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Introduction. Let (X,Y) be a smooth projective

compactification of ¢3 » namely, X is a smooth projective
3-fold and Y is a subvariety of X such that X-Y is
isomorphic to ¢3 . Assume that Y is normal. Then X is

a Fano 3-fold of index r (1srs4) with bZ(X) =1 and Y

is a hyperplane section of X , where bz(x) is the second Betti

number of X . In the paper [1], we have the following results:

3.2

(1) r =4 = (X,Y) ®~,P")

n

(1) r =3 = (%, = (@°,0)) , where @’ is a smooth
quadric hypersurface in .P4 and Qg is
a quadric cone

(iil) r =2 = (X,Y) = (VS,HS) » where V5 is a Fano
3~fold of degree 5 in :P6 and H is a

5
singular del Pezzo surface with exactly

one singularity of A4-type

(iv) r =1 = (X,Y) is not completely determined (see

also [z]r [3]I [6]) .

These 3-folds -

of E3 - In case of r = 4 , it is clear that

’ m3, V5 are really compactifications

P3 ~ {a hyperplane ZPZ} =z m3 . In case of r = 3 , projecting

m3 from the vertex of Qg to :P3 ; one can see that

3
o - Qg = e3 . 1 case of r = 2 , projecting Vs from a

line through the singularity of A,-type of H to m3 , one

3

can see that V5 - H5 =2 C° . (see[1]).
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In this paper, studying the double projection of V5
from the singularity of A4-type of H5 r we will show that

the Fano 3-fold V

P2 by a flip (cf. [6], [9]) and a blowing down. This gives

5 can be obtained from a2P1—bundle over

a new construction of a compactification of ¢3 in case of
the index r = 2 . Finally, we remark that in case of the
index r = 1 , by studying the triple projection from a
singularity of the bounadry divisor, one can show that such

a compactification (X,Y) does not exist (see [2]).

Acknowledgement. The authors would like to thank

Max-Planck-Institut filir Mathematik in Bonn especially

Prof.Dr. Hirzebruch for the hospitality and encouragement.



§ 1. Preliminaries

Let (X,Y) be a smooth projective compactification of
¢3 such that Y is normal. Assume that the index r = 2 .

Then (X,Y) = (VS,HS) (see Introduction). Then the anti-

canonical line bundle can be written as follows:.

where T is an elliptic curve not through the'singularity

of Y = H5 . Thus deg Y = (1’2)Y = 5 . In particular, the
singular locus of Y consists of exactly one point {x} ,

which is of A4—type. Let o : ¥ —> Y be the minimal resolution

- of singularities of Y and put

o T(x) = 1. Uf, UE U1l

where li,fi (1si52) are smooth rational curves with the

self-intersection number equal to =2 and the dual graph

of the exceptional divisor a-1(x) is a linear tree_.(see Figure 1).

On the other hand, ¥ can be obtained from B2 by

blowing up 4 points (allowed infinitely near points) on a

Smooth cubic curve T on .PZ . Let T be the proper

0

transform of Iy in Y (see Figure 1)
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(Figure 1)

In Figure 1, there exists an exceptional curve C of the fir

kind with (c-'f)Y =1 .Weput C, = a(C) and T = o(T) .

0

Let H be a general hyperplane section of X:= V such that

5

OY(H) = OY(F) . Since

C

0

1 = (I - C)§

I

(r = c,)

0'Y

(H - CO)X .

is a line on X . By [1, Proposition 15], C0 is unique

line in PG contained in Y < X . Since the multiplicity

m(OY ) ©of the local ring ¢ is equal to two, any line

Y,x

through the point x must be contained in Y . Therefore

cC

0

is unique line in X through the singularity x of



§ 2. Double projection from a point

We will study the double projection of X = V5 from the
singularity x of A4-type of Y = HS . For this, let us

consider the linear system
|H-2x| = [M2 @ 0, (H) |
X X !

wvhere H is a hyperplane section of X and Mx c Oi x is the

’

1 7 —> X Dbe
2

the blowing up at the point x and put E1 s = 6;1(x) -

maximal ideal of the local ring Ox x - Let &, : X
14

Let Y1 and C1 be the proper transforms of Y and C

respectively. Then we have

0

Lemma 1. dim |H-2x| = 2

Proof. Let us consider the exact sequences:

0 —> 0X1(6¥H-E1) —_ 0x1(6?H) —_— 0E1 —> 0

0 —> 0x1(6?H—2E1) —_ 0x1(5¥H—E1) —_— OEJ1) —> 0 .

