natural
monomorphism

h3 : ResC/RGm ↪→ T3R.

Let X′
3 be the G3(R)-conjugacy class of h3. As in the proof of [Va3, Thm. 5.2.3] one

checks that we can choose T3 such that the pair (G3,X
′
3) is a Shimura pair (this time it is

irrelevant what the Zariski closures of T3 and G3 in GLGLGLL(p)
are and therefore loc. cit. can

be adapted to our present context).
The adjoint Shimura pairs (Gad

3 ,X′ad
3 ) and (Gad

3 ,Xad
3 ) of (G3,X

′
3) and (G3,X3) (re-

spectively) coincide i.e., we have an identity Xad
3 = X′ad

3 (cf. the property (iii) and [De2,
Prop. 1.2.7 and Cor. 1.2.8]). As the group Gad

3 (Q) is dense in Gad
3 (R), it permutes the

connected components of Xad
3 . Thus by replacing the injective map

i3 : (T3, {h3}) ↪→ (G3,X
′
3)

by its composite with an isomorphism

(G3,X
′
3) ∼→ (G3,X3)

defined by an element of Gad
3 (Q), we can assume that X′

3 = X3.
As the cocharacter µ1 is defined over K1, the reflex field E(T3, {h3}) is a subfield of

K1. Let v3 be the prime of E(T3, {h3}) such that the local ring O(v3) of it is dominated

by the ring of integers of K1. Let H3 := T3(Qp) ∩ H and let H03 := T3(A
(p)
f ) ∩ H0. It

is easy to see that the natural morphism Sh(T3, {h3})/H3 → Sh(G,X)E(T3,{h3})/H (see
[De1, Cor. 5.4]) is a closed embedding. Let T3 be the Zariski closure of Sh(T3, {h3})/H3

in NO(v3)
. Let O0 be a finite, discrete valuation ring extension of the completion Ov3 of

O(v3) such that we have a morphism z0 : Spec(O0) → T3/H03 and K0 := O0[ 1
p ] is a Galois

extension of Qp. Let A0O0
:= z∗0(AH0

), where we denote also by z0 the O0-valued point of
N/H0 defined naturally by z0. By performing the operation O1 to C, we can assume that
the residue field of O0 is k and that the abelian scheme A0 has complex multiplication.
We can assume that z0 and z̃∞ give birth to complex valued points of the same connected
component of Sh(G3,X3)/(G3(Af )∩ (H0 ×H)). Let y0 be the special fibre of z0 identified
as well with a k-valued point of Nk(v)/H0. We recall that (A0, λA0

) = y∗0(AH0
,ΛAH0

) and
that (M0, φ0,G0) is the Shimura F -crystal attached to y0. By performing the operation
O1, we can also assume that all endomorphisms of A0k̄ are pull backs of endomorphisms of
A0. Let Z(φ0) be the subtorus of G0 that corresponds to Zh(φ)ét via Fontaine comparison
theory for the abelian scheme A0O0

. Let G3B(k) be the reductive subgroup of G0B(k) that
corresponds to G3Qp

via Fontaine comparison theory for A0K0
.

We denote also by µ3 the cocharacter Gm → T3Ov3
[ 1

p
] whose extension to C is µ3

(i.e., it is the Hodge cocharacter defined by h3, cf. the very definition of reflex fields).
The Newton quasi-cocharacter of (M0, φ0,G0) is the quasi-cocharacter of T3B(k) (viewed
as a maximal torus of G0B(k)) which is the mean-average of the Gal(K0/Qp)-orbit of µ3,
cf. [Ko1, Subsections 2.8 and 4.2] (see also either [RR, Thm. 1.15] or [RaZ, Prop. 1.21]).
Thus it factors through Z0(G3B(k)), cf. the Gad

3 (Qp)-conjugacy of the property (ii) and the
fact that the Newton quasi-cocharacter of (M,φ,G) factors through the subtorus T(φ) of
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Z0(G3B(k)). Thus as in the proof of Proposition 9.3 (a) we argue that up to performing the
operation O1 to C we can assume that the Betti realization of the Frobenius endomorphism
of A0 obtained via A0O0

is the element π ∈ Z0(G3).

