A new construction of a compactfication of \mathbb{C}^3 with second Betti number one

(Dedicated to Professor Hirzebruch on his sixtieth birthday)

by

- *) Mikio Furushima
- **) Noboru Nakayama

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

West Germany

- *)
 Kumamoto National College
 of Technology
 and
 Max-Planck-Institut
 für Mathematik
- **) University of Tokyo
 and
 Max-Planck-Institut
 für Mathematik

Introduction. Let (X,Y) be a smooth projective compactification of \mathbb{C}^3 , namely, X is a smooth projective 3-fold and Y is a subvariety of X such that X-Y is isomorphic to \mathbb{C}^3 . Assume that Y is normal. Then X is a Fano 3-fold of index r $(1 \le r \le 4)$ with $b_2(X) = 1$ and Y is a hyperplane section of X, where $b_2(X)$ is the second Betti number of X. In the paper [1], we have the following results:

- (i) $r = 4 \Rightarrow (X,Y) \cong (\mathbb{P}^3,\mathbb{P}^2)$
- (ii) $r = 3 \Rightarrow (X,Y) \cong (\mathbb{Q}^3,\mathbb{Q}_0^2)$, where \mathbb{Q}^3 is a smooth quadric hypersurface in \mathbb{P}^4 and \mathbb{Q}_0^2 is a quadric cone
- (iii) $r = 2 \Rightarrow (X,Y) \cong (V_5,H_5)$, where V_5 is a Fano 3-fold of degree 5 in \mathbb{P}^6 and H_5 is a singular del Pezzo surface with exactly one singularity of A_4 -type
 - (iv) $r = 1 \Rightarrow (X,Y)$ is not completely determined (see also [2], [3], [6]).

These 3-folds \mathbb{P}^3 , \mathbb{Q}^3 , V_5 are really compactifications of \mathbb{C}^3 . In case of r=4, it is clear that \mathbb{P}^3 - {a hyperplane \mathbb{P}^2 } $\cong \mathbb{C}^3$. In case of r=3, projecting \mathbb{Q}^3 from the vertex of \mathbb{Q}^2 to \mathbb{P}^3 , one can see that $\mathbb{Q}^3 - \mathbb{Q}^2 \cong \mathbb{C}^3$. In case of r=2, projecting V_5 from a line through the singularity of A_4 -type of H_5 to \mathbb{Q}^3 , one can see that $V_5 - H_5 \cong \mathbb{C}^3$. (see [1]).

In this paper, studying the double projection of V_5 from the singularity of A_4 -type of H_5 , we will show that the Fano 3-fold V_5 can be obtained from a \mathbb{P}^1 -bundle over \mathbb{P}^2 by a flip (cf. [6], [9]) and a blowing down. This gives a new construction of a compactification of \mathbb{C}^3 in case of the index r=2. Finally, we remark that in case of the index r=1, by studying the triple projection from a singularity of the bounadry divisor, one can show that such a compactification (X,Y) does not exist (see [2]).

Acknowledgement. The authors would like to thank

Max-Planck-Institut für Mathematik in Bonn especially

Prof.Dr. Hirzebruch for the hospitality and encouragement.

§ 1. Preliminaries

Let (X,Y) be a smooth projective compactification of \mathbb{C}^3 such that Y is normal. Assume that the index r=2. Then $(X,Y)\cong (V_5,H_5)$ (see Introduction). Then the anticanonical line bundle can be written as follows:

$$-K_Y = O_Y(\Gamma)$$
,

where Γ is an elliptic curve not through the singularity of Y = H₅. Thus deg Y = $(\Gamma^2)_Y$ = 5. In particular, the singular locus of Y consists of exactly one point $\{x\}$, which is of A₄-type. Let $\alpha:\widetilde{Y}\longrightarrow Y$ be the minimal resolution of singularities of Y and put

$$\alpha^{-1}(x) = 1_2 \cup f_1 \cup f_2 \cup 1_1$$

where l_i , f_i (1 \leq i \leq 2) are smooth rational curves with the self-intersection number equal to -2 and the dual graph of the exceptional divisor $\alpha^{-1}(x)$ is a linear tree (see Figure 1).