Since dim|{H-x| = @im|H| - 1 , we have

n

0
H (X1’0X (6?H—E1)) £~ , and

1

in
o
.

1
H (X1,0x1(6?H-E1))

Let | := pr_ |s*H-E | € |0, (1)| be the trace of the
E1 1 10 = E1



linear system }6#H-E1| on E, . Since ]6;H-E1| has

fixed component and no base points on X1 r SO is L

Therefore L = |OE (1) | . Thus, we have the surjection
1

0 0 ~ 3
H (x1,0x1(67H-E1)) —>> H (E1,0E1(1)) = C° .

This means that

n

0

H (x1,0x1(67H-2E1)) €~ , and
1 %1 - =

H (X1,0X1(51H 2E1)) =0 .

This completes the proof.

no

on E1

Q.E.D.
By Lemma 1, we have rational maps
= & ey o 2
¢ := CI)IH_sz : X > 1P ’
(. _ —— 2
(o) = Qlé.{fH-ZE“l : X.] > P .
Since (6?H—2E1) . C1 =-1<20, C1 is a base curve of the
linear system [6¥H—2E1[ .
Next, we will study the singularities of Y Let

9 -



A € X be a small neighbourhood of x in X with a local
coordinate system (Z1,ZZ,Z3) - Since the singularity *
Xx €Y = He is of A4-type and C intersects the component

f2 of a-1(x) in Y (see Figure 1), we may assume that

(1) 20Y={z,-z, = zg}c:-> A with x = (0,0,0)

’ i

- _ _ 52 = 731
(ii) conA—{z1-z3, Zy = 23} = &

By an easy calculation, we find that Y1 has exactly one

singular point x

1 of Az-type. Then there exists a

birational morphism

—> Y

=
-
42

such that

Uq (x1) = f£f_ U f2 , and
u
Y - (f1 U f2) =Y, - {x1} (isomorphic) .

—

We put 1;1’ := uy(1;) (15is2) and C, = 1, (C) . Then we have

. - 1 (1) (1)
E1 Y1 = l1 + l2 ’ (2.1)

in particular, 1§1), 1§1) are two distinct lines on E1 = Ip and |

C; is the proper transform of Cy, in X, .



Since Y, € |6¥H—2E1l , by (2.1), we have

0Y (Y1) = 0Y1(6?H—2E1)

= (1) (1) _,, (1)
= 0Y1(r -21;77-21,"),

1)

where P( 6;(Y H) = u1(T) . We have

0?(F—2f

M

(2) 7 (1) (1) —of 21 -
wyo, (r'él-2171 2101, 2£,-21,-21,)

1 1

1

Ov(F-ZZ) ’ (2.2)

where 2 = f1 + f2 + 11 + l2 is the fundamental cycle of the

singularity x associated with the resolution (?,a) . From

the exact sequence

0 —> OX —> (

] (Y1) —> OY (Y1) —> 0 , (2.3)

Xy 1

we have

m

0
HO(Y,,0, (Y.))

H0(§,0Y(T-ZZ))
:

c?

n

. 0
since H (X1’OX (Y1)) = m3 by Lemma 1. Let {wo,w1} be a

basis of Ho(?,OY(?—ZZ)) such that

1}

3C + 2f_ + £, + £

2 1

(w1) 5C + 4f2 + 2f1 + l1 ,

(vna)
0 (2.4)



where f is a smooth rational curve in ¥ such that
(fz)? = 0 and (f'lZ)Y = 1 (in fact, ¥ can be considered
as a ruled surface over a smooth rational curve, which has

f as a fiber and 1 as a section). Since

2
(wo) n (w1) =cuf1uf2,
we have the base locus
Bs|0y1(Y1)| =Cy 3 x, .

By (2.2), since H1(X1,0X ) = 0 , we have the base locus
1

B_|0

s 1(Y1)| =C, 3 x

X 1 1
Since Pic X = Z0,(H) , |B-2x| has no fixed component,

hence so is |6?H-2E1| . Thus we have the following

Lemma 2. 16¥H-2E1| has no fixed component, but has the

base locus
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§ 3. Resolution of indeterminancy

We will describe in detail the resolution of indeter-

minancy of the rational map

(see Lemma 2 in § 2).

For this, we need the following

Lemma 3 (Morrison [7]). Let S be a surface with only
one singularity x of A ~type in a smooth projective 3-fold.
Let E < S c X be a smooth rational curve in X . Let

S —> S be the minimal resolution of the singularity

o
0

of S and put

where C.'s (i £ j £ n+1) are smooth rational curve with

2 .
(Cj)g = <2 (1 =< J

A

n+1) ,

[}
-—
—
Y
¥A
.
A

n) ,

(c.-cj)~ =0 if |i-j| 2z 2 .