9.5.1. Theorem. We assume that the isogeny property, the ST property, and the GFT
property hold for (f, L, v), that p≥ 3, that C is not basic, and that Gder is simply connected.
We also assume that Q + +A holds for (C, λA) and that Z0(G) = Z0(G1). Let y0 ∈
Nk(v)/H0(k) be as above (i.e., the special fibre of a composite morphism z0 : Spec(O0) →

T3/H03 → N/H0). Then up to performing O1, there exists h1 ∈ I(C, λA), t1 ∈ G(A
(p)
f ),

and an infinite lift y0∞ ∈ Nk(v)(k̄) of y0 ∈ Nk(v)/H0(k) such that y0∞t1 is an infinite lift
of y(h1) ∈ Nk(v)/H0(k).

Proof: The proof of this is entirely the same as the proofs of Proposition 9.3 (b) and
Theorem 9.4. Only the part of the proof of Proposition 9.3 (b) that pertains to an element
g ∈ G0(W (k)) has to be slightly modified. The role of Z1A is now replaced by the maximal
Z(p)-subalgebra Z3A of End(L(p)) fixed by Z0(GZ(p)

) and by π ∈ Z0(G3)(Q). Up to
the operation O1, each element b ∈ Z3A defines a Z(p)-endomorphism of either A0 or
A. As we can assume that π0 = π ∈ Z0(G3)(Q), as in the proof of Proposition 9.3 we
argue that we have a Q–isogeny i : A(h) → A0 that defines naturally an identification
(M0[ 1

p ], φ0) = (M [ 1
p ], φ), an element j ∈ GLGLGLM (B(k)) such that j(h(M)) = M0, and an

element g ∈ G(h)0(W (k)) such that j−1φj = gφ.

Both Zh(φ) and j−1Z(φ0)j are Gm subgroup schemes of G(h) and their Lie algebras
have natural generators fixed by φ. As these generators are identified naturally with
elements of Z0(G3Qp

) and as the generic fibres of both points z̃∞ and z0 factor through
Sh(G3,X3)/(G3(Af )∩ (H0 ×H)), over B(k̄) these generators are G0(B(k̄))-conjugate and
therefore they are also G(h)0(W (k))-conjugate. Thus we can assume that j−1Z(φ0)j =
Zh(φ) and therefore that g ∈ (L0

G(h)(φ)∩G(h)0)(W (k)). As in the proof of Proposition 9.3

we argue that we can assume that g ∈ L0der
G(h)(φ)(W (k)). As Gder is simply connected, from

Fact 2.6.1 we get that L0der
G(h)(φ) is simply connected. Thus as in the proof of Proposition

9.3 we argue that we can assume that there exists an element h′ ∈ L0der
G(h)(φ)(B(k)) such

that we have gφ = h′−1
1 φh′. If h1 := h′h ∈ G0(B(k)), then we have an isomorphism

h′j−1 : (M0, φ0) ∼→ (h1(M), φ) and therefore h1 ∈ I(C, λA). The rest of the proof is as the
last part of the proof of Proposition 9.3 (b). �

9.6. Theorem. Let n ∈ N \ {1}. We assume that all simple factors of (Gad,Xad) are of
either Cn or DH

n type, that all simple factors of (Gad
1 ,Xad

1 ) are of A2n−1 type, and that CQ

is indecomposable (equivalently, and that CQ is the group scheme of invertible elements of
a simple Q–algebra). We also assume that Z0(G) = Z0(G1) and that the monomorphism
Gder

C ↪→ Gder
1C is a product of monomorphisms of one of the forms: SpSpSp2m ↪→ SLSLSL2m, SOSOSO2m ↪→

SLSLSL2m, and SLSLSLm ↪→ SLSLSLm. Then TTA holds for C.

