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RICCI-FLAT KAHLER METRICS ON SYMMETRIC VARIETIES

HAsSSAN AzZAD AND RYoOICHI KOBAYASHI

Dedicated to Professor Masaru Takeuchi

ABSTRACT. We prove the existence of a complete Ricci-flat Kahler metric on sym-
metric varieties and describe its asymptotic behavior at infinity.

1. Introduction

(1.1) By a symmetric variety we mean the complexification G€/K€© of a Rie-
mannian symmetric space G/K of compact type. In this paper we study the exis-
tence of G-invariant complete Ricci-flat Kahler metric on symmetric varieties. Qur
main result is

Theorem. Let GS/K©C be a symmetric variety. Then there ezists a G-invariant
complete Ricci-flat Kéhler metric on GC/K©C.

The resulting metric has maximal volume growth (namely Euclidean volume
growth). But, if rank(G/K)> 1, curvature decay does not obey the inverse qua-
dratic law. Some of hyper-Kahler examples of complete Ricci-flat Kéhler manifolds
in Theorem (1.1) were observed by several authors. Here we mention Calabi [C],
Hitchin . et al. [HKLR] and Kronheimer [Kr].

(1.2) There are several motivations for this work.

(1) According to [AL1], all G-invariant strictly plurisubharmonic function f on
GC/KC are qualitatively non distinguishable, namely f is a proper exhaustion func-
tion whose critical points occur only at the unique totally real orbit G/K. It is then
natural to ask how to distinguish these functions. One natural idea is to relate them
with the GC-invariant top degree holomorphic form 7n. Indeed, if /—180P is a
Ricci-flat complete Kahler metric in Theorem (1.1), then A'**?(v/=180P) = n A T
holds.

(2) Special types of complete noncompact Ricci-flat Kahler manifolds appear
in geometry as building blocks of, or, as bubbles out of, general compact Ricci-
flat Kahler manifolds. So it is natural to construct fundamental building blocks for
these manifolds. If we look at deformation and degeneration of hyper-Kahler metrics
in compact manifolds, such objects appear naturally. A Lagrangian submanifold
M C X (in the sense of holomorphic symplectic geometry) which can be blown
down to a point is a natural candidate in this category. Indeed, the possibility of
being blown down yields many linear functions in a tubular neighborhood of M
in X, which is isomorphic to 7*M. Hence M should have plenty of holomorphic
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vector fields. More generally, let M C X be a Lagrangean submanifold of a Kahler
manifold X. Suppose that there exist a subvariety M’ C X with dim M’ < dim M,
a deformation J; of complex structures of X and Kahler metrics ¢, on (X, J;)
such that g; are Ricci-flat (or more generally Ricci bounded) and that Vol(X, g;)
is constant and Vol(M U M’, g¢|pmum’) goes to zero as t — 0. Suppose moreover
that the contraction X/M UM’ of MU M’ in X (with the complex structure Jp) is
realized as a projective variety in some projective space. Then, although not clear
at all, it seems plausible that M has many Killing vector fields with respect to some
Riemannian metric. Thus, it is natural that, as a starting point, we consider T* M
with M = G/K a symmetric space (note that GE/K€ is diffeomorphic to 7* M).
We discuss in this paper only the existence problem of Ricci-flat Kahler metrics
(the hyper-Kahler structure on G°/K© when G/K is Hermitian symmetric will be
studied in a separate paper).

(3) In [BK1,2] and [TY] the smoothness of the divisor at infinity was assumed.
It is then patural to try to remove this condition. To get a good analytical feel-
ing for the Ricci-flat metric, we start the study of this problem with examples of
complements of normal crossing divisors of Fano manifolds with big symmetry. As
complete Ricci-flat Kahler manifolds in {BK2] and {TY] are with inverse quadratic
curvature decay, it is also natural to seek the construction of examples of Ricci-flat
complete Kahler manifolds with maximal volume growth whose curvature decay
does not obey the inverse quadratic law.

(1.3) The technical ingredients of this paper are the canonical compactification
of symmetric varieties due to DeConcini-Procesi [DP] and the analytical technique
used by Bando and the second author in [BK1,2] to prove the existence of a com-
plete Ricci-flat Kahler metric on certain affine algebraic manifolds. In [DP] a G©-
equivariant compactification of G€/K€ is constructed. The compactification is a
Fano manifold X and the divisor at infinity consists'of r (r = rank(G/K)) smooth
hypersurfaces D = U]_, D; intersecting transversally. The G-orbits are the affine
parts of D, ...;, = D;, N---ND;, . Each D; is blown down in X to G®/P; by a GC-
equivariant birational holomorphic map II; : X — II;(X), where {1 = {i1,-- , 1k}
and P; is a parabolic subgroup of G® determined by i. Using these equivariant
blow downs, we construct a background metric Q(d;;) which is a complete Kahler
metric on X — D whose Ricci curvature decays with order like (distance)™*~*~ with
a positive constant €, dependeng on n only. The proof of Theorem (1.1) is done
by the continuity method. This needs a background metric. Because we will work
on non-compact spaces, the choice of background metrics is very important to get
good a priori estimates. The main difficulty in the proof of Theorem (1.1) lies in
the procedure of constructing a background metric, especially the difficulty caused
by fact that D is not smooth if rank(G/K) > 1. We overcome this difficulty by
introducing a concept of bifurcation of Kahler potentials at Sing(D) (see (5.2.1)
and (5.4.3)) and the existence of G®-equivariant blow downs II; of D;. Bifurcated
Kahler potential will produce linearly independent |i| directions pointing to infin-
ity near D;. The parameters (d;;) stand for those involved in the definition of the
background metric. Such parameters appear because we construct the background
metric by considering bifurcation of Kahler potential at any intersection D; and the
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bifurcation contains some degree of freedom described by (d;;). The existence of
blowing downs II; allows us to prove Theorem (1.1) by induction on the rank. Now
almost the same analysis as in [BK2] can be applied to solve the Ricci-flat equation

(Q(dij) + V=180u)" = e Q(di;)" = n AT,

where 7 is a GC-invariant holomorphic n-form on G€/KC. As the Ricei curvature
of §(d;;) decays with order like (distance)™*~*, the function f in the above equa-
tion also decays with order like (distance)=2~°~. This, with the technique in [BK2],
allows us to get a priori decay estimates for the solution u. More precisely we will
use the continuity method as in [Y1], [BK2] and [TY]. Applying the Sobolev in-
equalities and maximum principle together with decay estimates for f, which follow
from the construction of a good background metric, we get a priori C° and decay
estimates. Then, with the Bochner technique, we derive a priort C? estimates. Then
we apply general technique from analysis ((GT]) together with decay estimates of
f to get C*= estimates on appropriate C¥® space constructed on the basis of the
complete metric §2(d;;). Then the Ascoli-Arzela type argument completes the con-
- tinuity method to show the existence of a solution to the Ricci-flat equation with
a priori estimates. Thus we can examine the asymptotic behavior of the Ricci-flat
metric via the background metric (see (5.3.11)).

(1.4) This paper is organized as follows. In Chapter 2 we give a Riemannian
geometric exposition of the Jensen-Lassalle decomposition. This decomposition is
important in describing G-invariant objects defined on G€/K©. In Chapter 3 we
describe some general properties of G-invariant Kahler metrics on G¢/K€. In
particular we have emphasized the role of the split torus and the unique totally
real orbit G/K C GC/KC. Chapter 4 is concerned with Ricci-flat Kahler met-
rics on symmetric varieties of rank one. Some results of Borel-Hirzebruch [BH) on
representation theory, sufficient for our purposes, are also explained there. Chap-
ter 5 is the main part of this paper. Here, after reviewing the DeConcini-Procesi
compactification, we construct a background metric in rank two case in detail. A
similar construction is described for higher rank symmetric varieties, which is com-
binatorially more complicated but analytically it is quite similar to the rank two
case. Here a modification of techniques in [BK2] is applied to solve the Ricci-flat
equation. The main arguments of this paper can be described in a more abstract
setting if we replace the group action by the abstract hypothesis on the existence
of Kahler-Einstein metric on Dy...,, but we did not do so as the conditions are sug-
gested naturally in a Lie group theoretic setting. Without Kahler-Einstein condition
at infinity {(corresponding to D,...,.) the problem becomes much harder analytically
(cf. [K2]).

It is our pleasure to dedicate this paper to Professor Masaru Takeuchi. The
second named author is grateful to Professor Takeuchi for introducing him to Kahler-
Einstein manifolds when he was a graduate student.
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Notations and Standard Definitions on Symmetric Varieties

Let G be a compact connected semisimple Lie group and K a closed subgroup such
that there exists an involutive automorphism 8 of G with (G%)o C K C G?. Then the
homogeneous space G/K with a G-invariant Riemannian metric is a Riemannian
symmetric space of compact type. It is known that this has nonnegative sectional
curvature. Let g denote the Lie algebra of G, e.t.c.. We set [ = {X € g; d§(X) =
-X}. Hereafter we write simply # instead of df for the differential. The Cartan
decomposition ¢ = k + [ is the decomposition of g into £1 eigenspaces w.r.to the
involutive automorphism 6. Then ! is naturally identified with the tangent space
of G/K at the origin £y = eK. There is a noncompact semi-simple Lie group G’
with Lie algebra g’ = k + il. The homogeneous space G’'/K with a G’-invariant
Riemannian metric is a noncompact symmetric space called the noncompact dual of
G/K. 1t is known that G'/K has nonpositive sectional curvature. The rank of the
symmetric space is the dimension of a maximal flat totally geodesic submanifold or
equivalently the dimension of a maximal abelian subspace of {. Set r = rank(G/K).
Let GC be the complexification of G. Then G€ is a reductive algebraic group. Let
K€ be the complexification of K in G©. Hereafter we assume for simplicity that
K€ is the largest subgroup of G with the same Lie algebra. (If it is not the case,
there exists a largest subgroup K© with the same Lie algebra as K€ and so there
is a finite covering G¢/KC — G°¢ /K©C. We will study geometry and analysis on
these spaces which are equivariant under this covering.) The noncompact complex
homogeneous space GC /K€ is the symmetric variety associated to the symmetric
space G/K. This contains G/K and G'/K as real manifolds. In Chapter 2 we
consider G /K€ = (G'/K)€ and in other chapters G° /K€ = (G/K)€. We extend
8 to an involutive automorphism of G© and denote it again as §. Then we have the
Cartan decomposition 20 = k€ + 1€ and [€ is naturally identified with the tangent
space of GC/K© at the origin £, = eK© with the induced complex structure J.
Let a be a maximal abelian subspace of :l. (In Chapter 2 we will change real and
imaginary parts and write it as ta.) Then the exponential map is a diffeomorphism
of a and the corresponding abelian subgroup A of GC: a = A = R". Throughout
the paper we assume that G/ K is irreducible.
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2. The Jensen-Lassalle Decomposition

(2.1) In this section we describe the Jensen-Lassalle decomposition ([FJ], [L])
from a Riemannian geometric viewpoint.

(2.2) First we prove a decomposition theorem for non-compact semi-simple Lie

groups by a Riemannian geometric method. Later we will apply it to the complex-
ification of a compact group.
Let M = G/K be a Riemannian symmetric space of non-compact type, i.e., with
nonpositive sectional curvature, and set {, = eK € M. Let ¢ be an involution of G
such that ¢(K) C K. Take a point p € M. Now M = G/K is a simply connected
Riemannian manifold with nonpositive sectional curvature. Hence any two points
are joined by a unique geodesic on M. Thus p and ¢(p) lie in a unique geodesic join-
ing p and o(p). Let z be its mid point. Then we have s;(p) = o(p) and s.(z) = =,
where s is the geodesic symmetry with center z. Hence we have o(z) = z. As K
is a maximal compact subgroup, we have the Cartan decomposition G = KP. As
this decomposition is unique, we have a unique a € P such that z = a - §;. Now
. o(z) = z implies o(a) = a. The geodesic through p and o(p) is of the form

() = a - exp(tX) - Lo

Then we have s;(7(t)) = a-exp(—tX)-£ and o(y(t)) = a-exp(to(X))-€. Since any
two points are joined by a unique geodesic on a complete Riemannian manifold with
nonpositive sectional curvature and ¢ is an isometry, we have s (y(t})) = o(y(t)).
We thus have ¢(X) = —X and so

p=7(-1)=a-exp(X) - &

—

with o(X) = —X and with a - & the mid point of p and o(p). Let g = k+p
be the Cartan decomposition at the Lie algebra level. The tangent space TeeM is
naturally identified with p. Then ¢ is an involution which maps k to itself. Hence
it maps kt = p into p. Let 1_)* be the *1 eigenspace w.r.to ¢. We thus have
G = exp(p*) - exp(p™) - K and so

G = K -exp(p™) - exp(p").
This decomposition is unique. Indeed, suppose p = ae~X - £, = a’e=X' - £ with
a,a’ € exppt and X, X’ € p~. Then the geodesics ae'X - & and a’e'X’ - £ pass
through p at ¢t = —1 and both are mapped to the reverse geodesic via 0. So at t = 1
both geodesics pass through o(p). Therefore a - §, = a’ - £ is the mid point of p
and o(p). Hence ¢ = a’. Now from the uniqueness of the Cartan decomposition we
have X = X’. Thus the above decomposition is unique.

(2.3) Now let K be a compact semi-simple Lie group and ¢ an involutive auto-
morphism of K. We then have the Cartan decompositionk =+ m and K/L is a
compact symmetric space. Let p = ik = il + im and extend ¢ linearly on p. Then
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pt =il and p~ = im. Now we apply (2.2) to the non-compact symmetric space
K€/K. 1t follows that

K® = K -exp(im) - exp(il) (unique).
If a is a maximal abelian subspace in m, then Ujerlal™! = m. Therefore we have
K® = K -exp(im) - exp(il)  (unique)

= K - (Ugergexp(ia)g™") exp(il)
= K - exp(ia) - LC.

At the last stage uniqueness does not hold. But the a-part is determined in the
following sense: Let Nk(A) and Zi(A) be the normalizer and the centralizer of
A =exp(a) in K. Then W = Ng(A)/Zk(A) is the Weyl group of the symmetric
space K /L which is a finite group operating on a by conjugation. It follows that
the a-part of the above decomposition is determined up to the action of W. Thus
we have proved

Theorem ([FJ], [L]). Let K/L be a compact symmetric space with K a compact
sems-simple Lie group, k = [+ m the Cartan decomposition and @ a mazimal abelian

subspace in m. Then
K® = K - exp(ia) - L®

with a-component determined in the following sense: koe!l - g = kheH' . g' implies
H' = wH for some w € W. Equivalently, the correspondence

koe - g— H

defines a diffeomorphism
K\K®/L® = W\a.