Let E be the proper transform of E in S . Assume that

(i) Nﬁig 2 Oﬁ(-1) , where is the normal

Ng |3
bundle of E in S , and
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(ii) deg NEIX = =2 , where NElx is the normal

normal bundle of E in X .

Then we have

(1) NE]X = OE e OE(-2) if x € E and %
(Cj'E)g = 1 for
(j =1 or n+1) , or ;
(2) NEIX = OE(-1) ® OE(-1) if x ¢ E .

Proof. 1In the proof of Theorem 3.2 in Morrison [7] we

*

have only to replace the conormal bundle Nﬁlg = 0§(2) with

*
Nglg = OE(” .

Now, we will resolve the indeterminancy.

be as in § 2. Let Kx be the canonical divisor on X1 . Then
1
we have
- = * -—
KX1 261H 2E1 .
Since
- hd = *H - - -
( KX C1) 2(61H C1) 2(E1 C1)

[}
N
|
N
"
o

~

we have :
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deg N = -2 .
c1|x1

Since x, € C, and the normal bundle N = OC(-1) , by

cl¥
Lemma 3, we have

"
)
(<
<
-
|

N
A 4
*

Let A1 be a small neighbourhood of the singularity
Xq of Y1 in X1 with a local coordinate system
(Z1, ZZ’ Z3) . Since X, is of A2—type and

(C-Z)§ = (C-f2)~ = 1 , we may assume that

Y
. _ . _ .3

(1) A1 n Y1 {Z1 22 = Z3} > A1

o _ _ 2

(ii) A1 n c1 = {z1 = z3, z2 = z3} —> A1 .

(Step II). Let 6o ¢ X, —> X, be the blowing up

-1
I =
along C1 and put C.l 62 1

Ci =F, . Let Yy, E2 be the proper transform of Y1, E

(C,) . By Step I, we have that

1 in

X, respectively. We find that Y, has exactly one singularity

X, of A1—type. Then, there exists the birational morphism

such that

Y - £, = ¥, - {x,} (isomorphic) .
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e (2) _ _—
U2(C)I f1 - UZ(f.])r ll Ll u2(1i) (l - 112)
+ C, , in particular, f:Z) (resp. c,)

is a fiber (resp. negative section) of the ruled surface

c; z:mz , and 1{2), C2 are the proper transforms of 1£1), C1 in
X, respectively. Thus we have (152) . 1!2)) =0 (i =1,2) ,
i i E,
and
(2) |, -(2) = -
. = * ]
Since sz 62Kx1 + C1 » we have
(CZ-Kx ) = (C1'KX ) + (C2°C{)
2 1
= 0 ’
hence
deg N = =2 .
CZIX2

Since x, € C2 ¢+ applying Lemma 3, we have

Let 4, be a small neighbourhood of X, in X, with
a2 local coordinate system (Z1, 22' Z3) . Then we may assume

that

. _ .2y o
(i) A, NnY {Z1Z2 = 23} > A2 ’

(ii) A, n C ={Z1=ZZ=Z3}C—->A2.




(Step III). Let 65 : X
-1
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—_ X2

be the blowing up

along C, and put C) = 63 (C2) . By Step II, we have

L ]
that C2 =¥, . Let Y3, E

2 3

be the proper transforms of

¥y, E, in X, respectively. We find that p is a smooth

surface. Then there exists the isomorphism

By ¥ > v

(3)

We put C, = u3(C), fi

3
(i = 1,2) . Then we have

V. - £(3)
Cc Y3 = f2

+ C

in particular, f§3) (resp. C3 ) is a fiber (resp. negative

Fz,and f

3

1
e

(3)..(3) .
(£,3) -£2°))

1 3

section) of the ruled surface Cé =
C3 are the proper transforms of f{z)
X3 respectively. Thus we have
(3) ., (3) _ (3)..(3) _
(l1 l1 )E3 = (f2 f2 )E 1,
3
(3) ., (3) _
(l2 l2 )E = 0 and
3
.1 (3) _ .e(3) -
Since KX3 = 6§KX2 + Cé r we have
(C3'Kx3) = (C2-KX2) + (c3-c5)

=0'

(3) 105 .

2

2

1,2)

in

’

’
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hence

= —2 .

deg N
C31X3

31X

Since Y3 is smooth, applying Lemma 3, we have

n
<

N

c (-1) o OC (-1 .