Proof: We have C1Q = G1 (i.e., the group C1Q is connected), cf. the hypothesis that
pertains to the A2n−1 type. The Zariski closure CZ(p)

of CQ in GLGLGLL(p)
is a reductive group

scheme, cf. Theorem 2.4.2 (b) applied over Zp. Thus the Zariski closure of G1 in GLGLGLL(p)
is a
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reductive group scheme, the triple (f1, L, v1) is a standard Hodge situation, and the O(v1)-
scheme N1/H01 is smooth (see [LR] and [Ko2]). Let y1 and G1 be as in Subsubsection 9.1.2.
Thus C1 := (M,φ,G1) is the Shimura F -crystal attached to the point y1 ∈ N1k(v1)/H01(k).
The statement of the Theorem depends only on C up to the operations O1 and O2 and
therefore from now we will forget about f and N and we will only keep in mind that
the quadruple (M,φ,Lie(CZ(p)

), λA) is the crystalline realization of a principally polarized
abelian variety endowed with Z(p)-endomorphisms (A, λA,Lie(CZ(p)

)) over k and that our
hypotheses get translated into properties of the group schemes G, G1, etc. By performing
the operation O1, we can assume that G and G1 are split. The main property required
below is the following one (cf. hypotheses):

(i) We have Z0(G) = Z0(G1) and the monomorphism Gder ↪→ Gder
1 is a product of

monomorphisms of one of the forms: SpSpSp2m ↪→ SLSLSL2m, SOSOSOsplit
2m ↪→ SLSLSL2m, and SLSLSLm ↪→ SLSLSLm.

By performing the operation O2, we can assume that L0
G(φ) is a reductive group

scheme, cf. Subsection 2.6. Thus we can replace C by (M,φ, L0
G(φ)). From Fact 2.6.1 and

the property (i) we get the existence of a direct sum decomposition

(M,φ) = ⊕j∈J (Mj, φ)

into F -crystals over k that have only one Newton polygon slope such that for each j ∈ J
the following two properties hold:

(ii) the adjoint of the image L0(j) of L0
G(φ) in GLGLGLMj

via the projection
∏
j∈J GLGLGLMj

→
GLGLGLMj

, has all simple factors of the same Lie type θ(j) ∈ {Cm, Dm, Am|m ∈ {1, . . . , n}};

(iii) the image L0
1(j) of L0

G1
(φ) in GLGLGLMj

via the same projection is either L0(j) or
its adjoint has all simple factors of the same Lie type A2m−1 and θ(j) ∈ {Cm, Dm}.

Let T1B(k) be a maximal torus of GB(k) of Qp-endomorphisms of C. Its centralizer
T′

1B(k) in G1B(k) is a maximal torus of G1B(k) of Qp-endomorphisms of C1, cf. property (i)

and the fact that in Subsubsection 9.1.2 we assumed that T(φ) is a torus. Let T11B(k) be
the centralizer of T1B(k) in CGLGLGL

M[ 1
p

]
(CB(k)); it is a torus over B(k). We use the notations of

Definition 2.3 (c), an upper index ′ being used in connection to T′
1B(k). We apply [Ha, Lem.

5.5.3] to the reductive subgroup of C(φ)Q that normalizes the Q–span of λA and that fixes
each Q–endomorphism of A defined by an element of Lie(CQ). Thus up to a replacement
of (M,φ, L0

G(φ)) by (M,φ, hL0
G(φ)h−1), where h ∈ G1(W (k)) commutes with φ, we can

assume that Lie(T′
1B(k)) is B(k)-generated by elements of EA. From [Zi1, Thm. 4.4] we

get that up to the operations O1 and O2, the isogeny class of abelian varieties endowed
with endomorphisms whose crystalline realization is (M [ 1

p ], φ, (Lie(T11B(k))+Lie(CB(k)))∩

End(A)) has a lift to the ring of fractions of a finite field extension K ′
3 of K ′

2. Thus the
Hodge cocharacter of this lift, when viewed in the crystalline context, is the extension to
K ′

3 of a cocharacter µ′
1 : Gm → T′

1K′

1
such the E-pair (T′

1B(k), µ
′
1) of C1 is admissible. But

the product Q of the simple factors of L0
G(φ)ad which are of some Am Lie type, m≥ 2, is the

same as the similar product for L0
G1

(φ)ad, cf. property (i). Thus we choose a cocharacter
µ1 : Gm → T1K1

such that the following three properties hold (to be compared with
Subsection 6.1):
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(iv.a) the cocharacters of Q
B(k)

defined by µ1 and µ′
1 coincide;

(iv.b) the cocharacter of the product of the simple factors of L0
G(φ)adK1

which are not
subgroups of QK2

defined by µ1 is constructed based on Subsection 6.4;

(iv.c) a G(K2)-conjugate of µ1K2
is the extension to K2 of a Hodge cocharacter of

C.