The decomposition in Theorem (2.3) is called the Jensen-Lassalle decomposition,
which is a sort of polar decomposition (a-part is the radial part). Theorem (2.3) will
be important in the description of the geometry of the symmetric variety K¢/LC
and its compactification. The following corollary is true for general homogeneous
spaces ([M]) but is a direct consequence of Theorem (2.3) if G/K is a symmetric
space.

Corollary. The correspondence
K xpim— K€/L® (ko,v) — koe” - &
defines a G-equivariant diffeomorphism from the cotangent bundle of K/L to K€ /LC.

(2.4) The importance of the abelian part g in the study of geometry and analysis
on symmetric varieties is evident from Theorem (2.3). For instance, applying this,
the following theorem is proved in [AL1].

Theorem. There ezists a natural one-to-one correspondence between the space of
all G-invariant plurisubharmonic functions (resp. G-invariant strictly plurisubhar-
monic functions) on KC/LC and the space of all W-invariant convez functions
(resp. W -invariant strictly convez functions) on ia.
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3. Invariant Kahler Metrics on Symmetric Varieties

(3.1) In this section we discuss general properties of G-invariant Kahler metrics
on a symmetric variety GC/K©C associated to the Riemannian symmetric space
G/K of compact type.

(3.2) Let n = dimg G®/K°.
Lemma. Suppose K is connected. Then there ezists, up to a multiplicative con-
stant, a unique GC-invariant holomorphic n-form n on the symmetric variety G/ K°.
Proof. Let n = dim(G/K). Now K operateson A" T¢,(G/K) which is 1-dimensional.
Since K is compact and connected, it operates trivially in any real 1-dimensional
space. Hence K operates trivially on A" T, (G/K) ®r C = A"(G€/K©), so by
analytic continuation K'© operates trivially on A"(GC/K®). Hence any non-zero
element of A" T¢,(GC/K©C) extends to give a GC-invariant holomorphic n-form.
g.e.d.
Corollary. Lef GC/KC be any symmetric variety. Then there ezists, up to a
_multiplicative constant, a unique Ricci-flat volume form on GC/K©C,

Proof: There exists a covering GC /K — GC/KC such that K, is connected in G.
Although a holomorphic n-form does not descend to G€/K©, the Ricci-flat volume
form n A 7} certainly does. g.e.d. )

(3.3) Let f be a W-invariant strictly convex function on A and f the G-invariant
strictly plurisubbarmonic function on G€/K© defined by

f(go exp(H) - &0) = f(H).
Let w = /—108f be the associated Kahler form.

Lemma. Let f and f be as above. Assume that f > 0. If [Idﬂl < cf with some
positive constant c¢ outside of a compact set, then the Kdhler metric w = dd°f is
complete.

Proof. For any orthonormal system (e, -- ,€e2,) of tangent vectors we have df =
Soin df(ei)er and d°f = 3im df(ei)Je!. 1t is shown in [AL] that f attains its
minimum value along the totally real orbit G/K and it has no other critical points.
So df never vanishes outside of G/ K. Thus we can set e; = grad f/||grad f|| outside
of G/K. We can extend this to an orthonormal system (e, Je1, - ,e,,Je,) at a
point p. Then we have '

2n
dd°f = Ze}‘ ANJe; > el ANJej
=1

_dndf NS
laflz = f?

Let ¢(t) be a differentiable curve parametrized by its arclength ¢. It follows that
¥ “lldf (! (¢
' = / Ve, o @)dt > ¢! / N (N,
0 o fle(®)

> ¢l jo 2 log £(e(t)) = ¢ (log f(e(t)) — log £(<(0))).
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It is shown in [AL1] that any G-invariant plurisubharmonic function is a proper
exhaustion function. If ¢(¢) is a divergent curve, then f(c(t)) — oo as t — co. Thus
¢(t) is defined on the whole half line [0, 00). Hence w = dd°f is complete. g.e.d.

(3.4) Let w = dd°f be as in (3.3).

Lemma (cf.[AL2]). The totally real orbit G/K and the orbit of the non-compact
torus A are orthogonal relative to w.

Proof. Let p € A C G°/K© be a point on the totally real orbit G/K. Let 7 : G —
G /KC be the projection. We claim that it suffices to prove 7*w = 0 on G - p (the
G-orbit of p in G®/KC). Indeed, take two tangent vectors X,Y € T,(G®/K°)
such that X € T,(G-p) and Y € A - p. Let g be the Riemannian metric defined by
w. Then g(X,Y) = w(X,JY) and both X and JY are tangent to the G-orbit. So
we get the claim. Now we work on GC. Set f* = 7*f. We show that « =0 on G-p.
Indeed, let X be any vector tangent to G - p. Then we have a(X) = df(JX). Now
f is a G-invariant plurisubharmonic function. It is shown in [AL1] that f assumes
its minimum on the totally real orbit. Hence df* = 0 on G - p. This implies a =0
on G-p. Let i: G-p — G€ be the inclusion. Then

'rtw=1"1"dd’f =1'dd°f* = di*(d°f*) = da = 0.
g.e.d.

(3.5) Let 7 be the complex conjugation on GC/K€. Suppose that a Kahler metric
w on GC/KC has a < G, 7 >-invariant Kahler potential f. Then
Lemma. The totally real orbit G/K in GC/KC is totally geodesic.

Proof. Theorem (2.3) implies that T is an anti-holomorphic involution

glexp H) - &o v g(exp(—H)) - &o.

We show that this is an isometry. It suffices to show g(r.u,7.u) = g(u,u) for
u € Tp(G - p) orthogonal to the Ac-orbit. Let % be a smooth extension of u. As f is
invariant under 7, we have

g(Teu, Tau) = dd° f(Tou, JT.u)
= —7ou - df (W) — Ju - df (1. (JU)) — df (7. (J[1, J2]))
= —u - df(u) — Ju - df (J&) — df (J {4, Ju])
= g(u,u).

Hence 7 is an isometry. As the totally real orbit G/K is pointwise fixed by the
isometry 7, it is totally geodesic. g.e.d.

(3.6) It is a natural question to ask whether Lemma (3.4) holds for any G-orbit
G - p and A-orbit through p € A. Although these orbits are always transversal, the
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answer turns out to be not true. Namely, let p € A and suppose p is not on the to-
tally real orbit G/K. Then the G-orbit G- p and A £y is not (in general) orthogonal.

Example. We examine this on the 2-dimensional affine quadric M defined by
the equation 22 + 22 + 22 = 1 in C®. This is a symmetric variety associated to
52 = S03/50;. Then the totally real orbit is the 2-sphere given by the equation
|z1]2 + |22]% + |23]* = 1 in M. The restriction of the flat metric of C? is an SO(3)-
invariant complete Kahler metric on M. Take a point p = ‘(\/5, i,0) € M outside of
the totally real orbit. As a vector tangent to the A-orbit through p, we can take the
vector v4 = (0,0, 1) obtained by applying the infinitesimal transformation defined
by

0 0 0
0 0 =
0 — 0

and as a vector tangent to the G-orbit we can take the vector vg = (0,0, —V2)
obtained by the infinitesimal transformation defined by

0 0 1
0 0 0}.
-1 0 0

These tangent vectors v4 and vg are not orthogonal. This can be understood
by looking at a picture (see Figure 1). The intersection with M and the sphere
|21]2 + |22]* + |23|* = r? is a 2-sphere when r = 1 but if r > 1 the intersection
is an S'-bundle on S? (this is P3(R)) which is realized in S° as a 3-dimensional
submanifold and S? is realized as the locus of the center of the S! fibers. Tangent
vectors not orthogonal to the A-direction will appear as a direction tangent to the
newly born § 1_direction.

(3.7) It is also a natural question whether the A-orbit A - & is totally geodesic
or not. The answer turns out to be no. This is essentially because G-orbits are not
orthogonal to A-orbits at points p € A outside of the totally real orbit. Indeed, pick
such a point p and two vectors X,Y € T,(A). Extend X,Y smoothly as tangent
vector fields of the A-orbit. Let Z € g and let V be the infinitesimal transformation
defined by Z. Then V is tangent to the G-orbit. Extend X, Y to smooth vector fields
in a neighborhood of p by applying exp(tZ) which maps A - & to (exp(tX))A4 - &
isometrically. Let a be the second fundamental form of A - €. Then at p € A we
have

2(0!(X,Y), V) = g(VXY: V) + Q‘(VYX, V)
= Xg(Y,V) = g(Y,VxV) + Yg(X,V) — g(X,VyV).

As X and Y are extended by the l-parameter subgroup generated by V, we have
[V,X] = [V,Y] = 0. This implies VxV = VyX and VyV = VY and so
g(Y,VxV) 4+ ¢(X,VyV)=Vg(X,Y)) = 0. Hence we have

2a(X,Y),V) = Xg(Y, V) + Yg(X, V).
If V is not orthogonal to the A-orbit, this certainly does not vanish identically.
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— S%)

FIGURE 1. Creation of new direction near the to-
tally real orbit

4. Ricci-Flat Kahler Metrics on Symmetric Varieties of Rank One

(4.1) We describe the structure of symmetric varieties of rank one and their
compactifications explicitly. The compact symmetric spaces of rank one are the
n-spheres, the projective spaces over the real, complex and quaternion fields and
the Cayley projective plane.

As symmetric spaces G/ K, these are 5™ = 50(n+1)/50(n), P,(R) = SO(n+
1)/S(0(n — 1) x O(1)), P4(C) = SU(n + 1)/S(U(n) x U(1)), Pn(H) = Sp(n +
1)/Sp(1) x Sp(n) and P3(Cay) = F,/Spin(9). Geometric models of the natural
complexifications G€/KC of the above spaces are the affine quadric AQ,, in C",
the complement of the smooth quadric Q,—, in P,(C), the complement of the hy-
persurface H = {([z], [w]); 3. ziwi = 0} C P,(C) x P,(C), the complement of the
subvariety formed by degenerate two-planes in Grassz 2,(C) (with respect to a fixed
symplectic form on C?"), respectively. Here is a list of GC-equivariant compactifi-
cations of rank one symmetric varieties ([Ah]). All of them are of the form H< /P,
H€ being a reductive {in fact semi-simple) algebraic group and P a parabolic sub-
group of HC. In the following table, M denotes a Riemannian symmetric space of
compact type, X = HC/P the equivariant compactification of the associated sym-
metric variety where P is the corresponding parabolic subgroup. Up to conjugacy,
parabolic subgroups P of a simple group are in one to one correspondence with
subsets P(X) of the nodes of the Dynkin diagram (i.e., with the subsets of the set
of simple roots). In the following table, we indicate the simple root (the node of the
Dynkin diagram) omitted by the corresponding parabolic subgroup.

Let us review the computation of H?(H €/ P) following [BH] ( H being a compact
Lie group and P any parabolic subgroup of H€). Recall that if HC is a reductive



RICCI-FLAT KAHLER METRICS ON SYMMETRIC VARIETIES 11

TABLE 1. Compactification of
rank one symmetric varieties

M X Gt P(L)¢
é‘W an(_c) SO'}n+2 first node
S+t Qan4+1(C) SO02n41 first node
Pn_(_Rj P.(C Liny first node
Pa(C) (P.{C))* - (SLagy)” first and last nodes
P.(H) Grasss 2,(C) 2 second node
P(Clay) Eg/P Ejs first node

group and B a Borel subgroup, TC < B a Cartan subgroup and S the corresponding
simple system of roots, then a parabolic subgroup (B C)P is completely specified by
choosing a subsysitem m C S. Denoting the root group corresponding to a root a by
U., one knows that P is generated by Uy, U—_o and B (a € 7). Let {wa, a € 5} be
the set of fundamental dominant weights and {po} the irreducible representations of
HC with highest weight w,. Choosing a norm invariant under a maximal compact
subgroup H of H C and a highest weight vector v,, let ¢, be the function on HC
defined by ¢a(g) = pa(g)va (g € H€). Now by {AL2], if « € S —m, the nonnegative
(1,1)-form

1 [
Wy = gdd 1og||q.‘)a||2

descends to a (1,1)-form on H€/P. We denote this by w, again. For a root a let
L be the subgroup generated by the root groups Usq. Let {o = P, faeS-—m
then P, = Lqo - éo = P1(C). A computation shows that

f wg = 5Qﬁ.

Let L be the maximal reductive subgroup of P containing TC. The group BN L is
a Borel subgroup of L and the simple system of roots of the pair (BN L,TC) defines
the corresponding subsystem 7 of S. We have P = L - Ru(P) where Ru(P) is the
unipotent radical of P and hence a cell (the Lie algebra of Ru(P) is generated by
the root vectors X, with a a positive root which is not supported by . i.e., not
orthogonal to all roots in S — 7). We have my(P) = m (L). Finally L = Z(L)L', the
derived group L' being semi-simple. Hence m (L) = m(Z(L)) = Z29™ Z(L) | Now
dim(Z(L)) is equal to the cardinality of S — 7. In our case HC is semi-simple.
As m(HC) = m(HC) = 0 we have H*(HC/P) = m(H®/P) = m(P). Hence
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H*(HC/P) = m(P) = Z°*9(5-m, Thus the forms {wq}acs-» are independent
generators of H2; (HC/P). Let x be a character of P and

L,=H®x,C
= (H® x C)/{(g,v) ~ (g2, x(z)'v); = € P}

the corresponding line bundle. The character x of the Ca.rta.n subgroup TC isa
character of P if and only if (x,a) = 0 for Va € 7. Set & = -(—5 Then we have
the Chern class formula for L,:

all)= Y (~x&)wal

aES-m

Hence if (—x,&) > 0 for all € S — 7, then L, is ample. Let x be the sum of all
roots in the unipotent radical Ru(P) of P. Then the Chern class formula for HC/P
tells us that the anticanonical bundle is given by

HC/P =Ly

and we have from [BH, p.512] that (x,&) > 0 for Va € S — 7 and (x,a) = 0 for

Ya € m. Hence
a(H®/P)= > (x,d)wal.
aES~—n

Thus the anticanonical bundle of HC/P is ample. On the other hand, if K is con-
nected any GC-invariant holomorphic n-form on G€/K€ extends meromorphically
to the compactification X = HC/P. Hence ¢;(X) = a[D] with some a € Z (if K is
connected). The computation of a can be done if we write [D] in terms of [ws] and
compute the values of P, - D and P, - ¢;(X) for a suitable . The computation is
simple in the classical case. The case that M = P,(R) is essentially the same as
M = S™ because the double covering S™ — P,(R) extends to the double covering
AQ, — P,(C) — Qn-;. For the exceptional cases, we refer to the description of
the roots given in [Sp] and apply [ABS, Lemma 2.1 (we have a > 1 simply because
Eg contains As as a subsystem). In any case we have a > 1.

(4.2) We quote the following existence theorem for complete Ricci-flat Kahler
metrics.

Theorem ([BK2],[TY]). Let X be a Fano manifold and D a smooth hypersur-
face in X. Suppose that ¢;(X) = a[D] with Q 3> a > 1 and that D admiis a
Kahler-Einstein metric. Then X — D admits a complete Ricci-flat Kahler metric
of asymptotically flat geometry in the sense of [BK2].