X 3 3

3l 4

(Step IV). Let 6, : X, —> X5 be the blowing up

along C3; and put Cé = 6;1(C3) . By Step III, we have

that C§ EZP1 xIP1 . Let Y4, E4 be the proper transforms

of Y3, E3 in X4 respectively. Since Yy is smooth, we

have also the isomorphism

o~

u4 s Y _T—> Y4 .

t
4 C3 C3 — C3 .

4 via the isomorphism Mg v and put,

Let f3 be a fiber of the ruled surface §

We identify Y with Y
for simplicity, £, = Hg(£), 15 = w, (1) (1 =1,2), T = g ()

and C = u4(C) . Then we have

in particular, fi' 1i (i =1,2), C are the proper transforms

of f;3), 1£3), C in X, respectively, and (C’C)C. =0 ,

3 3

(C-£.) ., = 1.
3'cy




1
(L, - 1) =-1, (1, - 1,), =0
1 1 E4 2 2 E4
(f.1 . f1)E = (f2 y fZ)E = =2 > (3.1)
4 4
(£, = £.) = -1 ,
3 3E‘1 ]

and the figure below (see also Pagoda (5.8) in Reid [7]),

where Ea,

Eé are the proper transform of C}, C) in X, .

l2
Y4 = Y
X4
(Figure 1)
Now, since Y. = §*Y., - C! (1 g < 3 we have
" g+ T 85¥y 76y (23 =3
= K*K*kS*kS*Y - * S kK% - 1 - 20! - O
Y, 64636261H 2646362E1 3C3 2C2 C1 .

Therefore, a general hyperplane section H of X , we have

Oy4(Y4) = Oy4(T -2z - £, - 2f, - 3C) ,

where Z =1, + 1, + £, + £

1 5 1 5 (see (2.2} in § 2). By (2.4),
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mn
<
+h

0y4(r - 2z - f1 - 2f2 - 3C)

"
(=

R
H

Since f is a fiber of the ruled surface ¥ = Y
]0Y (f)| has no fixed component and no base point. Thus,
4

0 L3 — - ——— 1
|0Y4(f)l defines a morphism 4 := ®o, (£)| : Y4 —> TP . Then Y,

¥y
is a ruled surface over a smooth rational curve :P1 with

exactly one singular fiber 2C + 2f. + f1 + 11 » in particular,

2
12 is a section. Let us consider the exact seguence:

0 —> Ox —_> 0 (Y4) _ OY (Y4) —> 0 .

4 X4 4
Since H' (X »0g ) = 0 and the linear system [0, (Y )| has
4 X4 Y4 4
no fixed component and no base point, so is IY4| = |0X (Y4)[ .
4

Therefore, it defines a morphism

- - 2
‘y M WIY4I . X4 _>P

of x4 onto :Pz such that

§
X, < X,
N 1) |-
§, N2 ¥
\
N\
*y
X ——=——- >]P2 7
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where &6 = 8., o &, o &, .

This is the desired resolution of indeterminancy of the

rational map
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§ 4. Structure of V5

Let X =P xI , and C be as in § 3.

4 r
Since

N =0, (-1) ® 0., (-1) ,
C3l%3 ey C3

by Corollary 5.6 in Reid [9], there exists the birational

morphism ¢ : X4 —> V of x4 onto a smooth 3-fold with
b, (V) = 2, and the morphism 7 : V —> ]P2 of V onto
p> » and the birational map which -is called "flip"

p : X, ==——=m > V such that

p=¢06-1

and

In particular, 53 = ¢(E; u 55_ ucj) is a smooth rational

curve in V , and

)_._>V-E €= X, = C., . (4.1)

We put a = ¢(Y,) and I = ¢(E;) . Then,




ki
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K, = 2A + 2% (4.2)
0.,{(a) = n*0 (1) . (4.3)
\Y B2

In fact, since -KX1 = ZG?H - 2E1 = 2Y1 + 2E1 and

0, (Y,) = ¥*0 ,(1) , by (4.1), we have (4.2), (4.3). We

X, "4 2

4 P .
put I, = ¢(1,) (i=1,2 and L = n(I,) > P° . Then

li's are smooth rational curves in V and L is a line

in :Pz R in'particular, WIA : A —> L has a structure of

theIP1—bundle EH with I1 a fiber and iz the negative

section. Moreover, I has only one singularity gq of

Az—type. The rational curves 11, 12, f3 r Which are also
contained in I , intersect only at the point g (see

Figure 2).