Let F 1
K2

be as in Definition 2.3 (h). The admissible filtered modules over K2 are
stable under direct sums. Thus to check that (T1B(k), µ1) is admissible (i.e., to end the
proof of the Theorem), we can work with a fixed j0 ∈ J and we have to show that the
filtered module (Nj0 [ 1

p ], φ, F 1
K2

∩ (Nj0 ⊗W (k) K2)) over K2 is admissible. Let JA := {j ∈

J |θ(j) = Am, m ∈ N\{1}}. If j0 ∈ JA, then (Nj0 [ 1
p ], φ, F 1

K2
∩Nj0⊗W (k)K2) is admissible as

(T′
1B(k), µ2) is admissible. If j0 ∈ J \JA, then the fact that (Nj0 [ 1

p
], φ, F 1

K2
∩Nj0 ⊗W (k)K2)

is admissible follows from Theorems 4.1 (b) and 4.2 (b) (cf. Subsection 6.4). �

9.7. Example. There exists a second approach (besides the one mentioned in Remark
9.2.1 (b)) toward the proof that the isogeny property holds for (f, L, v). We exemplify it
as well as Subsections 9.2 to 9.6 in the following concrete context.

9.7.1. Assumptions. Let n ∈ N \ {1}. Let m ∈ N. We assume that p does not divide
n− 1, that p ≥ 5, that 2r = dimQ(W ) = 4nm, and that Gder

Zp
=

∏m
i=1G

i, where each Gi is
an SpSpSp2n group scheme over Zp. We also assume that we have a direct sum decomposition

(11) Lp := L⊗Z Zp = ⊕2m
i=1L

i
p

into free Zp-modules of rank 2n which is normalized by Gder
Zp

and for which the following
property holds:

(i) the representation of Gi on Ljp is trivial if j /∈ {2i− 1, 2i} and it is the standard
rank 2n representation if j ∈ {2i− 1, 2i}.

Let Ti be the Gm subgroup scheme of GLGLGLLp
that acts trivially on Ljp if j /∈ {2i−1, 2i}

and as the inverse of the identical (resp. as the identical) character of Gm on L2i−1
p (resp.

on L2i
p ). We also assume that GZp

is generated by Gder
Zp

, by Z(GLGLGLLp
), and by the tori Ti

with i ∈ {1, . . . ,m}; thus GZp
is split. This last assumption implies that for two elements

i1, i2 ∈ {1, . . . , 2m}, the Zp-modules Li1p and Li2p are perpendicular with respect to ψ if
and only if (i1, i2) /∈ {(1, 2), (2, 1), (3, 4), (4, 3), . . . , (2m − 1, 2m), (2m, 2m− 1)}. Finally,
we also assume that Gad

Q is Q–simple and that the group Gad
R has compact, simple factors.

9.7.2. First properties of (f, L, v). We list some simple properties.

(a) We have CZp
:= CGLGLGLLp

(GZp
) =

∏2m
i=1 Z(GLGLGLLi

p
). Moreover CGLGLGLLp

(CZp
) =

∏2m
i=1 GLGLGLLi

p
.