(4.3) Let GC/K€® be a symmetric variety of rank one and X = H€/P its com-
pactification as in (4.1). Then X is a Fano manifold and D = H®/P — G¢ /K€
is a smooth hypersurface. In (4.1) we have shown that ¢,(X) = a[D] with a > 1.
Hence we have the following theorem.
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TABLE 2. The value of a

ci(A) = alD]

D) dim X [

SO(2n+2 C)/F 2n 2n
S0(2n+1,CY/P 2n + | In+1

SLin+1,C)/P n (n+ 1)/

SL{in+1,C)xS5L(n+1,0)/P 2n n+ 1

SL(2n, CY/P 2(2n - 2) 2n
Lg/P 16 a > 1

Theorem. There ezists a G-invariant complete Ricci-flat Kahler metric on any
rank one symmetric variety. The resulting metric has asymptotically flat geometry
in the sense of [BK2).

Proof. We follow [BK2]. First we construct a background metric w such that

(i) w is a complete Kahler metricon X — D,

(ii) w" = efn A7 (AT being a GC-invariant Ricci-flat volume form as in Corollary
(3.2)) with f = O(Jjof|*), where D = ()0 and || - || is a suitable Hermitian metric
on Ox (D).

This implies that there exists a ¢ < n such that f € L7 with respect to the metric
w. Indeed, we have a > n + 1 for symmetric varieties of rank one (in fact, by (KO,
we always have a < n + 1 for any pair of (X, D) where X is a Fano manifold and
D is a divisor with ¢;(X) = a[D], and a = 1 if and only if (X, D) is isomorphic to
the hyperplane section (P™,P"~!)). On the other hand, in order that

a.m < * dr
ff” < | e <

holds, we must have q > @ — 1. As @ < n + 1, we certainly have a ¢ < n such that
fels.

Now a compact group G operates on X — D. It is easy to see that one can
construct the above w so that '
(il1} w is G-invariant.
Here one remark is in due. In [BK2], we used a solution of the following equation

wt

to construct w with the property that f :=log 2= = (llef]?):
Qgs + (@ — 2)s = s0,

with s unknown and sy a given and G-invariant, where the Laplacian operates on
sections of the conormal bundle of D, and ¢,(X) = a[D]. But this equation is clearly
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G-invariant and we get a G-invariant solution. Thus we get such w satisfying the
above three conditions.
Then we consider the following Monge- Ampere equation

(w+ vV=100u)" = e~ fw".

It is proved in {BK2] that this equation has a solution with a priori decay estimates
for u. In particular, we have the estimate of the form

sup [u| < C(|| fllqs [l flleo)

where the right hand side is a quantity depending only on (X — D,w), ||f|l; and
| flloo, where ||f]lq is some L%-norm of f with ¢ < n. Let ¢ € G. Then u,(*) =
u(g(*)) is also a solution of the same equation. Since w is G-invariant, u, has the
same decay condition as the original u. Now we consider w, = w + /—180u as a
background metric. Then u, — u satisfies the Monge-Ampeére equation

(wu +V=108(u; — )" = wi(=n A ).

Since u satisfies a priori estimates, w ++/~108u is a complete Kihler metric asymp-
totically equal to w. Now the a priori estimates in [BK2] applied to the above
Monge-Ampere equation show ug —u = 0. g¢.e.d.

(4.4) We give an explicit invariant Ricci-flat Kahler metric on the affine quadric
AQ, = 50,,+1(C)/S50,(C). Suppose that AQ,, is defined by the equation (z,z) =
22 +z24+---+22 =1in C"*1. It follows from Lemma (3.2) that the SO, 4+1(C)-
invariant holomorphic n-form on it is given by

n+1
n = E(——l)i_'z;dzl Ao Adzi Ao Adzngr.
=1

Introduce a radial variable £ on AQ,, by putting

2_ 1\ %
sinhz = (Ml—z_l) .

Then z is SOn41(R)-invariant. We seek an invariant Ricci-flat Kahler metric in
the form +/—183¥(z), where ¥(z) depends on z only. Set ¥(z) = g(z). Then the
Ricci-flat condition (v/—130%(z))" = Kn A 7j becomes

¢"(2)(¢'(2))""" = K(sinh2z)"""

where K is an arbitrary positive constant. One can solve this equation explicitly.
The result is

¥(z) = g(z) with g'(:c)=( L:nK(sinh2t)““’dt)".

It is easy to verify the condition in Lemma (3.3). So the metric /—189y(z) is
complete.

Stenzel [St] constructed Ricci-flat Kihler metrics on rank one symmetric varieties
from a view point somewhat different from ours.
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5. Ricci-Flat Kahler Metrics on Symmetric Varieties of Higher Rank

5.1. Review of DeConcini-Procesi Compactification

(5.1.1) For general information on Lie group theory, we refer to (H1] and [Spl].
Let G/K be a compact symmetric space and G¢/K© be the associated symmetric
variety. We assume that K is connected and K is the largest subgroup of G€
with Lie algebra k€. The Killing form on g€ is a C-linear symmetric bilinear form
(-,-) which is invariant under 6 and Ad(G°) and negative definite on g. We extend
ia to a Cartan subalgebra ¢ of g. Now t€ = t§ +t€ (¢, = ia) according to the
(#£1)-eigenspaces of 8 and it is §-stable. So 8 operates on roots. The roots take real
values on it,. We call this induced set ¥ of root system the restricted roots. Let
vy, - ,vr be a basis of it; and vr4y,--- a basis of 1;. Set wy, - ,wWr,Wri1,-°*
to be the dual basis. The lexicographic ordering induces an order on the roots,
namely, w = Y a;w; is positive if the first nonzero a; is positive. Now if v € it,
then 6(v) = —v. Suppose « is a positive root and o/ # a, ie., av;) # 0 for
some v; € it,. “Then the first nonzero a(v;) is positive. So there is a system of

positive roots &t such that a € ®* and o # 0 on i¢, imply a® € . We have a
* decomposition
i % = 9y of
where 3% = {a € ®%; al,c = 0} and % = * — ®%. We fix such a system of
positive roots. Let B be the corresponding Borel subgroup and U the unipotent
subgroup generated by the root subgroups U, (a € ®7), &A = Ao U A, the set of
simple roots, where

A0={a€A; alg‘: =0}., FASTEWANE VAV

Set
- AO:{ﬂla"'?ﬁk}i A1={Q‘],"°,O!J'}.

The choice of the positive roots ®+ induces a choice of positive roots L* in the
restricted root system and the set A; maps onto the simple roots in £*. One can

order ay,--- ,a; so that a; — a? are mutually distinct for j < r and for all i > !

j
there is an index s < r such that a; ~ a? = a, — af. We call &, = 1(a, — f)
(s £ 1) the restricted simple roots.

The fundamental weights form the dual basis of the simple coroots
{ﬁla o )gk;dls e 7dj}1

where A = (3%5’ with respect to the Killing form. Let

Wy, - 1wj;C11"' )Ck

be the set of the fundamental weights, where
(w.h,gt) =Oa (was&t) =6st

and similarly for {,’s. Then by [DP,pp.5-6] there exists a permutation 8 of order 2
on the indices {1,--- ,j} determined by

0 —_— —
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Definition. A dominant weight A = 3 n,w; is special (resp. regular) if n; = 50
or equivalently A = —\ (resp. Vn; #0).

(5.1.2) Let V be an irreducible representation of G€ with highest weight A. If P
is a parabolic subgroup which is the stabilizer of the line in P(V') generated by the
highest weight vector, GC/P is the unique closed orbit in P(V). The pull-back of
O(1) on G€/P via the projection G¢/B — GC/P is a holomorphic line bundle L
on GC€/B and the space H°(G®/B, L)* the dual of the space of the global sections
is isomorphic to the representation space V. Conversely suppose we are given a
weight A. Then A exponentiates to a character of the Cartan subgroup TC (corre-
sponding to t) and this canonically extends to a character of B. We then have a
holomorphic line bundle Ly on G€/B. If A is dominant, then the Borel-Weil theory
[B] implies that H*(G®/B,L_,) = 0 for i > 0 and Vy\ = H°(G®/B,L_,)* is a
finite dimensional irreducible representation of G€ with highest weight A\. We are
interested in vectors fixed by KC and their expressions in weight vectors. These
are described in (5.1.3)-(5.1.5).

(5.1.3)

Proposition ([DP]). Let A be a dominant weight and V) the corresponding rep-
resentation of GC with highest weight X\, Let VX be the vector subspace of the
KC-invariant vectors. Then dim VK <1 and VX # 0 only if X is special.

(5.1.4) For p € (tC)*, define i € (£€)* by setting fil,c = 0. Helgason [H2, Section
3] determined all special weights A with V¥ # 0:

Theorem ([H2]). The set Ay of all special weights A with V¥ 3 0 is given by

A= {5 p e (©), B ¢ 75, (vae 4.

" (&)
Therefore Ay is contained in the positive lattice generated by w; (if 8(i) = i) and

Fwi — wg(:.)) (if 5(1) #1). Hence, if r = rank(G, K),

Ay = {Z nipi}

with ¥n; > 0 and p; = w; or 2w; (resp.

Z:;.=1 niui € Ay 13 regular if and only if Yn; > 0.

(wi — w-e-('.)) or w; — wa—(i)). The wesght

(5.1.5) Now we are ready to express the vector in V; fixed by K in terms of
weight vectors.

Proposition ([DP]). Let x be a regular special weight contained in Ay, V, the cor-
responding irreducible representation of GC with highest weight x and h a nonzero
element of V,, fired under KC. Then h is unigue up to scalar multiplication and
can be normalized to be

h= Uy + z Z§
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with vy a highest weight vector in V. and z;’s weight vectors having distinct weights
of the form x — 2Y . _, n,&,, n; nonnegative integers. Moreover one can assume
that the vectors zy,--- ,zy have weight x — 24y, -+ ,x — 2@,.

(5.1.6) In (5.1.6)-(5.1.8) we describe the DeConcini-Procesi compactification {DP]
of symmetric varieties. Qur description is quite restricted but we describe all its
properties which are necessary to prove the existence of a Ricci-flat Kahler metric.
Let py,--- ,pr (r = rank(G/K)) be dominant weights as in Theorem (5.1.4). Let
(pi, V,i:) be the corresponding irreducible representations and [h;] the K ©-invariant
line in Vj,;. Let x = Y_!_, pti. Then the representation ®[_, V,; contains the highest
weight x and the line [ generated by @I_, h; is fixed under K©. As K is a maximal
group with the same Lie algebra, if K€ fixes a line [, then Stab(l) is either K© or
GC. Now G€ operates non-trivially and so the stabilizer of I is just K.

Definition. The DeConcini-Procesi compactification (or the canonical compactifi-
cation) of the symmetric variety GC/K© is the closure of the GC-orbit of [®7_, kil
under the projectivized representation

" (P(®F=19x), P(®1=1Vi))-
This is contained in the image of the the natural imbedding of the product rep-
resentation ;

(H P(pu:), H P(V..))
=1 =1
into P(®!_,V,,)-

Let X be the DeConcini-Procesi compactification of G¢/K©. They prove in
[DP, Theorem 3.1, Lemma 4.1] that X has the following properties.
(i) X is a unique GC-equivariant compactification.
(ii) D := X — GC/K?® consists of r smooth hypersurfaces Dy, -- , D, with at worst
simple normal crossings.
(iii) Y := NI_, D; is the unique closed G€-orbit in X which is isomorphic to G¢/P
where P is the parabolic subgroup associated to the set Ag, i.e., the parabolic
subgroup generated by B and Ui, (@ € Ag), which is the stabilizer of the line
generated by the highest weight vector ®!_,v,; corresponding to the highest weight
X = z::l Hi-
(iv) the GC-orbit are just

Oy, in = Diy N0 Dy = Uiy iy Diy N--- N Dy, 0D
All these properties are examined by looking at the operation of ea® = AC.

Indeed, let A = ®I_,h,,. Then, it follows from Proposition (5.1.5) that t € A®
operates on h as

r
th = tXvy + Z Xy, + Z X2 nl Ty,

i=1 i>r
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In affine coordinates this is

r
v+ Yty Y ¢ D Ty,
i=1 i>r

We have (essentially from the above observations) the following description of an
affine covering of X “centered at infinity”Y: There exists an open affine set V in
X such that

(a) V= C" x U (U being the unipotent group generated by U, for a € &7),

(b) (C" x U)N (X — GC/KC) is characterized by the condition that at least one of
the first r coordinates is zero,

(c) X = U,egeg(CT x U) gives an affine covering of X. In particular, U is a cell
and gives a local coordinate system for Y.

(5.1.7) We give here the canonical bundle formula for X. It follows from the
description of H>(G®/P) (Y = G©/P) in Chapter 4 and the injectivity of the
Chern class map H!(Y,0*) — H?(Y;Z) that Pic(Y) is isomorphic to the lattice
spanned by the fundamental weights relative to the simple roots in ®,. On the other
hand, it is proved in [DP, Proposition 8.1] that the restriction

Pic(X) = Pic(Y)

18 injective. Note that each special (resp. regular special) weight defines a homoge-
neous line bundle (resp. homogeneous ample line bundle) on Y. Therefore Pic(X)
is identified with a sublattice L of the above lattice. Thus the set of all regular spe-
cial weights is contained in L and each regular special weight A defines a projective
imbedding of X and hence Y in P(V)). For each A € L write L for the correspond-
ing line bundle on X. The line bundle L_j on X (and Y) is the hyperplane bundle
O(1) with respect to the imbedding of X (and Y) in P(Vy). It follows from the
explicit description of the natural embedding T€ — T€ - p that 2@; = a; —af € L
and L_,5, = O(D;) ([DP, Corollary 8.2]). Set u = Ea&@f’ a. Since p is a regular
special weight ([DP, Lemma 6.1]), we have u € L. Then we have

Lemma. The anticanonical bundle K5' of X is isomorphic to the line bundle
corresponding to —(u+ 3.._,(ai — a?)) € L.

Remark. By [DP, Proposition 8.4], any line bundle corresponding to —(u + ) is
ample for any dominant weight v € L. Hence the DeConcini-Procesi compactifica-
tion X is a Fano manifold, i.e., K_;('l is ample.

Proof of Lemnma (5.1.7). The result is a consequence of the following five facts:
(1) the adjunction formula, i.e.,

Kx'ly = K7 @ ®, [Dilly,

(i) Y = GC/P where P is a parabolic subgroup generated by B and Uy, (o € Do),
(i11) the Chern class formula on Y

al¥)= > (xa&)|wdl,

a€A—4AQg
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x being the sum of all roots in the unipotent radical of P,

(iv) the injectivity of the Chern class map H'(Y,0*) — H*(Y;Z), which is a con-
sequence of H!(Y;Z) = 0 (since Y is a Fano manifold),

(v) the injectivity of Pic(X) — Pic(Y).

