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1. Introduction

Let p € N be a prime. Let r € N. Let ¢ := p". Let k := F, be the field with ¢
elements. Let k be an algebraic closure of k. Let W (k) be the ring of Witt vectors with
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coefficients in k. Let B(k) := W(k)[%] be the field of fractions of W (k). Let o := o}, be the
Frobenius automorphism of k, W(k), and B(k). The Honda—Serre-Tate theory classified
the isogeny classes of abelian varieties over k (see [Ta2, Thm. 1]) and in particular showed
that each abelian variety over k, up to an extension to a finite field extension of k and
up to an isogeny, lifts to an abelian scheme with complex multiplication over a discrete
valuation ring of mixed characteristic (0, p) (see [Ta2, Thm. 2]). We recall that an abelian
scheme of relative dimension d over an integral scheme is with compler multiplication if
its ring of endomorphisms has a commutative Z-subalgebra of rank 2d. Zink generalized
[Ta2, Thms. 1 and 2| to contexts which involve suitable abelian varieties endowed with
endomorphisms (see [Zil, Thms. 4.4 and 4.7]). Special cases of loc. cit. were obtained or
announced previously (see [Iil] to [Ii3], [La], and [Mil]). To detail these contexts and to
prepare the background for our paper, we will use the language of reductive group schemes
and of crystalline cohomology.

We recall that a group scheme F' over an affine scheme Spec(R) is called reductive
if it is smooth and affine and its fibres are connected and have trivial unipotent radicals.
We denote by Fd¢ and F2d the derived group scheme and the adjoint group scheme
(respectively) of F. If S is a closed subgroup scheme of F' let Lie(S) be its Lie algebra
over R. For a finite, flat monomorphism Ry — R let Resg,/gr,S be the group scheme over
Ry obtained from S through the Weil restriction of scalars (see [BT, Subsection 1.5] and
[BLR, Ch. 7, Subsection 7.6]). If R is moreover an étale Ro-algebra, then Resg, g, F is a
reductive group scheme over Ry. The pull back of an object or a morphism t or {5 (resp.
T, with % an index) of the category of Spec(Ry)-schemes to Spec(R) is denoted by tp (resp.
Tr). If O is a free R-module of finite rank, let GLo (resp. SLo) be the reductive group
scheme over R of linear automorphisms (resp. of linear automorphisms of determinant 1)
of O. If f; and fy are two Z-endomorphisms of O let f;fs := f1 0 fs.

1.1. Isogeny classes. Let D be a p-divisible group over k. Let (M, ¢) be the (con-
travariant) Dieudonné module of D. Thus M is a free W (k)-module of finite rank and
¢ : M — M is a o-linear endomorphism such that we have an inclusion pM C ¢(M). We
denote also by ¢ the o-linear automorphism of End(M [1—1)]) that maps e € End(M [%]) to
d(e) :=¢goeogp™t e End(M[%]). Let G be a reductive, closed subgroup scheme of GLj;.
We recall from [Va3] and [Va4] that the triple

C:=(M,e,9)
is called a Shimura F-crystal over k if there exists a direct sum decomposition M = F1@FY
such that the following two axioms hold:
(i) we have identities ¢(M + S F') = M and ¢(Lie(Spk))) = Lie(Sp(x)), and

(ii) the cocharacter p : G,, — GLjs that acts trivially on F? and as the inverse of
the identical character of G,, on F!, factors through G.

Until the end we will assume that € is a Shimura F-crystal over k and that M =
F!' @ FY is a direct sum decomposition for which the axioms (i) and (ii) hold.

The quadruple (M, F!,¢,G) is called a Shimura filtered F-crystal over k. Either
(M, F',¢,G) or F! is called a lift of € (to W(k)). By an endomorphism of € (resp. of
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(M, F1,¢,G)) we mean an element e € Lie(§) fixed by ¢ (resp. fixed by ¢ and such that
we have an inclusion e(F!) C F!). We emphasize that the set of endomorphisms of €
(resp. of (M, F',¢,9)) is in general only a Lie algebra over Z, (and not a Z,-algebra).

Let PB(C) be the set of elements h € GL;(B(k)) for which the triple

(1) (h(M), ¢, 5(h))

is a Shimura F-crystal over k which can be extended to a Shimura filtered F-crystal
(h(M), h(FY[]) N (M), d,G(h)) over k, where h € G(B(k)) and where G(h) is the Zariski
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closure of Gp() in GLy(ar). Let J(C) := B(C) NG(B(k)). It is easy to see that we have an
identity

J3(@) = {h € §(B(k))|3u € G(W (k)) such that u~*h~'phue~" € G(W (k))}.

The reductive group scheme G(h) is isomorphic to G (if h ¢ J(C), then this follows from
[Ti2]). For i € {1,2} let h; € J(C) and g; € G(h;)(W(k)). By an inner isomorphism
between (h1(M), g1¢,G(h1)) and (ha(M), g2, G(h2)) we mean an element g € G(B(k))
such that we have g(hy(M)) = ho(M) and gg1¢ = g20g.

By the isogeny class of € we mean the set J(C) of inner isomorphism classes of
Shimura F-crystals over k that are of the form (h(M), ¢, G(h)) with h € J(C). Ideally, one
would like to describe the set J(C) in a way which allows “the reading” of different Lie
algebras of endomorphisms of (ramified) lifts of its representatives. Abstract ramified lifts
of € (or of D with respect to §) are formalized in Subsection 3.3. In this introduction we
will only mention the abelian varieties counterpart of the ramified lifts.

1.1.1. Two geometric operations. Until Subsubsection 1.4.1 we will assume that D is
the p-divisible group of an abelian variety A over k.

By a Z[%]—isogeny between two abelian schemes A; and As over a given scheme we
mean a Q-isomorphism between A; and As that induces an isomorphism A;[N]| = As[N]
for all natural numbers N that are relatively prime to p. For each h € (C) there exists a

unique abelian variety A(h) over k which is Z[%]—isogenous to A and such that under this
Z[%]—isogeny the Dieudonné module of A(h) is identified with (h(M), ¢). If h € J(€), then
we say A(h) is G-isogenous to A. In all that follows we study the pair (A, G) only up to
the following two operations.

1 The extension of A to a finite field extension of k.

Do The replacement of A by an abelian variety A(h) over k which is G-isogenous to it.

1.2. Main Problem. Up to operations O, and Os, find conditions which guarantee that
there exists a triple (V, Ay, GY,), where V is a finite, discrete valuation ring extension of
W (k) of residue field k, Ay is an abelian scheme over V' that lifts A, and Gy, is a reductive,
closed subgroup scheme of GLHle(AV/V), such that the following four conditions hold:

(a) the abelian scheme Ay is with complex multiplication;

(b) under the canonical identification M/pM = H}z(A/V)/myHIg(A/V), the
group scheme G\, lifts G, (here my is the maximal ideal of V' );
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(c) under the canonical identification Hle(A/V)[%] = M @ 1) V[%] (see [BO, Thm.
1.3]), the generic fibre of G, is the pull back to Spec(V[%]) of Gp(k);

(d) there exists a cocharacter G,, — G}, that acts on Fy; via the inverse of the
identical character of G, and that fives Hig (Ay /V)/F};, where FL is the direct summand

of Hix (Av/V) which is the Hodge filtration of Ay .

If (c) holds, then the group schemes i, and Gy are isomorphic (cf. [Ti2]). If only
(b) to (d) hold and V' = W (k) (resp. and V' # W(k)), then we refer to Ay as a lift of A
(resp. as a ramified lift of A to V') with respect to G.

Let ¢ be the B(k)-span inside End(M[I—lj]) of those endomorphisms of (M, ¢, §) which
are crystalline realizations of endomorphisms of A. It is the Lie algebra of a unique
connected subgroup € of §p(). The uniqueness of € follows from [Bo, Ch. II, Subsection
7.1] and the existence of € is a standard application of the fact that the Q-algebra of Q-
endomorphisms of A is semisimple. The triple (V, Ay, G{,) does not always exist (simple
examples can be constructed with G a torus). The reason for this is: in general the ranks
of & and Gp) are not equal. Thus in order to motivate the Main Problem and to list
accurately conditions under which one expects that such a triple exists, next we will recall
some terminology pertaining to Hodge cycles and Shimura varieties.

1.2.1. A review. We use the terminology of [De3, Section 2] for Hodge cycles on
an abelian scheme B over a reduced (Q—scheme Z. Thus we write a Hodge cycle v on
B as a pair (vggr,vst), where vgr and vg; are the de Rham component and the étale
component (respectively) of v. The étale component vg; as its turn has an [-component
Uét for each prime | € N. For instance, if Z is the spectrum of a subfield E of Q C
C, then 0%, is a suitable Gal(E)-invariant tensor of the tensor algebra of H},(Bg,Q,) &
(H},(Bg, Qp))* ® Qu(1), where (H},(Bg,Qp))* is the dual vector space of H} (Bg,Qp)
(i.e., it is the tensorization with Q, of the Tate module of Bg) and where Q,(1) is the
usual Tate twist. If F is a subfield of C, then the Betti realization vg of v corresponds to
var (resp. to vl,) via the standard isomorphism that relates the de Rham (resp. the Q
étale) cohomology of B¢ with the Betti cohomology of the complex manifold B(C) with
Q-—coefficients (see [De3, Sections 1 and 2)).

A Shimura pair (G, X) consists of a reductive group G over Q and a G(R)-conjugacy
class X of homomorphisms Resc/rG,, — Gr that satisfy Deligne’s axioms of [De2, Sub-
subsection 2.1.1]: the Hodge Q-structure of Lie(G) defined by any x € X is of type
{<_1> 1)7 (07 0)7
(1,-1)}, Ad(x(i)) defines a Cartan involution of Lie(G21), and no simple factor of G4
becomes compact over R. Here Ad : G — GLLie(Gid) is the adjoint representation. These
axioms imply that X has a natural structure of a hermitian symmetric domain, cf. [De2,
Cor. 1.1.17]. The most studied Shimura pairs are constructed as follows. Let W be a vec-
tor space over Q of even dimension 2d. Let 1 be a non-degenerate alternative form on W.
Let 8 be the set of all monomorphisms Resc/rGy — GSp(W ®q R, 9) that define Hodge
Q-structures on W of type {(—1,0), (0, —1)} and that have either 27it) or —2mit) as polar-
izations. The pair (GSp(W, ), 8) is a Shimura pair that defines a Siegel modular variety,
cf. [Mi3, p. 161]. See [Del], [De2], [Mi4], and [Val, Subsection 2.5] for different types of
Shimura pairs and for their attached Shimura varieties. We recall that (G, X) is called of
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Hodge type, if it can be embedded into a Shimura pair of the form (GSp(W,v),8). We
recall that Shimura varieties of Hodge type are moduli spaces of polarized abelian schemes
endowed with Hodge cycles, cf. [Del], [De2], [Mi4], and [Val, Subsection 4.1].

In this paragraph we will assume that the adjoint group G2¢ is Q-simple. Let 6 be
the Lie type of any simple factor of G&4. If 6 € {A,,, B,,,Cyn|n € N}, then (G,X) is said
to be of 0 type. If § = D,, with n >4, then (G, X) is of one of the following three disjoint
types: D DR and DMxed (cf. [De2] and [Mid]). If (G, X) is of DX (resp. of D) type,
then all simple, non-compact factors of G&4 are isomorphic to SO(2,2n — 2)ad (resp. to
SO*(2n)2d) and the converse of this statement holds for n>5 (see [He, p. 445] for the
classical groups SO(2, 2n —2)24 and SO*(2n)3%). If moreover (G, X) is of Hodge type, then
(G, X) is of one of the following five possible types: A,, B,, Cn, DE and DE (see [Sal],
[Sa2], and [De2, Table 2.3.8]).

1.2.2. Conjecture. We assume that one of the following two conditions holds:

(i) the group & has the same rank as Sp();

(ii) there exists an abelian scheme Ay (yy over W (k) which lifts A and for which
there exists a family (wa)acg of Hodge cycles on its generic fibre Apyy such that Gp(yy is
the subgroup of GLM[;] that fixes the crystalline realization t, of we for all o € .

Then up to the operations O and Os, there exists a triple (V, Ay, Gy,) such that all
conditions 1.2 (a) to (d) hold.

If (i) (resp. (ii)) holds, then we refer to Conjecture 1.2.2 as Conjecture 1.2.2 (i) (resp.
Conjecture 1.2.2 (ii)). Conjecture 1.2.2 stems from the Langlands—Rapoport conjecture
(see [LR], [Mi2], [Mi3], [Pf], and [Re2]) on k-valued points of special fibres of (see [Val] for
precise definitions) integral canonical models of Shimura varieties of Hodge type in mixed
characteristic (0,p). This motivic conjecture of combinatorial nature is a key ingredient
in the understanding of zeta functions of Shimura varieties of Hodge type and of different
trace functions that pertain to (Q;-local systems on quotients of finite type of such integral
canonical models (for instance, see [LR], [Ko2], and [Mi3]; here [ is a prime different from
p). Conjecture 1.2.2 (ii) is in fact only a slight refinement of an adequate translation
of a part of the Langlands—Rapoport conjecture. The Langlands—Rapoport conjecture is
known to be true for Siegel modular varieties (see [Mi2]) and for certain Shimura varieties
of Ay type (see [Ii2], [Ii3], and [Rel]).

We added Conjecture 1.2.2 (i) due to two reasons. First, if one assumes the standard
Hodge conjecture for complex abelian varieties (see [Le, Ch. 7]), then (ii) = (i). Second,
often due to technical reasons one assumes that G4 is simply connected and this excludes
the cases related to Shimura varieties of DX type (see [De2, Rm. 1.3.10 (ii)]). Thus to
handle Conjecture 1.2.2 (ii) in cases related to Shimura varieties of DE type one has to
first solve Conjecture 1.2.2 (ii) in cases related to Shimura varieties of Cy,, type and then
to appeal to relative PEL situations as defined in [Val, Subsubsection 4.3.16] in order to
reduce Conjecture 1.2.2 (ii) to Conjecture 1.2.2 (i) for these cases related to the DY type.
In what follows we will also refer to the following two Subproblems of the Main Problem.

1.2.3. Subproblem. Same as Main Problem but with condition 1.2 (a) replaced by the
weaker condition that the Frobenius endomorphism of A lifts to an endomorphism of Ay .
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1.2.4. Subproblem. Same as Main Problem but with condition 1.2 (a) replaced by
the weaker condition that the p-divisible group of Ay is with complex multiplication (i.e.,
the image of the p-adic Galois representation associated to the Tate module Tp(AV[%]) of
AV[%], is formed by semisimple elements that commute).

1.3. The classical PEL context. This is the context in which there exists a princi-
pal polarization Ay of A and there exists a Z,-subalgebra B of End(M) of crystalline
realizations of Z,)-endomorphisms of A, such that the following two conditions hold:

(i) the W (k)-algebra B®@z, , W (k) is semisimple, self dual with respect to the perfect
alternating form Ay : M ®y ) M — W (k) defined by A4 (and denoted similarly), and is
equal to the W (k)-algebra {e € End(M)|e fixed by G};

(ii) the group Gp(r) is the identity component of the subgroup Ci(Aa)p) of
GSp(M[%], Aa) that fixes each element of B[I—lj].

As A is with complex multiplication and the Q-algebra End(A) ®z Q is semisimple,
in this context the group € is reductive and has the same rank as §Gp(x); thus the condition
1.2.2 (i) holds. The existence up to operations 91 and Os of a triple (V, Ay, §},) such that
all the conditions 1.2 (a) to (d) hold was proved (using a slightly different language) in [Zil,
Thm. 4.4] for the cases when Gp() = C1(Aa) p(r) (strictly speaking, loc. cit. assumes that
B[%] is a Q-simple algebra; but the case when B[%] is not Q-simple gets easily reduced
to the case when it is so). Loc. cit. also shows that (even if p = 2) we can choose the
triple (V, Ay, G,) such that B lifts to a family of Z,)-endomorphisms of Ay and that A
is the crystalline realization of a principal polarization of Ay . Some refinements of loc.
cit., which are still weaker than the Langlands—Rapoport conjecture for the corresponding
Shimura varieties of PEL type, were obtained in [ReZ] and [Ko2].

1.4. On results and tools. The goal of this paper is to solve Conjecture 1.2.2 (i) and
Subproblems 1.2.3 and 1.2.4 in contexts general enough (see Corollary 8.3, Remark 8.4, and
Section 9) so that the work in progress of Milne and us can be plugged in to result for p>5
in complete proofs of Conjecture 1.2.2 (ii) and of the Langlands—Rapoport conjecture for
Shimura varieties of Hodge type. The passage from the mentioned solutions to a solution
of Conjecture 1.2.2 (ii) for the case when p>5 and G4°* simply connected, is completely
controlled by [Val] to [Va4] and by the following two extra things (see Remarks 9.2.1 (b),
9.4.2, and 9.8 (d) for a brief account):

(i) the weak isogeny property which says that each rational stratification of [Va3,
Subsection 5.3] has only one closed stratum;

(ii) announced results of Milne on abelian varieties over finite fields (see [Mi5]).

It is well known that the weak iosgeny property holds for Siegel modular varieties
(for instance, see [Oo]): the Newton polygon stratification of the Mumford moduli scheme
Ag1.n over k has only one closed stratum (the supersingular one); here d, N € N, N >3,
and g.c.d.(N,p) = 1. The weak isogeny property requires methods different from the ones
of this paper and thus we will prove it (at least for p > 3) in a future work.
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The main tools we use in this paper are the following seven:

T1. The rational classification of Shimura F-crystals over k achieved in [Va3].
T2. Approximations of tori of reductive groups over Q (see [Ha, Lem. 5.5.3]).

T3. A new theory of admissible cocharacters of extensions of maximal tori of §p)
contained in tori of GL Mm[] whose Lie algebras are B (k)-generated by crystalline realiza-
P

tions of Q,—endomorphisms of A. In its abstract form, the theory refines [RaZ, Subsections
1.21 to 1.25] for Shimura F-crystals in two ways. First, it is over k and not only over
k. Second, in many cases it works without assuming that all Newton polygon slopes of
(Lie(Sp(k)), ¢) are 0 and moreover it applies to all such maximal tori of (). We em-
phasize that in connection to either this theory or loc. cit., [FR] does not bring anything
new.

T4. In some cases we rely on [Zil, Thm. 4.4] (see Theorem 9.6 and Remark 9.8 (b)).

T5. The classification for p>3 of isogeny classes of p-divisible groups over p-adic
fields (see [Br, Subsection 5.3]).

T6. The natural Z, structure Gz, of G defined by C (see Subsection 2.4) and the
structure of the pointed set H'(Q,, Sq,)-

T7. The theory of [Val, Subsection 4.3] of well positioned families of tensors.

See [Fo] for (weakly admissible or admissible) filtered modules over p-adic fields.
Next we exemplify how the tools T1 to T7 work under some conditions. We emphasize
that often we do have to perform either the operation 4 or the operation Do but this will
not be repeated in this paragraph. Based on [Va3, Thm. 3.1.2 (b) and (c)], in connection
to Conjecture 1.2.2 (i) and to Subproblems 1.2.3 and 1.2.4 it suffices to refer to the case
when all Newton polygon slopes of (Lie(Gp(x)), ¢) are 0. Assuming that the condition 1.2.2
(i) holds, we show based on [Ha, Lem. 5.5.3] that there exist maximal tori of Gp() as
mentioned in the tool T3 but with Q, replaced by Q. The essence of T3 can be described
as follows. Starting from any such maximal torus of Gp () we show the existence of suitable
cocharacters of its extension to a finite field extension V[I—lj] of B(k) such that the resulting
filtered modules over V[%] are weakly admissible. For this, in some cases related to Shimura
varieties of A,,, C,,, and DY types we rely as well on [Zil, Thm. 4.4] and accordingly some
extra assumptions are imposed (roughly speaking we deal with Shimura varieties of Hodge
type constructed in [De2, Prop. 2.3.10] but in the integral contexts of [Val, Sections 5 and
6]). Using the tool T5 we get an isogeny class of p-divisible groups over V' (here we require
p>3). Using the tool T6 we get natural choices of representatives of this isogeny class so
that we end up in the étale context with a reductive group scheme over Z, that corresponds
via Fontaine comparison theory to 9‘,[%] (for this part, we usually assume that the pointed

set H'(Qp,Sg,) has only one class). Using the tool T7 we “transfer backwards” (as in
[Val, Subsections 5.2 and 5.3]) the mentioned reductive group scheme over Z, in order to
end up with a reductive group scheme Gj, in the de Rham context over V' (here we require
p big enough; for applications to the Langlands—-Rapoport conjecture and to Conjecture
1.2.2 (ii) the condition p >5 suffices, cf. [Val]).
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1.4.1. On contents. Motivated by general applications, in Sections 2 to 7 we work
abstractly. Thus we work with an arbitrary Shimura F-crystal C over k and, even if by
chance (M, ¢) is the Dieudonné module of the p-divisible group of some abelian variety
A over k, most often we do not impose any geometric condition on the group scheme G
over W (k) (of the type of conditions 1.2.2 (i) and (ii) or 1.3 (i) and (ii)). In Section 2 we
develop a minute language that pertains to Subsection 1.1 and to the tool T3 which will
allow us to solve in many cases stronger versions of Conjecture 1.2.2 (i) and of Subproblems
1.2.3 and 1.2.4. Different abstract CM-isogeny classifications are formalized in Section 3.
In particular, Corollary 3.7.3 shows that if p >3, then the set of ramified lifts of D with
respect to G (see Definition 3.7.2) are in natural bijection to the ramified lifts of C (see
Definitions 3.3.1). This is a stronger version of the classification of p-divisible groups
over V achieved for p > 3 previously by Faltings, Breuil, and Zink (see [Fal], [Br|, and
[Zi2]). In Sections 2 and 3 we introduce as well the principally quasi-polarized context (see
Subsubsection 3.3.3 for the corresponding variant of the set J(C)).

In Section 4 we state in the abstract context two basic results that pertain to the
tool T3 (see Basic Theorems 4.1 and 4.2) and three Corollaries (see Corollaries 4.3 to 4.5).
The basic results implicitly solve Subproblem 1.2.4 under certain conditions. Corollaries
4.3 to 4.5 are the very first situations of general nature where complete ramified CM-
classifications as defined in Subsubsection 3.3.3 are accomplished; to “balance” the focus
of [Zil] on Shimura varieties of PEL type (and thus of either A,, or totally non-compact
C,, or DX type), they involve cases that pertain to Shimura varieties of B,, and DX types.
In Sections 5 to 7 we prove the results 4.1 to 4.5. In Sections 2 to 7 we also refer to
the most puzzling aspect (question) of the Subproblems 1.2.3 and 1.2.4: When we can
choose V' to be of index of ramification 1 (i.e., to be a Witt ring)? The first applications
to abelian varieties are included in Section 8 (see Corollary 8.3 and Remark 8.4 for our
partial solutions to Conjecture 1.2.2 (i) and to Subproblems 1.2.3 and 1.2.4).

In Section 9 we introduce the integral context of moduli spaces of polarized abelian
varieties endowed with (specializations of) Hodge cycles. See Subsections 9.2 to 9.6 for
different properties and how they lead to generalizations of the results of Zink recalled in
Subsection 1.3. See Example 9.7 for the very first example of general nature that involve
compact Shimura varieties of C,, type which are not of PEL type and for which a stronger
isogeny property is implied by [FC, Ch. VII, Prop. 4.3] and therefore to which we can
already extend [Zil, Thm. 4.4] (the extension of [Zil, Thm. 4.7] is implicitly achieved by
[LR] and [Mi3, Subsections 4.1 to 4.6]).

We would like to thank University of Arizona, Tucson and Max-Planck Institute,
Bonn for good conditions with which to write this paper. We would also like to thank J.
S. Milne for his encouragements to write this paper and for sharing with us the fact that
the Milne conjecture used in Section 9 is a key tool in attacking the Main Problem and its
Subproblems 1.2.3 and 1.2.4.

2. Preliminaries

See Subsection 2.1 for our notations and conventions. Subsection 2.2 recalls some
descent properties for connected, affine, algebraic groups in characteristic 0. In Subsections
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2.3 and 2.4 we mainly introduce a language. In Subsections 2.5 and 2.6 we recall some
definitions and a basic result. In Subsection 2.7 we introduce W (k)-algebras that are
required for the ramified contexts of Sections 3 to 7.

2.1. Notations and conventions. Let R, F', and O be as before Subsection 1.1. We
refer to [Va3, Subsection 2.2] for quasi-cocharacters of F. Let Z(F') be the center of F
we have F2d = F/Z(F). Let Z°(F) be the maximal torus of Z(F); the quotient group
scheme Z(F)/Z°(F) is a finite, flat group scheme over R of multiplicative type. Let
F2b .= F/Fder; it is the maximal abelian quotient of F. Let F° be the simply connected
semisimple group scheme cover of F4¢'. If S is a reductive, closed subgroup scheme of F,
let Cp(95) (resp. Np(S)) be the centralizer (resp. the normalizer) of S in F. Thus Cr(S)
(resp. Np(S)) is a closed subgroup scheme of F', cf. [DG, Vol. II, Exp. XI, Cor. 6.11]. If
R is a finite, discrete valuation ring extension of W (k), then F'(R) is called a hyperspecial
subgroup of F(R[%]) (see [Ti2]). Let O* := Hompg(O, R). A bilinear form on O is called
perfect if it induces naturally an isomorphism O = O*. We consider the free O-module

T(O) = @s,teNu{o}O®S QR O*®t,

We use the same notation for two perfect bilinear forms or tensors of two tensor algebras
if they are obtained one from another via either a reduction modulo some ideal or a
scalar extension. If F1(0) is a direct summand of O, then F°(O*) := (O/F(0))* is
a direct summand of O*. By the FO-filtration of T(O) defined by F!(O) we mean the
direct summand of T(O) whose elements have filtration degrees at most 0, where T(O)
is equipped with the tensor product filtration defined by the decreasing, exhaustive, and
separated filtrations (F(0));c0.1,2) and (F*(0O*));ef-1,0,13 of O and O* (respectively).
Here F°(O) := O, F%(0) := 0, F71(0*) := O*, and F'(O*) := 0. We always identify
End(O) with O ® g O*. Thus End(End(O)) = End(O ®r O*) = O @ O* @ O* ®r O is
always identified by changing the order with the direct summand O%®? @z O*®2 of T(0).

Let © € R be a non-divisor of 0. A family of tensors of T(O[1]) = T(O)[1] is
denoted (uq)aeg, with J as the set of indexes. Let O; be another free O-module of finite
rank. Let (u1n)acy be a family of tensors of J(O1[1]) indexed also by the set J. By
an isomorphism (O, (tq)acg) = (O1, (U1a)acg) Wwe mean an R-linear isomorphism O = O
that extends naturally to an R-linear isomorphism T(O[1]) = T(O;[1]) which takes u, to
U1 for all a € J.

If K is a field, let K be an algebraic closure of K. If K is a p-adic field, see [Fo] for
de the Rham ring Bgr(K) and for admissible Galois representations of the Galois group
Gal(K) := Gal(K/K). For the classification of Lie and Dynkin types we refer to [Boul]
and [DG, Vol. III, Exp. XXII and XXIII]. Whenever we use a D,, type, we assume that
n>4. Let Z,) be the localization of Z at its prime ideal (p).

By a Frobenius lift of a flat Z,)-algebra R we mean an endomorphism & : R — R
which modulo p is the usual Frobenius endomorphism of R/pR. If ¢o : O — O is a
® p-linear endomorphism such that O[%] is R[%]—generated by ¢0(O), then we denote also
by ¢o the ®g-linear endomorphism of each R-submodule of ‘.T(O)[%] left invariant by

[

¢o. We recall that ¢o acts on O*[%] via the rule: if f € O* %] and e € O[%], then
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oo(f)(po(e)) = Pr(f(e)) € R[%]. If po becomes an isomorphism after inverting p and if
fto is a cocharacter of GLy1, then let ¢o(ur) = dopody -

Always € := (M, ¢,§) (resp. (M, F! ¢, G)) is a Shimura (resp. Shimura filtered)
F-crystal over k = F,. We fix a cocharacter 1 : G,,, — G of € as in Subsection 1.1 (thus
it normalizes F''); we call it a Hodge cocharacter of C and we say that it defines F'l. Let

P be the parabolic subgroup scheme of § which is the normalizer of F'! in G. Let the sets
J3(©), B(C), and I(C) be as in Subsection 1.1. Let

C = CGLM(S)-

If C is a reductive group scheme over W (k), then let C; := Car,, (C).