On the other hand, \widetilde{Y} can be obtained from \mathbb{P}^2 by blowing up 4 points (allowed infinitely near points) on a smooth cubic curve Γ_0 on \mathbb{P}^2 . Let $\widetilde{\Gamma}$ be the proper transform of Γ_0 in \widetilde{Y} (see Figure 1)

(Figure 1)

In Figure 1, there exists an exceptional curve C of the fir kind with $(C \cdot \widetilde{\Gamma})_{\widetilde{Y}} = 1$. We put $C_0 = \alpha(C)$ and $\Gamma = \alpha(\widetilde{\Gamma})$. Let H be a general hyperplane section of $X := V_5$ such that $\mathcal{O}_{Y}(H) = \mathcal{O}_{Y}(\Gamma)$. Since

$$1 = (\widetilde{\Gamma} \cdot C)_{\widetilde{Y}}$$
$$= (\Gamma \cdot C_0)_{Y}$$
$$= (H \cdot C_0)_{X}$$

 C_0 is a line on X. By [1, Proposition 15], C_0 is unique line in \mathbb{P}^6 contained in $Y\subset X$. Since the multiplicity $m(\mathcal{O}_{Y,X})$ of the local ring $\mathcal{O}_{Y,X}$ is equal to two, any line through the point X must be contained in Y. Therefore C_0 is unique line in X through the singularity X of $Y=H_5$.

§ 2. Double projection from a point

We will study the double projection of $X = V_5$ from the singularity x of A_4 -type of $Y = H_5$. For this, let us consider the linear system

$$|H-2x| = |M_x^2 \otimes O_X(H)|,$$

where H is a hyperplane section of X and $M_X\subset \mathcal{O}_{X,X}$ is the maximal ideal of the local ring $\mathcal{O}_{X,X}$. Let $\delta_1:X_1\longrightarrow X$ be the blowing up at the point x and put $E_1:=\delta_1^{-1}(x)\cong \mathbb{P}^2$. Let Y_1 and C_1 be the proper transforms of Y and C_0 respectively. Then we have

Lemma 1. dim |H-2x| = 2

Proof. Let us consider the exact sequences:

Since $\dim |H-x| = \dim |H| - 1$, we have

$$H^{0}(X_{1}, O_{X_{1}}(\delta_{1}^{*}H-E_{1})) \cong \mathbb{C}^{6}$$
, and $H^{1}(X_{1}, O_{X_{1}}(\delta_{1}^{*}H-E_{1})) \cong 0$.

Let $L := \text{Tr}_{E_1} |\delta_1^* H - E_1| \subseteq |\mathcal{O}_{E_1}(1)|$ be the trace of the

linear system $|\delta_1^{\star H-E_1}|$ on E_1 . Since $|\delta_1^{\star H-E_1}|$ has no fixed component and no base points on X_1 , so is L on E_1 . Therefore $L = |0_{E_1}(1)|$. Thus, we have the surjection

$$\label{eq:hole_hole_energy} \operatorname{H}^{0}\left(\mathrm{X}_{1},\mathcal{O}_{\mathrm{X}_{1}}\left(\delta_{1}^{\star}\mathrm{H-E}_{1}\right)\right) \longrightarrow > \operatorname{H}^{0}\left(\mathrm{E}_{1},\mathcal{O}_{\mathrm{E}_{1}}\left(1\right)\right) \cong \mathfrak{C}^{3} \ .$$

This means that

$$H^{0}(X_{1}, O_{X_{1}}(\delta_{1}^{*}H-2E_{1})) \cong \mathbb{C}^{3}$$
, and $H^{1}(X_{1}, O_{X_{1}}(\delta_{1}^{*}H-2E_{1})) = 0$.

This completes the proof.