Indeed, (i),(ii) and (iii) imply that the line bundle Kx'|y has the correct Chern
class and so, by (iv), corresponds to the correct weight. The result now follows
from (v). g.e.d.

(5.1.8) Let X and D;’s be as in (5.1.7). Then in X the only irreducible G®-stable
subvarieties are of the form Dj, ..., = Di, N Dy; N--- N D;, for {iy,12, - ,ix} C
{1,2,-.-,r}. DeConcini and Procesi [DP, pp.17-19 and Theorem 5.2] determined
the structure of the GC-stable subvarieties in X. This result will be most important
in our analysis of Monge-Ampere equation, because it allows us to use induction on

r = rank(G/K). Let u;’s be as in Theorem (5.1.4).

Theorem ([DP]). Let {i1,13, - ,ix} be a subset of {1,2,--- ,r} and let D;, ...;, be
the corresponding GC-stable subvariety of X. Let P, ...;, be the parabolic subgroup
- associated to the weight pi ip.iy = i, + piz + -+ + pi, (i.e., generated by B and
the root subgroups Ui, for roots a with (a, i iy..i,) = 0). Then there is a G°-
equivariant fibration

Ht.ll.g'"t'h . Dl.1l‘:|'--l". — GC/Pl.lig-"i‘,,
with fibers 1somorphic to the canonical compactification of the symmetric vartety
Liyigeiy /Kﬁi;---i,,

of rank r —k, where L; ;,...;, i3 the semi-simple part of the Levi subgroup of P ...,
and K iyiy, = Lijigeiy N K©.

In Theorem (5.1.8) the fiber of the fibration II; i,..;, in the GC-orbit O;,,...i\
is the symmetric variety Li iy..ip /Kijigoin- If {t1,%2,- - ,ik} = {1,2,--- ,r} then
P, 2., = P, i.e., the parabolic subgroup generated by B and U4, for a € Ao.

The proof of Theorem (5.1.8) in [DP, Theorem 5.2| goes as follows. Set p; =
fiy + -+ pi, and pg = pj, + - + w4, where j;,- -+, j; are the complement of
i1,---,1¢. Then the canonical compactification X is imbedded in P(V,,,) x P(V,,).
Let IT; be the projection onto the first factor. It is G€-equivariant and maps onto the
closure of the orbit of the point [h,,] € P(V,,). It is shown in [DP,Lemma 35.1] that
Iy (D, iy---iy ) 1s equal to the unique closed orbit in II; (X), i.e., GC/P; with P, the
parabolic subgroup stabilizing the line generated by the highest weight vector in V.
This is the fibration stated in Theorem (5.1.8). Let A° be the compactification of

the maximal torus A€ in X. If we set Z?,,_'-h = Dy, iy nIC, then its G-translations
are the compactification of the maximal torus of fibers L;, ...;, / Kj,...i,. This shows
that the rank of the fiber is r — k.

Proposition. The holomorphic map II; : X — I1,(X) is a GC-equivariant blow-
ing down of the subvariety D, ,..... along the fiber of the fibration HllD-‘n-':--~-';. :
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D igein = GC/Py. In particular, II; induces an isomorphism on the complement
of Dj i,...i, and maps D; i,...i, to the subvariety GC/P1 in I, (X).

Proof. The holomorphic map II; is induced from the projection P(V,,) x P(V,,) —
P(V,,) of projective representations of G®. Hence II; : X — I(X) is G®-
equivariant. We examine the fiber of the map II; : X — II;(X) outside of the
unique closed orbit GE/P, C I1;(X). In doing so it suffices to examine the fiber
passing through a point kj, j,...;, in each GC-orbit O, j;...;,. Weuse V = C" x U
as coordinate system. Then we may assume that the point A}, j,...;, in the GC-orbit
Oj, j;--ji has C"-coordinates z; = 0 if 7 € {j1,72, - ,Ji} and z; = 1 if otherwise.
Now it is clear that the fiber of II, =II; ;,...;, passing through h; ;....; consists of
one point if {i1,32,--- 1k} # {J1,52,- -+, 71} g.e.d.

(5.1.9)

Example. The most familiar example of the canonical compactification of sym-
metric varieties appears in rank two case. It is the space X of pairs (C,C’) of a
plane quadric C C P, and its dual C’ in the dual projective space P3. The space
of smooth plane quadrics is the symmetric variety SL3;(C)/SO3(C) and X is its
canonical compactification. The space of all quadratic equations defined on P; is
naturally identified with Py and the space of singular quadrics are parametrized by
a cubic hypersurface D; = Sym?(P,), which is singular along the Veronese surface
(the image of the diagonal) representing double lines. Blowing up the Veronese
surface yields the canonical compactification X and the hypersurface D, as the ex-
ceptional divisor of the blow up. Let D; denote the strict transform of the original
D,. 1t is easy to check D, N D; = P(TP;) which has two SL;(C)-equivariant
fibrations, one is dual to the other:

defined by (I, p) — pand ({, p) — [{], respectively, where p € P; is a point and [ a line
through p determining a direction in T,P. The fiber structures II; : D; - G°/P; on
D;’s are interpreted geometrically via the above fibrations as follows. The fiber of the
fibration Dy —» G€ /Py = Py is P2 which parametrizes those singular conics C C P2
whose double point lies in a fixed point (note that Py x Py/Z; = P,, where Z,
operates as (z,y) — (y,z)). Similarly, the fiber of the fibration D, - GC/P, 2 P,
is P, which parametrizes those singular dual conics C’' € P* whose double point
lies on a fixed point. The fibers in D; intersects D; (3 # j) along a smooth conic.
It is geometrically clear that all SL3(C)-orbits are X — (D U D;), D; — (D, N Dy),
Dy — (D] N Dg) and D, N D,.

(5.1.10) Since y = Zaeﬂ' a is a regular special weight, we see that

p= id.-(a.- ~af)
i=1

with 0 < Vd; € Q.
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Let (z1,°** ,2r,Wr41, -+ ,wn) be coordinates on the affine part C" x U of X.
Here n = dim X and r = rank(G/K). As L_,5; = Ox(D;), Lemma (5.1.7) implies

r

a(X) =Y (1+d)[Di] € HY(X;Q)

=1

where [D;] is the Poincaré dual of D;. Hence if K is connected then d; are integers
(cf. Lemma (3.2)). We assume hereafter K is connected and d; € Z. It follows from
the above formula that a GC-invariant Ricci-flat volume form on G€ /K€ looks like

|dz.| T 2
n/\n.-.H! |2(1+d) H|dwk| .
=1

(5.1.11) Here we compare the rank one case and the higher rank case from the
viewpoint of G-action. Set

r

fle"K®) =Y (@(H)?* (H €a).

i=1

It follows from Theorem (2.4) that this defines a G-invariant Kéhler potential on
GC/K®C. Set w = dd°f; this is a complete Kahler metric on GS/KC. If r = 1
then the function —"‘;’-‘;}_l depends only on f. So the Ricci-flat condition is reduced to
an O.D.E. as in (4.4). But we cannot expect this if r > 1. Indeed, let a,b € A be
distinct points in A outside of the origin. Suppose that dim Zx(a) > dim Zg(A)
and dim Zg(b) = dim Zg(A). Let ¢(t) be a geodesic (relative to w) connecting a
and b. Assume that c(t) is tangent to a metric sphere at b. Let X be a nonzero
element of the Lie algebra of Zy(a) which is not contained in Zx(A) = Zg(d).
The point a outside of the sphere is a fixed point of the variation of geodesics C,(t)
defined by

cs(t) = (exp sX) - ¢(t).
In general, the length of the variation vector field v(t) = & (exp sX) - ¢(t) does not

assume its critical value at b. This implies that the ratio of n A% and w" depends on
the directions in X. So we cannot deform f into ¢(f) so that (dd°¢(f))* =n A 7.
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5.2. Construction of Background Metrics in Rank Two Case

(5.2.1) This subsection is devoted to the construction of the background metric
on symmetric varieties of rank two. Let GE/K© be a symmetric variety of rank
two and X its canonical compactification. There exists a fibration

H.':D,'—PGC/P.' (i=1,2)

with fiber F; isomorphic to the canonical compactification of the rank one symmetric
variety L;/K;. The parabolic subgroup P; is generated by P and the root subgroups
Usiq for roots a with (u;,a) = 0 for each i = 1,2. So the corresponding subsystem
7(i) C S consists of simple roots o with (a, ;) = 0. Set

ny+1=dimF; and n;+1=dimF;.

The anticanonical bundle of G€/ P; is an ample homogeneous line bundle L_,, with
x: the sum of all roots in the unipotent radical of P;, i.e., the sum of all positive
roots which are not orthogonal to p;; since the involution # does not fix any root
in the unipotent radical of P;, it must map their sum x; to —x;, and so x; is a
special weight. Hence y; is a linear combination of y; and p;. As x; is a character
of P;, xi is orthogonal to all roots a with (a,y;) = 0. [Proof. Take a simple root
a of the Levi complement of the parabolic group P;. Since the reflection along «
maps all the set of positive roots other than « to itself, we see that waxi = xi, i.e.,
(xi,@) = 0. Since any root in the Levi complement of P; is a sum of simple roots,
we see that for all roots a such that («, ;) = 0 we have (a, xi) = 0.] Therefore x;
is a positive multiple of y;:
Xi = kipti.

The character y; satisfies (xi, &) > 0 for all a € § — 7(2). As yx; is a special weight,
we can write )
Xi = z 2ai;a;
i=1

with a;; € Q. If we start with an irreducible Riemannian symmetric space, then we
have pj,p2 € S —m(7) ( = 1,2) (so we assume that G/K is irreducible). It follows
from (p,‘,a-j) = §;; or 24;; (i,7 = 1,2) that a;; > 0. Indeed, set y; = Ei=1 birag.
Then Z?‘:l bix (@, @;) is 6;; or 26;;. Solving the equation shows b;; > 0. Note that
Vai; > 0 because a;; is a positive multiple of the entry of the inverse matrix of the
Cartan matrix ((@;, @;)). So each x; is written as a linear combination of @;’s with
positive coefficients. From the definition of d; and dz, we have

a4 a1 =di and a1z +az; = ds.

Example. We have a;; = a2 = %, aj2 = a3y = } and d; = d; = 1 for the
canonical compactification of the symmetric variety SL3(C)/SO3(C) in Example
(5.1.9).

If K is connected, d; € Z because there is a GC-invariant holomorphic n-form n
with poles along D; and Ox(D;) = L.25,. Let o; be the canonical section of the
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line bundle Ox(D;) = L_35,;, and ||-|li = || - || denote a Hermitian norm on this line
bundle. For 1 = 1,2 we set

1
IT;=, llojl|?es

This is a Chern curvature form of the line bundle L_,, = Ox(a;1 Dy +a;2D2) on X
with x; = 2?:1 2a;;@;. By averaging over G, we may assume that w; is G-invariant.
Hereafter we assume G-invariance. Note that the line bundle L_,, on X is the pull-
back of k;-times the hyperplane bundle on II;(X) C P(V,,;) via the GC-equivariant
blowing down II; : X — II;(X) and that b{x1 + by x2 is a regular special weight for
any positive integers by, b;. Hence we may choose Hermitian metrics on Ox(D;) so
that (in addition to G-invariance) w (resp. ws) is really a pull-back via II; (resp.
I1,), positive semidefinite on X, positive definite on X — D, (resp. positive definite
on X — D7) and b{x1 + b x2 is positive definite for any positive coefficients b, b}.
Moreover [DP,Proposition 8.1] implies that

(1) the line bundle L_,, restricted on Y is the pull-back of the anticanonical bundle
" L_,, of GP/P; (which is ample) via the fibration Y = G€/P;, and

(ii) the sum w; + wy on Y is the curvature form of the line bundle L_,,_,, on Y,
which is the anticanonical bundle of Y = G€/P.

We have chosen the Hermitian metrics of Ox(D;) so that their curvature forms are
G-invariant. This implies the following:

= +/—1831og

Lemma. Let wy = (wy +ws2)|y. Then

(a) wy i3 a Kahler-Einstein metric on Y,

(b) the restriction of wy to the fibers of the fibrations I;ly : Y — G®/P; (i = 1,2)
13 again Kahler-Einstein.

Indeed, for any compact homogeneous Kahier manifold, the invariant Kahler
form in the anticanonical class is necessarily Kahler-Einstein. We thus have (a).
We shall give a systematic proof of (b) in (5.4.2).

For a,b > 0, we put

a,b) = v/-188log

lloal2e(|o2 ]|

Choose triples of positive numbers (dy1,d12; 1) and (dz1, d22; €2) so that the follow-
ing conditions are satisfied:

1 1
|d11 —'dl‘: |d12 - d1|1 |d21 - d?Ia ]dzz - d?la |31 - ;L |f32 - ;| are small,

dn dlZ)
det 0
¢ (dzl da2 #0,
{ (n—1)erdyy + exdiz = d;
(n — 1)eydyy + exdaz = dy,

and
erdyy > exdy2 and  eyda; > exds;.
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For instance, we take e, = e; = % Then clearly there exist d;; such that dy; > d,2,
dz21 > daz, di1daz — d12d2y # 0, (n — 1)dyy + diz2 = nd; and (n — 1)dy; + d22 = nds.
Consider then (1,1)-forms

= v=T05— ( - )

lora[[241+]| oz |24

=( .1 ) { (d]nd2l + eiv— a(dl.log ! -|-d2,10g 1 2)
llou]? llo2l

lloa||*@ljra II”"

1
/\a(d,lo +dz;lo —)}
RGN PR P
for 1 = 1,2. It follows that the sum of §; for i = 1,2:

Qg 1=y +

is positive definite on X — D. By taking the average over G we may assume that the
‘potential ||o ||24||o2]|?¢7* is G-invariant, and so Q; are G-invariant. It now follows
from Lemma (3.3) that Q2 is a complete Kahler metric on X — Dy — D,.

To construct a background metric, in addition to §2,2, we need the following (1,1)-
form:

Q=\/—_185( = )

oy |24/ |og|[242/m

n 1 1 1
Wi + w +—\/—16(d log —— 4+ ds lo —)
{‘ : Bl P EARC R PATE

= Yo BT g 24T

1
A8{ dilo +d; 1 )}
(1 oz 2 B oa?

This also defines a complete Kahler metric on X — Dy — D,.

Now we are ready to construct a background metric on G°/K©. We take tubular
neighborhoods B;s(¢) (resp. Bi(c) and B;(¢)) of Y (resp. Dy and D;) in X of radial
€ (with respect to some smooth metric on X), where ¢ is a small positive number
to be determined later. Take a smooth nonnegative functions py2, p1 and p; defined
on the union of the above tubular neighborhoods with the following properties:

(i) p12 + p1 + p2 = 1 in some neighborhood of Dy U Dy,

(ii) p12 =1 in some neighborhood of Y,

(iii) p12 = 0 outside of B2{¢),

(iv) pi = 0 outside of B;(e) (i = 1,2).