See [Va3, Subsubsections 2.2.1 and 2.2.3] for the Newton quasi-cocharacter of C.
Let PQJr (¢), Pg (¢), and L%(gb) B(k) be the non-negative parabolic subgroup scheme, the
non-positive parabolic subgroup scheme, and the Levi subgroup (respectively) of € we
defined in [Va3, Lem. 2.3.1 and Def. 2.3.3]. Thus P9+ (¢) is the parabolic subgroup scheme
of § which is maximal subject to the property that Lie(PgJr (#)B(k)) is normalized by ¢
and all Newton polygon slopes of (Lie(Pgr (#)B(k)), ¢) are non-negative, Pg (¢) is defined
similarly but by replacing non-negative with non-positive, and L%(qﬁ) B(k) is the unique
Levi subgroup of either P9+(¢)B(k;) or Pg (¢)p(k) with the property that Lie(L%(¢)p))
is normalized by ¢ and all Newton polygon slopes of (Lie(L%(4)px)), ¢) are 0. We have
PSJF(gZ))B(k) NPy (9) sy = LE(9) Bk Let U;' (¢) be the unipotent radical of P9+ (¢). Let
L%(¢) be the Zariski closure of L(¢)pk) in G (or Pg(gb)); we emphasize that it is not
always a Levi subgroup scheme of Pgr (¢). We say € is basic if all Newton polygon slopes
of (Lie(Sp(k)), ¢) are 0 (ie., if P§ (¢) = Pg (¢) = 9). i

Always k; is a finite field extension of k. For [ € {kq, k}, let W (1), B(l), and o; be
the analogues of W (k), B(k), and oy, but for [ instead of [. Let

Col:=(Mwu W), o, Swa)

be the extension of € to [. We also refer as 7 to the operation of replacing k by k; and C
by C ® k1, and as D5 to the operation of replacing € by (h(M), ¢, G(h)), where h € J(C)
and G(h) are as in Subsection 1.1. For g € G(W (k)) let

eg = <M7 9o, 9)

We have € = Cy,,. Let F := {C,|g € G(W(k))} be the family of Shimura F-crystals over
k associated naturally to C. Let Y(JF) := Ugegw 1))J(Cy). The (inner) isomorphism class
of some object % will be denoted as [¥%].

Though in this paper we deal only with Shimura F-crystals, Sections 2 to 4 are
organized in such a way that the interested reader can extend their notions to the context
of p-divisible objects with a reductive group over k used in [Va3] (often even over an
arbitrary perfect field of characteristic p).

2.2. Lemma. Let n C 1y be an extension of fields of characteristic 0. Let & be a
connected, affine, algebraic group overn. Let L be a Lie subalgebra of Lie(&). We assume
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that there exists a connected (resp. reductive) subgroup &,, of &, whose Lie algebra is
L ®,m. We have:

(a) there exists a unique connected (resp. reductive) subgroup & of & whose Lie
algebra is L (the notations match i.e., its extension to n1 is &y, );

(b) if & is a reductive group and if & is the general linear group GLyw of a finite
dimensional n-vector space W, then the restriction of the trace form on End(W) to L is
non-degenerate.

Proof: We prove (a). The uniqueness part is implied by [Bo, Ch. I, Subsection 7.1]. Loc
cit. also implies that if & exists, then its extension to 7y is indeed &,,. It suffices to
prove (a) for the case when & is connected. We consider commutative n-algebras x for
which there exists a closed subgroup scheme &, of &, whose Lie algebra is L ®, k. Our
hypotheses imply that as kK we can take ;. Thus as k we can also take a finitely generated
n-subalgebra of n;. By considering the reduction modulo a maximal ideal of this last
n-algebra, we can assume that s is a finite field extension of 1. Even more, (as n has
characteristic 0) we can assume that x is a finite Galois extension of 1. By replacing &,
with its identity component, we can assume that S, is connected. Due to the mentioned
uniqueness part, the Galois group Gal(x/n) acts naturally on the connected subgroup &,
of .. As &, is an affine scheme, the resulting Galois descent on &, with respect to
Gal(k/n) is effective (cf. [BLR, Ch. 6, 6.1, Thm. 5]). This implies the existence of a
subgroup & of & whose extension to x is &,. As Lie(6) ®, k = Lie(6,) = L ®, k, we
have Lie(&) = L. The group & is connected as &,; is so. Thus & exists i.e., (a) holds.
To check (b) we can assume that 7 is algebraically closed. Using isogenies, it suffices
to prove (b) in the case when & is either G,, or a semisimple group whose adjoint is simple.
If & is G,,, then the G-module W is a direct sum of one dimensional G-modules. We easily
get that there exists an element z € L \ {0} which is a semisimple element of End(WV)
whose eigenvalues are integers. The trace of z2 is a non-trivial sum of squares of natural
numbers and thus it is non-zero. Thus (b) holds if & is G,,. If & is a semisimple group
whose adjoint is simple, then L is a simple Lie algebra over n. From Cartan solvability
criterion we get that the restriction of the trace form on End(W) to L is non-zero and
therefore (as L is a simple Lie algebra) it is non-degenerate. Thus (b) holds. O

2.2.1. Example. We take n = Q, and 7, = B(x), where * is a perfect field of charac-
teristic p. Let (W, ¢) be an F-crystal over x. Let & be the group over Q, which is the
group scheme of invertible elements of the Qp-algebra {e € End(W)|¢(e) = e}. Let ¢ be
a connected subgroup of &,, whose Lie algebra is 7;-generated by elements fixed by ¢.
From Lemma 2.2 (a) we get that ¢ is the extension to 7; of the unique connected subgroup
og, of ® whose Lie algebra is {e € Lie(o)|¢(e) = e}. We refer to o, as the Q,-form of o
with respect to (W, ¢).

2.3. Basic definitions. (a) We say C has a lift of quasi CM type if there exists a maximal
torus T of G such that we have ¢(Lie(T)) = Lie(7).

(b) We say C is semisimple (resp. unramified semisimple) if the B(k)-linear auto-
morphism ¢” of M [%] is a semisimple element of G(B(k)) (resp. is a semisimple element
of §(B(k)) such that an integral power of it has all its eigenvalues belonging to B(k)).
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(c) By a torus of Gp(x) of Qp-endomorphisms of C we mean a torus T; () of Gp(k)
whose Lie algebra is B(k)-generated by elements fixed by ¢. Let Tig, be the Qp-form
of T1p(k) with respect to (M[%],qb), cf. Example 2.2.1. Let K be the smallest Galois
extension of Q, over which Tq, splits. Let K; be the smallest unramified extension of K
which is unramified over a totally ramified extension K, of Q,. Let K5 be the composite
field of K; and B(k). Let Kj,, be the maximal unramified extension of Q, included in K.

(d) By an E-pair of € we mean a pair (T1p(x), i41), where T gz is a maximal torus
of §p) of Qp-endomorphisms of € and py : G, — T1k, is a cocharacter such that uk,,
when viewed as a cocharacter of G, , is §(K2)-conjugate to pug,. If uy is definable over an
unramified extension of Q,, then we refer to (T1p(k), 1) as an unramified E-pair. By an
E-triple of € we mean a triple (T1p(x), i1, 7), where (Tip(x), #1) is an E-pair and where
T =(71,...,7) is an [-tuple of elements of Gal(K2/Q,) whose restrictions to K, are all
equal to the Frobenius automorphism §»,, of K, whose fixed field is Q,. Here [ € N and
“E” stands for endomorphisms. For s € Nand j € {1,...,l} let 7545 1= 7;.

(e) We say an E-pair (T1p(k), 11) of C satisfies the € condition if there exists an
E-triple (T1g(x), pt1, 7) of € such that the following condition holds:

(el) the product of the cocharacters of Tk, of the form 74741 7;(p1K,) with
j € {1,...,dl}, factors through Z°(G,); here d € N is the smallest number such that
Pk, is fixed by each element of Gal(K3/Q,) that can be obtained from the product
TdiTdi—1 * + + T1 via a circular rearrangement of it.

If moreover [ = 1 we say (T1p(x), 1) satisfies the cyclic € condition.

(f) We assume that C is basic. We say R (resp. U) holds for € if there exists an
E-pair (resp. unramified E-pair) of C that satisfies the € condition. We say TR (resp.
T'Y) holds for C if each maximal torus T;p(;) of Gpm) of Qp-endomorphisms of € (resp.
maximal torus Ty gy of Gp) of Qp-endomorphisms of € which splits over B(k)) is part
of an FE-pair (resp. of an unramified E-pair) of € that satisfies the € condition. We say
QR (resp. QU) holds for € if there exists a k1 and an E-pair (resp. unramified E-pair) of
C ® ky that satisfies the € condition. We say TTR (resp. TTY) holds for € if for each ki,

TR (resp. TY) holds for C ® k.

(g) We do not assume that € is basic. We say R (resp. U, TR, TU, QR, QuU, TTNR,
TT4) holds for € if there exists an element h € J(C) such that the triple (h(M), ¢, L%(h)(gb))
is a basic Shimura F-crystal over k and R (resp. U, TR, T, QR, QU, TTR, TT) holds
for it.

(h) We say that an E-pair (T p(x), u1) of C is admissible if the filtered module

1
(M[_]7¢7 Fll(z)
b
over K5 is admissible. Here F}(Q is the maximal direct summand of M ®yy ;) K2 on which
M1k, acts via the inverse of the identical character of G,,.

(i) We say 2 holds for C if there exists an E-pair (T p(x), 1) of € which is admissible.
We say Tl holds for € if each maximal torus T;p() of Gp) of Qp-endomorphisms of C
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can be extended to an E-pair (T;p), 1) of € which is admissible. As in (f), we speak

also about Q2 or TTA holding for C.

(j) We say C is U-ordinary if it has a lift F'' such that L¢(¢)p k) normalizes Fl[%]
(i.e., we have L%(gb)B(k) < Ppwy). We say C is IU-ordinary if there exist elements g €
G(W(k)) and h € §(B(k)) such that €, is U-ordinary and we have h¢ = goh.

(k) A principal bilinear quasi-polarization of € is a perfect bilinear form Ap; :
M @wgy M — W(k) whose W(k)-span is normalized by G and for which we have

A (9(x) @ d(y)) = po(Ap(x @ y)) for all elements x,y € M.

2.3.1. Example. Let (T1p(x), 1) be an E-pair of € such that the product of the cochar-
acters of T1g, which belong to the Gal(K;/Q,)-orbit of u1k,, factors through Z°(Gg,).
We choose an element 7y € Gal(K2/Q,) whose restriction to Ko, is §2,, and whose order
o is the same as of Fo,. Let {e1,...,es} be the elements of Gal(Ky/Ka,) listed in such
a way that e, = 1. Let eg := e;. We have Gal(K2/Q,) = {ea74|1<a<s, 1<b<o}. Let
[ :== 0s. We define 7 = (74,...,7) as follows. For i € {1,...,l} we define 7, := 79 if o
does not divide i and we define 7; := ej__llejTO ifi =o(s+1—yj), where j € {1,...,s}.
As ym_y -1 = 1k, let d := 1. As we have Gal(K3/Q,) = {mymj—1-- 7|1 <j<l}, the
condition 2.3 (el) holds (cf. our hypothesis on the E-pair (Tip),#1) of €). Thus the
E-pair (T1p(x), p1) of C satisfies the ¢ condition.

2.3.2. Example. Let m € N. We assume that the rank of M is 2m, that G is a
product G; x --- x G,,, of m copies of GL2, that ¢ permutes transitively the Lie(Si)[I—lj]’s
with ¢ € {1,...,m}, that for each i € {1,...,m} the image of p in §; does not factor
through Z(G;), and that the representation of G on M is the direct sum of the standard
rank 2 representations of the m copies. The rank of F'' is m and P = Py x - - - P,, is a Borel
subgroup scheme of §. We also assume that there exists a maximal torus 7 = T7 X -+ - x T,
of P such that we have ¢(Lie(T)) = Lie(T) and ¢(Lie(P)) C Lie(P). This last assumption
implies that the Dieudonné module (M, ¢) is ordinary.

Let g € G(W (k)) be such that €, is not basic. Thus Py (9¢) = [];~; Pg (9¢)NG; is a
Borel subgroup scheme of § and therefore L(g) (#)B(k) is a split maximal torus of Gp(;y. We
check that €, is [U-ordinary. Based on [Va3, Thm. 3.1.2 (b) and (c)], up to a replacement
of g¢ by hgph=! with h € G(B(k)), we can assume that L% (¢) is a maximal torus of §
through which u factors. Thus L% (¢) commutes with p and therefore it is a maximal torus
of . Thus €, is U-ordinary.

We now take m = 3. Let w := (wy,wa, 13) € G1(W(k)) x Go(W(k)) x G3(W(k))
be an element that normalizes T and such that for ¢ € {1,2} the element w; takes P; to
its opposite PP with respect to T;. The Newton polygon slopes of (M, w¢) are % and %
with multiplicities 3. We have L¢(w¢) = T < P. Thus €, is U-ordinary. Let U; be the
unipotent radical of P{PP; it is a subgroup scheme of Ug (w¢). Let g1 € Uy (W (k)) such
that modulo p it is not the identity element. As g; € U;(wgb)(W(k)), we have P9+ (grwe) =
P9Jr (we). Thus €4, is not basic and therefore (cf. previous paragraph) it is JU-ordinary.
We show that the assumption that €, ,, is U-ordinary leads to a contradiction. It is easy to
see that this assumption implies that L% (g1w¢) is a maximal torus of P9+ (grwe) = P9+ (wo)
which normalizes F'* /pF! (see proof of Proposition 3.2 below). Let b € P9+ (we)(W(k)) be
an element that normalizes F'' /pF! and such that b(L%(g1w¢))b~" = T, cf. [Bo, Ch. V,
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Thm. 19.2] and [DG, Vol. II, Exp. IX, Thm. 3.6 and 7.1]. Thus bgiw¢b~! = gowe, where
g2 € Pg’(w@(W(k)) normalizes J. Therefore go € T(W(k)). But it is easy to see that
the natural images of g1 and gy = bgrwe(b~Hw =t in T1(k)\G1(k)/T1(k) are equal. As ¢
modulo p is a non-identity element of U; (k)), this contradicts the fact that go € T(W(k)).
We conclude that €4, is JU-ordinary without being U-ordinary.

2.4. Some Z, structures. Let 04 := ¢ o u(p); it is a o-linear automorphism of M. Let

Mz, :={m € M @w W (k)|(cp @ of)(m) = m}.

We have M @y () W (k) = Mz, @z, W(k). Let O be a closed subgroup scheme of GL
which is an integral scheme. We assume that both u and ¢ normalize Lie(Op(y)). This
implies that o4 normalizes Lie(lJ). Thus Opgz) is the extension to B(k) of a connected
subgroup of GL,,, (1], cf. Example 2.2.1. If Uy, is the Zariski closure of Ug, in GL Mz, »
then its extension to W (k) is Oy (). If O is a subgroup of §, then [z, is a subgroup of
Sz,-

As p and ¢ normalize Lie(Gp()), 04 normalizes Lie(§). Thus from the previous
paragraph we get the existence of a unique closed subgroup scheme Gz, of GL My, whose

extension to W (k) is Gy (z); it is a reductive group scheme over Z,,.
2.4.1. Two axioms. We introduce two axioms for C:

(i) there exists a family (t,)aeg of tensors of T(M) fixed by ¢ and G and such that
G is the Zariski closure in GL,; of the subgroup of GL M[L] that fixes t,, for all a € J;

(ii) there exists a set of cocharacters of Gy () that act on M ®w ) W(k) via the

trivial and the inverse of the identical character of GG,, and whose images in 9%3 ) generate
S

Until the end of the paper we will assume that these two axioms hold for C. Ax-
iom (i) implies that ¢" € G(B(k)) and that we have t, € J(Mz,) for all @ € J. Thus
the pair (Mz,, (ta)acg) is a Z, structure of (M Qw )y W(k), (fa)acg). The difference
between any two such Z, structures of (M @y ) W(k), (ta)acg) is measured by a class
v € H'(Gal(Zy"/Zy), Gz,), where Z»* is the maximal unramified, profinite discrete val-
uation ring extension of Z,. From Lang theorem (see [Se2, p. 132] and [Bo, Ch. V,
Subsections 16.3 to 16.6]) we get that this class is trivial. Thus the iosmorphism class
of the triple (Mz,, Gz, , (ta)acg) does not depend on the choice of the Hodge cocharacter
p: G, — G of €. Also by replacing ¢ with g¢, where g € (W (k)), the isomorphism class
of (Mz,,59z,, (ta)acy) remains the same. From Lang theorem we also get that each torsor
of G is trivial. This implies that there exists an isomorphism

(2) M M-Zp ®Zp W(l{?) =M

that takes . to t, for all @ € J. Thus § = Gy (1) (i.e., our notations match) and we refer
to the triple (Mz,, 9z, , (ta)acg) as the Z, structure of (M, ¢, 3, (ta)acy)-

Axiom (ii) is inserted for practical reasons i.e., to exclude situations that are not
related to Shimura varieties of Hodge type and to get the following properties.
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2.4.2. Theorem. We recall that C = Cay,,, (9).

(a) The Lie algebra Lie(C) is W (k)-generated by elements fized by ¢.
(b) The closed subgroup scheme C' of GLyy is reductive.

(c) We assume that we have a principal bilinear quasi-polarization \p; of C. Let
C1(Am)? be the Zariski closure in GLy of the identity component Cypky(Aa)° of the
mazimal subgroup Cipy (M) of Cipk) that normalizes the B(k)-span of Anr. Then the
Zariski closure Z°(Cy(Ay)?) in GLy of Z°(Cipay(Am)?) is a torus over W (k).

Proof: As ¢" € G(B(k)) fixes Lie(C') and as ¢(Lie(C)) = Lie(C), (a) holds. To prove
(b) we work only with the §-module M; thus the below reduction steps do not pay any
attention to ¢. To prove (b) we can assume that § is split and that Z°(G) = Z(GLy,). Let
M [—] = @ M; [ | be a direct sum decomp081t10n into irreducible §p()-modules, cf. Weyl

complete redumblhty theorem. Let M, := M N M; [p]. Thus &7 ;M; is a G-submodule
of M. Due to the axiom 2.4.1 (ii), each simple factor of Lie(S%e(rk)) is of classical Lie

type and the representation of Lie(S%e(rk)) on each Ml[%] is a tensor product of irreducible

representations which are either trivial or are associated to minuscule weights (see [Sel,
Prop. 7 and Cor. 1 of p. 182]). Thus the Gx-module M;/pM; is absolutely irreducible and
its isomorphism class depends only on the isomorphism class of the §pg(;)-module Mi[%],
cf. the below well known Fact 2.4.3 and [Ja, Part I, 10.9].

By induction on n € N we show that we can choose the decomposition M [1—1)] =
@?lei[%] such that we have M = @' ; M;. The case n = 1 is trivial. The passage from
n to n + 1 goes as follows. We have a short exact sequence 0 — My — M — M/M; — 0
of §-modules. Using induction, it suffices to consider the case n = 1; thus the W(k)-
monomorphism My < M/M; becomes an isomorphism after inverting p. If the Gp)-
modules M; [%] and MQ[%] are not isomorphic, then the Gi-modules M; /pM; and My /pMs
are not isomorphic and therefore the natural k-linear map My /pM;,® My /pMy — M /pM is
injective; this implies that we have M = M; & Ms. We assume now that the §p(x)-modules
Ml[%] and Mg[%] are isomorphic. Thus M; and M, are isomorphic §-modules. If they
are trivial §-modules, then we can replace My by any direct supplement of M; in M and

thus we have M = M; & Ms. We now consider the case when M; and My are non-trivial
G-modules. Let M be a W (k)-lattice of M [l] which contains M, which is a G-module

isomorphic to M; & My, and for which the length of the torsion W (k)-module M/M is
the smallest possible value I € NU{0}. Let M = M; @ M> be a direct sum decomposition
into irreducible §-modules. We show that the assumption [ # 0 leads to a contradiction.
We can assume that the natural Gx-homomorphism M;/pM; — M, /le is non-trivial
and therefore injective. Thus M, is a direct summand of M and therefore we can assume
that M, = M,. As M F M, we have Im(Ms/pMy — M /pM) C Im(M, /pM; — M /pM).
Thus we can replace M by M & pM, and this contradicts the minimality of {. Thus [ = 0.
Thus M = M1 @ M2 and therefore as M, we can take M This ends the induction.

Thus to prove (b) we can assume that M = @&} ;M,;. As the isomorphism class of
M; is uniquely determined by the isomorphism class of the §p(x)-module M; [p], we can

write M = @je s M Jn 7, where each M; is isomorphic to some M;, where n; € N, and where
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for two distinct elements ji,j2 € J the §-modules M;, and M, are not isomorphic. Also
for two distinct elements ji,j2 € J, the Gy-modules M;, /pM,;, and M;,/pM;, are not
isomorphic. We easily get that the group scheme C' is isomorphic to a product [] jeJ GL,,
and therefore it is a reductive, closed subgroup scheme of GLj;. Thus (b) holds.

We prove (c). From (b) we get that C; = Cgr,, (C) is a reductive, closed subgroup
scheme of GLj;. Thus Z°(Cy(A\y)) is the Zariski closure in Z°(C}) of a subtorus of
Z°(C4) p(xy and therefore it is a torus. O

2.4.3. Fact. Let H be a split, simply connected group scheme over Z whose adjoint is
absolutely simple and of classical Lie type 6. Let T be a mazximal split torus of H. Let
Pw : H — GL4 be the representation associated to a minuscule weight w of the root system
of the inner conjugation action of T on Lie(H) (thus Z is a free Z-module of finite rank,
cf. [Hu, Subsection 27.1]). Then the special fibres of pm are absolutely irreducible.

Proof: We use the notations of [Boul, planches I to IV]. The minuscule weights are: w;
withi e {1,... ,n}if0 =A4,, w, if 6 = B, w; if 6 = C,,, w1, wn-1, and w, if 6 = D,
(see [Bou2, pp. 127-129] and [Sel, pp. 185-186]). Let 20 be the Weyl group of H with
respect to J. Let 20, be the subgroup of 20 that fixes w. We have dimz(Z) = [20 : W],
cf. [Bou2, Ch. VIII, §7.3, Prop. 6]. Thus for each prime p, the absolutely irreducible
representation of Hp  associated to weight w has dimension at least dimz(Z). As it is
isomorphic to the representation of Hp, on a factor of the composition series of the fibre
of p over [F),, by reasons of dimensions we get that this fibre is absolutely irreducible. [J

2.4.4. Extra groups. Let Mg, := MZP[%]. Let CGgq, be the identity component of
NGq, = NaLy, (Sq,)- The reductive group CGq, is generated by Gg, and by Cq, :=
CGLMQP (9@17)' Let

IT: End(Mg,) — End(Mg,)
be the projector on Lie(Gg,) along the perpendicular of Lie(Gg,) with respect to the trace
form T on End(Mg,), cf. Lemma 2.2 (b). The group NGq, is the subgroup of GL Mg,
that fixes II. Based on (2) the group CGp(x) is naturally a subgroup of GL Mm{a): it is the

identity component of NGLM[;] (SB(K))-

2.4.5. Plus (plus) admissibility. We say that an E-pair (T, 1) of € is plus
admissible if it is admissible and if the class

(3) ’2‘ S Hl(@I” 9@;0)
has a trivial image in H'(Q,, CGq,). Here the class £ is defined as follows. Let p :

Gal(K3) — GLyw be the admissible Galois representation that corresponds to (M, ¢, F' }{2)
Thus W is a free Q,-vector space and we have a Gal(K3)-isomorphism

(4) W ®q, Bar(K2) = M Qw ) K2 @K, Bar(K2)

which respects the tensor product filtrations (the filtration of W is trivial and the filtration
of M @y (ry K2 is defined by F}Q) For a € J, let v, € T(W) be the tensor that corresponds
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to t, via (4) and Fontaine comparison theory. We take £ to be the class of the right torsor
of Gg, that parameterizes isomorphisms between (Mg, , (ta)acg) and (W, (va)aeg) (such
a torsor exists, cf. (2) and (4)). If the class £ is trivial, then we say that the E-pair
(T1B(k), 1) of Cis plus plus admissible.

We say +20 (resp. + + ) holds for € if there exists an E-pair of € which is plus
(resp. plus plus) admissible. As in Definition 2.3 (i) we speak about Q+2, Q@ ++2, T+ 2,
T+ +2A, TT + 2, or TT + +2 holding for C.

2.4.6. Lemma. Let ZGg, be the subgroup of CGgq, generated by Gq, and the torus
Z(CGy,). If G is simply connected and if the torus Z(C’GQP)/Z(S%‘?) = ZGQP/S%? is
isomorphic to Z(CGy,), then the pointed set H'(Q,, ZGq,) has only one class.

Proof: The group Z(CGg,) is the group scheme of invertible elements of an étale Q,-
subalgebra of End(Mg,). Thus it is a torus over Q, and moreover the (abstract) group
H(Qp, Z(CGy,)) is trivial. Therefore the group H'(Q,, ZGQP/S%?) is also trivial. The
pointed set H I(Qp,S%ir) has also only one class, cf. [Kn, Thm. 1]. As we have an
exact complex H(Q,, 9%6;) — HY(Q,, ZGq,) — H'(Q,, ZGQP/S%‘ZY) of pointed sets, the
Lemma follows. O

2.4.7. The polarized context. We assume that there exists a principal bilinear quasi-
polarization Ays @ M ®wuy M — W(k) of C; it give birth naturally to a symmetric
bilinear form Ap; on Mz, and therefore we can speak about the Q,-span of Aps (inside
(Mg, ®q, Mg,)*). Let 9%17 be the identity component of the subgroup of Gg, that fixes
An. Let DGg, (resp. DG%p) be the identity component of the subgroup of CGg, that
normalizes the Q, of A (resp. that fixes A\ys). We have G, < DGq, (resp. 9%},; < DG%p).
Either S%I, = Yg, or we have a short exact sequence 0 — S%I, — S, = Gy — 0. Thus
the class £ is the image of a class £° € H'(Q,, 9%p). We say that an E-pair (T gk, t1) of
C is plus (resp. plus plus) admissible with respect to Ay if and only if it is admissible and
moreover the image of £° in H(Q,, DG%p) (resp. and moreover £°) is the trivial class.
As in Definition 2.3 (i) and Subsubsection 2.4.5 we speak about @ + 2, Q + +2, T + 2,
T+ 42, TT +2A, or TT + 42 holding for (C, A\ps). If Q@ + 2 (or @ + +2A, etc.) holds for
(€, Apr), then it also holds for C.

2.4.8. A reduction. We assume that there exists a non-trivial product decomposition
9%(2 =V, X2, V,. Let ¢ = Z]T/[l(ﬁlM : MZp ®Zp W(]C) — MZp ®Zp W(l{?) and pg = i&l,uiM :
Gm — Swk) < GLMZP®ZPW(k)~ We have ¢y = g(lMZp ® O')/io(}—lj), where g € Gz, (W (k)).
Let 9%}7 be a reductive, closed subgroup scheme of Gz of the same rank and the same
Zy-rank as Gz, and whose adjoint group scheme is V1. By replacing i, with its composite
with an automorphism of Mz, ®z, W (k) defined by an element of Gz (W(k)), we can
assume that the cocharacter ug factors through 911,‘/(,{), cf. [Bo, Ch. V, Thm. 19.2] and

[DG, Vol. II, Exp. IX, Thm. 3.6 and 7.1]. Let go € S%Er(W(k:)) be an element whose
image in V; (W (k)) is trivial and such that we have gog € 9%p(W(k¢)). From the last two
sentences we get that the triple (Mz, ®z, W (k), godo, 9‘1,[,(@) is a Shimura F-crystal over
k. Both axioms 2.4.1 (i) and (ii) hold for (Mz, ®z, W (k), godo, 911/[/(1:))' Argument: axiom

17



2.4.1 (i) holds as 9%}3 is the closed subgroup scheme of Gz that fixes Lie(ZO(S%p)) and

axiom 2.4.1 (ii) holds as a maximal torus of § is a maximal torus of Gy (zy. Thus from

1
W (k)
many “adjoint” points of view, one can assume that 9%3 is simple. We will use this fact
in Section 6.

2.5. Definitions. Let Jg be a subset of J.

gooe

that the family (to)acg, of tensors of T(M) (or T(Mz,)) is of partial degrees at most a.

e family (f4)acg, of tensors o 7. ) 1s calle -very well positioned for
b) The famil g, Oof f T(Mz,) i lled Z,, I d fi
Sz, if the following condition holds:

(*) For each faithfully flat, integral Z,-algebra R and for every free R-module O that
satisfies O[%] = Mz, ®z, R[%] and such that we have t, € T(O) for all a« € Jo, the Zariski
closure G of SRy in GLo is a reductive, closed subgroup scheme of GLo.

Definition (b) is only a particular case of [Val, Def. 4.3.4 and Rm. 4.3.7 1)].

2.6. Reduction to the basic context. Let g € G(W (k)) and h € G(B(k)) be such
that L(g) (g¢) is a reductive, closed subgroup scheme of § through which p : G,, — §
factors and we have an equality hg¢ = ¢h, cf. [Va3, Subsubsection 3.1.1 and Thm. 3.1.2].
Thus by performing the operation 95 (i.e., by replacing € with (h(M), ¢, SG(h))), in this
Subsubsection we will also assume that Lg(¢) is a Levi subgroup scheme of P9+ (¢) and that
i1 factors through it. Therefore (M, F', ¢, L2 (¢)) is a Shimura filtered F-crystal over k and
(M, ¢, LY(¢)) is basic. Thus in connection to Conjecture 1.2.2 and to Subproblems 1.2.3
and 1.2.4, we can always replace G by a Levi subgroup scheme of P9+ (¢). However, often we
will not perform this replacement in Sections 5 to 7, as by keeping track of G we get extra
information on LE(¢) as follows. Let LY (¢)z, be the reductive, closed subgroup scheme of

Gz, which is the Z, structure of L%(¢) obtained as in Subsection 2.4 (for O = LS (9)).