Q.E.D.

By Lemma 1, we have rational maps

$$\Phi := \Phi_{|H-2x|} : X \longrightarrow \mathbb{P}^2 ,$$

$$\Phi^{(1)} := \Phi_{|\delta_1^*H-2E_1^*|} : X_1 \longrightarrow \mathbb{P}^2 .$$

Since $(\delta_1^{*H-2E_1}) \cdot C_1 = -1 < 0$, C_1 is a base curve of the linear system $|\delta_1^{*H-2E_1}|$.

Next, we will study the singularities of Y_1 . Let

 $\Delta \subset X$ be a small neighbourhood of x in X with a local coordinate system (Z_1,Z_2,Z_3) . Since the singularity $x \in Y = H_5$ is of A_4 -type and C intersects the component f_2 of $\alpha^{-1}(x)$ in \widetilde{Y} (see Figure 1), we may assume that

(i)
$$\triangle \cap Y = \{z_1 \cdot z_2 = z_3^5\} \longrightarrow \triangle \text{ with } x = (0,0,0)$$
,

(ii)
$$C_0 \cap \Delta = \{z_1 = z_3^2, z_2 = z_3^3\} \longrightarrow \Delta$$
.

By an easy calculation, we find that Y_1 has exactly one singular point x_1 of A_2 -type. Then there exists a birational morphism

$$\mu_1 : \widetilde{Y} \longrightarrow Y_1$$

such that

$$\mu_1^{-1}(x_1) = f_1 \cup f_2$$
, and μ_1
 $\widetilde{Y} - (f_1 \cup f_2) \cong Y_1 - \{x_1\}$ (isomorphic).

We put $l_i^{(1)} := \mu_1(l_i)$ $(1 \le i \le 2)$ and $C_1 = \mu_1(C)$. Then we have

$$E_1 \cdot Y_1 = 1_1^{(1)} + 1_2^{(1)}$$
, (2.1)

in particular, $l_1^{(1)}$, $l_2^{(1)}$ are two distinct lines on $E_1 \cong \mathbb{P}^2$ and C_1 is the proper transform of C_0 in X_1 .

Since $Y_1 \in |\delta_1^{\star}H-2E_1|$, by (2.1), we have

$$\begin{array}{rcl}
O_{Y_1}(Y_1) &=& O_{Y_1}(\delta_1^*H-2E_1) \\\\
&=& O_{Y_1}(\Gamma^{(1)}-2l_1^{(1)}-2l_2^{(1)}),
\end{array}$$

where $\Gamma^{(1)} = \delta_1^*(Y|_H) = \mu_1(\widetilde{\Gamma})$. We have

$$\mu_{1}^{*} \mathcal{O}_{Y_{1}}^{(\Gamma^{(2)}-2l_{1}^{(1)}-2l_{2}^{(1)})} \cong \mathcal{O}_{\widetilde{Y}}^{(\widetilde{\Gamma}-2f_{1}-2f_{2}-2l_{1}-2l_{2})}$$

$$= \mathcal{O}_{\widetilde{Y}}^{(\widetilde{\Gamma}-2z)}, \qquad (2.2)$$

where Z = f_1 + f_2 + l_1 + l_2 is the fundamental cycle of the singularity x associated with the resolution (\widetilde{Y},α) . From the exact sequence

$$0 \longrightarrow 0_{X_1} \longrightarrow 0_{X_1}(Y_1) \longrightarrow 0_{Y_1}(Y_1) \longrightarrow 0 , \qquad (2.3)$$

we have

$$H^{0}(Y_{1}, \mathcal{O}_{Y_{1}}(Y_{1})) \cong H^{0}(\widetilde{Y}, \mathcal{O}_{\widetilde{Y}}(\widetilde{T}-2Z))$$

$$\cong \mathbb{C}^{2}$$

since $H^0(X_1, \mathcal{O}_{X_1}(Y_1)) \cong \mathbb{C}^3$ by Lemma 1. Let $\{\psi_0, \psi_1\}$ be a basis of $H^0(\widetilde{Y}, \mathcal{O}_{\widetilde{Y}}(\widetilde{\Gamma}-2Z))$ such that