(v) p's vary monotonically with respect to the modulus of the coordinate z where
z = 0 defines the corresponding subvariety in D; or X (for instance, in D;, Y is
given by the equation z = 0).

In addition to the above conditions, we need some symmetry on p’s. We need:

(vi) p’s are invariant under the action of a compact group G. (This is possible
because only D; — Y and Y are non-principal G€-orbits.)

Moreover we need the following. We will show in (5.2.7-8) the existence of a good
retraction Of tubular neighborhoods of Y in D; and of D; in X (to be more precise,
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one can construct a retraction which is holomorphic along Y and D; in any jet
level). By using this retraction, the necessary property of p is described as follows:
(vii) the bump functions p should be first defined on the corresponding subvariety
and then extended to a neighborhood of it by a good retraction.

Such a partition of unity {p} certainly exists. Using p’s as gluing functions, we
consider the potential

1 1
Pltses) = o (et + oo )

1
+ (pl + Pz) ”UI ”2d1/n“0.2“2dg/n

defined in the e-neighborhood of Dy U D,. Let us consider its Levi form. This

coincides with §2y7 in the region where p;2 = 1, coincides with {2 in the region

pi = 1 for some.1 = 1,2. In a region where p's are not constant, we must examine
the effect of the differentiation of p's. These are either of the form

) 1 ~
— 00
ot ool "
or of the form .
L (glog 7B e o ek contueat
orits c ex ate.
ENEIEAED og EN RN P r 1its complex conjug .

Now 8p and 89p have their supports near Y. We claim that, if ¢ is sufficiently
small, the above forms are absorbed in the sum of forms which does not contain any
differential of p. Indeed, if € < 1, along F;, we can compare |dz|?/|z|? and (dp)?
directly (F; NY is defined by z = 0). Now p varies monotonically from 1 to 0 in
the interval ¢’ < |z{ < € and 7‘:10g |2| varies from 7’;10g g’ to 71;log5 on the same
interval. Clearly we have 7‘; log(e/e') > 1 if €' is sufficiently small. It follows that

we can choose p so that |dp| < 71;]]&;’[[ Similar argument is possible for 88p. Thus
all terms containing differentials of p are absorbed in the sum of terms containing
none of these. We thus have a Kahler metric

Q(d.'j,e,-) = v—165P(d.-,-,d,-)

in a neighborhood of D;UD;, which is complete toward D, UD,. Because P(d;;,d;)
grows like an exponential of usual Fubini-Study potential and X — D is affine alge-
braic, the function P(d;;,d;) extends to a strictly plurisubharmonic function on the
whole X — D. We will write this also as P(d;;,d;). Then we may assume the above
Kahler metric is defined on the whole X — D. This is our background metric. The
above construction may be called the bifurcation of Kahler potentials, because the

Kahler potential
1

lloa][24/m |loz]j242/"
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bifurcates into the sum of two potentials

1 1
Y Ry P L P R P e

near Y to produce two linearly independent directions

1 1 .
|0(dy; log Tl + dailog W)P (1=1,2)

going to infinity.

(5.2.2) Here we define a certain class of Riemannian manifolds. We will seek
Ricci-flat metrics in these classes. In the following definition, the a in C*'® has, of
course, nothing to do with the a in the formula ¢;(X) = a[D].

Definition. (i) A smooth Riemannian metric g on a smooth manifold M is of
C*_bounded geometry if for each point p € M there ezists a coordinate system
z = (2, - ,Zm) centered at p such that

(a) z runs over a unit ball in R™,

(b) if we write g = Y gijdzidz;, then the matriz (gi;) is uniformly equivalent to
(6i5), t.e., bounded above and below by constant positive matrices independent of p,

(¢) C*“-norms of gi; are uniformly bounded.

(ii) A complete Riemannian manifold with a base point (M, g,0) 13 said to be of
weakly C*1*-asymptotically flat geometry if for each point p € M with dist(o, p) = p,
there ezists a harmonic coordinate system (z1,-+ ,Zm) centered at p such that

(a) £ = (21, - ,Tm) runs over a unit ball B™ in R™,

(b) if we write g = 3, gijdzidz; then the matiriz (gij) is uniformly equivalent to
r?(8;;), where r = p*(P) with e(p) a positive ezponent depending on p not greater
than one and which i3 bounded below by a positive number independent of p,

(c) In the coordinate system (yi,--- ,ym) = (rz1,-++ ,7Tm), the components of
the metric g have uniformly bounded C***-norms.

It is not too hard to check the following lemma by direct computation from

definitions.

Lemma. The complete Kahler metric Q(dij,ej) on X — D is of C**-bounded
geometry and is also of weakly C*®-asymptotically flat geometry (with respect to
any base point in X — D). Moreover we can take holomorphic coordinate system in
Definition (5.2.2).

Proof. Only the statement on the exponent e(p) is not clear. It is explained in
Remark (5.3.11} at the end of Section 5.3. To check other statements in Definition
(5.2.2) we can work locally by the presence of a compact group action. Now the
DeConcini-Procesi system in (5.1.6) is an example of the coordinate system satisfy-
ing the conditions in (ii) in Definition (5.2.2). g¢.e.d.

(5.2.3) We compute the volume form of ((d;;,e;) near a point of Y = D; N D,.
Let z; = 0 be a local equation of D; near a point in Y (i = 1,2). It follows from
the conditions (5.2.1) on (d;;, d;z, €;)} that the volume form along Y is
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1 (n—1) 1 |dz,|?|dzo|? _
2e1d 2e1d 2ead 2eqd 2 2 (w(d”’dZI)IY)n 2‘
lloy [j2erdan || org f[2ea lloy||2e2d13 |0z || 202932 ] |24 |2 |2z

Reason: the form w;|r, has a degenerate direction at infinity, i.e., near F, NY.
Indeed, w,|F, degenerates in the direction in F; parallel to F1 NY.

Now we compute the Ricci-form “—+/=180log”of the above volume form “along
Y”. We note that since the volume form (w(di1,dz21)]y)"~? is G-invariant on ¥ =
G€/P, its Ricci-form is a Kéhler-Einstein metric on Y. This implies

R.ic(w(du ' dg] )n—2) = w(d1 ’ dz) = uh -+ wa.
Thus the resulting Ricci-form is computed as follows:

—_(1’1 - 1)61w(dll,d21) - ezw(du,dzz) + Ric(w(dn, d21)n)

= —w((n = 1)e1di1 + ezdiz, (n — 1)e1day + e2dzz) + w(di, d2)
= —w(dl,dg) +w(d1,d2) =0

along Y. We have thus proved

Lemma. We can choose Hermitian metrics for Ox (D) along Y so that =

f _ Q(duae_J)n =0
nAR

holds along Y.

(5.2.4) The next thing we want to do is to extend the above Hermitian metrics
on Ox(D;)|y to those on Ox(D;)} in a neighborhood of D = Dy U D; in such a
way that f = 0 holds along D. First of all let us observe the consequence of the
degeneracy of w; along the fiber of II; : D; & G©/P;. This implies

- 1 1
wi = \/—laa(log TN + log ”‘72"2“") =0

along fibers of I : D; = G€/P;. Let

{dn = hjan + hea;e
d21 = hiany + haaze

Then along the fiber of II;|p,, we have w(diy,d21) = how, and along Dy, w; is of
rank n — ny — 1. Now introduce the quantity

ajidik

€ Q.

— — .
Gk = Gjk — —_—
113

Then, along D, (say), the volume form of Q(d;}, €;) can be written as (up to constant
multiplication) as follows:
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*) wimT2 (dz |? 1 1
losli?=fioz]?ea [21]* / \llol*12 / \ 15y 2054

X (some smooth function involving llez]l)

1 1 \™m
X — ———+v—-10log ——— T, A Blog '—"-—__,) .
llo2 |32 ( T +1 lloz ||2 | o2||*%33

If we set
1 1 1 1
Dy i e 1 I
wz a7l (UZ + nl + la Og ”O’ ”2—1 A a g ”0’2”23;2)
lloz|| ™
= 1
= —166(1’1] + 1) (__';;—_1——) 3

lloali™

then the last factor in () is replaced by &;'*'. The smooth function in (*) which
compensates the effect of w""H may be con31dered as a part of the Hermitian metric
|-l for Ox(Dy). Herea.fter we consider this way.

As wy > 0 along F), @3 defines a complete Kahler metric on F; — F1 NY. Hence
the Ricci-form of the volume form $2(d;j, e;)" is

I3 (Ric(wy ™™ "?)) — vV—103 log L

l[oa{[22||oz |22

+ V=190 log . = + Ric(@y' )

llot ]|222]|oe ||

a.long Dl.

Suppose for the moment that ||-||2 (a Hermitian metric on Ox(D,)) is determined
on D, so that
(1) it agrees with the already existing definition || - ||2|y,
(ii) its curvature form is G-invariant.

We consider the Ricci-form of (}(d;;,e;) along a fiber Fy of the fibration II; :

— G©/P,. If the Hermitian metric | - ||; is determined properly, restricting

Ric(Q(dij,e;)™) to a fiber Fy gives Ric(@y'*") along F;. Indeed there is a Hermitian
metric || - ||1}p, such that the curvature form of the Hermitian metric || - ||3*'*|| - ||2**
comes from the G-invariant curvature form of the anticanonical bundle of GC/P,
(and so a Kahler-Einstein metric on it). It is easy to see that the definition of
| - ll1]p, along D, agrees with the already existing definition of || - ||;]y. We thus

have
1

v—180log =0

oy |21 ]jorg || 2o

with respect to the new definition of ||oy]| along the fiber Fy. The contribution of

w?™™ 7% to the Ricci-form of Q(d;;,e;)" vanishes because this is complementary

to the fiber of Y — G€/P, and thus coming from the G-invariant Kihler-Einstein
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metric on GC/P;. Thus, all except Ric(@;'*"') vanish along Fy. If moreover we
have Ric(@;'*') = 0 along Fy, then f = 9(—d'—;4,\‘—%4)—n- becomes constant along fibers
F,. This combined with the fact that f is constant along Y shows that f is con-
stant along D, (normalized to be 0). Thus it is important to get good behavior
on the Ricci-form of &, along fibers Fi. In order to determine | - ||2|F, so that
Ric(@y'*!) = 0 along Fy — F; NY, we must analyze the effect on the complete
Kahler metric W, caused by a change of Hermitian metrics of Ox(D2)|r,. This is
done in the next three paragraphs.

(5.2.5) The next proposition is & refinement of Theorem (4.3). This refined form
18 necessary in the induction process.

Proposition. Let X be a Fano manifold (of dimension n) and let D a smooth
hypersurface in X with ¢i(X) = a[D] with a > 1 and assume D admits a Kahler-
Einstesn metric. Suppose that for any positive integer k there ezists a Hermitian
metric h = hy of Ox (D) with the following properties:

(a) the curvature form /=180logh s positive definite on X — D and defines a
* Kahler-Einstein metric on D,
(b) h is constant in the direction normal to D up to (k + 2)-nd order normal
derivatives and so the component of \/—1080logh in the direction normal to D
vanishes along D up to k-th order normal derivatives.
Here normal derivative means the derivative w.r.to a coordinate z such that D s
defined locally by z = 0 (so these derivatives are smooth sections of tensor powers
of the dual Np/x of the normal bundle).
Then there ezists a complete asymptotically flat Kahler metric

a—1

w_\/_aa(” “2) "+ V=100u

on X — D with zero Ricci curvature and there ezist a priors positive constants Chp
and Cp, (C, i3 comparable to n when n is large, i.e., the ratio an i3 bounded away
from 0 uniformly in n) such that

l!a—l!
IVull < Chulloll ™=+ w0,
where the covariant derivative and the norm in the L.H.S. is with respect to the

complete Kahler metric w = \/-135(@75)

a-1
n

Hence we have

lu] = O((distance)™*"), |V'u| = O((distance)~~*")

with some positive constant €,, where the distance function is taken with respect
to some fixed point in X — D and with respect to the metric w.

Proof of Proposition (5.2.5). We consider the Monge- Ampeére equation
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(w+ V=100u)* = nAT.

The R.H.S. is the Ricci-flat volume form on X — D with poles of order sa along D,
and is written as e~ fw" where f = ,;“'T“ﬁ The condition (a) implies that w is really a
complete Kéhler metric and the Kahler-Einstein condition in (a) together with (b)
imply that f = O(||o]|*). The existence of the solution u with a priori estimates
can be proved exactly with the same strategy as in [BK2] and {K1, Lemma 7]. See
Lemma (5.3.2) for estimate on Cy. g.e.d.

(5.2.6) The following Lemma gurantees the existence of a good approximation to
the Ricci-flat Kahler metric on a symmetric varietiy of rank 1.

Lemma. Let X be the canonical compactification of a symmetric varsety of rank
one and D the divisor at infinity. Then there ezist a neighborhood Up of D and a
holomorphic retraction Up — D.

Proof. The canonical compactification X is the closure of the orbit of the K-
invariant vector in the projective space P of the representation space associated to
a regular special weight. The divisor D at infinity is the orbit of the highest weight
vector. Let P be the corresponding parabolic subgroup of G such that D = G€/P.
Pick a point p € D corresponding to the highest weight vector and look at the
linear isotropy representation of the maximal reductive subgroup (Levi subgroup)
of P on the tangent space T,P. Then T, D is an invariant subspace. Let V, be a
complementary invariant subspace determined by fixing some G-invariant Hermitian
metric (e.g., the Fubini-Study metric). Then we consider the linear subspace L, of
P tangent to V, at p. By using G action, we can construct a family of linear
subspaces Ly (¢ € D). The union UgepL, defines a holomorphic retraction from a
neighborhood of D onto D. We get a desired holomorphic retraction by restriction.

Another way of understanding Lemma (5.2.6) is via the holomorphic foliation on
G®/K€ and its DeConcini-Procesi compactification given by the complexification
of closed geodesics of G/K (i.e., G-translations of the maximal torus). Note that
all geodesics of a symmetric space G/ K of compact type of rank 1 are closed. Each
leaf of this foliation is compactified in X so that the compactified leaf is transversal
to D. Indeed, the divisor D parametrizes all closed geodesics in G/K and two
points corresponding to a closed geodesic is just the intersection of its compactified
complexification and the divisor D (cf. [PW], [LS] and [S]}). The maximal reductive
subgroup of P preserves the geodesic and its compactified compexification as sets
and of course fixes the intersection points with D (G operates on D naturally). g.e.d.

(5.2.7) The followings are direct consequences of Lemma (5.2.6).

Lemma. Let (X,D) be as in Lemma (5.2.6). Then there ezists a biholomorphism
¢ between a tubular neighborhood of D in X and a tubular neighborhood of the zero
section of Np,x such that ¢p is the identity of D.