2.6.1. Fact. We have L% (¢) = C5(Z°(LE(¢))). Moreover, LY (¢)z, is the centralizer of a
G subgroup scheme of Gz, in Gz, and (M, ¢) is a direct sum of F-crystals over k which
have only one Newton polygon slope.

Proof: Both L%(¢) and Cg(Z°(L%(¢))) are reductive, closed subgroup schemes of § (cf.
[DG, Vol. IIL, Exp. XIX, Subsection 2.8] for Cg(Z°(LY(¢)))). Thus they coincide if and
only if their generic fibres coincide. But this follows from the fact that LY (¢)p(x) is the
centralizer of the cocharacter vp) of Gpr) which factors through ZO(L% (#)B(k)) and
which is the Newton cocharacter of € (see [Va3, Subsection 2.3]). The cocharacter vp,) is
fixed by ¢ and p and thus it is the extension to B(k) of a cocharacter v of Z°(Lg(¢)q,)-
As Z°(L%(9)) is a torus, v extends to a cocharacter of Z°(L¢(¢)z,). Its centralizer in Gz,
is a reductive, closed subgroup scheme of Gz (cf. [DG, Vol. III, Exp. XIX, Subsection
2.8]) whose generic fibre is L%(¢)q, and therefore it is Lg(¢)z, itself. As v extends to a
cocharacter of Z°(L¢(¢)z, ), V() extends also to a cocharacter of Z°(Lg(¢)). This implies
that(M, ¢) is a direct sum of F-crystals over k£ which have only one Newton polygon slope
0
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2.6.2. Corollary. We assume that (T1p(k), 11) is an E-pair of € which is plus plus admis-
sible. Then (T1p(k), 1) 15 also an E-pair of (M, ¢, L%(¢)) which is plus plus admissible.

Proof: Let u € Lie(Z°(L%(¢)z,)) be the image via dv of the standard generator of Lie(G,).
Thus L%(¢)q, is the subgroup of Gg, that fixes u and (ta)acg. We use the notations
of Subsubsection 2.4.5. Let u, € End(W) correspond to u via (4). We consider an
isomorphism 7 : Mg, = W that takes t,, to v, for all @ € J. Two cocharacters of Sq, which
over Q, are Gg, (Qp)-conjugate, are Gg, (Qp)-conjugate. Thus we can choose i such that
i(u) = ug. Thus the E-pair (T1p(k), 1) of (M, ¢, L(g) (¢)) is plus plus admissible. O

Let now Z be the center of Car,, (Z°(LY(¢))). Let Zz, be the Z, structure of
Z obtained as in Subsection 2.4; it is a reductive, closed subgroup scheme of GL Mz, -
As ¢" € G(B(k)) (cf. Subsubsection 2.4.1) normalizes Pgr(gb)B(k) and Pg (¢)B(r), We
have ¢" € L%(¢)(B(k)). Thus Lie(Z) is normalized by ¢ and fixed by ¢”. Therefore
Lie(Z) is W (k)-generated by its elements fixed by ¢ and thus we can identify naturally
Lie(Z) = Lie(Zz,) ®z, W (k). Let (ta)acg(o) be the family of all tensors which are elements
of Lie(Zz,). The group scheme Cg(Z°(L¢(¢))) = L(¢) is the Zariski closure in GLys of
the subgroup of GLM[%] that fixes t, for all « € JU J(0).

2.6.3. Fact. If the family (to)acg, of tensors of T(Mz,) is Zy,-very well positioned for Gz,
then the family (to)acgoug(o) of tensors of T(My,,) is Z,-very well positioned for L(g) (0)z

Proof: Let R, O, and G be as in Definition 2.5 (b). We assume that we have t, € T(O)

for all & € Jo U J(0). We know that G is a reductive, closed subgroup scheme of GLg.
From [Val, Subsubsection 4.3.13] applied in the context of Z°(Lg(¢))z, and Zz , we get

that the Zariski closure of Z°(Lg(¢))gp1) in GLo is a torus. Its centralizer in Sp is a

reductive, closed subgroup scheme of Gp (cf. [DG, Vol. III, Exp. XIX, Subsubsection 2.8])
and thus it is the Zariski closure of LY (¢) rp2] in GLo. Thus the Fact holds, cf. Definition

2.5 (b). O

2.7. Some W (k)-algebras. Let e € N. Let X be an independent variable. Let R :=
W (k)[[X]]. Let Re (resp. Re) be the W (k)-subalgebra of B(k)[[X]] formed by formal
power series Y- a, X" for which we have a, [2]! € W (k) for all n (resp. for which the
sequence b, = a, [2]! is formed by elements of W (k) and converges to 0). Thus Re is a
W (k)-subalgebra of Re. Let ®p, ®g., and ® ., be the Frobenius lifts of R, Re, and Re
(respectively) that are compatible with o and that take X to X?. For m € N let I(m) be

the ideal of Re formed by formal power series with ag = a1 = -+ = a,,—1 = 0. The proof
of the following elementary Fact is left as an exercise.

2.7.1. Fact. We assume that p > 3 (resp. p = 2). Let V be a finite, totally ramified
discrete valuation ring extension of W (k) of degree at most e. Let wy be a uniformizer of
V. Then there exist W (k)-epimorphisms R — V, Re — V, and Re -V (resp. R —V
and Re — V') that map X to my. Also, by mapping X to 0 we get W (k)-epimorphisms
R — W (k), Re - W (k), and Re — W (k) that respect the Frobenius lifts.

3. Unramified and ramified CM-isogeny classifications
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Let F = {Cylg € (W (k))} be as in Subsection 2.1. By the strong CM-isogeny (resp.
by the CM-isogeny) classification of ¥ we mean the description of the subset SZ(Y(F))
(resp. Z(Y(F))) of Y(F) formed by inner isomorphism classes of those C, with g € (W (k))
which, up to the operation D5 (resp. up to the operations 97 and 9,), have a lift of quasi
CM type.

Fact 3.1 and Proposition 3.2 present some necessary and sufficient conditions that
pertain to the statement “C € Z(Y(F))”; their main goal is to motivate why such CM-
isogenies classifications are too restrictive and often too difficult to be accomplished and
therefore why in Subsection 3.3 we also introduce ramified lifts of € (or of D with respect
to §) and the (strong) ramified CM-isogeny classification of F. In Subsections 3.4 to 3.8
we include different properties required in Sections 5 to 9 and some remarks. In particular,
Corollary 3.7.3 checks that for p > 3 (resp. for p = 2) the ramified lifts of D with respect to
G (see Definition 3.7.2) are in natural bijection to (resp. define naturally) abstract ramified
lifts of €. In this Section we will use the notations of Subsections 2.1 and 2.4. We recall
that the axioms 2.4.1 (i) and (ii) hold.

3.1. Fact. (a) If C has a lift of quasi CM type, then it is unramified semisimple.

(b) If there is a mazimal torus of Spw) of Q,-endomorphisms of C, then C is
semisimple.

Proof: We prove only (a) as the proof of (b) is very much the same. Let 7 be a maximal
torus of G such that we have ¢(Lie(T)) = Lie(T). Thus ¢" € G(B(k)) (see Subsubsection
2.4.1) normalizes T. Therefore we have ¢" € Ng(T)(B(k)). Let m € N be such that
¢"™ € T(B(k)). As the torus Ty, (g is split, part (a) follows. O

3.2. Proposition. Let (Mz,,9z,,(ta)acg) be as in Subsubsection 2.4.1. We assume
that C is unramified semisimple and quasit IU-ordinary. If all simple factors of 9%2 are

Weil restrictions of PGL group schemes and if Gz,(Q)) surjects onto 9%3((@1,), then [C] €
Z(49(9))-

Proof: 1t suffices to prove the Proposition under the extra assumptions that C is U-
ordinary, that L(g) (®)B(k) is a subgroup of Pp(y), and that p is the inverse of the canonical
split cocharacter of (M, F'*, ¢) defined in [Wi, p. 512]. The Lie algebra Lie(Lg(¢) p(z)) is
B(k)-generated by elements which are fixed by ¢®oj and which leave invariant F'! [1—1)] Due
to the functorial aspect of [Wi, p. 513] these elements as well as the t,’s are fixed by pp -
Thus pp factors through Z°(L%(4)pk)). We check that Lg(¢) is a reductive, closed
subgroup scheme of G. Let T° be the image of y; it is a torus of the center of L% (¢). By in-
duction on i € N we get the existence of a unique torus T of the center of L(g) (¢) such that
we have Lie(T?) = ¢'(Lie(T")). Let Ty be the torus of G generated by T%’s. We claim that
LY(¢) is Cy := Cg(Tp). Obviously LY(¢) is a closed subgroup scheme of Co. As p factors
through Z°(Cy) we have ¢(Lie(Cy)) = Lie(Cy). Thus Lie(Copr)) C Lie(LE(¢) px)) i-e.,
Cop(r) is a subgroup of LY (¢) g() (cf. [Bo, Ch. II, Subsection 7.1]). Therefore Lg(¢) = Cy
is a reductive, closed subgroup scheme of G.

We have ¢" € Cy(B(k)), cf. paragraph before Fact 2.6.3. By performing the opera-
tion 7 we can assume that Cj is split and that all eigenvalues of ¢" as an automorphism
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of either M [%] or End(M [%]) belong to B(k) and are not roots of unity different from 1.
Let Iy be the image of ¢" in C34(B(k)). Let Cs be the centralizer of I, in Cg%(k); it is
a split reductive group over B(k). As Lie(C8¢) is fixed by ¢” and normalized by ¢, the
Lie algebra Lie(Cg°*) is B(k)-generated by elements fixed by ¢. Let CS&, be the adjoint
group over QQ, whose Lie algebra is formed by such elements; its extension to B(k) is C34.

Let Tg, be a maximal torus of C’;‘&p which splits over B(k), cf. [Ti2, Subsection 1.10].

Let T3 B(k) be the maximal torus of §p() which contains Z9(Cy) B(k) and whose image
in C’O B(k) is generated by Z°(Cs) and by the maximal torus of C’ggr(k) that is naturally
isogenous to Thp(x). The torus T;p(y) is split and its Lie algebra is normalized by ¢. As
¢" acts trivially on Lie(T1p(x)), Lie(Tipk)) is B(k)-generated by elements fixed by ¢. Let
T1g, be the Q,-form of T; with respect to (M[I—lj],@; it splits over B(k). Thus let Tz,
be the torus over Z, whose generic fibre is T1g,, cf. [Ti2]. We can identify naturally Tig,
with a maximal torus of the subgroup Sq, of GLay,, . Let ‘j'lQp be the inverse image of
TlQp in 79 (Yg,) X QSC As above, let ‘j'lz be the torus over Z, whose generic fibre is

‘J'lQ We check that there exists a reductive group scheme 92 over Z, whose generic

fibre is ZO(SQ ) X 9 and which has le as a maximal torus. As 95‘3 is a product of
WEeil restrictions of SL groups, it suffices to check that if k3 is a ﬁnlte field and if T3 is
a torus over W (ks) such that T5p(,) is a maximal torus of SLpj,)», then there exists a
W (ks)-lattice M3 of B(ks)™ such that T5 is a maximal torus of SLjs,. We take M3 such
that it is normalized by T3, cf. [Ja, Part I, 10.4]. It is easy to see that T3 is a maximal
torus of SLyy, (for instance, cf. [Va2, Thm. 1.1 (d))]).

As Gz, (Q,) surjects onto 9%3 (Qp), there exists an element h € Gg,(Q,) such that
we have hé%cp (Zp)h™t = S% (Zp) (cf. [Ti2, Subsection 1.10]). Thus by performing the
operation O, (i.e., by replacing Mz, with h™'(Mz,)) we can assume that the Zariski
closure of T1g, in GLyy,  is the torus Tiz,. Obviously Ty ;) is the extension to W (k) of

a maximal torus of § whose Lie algebra is normalized by ¢. Thus from the very definitions
we get that [C] € Z(Y(F)). O

3.2.1. Remark. If G324 has simple factors of C,, Dynkin type (n > 2), then in general we
can not assume that up to the operation o the Zariski closure of J1g, in Gz, is a torus
(cf. [Val, Rm. 3.1.2.2 1)]). This can be adapted to the B,, and D,, Dynkin types.

3.3. The ramified context. Let V be a finite, totally ramified discrete valuation ring
extension of W (k). Let K := V[%] and let my be a uniformizer of V. We assume that

= [V : W(k)] > 2. Let the W (k)-algebras R, Re, and Re be as in Subsection 2.7. For
m € N let &g be the Frobenius lift of R, := W (k)[[X1,..., X,,]] which is compatible
with o and which takes X; to X? for all i € {1,...,m}. If m = 1 we drop it as an
index; thus R; = R. The p-adic completion Q%m of Qg  1is a free R,,-module that has
{dX1,...,dX,,} as an R,,-basis. Let m.: R — V be the W (k)-epimorphism which takes
X to my. If p>3 (resp. p>2), we denote also by m, the W (k)-epimorphism Re — V
(resp. Re — V) defined by m, (cf. Fact 2.7.1).
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3.3.1. Definitions. (a) By a lift of € to R,, we mean a quadruple

(5) (MRm7Fll%ma¢MRm79Rm>7

where Mg, is a free Rp,-module of the same rank as M, Fp is a direct summand of
MR,,, Sr,, is a reductive, closed subgroup scheme of GLys,, , and ¢ar, @ Mg, — Mg,
is a ®p,-linear endomorphism, such that the following three axioms hold:

(i) the Rp,-module Mp,, is generated by ¢nr, (Mg, +p 'Fi );

(ii) there exists a family of tensors (t2m),cg of the FC-filtration of T(MEg,, ) defined
by Ff such that we have ¢nr, (t5m) =tE for all « € J and G, is the Zariski closure
in GLsy,,, of the closed subscheme of GL,,, (1) that fixes tin for all o € J;

(iii) the extension of (Mg, ,dry, > GR,,) Via the W(k)-epimorphism mg : R, —
W (k) that maps each X; to 0, is C.

(b) Let myye : Ry, — V be a W(k)-epimorphism; if m = 1 we take my.. := me.
Let FY, := Fl, ®R,, my,.V. Werefer to (Mg, , Fy;, a1y, Sr,,) as a lift of € to Ry, with
respect to V.

(c) We say (Mg,,, Fyy, &rn,. > SR, ) is a lift of € to Ry, of quasi CM (resp. of CM)
type with respect to V, if there exists a maximal torus TR L] of G R,,[1] Such that the
following two axioms hold:

(i) Lie(Tx B 1) is normalized (resp. is Ry, [ ]-generated by elements fixed) by ¢ar, ;
(ii) F‘lf[g] is a Lie(Tg,,117)/Ker(1mm;c)Lie(Tg,, (1))-module.

l
p

(d) We have variants of (a) to (c), where we replace R,, by Re or Re (the W (k)-
epimorphisms from either Re or Re onto V being m.). A lift of € to Re (which is of quasi
CM or of CM type) with respect to V is also called a ramified lift of € to V' (of quasi CM
or of CM type).

(e) If we have a principal bilinear quasi-polarization Ays : M @y M — W(k) of
C, then by a lift of (€, A\ps) to R,, we mean a quintuple

(MRmaFjl%mangRm?ngﬂ)‘MRm)?

where (Mg, , Fg ,émp,, > 9R,,) is as in (a) and Ay, s a perfect bilinear form on Mg,
which lifts Aps, whose R,,-span is normalized by G, , and for which we have an identity

A (Omp,, () @ Sy, () = PPR,, (Arg,, (2 @ y)) for all elements z,y € Mg,,. Similarly,
definitions (b) to (d) extend to the principal bilinear quasi-polarized context.

3.3.2. Remarks. (a) Let (Mg,,,F\, érmp, ,Sr,,) be a lift of € to Ry, of CM type
with respect to V. Let Tg 4] be a maximal torus of Gy | 1] such that the two axioms

of Definition 3.3.1 (c) hold for it. Let TiB(k) be the pull back of Tp 2] via the B(k)-

epimorphism Rm[p] — B(k) that takes each X; to 0. As Lie(Tp, (1) is R [ |-generated
by elements fixed by ¢nr, , T1p(k) is @ maximal torus of Gp (i) of Qp—endomorphlsms of C.
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Similarly, if € has a ramified lift to V' of CM type, then there exist maximal tori of §p,)
of Qp-endomorphisms of €.

(b) We refer to Definition 3.3.1 (a). The reductive group scheme Gr  over R, lifts
G (cf. axiom (iii) of Definition 3.3.1 (a)) and thus (as R,, is complete in the (X1,...,X)
topology) it is isomorphic to § Xgpec(w (1)) SPec(Ry,) (i-e., our notations match).

3.3.3. Ramified CM-isogeny classifications. By the strong ramified (resp. by the
ramified) CM-isogeny classification of ¥ we mean the description of the subset

SZ™(Y(F)) (vesp. 27 (Y(F)))

of Y(F) formed by inner isomorphism classes of those €, with g € G(W (k)) for which, up
to the operation D4 (resp. up to operations 7 and D), there exists a discrete valuation
ring V' as in Subsection 3.3 and a ramified lift of €, to V of quasi CM type. We have
Z(9(F)) € 27(Y(3)) and SZ(Y(3F)) € S2(Y(F)).

Let PSZ™™(Y(F)) (resp. PZ™™(Y(F))) be the subset of Y(F) formed by inner
isomorphism classes of those C, with g € §(W (k)) for which (resp. for which, up to the
operation 91,) there exists a discrete valuation ring V' as in Subsection 3.3 and an element
h € PB(Cy) such that the Shimura F-crystal (h(M), ¢, G(h)) over k has a ramified lift to V'
of quasi CM type.

We assume now that we have a principal bilinear quasi-polarization Ay : M Q)
M — W (k) of C. Let

F(C, A\ar) == J(C) NAut (M, A\p)(B(k)).

Let J(C, Aps) be the set of inner isomorphism classes of quadruples of the form (h(M), ¢, G(h), Ayr)
with A € J(C, Aps) (i-e., the set of such quadruples up to isomorphisms defined by ele-
ments of (G N Aut(M, Ay ))(W(k))). Let Y(F, A\p) = Uge(gmAut(M,)\M))(W(k))j(eg,)\M).
As above, let SZ™™(Y(F, A\pr)) (resp. Z™™(Y(F, Apr))) be the subset of Y(F, Aps) formed
by inner isomorphism classes of those (C4, Aas) with g € (G N Aut(M, Ayr)) (W (k)) for
which, up to the operation 91 (resp. up to operations 9 and £5), there exists a discrete
valuation ring V' as in Subsection 3.3 and a ramified lift of (Cy4, Aps) to V' of quasi CM

type.

3.4. Lemma. Lets € N. Let g € GLys, (Rn,) be congruent to 1y,  modulo p*R,,. From
[Fa, Thm. 10] we deduce the existence of a unique connection Vo : Mg, — Mg, ®g,, U
(resp. V1 : Mg, — Mg, ®g,, Q%m) on Mg, such that ¢nr, — (Tesp. génry, ) is horizontal
with respect to it; it is integrable and nilpotent modulo p. Let Dqy (resp. Di) be the
unique (up to a unique isomorphism) p-divisible group over R.,,/pR.,, whose F-crystal is
(MR,,, érp, » Vo) (resp. (MR, , 9Pny, » V1) (the uniqueness part is implied by [BM, Thm.
4.1.1] while the existence part is implied by [Fa, Thm. 10]). Then we have Dy[p®] = D1[p®].

Proof: Let d®g ./, be the differential map of ®g,, divided by p. Let F}%m be a direct
supplement of Fj, in Mg, . We have Vo(¢nr,, (%) = p(dng, ® dPg, ./p) 0 Vo(z)
if © € Fj and Vo(ours, (#/p) = (Prp, @ dPg, .p) o Vo(x) if © € Fj . Similar
equations are satisfied by Vy. Let V1 [p°] be Vo — V1 modulo p®; it is an R,, /p® R,-linear
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map Mg, /p°Mg,, — Mg, /p°MR,, @R, /p*Rp 2R /p R AS MR, is Rp-generated by
Py, (Fh @ %F}im) and as we have ®p_(X;) = X7, by induction on [ € N we get that
Vo1[p?] is zero modulo the ideal (Xi,...,X,,)" of R,,/p*R,,. Thus the connections on
Mpg,, /p°Mp,, defined by Vo and V; coincide. Therefore we have Dy[p®] = Dq[p®], cf.
[BM, Prop. 1.3.3 and Thm. 4.1.1]. O

3.5. Theorem. We assume that p > 3 and G = GLy;. Then the ramified lifts of C to V
are in natural bijection to lifts of D to p-divisible groups over V.

Proof: To a p-divisible group Dy over V' that lifts D one associates uniquely a ramified
lift of C to V as follows. Let

<Mﬁe7 ¢M[357 v)

be the extension via the W (k)-monomorphism Re < Re of (the projective limit indexed
by n € N of the evaluation at the thickening naturally attached to the closed embedding
Spec(V/pV) — Spec(Re/p" Re) of) the Dieudonné F-crystal over V/pV of Dy Xgpec(v)
Spec(V/pV) (see [Me], [BBM], [BM], and [dJ, Subsection 2.3]). Thus Mz, is a free Re-
module of the same rank as D, V: My, — My, ®p, RedX is an integrable and nilpotent
modulo p connection on Mp,, and ¢pr, is a Pp -linear endomorphism of My, which
is horizontal with respect to V. If F'(Mpz,) is the inverse image in Mp,_ of the Hodge
filtration F}, of My, /Ker(me)Mp, = Hig(Dyv/V) defined by Dy, then the restriction of
éum, to F(Mpg,) is divisible by p and M, is Re-generated by Py, (Mp, + %Fl(Mée))'
Thus the quasruple (Mz,, F‘lf,(éMée,GL M, ) is the ramified lift of € to V' associated to
Dy . Due to this and to the fully faithfulness part of [Fa, Thm. 5|, to prove the Theorem
it suffices to show that every ramified lift of € to V' is associated to a p-divisible group over
V' which lifts D. As p>3, each lift of (M, ¢, GL);) is associated to (i.e., it is the filtered
F-crystal of) a unique p-divisible group over W (k) that lifts D (cf. Grothendieck—Messing
deformation theory of [Me, Chs. IV and V]). Thus each lift of € to R,, is associated to
a unique p-divisible group over R,, that lifts D, cf. [Fa, Thm. 10]. Thus the Theorem
follows from the following general result (applied with p >3, § = GLy;, and J = 0). O

3.6. Theorem. We assume that p > 2 but do not assume that~9 1s GLy;. We take m
to be dim(S%e(rk)). Then each lift (MRE,F}%, dmp.» Ge) of € to Re is the extension via a

W (k)-homomorphism R,, — Re of a lift of € to Ry, (this makes sense, cf. the uniqueness
of connections in Lemma 3.4).

Proof: Let (tfe)aeg be a family of tensors of the FY-filtration of T(Mp,) defined by F}%e
which has the analogue meaning of the family of tensors (tZm),cg of Definition 3.3.1
(a). Not to introduce extra notations, we can assume that the extension of CRe .=
(MRyFéevd’MRe?(tge)aEH) via the W (k)-epimorphism mg : R,, — W(k) of Definition

3.3.1 (a) is of the form W) = (M, F{, ¢, (ta)acg). Let

eRm = (M ®W(k) Rma F(} ®W(kz) Rm7 glillflll‘v(q5 ® q)Rm>7 (toz)a€3>7
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where ¢3¢t : Spec(R,,) — G is a universal morphism which identifies Spf(R,,) with the

formal completion of G9°* along the identity section. Let Vyniv be the unique connection
on M Qw ) R such that g3 (¢ ® ®p, ) is horizontal with respect to it. Let d be the

univ

flat connection on M ®yy () Ry, that annihilates M ® 1.

We have Yuniv := Vuniv — 0o € Lie(G) Qw (x) Q%m, cf. [Fa2, §7, Rm. ii)]. For the sake
of completeness, we include a proof of the last result. We view T(M) as a module over
the Lie algebra (associated to) Endyy (k) (M) and we denote also by Vyuiv the connection

on T(M Qw (k) Rm[%]) which extends naturally the connection Vyniy on M Qw(x) Ro-
Each tensor t € T(M @y (k) Rm[%]) is fixed under the natural action of gi% (¢ @ ®r )

on T(M Qw (k) Rm[%]). Thus we have Vniv(ta) = (g3 (¢ @ Pr, ) @ dPr,. ) (Vuniv(ta))-
As we have d®r (X;) = pXP'dX; for each i € {1,...,m}, by induction on s € N we
get that Viniv(ta) = Yuniv(ta) € T(M) Qw @y (X1, ... ,Xm)sflgm[%]. As R,, is complete
with respect to the (Xi,...,X,,)-topology, we get that Vyniv(ta) = Yuniv(ta) = 0. But
Lie(Sp(x)) N Endyy (x) (M) is the Lie subalgebra of Endyy ;) (M) that centralizes ¢, for all
a € J. From the last two sentences we get that yyniv € Lie(G) Qw (k) Qf{m

Next we list three basic properties of the W (k)-algebra Re:

(i) we have Re = proj.lim.,,enRe/I(m), the transition W (k)-epimorphisms being
the logical ones (see Subsection 2.7 for I(m)’s);

(ii) the W(k)-module I(m)/I(m + 1) is free of rank 1 for all m € N;
(iii) we have an inclusion I(m)? + ® 5 _(I(m)) C I(m + 1) for all m € N.

Thus the arguments of [Fa, Thm. 10 and Rm. (iii) of p. 136] apply entirely to give

us that €% is the extension of @%m through a W (k)-homomorphism R,,, — Re that maps
the ideal (X1, ..., X,,) to I(1) (this extension is well defined as the connection V iy exists
and is unique). Strictly speaking, loc. cit. is stated in terms of a universal element of G
and not of G4°*. But the image of the Kodaira—Spencer map of Vypuiy is the same regardless
if we work with G4 or § (this follows easily from the relation yuniv € Lie(G) @w k) Q3 )
and therefore loc. cit. applies in our present context of G9¢' as well. O

3.6.1. Corollary. Let (M3, F}%e, bums. > Gpe) be alift of C to Re. Ifp>3, let Dy be the p-
divisible group over V' that lifts D and that corresponds to (M, F1 ®Remev7 d)MRE) via the
natural bijection of Theorem 3.5. If p = 2, we assume that there e:msts a p-divisible group
Dy over V which lifts D and such that the triple (M, F1 O pem. Vs OMy, _) 1s associated to
it as in the proof of Theorem 5.5. Let Ty Rel2] be a mammal torus of 9R 1] such that ¢y,

leaves invariant Lze(‘J’Re[%]) and Fi = FRe ® Ref1] K isa Lze(‘.TRe[;]) ® Ref1] K-module.

Then by performing the operation O1 we can assume that Lz’e(‘J’Re[ ]) is Re[ ]-generated

by elements fized by ¢nr, and thus that C has ramified lifts to V' of oM type. Thus up to
the operation 91, the p-divisible group Dy is with complex multiplication.

Proof: There exists a canonical and functorial (in Dy ) identification

(6) (M @y Re[ L6®ds) = <Mge[%], oar. )
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under which the pull back of the natural B(k)-epimorphism Re[%] — B(k) that takes
X to 0 is the identity automorphism of (M [%],¢) (see [Fa, Section 6] for the existence
part; the uniqueness part follows from the fact that no element of End(M [%] ®pr) 1(1)

is fixed by ¢ ® ®p_ ). Therefore via (6), we can identify Fj with a direct summand of
M ®wy K = Hip(Dv/V)[5] = [Mp, /Ker(me) Mg, ][]

Let T1p(x) be the pull back of Tée[l] to a maximal torus of Gp(x). Under the identifi-
cation (6), Lie(T1p(x)) @B (k) Re[%] gets identified with Lie(Tz,(1;). Thus Fj- is a Lie(T1 i )-
module. The triple (M [%], ¢, F')) is the filtered Dieudonné module of Dy and thus it is
an admissible filtered module over K. The triple (Lie(T1p)), ¢,0) is an admissible fil-
tered submodule over K of End(M [%], ¢, F). Therefore all Newton polygon slopes of
(Lie(T1Bx)), ¢) are 0. As ¢ normalizes Lie(T;p(1)), it is easy to see that by performing
the operation O; we can assume that Lie(T;p(y)) is B(k)-generated by elements fixed by
o.

Let t € Lie(Tp.(1)) be an element which lifts an element ¢ € Lie(T;p(x)) fixed by ¢

and for which we have {(Mp.) C Mp,. As @5 (X) = XP, the sequence (¢§\4R (t))sen

converges in the topology of the Re[%]—module End(M Re)[%] defined by the sequence
(I(m)End(MRe)[%])meN of Re[%]—submodules to an element ¢ € Lie(TRe[%]) which is fixed
by ¢, and which lifts ¢. This implies that Lie(‘TRe[%]) is Re[%]—generated by elements
fixed by ¢ar,, . This proves the first part. As to leaves invariant F L an integral p-power
of it corresponds naturally to an endomorphism of Dy (even if p = 2). Thus the second

part follows from this and the first part. O

3.7. Connection to the Main Problem. Let Dy be a p-divisible group over k that
lifts D. Let (Mp,, Fyy, ¢ar,,, ) be associated to Dy as in the proof of Theorem 3.5 (even if
p = 2). Under the identification (6), we can naturally view G Re[2] @ a subgroup scheme of

GL Mg, L] Let S’RG be the Zariski closure in GL My, of G Re[2] (in general it is not a closed

subgroup scheme of GLj/. ). We have the following Corollary of Theorem 3.6.