From the perpendicular aspects of Subsubsection 9.7.1 we get that Z(G1Zp
) = Z(GZp

) and
that Gder

1Zp
=

∏m
i=1G

i
1, where each Gi1 is an SLSLSL2n group scheme that contains Gi. Thus

Gi1 acts trivially on Ljp if j /∈ {2i − 1, 2i} and we can assume that the representation of

Gi1 on L2i−1
p is the standard rank 2n representation. Thus we have Gi = NGi

1
(Gi) for all

i ∈ {1, . . . ,m} and therefore GZp
= NG1Zp

(GZp
).
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(b) As p does not divide 2(n− 1) the Killing and the trace forms on Lie(Gder
Zp

) are perfect

(see [Va1, Lem. 5.7.2.1]). Thus as in Subsection 7.1 we can assume that there exists a
subset J0 of J such that (vα)α∈J is of partial degrees at most 2 and, when viewed as a
family of tensors of T(L∗

(p)⊗Z(p)
Zp), is Zp-very well positioned for GZp

(cf. also [Va1, Thm.

5.7.1]). Thus (f, L, v) is a standard Hodge situation (cf. [Va1, Thm. 5.1 and Rm. 5.6.5])
for which the GFT property holds. As Z0(GZp

) = Z0(G1Zp
), the Milne conjecture holds

for (f, L, v) (cf. Theorem 9.2.2).

(c) The projector of Lp on Lip associated to (11) is fixed by GZp
and thus it is a Zp-linear

combination of tensors of End(End(L(p))) fixed by GZ(p)
. Thus all of part (a) transfers

automatically to the crystalline context of the Shimura F -crystal C of Subsubsection 9.1.1.
Therefore we have a direct sum decomposition M = ⊕2m

i=1M
i normalized by G and formed

by free W (k)-modules of rank 2n. We have λA(M i1 ⊗M i2) = 0 if and only if (i1, i2) /∈
{(1, 2), (2, 1), . . . , (2m−1, 2m), (2m, 2m−1)}. As in the part (a) we argue that G = NG1

(G)
(the group scheme G1 being identified with the intersection of GSpGSpGSp(M,λA) with the double
centralizer of G in GLGLGLM ). Moreover, we have a direct sum decomposition Gder =

∏m
i=1 Gi

with the property that each Gi acts trivially on M j if j 6= i. As Gder
Qp

is simply connected

and G0ab
Qp

is split, the set H1(Qp, G
0
Qp

) has only one class.

(d) We show that the assumption that CQ is decomposable leads to a contradiction. As
Gad is Q–simple, any subrepresentation of the representation of Gder on W has dimension
at least 2nm. Thus if CQ is decomposable, then there exists a direct sum decomposition
W = W1 ⊕W2 in G-modules of dimension 2nm. Let F be a totally real number field such
that Gad is the ResF/Q of an absolutely simple F -group G̃ad

F (cf. [De2, Subsubsection 2.3.4
(a)]); we have [F : Q] = 2m. The maximal subgroup of GLGLGLWi

that commutes with G is
ResF/QGm. This implies that Z0(GR) is a split torus of dimension m+ 1 (more precisely,
we have a short exact sequence 0 → ResF/QGm → Z0(G) → Gm → 0). But the maximal
split torus of Z0(GR) is Z(GLGLGLW⊗QR) and thus it has dimension 1. As m + 1 > 1, we
reached a contradiction. Thus CQ is indecomposable. Thus TTA holds for C, cf. Theorem
9.6. From this and the end of part (c) we get that TT + +A holds for (C, λA).

9.7.3. The isogeny property. We check that the isogeny property holds for (f, L, v).
Let h ∈ I(C, λA). Let D and D(h) be the p-divisible groups of A and A(h) (respectively).
Let D = ⊕2m

i=1D
i and D(h) = ⊕2m

i=1D(h)i be the direct sum decompositions that correspond
naturally to (11). For each i ∈ {1, . . . ,m}, the duals of D2i−1 and D(h)2i−1 are D2i and
D(h)2i (respectively). Let T (i) be the image of µ in Giad. If the torus T (i) is trivial, then
(M2i−1 ⊕M2i, F 1 ∩ (M2i−1 ⊕M2i), φ) is a canonical lift (for all points z ∈ N/H0(W (k))).
For the remaining part of this paragraph we assume that T (i) is non-trivial. Let ψ2i−1

be a perfect alternating form on L2i−1
p normalized by the image of GZp

in GLGLGLL2i−1
p

via

the projection
∏2m
i=1 GLGLGLLi

p
→ GLGLGLL2i−1

p
; it is unique up to a Gm(Zp)-multiple. Let λD2i−1

and λD(h)2i−1 be the principal quasi-polarizations of D2i−1 and D(h)2i−1 that correspond
naturally to ψ2i−1. Let jk : (D2i−1, λD2i−1) → (D(h)2i−1, λD(h)2i−1) be the Qp-isogeny

defined by the equality M2i−1[ 1
p ] = h(M2i−1)[ 1

p ]. From the proof of [FC, Ch. VII, Prop.