11
g

Lo

T A

(Figure 2)
By construction, ¢ := ¢[E : E, —> I 1is the minimal
4
resolution of the singularity of I with 0—1(q) = f1 U f2 r

and 1, = o(li) (1 =1,2), f3 = o(f3) (see (3.1) and

Figure 3).



We put A := 1r|y : I —->IP2 . Then

o
)
"

L n £y ={p} (a point)

where f. = w(f.) .

1
f3 B 2
f2
f‘l
Eq
(Figure 3)

For a general fiber F of the morphism 7w : V —> P

we have, by (4.2),

deg(KF) = (KV'F) = -2(Z°F)
£ -2,
hence F EZIP1 and (Z-F) = 1 , where KF is the canonical
divisor on F . Therefore I is a meromorphic section of

W:V—->]P2 .

Proposition 1. 7 : V —> IP2 is aIP1-bundle over IP2

2
and I is a holomorphic section on P° - {p} .
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Proof. By construction,

w
I -—
no

1-(Y1UE1) V- (auzg .

In particular, 7 : V - (A U L) ——>2P2 - L 1is an affine

morphism. Assume that there exists an irreducible divisor

D on V such that =(D) = {one point} . Then one dimensional

scheme D N £ 1is contracted to one point, hence,

Supp(D N I) !

11 . Since I1 cA-= 7 '(L) and

wIA : A —> L is a:P1-bundlé, this is a contradiction. Thus
m is equi-dimensional, hence, 7 is proper flat morphism.
Let G be an arbitrary scheme theoric fiber. Then

(Z~G)V =1 . S8Since V- (AU I) = m3 contains no compact
analytic curve, G must be irreducible. Since

(KV'G)

curve. Therefore = : V ——>:IP2 is a smooth proper morphism.

-2(Z°G) = -2, G 1is a smooth rational

By the upper semicontinuity theorem, we have that

R1W*0V(Z) = 0 and n*OV(Z) is a vector bundle of rank 2
2

over ]P2 . Moreover, for every point x € P° ,

I

0,2 ® €x) = B0 (n 7 (x),0,(0) ® 0 _, )
T (x)

@', 0 ;D)

r

n

¢l .

m

Thus the natural homomorphism

M0y (D) —>> 0,(Z)
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is surjective and induces the isomorphism V = JP(w*OV(Z))

over ]P2 . The rest is clear.
Q.E.D.
Remark. 1w 1is the contraction of an extremal ray of the
smooth projective 3-fold V .

Finally, we will study the vector bundle W*OV(Z) of rank 2

over IIP2 .

Lemma 4. 0(%) = oz(-3i + A) .

1

Proof. Since the singularity of I is rational double

point, we have

o*K. = K

n

!
[
H

—

!
Hh

!
W
-

hence KZ = -3I2 . On the other hand, since

~
'

= Kyp * Il

-2a[; - I

z

we have

] -2A[; - K

-2a|; + 31
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Since A =1, + 1, , we have
z 1 2

ZIZ="3i1 +A|Z ’

namely, 02(2) = 02(-31 + A) . Q.E.D.

1

Let us consider the exact sequence

0 —> 0y, — OV(Z) —_ OZ(Z) —> 0 .
Taking w, , we have

0 —> epz —_> W*OV(Z) S n*OZ(Z) —> 0 . (4.4)

Taking 7* in (4.4), we have the diagram:

0 —> 0, —> w*ﬂ*OV(Z) s n*ﬂ*OZ(Z) —> 0

1 |

v
v \4

0 —> OV —_— OV(Z) —_— 02(2) —> 0 ,
in particular, we have the surjection
n*n*OZ(Z) e OZ(Z) .

We put ) := n]z : I —> P2 . Taking A* in (4.4), we have

the diagram
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o

0 —> L —> A*m,0,(2) > 0.(1) >0 ,

where L := ker 1 is a line bundle, and the image of the

global section 1 of OZ

via the map 02 —> L defines an

effective Cartier divisor D with Supp (D) = i1

Proposition 2. x*n*OV(E) is an extension of OZ(Z) by

02(311) .

Proof. We have only to prove that D = 311 . Since

A*(det(n*OV(Z))) = OZ(Z) ® 02(311), (Ztl1)z + (D-1 )Z =0
Since 02(2) = OZ(—3i1 + A) by Lemma 4, we must have

D = 31, , and also, by (4.3), we have det(m,0,(Z)) = 0 (1)
1 Y P2

Q.E.D.