3.7.1. Corollary. We assume that the Zariski closure é’v of m¢(§%, )k in GLyy o .. v
1s a reductive group scheme over V whose special fibre, under the canonical identifi-
cation Mp, ®p, k = M/pM, is G,. We also assume that there exists a cocharacter
ny Gy — Q’V that acts on F\ via the inverse of the identical character of G, and
that fives [Mp, /Ker(me)Mp, ]/ Fy = Hig(Dy/V)/Fy. Then 9%, is a reductive, closed
S;Z}gqmu;‘)/scheme of GLyy,, isomorphic to G, and (Mg, Fi, dm, S/Re> is a ramified lift
0 to V.

Proof: For s € {1,...,e} we have Ry , := Re/I(s) = W(k)[[X]]/(X*). By induction on
s € {1,...,e} we show that the Zariski closure QIRLS of Spw)x7/(xs) i Gl /r(s)nmz,
is a reductive, closed subgroup scheme of GL My, /I(s)Mpg, - The case s < p — 1 is obvious
as the ideal (X)/(X?®) of R; , has a nilpotent divided power structure. More precisely, the

reduction modulo (s)[%] of the identification (6) gives birth to a canonical identification
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(M ®@w k) R1,5,0 @ PR, s) = (Mg, dn,.) g, Re/I(s), where ®; , is the Frobenius lift
of R1/(X?®) = Ry s which is compatible with ¢ and which annihilates X modulo (X*). If
p—1<s<e—1, then the passage from s to s + 1 goes as follows.

Let my be the maximal ideal of V. Under the canonical identification My, ® 5, k =
M/pM, we can also identify Fy,/my F} = F'/pF! and G/, = Gy; therefore we can assume
view both iy modulo my and py as cocharacters of Pi. By replacing p with a P(W(k))-
conjugate of it, we can assume that fiyy modulo my commutes with pur. As fiyy modulo
my and py are two commuting cocharacters of Py that act in the same way on F LpF?t
and (M/pM)/(F'/pF"), they coincide. Let fir, , : Gy — G, | be a cocharacter that lifts
both fy modulo my and u, cf. [DG, Vol. II, Exp. IX, Thms. 3.6 and 7.1]. Let Fflh,s
be the direct summand of Mp_/I(s)Mp, which lifts F{; /my F}, = F'/pF! and which is
normalized by fig, ..

Let m := dim(S%e(rk)). From [Fa, proof of Thm. 10 and Rm. (iii) of p. 136] we get
that the quadruple (Mp,/I(s)Mp,, Fg ¢, (ta)acg) is induced from Clm via a W (k)-
homomorphism j; : R,,, — R s that maps the ideal (X1,...,Xm,) to the ideal (X)/(X?).
Here we denote also by ¢z, its reduction modulo I(s). As the ideal (X*)/(X**1) of Ry 441
has naturally a trivial divided power structure and as jg lifts to a W (k)-homomorphism
Jst1 @ Ry — Ry sp1 that maps the ideal (Xi,...,X,,) to the ideal (X*)/(X*T!), the
triple (Mp,/I(s +1)Mp,, dr,, 5 (ta)acy) is the extension of (Mg, , dary,, > (tE™)acy) via
such a homomorphism js43. Thus Q’RI’S“ is the pull back of Gr, via the morphism
Js+1 : Spec(Ry s+1) — Spec(R,,) defined by jsy1 (and denoted in the same way) and it
is therefore a reductive, closed subgroup scheme group scheme of GL Mp, /I(s+1)Mp, - This
ends the induction.

Let fir,, @ Gy — élRl,e be a cocharacter that lifts both p and the reduction
modulo p of py, cf. [DG, Vol. II, Exp. IX, Thms. 3.6 and 7.1]. Let Fflh,e be the
direct summand of M, /I(e)Mp, which lifts F,/myFL, = F'/pF' and which is nor-
malized by fig, ,. From [Fa, proof of Thm. 10 and Rm. (iii) of p. 136] we get that
(Mg, /I(e)Mp,, Fiy énr, s (ta)acg) is induced from € via a W(k)-homomorphism
Je * Ry — Rie that maps the ideal (X1,...,X.m) to the ideal (X)/(X€). Here we
denote also by ¢y,  its reduction modulo I(e).

Let Duniv be the p-divisible group over R,,/pR,, whose F-crystal is (M Q)
R, g3 (¢ @ @R, ), Vuniv) (see proof of Theorem 3.6). A second induction on s €
{1,...,e} shows (based on Grothendieck—-Messing deformation theory) that there is a
W (k)-homomorphism js : R,, — Rj, that maps the ideal (Xi,...,X,,) to the ideal
(X)/(X?®) and such that the pull back of Dui, via the morphism Spec(k[[X]]/(X?®)) —
Spec(R,,) defined by js is Dy Xgpec(v) Spec(k[[X]]/(X¢)). Taking s = e we get that we
can assume that Dy Xgpec(vy Spec(V/pV) is the extension via j. modulo p of Dyyuiy. This
implies that the triple (Mp,, ¢, s (ta)acg) is the extension of (M ®w (k) Rm, gio, (¢ ®
Dg, ), (ta)acy) via a (any) W (k)-homomomorphism R,, — Re which lifts j, modulo p (the
fact that under such an extension and the identification (6), each ¢, is maped into t,, follows
from the fact that no element of T(M[I—lj]) ®pryl(e) [1—1)] is fixed by ¢®@@5,). Thus the closed
embedding 9/1%6 — GL My, is the pull back of the closed embedding Sg,, — GL sy, (o) B
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via a morphism Spec(Re) — Spec(R,,) which lifts j. modulo p. As Gg  is a reductive,
closed subgroup scheme of GL M@®&yw (xyB—m; We conclude that S’Re is a reductive, closed
subgroup scheme of GLyy . .

As S/Re is smooth over Re and due to the property (i) of the proof of Theorem 3.6,
there exists a cocharacter pp, of §';_ that lifts both p and fiv (to be compared with [Val,
Lem. 5.3.2]). Let F' }%e be the direct summand of M, that lifts 7}, and that is normalized
by pp,.. The quadruple (Mg, F o DM .G 7e) is a lift of C to Re (the analogue for Re

of the axiom (iii) of Definition 3. 3 1 holds for this quadruple due to the very definition of
SR ). Thus (MRe,FV,¢MR ,SRe) is a ramified lift of C to V. O

3.7.2. Definition. Let Dy be a p-divisible group over V that lifts D. We say that Dy,
is a ramified lift of D to V' with respect to G if (to be compared with the Manin Problem
1.2) the following three axioms hold:

(a) under the canonical identification H&R(DV/V)[l] = M Qw () V[l] (see proof of
Theorem 3.6), the Zariski closure G, of §x in GL HL (Dy/v) I8 aTeductive, closed subgroup
scheme of GLH1 LDy V)i

(b) under the canonical identification M/pM = H}z(Dy/V)/myHz(A/V), the
group scheme G, lifts G; (here my is the maximal ideal of V');
(c) there exists a cocharacter G,, — G}, that acts on F}- via the inverse of the

identical character of G, and that fixes H} (Dy/V)/FL, where F{. is the direct summand
of H}r(Dy/V) which is the Hodge filtration of Dy .

3.7.3. Corollary. We assume that p>3. Then the ramified lifts of € to V are in natural
bijection to the ramified lifts of D to V' with respect to G.

Proof: Let (MRS,F1 , &M, > 9p.) be a ramified lift of € to V. Let Fy, = F}%e R m. V-
Let Dy be the p—d1v151ble group over V' that corresponds to (M., Fl. ¢ MRE) via Theorem
3.5. From Definitions 3.3.1 (a) and (d) we get that Dy is a ramified lift of D to V' with
respect to §. Thus the Corollary follows from Theorem 3.5 and Corollary 3.7.1. OJ

3.8. Remarks. (a) Sections 2.7, 3.5, and 3.7 hold with k replaced by an arbitrary perfect
field of characteristic p. Theorem 3.5 was first obtained in [Br] and [Zi2] (strictly speaking
these references worked with Re instead of Re but as ® Re(Re) C Re it is easy to see that
for p > 2 there exists a natural bijection between lifts of € to Re and lifts of C to Ee). The
results 3.6, 3.7.1, and 3.7.3 are not in the reach of either [Br| or [Zi2].

(b) Often in this paper the principally quasi-polarized contexts are treated as variants
of non—polarized contexts. This is so due to the following two reasons. First, often the
principally quasi-polarized context is handled by making small (if any at all) modifications
to the contexts that involve only €. There exists no element of M ®yy ) I(1) fixed by
¢ ® ®5,. Thus if we have a principal quasi-polarization Ay : M @y M — W(k) of €
and if in Theorem 3.6 we have a lift (MRE,F1 dMp, > Ger Ay, ) Of (€, Anr) to Re, then

the W (k)-homomorphism R,, — Re of Theorem 3.6 takes automatically Ay to A Mg, -
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To explain the second reason we assume that G is generated by Z(GLj;) and by a
reductive, closed subgroup scheme G° of SLj; and that the intersection Z(GLjs) N G0 is
either po or Spec(W (k)). Then for most applications we can replace € by the direct sum
ChpC (1) :=(MpM*(1),pPply~-0¢,G), where M*(1) := M™* and where § is a reductive,
closed subgroup scheme of GL g ar+(1) such that GY acts on M*(1) via its action on M*
and Z(GLyy) is naturally identified with Z(GLysgar+(1)). Let Aprgar1) be the natural
principal alternating quasi-polarization of € @ €*(1). Then each ramified lift of € to V
gives birth naturally to a unique ramified lift of (€ @ C*(1), Aysgar=(1)) to V.

4. The basic results

In this Section we state our basic results pertaining to the (ramified) CM-classifications
of Section 3 (see Basic Theorems 4.1 and 4.2). Corollaries 4.3 to 4.5 are practical applica-
tions of Basic Theorems 4.1 and 4.2 for contexts related to Shimura varieties of either B,,
or D type. Let (Mz,,5z,, (ta)acg) be as in Subsubsection 2.4.1.

4.1. Basic Theorem. We assume that C is semisimple and basic. We have:

(a) If [C] € Z(Y(F)), then QU holds for C.
(b) R (resp. QR, TR, or TTR) holds for C if and only if A (resp. QA, T, or
TTA) holds for C.1

(c) We assume that p >3, that Q+2 holds for C, and that there exists a subset Jg of
d such that the family (to)acg, of tensors of T(Mz,) is of partial degrees at most p—2 and
is Zp-very well position for G (see Definitions 2.5 (a) and (b)). Then [C] € PZ™™(Y(F)).
Moreover, if either Q + +2 holds for C and Z°(G) = Z°(C1) or G = N¢, (G), then in fact
we have [C] € Z™™(Y(F)).

4.2. Basic Theorem. (a) We assume that C is basic and semisimple. We also assume
that each simple factor of 9%‘}@) is of By, Cy, or D,, Lie type. Then TTR holds for C.
?/S(E) 1s of By,

has a stmple factor V of D,, Lie type, then we also assume that

(b) We assume that C is semisimple and that each simple factor of G
. ad
or D,, Lie type. If SW(E)

the centralizer in 'V of the image of pyy 5y in it is either V itself or it is of Dy,—1 Lie type
der

and, in the case n = 4, that V*¢ is naturally a normal, closed subgroup scheme of 9W(E)'

Then TTR holds for C.

In Sections 5 and 6 we prove Basic Theorems 4.1 and 4.2 (respectively). The following
three Corollaries are abstract extensions of [Zil, Thm. 4.4] for p > 3 and for contexts
related to Shimura varieties of either B,, or DX type. They are also the very first situations
where complete ramified CM-classifications are accomplished. Their proofs are presented
in Section 7. Let T be the restriction to Lie(G9¢") of the trace form on End(M). Let & be
the Killing form on Lie(Gd°r).

1 We expect that the (b) part is well known.
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4.3. Corollary. We assume that all simply factors of 9?/3(1}) are of By, or Da,1 Lie type,

that G4°v is simply connected, that Z°(G) = Z°(Cy), that the natural isogeny Z°(G) — G2P
can be identified with the square isogeny 2 : Z°(§) — Z°(§), that p > 3 and that the
symmetric forms T and & on Lie(G) are perfect. Then for an element g € G(W (k)) we
have [C4] € Z™™(Y(F)) if and only if C, is semisimple.

4.3.1. Example. Let n € N. We assume that the representation § — GL,; is a product
of spin representations of GSpins,, 11 group schemes. Thus all simply factors of 9‘;3 (%) are
of B, Lie type, G4 is simply connected, and Z°(G) = Z°(C;). We also assume that p > 3
does not divide n — 1. Then the symmetric forms ¥ and & on Lie(§4°") are perfect, cf.
[Val, Lem. 5.7.2.1]. Thus for an element g € §(W (k)) we have [C,] € Z™™(Y(F)) if and

only if €, is semisimple, cf. Corollary 4.3.

ad

W (k)
that G is simply connected, that the symmetric forms & and T on Lie(G") are perfect,
and that Z°(G) = Z°(C1) is a torus of rank 2 times the number of simply factors of 9%‘}@).
If n is odd we also assume that (M, ¢, é) 1s a Shimura F-crystal over k, where G is the
closed subgroup scheme of G generated by G4 and by the mazimal subtorus Z99(9) of Z°(9)

with the property that the representation on M () W (k) of each normal, semisimple,
closed subgroup scheme of Gy () whose adjoint is simple, is a direct sum of trivial and

4.4. Corollary. We assume thatp > 3, that all simply factors of G are of D,, Lie type,

of spin representations on which ZOO(Q)W(,;) acts via scalar multiplications. Then for an

element g € S(W (k)) we have [Cq4] € Z™™(Y(F)) if and only if C, is semisimple.

4.5. Corollary. We assume that p > 3, that G4 is simply connected, that each sim-
ple factor of 9%1(}5) is of B, or D, Lie type, that the symmetric forms K and T on

Lie(G9) are perfect, and that we have a principal bilinear quasi-polarization Ay of C.
Let C1(M\y)° be as in Theorem 2.4.2 (c). Let 9%p be the mazimal reductive, closed sub-

group scheme of Gz, that fizes Apr. We also assume that Z°(G) = Z°(C1(Am)°) and that
the group H'(Qp, S%ib) is trivial. Then for an element g € (G N Sp(M, A p)) (W (k)) we
have [(Cy, Anr)] € Z™™(Y(F, Aar)) if and only if C, is semisimple.

5. Proof of Basic Theorem 4.1

In this Section we assume that € is basic and semisimple. In Subsections 5.1, 5.2,
and 5.3 we prove Theorems 4.1 (a), 4.1 (b), and 4.1 (c¢) (respectively).

5.1. Proof of 4.1 (a). To prove Theorem 4.1 (a) we can assume that there exists a
maximal split torus T of § such that we have ¢(Lie(T)) = Lie(T). We can also assume
that Lie(T) is generated by elements fixed by ¢ (see proof of Proposition 3.2). Thus Cg :=
CaL,, (7) is a reductive, closed subgroup scheme of GLj; such that we have ¢(Lie(Cy)) =
Lie(Cy). This implies that F'/pF! is a Lie(Cqyt)-module. As Cq (W (k)) is naturally a
subset of Lie(Cqyy (7)), the group Cqy normalizes F'/pF*. Thus T}, is a maximal torus of
Pi. Let Ty be a maximal torus of P through which the cocharacter u : G,, — G factors.
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From [DG, Vol. II, Exp. IX, Thms. 3.6 and 7.1] and [Bo, Ch. V, Thm. 15.14] we deduce
the existence of an element g € G(W(k)) which modulo p belongs to P(k) and for which
we have an identity g(Ty)g~! = 7. By replacing p with its inner conjugate through g we
can assume that p factors through 7. Thus Lie(T) is W (k)-generated by elements fixed
by o4 := ¢u(p). Let Tz, be the torus of Gz whose Lie algebra is formed by elements of
Lie(T) fixed by o, (cf. beginning of Subsection 2.4 applied with OJ = T); its extension to
W (k) is Twk) and Tg, is the Qp-form of Tp() with respect to (M[%, ¢). As C is basic,
the product of cocharacters of T of the orbit of 1 under integral powers of o4 (equivalently
of ¢) factors through Z°(G). Thus (TB(k), 4B(k)) is an unramified E-pair of C that satisfies
the cyclic € condition. This proves Theorem 4.1 (a). O

5.2. Proof of 4.1 (b). To prove Theorem 4.1 (b) we can assume that C is basic. It
is enough to show that an E-pair (Tip(), 1) of € is admissible if and only if 4 holds
for it. If an E-pair (T;p(x), p1) is admissible, then (as € is basic) from [Kol, Subsections
2.4 and 2.5] and [RaZ, Prop. 1.21] (see also [RR, Thm. 1.15]) we get that the product
of the cocharacters of T, which belong to the Gal(K;/Q,)-orbit of p; factors through
Z°(Sk,). Thus the E-pair (Tip(), 1) of € satisfies the € condition, cf. Example 2.3.1.
Thus R holds for C.
We now show the the converse holds i.e., we prove that if

(TIB(k)yﬂlaT = (11,72,...,7))

is an E-triple of € such that the condition 2.3 (el) holds and if Ky and Fy_ are as in

Definitions 2.3 (d) and (h), then the filtered module (M [%], ¢, F,) over Kj is admissible.
It is enough to show that the filtered module (M [%], o, F }Q) over K> is weakly admissible,
cf. [CF, Thm. A]. Let Ko be the subfield of B(k) generated by B(k) and K,. For
ie{l,..., 1} let M; := M. Let

O = (&1 M;) Ow (i) Ka.

Let O := O®p, Ky. Let Ko := {2z € Ka|ri(z) = x Vi € {1,....,1}}; it is a totally ramified
finite field extension of Q,. Let K¢ be the smallest subfield of K5 which contains Ky and
such that the cocharacter pik, : G, — T1k, is fixed by all elements of Gal(K2/Ky). Let
d € N be as in the condition 2.3 (el).

We denote also by 7 the o-linear automorphism

7:020

which takes m; ®vy € M; @w () K2 to ¢(m;) @7i(v2) € Miy1 @w (k) K2, where My := M.
We view naturally T}, := Hé:1 Tik, (resp. G, = Hé:1 9k,) as a subtorus (resp. as a
reductive, closed subgroup scheme) of GLo. We embed Tk, (resp. Gk, ) diagonally into
Tl K, (resp. 91K2). Let po be the cocharacter of T K, Which normalizes each M; Q1) Ko
and which acts on M; Qw 1) Ko identified with M Qw (k) K2 as p1k, does. We consider
the o-linear automorphism

o9 :=Tua(p) : O = 0.
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We denote also by 7 and o5 their o;-linear extensions to O. The actions of 7 and o5 on
cocharacters of ‘J'll &, are the same. As C is basic, the Newton quasi-cocharacter v of C
factors through Z%(Sp(x)) (see [Va3, Cor. 2.3.2]). We consider the quasi-cocharacter v, of
Tl &, Which is the mean average of the orbit of yz under integral powers of 7. It factors
through Z°(G! K, )» cf. property 2.3 (el). Strictly speaking we get directly this only for the
first factor Gk, of 9l1 K, However, due to the circular aspect of 7 and of the condition
2.3 (el), this extends automatically to all the other [ — 1 factors G, of G, . As each 7;
extends the Frobenius automorphism §s, of Ks,, the image of v5 in (Sle)ab = Hézl 9‘}%’2
is such that its natural projections on 9%’2 are all the same and equal to the composite of v
with the natural epimorphism S, — 32 . As vy factors through Z°(G ), from the last

sentence we get that in fact vy factors through 75 i, and this factorization coincides with the
u

factorization of v through T1x,. As for each u € N we have 03 = [([[,,,—; 7™ (12))(p)]T",

we easily get that all Newton polygon slopes of (O[%], o) are 0. Thus O is Ka-generated
by elements fixed by 0. Let Ogg be the Kyp-vector subspace of O formed by such elements.
Its dimension t equals to dimg, (O) = Irky (1) (M), cf. the definitions of Koo and 7. Let
Oo = Ogp ®K,, Ko. The torus T1k,, is naturally a subtorus of GLo,, and therefore we

have 7(Op) C Op. We denote also by T its restriction to O.

5.2.1. Proposition. There exists a Ko-basis B = {eq,...,e:} of Og and a permutation
7 of {1,...,t} such that for all i € {1,... ,t} we have T(e;) = p"er(;), where n; € {0,1}
is 1 if and only if we have ¢; € (®l_, Fi,) Qx, K>.

Proof: For i € {1,2,...,dl} and j € {0,1} let “FJ be the Ky-vector subspace of Oy on

which 7*(u2) acts trivially if j = 0 and via the inverse of the identical character of G, if
j = 1. For a function f:{1,2,...,dl} — {0,1} let

Fpe= (] F/O.
i€{1,2,... dl}

Let Q be the set of such functions f with Fr # 0. As 7°(p2)’s commute (being cocharacters
of Tt K,) We have a direct sum decomposition Og = @ o F. Let

7:Q—Q
be the bijection defined by the rule: 7(f)(i) = f(i — 1), where f(0) := f(dl).

Let I := {f € Q|7 (f) = f}. Let 7 = [1;cr. 7j be written as a product of disjoint
cyclic permutations. We allow trivial cyclic permutations i.e., we have a disjoint union

IL=1tul?

with the property that j € I- belongs to I if and only if Tj is a non-trivial permutation.
If j € I, then each function f € Q such that we have 7;(f) # f is said to be associated
to 7;. Also f € I? is said to be associated to T7. As 74 = 19, the order d; of the cyclic
permutation 7; divides dl. For each j € Ir we choose arbitrarily an element fj of Q which is
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associated to 7;. We have 7¢ 1(Fy,) = agj (Ff,) = Fy,. Let ,Fy, = {x_e Fy |a(21j (z) = x}.
Let Ko(f;) be the maximal subfield of K, such that pFy, is a Ko(f;)-vector space. It
contains Kgg. By reasons of dimensions we have Ffj = prj QKo () K.

For each j € Iz we choose a Ko(f;)-basis {es|s € B;} for ,F} ; we also view it as a
Ky-basis for Fy.. For each cyclic permutation 7; of length > 2 (i.e., for when we deal with
a j € Il) and for every element f € Q associated to 7; but different from f;, let u(f) € N
be the smallest number such that f = _“(f)(fj) and let n,,(5) ;== >0 ulh) 'V fi(i). We get a
Ky-basis {

T4l (e,)s € B} for Fy. The expressions of n, s ;’s are a consequence

of the following iteration formula 7%(f) = [(Hu(f)1 og (ug))( )]s uh),

Let B ={ey,..., et} be the Ky-basis for Oy obtained by putting together the chosen
Ko-bases for Fy’s with f € Q. Let 7 be the unique permutation of {1,... ¢} such that for
alli € {1,...,t} we have 7(e;) € Koer(;). From constructions we get that 7(e;) = p"iex(;),
where n; is as mentioned in the Proposition. O

nu(f) J

5.2.2. End of the proof of 4.1 (b). Let V; and V3 be the ring of integers of Ky and Ko
(respectively). Let Wy be the Vp-lattice of Og generated by elements of B. Let Fj be its
direct summand generated by elements of BN ((dl_; Fk ,) OK, K3). Let Wy 1= Wy @y, Va.
We consider an arbitrary B(k)-submodule % of M [p] which is normalized by ¢. Let
WP = Won (Bl % R B (k) K3); it is a Vo-module which is a direct summand of Wy left
invariant by 7. As in Mazur theorem of [Ka, Thm. 1.4.1] we get that the Newton polygon
of I copies of (%, ¢) is below the Hodge polygon of (W2, WIN(Fg ®v, V»)). But this Hodge
polygon coincides with the Hodge polygon of [ copies of (* ¢, (K @p) K2) N Fi ,)- Thus
the Newton polygon of (¥, ¢) is below the Hodge polygon of (¥, ¢, (% @p(x) Kg) NFg.).
Therefore the filtered module (M [p] ¢, F,) over Ky is weakly admissible. Thus Theorem
4.1 (b) holds. O

5.3. Proof of 4.1 (c). We begin the proof of Theorem 4.1 (c¢) with some étale consider-
ations. To prove Theorem 4.1 (c) we can assume that there exists an E-pair (T px), f11)
of € which is plus admissible. Let T1g,, K2 and Fj_ be as in Definitions 2.3 (b), (d), and
(h). The torus Z°(Sg,) is naturally a subtorus of Tig,. The triple (]\4[]—.}],¢7 Fj,) is an
admissible filtered module. Let Mg, , CGgq,, p, W, £, and (v4)acg be as in Subsubsec-
tions 2.4.5 and 2.4.6. As p>3, from [Br, Cor. 5.3.3] we get that the Galois representation
p : Gal(K2) — GLy is associated to an isogeny class of p-divisible groups over the ring of
integers V5 of Ky. Let J; := Lie(T1g,). For a € J; let ¢, := a. To prove Theorem 4.1 (c)
we can assume that

(7) dNndy =Lie(Z2°(Sg,)) C Lie(Tig,)

and that for each a € J N J; the two definitions of ¢, define the same tensor of T(M [%])
Let Jo :=JUJ;. Let 9(’@10 be the subgroup of GLy that fixes v, for all a € J; it is an inner

form of Gg,. As p factors through 9(’@]0 (Qp), by enlarging J we can assume that there exists
a subset J3 of J such that C’G@p is the subgroup of GL Mg, that fixes t,, for all o € J3.
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The image of £ in H'(Q,, CGq,) is the trivial class, cf. Subsubsection 2.4.5. Thus
there exists a (Q-linear isomorphism

3:MQP:>W

that takes t, to v, for all a € J3. We use it to identify naturally Go, = 9pr (this is
possible as CGg, normalizes Gg,). Let S’Zp be the Zariski closure of S{QP in L :=J(Mz,);
we identify it with Gz .

5.3.1. Crystalline considerations. We now apply the crystalline machinery of [Fa]
and [Val, Subsection 5.2] to show first that [C] € PSZ™™(Y(F)). Let K3 be a finite field
extension of Ko such that p(Gal(K3)) normalizes £ and its ramification index e is at least
2. Let Dk, be the p-divisible group over K3 defined by the representation

pP1 Gal(K3) — GLL

induced naturally by p. It extends to a p-divisible group Dy, over the ring of integers V3 of
K3 (cf. the isogeny class part of the first paragraph of Subsection 5.3) and this extension
is unique (cf. [Tal]).

We use the notations of Subsection 2.7. To avoid extra notations, (by performing
the operation ;) we can assume that the residue field of K3 is k. We fix a uniformizer

73 of Vi. Let Re — V3 be a W (k)-epimorphism defined by 73, cf. Fact 2.7.1. Let
<Mﬁe7 ¢M[357 v)

be the Dieudonné F-crystal over Re / pRe of Dy, Xspec(vy) Spec(Vs/pV3) (see the proof of
Theorem 3.5).

Let B*(V3) be the crystalline Fontaine ring of V3 as defined in [Fa]. We recall that
BT (V3) is an integral, local W (k)-algebra which is endowed with a decreasing, exhaustive,
and separated filtration (F*(B* (W (k)));enu{o}, with a Frobenius lift §, and with a natural
Galois action by Gal(K3). Moreover we have a natural W (k)-epimorphism compatible with
the natural Galois actions by Gal(K3)

sy, 1 BT(V3) — V?,A,

where 73/\ is the p-adic completion of the normalization V3 of V3 in W We refer to loc.
cit. for the natural W (k)-monomorphism Re < BT (V3) which respects the Frobenius lifts
(and which is associated to the uniformizer 73). We apply Fontaine comparison theory to
Dy, (see loc. cit. and [Val, Subsection 5.2]). We get a B™(V3)-monomorphism

iDy, : Mp, @, BY(V3) — L ®z, BT (V3)

which has the following two properties:

(a) It respects the tensor product filtrations (the filtration of L is defined by:
F1(L)=0and F°(L) =L).
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(b) It respects the Galois actions (the Galois action on Mz, ®@p, B1(V3) is defined
naturally via sy, and the fact that Ker(sy,) has a natural divided power structure).

The existence of J and our hypothesis on the subset g of J implies that the family of
tensors (J(ta))aeg, of T(L) is Zp-very well position for §7 . For a € Jo (resp. a € J2\ o)
let uq € T(Mp,) (resp. uq € T(Mﬁze[%])) be the tensor that corresponds to J(ts) via ip,,,
cf. [Fa, Cor. 9] and the fact that the family of tensors (J(ta)acyg,) is of partial degrees at
most p — 2. As in [Val, Subsubsections 5.2.12 to 5.2.17] we argue that the Zariski closure
S5 in GL Mp, of the closed subgroup scheme of GL Mg, [3] that fixes u, for all a € J, is a

reductive subgroup scheme. .
The tensorization of (M ge[%]7 ¢m, ) with the natural epimorphism Re[%] — B(k)
that takes X to 0, is the F-isocrystal of D (cf. the very definition of Dy, ) and thus it is is

canonically isomorphic to (M [%], ¢). Under the resulting identification (M p, [%], Prmg, )@ fe

B(k) = (M[%], @), uy is identified with ¢, for all @ € J3 U J;. This implies that under
the identification (6), u, gets identified with ¢, for all o € J3 U J;. In particular, we get
that there exists a maximal torus of G Rel3] whose Lie algebra is Re[%]—genera‘ced by those
uo with a € J1 (i.e., which corresponds to the maximal torus Tig(;) of G1p() via the
identification (6)).