4.3] we get that jk lifts to a Qp-isogeny

jk[[X]] : (E2i−1
k[[X]], λE2i−1

k[[X]]
) → (E(h)2i−1

k[[X]], λE(h)2i−1
k[[X]]

)
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between principally quasi-polarized p-divisible groups over k[[X]] such that the fibre of
E2i−1
k[[X]] over k((X)) is ordinary. Let R1 := W (k)[[X]] and ΦR1

be as in Subsection 3.3. We

can identify the principally quasi-polarized F -crystal of (E2i−1
k[[X]], λE2i−1

k[[X]]
) over k[[X]] with

(M2i−1 ⊗W (k) R1, g2i−1(φ⊗ ΦR1
),∇2i−1, λM2i−1)

where λM2i−1 is the perfect alternating form on M 2i−1 defined by λD2i−1 and g2i−1 ∈
SpSpSp(M2i−1, λM2i−1)(R1) = Gi(R1).

Let g ∈ Gder(R1) be such that for each i ∈ {1, . . . ,m} its component in G2i−1(R1) is
the identity element (resp. is g2i−1) if T (2i − 1) is trivial (resp. is non-trivial). Let CR̄1

be the extension to R̄1 := W (k̄)[[X]] of (M ⊗W (k) R1, g(φ⊗ ΦR1
),∇, λA, (tα)α∈J), where

the connection ∇ on M ⊗W (k) R1 is obtained as in Lemma 3.4. Let d, Rd, and ΦRd
be as

in the proof of Theorem 9.4. Let J : Spec(Rd) → NW (k̄) be a formally smooth morphism
through which y∞ factors. The principally quasi-polarized filtered F -crystal with tensors
over Rd/pRd defined by the pull back of the triple R via J is of the form

CRd = (M ⊗W (k) Rd, gd(φ⊗ ΦRd
),∇d, λA, (tα)α∈J),

where gd ∈ Gder(Rd) and ∇d is a connection on M ⊗W (k) Rd whose Kodaira–Spencer map
has as image the image of Lie(G) ⊗W (k) Rd in HomW (k)(M/F 1, F 1) ⊗W (k) Rd (cf. [Va1,
Subsubsections 5.4.4 to 5.4.8 and Subsection 5.5]). Moreover, CR1 is induced from CRd via
a W (k̄)-morphism jd : Rd → R1 that maps the ideal (X1, . . . , Xd) to the ideal (X) (cf.
[Fa, Thm. 10 and Rm. (iii) of p. 136]).

We now check that y(h) up to the operation O1 factors through N/H0. Let M1 be
a W (k)-lattice of M [ 1

p
] such that we have a direct sum decomposition M1 = ⊕mi=1M1 ∩

M i[ 1
p
] and each ψ2i−1 induces a perfect alternating form on M1 ∩M

2i−1[ 1
p
]. If moreover

(M1, φ, λA) is a principally quasi-polarized Dieudonné module, then it is easy to see that
there exists an element h ∈ G0(B(k)) such that we have h(M) = M1 (cf. also Remark
9.2.1 (c)). We have a natural variant of this for k((X))-valued points of N/H0. Thus due
to existence of jd and jk[[X]], using a standard specialization argument to check that y(h)
up to the operation O1 factors through N/H0 we can assume that (M,φ) is ordinary. Let
F 1

0 be the canonical lift of (M,φ). As p≥ 3 and as the W (k̄)-morphism NW (k̄) → MW (k̄) is

a formally closed embedding at each k̄-valued point of NW (k̄) (cf. [Va1, Cor. 5.6.1]), there
exists a unique point z0 ∈ N/H0(W (k)) such that its attached Shimura filtered F -crystal
is (M,F 1

0 , φ,G). Not to introduce extra notations we will assume that F 1 = F 1
0 and z = z0.