Remark. n*OY(Z) is an extension of X*OZ(—311)®QPZ(1)

by 0

o - Therefore n*OY(E) is a stable vector bundle.
r
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§ 5. A construction of a compactification of ¢3

One can easily construct the surfaces E I and the

3'
morphisms ¢ : E4 —> L, A : I ——>ZP2 in § 4 independent
of the arguments there. Therefore we may assume the existence

of these surfaces and morphisms. We recall some facts on them;

(1) I has exactly one singular point qa of Az—type

o
(ii) E4-(£,Uf,)) —> I - {q} (isomorphic)

A
(iii) ¢ - l1 —:;>2P2 - {P} (isomorphic)

(iv) L = x(1,), £ = ME;) are two lines on P2 .

Lemma 5. As (Q-Cartier divisors, we have

= 1 2
o*ly ~g 11 * 3%+ 55,
{ o* 1, + 2 lf
o} 12 ~o 12 +r'§fJ + 3f, (5.1)
= 1 ]
0*f3 ~0 f3 + 3f1 + §f2
and the linear equivalences
gy + £y~ 1,
11~ 12 + l1 ~ f3 + 211
= * ~ * (=27
KE4 o KZ o*(-31) + £, + 2f, + 31, » (5.2)

where KE is the canonical divisor on E4 , and
4

1 =2x*0 (1) .
P2
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» g - = *- . - F - =
Proof. Since (o*l1 f1) (o l2 fi) (c*f3 fi) 0
for i =1,2 , we have (5.1). By a similar calculation we

have (5.2).

Now, we will prove the existence of a vector bundle of

rank 2 over P? which is an extension of OZ(-BI + 1) by

1
02(311) .

Lemma 6.

1 - = -
1) Extz(Oz(-311+1), 02(311))

(1

1 - = -
ExtE4(o*Oz(-3l1+l), 0*02(311)) .

1 - - -
2) ExtE4(o*Oz(—311+l), 0*02(311)) —_

1

e Extl

(0*02(—3l1+1) ® 0l R 0*02(311) ® O1 ) is

1 1 1

surjective.
. 1 T T T _
3) dim Extx(Oz(-3l1+l). 02(311)) = 3

1

dim Extl

(G*OZ(_311+1) e 01 ’ 0*02(311) e 01 ) =1,

1 1 1

: 1 = .= N
Proof. 1) Since EXtZ(OZ( 3l1+l), Of{iil) =

1 T % 1 T .7 T 1) =
H'(2,0,(61,-I)) and Bxty (0%0p(=31;+D), 0*0, 31 )) =

H1(E4,G*OZ(GI1-1)) , we have only to prove

H1(z,oz(611-i))-41-> H1(E4,o*oz(sii—1)) . Since

R1G*0E = 0 , it is clear. 2) We have only to prove that the

4
morphism H1(E4,0*02(6I1—i)) —_ H1(l1,0*02(6i1-i) ® 011) is
Surjective. For this, let us consider the exact sequence:
- - -— _— - * — --— -
0 - 0*02(611—1) ® OE (-11) - 0*02(611 1) o 02(611 1) 8 0 o .

4 L
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By Lemma 5, we have

13
n

0*02(611—1) OE (611+2f

-k
. +4f2 o*1)

0. (2K_ +50*I) ,
1 E, KE4

2 *—_ ~ o - - *-..
hence H (E4,0E4(2KE4+50 1 11)) = H (E4,0E4( KE4 50*1 11))

n

0 -
H (E4,0E (-20*1—f1—2f2-211))

4

mn
o
.

Therefore, we have the surjection

1 - = 1 = 7
H (E4,o*oE4(611 1)) —> = (11,0*0E4(611-1) ® 011) .

Since

(0*(-311+l) : 11)E =1, (o*(311) 1

we have

1 = = -
Extl1(0*02(—311+l) ® 0, , 0*02(311) e 01 )

1, 1

n

n

Ext',(0(1),0(-1)) = B'@',0(-2)) = ¢ .
i

Finally, we prove that H1(E4,0 (2K_ + S5g*1)) = ¢° . By
E4 E4 ;
Lemma 5, K, = =-30*I + £, + 2f, + 31, . We put G := o*I
4 1
2 - . = (G- = (G- =

£, U f2 U l1 can be contracted to a smooth point of
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We need the following well known

Lemma 7. Let v : S —> T be the blowing up at the
point P on a smooth surface T , and put v-1(P) =C .
Them a vector bundle E on S is the pullback of a vector

bundle on T if and only if

. A®x
Ele = 0c »
where r = rank E .
o A 2 . —
Let E4 > I > P be as before. We put u := Jeg .
u
Then E4 - (f1Uf2Ul1) = Eﬂ - {0} , indeed, E4 can be obtained

from ZPZ by 3 times blowing ups, and fTUfZUl1 is the

exceptional divisor associated with the blowing ups.
Let E = EE be the vector bundle on E4 determined
by an element £ € Ext;
4

the image of £ by the surjection:

(o*oz(-3i1+i), 0*02(311)) , where

1

EXtE

s .7 = 1
) (- —
(6%05(-31,+1),0%0-(31,)) —>> Ext,

(O*OZ(-311+1),0*02(311))EE

4 1

1s not zero.
Then E ® 0l induces the non-split exact sequence
1

0 —> 011(—1) —_> E@Ol1 o 011(1) —> 0 ,

hence
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a surface. By Lemma 5, we also have

2K, + 50*1 = -G + 2f, + 4f. + 61
E, 1

2 1

Since f1 U f2 U 11 can be contracted to a smooth point,

we have

HO(E4,0E (=G+2f_ +4f 0,

4 1 2

2 0
H (E4,0E4(—G+2f1+4f2+611)) H (E4,0E4(-2G—f

+611))

n

1—2f2-311)) = 0.

By Riemann-Roch theorem, we have easily

. 1
dim H (E4,0E (-G+2f1+4f

2+6l1)) =3,

4

hence

1 T = m3
H (E4,0E (2KE4+50*1)) = C” .

4
Q.E.D.



E® O z 0 ® 0 .
On the other hand, we have

0*02(—311+1) e Of = 0

1 5
0*02(311) ® 0f = 0f
1 1
0*02(-311+l) ® 0f = Of
2 2
o*0.(31,) ® 0 = 0 .
z 1 f2 f2

Thus

@2
Eeo, =02
1 1
®2

Ee 0. = 092
£, f,

By Lemma 7, there exist a vector bundle T on P° such

that E = p*T » and then we have the exact sequence

0 —> 0*02(311) —> u*T — 0*02(-3i1+I) —> 0 | (5.1)
Taking o, , we have the exact sequence

0 — 0,(31;) —> MF — 0,(-31,+1) —> 0 (5.2)
Further, taking Ay » wWe have

0 — 0 ., — T —> 2,0_(~-31,)80 (1) — 0 , (5.3)
:Pz LA 1 :PZ
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since R 1*02(3]—.1) = 0 by Grauert-Riemenschneider vanishing

theorem.

We remark that X : I —> ]P2 is the blowing up of ]13'2

by the ideal J := 3,0.(-31,) . By (5.2), we have the
P'-bundle V :=P(¥) ——> P2 over P° and a rational

section E &> VvV .

Lemma 8. E © OL

n

OL(1) o OL .
Proof. Let us consider the exact sequence

0 —> 0)_.‘(311)80-1-2 —_ A*E@Oiz —_— OZ(_311+1)®012 —_ 0 .

Since (311'12)2 = (.i-iz)z = 1 , we have

0 — 0 1(1) _ A*E@OI —> 0 7 —> 0 (exact),
Ir 2 r

namely, A*E®O0: = ( e 0 (1) .
1 1 ]P1

2 r
Q.E.D.

By Lemma 8, m ' (L) := A is the P'-bundle F, over

L =P . Since A* (L) = 12+i1 on I , we have
L« A = 11+12 .

Lemma 9. N= = 0 ,(-2)®0 , where N-= is the

== Tilv " P £,1V
normal bundle of f, &> ¥ in V .

3

Proof. Let KV be the canonical divisor on V . Then
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K, = "*(K , + det T) - 27
\Y ]P?'
= =-2A ~ 2L
OZ(Z) = OZ(-311+A)
= OZ(-311+1) .
Since (Kv-f3) = (—4l+611'f3)z
==-4 + 4 =0,
by Lemma 3, we have the claim. Q.E.D.
Lemma 10. V - (I U A) = ¢3
. 2 2
Proof. Since NIV—(ZUA) Y (LUA) —> P - L =C
an affine C-bundle over m2 , we have V - (ILUA) = E3 .
Q.E.D.
Let ¢, : V, —> V = P(T) be the blowing up along ‘53

and put C% = ¢;1(f3) . Then C; = Eé by Lemma 9 . Let I

be the proper transform of I in v, - Then 21 has the

of A,-type, and there exists the birational
-1

1

singularity P1

—_> T such that v

morphism v, o E4 1 1 (P1) = f2 and
\V
- Jdr - (1)
E, £, = 1, {P1} - We put f, v, (f;) and
(1) . _ S B (1) . .
£3 7= v1(f3) - Then I, . Ci = f, + g , in particular,
f:1) is a fiber and f§1) is the negative section of

(1) (1) .E -
€ f3 and (KV f3 ) (Kv f3) o,

C; 2., . Since P
]

2 1
by Lemma 3, we have

is
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080 (-2) .