Due to the existence of the cocharacter p1x, : G, — T1k, that acts on F' }1(2 via the
inverse of the identical character of G,,, as in [Val, Subsubsection 5.3.1 and Lem. 5.3.2]
we argue that there exists a cocharacter iz, : G, — Gp, such that the following two
properties hold:

(c) there exists a direct sum decomposition Mz, = F}%e @F}%e such that F}%e lifts the
Hodge filtration F' ‘1/3 of Mp, @z, V3 defined by Dy, and for each i € {0,1}, every element
0 € G, (Re) acts on F through fip, as the multiplication with 57

(d) pik, and the pull lgack of fisz, to a cocharacter of éKB = Gk, are Gk, (K3)-
conjugate (the identification Gx, = Gk, used here is the one defined naturally by the

tensorization of (6) with K3 over Re[%]).

Let (M, F}, G, 1) = (Mg, F}%e, éée, Pg.) ®p. W(k). We have two identifications

Ml[%] = M[I—lj] and G1pk) = Gp(k) and moreover the pair (Mi, @) is a Dieudonné module.
As ¢n. (Mp, + %F]%e) = Mp,, the cocharacter fi is a Hodge cocharacter of (M1, ¢, G1).

Thus (My, Fit,¢,G1) is a Shimura filtered F-crystal over k. Moreover the triple
(Mf%e7 F‘1/3’ ¢MRE7 Sée)

is a ramified lift of (My, ¢, G1) to V3. It is of CM type, cf. the existence of the maximal
torus Ty p.(1) of Gp,1). Let h € GLa(B(k)) be such that we have h(M) = M;. Due

to the property (d), it is easy to see that there exists an element h € G(B(k)) such
that we have F} = h(Fl[%]) N Mj. Therefore we have h € PB(C) as well as an identity
(My1,,51) = (h(M),¢,5(h)). As h € P(C) and as (M, Fy,, o, Gz, ) is a ramified lift
of (M1,¢,51) = (h(M),p,9(h)) to V3 of CM type, we have [C] € PSZ™™(Y(F)). Thus
the first part of Theorem 4.1 (c) holds.
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5.3.2. End of the proof. To end the proof of Theorem 4.1 (c) we have to show that
if § = N¢,(G) (resp. if Z°(G) = Z°(C1) and £ is the trivial class), then we can can
choose J : Mg, =W such that there exists an element h € G(B(k)) with the property
that h(M) = M. The below arguments will not rely on the way we constructed Mi; they
will only use the fact that the Zariski closure G; of G B(k) 1N GL),, is a reductive group
scheme over W (k). Under the identification (6) we have t, = u,, for all @ € J3 (resp. we
can assume that we have t, = u, for all « € J, as we can choose J such that we have
J(ta) = v, for all a € J). The Lie algebra Lie(C) is the Lie algebra defined by a semisimple
W (k)-subalgebra S of End(M). Let Sz, := {s € S|¢(s) = s}. We have S = Sz ®z W (k),
cf. Theorem 2.4.2 (a). We can assume that there exists a subset 4 of J such that
{tala € 34} = Sz,. Let Siz, be the semisimple Z,-subalgebra of End(M;) that corresponds
to J(Sz,) via Fontaine comparison theory. The group CGg, normalizes the group scheme
Cq, of invertible elements of Sg, (the notations match i.e., the extension of Cg, to B(k)
is the generic fibre of C). As the image of £ in H'(Q,,CGg,) is the trivial class, from
the previous sentence we get that we can identify naturally Sz, [%] = S1z, [%] =: Sqg,. The
abstract groups H and H; of invertible elements of Sz, and respectively Siz, are two
(resp. are the same) hyperspecial subgroups (resp. subgroup) of the group Cgq,. Thus
there exists an element ¢ € Cq, (Q,) such that cHe™! = Hy, cf. [Ti2, Subsection 1.10] and
the fact that the group Cg,(Q,) surjects onto C’@‘i((@p) (resp. for ¢ := lM[%] € Co,(Qp)
we have cHc™! = Hy).

By replacing (My,¢) with (¢c71(My),c téc) = (¢71(My),¢) we can assume that
Sz, = Siz,. The map Sz, — Sz, which takes t, to u, for a € g4 is an automorphism
of Sz, and thus by performing a similar replacement defined this time by an element
c1 € H(Zy,) (resp. by ¢; = 1)) we can assume that we have t, = u, for all « € J4. But
the subgroup of GLM[%] that fixes ¢, for all o € J3 U Jy (resp. for all a € J) is Gp), cf.

the identity § = N¢, (9) (resp. cf. the definition of J). Thus we can assume that we have
toa = u, for all o € J. In particular, we get that M; is a C-module.

The existence of the element h € G(B(k)) is expressed in terms of a right torsor
of G being trivial. As G is smooth, we can work with the flat topology instead of the
étale topology of Spec(W (k)). Thus to show the existence of the element h € G(B(k)) we

can tensor M and M; over W (k) with V(k), where V (k) is an arbitrary finite, discrete
valuation ring extension of W (k). Thus as the hyperspecial subgroups G(W (k)) and {g €
S(B(k))|g(My @w @) W (k) = My Qw ) W(k)} of §(B(k)) are §24(B(k))-conjugate (see
[Ti2, p. 47]) and as each element of G2(B(k)) is the image in Sad(V(l%)[%]) of some
element of 9(V(E)[%]) for a suitable choice of V(k), by replacing W (k) with V (k) we
can assume that these two hyperspecial subgroups are equal. The reason we deal with a
discrete valuation ring V (k) whose residue field is k and not k is that we want to pass from
inclusions of hyperspecial subgroups to closed monomorphisms between reductive group
schemes and this is possible in general only if we have residue fields which are infinite (see
[Val, Prop. 3.1.2.1 a) and b)]). Thus to show the existence of the element h € G(B(k))
we can assume that Gy (3 is a closed subgroup scheme of GLM1®W(k)V(,;).

Let TG be the reductive, closed subgroup scheme of GLj,; generated by § and by
a maximal torus of C'. By performing £, we can assume that T'G is split. Thus we can
write M = Djerq O! as a direct sum of absolutely irreducible T'G-modules. For i € Ig
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the representation pg; of CGy on O'/pO? is absolutely irreducible, cf. proof of Theorem
2.4.2 (b). Moreover, if i1, i € Ig are two distinct elements, then py;, and py;, are

unequivalent representations of TGy. Thus as TG(V (k)) normalizes both M @y () V (k)

and My Qw ) V(k), we have
My @w iy V (k) = (M Qwuy V(F)),

where ¢ € [] Z(G‘LO@‘)(V(’%)[%]) acts on O' @y () V (k) by multiplication with 7}’

i€lg Vi(k)’
here n; € Z and my () is a fixed uniformizer of V (k). As Cy(3) normalizes both M ®W((;z)
V(k) and My ®@w ) V(k), we have n; = n;, for all elements i;,i2 € Ig such that
the representations of G on O and O% are isomorphic. Thus ¢ € ZO(C&)(V(E‘)[%]) C
ZO(Q)(V(E)[%]). Thus the desired element h € G(B(k)) exists. This ends the proof of

Theorem 4.1 (c). O

5.3.3. Simple facts and variants. (a) We assume that we have a principal bilinear
quasi-polarization Ay : M @y iy M — W (k) of C. Then J(Ars) : L®z, L — Z, gives birth
via Fontaine comparison theory to a principal bilinear quasi-polarization Ay, of (M, ¢).

Let SOP, DGy, DG&F, and £° be as in Subsubsection 2.4.7. If the image of £ in

H'(Q,, DGy,) is the trivial class, then in Subsubsection 5.3.1 we can choose J such that
we have A\, € Gyn(Qp)Aar. If the image of £7 in H'(Q,, DG ) is the trivial class, then
we can choose J such that in fact we have Ay = Ay, -

Moreover, we have [(C, Axr)] € Z(Y(F, A\asr)), provided we also assume that £0 is the
trivial class and Z%(G) = Z°%(C1(Ax)?). Argument: with the notations of Theorem 2.4.2
(¢) we only have to add that as Ay; defines perfect bilinear forms on both M and M, in
the end of Subsubsection 5.3.2 we have ¢ € ZO(C’l()\M)O)(V(lZ)[%]) C ZO(S)(V(E)[%]) and
in fact c fixes Apy.

(b) We refer to Subsubsection 5.3.1. Each element of End(M [%]) fixed by ¢ and
T1B(k) defines an endomorphism of (M [%],@ 3 11{2) and therefore a Q,-endomorphism of
Dy;,. Thus the homomorphism p3z of Subsubsection 5.3.1 factors through the group of Z,-
valued points of the Zariski closure in GL; of the subtorus of é@p that fixes the Q,-étale
realizations of the Qp,-endomorphisms of Dy, that correspond to those ¢, with a € J;.

Therefore Dy, is with complex multiplication.

6. Proof of Basic Theorem 4.2

In this Section we prove Theorem 4.2. Let (Mz, , 9z, , (ta)acg) be the Z,, structure of
(M, 9,9, (ta)acyg), cf. Subsection 2.4. Each simple factor of 9]%;1 is of the form Resy, /r, 57, ,
where kg is a finite field and 920 is an absolutely simple, adjoint group over kg (cf. [Til,
Prop. 3.1.2]). Thus each simple factor of 9%‘2 is of the form Resyy (x)/z, G where G° is an
absolutely simple, adjoint group over W (kq) whose special fibre is 920 (cf. [DG, Vol. III,
Exp. XXIII, Prop. 1.21]). Until Section 8 we will assume that each such group scheme G°
is of B,,, C,, or D,, Dynkin type.

By performing the operation 7 we can assume that G is split. Thus the field k
contains each such field kg. We assume that there exists a maximal torus T, () of Spw)
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of Q,-endomorphisms of €. Let T1g,, K, K1, and K3 be as in Definition 2.3 (c). Until
Section 8 we will also assume that L¢(¢) is a Levi subgroup scheme of P9+ (¢) and that
u: G, — G factors through a maximal torus T of L% (¢) contained in a Borel subgroup
scheme B of P, cf. Subsection 2.6. Let L%(¢)z, be the Z, structure of LY (¢) obtained as
in Subsection 2.4. It is a reductive, closed subgroup scheme of Gz which is the centralizer
of the rank 1 split torus of Gz, whose extension to B(k) is the image of the Newton
cocharacter of €, cf. Fact 2.6.1. In Subsection 6.1 we include some reduction steps. In
Subsection 6.2 we include few simple properties. In Subsection 6.3 (resp. Subsection 6.4)
we deal with the cases related to Shimura varieties of B,, and DX (resp. C,, and DY) type.
The proof of Theorem 4.2 ends in Subsection 6.5.

6.1. Some reductions and notations. Let ,uad : G,, — G2 be the composite of the
cocharacter i : G,, — G with the natural epimorphism § — G2!. As G is split, each
cocharacter of 9‘}‘% which is G4 (K,)-conjugate to u‘}‘g, lifts uniquely to a cocharacter of
Gk, which is Gk, (K2)-conjugate to ug,. Below we will consider only E-pairs of € which
are as in Example 2.3.1. Thus based on the last two sentences, on Subsubsection 2.4.8, and
on the fact that the statements 4.2 (a) and (b) pertain only to images in G50 of suitable
products of cocharacters of Gk, that factor through Tik,, to prove Theorem 4.2 we can
assume that the adjoint group scheme 9%2 is Z,-simple and that the cocharacter ,u"}‘g is

non-trivial. Thus 9%‘3 = Resw (k) /ZPSO. If G° is of D,, Dynkin type, then it splits over
W (ko2), where koo is the quadratic extension of ko (cf. [Sel, Cor. 2 of p. 182]).
Let m € N be such that kg := F,». We write

gt =119
=1

where §; is a split, absolutely simple, adjoint group scheme over W (k) and the numbering

of G;’s is such that we have ¢(Lie(9i[%])) = Lie(9¢+1[%]) foralli € {1,...,m}. Here and in

all that follows the left lower or upper index m+1 has the same role as 1 (thus G,,,+1 := G1,

etc.). Let G' be the semisimple, normal, closed subgroup scheme of G4°* which is naturally

isogenous to §;. We view the isomorphism (2) of Subsubsection 2.4.1 as an identification
1

and therefore we can write ¢ = g(la, ® o)u(y;), where g € G(W(k)) (to be compared

with Subsubsection 2.4.8). Let g*d € G24(W (k)) be the image of g. For a € Q let D,, be
the central division algebra over B(kg) of invariant c.

6.1.1. Fact. To prove the Theorem 4.2 we can also assume that we have a direct sum
decomposition

into G-modules such that the following two conditions hold:

(1) ifi € {1,...,m} and j € {1,...,i—1,i+1,...,m}, then M; has no trivial
Gi-submodule and M; is a trivial G*-module;

(ii) we have an identity Z(G) = [[;~, Z*, where each Z" is a torus of GLy that acts
trivially on @jeq1,... i—1,i+1,.... m}yM;-
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Proof: The arguments for this Fact are the same as the ones of the proof of [Val, Thm.
6.5.1.1 or Subsubsection 6.6.5] but much simpler as we are over Z, and not over Z) and
as we do not have to bother about quasi-polarizations or Hodge Q-structures. We recall
the essence of loc. cit.

We first assume that G° is of B,, Lie type. Thus G° is split. We consider the spin
faithful representation G%¢ — GLj, over W (ko). Let GSpin be the closed subgroup
scheme of GLjy, generated by G%¢ and Z(GLyy,). Let S’Zp := Resy(ky)/z,GSpin. We

consider its faithful representation on My , where My is Mo but viewed as a Zj-module.

We identify naturally 9%2 = 9’;:. Let M' = Mip ®z, W(k). Let §' := ’W(k). We
have a unique direct sum decomposition M’ = @&, M/ of §’-modules which are also

W (ko) ®z, W (k)-modules. Let g’ € §'(W (k)) be such that its image in §*(W (k)) is g*<.
Let p’ be a cocharacter of §' such that the cocharacter of g/ad = Gad it defines naturally
is 44 and the triple €' := (M, ¢'(1},, ® 0)#’(%), G’) is a Shimura F-crystal over k. Let

‘J"IB(k) be the maximal torus of S'B(k) whose image in Sg?k) is the same as of Ty p(x); it is

a maximal torus of S’B(k) of Q,-endomorphisms of €’. Thus €’ is semisimple, cf. Fact 3.1
(b). Let pj be the cocharacter of T which over Kj is §'(K2)-conjugate to pu and such
that it defines the same cocharacter of S’f}f = 9‘}?‘1 as p1. The E-pair (iT’lB(k),,u’l) of ¢
satisfies the € condition if and only if the E-pair (77 p(x), 11) of € satisfies the € condition.
Similarly, TTR holds for ¢’ if and only if it holds for €. Thus to prove Theorem 4.2 for
the case when G° is of B,, Lie type, we can replace C by €’. As the two conditions (i) and
(i) obviously hold if € is €', the Fact holds if G° is of B, Lie type.

If G¥ is of either C,, or D,, Dynkin type, we will only list the modifications required
to be performed to the previous paragraph. If G% is of C,, Lie type, then the spin repre-
sentation has to be replaced by the standard rank 2n faithful representation G%¢ — GLy,
over W (ko). If G% is of D,, Dynkin type, then we have two disjoint subcases (related to
Shimura varieties of DX and respectively of D® type). The second case can be defined
rigurously by the following two properties:

(iii.a) the adjoint group scheme of the centralizer of ¢ in G4 is a product of split,
simple groups of either D,, or D,,_; Lie type;

(iii.b) if n = 4, then for each i € {1,... ,m} the non-trivial images of the cocharac-
ters ¢*(u) : Gy, — G with s € Z in G; are §;(W (k))-conjugate.

In the first subcase the spin representation has to be replaced by the standard rank 2n
faithful representation G! < GLjy, over W (ko). Here G! is an isogeny cover of G° for
which such a representation is possible; its existence is implied by the fact that G° splits
over Wi(kgs). If n > 4, then G! is unique. If n = 4, then we choose G! such that the
construction of ' is possible (we have only one choice for G!, due to the fact that the
two subcases are disjoint). The second subcase is in essence the same as the previous
paragraph (the only difference being that G%¢ is not necessarily split; however, as it splits
over W (koz), its splin representation is well defined over W (ky)). O

6.2. Simple properties. We first consider the case when LY(¢) is a torus (i.e., we have
L%(¢>) = 7). Thus we have Tip) = Tpr) and Ky C B(k). Let 7y € Gal(K1/Qy) be
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the restriction of o to K. The E-triple (T1p(x), B(k), T1) satisfies the condition 2.3 (el)
and is obviously admissible. Thus Theorem 4.2 holds if L% (¢) is a torus. From now on
until Section 7 we will assume that L% (¢) is not a torus (i.e., we have LY (¢) # T). Let
Ly be the Q,-form of L%(QS)B(,;) with respect to (M[%], ¢). The tori Z°(Gg,) and T1g, are
subtori of Ly. We have a direct sum decomposition

(8) Lie(Lo) ®q, B(ko) = Lie(Z°(Ly)) ®q, B(ko) @Lg,

where L := (Lie(L§*) ®q, B(ko)) N Lie(;p5))- Each Lj is a semisimple Lie algebra and
thus it is also the Lie algebra of a semisimple group L{ over B(kg). Moreover, we have
d(LY) = Lé“. Based on this and (8) we get that each p-adic field over which Lg splits
must contain B(kg). Therefore B(kg) C Kj.

6.2.1. Lemma. We assume that p>3. Let Hy := Gal(K1/Q,). Let Hy be a subgroup of
HY := Gal(K1/B(ko)) of even index. If m is odd, then there exists an element 71 € H
such that the following two conditions hold:

(1) all orbits under 1™ of the left translation action of Hy on Hy/Hy have an even
number of elements;

(ii) the action of 11 on the residue field l; of Ky is the Frobenius automorphism of
Iy whose fixed field is TF),.

Proof: For s € NU {0} let Hy5 be the s-th ramification group of Hy. Thus Hy; = Hj,
Hy/Hjy; is cyclic, and the subgroup His of Hy is normal and (as p >3) has odd order. By
replacing Hy with Hy/Hp2, we can assume that Hio = {1k, }. Thus H;; is a subgroup
of G,,(l1) and therefore it is cyclic. By replacing H; with its quotient through a normal
subgroup of Hi; of odd order, we can assume that Hp is of order 2* for some ¢t € NU {0}.
The case t = 0 is trivial and therefore we can assume that ¢t >1. Let Hy; be the image
of Hy in HY/Hy; and let a be its index in HY/Hy;. If a is even, then the condition (i) is
implied by (ii) and therefore we can choose any element 71 € Hy for which the condition
(ii) holds. If @ is odd, then by replacing H; with its quotient through the subgroup of
Hy; of order 2t~ ! we can assume that ¢t = 1. Thus H;; has order 2. As H;; is a normal
subgroup of H; of order 2, it is included in the center of H;. Thus H; is either cyclic
or isomorphic to Hy; x Hy/Hq1. If Hy is cyclic, then we can take 71 € H; such that it
generates Hy and the condition (ii) holds. If H; is isomorphic to Hy; x Hy/Hj1, then we
can take 71 = (711, T12) such that 71 € Hy; and 112 € Hy/Hj; generate these groups and
the condition (ii) holds. In both cases the condition (i) also holds. O

6.2.2. Factors. Let 91 be the set of those elements i € {1,...,m} for which the image
of u#d: G,, — G* in G; is non-trivial. Let 9 := {1,... ,m} \N. If i € N (resp. i € N),
then G; is called a non-compact (resp. compact) factor of G2 with respect to p®d. As p2d
is non-trivial, the set 91 is non-empty. To simplify notations we will assume that 1 € 1.
Let v be the number of elements of 9. We will choose the cocharacter i : G,, — G such
that G,,, acts via p trivially on M; for all © € 9.
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6.3. Case 1. Until Subsection 6.4 we will assume that G° is of either B,, or D,, Dynkin
type and that G4¢* is simply connected (under these assumptions, one can assume that the
representation of G on M, is the spin representation). Let G0l _, G0 he an isogeny such
that G% is the SO group scheme of a quadratic form on a free W (kq)-module Oq of rank
r. Here r is either 2n + 1 or 2n depending on the fact that G° is of B,, or D,, Dynkin type.
Let S := (Resw(ko)/ZPS(’l) xz, W(k); it is a semisimple group scheme over W (k) whose
adjoint group scheme is G*d. Let g : G,, — S be the unique cocharacter that lifts p2d.
Let SO(O;, b;) := G Xy (5,) W (k), where the Z,-embedding W (ko) < W (k) is the same
as the one that defines §; = §° Xy (4,) W (k). We have S = [];", SO(O;, b;). We have an
identification Oy ®z, W (k) = ©j2,0; of W (ko) ®z, W (k)-modules. For i € {1,...,m},
let W; := O; Qw (k) K.

Let B; := {e},...,e.} be a Ky-basis for W; such that the following two conditions
hold:

(i) if a,b € {1,... ,r} with a < b, then the value of b;(e’, e}) is 0 or 1 depending on
the fact that the pair (a,b) belongs or not to the set {(1,2),...,(2n —1,2n)};

(ii) the torus T, normalizes each Koe'.

The natural action of Gal(K3/Q,) on cocharacters of T; i, defines naturally an action
of Gal(K2/Q,) on B := U™ ;B;. For x € Gal(K2/Q,), let m, be the permutation of B
defined by . For each i € {1,...,m}, the set B; is normalized by Gal(K2/B(ko)).

If there exists an element gy € S(W(k)) whose image in G*4(W(k)) is ¢*¢, then
®0 := go(lo, ® a)u(%) is a o-linear automorphism of Oy ®z, B(k). By a natural passage
to k we can always assume that such an element gq exists, cf. [Va3, Fact 2.6.3].

Let Top) be the maximal subtorus of Sp(,) whose image in S%d(k) = 9%‘1(k) is
Topwy = Mm(Tipw — S%d(k)). Let Tog, be the Qp-form of Typ) with respect to
(0o ®z, B(k), ¢o ® op); it is a form of Topx) whose Lie algebra is {z € Lie(Topx)) =
Lie(Tpr))|o(x) = a}. Let Tog be the Qp-form of Tjp ., which is the quotient of Tog,
by its finite subgroup whose extension to B(k) is Topk) N Z(Sp))-

Until Subsubsection 6.3.4 we will assume that € is basic. Thus LY(¢) = § and
therefore Lo is a Qp-form of Gpzy. To show that there exists an E-pair (T1B(k), 1) of €
as in Example 2.3.1, we first prove the following Lemma.

6.3.1. Lemma. We recall that C is basic. The action of Gal(K2/B(ko)) on By has an
orbit that contains {€3, _1,€3,,} for some element a1 € {1,... ,n}.

Proof: In this proof by orbit we mean an orbit of the action of Gal(Ky/B(kg)) on B;.
Suppose there exists an orbit 6; whose elements are pairwise perpendicular with respect to
b1. To fix the notations, we can assume that there exists a € {1, ...,n} such that e}, ; € 61.
Let 6o be the orbit that contains el . The orbit decomposition of B; corresponds to a
direct sum decomposition of O [%] in minimal B(k)-vector subspaces normalized by 71 gz
and, in the case when the element g¢ exists, by ¢7*. Let O1; and O; 2 be the B(k)-
vector subspaces of 01[%] that correspond to 6; and 62 (respectively). The intersection
L§N (End(O1,1 ® O1,2)) @p(xy B(k)) is the Lie algebra of a split semisimple group of Dy
Lie type over B(kg), where s is the number of elements of ;. Argument: we can assume
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that the element gy € S(W(k)) exists and thus the statement is an easy consequence of
the fact that (as € is basic) all Newton polygon slopes of (01,5[%] ®B (ko) B(k), (¢ @ or)™)
are 0 (here s € {1,2}).

Thus if the Lemma does not hold, then L} split torus of rank n and therefore it
is a split group over B(kg). Thus to prove the Lemma we only have to show that the
semisimple group L} is non-split. This is a rational statement. Thus to check it, based on
[Va3, Thm. 1.3.3 and Subsection 2.5] we can assume that ¢(Lie(T)) = Lie(T) and (in order
to use the above notations on B;’s) that T, (k) = Tpr). Thus Ky = B(k) and the actions
of Toe, and ¢ on cocharacters of T coincide. We can also assume that ug : G,, — S fixes

el if either i € M or a>3. Let g1 € Ng(T)(W(k)) be such that g,¢(Lie(B)) C Lie(B),
cf. [Va3, Subsection 2.5]. Let w; € Ng(T)(W(k)) be such that its image in G24(W (k))
belongs to G1 (W (k)) and takes the image of B in G; to its opposite with respect to the
image of Tin G;. As G9° is simply connected of either B,, or D,, Dynkin type, w; takes the
cocharacter of G; defined by 1? to its inverse. Thus the Shimura F-crystal (M, w; g1, G)
over k is basic (to be compared with [Va3, Cases 1 and 2 of Subsubsection 4.2.2]). Thus

based on [Va3, Prop. 2.7.1] we can assume that wyg; = 1), and therefore that:

iii) 7 restricted to By fixes el for a >3 and permutes el and el.
oF a p 1 2
P

Thus the group L} has a split torus T}, ; of rank n — 1: it is the torus of S that
fixes e} and e} and that normalizes B(kg)el for each a € {3,...,r}. The centralizer of
Tllm_1 in L} is a non-split torus, cf. property (iii). Thus the group L{ is non-split. U

6.3.2. The choice of y; for the basic context. Let a; be as in Lemma 6.3.1. Let o
be the orbit of e3, _; under Gal(K>/Q,). For i € M\ {1} let a; € {1,...,n} be such that
{eha, _1,€54,} C 0. Let po : G, — Sk, be the cocharacter that fixes all €’,’s except those
of the form eb, _;,, where i € 9t and u € {0,1}, and that acts as the identical (resp.
as the inverse of the identical) character of G,, on each Kjeb, (resp. Kaeb, ;) with
1 € M. To define the cocharacter p; : G,, — Tk, it is enough to define the cocharacter
K, : G — Tik,. Let ik, : G — Tk, be the unique cocharacter such that the
cocharacter of 9*}?2 (resp. of 9%’2) it defines naturally is the composite of po with the
isogeny Sx, — G50 (resp. is the one defined by pk,). As {€b,, _1,€5,,} C o, the product
of the cocharacters of T1x, that belong to the Gal(K3/Q))-orbit of p;x, factors through
Z°(Sk,). Thus the E-pair (Tip(), 1) of C satisfies the € condition, cf. Example 2.3.1.

6.3.3. Remark. If m is odd and the action of Gal(K3/B(kg)) on By has only one orbit,
then it is easy to check based on Lemma 6.2.1 that there exists an E-pair (7113(1:), py) of
C that satisfies the cyclic € condition.

6.3.4. The non-basic context. Until the end of Case 1 we will assume that C is
non-basic. We use the previous notations of Subsection 6.3. Let ‘Tg B(k) be the subtorus
of Top(ky whose image in S%d(k) is the same as the image of Z°(Lg(¢))pk)- As Lg(¢)z,
is the centralizer in Gz, of a rank 1 split torus (see beginning of Section 6), the group
Cspi (‘.TgB(k)) is a product

m My

(9) [11]80(0i ;. b:;),

i=1j=1
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where O; [ | = 69 7,0, ; is the minimal direct sum decomposition normalized by TSB(k)
and b; ; is the restrlctlon of b; to O; ;. We emphasize that mys € N does not depend on
i and that, in the case when b; ; = 0, we define SO(O; ;,b; ;) := GLo, ;. We choose the
indices such that we have ¢(End(O; ;)) = End(O;41 ;).

We define a cocharacter us : G,,, — Sk, that factors through Tyk, as follows. Let
j€A{l,... ,ms}. We first assume that b; ; # 0. If G, acts via o trivially (resp. non-
trivially) on @, O; ;, then we define the action of G, via pg on O; ; ®@p(k) K2 to be trivial
(resp. to be obtained as in Subsubsection 6.3.2 but working with @7, 0O; ; instead of with
0;).

Until Case 2 we assume that b; ; = 0. Let j € {1,...,m;}\{j} be the unique element
such that O, ;.7 s not perpendicular on O;,; with respect to b;. Let 01, ..., 05 be the orbits
of the action of Gal(K2/Q,) on BN (B2,0; ;) ®py K2. Let d; := dimp)(O1,5). Let
Sy (resp. S_ ;) be the set of those elements ¢ € 9 with the property that po acts via
the inverse of the identical (resp. via the identical) character of G,, on a non-zero element
of O; ;. Let ¢4 ; (resp. c_ ;) be the number of elements of Sy ; (resp. of S_ ;). We have
Sy.;NS_; =0 as otherwise by j # 0. Thus ¢4 j +c_ ; < v (see Subsubsection 6.2.2 for v).