As (M,φ) is ordinary, the direct summand F 1[ 1
p ] ∩ h(M) of h(M) is a lift of (h(M), φ,G).

Let z(h) : Spec(W (k)) → MO(v)
/Kp(N0)p be the lift of y(h) such that F 1[ 1

p ] ∩ h(M)

is the Hodge filtration of h(M) defined by A(h)W (k), where (A(h)W (k), λA(h)W(k)
) is the

pull back of the universal abelian scheme over MO(v)
/Kp(N0)p via z(h). We have a Z[ 1

p
]-

isogeny jW (k) : AW (k) → A(h)W (k) that lifts the Z[ 1
p
]-isogeny A → A(h) and that is

compatible with the principal polarizations. Let jC be its extension to C via an O(v)-
embedding W (k) ↪→ C. Let L0 := H1(AC,Z). Let L1 := H1(A(h)C,Z). We can identify
W = L0 ⊗Z Q = L1 ⊗Z Q in such a way that ψ and each vα with α ∈ J are the Betti
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realizations of the principal polarizations of AC and A(h)C and respectively of the Hodge
cycle wα, cf. [Va1, Subsection 4.1]. Such an identification is unique up to an element of
G0(Q). We have L0[ 1

p ] = L1[ 1
p ]. Also G(Qp) = G(Q)H0, cf. [Mi4, Lem. 4.9]. Thus in order

to get that, up to the operation O1, the point z(h) factors through N/H0, we only have
to show that there exists an element gQp

∈ G(Qp) such that gQp
(L0 ⊗Z Zp) = L1 ⊗Z Zp.

Let M = F 1 ⊕ F 0 be the direct sum decomposition left invariant by φ. We have
h(M) = (h(M) ∩ F 1[ 1

p
]) ⊕ (h(M) ∩ F 0[ 1

p
]). Let µcan : Gm → GLGLGLM be the canonical split

cocharacter of (M,F 1, φ) as defined in [Wi, p. 512]. It normalizes F 1 and fixes F 0 and
thus it fixes each element of T(M) fixed by φ. Thus µcan factors through G. Let F be the
Frobenius lift of the Fontaine ring B+(W (k̄)) of W (k̄) (to be compared with Subsubsection
5.3.1). Let β0 ∈ F 1(B+(W (k̄)) be as in [Fa, p. 125]. We have F(β0) = pβ0 and Gal(B(k̄))
acts on β0 via the cyclotomic character. As A(h)W (k̄) is a canonical lift, its p-divisible
group is a direct sum of nm copies of Qp/Zp ⊕ µp∞ . Thus from Fontaine comparison
theory for A(h)W (k) we deduce the existence of a B+(W (k̄))-isomorphism

(h(M) ∩ F 1[
1

p
]) ⊗W (k) B

+(W (k̄)) ⊕ (h(M) ∩ F 0[
1

p
]) ⊗

1

β0
B+(W (k̄)) ∼→L∗

0 ⊗Z B
+(W (k̄))

that takes λA to ψ∗ and (cf. [Va4, Fact 8.1.3]) takes tα to vα for all α ∈ J. Thus as h fixes
λA, the existence of gQp

is implied by the fact that each torsor of G0
Zp

trivial with respect

to the flat topology is trivial. Thus the isogeny property holds for (f, L, v).

9.7.4. The ST property. The pull back O to Nk(v) of the ordinary locus of Mk(v) is
Zariski dense in Nk(v), cf. Subsubsection 9.7.3. We now assume that y factors through
O/H0. We can assume that z is such that (M,F 1, φ) is a canonical lift. Let µcan and
M = F 1 ⊕ F 0 be as in Subsubsection 9.7.3. The generic fibre of µcan factors through the
center of the centralizer of T(φ) in GLGLGLM [ 1

p
]. Also µcan is the only Hodge cocharacter of C

that commutes with µcan. Thus the ST property holds for (f, L, v), cf. the uniqueness of
z in Subsubsection 9.7.3.