Corollary. Let (X, D) be as in Lemma (5.2.6). Then (X, D) satisfies the condi-
tions in Proposition (5.2.5).
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Applying Proposition (5.2.5) to (Fy, Fy NY'), we define the Hermitian metric |||z
for Ox (D7) so that &, is Ricci-flat along each fiber F;. The boundary condition
is the condition (a) and (b) in Lemma (5.2.1), i.e., || - ||2]y is already fixed so that
(a) and (b) hold along Y. We extend the hermitian metric || - ||2 for Ox(D2) along
each Fy — FiNY so that &2|F, - F,ny is Ricci-flat. Then the estimates in Proposition
(5.2.5) imply that the definition along Fy — F1 NY glues Holder continuously (with
respect to the underlying smooth structure of a compact complex manifold X) to
the already existing definition of the Hermitian metric for Ox(D;}|y ((5.2.3)). The
same holds for Hermitian metric for Ox(D;) by considering the Ricci-flat condition
of @; (defined in an analogous way as &y ) along F; C D;. Using the condition w; = 0
along F; we can extend the definitions of Hermitian metrics for Ox(D;) along F;
(2 = 1,2) smoothly outside of Y and this extension agrees Holder continuously with
the boundary condition on Y. We have thus proved

Proposition. There ezist Hermitian metrics for Ox(D;) (i = 1,2) along D, U D,
so that
’ o Udis o)
nAf
holds along D, U Dy and these Hermitian metrics are compatible with those in
Lemma (5.2.8) onY.

(5.2.8) The next thing we want to do is to extend the Hermitian metrics of
Ox(D;) to a tubular neighborhood of D. To do this we look at the blowing down
II; : X = I0;(X) C P(V,,). This blows down D; to D; = G°/P; C P(V,,). As
in the proof of Lemma (5.2.6), we consider an invariant subspace complementary
to the invariant subspace TPE;) with respect to the linear isotropy representation
of the maximal reductive subgroup of the isotropy group at p € D; (fixing a G-
invariant Hermitiann metric, e.g., the Fubini-Study metric). It follows that there
exists a holomorphic retraction from a neighborhood in P(V,,) of D; onto D;.
Restricting this retraction to II;(X) and considering the inverse image under II; we
get a holomorphic retraction from a tubular neighborhood of D; onto D;. Using
these retractions, we extend the Hermitian metrics of Ox(D;) defined along D; to a
neighborhood of D;. But this is only possible in a region not too close to Y, because
tubular neighborhoods of D; intersect near Y. In such region, we have Hermitian
metrics for Ox(D;) (+ = 1,2) in a neighborhood of D; U D, so that for any k € Z
the function

Q(dl J1 €5 )n

AT
vanishes along D; U D, in the k-th jet level, i.e., if z is a coordinate transversal to
D; (z = 0 is a local equation of D;), then all derivatives (&' f/92?07%),=0 (p+q = 1)
of f in z-direction vanish for 0 < VI < k. Moreover these Hermitian metrics are
compatible with those in Proposition (5.2.7).

Now we look at a small neighborhood of Y. If we extend Hermitian metrics of
Ox(D;) along Dy ND; by using two retractions (corresponding to Dy and D), these
extensions do not coincide. But the discrepancy stems only from the correction term
u in Proposition (5.2.5). Now u = 0 along D N D; and moreover u decays like

f=log
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(distance) ¢~ with some constant €, depending on n only (which is comparable to n
if n is large). Because v/—100u is involved in the metric, we have only to examine the
contribution of &du. It follows from Proposition (5.2.5) that 80u decays with order
like (distance)~(3*¢n) with respect to the background metrics &, and & defined on
fibers F; and F). Because of the description in (5.2.1) of the asymptotic behavior
of the background metric {(d;;, ¢;), we infer that the same order of decay remains
true for the function f = log Q(dij, e;)/n A f:

Proposition. There ezist Hermitian metrics for Ox(D;) (i = 1,2) in a neighbor-
hood of Dy U Dy such that

g Udise)" o ~(2+en)
= log ~—m——= = dis .
f = tog 5L - Of(distance)~(3++)

As P(dij,e;) diverges to infinity at Dy U D, on the affine algebraic manifold
X — Dy — D, we can extend the potential P(d;;,e;) to the whole of X — Dy — D;
smoothly and obtain a strictly plurisubharmonic function on X — D, — D; (this is
proved, for instance, using Theorem (2.4)). By taking the average over G, we may
assume that the potential is G-invariant.

Theorem. There ezists a G-invariant Kahler potential on X — Dy — Dy which is
equal to P(d;j,e;) in Proposition (5.2.8) in a neighborhood of Dy U D,.

We will write the new Kahler potential by the same symbol P(d;j,e;) and the
resulting complete Kahler metric by Q(d;j,e;) = +/~189P(d;j,e;). The function
f = log(Q2(di;, e;)"/n A7) decays like O((distance)~(?*+¢")) (g, > 0, comparable to
n if n is large).

(5.2.9) We describe some important properties of 2(d;;,e;). Let f be as in
Proposition (5.2.8).

Lemma. There ezists a constant ¢ < dimX = n such that f € LY(X — D, —
Da, Q(dsj, ).

Proof. It is a consequence of (5.1.10) and Theorem (5.2.8). g.e.d.

Proposition. The complete Kahler metric Q(d;;, e;) satisfies the following three
properties:

(i) The volume of metric balls of radius R grows ltke R*", where n = dim X.

() There ezisis an integer h > 0 such that the metric QU(d;j,e;) in Theorem (5.2.8)
has Ricci curvature decay faster than R™* as R — oo.

(111) The isoperimetric inequality holds with a uniform constant.

Proof. The first assertion is a consequence of the definition of the metric and the
fact that w; degenerates along F;. The second assertion is equivalent to the decay
condition for f in Proposition (5.2.8). The third assertion is a consequence of the
proof of Croke's isoperimetric inequality for complete Riemannian manifolds with
nonnegative Ricci curvature and with maximal volume growth (because of rapid
decay of Ricci curvature (Lemma 5.2.9), it is easy to modify the proof in [Cr] in our
situation). g.e.d.
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Corollary. Let (X, D,UD;) be as above. Let 2(d;;,e;) be a complete Kahler metric
in Theorem (5.2.8) and let volume form and norms be with respect to this metric.
Set v = 2. Then there ezists a positive constant ¢ such that for any compactly
supported C!-function f on X — D, — D, the following Sobolev inequality holds:

( / o 1777) "< / L

Proof. See, for instance, [Y2]. q.e.d.

(5.2.10) Since, by Theorem (2.4), the desired G-invariant Ricci-flat Kahler po-
tential is determined by its values on the anisotropic torus (R? in (C*)?), it is
desireable to compute the explicit differential equation of the Ricci-flat Kahler po-
tential restricted to R2, in coordinates on R? defined naturally in terms of special
weights. Here we pick a simplest example SL3(C)/S03(C) of rank 2 and compute
the explicit differential equation. As described in (5.1.9), the symmetric variety
- SL3(C)/S0;(C) is identified with the set of all smooth plane conics. In matrix
form; it is written as follows:

21 Z4 25
SL;3(C)/S05(C) = {Z = |24 22 2z |; det(2)= 1}.
25 Z2¢ 23

The action of SL;3(C) is given by Z — gZ¢* (¢ being the transposed matrix of g)
and the above is identified with the orbit of the identity matrix. The representations
corresponding to the special weights yy and ug in (5.1.3) are p; and py, which are
the standard representation V = C? and the 2-exterior representation /'\2 V=c0C?
of p;, respectively. Set r = |p1(Z)|? and s = [p2(Z)|?. Then all Weyl-invariant
functions on R? are functions in r and s. Explicitly, we have

r=1p(2)* = |21 + |22|* + |z3|* + 2(|z4)* + |25]* + |26]%)
and
s = |p2(2)|?

= |2'122 - 2’2'2 + |2123 - J'c's,|2 + |2223 - 2’.§|2
+ 2(|z126 — 2425 |* + |2a26 — 2522|* + |2423 — 2526(%).
The maximal torus (C*)? is given by the equation z4 = z5 = zg = 0. Then around
the maximal torus, we can introduce A and pu by setting z; = A, zz = A™ 'y and

z3 = u~! so that the system (), y, z4, 25, 26 ) gives a local coordinate system around
the maximal torus. Let f be a G-invariant function f = f(r,s). Then

OOf = freOr AOr + fr4(Or A Bs + 03 A Or) + f,,08 A Os
+ £,00r + f,00s.
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At p = diag(X, A" u, 4~ !) in the maximal torus, no z; and dz; and their complex
conjugates (1 = 4,5,6) appear in 0r and 9s. This means that along the maximal
torus we can separate variables into (A, u) and (24, z5,2¢) in the computation of
(83f)5. Along the maximal torus, we have

O0r =dzy Adzy + -+ +2(dzg AdZ4 + - --)
and
80s = 653|(c-): + 2(|z3|2d24 A dZq + |22)*dzs A dZs + |z1|*dzs A dzs).
Hence along the maximal torus we have (up to constant multiple)
(83£)° = (901 |(cr)?)?

Afal21 P + fr)(falzal® + fo)(fulzsl® + fr)dza AdEG A -
Now introduce a linear coordinate system (p, ¢) on R? by setting p = log |A|? and
q = log |u]®. Set g(p,q) = f(r,s) along the maximal torus. Then we have

_ dAAdX A du A dfi
(36f|(c-):)2 = (gPquq - ggq) |/\|ZII-‘|‘;‘ a

The Jacobian matrix (g ;”q ) is

( eP — e~ Pte e~P 4+ e"H'P)

—e~9 + e_P+' eq —_ e"q+P
Its determinant is given by

A =ePtd — 7P~ 4 o729 _ 2P—q 4 P2 _ P29,

Then we can compute f,|2;|2+ f, and so on. The result turns out to be quite simple
and as follows:

fslzll2 + .fr = fsep + fr=

(1= P01 = 8 2P)g,

A ’
fs|32|2 + fr = fae_p+q + fr= (1- eq-?p)(cq ;e_q+P)(gp +gq) ,
f,|23|2 + fr = f,e_q + f,- = (eq — e_‘HT)S' — e_P_q)gP.

On the other hand, the holomorphic 5-form on the symmetric variety det(Z) = 1 is
given by the Poincaré residue: |,

dzg ANdzz Adzy Adzs A dzg
n= B det(Z ’
ﬂﬂzl—l
which turns out to be GC-invariant. Explicitly, along the maximal torus, it is
d) Adp
n =

ANdzy Ndzs A dzg.

Thus, along the maximal torus (C*)?, we have:

_ (0af)° _ 2\ _9p9a(9p + 9¢)(e? — eTTHP)2(eP — e79)3(1 — £972P)2

The explicit differential equation for the Ricci-flat Kihler potential is now given by
X = constant.
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5.3. Analysis

(5.3.1) The aim of this section is to prove the following existence theorem and the
associated uniqueness theorem. For analytical background, we refer to, for instance,
[Au], [CY] and [GT].

Theorem. Let G/K be a symmetric space of compact type of rank two and let
GC/KC be the corresponding symmetric variety. Then there ezists a G-invariant
complete Ricci-flat Kahler metric on GO/ K which is quasi-isometric to the back-
ground metric Q(d;j,e;) in Theorem (5.2.8). More precisely, there ezists a constant
C, comparable to n (constant times n) such that there ezists a complete Ricci-flat
Kahler metric of the form

Qdij, e;) + vV—186u (with k > ko)
with a priors estimates
”V:'l(d.'j,c,')uuﬂ(dij vei) S O(R—Cn _l)

for VI € Z>o and this 1s necessarily G-invariant if the background metric Q(d;j, ;)
18 G-invariant.

The constant C, can be estimated if one examines the constant § in Lemma
(5.3.2) carefully. ’

If we fix the asymptotic behavior of the metric, then the Ricci-flat metric in
Theorem (5.3.1) is unique.

Corollary. Let fiz (dij,e;) in Theorem (5.2.8). Let Q(d;j,ej) and Q(d;j,e;) be
two bachground metrics with the same parameter (d;;,e;). Then we have

Q(dij, CJ') + v —100u = Q(d,‘j, ej)' 4 \/—1651"

where u and u’ are the solutions in Theorem (5.9.1) with a priors estimates of the
form described in Theorem (5.5.1).

Note that this does not mean the absolute uniqueness of complete Ricci-flat
Kahler metrics on GC/K®C. This means that each time we fix the boundary condi-
tion then we have a unique complete Ricci-flat Kihler metric on G€/K©C with this
boundary condition. As there is a freedom in choosing background metrics with
different boundary conditions, there is a nontrivial moduli of complete Ricci-flat
Kahler metrics on GC¢/K°.

The rest of this section is devoted to the proof of Theorem (5.3.1).

(5.3.2) We start with the existence of barrier functions as in [BK2]. Let w =
Q(d;j, e;) be the background metric in Theorem (5.2.8). Put

p = p(dij, e5) = P(dij, ej)¥,

where d;j,e; and P(d;;,e;) are as in (5.2.1). Let A denote the Laplacian with
respect to the metric w.
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Lemma. (i) There ezists a positive constant ¢ such that for any sufficiently small

positive number § we have
Ap~® < —cp=*-2,

(11) There ezists a constant ¢ with the following property: for any sufficiently small
positive number § and any positive number K there ezists a positive number L(4, K)

such that _
(w4 V=186Kp~*)" < (1 — cKép~ 2 )"
(w—V=180Kp™%)* > (1 + cKép 2 "
holds if p is sufficiently large: p > L(4, K).

Proof. This follows from direct computation similar to [BK] (cf. [KI1,Lemma
7,p.164]). Here we prove (ii). A direct computation shows that w + /=190Kp~? is
equivalent to

pz{ (1 - K—Jp_z“i)wo + (1 + &(ii-l-)-p_z_'s)\/—lalog p* Adlog pz},

where wp 1s a smooth Kahler form on X comparable to w; +w;. Here exact compu-
tation may be complicated by the effect of bifurcation, but to prove Lemma (5.3.2)
approximate computation is enough. Suppose that K§(n — 2)/2 > cKé(6 + 1)/4
(i.e., § < 2222 — 1) holds with a constant ¢ > 0. Then if we choose & so that
é < 2—(-"‘:;21 — 1, then (ii) holds. So choosing 0 < ¢ < 2n — § is enough for (ii)
to be true. If we take the effect of bifurcation into account, then we must take
¢ < (const.)(2n — 5), where the constant is universal in n (cf. (5.2.1)). Hence we
can take é comparable to n. The argument for (i) is similar (and easier). g.e.d.

Note. It follows from the argument in [BK2] that if § is comparable to n then the
constant C, in Proposition 5.2.5 is also comparable to n.