Let p; € Z and ¢; € N be such that g.c.d.(p;,q;) =1 and (¢4 ; —c— j)g; = d;p;. 1If
the element go € S(W (k)) exits, then the only Newton polygon slope of (O; ;, ¢f") is & and
therefore g; divides d;. Thus the B(ko)-subalgebra {x € End(O; ;)®pu) B(k )\(¢®a ( ) =

z} is (isomorphic to) My, /q,(Dr;), cf. Dieudonné classification of F-crystals over k (see
1

[Ma, Section 2]; we recall that after a passage to k we can assume that the element
go € S(W(k)) exists). Thus for each [ € {1,...,s} there exists ¢; € N such that the
number of elements of o; N By is g;e;. We have ¢;(>°;_, /) = dj. For each € {1,...,s}

we choose numbers c;fj, ¢;; € NU{0} such that the following three relations hold:

() ¢, =, = pjes;
(ii) >, Cl+j = Ct 53
(iii) clj—i—clj < w.

For instance if p; >0 we can choose ¢; ; = -+ = ¢ = 0 and ¢;; = c_;, the
K

s—1,7
numbers c;” ;’s being now determined uniquely by the relation (i). We define the action of
G via piz on (0;;® O, 5) ®p (1) K2 as follows. Let I € {1,...,s}. Leti € {1,...,m} and
a € {1,...,r} be such that e’ € 0;. The action of G,, via us on Kae! is

(iv) via the identical character of G,, if a is the smallest number in {1,...,7} such
that e’ € o; and i is the s number in S_ ;, where s; € {1 + Zx 1Coa e ,Z;zl C;j};

(v) via the inverse of the identical character of G,, if a is the smallest number
in {1,...,r} such that ¢/ € o, and i is the s!" number in S, ;, where s; € {1 +

=1 + ! + 1.
D e Cojre-- D CrjJs

(vi) trivial otherwise.

The action of G,, via uz on a Ks-vector subspace Kse! of O, i is defined uniquely
by the requirement that po factors through the image of Ty, in GL(OZ 180, )@ bk Ka*
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Due to the relation (i) the product of the cocharacters of Tyok, of the orbit un-
der Gal(K2/Q,) of the factorization of pg through Tog, gives birth to a cocharacter of
GL(0, ;00, 5)@ 5 K. that factors through Z(GLo, ;@4 k) Xk, Z(GLo, -0 5, K2)- Thus
choosing j; as in Subsubsection 6.3.2 we get that the product of the cocharacters of T g,
which belong to the orbit under Gal(K>/Q,) of puik, factors through Z°(Lg(¢)x,), cf.
(9). Thus the E-pair (T1p(x),p1) of (M, ¢, L(g) (¢)) satisfies the € condition, cf. Example
2.3.1.

6.4. Case 2. Until Subsection 6.5 we assume that G° is of C,, or D,, Dynkin type, that
M; has rank 2n, and that C is basic. This Case 2 is very much the same as the Case 1 for
C basic. We mention only the differences. The first differences are:

(i) we can assume that O; = M; and thus that G,, acts via u trivially on O; for all
1€ M,

(ii) we have r = 2n and for the C,, Dynkin type the form b; is alternating and not
symmetric.

As M; = O; let B, B;, i, and 7, with x € Gal(K2/Q,) be as in Subsection 6.3. Let
01,...,0s be the orbits of the action of Gal(K3/Q,) on B numbered in such a way that
there exists so € {0,...,s} such that for an element [ € {1,...,s} the orbit o; contains
the set {€3,,_1,€3,,} for some number a; € {1,...,n} if and only if [ < so. The difference
s — 50 is an even number. We can also assume that if s; € {1,..., %5}, then the union
0sy+251—-1 U 05g42s, contains the set {e3, _;,e3, } for some number a; € {1,... ,n}. If
[ < sg (resp. I > sg) let u; € N be such that the number of elements of the set 0; := 0, B,

is 2u; (resp. u;). Lemma 6.3.1 gets replaced by the following weaker one.

6.4.1. Lemma. We assume that v is odd. Then u; is even for | > sg.

Proof: As € is basic, all Newton polygon slopes of (O1,¢™) are §. From this the Lemma

follows. O

To define p; it is enough to define p;x,. We consider two Subcases:

6.4.2. Choice of i; for v odd. We know that u; is even for [ > sqg, c¢f. Lemma 6.4.1.

Thus if [ > sg we write o, = 0,1 U 0,2, where o0;1 and 0;2 have % elements. Not to
0 5 I ) ) 2

introduce extra notations we will assume that if [ —sg € 14 2N, then the sets 0, 1 N B; and
01+1,2 N B; are perpendicular with respect to b; for all i € {1,...,m}. We choose g,
such that G,, acts through it:

(i) trivially on e! if 7 € O0;

(ii) trivially on €’, € 0y ; if i € M, 1 € {sop+ 1,...,s}, and j € {1,2} with { —s9 —j
even;

(iii) trivially on e’ € o; if i € M, | < 59, and a is odd;

(iv) via the inverse of the identical character on all other elements of B.

Thus p1k, acts non-trivially on precisely half of the elements of the set {o|l €
{1,...,s}}. Therefore the product of the cocharacters of Tig, which belong to the
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Gal(K>/Qp)-orbit of 1k, factors through [T, Z(GLyy,) = Z°(Sk,). Thus (Tip), 1)
satisfies the € condition, cf. Example 2.3.1.

6.4.3. Choice of u; for v even. Let My be a subset of M that has ¢ elements. Let
My =M\ No. Let e, € 0. If | < s, then we define the action of G, via p1x, on Ksel,
as in Subsubsection 6.4.2. If | > sp, then we define the action of G,, via pu1x, on ngfz
to be via the inverse of the identical character of G,, (resp. trivial) if and only if i € 9,
where j € {0,1} is congruent to I — sp modulo 2. Thus the number of elements of o; on
whose Ky-spans G,, acts via p;x, as the inverse of the identical character of G,, is u;
(resp. is %) if I <sg (resp. if [ > sg). Therefore the Gal(K3/Qy)-orbit of ik, factors
through [];"; Z(GLys,) = Z°(Sk,). Thus again the E-pair (T;p(k), #1) of € satisfies the
¢ condition.

6.4.4. Remark. We assume that G° is of D, Dynkin type. Then Subsubsection 6.3.4 ex-
tends automatically to the present context rkyy () (M;) = 8 of Case 2. The only difference:
we have M, = O;.

6.5. End of the proof of 4.2. We recall that Subsection 6.1 achieves the reduction to
Cases 1 and 2 of Subsections 6.3 and 6.4. Thus Theorem 4.2 (a) (resp. Theorem 4.2. (b))
follows from Subsubsections 6.3.2, 6.4.2, and 6.4.3 (resp. from Subsubsection 6.3.4). O

6.5.1. Remark. The approach of Subsubsection 6.3.4 extends in many cases to the case
when € is basic and G° is of A4,, Dynkin type. However, one has to deal not with only two
sets Sy ; and S_ ; but with n analogue sets and therefore in general it is much harder to
show the existence of corresponding numbers c;fuj ;» where u € {1,...,n} is a third index.
This is the reason why in Subsection 6.4 we dealt only with the basic context (and why in

Theorem 9.6 below we will rely as well on [Zil, Thm. 4.4]).

7. Proofs of Corollaries 4.3, 4.4, and 4.5

In this Section we will assume that p > 3 and that the semisimple group scheme
Gder js simply connected. In Subsections 7.1, 7.2, and 7.3 we prove the Corollaries 4.3, 4.4,
and 4.5 (respectively). If [C4] € Z™™(Y(T)), then by performing O, we can assume that
there exists a maximal torus of Gp(x) of Qp-endomorphisms of €, (see Remark 3.3.2 (a)
and Corollary 3.6.1). Thus as in Subsection 5.1 we get that there exists m € N such that
(gp)™™ is a semisimple element of G(B(k)). Therefore the element (g¢)” € G(B(k)) is also
semisimple i.e., €, is semisimple. Thus to end the proofs of Corollaries 4.3 to 4.5, we only
have to show that under the assumptions of either Corollary 4.3 or Corollary 4.4 (resp.
Corollary 4.5) we have [C] € Z™™(Y(F)) (resp. we have [(C,Ap)] € Z™™(Y(F, Anr)))
provided C is semisimple.

7.1. Proof of 4.3. We can assume that there exists a subset Jo of J such that (¢4 )acy,
is the family of tensors of T(Mz,) formed by the following three types of tensors:

(i) all elements of Lie(Cz,) := {e € Lie(C)|¢(e) = e};
(ii) the projector II of Subsubsection 2.4.4 (it is also a projector of End(Mz ) as the
trace form ¥ is perfect);
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(iii) the endomorphism End(Mz,) — End(Mz,)* whose restriction to Ker(II) is 0
and which induces the isomorphism Lie(S%ir) — Lie(Q%ir)* defined naturally by R.

The family of tensors formed by the tensors of (i) (resp. of (ii) and (iii)) is Z,-
very well positioned for Z%(Gz,) (resp. for S%ir), cf. [Val, Subsubsection 4.3.13] (resp.
[Val, Prop. 4.3.10 b) and Rm. 4.3.10.1 1)]). Thus from [Val, Rm. 4.3.6 2)] we get that
the family ({q)aeg, of tensors of T(Mz,) is Z,-very well positioned for Gz . As the tori
Z°(Gq,) and G3 are isomorphic (cf. our hypothesis on the isogeny Z°(G) — G*), the
set H'(Q,, Sg,) has only one class. This follows from Lemma 2.4.6 (with the notations of
Lemma 2.4.6 we have Gqo, = ZGq,, as Z°(G) = Z°(C1)).

To prove Corollary 4.3, we can assume that L% (¢) is a reductive group scheme
(cf. Subsection 2.6). We can also assume that there exists a maximal torus T;p) of
Qp-endomorphisms of (M, ¢, L%(gb)) Let (T1B(k), #1) be an E-pair of (M, ¢, L%(d))) that
satisfies the € condition, cf. Theorem 4.2 (b). Thus the E-pair (T;g(1), 1) of € is admis-
sible, cf. Theorem 4.1 (b). It is plus plus admissible, cf. previous paragraph. Thus as
Z9(G) = Z°(Cy), Corollary 4.3 follows from Theorem 4.1 (c). O

7.2. Proof of 4.4. The proof of Corollary 4.4 is very much the same as the proof of
Corollary 4.3. Only the argument for the plus plus admissibility part has to be changed
slightly. Let J be a split, simply connected semisimple group scheme of D,, Lie type over
a field of characteristic 0.

If n is even, then Z(H) is po X pz. Moreover we can assume that the kernel of the
first (resp. second) half spin representation of H is the first (resp. the second) factor of this
product. Thus the isogeny Z°(Sg,) — 982 is the square isogeny 2 : Z%(SGq,) — Z°(Sg,).
Thus as in Subsection 7.1 we argue that the set H'(Q,, Gg,) has only one class.

If n is odd, then the half spin representations of J have trivial kernels and are dual
to each other (see [Bou2, p. 210]). Thus based on our hypothesis on Z°(S), the isogeny
Z"(Sq,) — 9&2 is the square isogeny 2 : Z%(Sg,) — Z"°(Sq, ). Here Gg, and Z&g are the
subgroups of G, which are the Q, forms of G B(k) and Z99(§ B(k)) (respectively) obtained
as in Subsection 2.4. The torus Z%(Gg,) is the group scheme of invertible elements of an
étale Qp-algebra. Thus as in Subsection 7.1 we argue that the set H*(Q,, ng) has only
one class. But the class £ of Subsubsection 2.4.5 is the image of a class £1 € H'(Q,, ng).
This is a consequence of the fact that ngp is the subgroup of GL Mg, that fixes a family
of tensors (ta),ej of T(Mg,), cf. [De3, Prop. 3.1 c¢)]. Therefore £ is the trivial class.

Regardless of the parity of n, as in Subsection 7.1 we argue that there exists an
E-pair (T1p(), pt1) of € which is plus plus admissible. Thus as Z 9(G) = Z%(Cy), Corollary
4.4 follows from Theorem 4.1 (c). O

7.3. Proof of 4.5. The proof of Corollary 4.5 is the same as the proof of Corollary 4.3. As
the group H*(Q,, 9%‘1‘1) is trivial and as S%ier is simply connected, the set H(Q,, 9%21,) has
only one class. Therefore each E-pair (T1p(x),11) of € which is admissible, is in fact plus

plus admissible with respect to Ap;. The rest is the same, only the reference to Theorem
4.1 (c) has to be supplemented by the variant 5.3.3 (a). O
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8. First applications to abelian varieties

Pairs of the form (I, A\;) will denote polarized abelian schemes. By abuse of notations,
we also denote by A; the different forms on the cohomologies (or homologies) of 1 induced by
Ai. We now apply the results 4.1, 4.2, and 5.3.3 to the geometric context of Subsubsections
1.1.1 and 1.2. Applications to Conjecture 1.2.2 (i) and to Subproblems 1.2.3 and 1.2.4 are
included in Corollary 8.3 and Remark 8.4. If A is an algebra, let A°PP be its opposite
algebra.

8.1. Geometric setting. Until the end we assume that D is the p-divisible group of an
abelian variety A over k, that C = (M, ¢, G) is a Shimura filtered F-crystal over k such
that axioms 2.4.1 (i) and (ii) hold, and that there exists a polarization A4 of A whose
crystalline realization (denoted in the same way) Aa : M Qw ) M — W(k) has a W (k)-
span normalized by G. Let F! and u be as in Subsection 2.1. Let Gz, be as in Subsection
2.4. By performing the operation £; we can assume that the Zariski closure T(¢) of the
group {¢"™|m € Z} in Gp() is a torus over B(k). This implies that we have an identity
End(A) = End(Az). We identify

E4 = End(A4)°PP @, Q
with a Q-subalgebra of {z € End(M[%])\gb(x) =z}
Let II be as in Subsection 2.4.4. Let eq, := (E4 ®q Qp) N Im(II). Let eap =
(Ea ®q Qp) NKer(II). As II is fixed by ¢, we have a direct sum decomposition

Ea®qQp=r¢q, ® e@p

of Q,-vector spaces. Let C'(¢)g be the reductive group over Q of invertible elements of E 4;
thus Lie(C(¢)g) is the Lie algebra associated to E4. A classical theorem of Tate says that
C(¢) := C(¢) () is the centralizer of ¢” in End(M[;]). Thus e := eq, ®q, B(k) is the Lie

1
P
algebra of the centralizer Cg (¢) of ¢" in Gpy. Let E be a semisimple Q-subalgebra

of E4 which (inside End(M [%])) is formed by elements fixed by Gp () and which is stable
under the involution of E4 defined naturally by \4.

8.2. Lemma. Let Tip) be a mazimal torus of Gp) of Qp-endomorphisms of €. Then
there exists a maximal torus ‘T;’E(k) of GLy1) of Qp-endomorphisms of (M, ¢, GLy) and
there exists an element u € C(¢)g(Q)) such that the following four conditions hold:

(1) the element u normalizes M (i.e., we have u(M) = M) as well as any a priori
fixzed W (k)-lattice of M[%];
(ii) the torus u‘T‘f]ig(k)u_l is the extension to B(k) of a mazimal torus of C(¢)g;
(iii) the element u fizes Aa and each element of F;

(iv) we have Typ) = ZO(TIIDE(,C) NSBk))-
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Proof: Let C’(qﬁ)@ be the identity component of the subgroup of C(¢)p that normalizes
the Q-span of A4 and that centralizes EY. It is a reductive group over Q. Let ‘.Tép
be a maximal torus of C' (¢)@p that contains the Qp-form T1g, of T;p(x) with respect to
(M[I—lj], ¢). From [Ha, Lem. 5.5.3] we deduce the existence of an element u € C(¢)5(Qp)
such that the condition (i) holds and u‘Tépu_l is the extension to Q, of a maximal torus
T4 of C(¢)g. We choose such an element u which also fixes A4. Thus the condition (iii)
holds. Let U’ébig be a maximal torus of C(¢)q that contains T. The conditions (ii) and

(iv) hold for T7}8 ) == u™' T8 u. O

We have the following geometric consequences of Theorem 4.1 (c¢) and variant 5.3.3

(a).

8.3. Corollary. We assume that p>3 and that Q + +2 holds for C. We also assume
that there exists a subset Jo of  such that the family (to)acg, of tensors of T(Mz,) is of
partial degrees at most p — 2 and is Zy-very well position for Gz, .

(a) Then by performing the operation 91 we can assume there exist an element
h € P(C) and an abelian variety A(h) over k such that the following two conditions hold:

(1) the abelian variety A(h) is Z[%]—isogenous to A and, under this Z[%]—isogeny, the

Dieudonné module of its p-divisible group is (h(M), ) and is a direct sum of F-crystals
over k that have only one Newton polygon slope;

(ii) there exists an abelian scheme A(h)y, with complex multiplication over a finite,
totally ramified discrete valuation ring extension V3 of W (k) which is a ramified lift of
A(h) to Vs with respect to the Zariski closure G(h) of Spu) in GLpry, where G is a
GLy (W (k))-conjugate of G such that the triple (M, ¢, 9’) is a Shimura F-crystal over k.

(b) We also assume that the polarization A is of degree prime to p, that Z°(G) =
Z9(C1(Ma)?), and that Q + +4 holds for (C,X4). Then by performing the operation O
we can assume that there exists an element h € J(C, A 4) and an abelian variety A(h) over
k such that the condition (i) and the following new condition (iii) hold:

(iii) there exists an abelian scheme A(h)y, over a finite, totally ramified discrete
valuation ring extension Vi of W (k) which lifts A(h) in such a way that the Frobenius
endomorphism of A(h) also lifts to it, which is a ramified lift of A(h) to V3 with respect to
G(h), and whose p-divisible group D(h)y, is with complex multiplication.

Proof: We can assume that € is basic, cf. Corollary 2.6.2 and Fact 2.6.3. Let (T1p(x), 11)
be an E-pair of € which is plus plus admissible. We first proof (a). Let ‘J'Egg(k) and u
be as in Lemma 8.2; thus u is fixed by ¢. Let G, ‘le:);gg(k), ‘j'lg(k), fi1, and (fy)aeg be the
inner conjugates of G, ‘T}l:’]ig(k), T1B(k), M1, and (to)acy (respectively) through the element
u € GLys(B(k)). Let € := (M, ¢,G). The Lie algebra Lie(‘j']f]igg(k)) is B(k)-generated by
elements of £4 and (Tp(k), f11) is an E-pair of C which is plus plus admissible.

We apply the proof of Theorem 4.1 (c) to € and (‘j'lB(k), fi1) (see Subsection 5.3). We
deduce the existence of an element h € PB(€) such that the p-divisible group D(h) over k
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whose Dieudonné module is (h(M), ¢) has a lift D(h)y, to a finite, discrete valuation ring
extension V3 of W (k) such that each endomorphism of D(h) whose crystalline realization is

an element of Lie(‘j'}fgg( k)) fixed by ¢ lifts to an endomorphism of D(h)y, (cf. also property

5.3.3 (b)). Let A(h) be the abelian variety over k defined by the condition (i). Let A(h)y,
be the abelian scheme over V3 defined by D(h)ys;, cf. Serre-Tate deformation theory. The
fact that A(h)y, is indeed an abelian scheme (and not only a formal abelian scheme over
Spf(V3)) is implied by the fact that we are in a polarized context, cf. variant 5.3.3 (a)
and property 8.2 (iii). By performing the operation 7 we can assume that V3 is a totally
ramified extension of W (k). We can also assume that A(h)y, is a ramified lift of A(h) to
V3 with respect to G(h), cf. Corollary 3.7.1 and Subsubsection 5.3.1. As C is basic, the
part of the condition (i) on F-crystals over k holds (to be compared with [Va3, Subsection
4.1]). Thus the condition (i) holds. This proves (a).

To prove (b) we first remark that Ay : M ®w ) M — W(k) is a principal quasi-
polarization of C. Part (b) follows from the proof of Theorem 4.1 (c) applied in the context
of an E-pair (T1p(x),p1) of C which is plus plus admissible with respect to A4. We get
the existence of an element h € J(C, A4), of a finite, discrete valuation ring extension V3 of
W (k), and of a p-divisible group D(h)y, over V5 that is a ramified lift of D(h) to V3 with
respect to (h(M),¢,G(h)) and that has the property that each endomorphism of D(h)
whose crystalline realization is an element of Lie(T;(;)) N End(M) fixed by ¢ lifts to an
endomorphism of D(h)y, (cf. Subsubsections 5.3.1, 5.3.2, and 5.3.3 (b)). By performing
the operation 97 we can assume that V3 is a totally ramified extension of W (k). Let A(h)
and A(h)y, be obtained as above. From the property 5.3.3 (b) we get that the p-divisible
group D(h)y; is with complex multiplication. As ¢" € Ty () (B(k)) leaves invariant h(M),
the Frobenius endomorphism of A(h) lifts to A(h)y, (cf. also property 5.3.3 (b) and Serre—
Tate deformation theory). As above we argue that the condition (i) holds. As D(h)y, is a
ramified lift of D(h) to V3 with respect to (h(M), ¢, G(h)), the abelian scheme A(h)y, is a
ramified lift of A(h) to V3 with respect to G(h). O

8.4. Remark. Corollary 8.3 (b) is our partial solution to Subproblems 1.2.3 and 1.2.4.
We refer to Corollary 8.3 (a). If Lie(Tip(x)) is B(k)-generated by elements of ¢g, then
we can take u to be 1ps. If moreover the assumptions of Corollary 8.3 (b) hold, then the
condition (ii) holds with h € J(€, A4) and thus with §(h) = G(h). This solves Conjecture
1.2.2 (i) under all assumptions of Corollary 8.3.

9. The context of standard Hodge situations

If (G,X) is a Shimura pair, let E(G,X) be the subfield of C which is its reflex field,
let (G24,X24) be its adjoint Shimura pair, and let Sh(G, X) be the canonical model over
E(G,X) of Sh(G,X) (see [Del], [De2], [Mi3, Subsections 1.1 to 1.8], and [Val, Subsections
2.2 to 2.8]). Let Sh(G,X)/X be the quotient of Sh(G,X) by a compact subgroup X of
G(Ay). See [Val, Subsection 2.4] for injective maps between Shimura pairs. For general
properties of Shimura varieties of PEL type we refer to [Zil], [LR], [Ko2, Ch. 5], [Mi3,
p. 161], and [RaZ] (we emphasize that in [Mi3, p. 161] one has to add that the axiom
[De2, 2.1.1.3] holds). The injective maps in Siegel modular varieties that define Shimura
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varieties of PEL type as used in these references, will be referred as PEL type embeddings.
Let O(,) be the localization of the ring of integers of a number field with respect to a finite
prime w of it.

In Subsection 9.1 we mainly introduce notations and a setting. Different “properties”
pertaining to the setting of Subsection 9.1 are introduced in Subsection 9.2. In Subsections
9.3 to 9.6 we prove results which fully support the point of view that the two things 1.4 (i)
and (ii) are indeed the last ingredients required to complete the proof of the Langlands—
Rapoport conjecture for p>5 and for Shimura varieties of A,,, B,, C,, and D¥ type (cf.
also Remark 9.8 (b)). The main results are Theorems 9.4, 9.5.1, and 9.6. Not to make this
paper too long, we include only one example (see Example 9.7) of how the new techniques
of Subsections 9.2 to 9.6 apply to Shimura varieties of Hodge type which are not of PEL
type (and thus to which the techniques of [Zil] and [Ko2] do not apply).

9.1. Standard Hodge situation. We recall part of the setting of [Va3, Section 5]
pertaining to good reduction cases of Shimura varieties of Hodge type. We start with an
injective map

f : Sh(G,X) — Sh(GSp(W, ), S)

of Shimura pairs. Here the Shimura pair (GSp(W, ), 8) defines a Siegel modular variety,
cf. Subsubsection 1.2.1. We consider a Z-lattice L of W such that 1 induces a perfect
form ¢ : L ®z L — Z. Let L) := L ® Z,). Until the end we will assume that:

the Zariski closure Gz, of G in GSp(L(y), ) is a reductive group scheme over Zpy).

It is easy to see that the group scheme G%(p) = Gz, NSP(L(p), ) is reductive (cf. [Va3,

Subsection 5.1, Formula (11)]). Let X, := GSp(L(;), ¥)(Zy); it is a hyperspecial subgroup
of GSp(W,%)q,(Qp). As Gz, is a reductive group scheme over Z,, the intersection

H := Gg,(Qp) NX, is a hyperspecial subgroup of Gg,(Q,). Let v be a prime of the reflex
field E(G, X) that divides p; it is unramified over p (cf. [Mi4, Prop. 4.6 and Cor. 4.7]). Let

k(v) be the residue field of v. Let r := dim+(w) € N. Let Ay (resp. A;p)) be the Q-algebra
of finite adeles (resp. of finite adeles with the p-component omitted). We have an identity
Ar =AY % Q,.

For integral canonical models of (suitable quotients of) Shimura varieties we refer
to [Val, Subsubsections 3.2.3 to 3.2.6]. It is well known that the Z)-scheme M that
parameterizing isomorphism classes of principally polarized abelian schemes of relative
dimension 7 over Z,)-schemes which have compatible level-N symplectic similitude struc-
tures for all natural numbers N relatively prime to p, together with the natural action of
GSp(W, ¢)(A§cp)) on it, is an integral canonical model of Sh(GSp(W, ), 8)/X,, (for instance,
see [Del, Thm. 4.21] and [Val, Ex. 3.2.9 and Subsection 4.1]). These structures and this
action are defined naturally via the Z-lattice L of W (see [Val, Subsection 4.1]). It is
known that Sh(G,X)/H is a closed subscheme of Mg, x) = Sh(GSp(W, %), 8) g(a,x)/Kp,
cf. [Val, Rm. 3.2.14].

Let N be the normalization of the Zariski closure of Sh(G,X)/H in Mo,,,. Let
(A, Axq) be the pull back to N of the universal principally polarized abelian scheme over
M. Let (va)acg be a family of tensors of ‘.T(L?p)) such that G is the subgroup of GLy/
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that fixes v, for all & € J (cf. [De3, Prop. 3.1 ¢)]). As G contains Z(GLyw ), we have
Vo € @,‘;OZOLE‘S” Rz, L%}T; for all @ € g, The choice of L and (v4)aecg allows a moduli inter-
pretation of Sh(G,X) (see [Del], [De2], [Mi4], and [Val, Subsection 4.1 and Lem. 4.1.3]).
For instance, the set Sh(G, X)/H (C) is naturally identified with Gz, (Z))\(X x G(Agcp)))
(see [Mi4, Prop. 4.11 and Cor. 4.12]) and therefore it is the set of isomorphism classes of
complex principally polarized abelian varieties of dimension r that carry a family of Hodge
cycles indexed by the set J, that have compatible level-N symplectic similitude structures
for all natural numbers N relatively prime to p, and that satisfy certain axioms (see [Val,
Subsection 4.1]). This moduli interpretation endows naturally the abelian scheme A g x)
with a family (w’).ecg of Hodge cycles (the Betti realizations of pull backs of w? via
C-valued points of Ng(g,x) correspond naturally to vg,).

Let Hy be a compact, open subgroup of G(Agcp )) that has the following three prop-
erties:

(a) there exists Ny € N such that (Ng,p) =1, Ny >3, and we have an inclusion

Hy x H C K(Ny) :={g € GSp(L,)(Z)|g = 1} ,7 modulo No};

(b) the triple R := (A, A, (w/)aecg) is the pull back of an analogue triple R(Hg) =

(Amgs Ay, (waO)aeg) over N/Hy, where (Ap,, Ay, ) is the pull back via the natural
morphism N/Hy — M/XP(Ny) of the universal principally polarized abelian scheme over

M/KP(Ny) (here KP(Np) is the unique subgroup of GSp(W¥, @ZJ)(ASCP)) such that we have
K(No) = XP(No) x XKp);
(c) the scheme N is a pro-étale cover of N/Hy (cf. [Val, Prop. 3.4.1]).

9.1.1. Some notations. Let k = [F, be a finite field that contains k(v). We consider a
W (k)-morphism z : Spec(W (k)) — N/Hy. Let

(AW(k)7 >‘AW(7C)7 (wot)OtEH) =2z (:R(HO))

Let y : Spec(k) — Ni()/Ho and (A, A4) be the special fibres of 2z and (Aw (r), Aay,)
(respectively). Let (M, ¢, a) be the principally quasi-polarized Dieudonné module of
(A, X4). Let F! be the Hodge filtration of M defined by Ay (k). For o € Jlet t, € ‘J'(M[%])
be the de Rham component of the Hodge cycle w, on Ay (. Let G be the Zariski closure
in GLj; of the subgroup of GLM[;] that fixes t, for all « € J. Until the end we will
assume that the triple (f, L,v) is a standard Hodge situation in the sense of [Va3, Def.
5.1.2]. Therefore the following two properties hold:

(a) the O(,)-scheme N/Hj is smooth;

(b) for each point z € N/Ho(W (k)), G is a reductive, closed subgroup scheme of
GL); and the triple (M, ¢, G) is a Shimura F-crystal over k.