(1

N
(1)
£5 lv1

Let ¢2 : V2 —_ V1 be the blowing up along the

(1) o =1 (1) o
f3 and put Cé = ¢, (f3 ) =F, . Let L,

5 ° Then 22 is a smooth

curve be the

proper transform of 21 in V

surface and there exists the isomorphism vyt E4 —_ 22 .
(2)

We put fi 1= vz(fi) for i = 1,2,3 . Then we have

22 . Cé = f§2)+f§2) , in particular, féz) is a fiber and

2

f(z) is the negative section of C! = FF., . Since (KV 'f(z))
3 2 2 3
'f§1)) = 0 and 22 is smooth, by Lemma 3, we have

(K
vy

N = 0(-1)®0(-1) .
(2)
f3 |v2

Let ¢3 : V3 S V2 be the blowing up along the curve

1( 1 1

f3(2) and put Cj = ¢; féz)) =P xIP . Let C be a fiber

of the ruled surface : C! —> f§2) , and I be the

*3jcy * C3 3

proper transform of 22 in V3 . Then 23 is a smooth

surface and there exists the isomorphism :t E, —> ¢

V3 4 3

We put £, = vi(f) (1 £1is3), 1 =v,(1,) (1£izs2),

which are indeed the proper transforms of fiz) (1 <1 g 3)

vz(li) (1 £i <2 in V, respectively. Then, L,°C} = £

3 73

)Z = 0 and (f3°C)Z = 1 (see Step IV and

)
2
371, 3

in particular, (f
Figure 1 in § 4).

Since Cé = P(0(-1)80(-1)) , by Corollary 5.6 in Reid
[71, Cé can be blown down along the fiber f3 , and, step

by step, the blowing down is done, and finally we have the

smooth 3-fold X1 with b2(X1) = 2 and the contraction

morphism § : Vy —> X1 .



We put C, := §(C

W=

1

¥y #= 8(A3) , where C! (j = 1,2), A; are the proper

transforms of C5 (3 = 1,2), A in V5 respectively. Then,

by construction, one can easily see that C1 is a smooth

rational curve in X1 with C, c Y1, E1 zimz , and Y

1 1
a singular del Pezzo surface with an singularity of Az—type.

is

We put p := (¢1o¢2o¢3)-1o6 . Then p is a birational map

of V onto X1 such that p : Vv - 33 = X, = C (isomorphic).

Since KV = =2A - 2% , we have Kx1 = -2Y1 - 2E1 . Since
E, - Y1 = 1;1) + 152) by the adjunction formula,

_ _q (1) . (1) . _
0E1(E1) = 0E1( lj ) for j = 1,2 , where lj 3= 6(lj)

1 EIPZ . Thus E1 can be blown down to a

point of a smooth projective 3-fold X .

is a line in E

Let 61 s X1 —> X be the contraction morphism. Then
Y := 61(Y1) has an singularity of A,-type. Since all the
transformations above are done on the divisor E &> V , we

have X - Y —> V - (L U A)= T3

(by Lemma 10). Thus, (X,Y)
is a smooth projective compactification of ¢3 such that Y
is a singular del Pezzo surface with an singularity of
A4-type. This implies that X 1is a Fano 3-fold of index

r = 2 with Pic X = x-Ox(Y) . Since Y has an singularity
of A,-type, we have deg N, = deg(-KY) = 5 , where

N, = [Y}]Y (resp. K, ) is the normal bundle of ¥ in X
(resp. the canonical bundle of Y ). Thus, X is a Fano

3-fold of degree 5 in Iﬁ by the anti-canonical embedding.

This gives another construction of a compactification of




¢3 in case of the index r = 2 (see [1]).

Remark. We put A = w_1(n(f3)) €S>V . Then A is a
P'-bundle over f3 =P . Let 53 be the proper transform
of A in V3 and put Y = 6(53) . Since V - (A U I) = ¢3
and the transformations above are all on I &>V , we also
have X - Y g V- (AUTZ) = ¢3 . By construction, Y is not
normal and its normalization is IF. . This (X,?) is the

3

same example of a compactification of E3 with non-normal

boundary as in [1].

Remark. The vector bundle E is completely determined

€
by (X,Y) . Therefore Theorem 2.4 (b) in [8] is not true.
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