(5.3.3) Let w = /—1888(d;;,e;,k) be the background metric as in Theorem
(5.2.8) and p be as above. The family of the sets {p > L} for large positive numbers
L forms a fundamental system of neighborhoods of D = D, UD; in X. We therefore
consider an exhaustion of X — D by domains {B,,} (m € Z-¢) with smooth bound-
ary whose complement in X is equivalent to the above fundamental neighborhoods

of D: Set, for instance,
B = {p< Ln}

with limm—00 Lm = 00. We want to solve the Monge-Ampére equation
(w+V=100u)" = e fw™ (=nAT)

with decay estimates for the solution u. For fixed B, we will solve (with estimates)
the boundary value problem with Dirichlet boundary condition. Then we will let
m — oo. By using the continuity method as in [BK] (with the aid of C! and
C?-estimates on the boundary [CKNS, pp.216-217,pp.218-221]), we see that the
Dirichlet problem has a unique elliptic solution for each m (i.e., w + /=188u is
positive definite). Let u,, = u be the solution (which is shown to be smooth) for
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this Dirichlet problem such that w 4+ +/—180u > 0. Then an a priori estimate for u
is derived as follows. Let & = w 4 +/—100u. Then by Lemma (5.2.9) there exists a
number g < n such that f € LY(X — D,w), where f is as in Theorem (5.2.8). If we
set vy = "T_l and ¢' = q_ET then we have ¢’ > v. Put p_; = ?’_'—., Although X — D is
not a Euclidean space, we can easily modify the arguments in [CKNS, pp.216-217],
because we have a global strictly plurisubharmonic exhaustion function on X — D.
Thus the gradient estimate in [CKNS, pp.216-217] still holds in our situation. Hence

we have

Lemma. The gradient ||du|| := ||du||. has a bound

sup ||du|| < Cy
B

independent of m.
Note. At this stage we need not know the estimate on such Cj.
(5.3.4)

" Lemma. There ezists an a priori C° estimate

[ulleo < C

where C depends on f only. In particular if f =0 then u =0,
Proof. Multiplying the equality

(1-eNw" = (—vV-180u) A (W + w25 4 --- + &™)

by |[u|?~%u (p > p-1) and integrating by parts gives
/(1 — e NulP2uw™
= [—|u|"'2u\/—-135u Alwr - o™

- ‘%f\/_—law P T L SR,
p—l) '2E 2 .n
=) [iongien

Here we have used the fact that u vanishes on 0B,, and |du| has an upper bound
on 8B,,. Using the Sobolev inequality (Corollary (5.2.9)), we have

(/ Iul‘”)# SCp]Ifllul”"

for a constant C independent of m. Now we have an estimate for the L9-norm of f
(Lemma (5.2.9)). Applying the Holder inequality we have

4(

2

1

(iuwf < cp( [ 1117) °L (f1uire=)".
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Setting po = vp-1, we have

() ® < oy (/ w)% <c

Applying the Holder inequality again we have

(Jur)’ <o) ()"

We set p = p; = po~y' and iterate the process (Moser’s iteration technique). Thus,
for each i, {|uflp; (the LPi-norm of u) is bounded by a quantity involving || fil4, || flleo
and ||u||p,- Examining the behavior of this quantity as : — oo, we have an a priori
CY-estimate as desired (cf. [BK2]). ¢.e.d.

(5.3.5) We proceed to a priori decay estimates for u. Let p be as in (5.3.2). Let
K be a sufficiently large positive number such that —Kp~% < v < Kp~? on some
compact set of X — D (for instance, we may take a quite large compact set defined
by p < (C~1K)# where C is such that ||u]|ec < C) and —cKp~ 2% < f < cKp~2~¢
on X — D, where ¢ > 0 is as in Lemma (5.3.2). Such K certainly exists and is an
a priori quantity as we already have estimate for ||u|l« and also the decay estimate

for f {Theorem (5.2.8)).

Lemma. There i3 an a priori constant K such that
lu] < Kp~°

holds on the region p > 2K},

Proof. Put wy = w + /—100Kp~?. Then Lemma (5.3.2) implies that outside a
compact set defined by, say, p < K ’i", we have

wgp < (1- cKp~ %)™,

Thus
 peo—d
. log(1+ Buy(u— Kp ))
n
1A+ — —éyy\n ~n
> log (Wi + v 133’511 Kp™)) ~ log w_n

> —f —log(1 — cKp~27%)
>—f+cKép~ 20 >0

. l -
if p > K77 say. Hence, on the same region, we have

Do (u—Kp %) >0.
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From the choice of K we have u—Kp~% < 0 on a compact set defined by p < 2K ’h,
say. At the boundary we have u — Kp~% < 0. The maximum principle then implies

u— Kp—6 <0
outside of this compact set. Similarly we have
u+ K p—'s >0

outside a compact set. Thus we get an a priori decay estimate for u. g.e.d.

(5.3.6) To obtain a priori C%-estimate, we need the following Bochner-type in-
equality due to Chern [Ch]:

Lemma ([Ch]). Let (M,g) be a Kahler manifold, (N,g) a Hermitian manifold
and f: M — N a holomorphic mapping. Set v = l8f1|2. Then we have

Ric,(8f,0f) Bisect,(0f,0f,8f,0f)
Aglo g — .
) A FHE 18712

We use Lemma (5.3.6) to

id: (Bm,w) = (Bm,w).

Here w is the background metric and & = w + +/—180u. Note that ||0f|* = trzw
and Ric(@) = 0. Since the bisectional curvature of w is bounded on the whole X — D,

we have
Alogu 2 -C — Catrgw

where A = Az and C}, C; are positive constants depending on the geometry of w
only. Here we note that (by applying the arithmetic and geometric mean inequality)

w

1
wr\ " f
ez > n(:;) = nexp(L),
i.e., trgw is bounded below by a constant independent of m. Moreover we have
Au=n —trgw.

Choose a positive constant A so that A — Cy = 1.

(5.3.7) To proceed, we need the following lemma, which is a consequence of
[CKNS, Subsection 1.3, pp.218-221]:

Lemma ([CKNS]). There ezists a constant independent of m such that the sec-
ond derivatives on the boundary 0B, have bound (with respect to the metric w)

independent of m:
sup [D*u|, < C (3C > 0).

m
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To show this, we have only to follow the argument in [CKNS, pp.218-221]. The
only difference between the situation in [CKNS] and ours is this: in [CKNS]} the
flat metric is used whereas we must use our background metric w. As the metric
w is of weakly C*®-geometry (see (5.2.2)), we can follow the arguments in [CKNS]
without too much difficulty.

(5.3.8) Lemma (5.2.7) implies that there exists a lower bound for log trgw on the
boundary 0B,, independent of m. Let B be a positive constant so that

B >> |Minzep,, (log trgw — Au) — Mingeas,, (log trgw — Au)|.

Such B certainly exists because we have a boundary estimate for log trzw, a lower
estimate trzw > exp(f/n) and a priori decay estimate for u, all of which are inde-
pendent of m. With these A and B, we have

A{logtrzw — Au — Li(p —La)} 2 —-An+ (A= Coltrgw — Cy — Litr;;w.

If m is sufficiently large, say, -LB: < %, then the last term in the R.H.S. of the above
inequality is absorbed in the second term in it. From the choice of B, the function

logtrgw — Au — Li(p — L)

assumes its maximum value at an interior point pg of B,,. At pg we have from the

maximum principle
logtrzw(pe) < C

where C is a constant independent of m. Therefore we have

trow < C'exp(supu — iélfu) <c”
Bom m

with C’ and C” independent of m. This implies an a priori C?-estimate without
decay.

(5.3.9) Now we proceed to decay estimates for derivatives. We introduce a pa-
rameter ¢ € [0, 1] and consider a family of equations

(Et) (w + V=180u,)" = e~ w",

What we have seen so far implies that the family {u,} of solutions for the Dirichlet
boundary value problems on B,, of the above equation have decay estimates and
ordinary C?-estimates independent of m and ¢. Then [GT, Theorem 17.14} implies
that there exists a constant 0 < a < 1 such that {u;} have usual C?®-estimate
independent of m and ¢ (note that w has bounded geometry). The bootstrapping
argument with standard interior Schauder estimates [GT, Theorem 6.2, Corollary
6.3] then yields usual C**-estimates for {u,} for all k.
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To get C*“-estimate for u with decay condition, we formally differentiate the
above equation with respect to t. Putting &; = w + +/—180u,, we have

Ou
(L) 85,5t =~ .

The Dirichlet boundary value problem
{ Aa‘ hg = f

he|aB,, =0

has a unique solution h¢ for each ¢ and h¢ depends on ¢ smoothly. The equation (E;)
with ¢ = 0 has a unique solution up = 0 (within functions with decay estimates). It
follows that (E;) is in fact differentiable with respect to ¢ and (L¢) is the differen-
tiated equation. Using Moser’s iteration technique, the Sobolev inequality and the
maximum principle as before (cf. [BK2]), we have a decay estimate for 2t

dad) -5
1510067

and usual C**-estimates for all k. The advantage of (L.) is that we can get a C?°-
estimate for %%‘- with decay condition for arbitrary 0 < a < 1. From Definition-
Lemma (5.2.2), we have a holomorphic coordinate system z = (z,:-+ ,z,) which
runs over the unit ball in R2" such that there exists r > 0 with the property that if we
introduce a new coordinate system y = (y1,--- ,yn) by ¥y = rz then the components
of w with respect to y have uniformly bounded C*“-norms. Here such r can be
taken as r = p® for some 0 < e < 1. Pick a positive number 8 < §, where § > 0 is
as in Lemma (5.3.2). Set

—  w
w=— h___-2'
r T

Then (L;) becomes

&

f
(L;) AU+h\/jBB_u. # = 'g
Let (g;;) be the components of the metric &. Then g;; has uniformly bounded

C*>_estimates relative to the coordinate system z. We apply the interior Schauder
estimate (GT, Theorem 6.2, Corollary 6.3] to the linear equation (L}). We have

Judllone < (const)(furllcs + 1 flon.e).

Let us examine the constant. The constant depends on the C°®-norm of the coef-
ficients of the operator Oz, /=753, and the value a. The coefficients of the first
order terms are of degree one in the inverse matrix of ;& and any other functions
involved are just the Christoffel symbol of Wy, all of which are uniformly bounded
by an a priori constant. The coefficients in the leading term consist of entries of
the inverse matrix of x&;, which are estimated uniformly by an a priori constant.
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Thus the constant in the above estimate is an a priori quantity. On the other hand,

we have
luellce < Cp~°.

Moreover we may assume that for some positive number ¢ we have
f —
12 jcmn < 0o

We thus have ,
|uellcaa < Cp~°

with some positive number §’ (we write § = §’ for simplicity). On the other hand,
as Ou,/0z; = Ou,/d(r~'y;) = rdu/dy;, e.t.c., we see that the Holder semi-norm
[ue)2,a With respect to the coordinate system z is comparable to r2*+2[u,], o with
respect to the coordinate system y. This implies that there are a priori decay
estimates for {|Vu||w, || V?u¢||o and a-Holder coefficients of V?u, of the form

[Viurllo < Cp™8r™ < Cp™8" and |ludzal S Cp~?r=277 < pmime3te)

for i = 1,2, where e = Minpex—-p{e(p)} > 0 (see (5.2.2)). Integrating these esti-
mates against ¢ gives a priori decay estimates for || V'ul|,, (i = 1,2) and the a-Hélder
coefficients of V?u. Set w (resp. &) as \/_—-I-Zgi;dy.- A dy; (resp. \/—_lzg'i;dy; A
dy;). Differentiating the equation (w+ V=100u)" = e~ fw™ with respect to yi gives

Z?J"G’,k = Z(gh ~ 795 — fr-

For decay estimates for higher order derivatives of u, we use the bootstrapping argu-
ment applying the interior Schauder estimates together with the rescaling argument
to the above equation. We thus get

IV¥ully < Crp=®=e*

for all K € Zyp. Ascoli-Arzela argument then implies that there is an infinite
sequence of u,,'s which converges uniformly to a smooth function © = u. on
X — D. The function ue, satisfies the equation (w 4+ v/—100uc)"™ = e~ /w™ with a
priori decay estimate

IV¥ucollw < CLp™ ™% VA 2 0.
Moreover u, satisfies the a priori estimate of the form
trow <C
with a priori constant C. This implies that the eigenvalue of @ is not too small and
is estimated below by an a priori constant. This together with the Monge- Ampere

equation implies an a priori estimate of the form

Clw<@<Cw
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with a priori constant C. This implies that the resulting form & is positive definite
and equivalent to the background metric w. In particular & is complete. The decay
estimate for uo, implies further that w is asymptotically equal to w in any jet level.
Therefore we have proved the existence part of Theorem (5.3.1).

(5.3.10) The solution whose existence is guaranteed by the above argument is
unique. Indeed, suppose that u; and u; are two solutions with the above a priori
estimates. Set &; = w + /—100u; and v = uz — u;. Then the difference v is a
solution of the equation

(@ + V—=188v)" = &7

and hence v = 0 (the case of f = 0). Indeed, before going to the limit of Dirich-
let problems, we have v, = 0 on By,. If w is G-invariant and all B,, are also
G-invariant, then the solution 4o, = im0 tm is again G-invariant. Thus there
exists a G-invariant complete Ricci-flat Kiahler metric on X —~ D. Even if B,, is not
G-invariant we can compare o, and g*u o, and conclude g*uo, = U, for any g € G.

(5.3.11)

Remark. The curvature of the resulting complete Ricci-flat Kahler metric does not
decay quadratically if rank(G/K)> 1.

Ezplanation. As the Monge-Ampére equation has a solution with decay estimates
at infinity, to examine the curvature behavior at infinity, it suffices to do so for
the background metric. We look at a boundary of a small tubular neighborhood of
D = D, UD; near Y. Such an object is described as follows. For simplicity we
take a local two dimensional disk B transversal to Y we get two curves with an
ordinary intersection at the origin. Remove from each curve a small disk centered
at the origin. Then the normal S!-bundle of each curve will have a 2-torus boundary
along the circle which bounds the hole. Then glue these 2-tori by an external tube,
namely by a cylinder T x I over the torus. Along the cylinder direction, the log-term
involved in the background metric

v—10log _ 1 A dlog

Tore ol " '8 Torlelioal?

will vanish. In particular this causes the exponent e(p) in the definition of weakly
asymptotically flatness (see (5.2.2)) strictly less than 1. In the cylindrical direction,
the curvature decays strictly slower than the inverse quadratic law (but curvature
indeed decays to zero, not remains away from zero). Note that the curvature decays
by inverse quadratic law for complete Ricci-flat Kahler manifolds in [BK1,2] and
[TY].