Let G .= Gw(k) and G0 := G?/V(k). Each tensor t, is fixed under the natural action
of ¢ on ‘.T(M[%]), cf. [Va3, Cor. 5.1.6]. By performing the operation 9, we can assume
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that § is isomorphic to G. By multiplying each v, by a fixed integral power of p we can
assume that for all points z € N/Ho(W (k)) we have t, € T(M) for all a € J. To match
the notations with those of Sections 1 to 8, we will identify (non-canonically) § = G. Thus
let € := (M, ¢,5). Obviously the axiom 2.4.1 (i) holds for €. The fact that the axiom
2.4.1 (ii) holds for € is implied by [De2, axiom 2.1.1.3]. The triple € depends only on y
and not on z (cf. [Va3, paragraph before Subsubsection 5.1.7] and therefore we call it the
Shimura F-crystal attached to the point y € Ny(,)/Ho(k). Let zo0 : Spec(W(k)) — N be

such that the resulting W (k)-valued point of N/Hj factors through z. We refer to C ® k
as the Shimura F-crystal attached to the special fibre y., : Spec(k) — Ni(v) of 200 We
also refer to Yo, (resp. zso) as an infinite lift of y (resp. of z). We also refer to F'! as the
lift of € defined by the point z € N/Hy(W (k)) that lifts y € Ny(,y/Ho(k).

If we have another point y; € N/Hy(k), then (A;,A4;), C; = (M}, 05,595, 4;), Yjoo>
and (tja)acg will be the analogues of (4, A4), €, Yoo, and (tn)acg obtained by replacing y
with y;.

9.1.2. PEL type embeddings. Let Cp := CgL,, (G). Let G be the identity component
of C1g := GSp(W, ¢) N CaL,, (Cop); it contains G. Let X; be the G1(R)-conjugacy class of
homomorphisms Resc/rG;, — G1r that contain the composites of elements of X with the
monomorphism Gg — Gir. We get a PEL type embedding f1 : (G1,X1) — (GSp(W,v), 8)
through which f factors. We call it the PEL-envelope of f, cf. [Val, Rm. 4.3.12].

Let Gaz,, = CGSp(L(p),w)<ZO(GZ(p))); it is a reductive group scheme over Z,) (cf.
[DG Vol. III, Exp. XIX, Subsection 2.8]). Let G2 be the generic fibre of Gaz,,; it
contains G and moreover we have Z°(G1) = Z°(G3). As in the previous paragraph we
get an injective map f5 : (Ga,X2) — (GSp(W, ), §) through which both f and f; factor
naturally.

Let 7 € {1,2}. Let H; := Giq, (Qp)NXK,. Let v; be the prime of the subfield E(G;, X;)
of E(G,X) which is divided by v. Let N; be the normalization of the Zariski closure of
Sh(G;,X;)/H; in Mo,,.,- By replacing Hy with a compact, open subgroup of it we can
assume that:

(a) there exists a compact, open subgroup Hy; of Gi(Agcp )) which is contained in
KP(Ny), which contains Hy, and for which the quotient morphism N; — N;/Hp; is a
pro-étale cover (see proof of [Val, Prop. 3.4.1]).

We can also assume that Hp; is a subgroup of Hge. The injective map f; is a PEL
type embedding. The triple (f2, L(p),v2) is a standard Hodge situation (this well known
fact follows from either [Zil, Subsection 3.5] or [LR]). Let (A;, A4,) be the pull back to N;
of the universal abelian scheme over M. Let G; be the integral, closed subgroup scheme of
GL;; which has the analogue meaning of § = § but obtained working with the k-valued
point y; of N;/Hy; defined by y. The group scheme G is reductive.?

We use the notations of Subsection 8.1 and (by performing the operation 1) until
the end we will assume that T(¢) is a torus. Let E14 := Ea NLie(G1p(x)). Identifying the
opposite of the Q-algebra that defines Lie(Cgp) with a semisimple Q-subalgebra of E 4, we

1 If either p > 3 or p = 2 and (g is connected, then it is easy to see that Theorem
2.4.2 (b) implies that G; is also a reductive group scheme (see [LR] and [Ko2]).
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get that Ej4 is the maximal Q-vector subspace of E4 that centralizes Lie(Cgp) and that
leaves invariant the Q-span of A4. We can assume that Zi4 := Lie(ZO(Gm(p))), when
viewed as a set, is included in {v,|a € J}.

9.1.3. Rational stratification. Let &,,; be the rational stratification of Nk(v)ideﬁned
in [Va3, Subsection 5.3]. We recall that if y; € N/Hy(k), then y10 and y are k-valued
points of the same (reduced) stratum of &,,¢ if and only if there exists an isomorphism

(M1 ®@w () B(k), $1 @0f) = (M Qw ) B(k), p®oy) that takes t14 to t, for all « € J. The

number of strata of S, is finite, cf. [Va3, Rm. 5.3.2 (b)]. Let s¢ be the G(Agcp))—invariant
reduced, closed subscheme of Ny, defined by the following property: the point y.. factors
through s if and only if € is basic. Obviously s¢ is a union of strata of Ny ).

9.2. Some properties. Let h € J(C,\4) C G°(B(k)). Let A(h) be as in Subsubsection
1.1.1. We denote also by A4 the principal polarization of A(h) defined naturally by 4.
Let

y(h) : Spec(k) — Mg, /KP(Ny)

be the morphism defined by (A(h),A4) and its level-Ny symplectic similitude structure
induced naturally from the one of (4,\4) defined by the point y € Ny (,)/Ho(k). Let
Y(h)oo : Spec(k) — My, be an infinite lift of y(h).

(a) For p>3 (resp. p = 2) we say the isogeny property holds for (f,L,v) if for
each point y € Ny(,)/Ho(k) and for every element h € J(C,A4), the (resp. up to the
operation ; the) morphism y(h) factors through Ny,(,,)/Ho and there exists a point z(h) €
N/Ho(W (k)) which lifts this factorization (denoted in the same way) y(h) : Spec(k) —

Ni(v)/Ho and for which ¢, is the de Rham realization of z(h)*(waO) for all a € .

(b) We say the weak isogeny property holds for (f, L,v) if &, has only one closed
stratum which is sg itself.

(c) We say the Milne conjecture holds for (f, L, v) if for each point y € Ny(,)/Ho(k)
there exists a symplectic isomorphism (M, A4) = (L* @z W (k),1*) that takes t,, to v, for
all a € J. Here ¥* is the alternating form on L* defined naturally by .

(d) We say the ST property holds for (f, L, v) if there exists an open, dense, G(Agcp))—
invariant subset O of Ny(,) such that whenever we have y € O/Hy(k), there exists a

unique Hodge cocharacter pican of € whose generic fibre factors through the torus of §p,)
generated by Z°(Sp(r)) and Z°(Cs,,,, (T(4))) and moreover the lift F,, of € defined by

can

lean is the lift defined by a unique point z € N/Ho(W (k)) that lifts y. Here ST stands for
Serre—Tate.

(e) Suppose that p>3. We say the GFT property holds for (f, L,v) if there exists
a subset Jo of J such that (va)aeg, is a family of tensors of T(L{,)) of partial degrees at
most p — 2 and, when viewed as a family of tensors of ‘J’(L?p) Rz, Zy), it is also Zy-very

well position for Gz,. Here GFT stands for a good family of tensors.

9.2.1. Remarks. (a) In [Va6] it is proved that for p >3 the Milne conjecture holds for
(f,L,v). In [Vad] it is proved that for p >3 the ST property holds for (f, L,v). The GFT
property holds for (f, L,v) in most cases (like if p > max{5,r}, cf. [Val, Cor. 5.8.6]).
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(b) The isogeny property was announced in [Val, Subsubsection 1.7.1]. We outline
the very essence of one way to prove it for p > 3. We assume that the weak isogeny property
holds for (f,L,v) at least if p>3. Due to this, standard specialization arguments show
that to prove that the isogeny property holds for (f, L,v) it suffices to prove it only for
those points y € Ny(,)/Ho(k) for which C is basic. If G9er is simply connected, then the
motivic theory of [Mi5] when combined with (a), Proposition 9.3, and Subsubsection 9.4.1
will imply that the isogeny property holds for such a point y (see also Remark 9.4.2). But
the part of the Main Problem that pertains to DY types and to relative PEL situations
will allow us to remove the assumption that G9¢* is simply connected (to be compared
with the paragraph before Subproblem 1.2.3).

(¢) For each 8 € G,,(W(k)) there exists an element g € G(W(k)) that acts on
the W (k)-span of A4 via multiplication with 5. Thus if there exists an isomorphism
(M, (ta)acg) = (L* @z W(k), (ta)acg), then there exists also an isomorphism of the form
(M, (to)acg, Aa) = (L* @z W(k), (ta)acg, *). Moreover, as G° is smooth and has a con-
nected special fibre, such isomorphisms (M, (to)acg, Aa) = (L* @z W (k), (ta)acy, ¥*) exist
if and only if they exist in the flat topology of W (k).

9.2.2. Theorem. If Z°(G) = Z°(G,), then the Milne conjecture holds for (f,L,v).

Proof: Tt is known that we can identify (H;t(AW, Zp),Aa) = (L, @z, Lp,¥") in such a

way that the p-component of the étale component of wq := 2j 4 (w) is v, for all o € J (see

[Val, top of p. 473]). Strictly speaking loc. cit. mentions a G, (Zy)-multiple 3, of *; as
the complex 0 — G%p (Zp) — Gz,(Zyp) — G (Zy) — 0 is exact, we can assume that 3, =

1. Thus as B(k) is a field of dimension <1 (see [Se2]) and due to Fontaine comparison
theory, there exists an isomorphism ja : (M @y x) B(k), Aa) = (L{y) ®z,) B(k),*) that
takes to to v, for all @ € . As Z°(G) = Z°(G1), we have Z°(G) = Z°%(C1(Ma)) (cf.
Theorem 2.4.2 (c)); here Z°(C1(M4)) is defined as in Theorem 2.4.2 (c) but for the pair

(C,A4). As in Subsubsections 5.3.2 and 5.3.3 (a) we argue that we can assume that

ja(M @wuy W(k)) = Li,) ®z,, W(k). Thus the Milne conjecture holds for (f, L, v), cf.

last sentence of Remark 9.2.1 (c). O

9.3. Proposition. We assume that the Milne conjecture holds for (f, L,v).

(a) Then sg is a stratum of ..y which is closed.

(b) We also assume that G is simply connected and that y factors through so/Hy.

Let yo € so/Ho(k). Let yooo : Spec(k) — Ny be an infinite lift of yo. Then up to the
operation 1, there exist elements t € GQ(ASCP)) and h € J(C,Aa) such that we have an
identity Yoot = y(h)oo of k-valued points of My (v) -

Proof: The connected components of N are permuted transitively by G(A;p )), cf. [Val,
Lem. 3.3.2]. Thus to prove the Proposition, we can assume that y € so/Hy(k) and that
both 7~ and yooo factor through the special fibre of the same connected component N° of
N. Let 7 (resp. mp) be the Frobenius endomorphism of A (resp. of Agp). See [Ch, Subsection
3.a] for the Frobenius tori T, and T, over Q of m and 7y (respectively). The crystalline
realization of 7 is ¢" € §G(B(k)) and therefore we have an identity T(¢) = Trpx). Each
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element b € Z1 4 defines naturally a Z,)-endomorphism of any pull back of A, A1, or As,
to be denoted also by b. Thus we view Z°(G) and T, as subtori of C(¢)g.

We prove (a). As y € s9/Hy(k), the Newton quasi-cocharacter of (M, ¢, G) factors
through Z%(Gp(x)) (see [Va3, Cor. 2.3.2]) and thus it can be identified with a quasi-
cocharacter o of Z°(Gp(x)). This quasi-cocharacter depends only on the Gal(Q,)-orbit of
the composite 2 : G,, — G of 1 with the canonical epimorphism § — G2P. Moreover
pP is uniquely attached to X, cf. [Va3, Subsubsections 5.1.1 and 5.1.8]. We conclude that,
as the notation suggests, o does not depend on the point y € N/Hg(k).

The torus T is the smallest subtorus of C'(¢)g with the property that g is a quasi-
cocharacter of T, p(y), cf. Serre’s result of [Pi, Prop. 3.5]. Thus T is naturally identified
with a subtorus of Z°(G) uniquely determined by X. Applying this also to yo we get
Tr = Tr,- Thus mp € Q[n] is such that its image in each number field factor Fy of Q[r] is
non-trivial. Therefore from [Ta2] we get that the images of m and 7 in Fy are both Weil

g-integers. Thus % is a root of unity and therefore by performing the operation O, we

can assume that 7 = 79 € T,(Q) = T, (Q) < Z°(G)(Q). Let i : A — Ap be the Q-isogeny
defined by this equality, cf. [Ta2]. Let (MO[I—I)], ¢) > (M [%], ¢0) be the isomorphism defined
by ¢; we will view it as a natural identification.

Let 9%{13 be the Q,-form of 9(1)3(1@ with respect to (M[%], ¢). We have 9%:1’ = S%ib
and therefore let G9/* := G)".

As the Milne conjecture holds for (f, L,v), there exists an element j € GLy;(B(k))
such that j(M) = My and j takes Ag to A\a, and takes t, to to, for all & € J. Thus j
commutes with ¢" = ¢ff € Z°(Spu))(B(k)). We can also assume that j takes a Hodge
cocharacter of C to a Hodge cocharacter of Cy (to be compared with [Va3, Lem. 5.1.8]).
Thus we can identify j='¢j = g¢, where g € G°(W(k)). From [Va3, Prop. 2.7.1 and
Subsection 4.7] we deduce the existence of an element h € G°(B(k)) such that we have
9(¢®0f) = h1(¢®0op)h. In other words, there exists an isomorphism (Mo @y (1) B(k), po®
0%, (toa)acg) = (M ®wu) B(k), ¢ ® 0%, (ta)acg). Thus s¢ is a stratum of S.,y; it is closed
by its very definition. Thus (a) holds.

We probe (b); thus G9¢* is simply connected. As j commutes with ¢” we get that
¢" = (j7'¢j)" = (gp)". Thus g defines a class v, € Hl(Gal(B(k)/Qp),Q%{p) whose
image in H'(Gal(B(k)/Q,), 9&’:'3) factors through H'(Gal(W (k)/Z,), 9%’:'3) = 0. As the
group HY(Gal(W (k)/Z,), 9%’;‘0) is trivial (cf. Lang theorem) and as the homomorphism

GO(W(k)) — GYP(W(k)) is surjective, we can assume that we have g € G4*(W(k)).
Thus v, is the image of some class 75" € H'(Gal(B(k)/Qp), 98}‘?). As GY is simply

connected, the class 45 is trivial (cf. [Kn, Thm. 1]). Thus we can assume that h €
Gder(B(k)). Therefore g¢p = h™'¢h and thus we have h € J(C,Aa) and j~'¢j = h™'ph.
Let h:=hj~' € GLp(B(k)); it is fixed by ¢ and thus it is a Q,-valued point of C(¢)q, -

Let ZC(¢)q be the reductive subgroup of C(¢)q that fixes A4 and ZlA[%]. We now
check that we can assume that ¢ takes b to b for all b € ZlA[I—lj] and takes g to A\4,. Let

v € HY(Q, ZC(¢)g) be the class that “measures” the existence of such a choice of i. Let
be a rational prime. We check that the image of v in H(Q;, ZC(¢)g,) is the trivial class.
If [ = p (resp. if [ # p), then this is so due to the previous paragraph (resp. due to the
existence of all level-I" symplectic similitude structures of A with m € N and on the fact
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that m = 79 € T (Q) = T, (Q) < Z°(G)(Q)). The triples (A, Aa, Z14) and (Ag, Aa,, Z14)
lift to characteristic 0. But all pull backs of (A, A4, Z14) via complex valued points of
NO are R-isogenous (as each connected component of X is a G°(R)-conjugacy class). Thus
(A, A4, Z14) and (Ag, Aa,, Z14) are R-isogenous. Thus the image of v in H' (R, ZC(¢)r)
is also the trivial class.

The group ZC(¢)c is isomorphic to the centralizer of a torus of Sp(W,v)c. Thus
it is the product of some GL,, groups with either a trivial group or with a Sps, group
(the ranks n do depend on the factors of such a product). Therefore we have a product
decomposition ZC(¢)g = Z1 Xq Z2, where:

(i) there exists a semisimple Q-algebra Z1; with involution ¢1; such that Z; is the
group scheme of invertible elements of Z;; fixed by x;

(ii) Z is either trivial or a simple connected semisimple group of C,, Dynkin type.

The pair (Z11,t11) is a product of semisimple Q-algebras endowed with involutions which
are either trivial or of second type. Thus Z; is a product of Weil restrictions of reductive
groups whose derived groups are forms of SL,, groups (n € N) and whose abelianizations
are of rank 1. This implies that the Hasse principle holds for Z; (even if some n’s are
even). It is well known that the Hasse principle holds for Z;. We conclude that:

(iii) the Hasse principle holds for ZC(¢)g and therefore the class v is trivial (cf.
previous paragraph).

It is well known that Z1(Q) is dense in Z1(Qy). As ZC(9) ) is Cspar2)x.)(T(9))

and as Z°(§) splits over a finite unramified extension of W (k), the group Z,pz, is split.
Thus Z2(Q) is dense in Z5(Q,), cf. [Mi4, Lem. 4.10]. Thus we get:

(iv) the group ZC(¢)g(Q) is dense in ZC'(¢)p(Qp)-

Due to the property (iii), we can assume that j € G9(B(k)). Thus h € G(B(k))
is a Zp-isomorphism between the principally quasi-polarized Dieudonné modules with en-
domorphisms associated to (A(h),\a, Z14) and (Ao, Aa,, Z14). Let s € N. A Theorem
of Tate says that Homy(Ap, A(h)) ®z Z, is the set of Z,-homomorphisms between the
Dieudonné modules of the p-divisible groups of A(h) and Aq (see [Ta2, p. 99]; the passage
from Q, coefficients to Z, coefficients is trivial). Based on this and the property (iv) we

get that there exists a Z)-isomorphism il(p) between (Ao, Aa,, Z14) and (A(h),Aa, Z14)
whose crystalline realization is congruent modulo p® to h.

Due to existence of the Z,)-isomorphism ﬁ(p), there exists an element ¢ € GSp(W, 1) (A;p ))
such that we have an identity Yoot = y(h)so of k-valued points of My, (cf. also [Mi2,
Section 3|). The fact that we can take t € Gy (Agcp )) is checked easily by considering the

level-I™ symplectic similitude structures of yj. (A, Aa) and (y(h)eo)* (A, Ax) (here I is a
prime different from p and m € N). O

9.4. Theorem. We assume that the Milne conjecture, the isogeny property, and the ST
property hold for (f, L,v). We also assume that p >3, that G is simply connected, and
that y factors through so/Hy. Then in Proposition 9.8 (b) we can assume that in fact we

have t € G(Agcp)).
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Proof: Let N? be the right translation of N° through ¢ i.e., the normalization of Mo,, in
the right translation of N%(G %) through ¢. It is a finite scheme over Mo ,,, cf. proof of
[Val, Prop. 3.4.1]. As the isogeny property holds for (f, L,v), the point u := y(h)~ is a

k-valued point of Ny, that factors also through Ni?k(v)' We can identify the principally
quasi-polarized Dieudonné module associated to u*(A,Aa) with D(h) = (M M) Qw x)
W(k), ¢ @ o, Aa). Let Fy be the lift of (h(M) @y W(k), ¢ ® o, §(h)w ) defined by
a W(k)-valued point of N that lifts both u and a point z(h) € N/Ho(W(k)) as in the
property 9.2 (a).

As Yoot = u we can identify naturally Mo @w (1) W (k) = h(M) ®w (k) W (k). Thus
Sow (k) is the reductive, closed subgroup scheme of GLy, (g, oW (R) that fixes tg, for all

a € J. Let Fy be a lift of (h(M) @w ) W(k), ¢ ® g, Sow x)) defined by a W (k)-valued
point of N that lifts u.
The closed subgroup schemes §(h)yy ) and Sow (zy of GLy(ar)gy, (W (k) 8T€ cOnjugate

under an element hg € Sp(h(M), Aa)(W (k)) which is fixed by ¢®0c, and which is congruent
modulo p* t0 1, (1)@, ., w (k) (see the last part of the proof of Proposition 9.3 (b)). Let

d := dimyy ) (G9). Let Rq := W(k)[[21,...,24]]. Let ®g, be the Frobenius lift of Ry
that is compatible with oz and that takes each x; to z? for all ¢ € {1,... ,d}.
The local deformation space D (resp. D;) of u*(A,Ax) defined by Ny, gy (resp.

NE’W(E)) depends only on S(h)‘ésr(E) (resp. 983{/@)), cf. [Val, Subsubsections 5.4.4 to

5.4.8 and Subsection 5.5]. More precisely the principally quasi-polarized filtered F-crystal

over Ry/pR, defined by the pull back of (A, A4) via a formally smooth W (k)-morphism
Spec(Ry) — N (resp. Spec(Rq) — N?) that lifts u is isomorphic to

(10) (h(M) @w (k) Ras Fir O () Ras 9o (6 © Pr,), Aas Vi)

(resp.  (M(M) ®@w ) Ra, F§ Qw ) Ras 9oemiv(¢ @ Pr,), Aa, Vor)). Here gioi, @ Ry —
S(h)‘ésr(E) and goer.. : Rq — SGoor () are formally étale morphisms which (due to the
previous paragraph) coincide modulo p®. Thus the special fibres of D (resp. D;) coincide,
cf. Lemma 3.4 and Serre-Tate deformation theory. Thus the images in My, of the
connected components U; and U of N?k (v) and Ny, (respectively) through which u factors,
are the same.

Let O be as in the property 9.2 (d). Let OU be the image of O N U in My(,). Let
(M,, o, Aa,) be the principally quasi-polarized Dieudonné module associated naturally to
a point Yoo € OU(K). A k-valued point of either U or U; that factors through y,e., will
be also denoted by 9ooo-

As the ST property holds for (f, L, v), each such k-valued point 4,4, of U (resp. of U;)
has a unique W (k)-lift Zooo (T€SP. Zotoo) to N (resp. to N?) such that there exists a Hodge
cocharacter p, (resp. o) of the Shimura F-crystal (M,, ¢,,SG,) (resp. (Mo, b0, SGo0))
attached t0 Yoo € U(k) (resp. t0 Yoot 1 € NO(k)) whose generic fibre factors through the
center of the subgroup of GLMO[%] that commutes with Z°(3,) gy = Z2°(Se0) 5y and with
the integral powers of the Frobenius endomorphism of y,* (A, ); here y, is an Fpm-valued
point of O/H{ that has y,c as an infinite lift, for some m € N which is big enough. As pu,

and po; commute, the two lifts of (M,, ¢o, GLas,) they define coincide. Thus as p >3, we
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have an identity 2,00 = Zoteo of W(k)-valued points of Mo, . The normalization of the
Zariski closure of these z,0o = Zotoo poinNts in MO<U) is on one hand a connected component
of N and on the other hand it is N?.

But N(C) = Gz, (Z))\(X x G(Agcp))) and its analogue holds for No(C), cf. [Mi4,
Prop. 4.11 and Cor. 4.12]. Thus as N? is a connected component of N we easily get

that ¢ € Gz, (Z(p))(Z(p))G(Agcp)). Thus to prove the Theorem, we can assume that
t € Gag,, (Z(p)). By considering level-I"™ symplectic similitude structures with I # p fixed
and with m € N varying, we get that ¢ € Gz, (Z(p))- O

9.4.1. An interpretation. As Milne conjecture is assumed to hold for (f, L,v), the Z,
structure of € is isomorphic to (L* ®z Zy,, Gz,, (Va)acg). Thus the condition [Va3, 5.2 (b)]
holds for (f, L,v). Thus from [Va3, Subsubsection 4.2.2 and the proof of Thm. 5.2.3] we
get the existence of a point zgs, € N(W (k)) that lifts a k-valued point of 5o and such that
the Mumford-Tate group of each complex extension of 2. (A) is a torus. By enlarging
k we can assume that the W (k)-valued point of N/H defined by zg., factors through a
point zo € N/H (W (k)). Thus Theorem 9.4 can be interpreted as follows. If y € s9/Ho (k)
and if we work under the assumptions of Theorem 9.4, then up to the operations ;1 and
7 we can assume that the lift z € N/Ho(W (k)) of y is such that Ay, is with complex

multiplication.

9.4.2. Remark. We assume that the hypotheses of Proposition 9.3 (b) hold. Let t €

GQ(ASCP)) and h € J(C,A4) be such that we have an identity yooot = y(h)s of k-valued
points of My, cf. Proposition 8.3 (b). We also assume that ¢ (see Subsection 8.1) is
the extension to B(k) of the Lie algebra of a subgroup E(¢)g of C(¢)q (for instance, this
holds if the cycle II of Subsection 8.1 is the crystalline realization of an algebraic cycle of
Aw k) Let E(¢)¢ be the subgroup of E(¢)qg that fixes Aa; it is a Q-form of 9%(k) and
thus it is connected. The group E(¢)9(Q) is dense in E(¢)3(Qp), cf. [Mi4, Lem. 4.10].

Thus as in the proof of Proposition 9.3 we get the existence of an element h; € E(¢)3(Q)
such that by denoting also by h; its crystalline realization, we have hy(h(M)) = M. This

implies that we can choose y(h)s to be the translation of y,, by an element of G(A;p ))
defined naturally by hy. Thus y(h) factors through Ny (,)/Ho. This implies directly that
te GAP).

In future work we will show independently of [Mi5] i.e., based mainly on the weak

isogeny property and on [Val], that for p >3 the point y(h) factors through N/H) if either
k(v) = FF, or if all simple factors of (G®4,X24) are of A,,, By, Cp, or DX type.

9.5. The non-basic context. In this Subsection we assume that the isogeny property and
the GFT property hold for (f, L,v), that p>3, and that € is not basic. We also assume
that @ + +2 holds for (C,\4) and that Z°(G) = Z°(G;). Thus the Milne conjecture
holds for (f, L,v), cf. Theorem 9.2.2. All assumptions of Corollary 8.3 hold (cf. also
Subsubsection 9.1.1) and therefore we will use the notations of Corollary 8.3, with h €
J(C,Aa) C §%B(k)). Let (Tip), ) be the E-pair of € which is plus plus admissible
and which was used in the proof of Corollary 8.3 (b). Let T1g, and K3 be as in Definition
2.3 (¢). We know that LOGLh(M) (¢) is a reductive, closed subgroup scheme of GLj(ap), cf.
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property (i) of Corollary 8.3 (a). Let Z,(¢) be the split rank 1 subtorus of Z(L%Lh(M) ()
such that the Newton quasi-cocharacter of € factors through Z;(¢)p); it is a torus of

S(h).

_As the property 9.2 (a) holds for y and h, we can assume that y(h) € Ny(,)/Ho(k).
Let V3 := V3 @w ) W(k). Let AA(h)y, be the principal polarization of A(h)v, that lifts
Aa(h) = Aa. Let Zo Spec(V3) — Mo,,, be the morphism that lifts the composite of y(h) oo
with the morphism Ny, (,y — My, and that is defined by the pull back of (A(h)vs, >‘A(h)v3>
to V3. Let 2(h)oo € N(W(k)) be a point that lifts y(h)s.. The part of the proof of Theorem
9.4 that pertains to (10) holds even if € is not basic, cf. [Val, Subsubsections 5.4.4 to
5.4.8 and Section 5.5]. Thus as p>3, from Theorem 3.6 and Corollary 3.7.3 we get that
Zoo factors through N. We fix an F(G,X)-embedding i3 : V3[%] < C and we use it to

naturally identify B(k) with a subfield of C.
We identify Hét(A(h)W, Zp) = H'(A(h)c, Zy)) @z, Zp (cf. [AGV, Exp. XIJ)

and H'(A(h)c, Z)) = L, in such a way that v, becomes the p-component of the étale

component of Z% (wy) for all & € J (cf. [Val, pp. 472-473]). Thus we can identify the
Mumford-Tate group of A(h)c with a reductive subgroup Gs3 of G. Let G35 be a reductive
subgroup of G which is maximal under the properties that it contains G5 and we have
Gger = Gger. As the Frobenius endomorphism of A(h) lifts to Ay, it defines naturally a
Q-valued point 7 of Z°(G3). Let X3 be the G3(R)-conjugacy class of the homomorphism
Resc/rGy, — Gar that defines the Hodge Q-structure on W defined by A(h)c. The pair
(G3,Xs3) is a Shimura pair.