9.7.5. Conclusion. All assumptions of Subsections 9.3, 9.4, 9.5, and 9.5.1 hold in the
context described in Subsubsection 9.7.1, cf. Subsubsections 9.7.2 (c) to 9.7.4. Thus the
results 9.4, 9.4.1, and 9.5.1 hold. These results can be interpreted as follows. Up to the
operations O1 and O2 (i.e., up to replacements of k by a finite field extension of it and of
y by an y(h) with h ∈ I(C, λA)), we can assume that there exists a finite, totally ramified,
discrete valuation ring extension V of W (k) and a point zy ∈ N/H0(V ) such that the
abelian scheme z∗y(AH0

) is with complex multiplication. This represents the extension of
[Zi1, Thm. 4.4] to the context of (f, L, v).

As Gad
R has compact simple factors of Cn Dynkin type, the adjoint of Sh(G,X) is not

the adjoint of a Shimura variety of PEL type (see [Sh]).

9.8. Remarks. (a) Let (G̃, X̃) be a simple, adjoint Shimura pair of Cn type. We assume
that G̃R is not split. Let F̃ be a totally real number field such that G̃ is ResF̃ /QG̃

′
F̃

, with G̃′
F̃

as an absolutely simple F̃ -group. We assume that there exists a totally imaginary quadratic
extension K̃ of F̃ such that G̃′

K̃
is split. We consider the standard 2n dimensional faithful
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representation f̃ : G̃′sc
K̃

↪→ GLGLGLW̃ over K̃. Let W be W̃ but viewed as a Q–vector space.

We view naturally G̃sc = ResF̃ /QG̃
′sc
F̃

as a subgroup of ResK̃/QG̃
′sc
K̃

and thus of GLGLGLW . Let

G be the subgroup of GLGLGLW generated by G̃sc, by Z(GLGLGLW ), and by the maximal torus of
ResK̃/QGm which over R is compact. It is easy to see that there exists a G(R)-conjugacy
class X of homomorphisms ResC/RGm → GR that define Hodge Q–structures on W of type
{(0,−1), (−1, 0)}. Let ψ be a non-degenerate alternating form on W such that we have an
injective map f : (G,X) ↪→ (GSpGSpGSp(W,ψ), S) of Shimura pairs, cf. [De2, Cor. 2.3.3]. If the
group GQp

is split and if (f, L, v) is a standard Hodge situation such that v divides a prime
p which is at least 5 and does not divide n−1, then all assumptions of Subsubsection 9.7.1
hold. Thus Subsubsection 9.7.5 applies.

(b) In [Zi1, Thm. 4.4] and thus also in Theorem 9.6, the assumption that CQ is
indecomposable is not necessary (being inserted only to ease the notations). If (Gad,Xad)
is of An type and if the group Gad

Qp
is unramified, then we can choose (see [Va5]) the

injective map f : (G,X) ↪→ (GSpGSpGSp(W,ψ), S) to be a PEL type embedding for which there
exists a Z-lattice L of W with the property that for each prime v of E(G,X) that divides p,
the triple (f, L, v) is a standard Hodge situation; thus the variant of [Zi1, Thm. 4.4] which
does not assume that CQ is indecomposable applies to it. This and Remark 6.5.1 are the
main reasons why in Sections 4 to 9 we focused more on the Bn, Cn, and Dn Dynkin type
(see Corollaries 4.3 to 4.5, Theorem 9.6, Example 9.7, etc.).

(c) The methods of (a) and Example 9.7 apply to any simple, adjoint Shimura pair
(G̃, X̃) of Cn type for which the groups G̃R and G̃Qp

are non-split and split (respectively).

(d) Theorems 9.4 and 9.5.1 are the very essence of the extension of [Zi1] one gets for
p≥ 5 and for all Shimura varieties of Hodge type, once the program of Remark 9.2.1 (b) is
accomplished.
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