$$\begin{cases} (\psi_0) = 3C + 2f_2 + f_1 + f \\ (\psi_1) = 5C + 4f_2 + 2f_1 + 1_1 \end{cases}$$
 (2.4)

where f is a smooth rational curve in \widetilde{Y} such that $(f^2)_{\widetilde{Y}} = 0$ and $(f \cdot l_2)_{\widetilde{Y}} = 1$ (in fact, \widetilde{Y} can be considered as a ruled surface over a smooth rational curve, which has f as a fiber and l_2 as a section). Since

$$(\psi_0) \cap (\psi_1) = C \cup f_1 \cup f_2$$
,

we have the base locus

$$B_{s} | O_{Y_{1}}(Y_{1}) | = C_{1} \ni x_{1}$$
.

By (2.2), since $H^1(X_1, O_{X_1}) = 0$, we have the base locus

$$B_{s} | O_{X_{1}}(Y_{1}) | = C_{1} \ni x_{1}$$
.

Since Pic X \cong **Z**0_X(H) , |H-2x| has no fixed component, hence so is $|\delta_1^*H-2E_1|$. Thus we have the following

Lemma 2. $\left|\delta_1^{*}H^{-2}E_1\right|$ has no fixed component, but has the base locus

$$B_{S} | \delta_{1}^{*}H - 2E_{1} | = C_{1} \ni x_{1}$$
.

§ 3. Resolution of indeterminancy

We will describe in detail the resolution of indeterminancy of the rational map

$$\Phi^{(1)} : X_1 \longrightarrow \mathbb{P}^2$$

(see Lemma 2 in § 2).

For this, we need the following

Lemma 3 (Morrison [7]). Let S be a surface with only one singularity x of A_n -type in a smooth projective 3-fold. Let $E \subset S \subset X$ be a smooth rational curve in X. Let $\mu: \widetilde{S} \longrightarrow S$ be the minimal resolution of the singularity of S and put

$$\mu^{-1}(x) = \begin{matrix} n+1 \\ 0 \\ j=1 \end{matrix}$$

where C_{j} 's ($i \le j \le n+1$) are smooth rational curve with

$$(C_{j}^{2})_{\widetilde{S}} = -2 \quad (1 \le j \le n+1) ,$$

$$(C_{j} \cdot C_{j+1})_{\widetilde{S}} = 1 \quad (1 \le j \le n) ,$$

$$(C_{i} \cdot C_{j})_{\widetilde{S}} = 0 \quad \text{if} \quad |i-j| \ge 2 .$$

Let $\widetilde{\mathtt{E}}$ be the proper transform of \mathtt{E} in $\widetilde{\mathtt{S}}$. Assume that

(i) $N_{\widetilde{E}}|\widetilde{S} = 0_{\widetilde{E}}(-1)$, where $N_{\widetilde{E}}|\widetilde{S}$ is the normal bundle of \widetilde{E} in \widetilde{S} , and

(ii) deg $N_{E \mid X} = -2$, where $N_{E \mid X}$ is the normal normal bundle of E in X .

Then we have

(1)
$$N_{E|X} \cong 0_E \oplus 0_E$$
 (-2) if $x \in E$ and $(C_j \cdot \widetilde{E})_{\widetilde{S}} = 1$ for $(j = 1 \text{ or } n+1)$, or

(2)
$$N_{E|X} \cong O_{E}(-1) \oplus O_{E}(-1)$$
 if $x \notin E$.

<u>Proof.</u> In the proof of Theorem 3.2 in Morrison [7] we have only to replace the conormal bundle $N_{\widetilde{E}\mid\widetilde{S}}^{\star}=\mathcal{O}_{\widetilde{E}}(2)$ with $N_{\widetilde{E}\mid\widetilde{S}}^{\star}=\mathcal{O}_{\widetilde{E}}(1)$.