Let Z3 be the subtorus of GLHét(A(h)m,Zp) that corresponds to ZO(LGLh(M)(gb))

via Fontaine comparison theory for A(h)y,. It exists as p>3 and as we can identify it
naturally with the group scheme of invertible elements of the semisimple Z,-subalgebra
of End(h(M)) formed by elements of Lie(Z°(Lgw,,,, (¢))) fixed by ¢. Its generic fibre
commutes with Gg,. The subtorus Zj,(¢)e; of Z3 that corresponds to Zj,(¢) via Fontaine
comparison theory for A(h)v;, is a Gy, subgroup scheme of the Zariski closure of Z°(Gsq,)
in GLHét(A(h)m,Zp) = GLLE},)®Z<,,)ZP' Let T3 be a maximal torus of G3 such that the

following two things hold (cf. [Ha, Lem. 5.5.3]):

(i) the torus Tap is the extension of a compact torus by Z(GLwgyr);

ii) there exists an element g € G34(Q,) such that gT3g g~ ' is the subtorus of G
3 P Qp Qp

which is isomorphic to Jig, and which corresponds to Jyy,[1) via Fontaine comparison
p
theory for A(h)y,.

Let pz : G,, — T3¢ be the cocharacter such that gusg~! is obtained from p; by

extension of scalars under the restriction ig, : Ko — C of i3 to K. From the property
(ii) we get:

(iii) the cocharacter usz is G'3(C)-conjugate to the Hodge cocharacters of GLyy g, c
that define Hodge Q-structures on W associated to points z3 € X3.

Let S3c be the subtorus of T3¢ generated by Z(GLwg,c) and Im(y3). As the torus
T3r/Z(GLwgur) is compact, Ssc is the extension to C of a subtorus Szg of T3g. From
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the property (iii) we get that we can identify S,r = Resc/rGy, and thus we get a natural
monomorphism
hg : ReSC/RGm — TgR.

Let X5 be the G3(R)-conjugacy class of hs. As in the proof of [Va3, Thm. 5.2.3] one
checks that we can choose T3 such that the pair (G, X%) is a Shimura pair (this time it is
irrelevant what the Zariski closures of 75 and G5 in GL, () are and therefore loc. cit. can
be adapted to our present context).

The adjoint Shimura pairs (G54, X2d) and (G34,X3) of (G3,X%) and (G3,X3) (re-
spectively) coincide i.e., we have an identity X3¢ = X4 (cf. the property (iii) and [De2,
Prop. 1.2.7 and Cor. 1.2.8]). As the group G34(Q) is dense in G34(R), it permutes the
connected components of X3¢. Thus by replacing the injective map

is + (T3, {hs}) — (G, X3)
by its composite with an isomorphism
(G3,X3) = (G3,Xs3)

defined by an element of G34(Q), we can assume that X} = X3.
As the cocharacter p; is defined over K7, the reflex field E(T5,{hs}) is a subfield of
K. Let vz be the prime of E(T3, {hs}) such that the local ring O(,,) of it is dominated

by the ring of integers of K;. Let Hjz := T3(Q,) N H and let Hysz := Tg(A(fp)> N Hy. It
is easy to see that the natural morphism Sh(7%,{hs})/Hs — Sh(G,X) g1y, {hs})/H (see
[Del, Cor. 5.4]) is a closed embedding. Let T3 be the Zariski closure of Sh(T5,{hs})/Hs
in NO(US). Let Og be a finite, discrete valuation ring extension of the completion O,, of

O(v,) such that we have a morphism zq : Spec(Op) — T3/Hopz and K := Oo[%] is a Galois
extension of Q,. Let Ago, := z;(Am,), where we denote also by zp the Op-valued point of
N/Hy defined naturally by zy. By performing the operation 9, to C, we can assume that
the residue field of Oy is k and that the abelian scheme Ay has complex multiplication.
We can assume that zg and Z,, give birth to complex valued points of the same connected
component of Sh(G3,Xs3)/(Gs(Ar) N (Hy x H)). Let yo be the special fibre of zy identified
as well with a k-valued point of Ny, /Ho. We recall that (Ao, Aa,) = y5(Am,, AAH()) and
that (Mo, ¢o, Go) is the Shimura F-crystal attached to yg. By performing the operation
91, we can also assume that all endomorphisms of A,z are pull backs of endomorphisms of
Ap. Let Z(¢pp) be the subtorus of Gy that corresponds to Zp,(¢)¢: via Fontaine comparison
theory for the abelian scheme Ago,. Let G3p(r) be the reductive subgroup of Gop(x) that
corresponds to G'3g, via Fontaine comparison theory for Agg,.

We denote also by ps the cocharacter G,, — T 30, (1] whose extension to C is g

(i.e., it is the Hodge cocharacter defined by hg, cf. the very definition of reflex fields).
The Newton quasi-cocharacter of (Mo, ¢o, G0) is the quasi-cocharacter of T5p(x) (viewed
as a maximal torus of Gop(x)) which is the mean-average of the Gal(K/Q))-orbit of us,
cf. [Kol, Subsections 2.8 and 4.2] (see also either [RR, Thm. 1.15] or [RaZ, Prop. 1.21]).
Thus it factors through Z9(Gs B(k)), cf. the G34(Q,)-conjugacy of the property (ii) and the
fact that the Newton quasi-cocharacter of (M, ¢, G) factors through the subtorus T(¢) of
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ZO(SgB(k)). Thus as in the proof of Proposition 9.3 (a) we argue that up to performing the
operation 97 to € we can assume that the Betti realization of the Frobenius endomorphism
of Ag obtained via Agp, is the element © € Z°(G3).

9.5.1. Theorem. We assume that the isogeny property, the ST property, and the GFT
property hold for (f, L,v), that p>3, that C is not basic, and that G°* is simply connected.

We also assume that Q + +2 holds for (C,\a) and that Z°(§) = Z°(G1). Let yo €
Niw)/Ho(k) be as above (i.e., the special fibre of a composite morphism zo : Spec(Og) —

T3/Hps — N/Hy). Then up to performing O1, there exists hy € J(C,Aa), t1 € G(Agcp)),

and an infinite lift Yooo € Ni(w) (k) of yo € Nyw)/Ho(k) such that yosoty is an infinite lift
of y(hl) S Nk(v)/HO(k)

Proof: The proof of this is entirely the same as the proofs of Proposition 9.3 (b) and
Theorem 9.4. Only the part of the proof of Proposition 9.3 (b) that pertains to an element
g € G°(W (k)) has to be slightly modified. The role of Z; 4 is now replaced by the maximal
Z(p)-subalgebra Zz4 of End(L(,) fixed by Z°(Gz ) and by 7 € Z°(G3)(Q). Up to
the operation 4, each element b € Z34 defines a Zp)-endomorphism of either Ay or
A. As we can assume that myp = 7 € Z°(G3)(Q), as in the proof of Proposition 9.3 we
argue that we have a Q-isogeny i : A(h) — A that defines naturally an identification
(Mo[3], ¢0) = (M[}],¢), an element j € GLy(B(k)) such that j(h(M)) = Mo, and an
element g € G(h)°(W (k)) such that j=1¢j = g¢.

Both Zj,(¢) and j71Z(¢0)j are G, subgroup schemes of G(h) and their Lie algebras
have natural generators fixed by ¢. As these generators are identified naturally with
elements of Z%(G3q,) and as the generic fibres of both points Z, and zo factor through
Sh(Gs,X3)/(Gs(Af) N (Ho x H)), over B(k) these generators are G°(B(k))-conjugate and
therefore they are also G(h)?(W (k))-conjugate. Thus we can assume that j=1Z(¢g)j =

Z1,(¢) and therefore that g € (LS, (¢)NG(R)°?)(W (k)). As in the proof of Proposition 9.3

S(h)
we argue that we can assume that g € L%%Zr) (@) (W (k)). As G9°" is simply connected, from

Fact 2.6.1 we get that L%c(lzr)(qb) is simply connected. Thus as in the proof of Proposition

9.3 we argue that we can assume that there exists an element h’ € L%c(lzr) (¢)(B(k)) such

that we have g¢ = hi '¢h’. If hy := Wh € G°(B(k)), then we have an isomorphism
h'j=1 (Mo, o) = (hi(M), @) and therefore hy € J(C,Aa). The rest of the proof is as the
last part of the proof of Proposition 9.3 (b). O

9.6. Theorem. Let n € N\ {1}. We assume that all simple factors of (G*4,X?4) are of
either C,, or DE type, that all simple factors of (G24,X3) are of Ag,—1 type, and that Cg
is indecomposable (equivalently, and that Cg is the group scheme of invertible elements of
a simple Q—-algebra). We also assume that Z°(G) = Z°(G1) and that the monomorphism

G(‘éer — G‘lig is a product of monomorphisms of one of the forms: Sps,y, — SLoy,, SO, —
SLs,,, and SL,, — SL,,. Then TT2 holds for C.

Proof: We have Ci1g = G (i.e., the group Cig is connected), cf. the hypothesis that
pertains to the As,_1 type. The Zariski closure Cz , of Cg in GLy,, is a reductive group
scheme, cf. Theorem 2.4.2 (b) applied over Z,. Thus the Zariski closure of G; in GL Ly isa
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reductive group scheme, the triple (f1, L,v1) is a standard Hodge situation, and the O, )-
scheme N1/ Hy; is smooth (see [LR] and [Ko2]). Let y; and G; be as in Subsubsection 9.1.2.
Thus € := (M, ¢, 1) is the Shimura F-crystal attached to the point y1 € Nyg(y,)/Ho1 (k).
The statement of the Theorem depends only on € up to the operations ;1 and D5 and
therefore from now we will forget about f and N and we will only keep in mind that
the quadruple (M, ¢, Lie(Cz, ), Aa) is the crystalline realization of a principally polarized
abelian variety endowed with Z,)-endomorphisms (A, Aa, Lie(Cz,,)) over k and that our
hypotheses get translated into properties of the group schemes G, G1, etc. By performing
the operation 9, we can assume that § and G; are split. The main property required
below is the following one (cf. hypotheses):

(i) We have Z°(G) = Z°(G;) and the monomorphism G4 < G is a product of

monomorphisms of one of the forms: Sps,, < SLo,,, SO;{;}Lit — SL»,,,, and SL,,, — SL,,.

By performing the operation 95, we can assume that L(g)(gb) is a reductive group
scheme, cf. Subsection 2.6. Thus we can replace C by (M, ¢, Lg(¢)). From Fact 2.6.1 and
the property (i) we get the existence of a direct sum decomposition

(M, ¢) = Bjes(Mj, 9)

into F-crystals over k that have only one Newton polygon slope such that for each j € J
the following two properties hold:

(ii) the adjoint of the image L°(j) of LY (¢) in GLyy, via the projection [].. ; GLay, —
GL )y, , has all simple factors of the same Lie type 0(j) € {Cin, D, Am|m € {1,... ,n}};

(iii) the image L(j) of LY (¢) in GLyy, via the same projection is either L°(j) or
its adjoint has all simple factors of the same Lie type As,,—1 and 0(j) € {Cy,, Dy, }.

Let T1p(x) be a maximal torus of §p() of Qy-endomorphisms of C. Its centralizer
‘J’iB(k) in Gy (k) is a maximal torus of Gy p(x) of Q,-endomorphisms of Cy, cf. property (i)
and the fact that in Subsubsection 9.1.2 we assumed that J(¢) is a torus. Let T71p1) be
the centralizer of T, p() in CGLM[;] (CBx)); it is a torus over B(k). We use the notations of
Definition 2.3 (c), an upper indexr} being used in connection to T} B(r)- Ve apply [Ha, Lem.
5.5.3] to the reductive subgroup of C(¢)q that normalizes the Q-span of A4 and that fixes
each Q-endomorphism of A defined by an element of Lie(Cgp). Thus up to a replacement
of (M, ¢,L%(¢)) by (M, p,hLE(¢)h~"), where h € G1(W (k)) commutes with ¢, we can
assume that Lie(‘J'iB(k)) is B(k)-generated by elements of E4. From [Zil, Thm. 4.4] we
get that up to the operations 91 and s, the isogeny class of abelian varieties endowed
with endomorphisms whose crystalline realization is (M [1—1)], ¢, (Lie(T11p(k)) +Lie(Cpk)))N
End(A)) has a lift to the ring of fractions of a finite field extension K% of K}. Thus the
Hodge cocharacter of this lift, when viewed in the crystalline context, is the extension to

K3 of a cocharacter 17 : Gy — T, such the E-pair (T 5, 1) of €1 is admissible. But

the product Q of the simple factors of L(g) (¢)2 which are of some A,,, Lie type, m > 2, is the

same as the similar product for LY (¢)*, cf. property (i). Thus we choose a cocharacter
w1 Gy, — Tik, such that the following three properties hold (to be compared with
Subsection 6.1):

62



(iv.a) the cocharacters of QW defined by p; and p) coincide;

(iv.b) the cocharacter of the product of the simple factors of L% (¢)3d which are not
subgroups of Q, defined by p; is constructed based on Subsection 6.4;

(iv.c) a G(K3)-conjugate of ujg, is the extension to Ko of a Hodge cocharacter of
C.

Let Fj._ be as in Definition 2.3 (h). The admissible filtered modules over K are
stable under direct sums. Thus to check that (T;g), 1) is admissible (i.e., to end the
proof of the Theorem), we can work with a fixed jo € J and we have to show that the
filtered module (Njo[%],gb, Fi, N (Nj, @w ) K2)) over Ky is admissible. Let J4 := {j €
J|0(j) = A, m e N\{1}}. If jo € Ja, then (Njo[%]7 ¢, Fie, NN, @w (1) K2) is admissible as
(T} B(k)> H2) is admissible. If jo € J\ Ja, then the fact that (Njo[%L ¢, Fe, N Nj, Qw () K2)
is admissible follows from Theorems 4.1 (b) and 4.2 (b) (cf. Subsection 6.4). O

9.7. Example. There exists a second approach (besides the one mentioned in Remark
9.2.1 (b)) toward the proof that the isogeny property holds for (f, L,v). We exemplify it
as well as Subsections 9.2 to 9.6 in the following concrete context.

9.7.1. Assumptions. Let n € N\ {1}. Let m € N. We assume that p does not divide
n— 1, that p > 5, that 2r = dimg(W) = 4nm, and that G%ir =1~ G°, where each G* is
an Spa, group scheme over Z,. We also assume that we have a direct sum decomposition

(11) Ly:=L®,Z, =& L}

into free Z,-modules of rank 2n which is normalized by G%ir and for which the following
property holds:

(i) the representation of G* on L7 is trivial if j ¢ {2 — 1,2} and it is the standard
rank 2n representation if j € {2¢ — 1, 2i}.

Let T; be the G, subgroup scheme of GLy, that acts trivially on L7 if j ¢ {2i—1, 2i}
and as the inverse of the identical (resp. as the identical) character of G,,, on Lff‘l (resp.
on L2'). We also assume that Gz, is generated by G%‘;r, by Z(GLg,), and by the tori T;

with ¢ € {1,...,m}; thus Gz, is split. This last assumption implies that for two elements
i1, i2 € {1,...,2m}, the Z,-modules L} and L;? are perpendicular with respect to ¢ if

and only if (i1,i2) ¢ {(1,2),(2,1),(3,4),(4,3),...,(2m — 1,2m), (2m,2m — 1)}. Finally,
we also assume that G&d is Q—simple and that the group Gﬁg{d has compact, simple factors.

9.7.2. First properties of (f, L,v). We list some simple properties.

(a) We have (7, := CaL,,(Gz,) = ) Z(GLp;). Moreover Car,, (Cz,) = ) GLL: .
From the perpendicular aspects of Subsubsection 9.7.1 we get that Z(G1z,) = Z(Gz,) and
that G{5' = [[}~, Gi, where each G} is an SLy, group scheme that contains G’. Thus
GY acts trivially on L7 if j ¢ {2i — 1,2} and we can assume that the representation of
GY on L2"7! is the standard rank 2n representation. Thus we have G* = Negi (GY) for all
i € {1,...,m} and therefore Gz, = Ng,, (Gz,).
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(b) As p does not divide 2(n — 1) the Killing and the trace forms on Lie(G%ir) are perfect
(see [Val, Lem. 5.7.2.1]). Thus as in Subsection 7.1 we can assume that there exists a
subset do of J such that (vy)aecg is of partial degrees at most 2 and, when viewed as a
family of tensors of T(L{,) ®z,) Zp), is Zp-very well positioned for Gz, (cf. also [Val, Thm.
5.7.1]). Thus (f, L,v) is a standard Hodge situation (cf. [Val, Thm. 5.1 and Rm. 5.6.5])
for which the GFT property holds. As Z°(Gz,) = Z°(G1z,), the Milne conjecture holds

for (f, L,v) (cf. Theorem 9.2.2).

(c) The projector of L, on L associated to (11) is fixed by Gz, and thus it is a Z,-linear
combination of tensors of End(End(L(,))) fixed by Gz,. Thus all of part (a) transfers
automatically to the crystalline context of the Shimura F-crystal C of Subsubsection 9.1.1.
Therefore we have a direct sum decomposition M = @™ M* normalized by § and formed
by free W (k)-modules of rank 2n. We have A4 (M @ M*) = 0 if and only if (i1,is) ¢
{(1,2),(2,1),...,(2m—1,2m), (2m,2m—1)}. Asin the part (a) we argue that § = Ng, (9)
(the group scheme G; being identified with the intersection of GSp(M, A 4) with the double
centralizer of G in GLj;). Moreover, we have a direct sum decomposition G4 = | gt
with the property that each G acts trivially on M7 if j # i. As G%g is simply connected
and G%‘Zb is split, the set H'(Q,, G%p) has only one class.

(d) We show that the assumption that Cg is decomposable leads to a contradiction. As
G4 is Q-simple, any subrepresentation of the representation of G9°* on W has dimension
at least 2nm. Thus if Cg is decomposable, then there exists a direct sum decomposition
W = W7 & Wy in G-modules of dimension 2nm. Let F' be a totally real number field such
that G2 is the Resp /@ of an absolutely simple F-group é‘}d (cf. [De2, Subsubsection 2.3.4
(a)]); we have [F' : Q] = 2m. The maximal subgroup of GLyy, that commutes with G is
Resp/gGm. This implies that Z°(GR) is a split torus of dimension m + 1 (more precisely,
we have a short exact sequence 0 — Resp/gGy — Z°(G) — Gy, — 0). But the maximal
split torus of Z°(Ggr) is Z(GLwg,r) and thus it has dimension 1. As m +1 > 1, we
reached a contradiction. Thus Cg is indecomposable. Thus 7T holds for €, cf. Theorem
9.6. From this and the end of part (c) we get that 7T + +2( holds for (C, \4).

9.7.3. The isogeny property. We check that the isogeny property holds for (f, L,v).
Let h € 3(C,\4). Let D and D(h) be the p-divisible groups of A and A(h) (respectively).
Let D = ®7™ D* and D(h) = 7™ D(h)" be the direct sum decompositions that correspond
naturally to (11). For each i € {1,...,m}, the duals of D?~! and D(h)*~! are D* and
D(h)?* (respectively). Let T'(i) be the image of u in G*. If the torus T'() is trivial, then
(M2 M2, F1 N (M2~ @ M?%), ¢) is a canonical lift (for all points z € N/Ho (W (k))).
For the remaining part of this paragraph we assume that 7'(i) is non-trivial. Let tg; 1
be a perfect alternating form on in_l normalized by the image of Gz, in GL L2t via
the projection H?;nl GLL; — GLLiifl; it is unique up to a G, (Z,)-multiple. Let Ap2i—1
and App)2i-1 be the principal quasi-polarizations of D?~! and D(h)?~! that correspond
naturally to 1o;—1. Let ji : (D*71 Ap2ici) — (D(R)*™1, Ap(py2i-1) be the Q,-isogeny
defined by the equality M*~'[2] = R(M*~")[5]. From the proof of [FC, Ch. VII, Prop.

P
4.3] we get that jj lifts to a Q,-isogeny

. L p2i—1 2i—1
Juxy = By Aezic)) = ERipap e
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between principally quasi-polarized p-divisible groups over k[[X]] such that the fibre of
Eif[}l}] over k((X)) is ordinary. Let Ry := W (k)[[X]] and ®g, be as in Subsection 3.3. We

can identify the principally quasi-polarized F-crystal of (Eif[}ln, Ap2i-1 ) over k[[X]] with
kIX]

(M* ! @y (x) Ri, g2i—1(d @ @R, ), Voi—1, Apszi-1)

where \js2i-1 is the perfect alternating form on M?~! defined by Ap2i-1 and goj_q €
Sp(M2 =1, Apgai1) (Ry) = G(Ry ).

Let g € G9(R;) be such that for each i € {1,...,m} its component in G*~1(R;) is
the identity element (resp. is go;_1) if T/(2i — 1) is trivial (resp. is non-trivial). Let @f1
be the extension to Ry := W (k)[[X]] of (M Qw (k) R1,9(¢ @ ®r,),V, A4, (ta)acs), where
the connection V on M ®yy () Ry is obtained as in Lemma 3.4. Let d, R4, and ®p, be as
in the proof of Theorem 9.4. Let J : Spec(R4) — Ny gy be a formally smooth morphism
through which y., factors. The principally quasi-polarized filtered F-crystal with tensors
over Ry/pRy defined by the pull back of the triple R via J is of the form

CM = (M ®w k) Ra, 9a(¢ ® ®r,), Va, Aa, (ta)acs),

where g4 € G9"(R,4) and V is a connection on M ®w () Ra whose Kodaira—Spencer map
has as image the image of Lie(G) ®w ) Rq in Homw(k)(M/Fl,Fl) Qw (k) Ra (cf. [Val,
Subsubsections 5.4.4 to 5.4.8 and Subsection 5.5]). Moreover, G is induced from C*4 via
a W (k)-morphism j4 : Rq — R; that maps the ideal (Xi,...,Xy) to the ideal (X) (cf.
[Fa, Thm. 10 and Rm. (iii) of p. 136]).

We now check that y(h) up to the operation 9, factors through N/H,. Let M; be
a W(k)-lattice of M [%] such that we have a direct sum decomposition M; = &, M1 N
M 1[;}] and each 19;_1 induces a perfect alternating form on M; N M 2i_1[%]. If moreover
(M1, ¢, Aa) is a principally quasi-polarized Dieudonné module, then it is easy to see that
there exists an element h € G°(B(k)) such that we have h(M) = M; (cf. also Remark
9.2.1 (c)). We have a natural variant of this for k((X))-valued points of N/Hy. Thus due
to existence of jq and jyj;x7], using a standard specialization argument to check that y(h)
up to the operation 9, factors through N/Hj we can assume that (M, ¢) is ordinary. Let
F§ be the canonical lift of (M, ). As p>3 and as the W (k)-morphism Nw iy — My x) 1s
a formally closed embedding at each k-valued point of Nw  (cf. [Val, Cor. 5.6.1]), there
exists a unique point zo € N/Hy(W (k)) such that its attached Shimura filtered F-crystal
is (M, F},¢,9). Not to introduce extra notations we will assume that F'! = F} and 2z = z.
As (M, ¢) is ordinary, the direct summand Fl[%] Nh(M) of h(M) is a lift of (h(M), ¢, 9).
Let 2(h) : Spec(W(k)) — Mo,,,/KP(No)? be the lift of y(h) such that Fl[%] N h(M)
is the Hodge filtration of h(M) defined by A(h)w (r), where (A(R)w k), Aa(h)w ) 18 the
pull back of the universal abelian scheme over Mo ,, /X?(No)? via z(h). We have a Z[%]—
isogeny jwu) : Awwy — A(h)wau) that lifts the Z[%]—isogeny A — A(h) and that is
compatible with the principal polarizations. Let jc be its extension to C via an O)-
embedding W (k) — C. Let Ly := H1(Ac,Z). Let Ly := H1(A(h)c,Z). We can identify
W = Ly ®z Q = L1 ®z Q in such a way that ¢ and each v, with a € J are the Betti
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realizations of the principal polarizations of A¢c and A(h)c and respectively of the Hodge
cycle wg, cf. [Val, Subsection 4.1]. Such an identification is unique up to an element of
G°(Q). We have Lo[+] = Li[]. Also G(Q,) = G(Q)Hy, cf. [Mi4, Lem. 4.9]. Thus in order
to get that, up to the operation 91, the point z(h) factors through N/Hg, we only have
to show that there exists an element gg, € G(Q)) such that gg, (Lo ®z Z,) = L1 Qg Zy.

Let M = F!' @ F° be the direct sum decomposition left invariant by ¢. We have
h(M) = (h(M)N Fl[%]) @ (h(M)N FO[I—lj]). Let pican @ Gy, — GLjs be the canonical split
cocharacter of (M, F!, ¢) as defined in [Wi, p. 512]. It normalizes F'* and fixes F° and
thus it fixes each element of T(M) fixed by ¢. Thus pcan factors through G. Let § be the
Frobenius lift of the Fontaine ring B (W (k)) of W (k) (to be compared with Subsubsection
5.3.1). Let By € FL(BT(W(k)) be as in [Fa, p. 125]. We have §(8y) = pBo and Gal(B(k))
acts on fp via the cyclotomic character. As A(h)y (3 is a canonical lift, its p-divisible
group is a direct sum of nm copies of Q,/Z, @ pp~. Thus from Fontaine comparison
theory for A(h)w (x) we deduce the existence of a B¥ (W (k))-isomorphism

(h(M) Fl[%]) Sw BHW(R) @ (h(M) FO[%D ® %Bﬂmk)) % L3 @n B (W(R))

that takes A4 to ¢* and (cf. [Vad, Fact 8.1.3]) takes ¢, to v, for all @ € J. Thus as h fixes
A4, the existence of gg, is implied by the fact that each torsor of GO trivial with respect

to the flat topology is trivial. Thus the isogeny property holds for ( f, L,v).

9.7.4. The ST property. The pull back O to Ny, of the ordinary locus of My, is
Zariski dense in Nj,), cf. Subsubsection 9.7.3. We now assume that y factors through
O/Hy. We can assume that z is such that (M, F! ¢) is a canonical lift. Let pican and
M = F! @ F° be as in Subsubsection 9.7.3. The generic fibre of fica, factors through the
center of the centralizer of T(¢) in GL M- AlSO fican is the only Hodge cocharacter of C

that commutes with pican. Thus the ST property holds for (f, L,v), cf. the uniqueness of
z in Subsubsection 9.7.3.

9.7.5. Conclusion. All assumptions of Subsections 9.3, 9.4, 9.5, and 9.5.1 hold in the
context described in Subsubsection 9.7.1, cf. Subsubsections 9.7.2 (c¢) to 9.7.4. Thus the
results 9.4, 9.4.1, and 9.5.1 hold. These results can be interpreted as follows. Up to the
operations 97 and Oy (i.e., up to replacements of k by a finite field extension of it and of
y by an y(h) with h € J(C, A4)), we can assume that there exists a finite, totally ramified,
discrete valuation ring extension V' of W (k) and a point 2z, € N/Hy(V) such that the
abelian scheme z; (Am,) is with complex multiplication. This represents the extension of
[Zil, Thm. 4.4] to the context of (f, L, v).

As G2 has compact simple factors of C,, Dynkin type, the adjoint of Sh(G, X) is not
the adjoint of a Shimura variety of PEL type (see [Sh]).

9.8. Remarks. (a) Let (G X) be a simple, adjoint Shimura pair of C,, type. We assume
that G is not split. Let F be a totally real number field such that G is Res z P /QG with G’

as an absolutely simple F- group. We assume that there exists a totally imaginary quadratlc
extension K of F such that G’ is split. We consider the standard 2n dimensional faithful
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representation f : é}%c — GLy;, over K. Let W be W but viewed as a Q-vector space.
We view naturally G5¢ = Res B /QC:’;?C as a subgroup of Res /Qé'I%C and thus of GLyy. Let

G be the subgroup of GLyy generated by G*¢, by Z(GLyy), and by the maximal torus of
Res /QGm which over R is compact. It is easy to see that there exists a G(R)-conjugacy
class X of homomorphisms Resc/rG,, — Gr that define Hodge Q-structures on W of type
{(0,—-1),(—1,0)}. Let ¢ be a non-degenerate alternating form on W such that we have an
injective map f : (G,X) — (GSp(W,v), 8) of Shimura pairs, cf. [De2, Cor. 2.3.3]. If the
group G, is split and if (f, L, v) is a standard Hodge situation such that v divides a prime
p which is at least 5 and does not divide n — 1, then all assumptions of Subsubsection 9.7.1
hold. Thus Subsubsection 9.7.5 applies.

(b) In [Zil, Thm. 4.4] and thus also in Theorem 9.6, the assumption that Cgq is
indecomposable is not necessary (being inserted only to ease the notations). If (G4, X2d)
is of A,, type and if the group G%‘i is unramified, then we can choose (see [Vab]) the
injective map f : (G,X) — (GSp(W, ), 8) to be a PEL type embedding for which there
exists a Z-lattice L of W with the property that for each prime v of E(G, X) that divides p,
the triple (f, L, v) is a standard Hodge situation; thus the variant of [Zil, Thm. 4.4] which
does not assume that Cg is indecomposable applies to it. This and Remark 6.5.1 are the
main reasons why in Sections 4 to 9 we focused more on the B,,, C,,, and D,, Dynkin type
(see Corollaries 4.3 to 4.5, Theorem 9.6, Example 9.7, etc.).

__(c) The methods of (a) and Example 9.7 apply to any simple, adjoint Shimura pair
(G, X) of C,, type for which the groups Gr and Gg, are non-split and split (respectively).

(d) Theorems 9.4 and 9.5.1 are the very essence of the extension of [Zil] one gets for
p>5 and for all Shimura varieties of Hodge type, once the program of Remark 9.2.1 (b) is
accomplished.
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