Summary. In rank two case the asymptotic behavior of the resulting Ricci-flat
Kahler metric is described as follows. We first consider a Kahler potential of type
P(d;j) where (d;;) are parameters which describe the bifurcation of Kahler potential
near Y. Then we determine Hermitian metrics along Y on O x(D; )|y so that wy +ws
are Kihler-Einstein. Then we compute the volume form of v/—183P(d;;) along D;
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and determine the Hermitian metric on Ox(D;j)|r; so that &; is Ricci-flat along
F;. By using the condition w;|r; = 0 we can determine another Hermitian metric
along F;. Then by using a good retraction we extend the definitions in a tubular
neighborhood of D. Thus we get a background metric whose Ricci curvature decays
with any prescribed order. Then basically the same analysis as in [BK2] shows the
existence of the solution to the equation

(V=180P(di;) + V—-108u)" = n AT

with decay estimates at infinity. Hence the background metric constructed as above
yields a good approximation of the above Ricci-flat metric.

5.4. Induction

(5.4.1) We generalize Theorem (5.3.1) to the case of arbitrary rank by induction
on r = rank(G/K). Let G/K be an irreducible Riemannian symmetric space of
compact type and GC/K€C its complexification. Let X be the canonical compact-
ification of G°/KC and D = UI_,D; the divisor at infinity as in (5.1.6-8). Let
i = {i1,12,--- ,ix} C {1,2,--- ,r}. Theorem 5.1.8 ({DP]) and Proposition (5.1.8)
imply that there exists a blowing down

Hi X o HL(X)
of Di=D;,..;, =D;y n---NnD;,. On D;, II; is a GC-equivariant fibration
D.‘ — GC/P,'

where P; is the parabolic subgroup of GC generated by B and root subgroups U for
roots a with (e, ;) = 0, where y; = i, ...i, = pti, +-+++pi,. The fiber F; = Fj,..;,
of II; is the canonical compactification of the symmetric variety L;,...;,/Kj;,...;, of
rank r — k. Set

i =N, -vip = dimFi.

The anticanonical line bundle of G®/P; is an ample homogeneous line bundle L_,,
with x; = xi,...i, the sum of all simple roots which are not orthogonal to ;. Note
that x; is a special weight. Since x; is a character of P;, x; is orthogonal to all roots
a with (a,u;) = 0. This implies that x; is a sum of nonnegative multiples of u;,
(i, € i). As in (5.1.10) we define

r

p= Zd;(a; —-—a?) = 22'&.—.

=1

Now we consider the case that i1 consists of one element :. As x; is a special weight,

we can write
r
Xi = E 2ai;a;
i=1
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with a;; € Q. Because each entry of (a,;) is a positive multiple of an entry of the
inverse matrix of the Cartan matrix ((@i,@;)) of an irreducible symmetric space
G/K, we have VYa;; > 0. From the definition of d;, we have

r

z ai; = d,'.

=1

(5.4.2) Let i = {i1,--- ,ix} be asin (5.4.1) and j = {71, -, j1} the complement
ofiin {1,2,---,r} (k+!=r). We derive the relative anticanonical bundle formula
for the fibration II; : D; — G€/P;. The anticanonical bundle of D; = D;, N---ND;,
is given by (following the rule described in (5.1.7))

“+Z p+2ZaP—2ZI+d a,,+22daq

PEJ PEJ PEJ g€l

The anticanonical bundle of GC/P; is given by the weight

r
= le = ZZ 2aip0y.

les lei p=1
Set _ -
b= Y |

1<k<rkej

Then the relative anticanonical bundle of the fibration IT; : D; =+ G€/P; is given by
the weight
2) (1+di)a, +2)  dia,.
- PE; g€i

Hence the relative anticanonical bundle of the G€-equivariant fibration I;|y : ¥ =
GC/P — G©/P; is given by
2> dia,
p=1

On the other hand, the anticanonical bundle of G/ P;j is given by

= Z Z 2a;,'6,,

lej p=1

= Z(z 2‘“9)6;'

p=1 lej
r
_ =
=D _ &,
p=1

which is equal to the weight corresponding to the relative anticanonical bundle of
the GC-equivariant fibration II;]y : ¥ — G€/P;. In particular, we can prove the
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assertion (b) in (5.2.1). Indeed, the restriction of wy to the fiber of the fibration
Oi|ly : Y = G©/P; (i = 1,2) belongs to the anticanonical class of of the fiber. This,
which is invariant under a transitive group action, is necessarily Kahler-Einstein.
In particular we have proved the assertion (b) in (5.2.1).

Now the bundle IIf L_y; is trivial along the fiber F;. Thisimplies 3 ;.. 3 ", a;,@p =

0 along F; and so
Z alpdy = — Z a1y,
Lpei lei,g€j

along F;. Hence if we set (aP?), 4 to be the inverse matrix of (apq)p,qci and put

i —— _ ast
a,t€L

d; T Z Gkp>

kEj

then we have _ _ .
2) (1+d)a, +2) dim,=2) (1+4d,),
PES q€i PE]
along F;. This is the anticanonical bundle formula of the fiber F;.
In general, we have the following

Proposition. Let G be complez semisimple and Q C P two parabolics of G. Set
X =G/Q and Y = P/Q. Then
a(Kx)ly = a(Ky').

A detailed proof will appear elesewhere.

(5.4.3) We here describe a combinatorial feature in the description of background
metric. Let X be the canonical compactification of GC/K©C of rank r and let
n = dim X. We set

1
Hlei H;=1 llop]|2ete”

This is a curvature form of the line bundle L_y; = Ox(3_¢; 2= a1p D) and is a
sum of nonnegative multiples of the pull-back of G-invariant Kahler metrics under
the blow down of D;

UJi:U(alp;P: Leee sl €)= v—laélog

L, : X > L (X) CPV,,) (p€q)

As in (5.2.1) we consider bifurcations of Kahler potentials and glue them by partition
of unity. To describe this procedure in general, it is very helpful to introduce a
standard (r — 1)-simplex with vertices {1],[2],---,{r]. On each vertex we put a
Kahler potential

1

P([’]) = P4y, d, = H"-—l "a_l_ugd'./u (v1).
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i// ,‘P‘ = FP(JI;J'};AB, CL})

D

123(;.

FIGURE 2. Standard simplex and bifurcation of Kahler potentials

For each (k — 1)-simplex [i] = [1112 - - - 1] we consider & {k)-ples of positive numbers
(diyi,y diniyy -+ 1 digi,) (p=1,---,k) so that the following conditions are satisfied:

d;
_1-11| (p=1,---,k) are small

det(d"qip )q‘p=l,"- k # 0
(n—k+ l)d.'q.', + Z dii, = diq (Vig € 1)
1p €1,ipFi1

(Vi, € 1 such that ¢, # ;).

| lqip

\ dl'ql'l >d

Associated to each (k — 1)-simplex [z] = [i; - - - ix] is a Kahler potential

k

P([l]) = zp(dilip1di:l'p)"' )dihip)
k

1
= k — - y
,; Hq=| “aiq”“""" H.‘ei' l|os|[24:/m
where j is the complement of i. Next we put bump functions p; on each (k — 1)-
simplex [t] = [1) - - - ix} so that the followings hold:

(1) all p; are defined in a neighborhood of D = U[_, D;,

(ii) pi = 1 on D; outside a small neighborhood of Ukg; Dy N D,

(i11) 2 all sub-simplexes #i = 1 in a neighborhood of D.

(iv) p;i vary monotonically with respect to the modulus of the coordinate z;, in D;—;,
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where D; is given by the equation z;, = 0in D;,
(v) pi are invariant under the action of G,
(vi) pi are determined first on the corresponding subvariety D; and then extended
by good retractions.
Using pi’s as gluing functions, we consider the potential on X — D

Pdj):= Y, pP().

all aub-simplexes

Just as in (5.2.1) we have a complete Kahler metric
Q(d.'j) = v—lB@P(d.-,-)

defined on X — D = G®/K©. We may assume that 3(d;;, e;) is G-invariant. We

set

) 1o )"
f:=log AT
It follows from the construction of §(d;;) that f is bounded on X. As in (5.2.1),
we may assume that for any complementary : and j:
(a) wi + wj is a Kahler-Einstein metric on Y,
(b) the restriction of w; to the fibers of the fibration II;|y : ¥ — GC/ Pj is Kahler-
Einstein (cf.(5.4.2)).
As in (5.2.3) we can compute the volume form of (d;;) along ¥ (using degeneracy
conditions of w;’s). The result is:

_ 1 (ﬂ_"'l"l) ‘dzil d d d n—r
ITiz llo][2d ,1;[2 | ||0’ ||24ii H |zs|2 1, dzr, 0, de)" T

It follows from the conditions satisfied by (d;;, €;), the anticanonical bundle formula
for Y and the G-invariance of w(dyy,: -+ ,dr1) (i.e., the assertion (b) above) that

Vv-188f =0

holds along Y. Hence we may assume that f = 0 along Y. As in rank two case, we
extend the definition of Hermitian metrics on Ox(D;) in a neighborhood of D so
that f = 0 on D and more strongly f vanishes also in the normal direction of each
D; in the k-th jet level (for any fixed k). This is done inductively as follows. Let
i= (i, -+ ,ix) and j its complement. Define P([k]) for k C i from two ingredients,
namely the Kahler potential P([k]) and the condition

Z Al = — Z GlgQgq, l.e., aj = — A_IAJ,a, (formally),
Lp€j lejq€i

by inserting this condition to the explicit expression of the Kahler potential P([k])
formally. The computation goes as follows. We replace the monomial
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1
d
T4, ok 1P%4e* T llo 124

where {k;,--- ,ky} = k C i and ! is the complement of k in {1,2,---,r}, by the

following additive form
k
Z dlqlpalq + Z _QJ
=1

ij€j

(we have m monomials if {k] is a (m — 1)-simplex) and then insert the condition.
We write C(z, k; ki,1) for the coeficient of @; (i € 1 and k; € k). Then we have

C(i, k; k1,1) > C(i, ks ki,i) Vhi# ki, i €1
Introduce then a positive number (%, k; i) by setting

o p
e(i, k; 1) = ———— —— ———
nl{(nl k+ 1)0(11 &1 kl»‘) + Zk,;&k, C(is Ev kl:’)}

and introduce a notation for the power |i|-vector e(z,k): if A = .";_ ke then

: 1
e(bk e—
T MeeeaEn

Now we follow the above procedure in the opposite direction to get a new monomial.
We execute the same procedure for each monomial which is contained in P([k])
and take the sum. We thus get some expression P([k]) involving only {lo;|| with
1 € 1. After carrying out this formal replacement, we consider the following “Kahler
potential "on F}:

Pi(dij) =Y pjuP([k])*ED.

kCi
Here we have used the above notation for a |i|-vector e(z, k). Note that {px};ck is
again a partition of unity on Fj. From this data, for a subsimplex i of ([1] - - - [r}), we

get a similar system (d;,i,, - ,di,i,) as before. From the definition, the condition
(*) is again fulfilled, for instance we have

(n; —k+ 1)di i, + Z dii, = d‘,"q

- ip i ip€i
for all sub-simplexes i’ C i with E‘i as in (5.4.2) and j the complement of i.

The (1,1)-form
=+v- 165P.-(d.- :

defined on Fj is a complete Kihler metric on F; — 3 ... F; N Di. From the an-
ticanonical bundle formula (see (5.4.2)) of the fiber Fj 5y this metric has the same
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structure as 2(d;;) defined on X — D. Indeed, it follows from definitions that the
Kahler potential Pi(d;;) is constructed by considering the bifurcation of

1

23+ /n;
[T, eilloi fo/mi

at infinity.

(5.4.4) We construct a background metric. The basic observation here is that
along F; the volume form of §2(d;;) is written as follows:

(e L ) i) ()

j€j llo 51
x (some smooth function involving ||o;| for j € j)
) A (V=189P;(d;;))"*?
Here _the expression w™~ll="i~! stands for a pull-back of a G-invariant volume form

on G€/P;.

Induction Step. Suppose that we can determine |[oj|| (j € ) so that v/=198P;(d;;)
is a complete Ricci-flat Kahler metric on Fj. As we are working on F}, we may use

the relation
a; = — Z aﬂauag.
lej,i€g

This implies that once we have determined Hermitian metrics for O x(D;) for : € g,
we can determine those for Ox(D;) for j € j by the above relation. As the 83log
of the first three factors of the above volume form is cohomologically zero, we can
determine Hermitian metrics for Ox(D;) so that the Ricci-form is identically zero
on Fj.

Now we examine the above process. The Hermitian metrics for Ox(D;) are

t means ¢ removed. Set j = (1,---,1,---,r) with i = (i) the complement. Direct
computation shows that

Pi(dij) = Y pjuP((k])E0 = P[0 =
kCi

1
aE/ng
los]| 77

holds on F;. Thus

ﬂi(d;,-)=m@5( 1 )‘

s 24

and ¢;(Fj) = (1 + d)[F; N Di]. Hence, as in (5.2.6-7), the Hermitian metric ||o]
is extended to all Fj so that §2;(di;) is a Ricci-flat complete Kahler metric on



RICCI-FLAT KAHLER METRICS ON SYMMETRIC VARIETIES 51

F; — F; N D;. Next, the consequence of Section 5.2 implies that, for any j with
1= {p, q} the complement, there exists a function u; (with decay condition at
infinity) on Fj — F; N (Dp U Dy) such that

P.‘(d.’j) + \/:Taé‘u ;

is a complete Ricci-flat Kahler metric on Fj — F; N (D, U Dy). This implies that the
Hermitian metrics on O x(D,) and Ox (D,) are extended along F} so that the Kahler
potential P;(d;;) is Ricci-flat on the affine part of F;. Thus f = log( (di; )" /nAT) =
0 along F;. The same argument as in (5.2.6-8) implies that the Hermitian metrics

are extended nicely in a tubular neighborhood of any Fi (Jk| = 7 — 3) such that Fy
contains Fj i F and F as the divisors at infinity, where F are fibers in some

Dj with |j, | = — 2. Next we try to solve
(Su(di;) + V—180ui)™ = Ricci-flat volume form

on Fy, where [ is the complement of k. Completely the same analysis as in (5.3) can
be applied to show that there exists a solution with decay estimates. And we have
f =0 along F;. In this way (solving the Monge-Ampére equations along fibers and
extending the Hermitian metrics by using good retractions) the inductive arguments
on rank(G/K) show that there exists a background metric of the form (d;;) with
the decay condition on f (of any order). Again by analysis in (5.3) we get a solution
to
(dij) + V=T08u)" = AT = e~ (di;)"

with decay estimates (at infinity). We thus have proved Theorem (1.1) in the
introduction; more precisely we have proved

Theorem. Let (X,D) be the canonical compactification of a symmetric variety
GC/KC of any rank r with D = Ul_, D; the divisor at infinity. Let n = dim X.
Determine positive rationals d; by setting c1(X) = Y._ (1 + di)[D;]. Then there
ezists a G-invariant Ricci-flat complete Kahler metric of the form

V—180P(d;;) + vV—100u
where P(d;;) is a Kahler potential constructed basically from
1
[Tizi lloall?4:/m

together with bifurcation along D; for any : C {1,2,--- ,r} described by the param-
eters (dij), and u satisfies a uniform estimate on X — D and decay estimates (at

infinity).
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