Now, we will resolve the indeterminancy.

(Step I). Let $\delta_1: X_1 \longrightarrow X = V_5$, E_1 , Y_1 , C_1 and X_1 be as in § 2. Let K_{X_1} be the canonical divisor on X_1 . Then we have

$$-K_{X_1} = 2\delta_1^*H - 2E_1$$
.

Since

$$(-K_{X_1} \cdot C_1) = 2(\delta_1^*H \cdot C_1) - 2(E_1 \cdot C_1)$$

= 2 - 2 = 0,

$$deg N_{C_1|X_1} = -2$$
.

Since $x_1 \in C_1$ and the normal bundle $N_{C|\widetilde{Y}} = O_C(-1)$, by Lemma 3, we have

$$^{N}C_{1}|X_{1} \stackrel{\cong}{=} ^{0}C_{1} \oplus ^{0}C_{1}^{(-2)}$$
.

Let Δ_1 be a small neighbourhood of the singularity x_1 of Y_1 in X_1 with a local coordinate system (Z_1, Z_2, Z_3) . Since x_1 is of A_2 -type and $(C \cdot Z)_{\widetilde{Y}} = (C \cdot f_2)_{\widetilde{Y}} = 1$, we may assume that

(i)
$$\Delta_1 \cap Y_1 = \{z_1 \cdot z_2 = z_3^3\} \longrightarrow \Delta_1$$

(ii)
$$\Delta_1 \cap C_1 = \{z_1 = z_3, z_2 = z_3^2\} \longrightarrow \Delta_1$$
.

(Step II). Let $\delta_2: X_2 \longrightarrow X_1$ be the blowing up along C_1 and put $C_1' = \delta_2^{-1}(C_1)$. By Step I, we have that $C_1' \in \mathbb{F}_2$. Let Y_2 , E_2 be the proper transform of Y_1 , E_1 in X_2 respectively. We find that Y_2 has exactly one singularity X_2 of A_1 -type. Then, there exists the birational morphism

$$\mu_2 : \widetilde{Y} \longrightarrow Y_2$$

such that

$$\mu_2^{-1}(\mathbf{x}_2) = \mathbf{f}_2$$

$$\widetilde{\mathbf{Y}} - \mathbf{f}_2 \cong \mathbf{Y}_2 - \{\mathbf{x}_2\} \quad \text{(isomorphic)} .$$

We put $C_2 := \mu_2(C)$, $f_1^{(2)} := \mu_2(f_1)$, $l_1^{(2)} := \mu_2(l_1)$ (i = 1,2) then $C_1' \cdot Y_2 = f_1^{(2)} + C_2$, in particular, $f_1^{(2)}$ (resp. C_2) is a fiber (resp. negative section) of the ruled surface $C_1' = F_2$, and $l_1^{(2)}$, C_2 are the proper transforms of $l_1^{(1)}$, C_1 in X_2 respectively. Thus we have $(l_1^{(2)} \cdot l_1^{(2)})_{E_2} = 0$ (i = 1,2), and

$$(f_1^{(2)} \cdot f_1^{(2)})_{E_2} = -1$$
.

Since $K_{X_2} = \delta_2^* K_{X_1} + C_1^!$, we have

$$(C_2 \cdot K_{X_2}) = (C_1 \cdot K_{X_1}) + (C_2 \cdot C_1)$$

= 0,

hence

$$deg N_{C_2|X_2} = -2$$
.

Since $x_2 \in C_2$, applying Lemma 3, we have

$$^{N}C_{2}|_{X_{2}} = ^{0}C_{2} \oplus ^{0}C_{2}^{(-2)}$$
.

Let Δ_2 be a small neighbourhood of \mathbf{x}_2 in \mathbf{x}_2 with a local coordinate system (Z₁, Z₂, Z₃). Then we may assume that

(i)
$$\Delta_2 \cap Y_2 = \{z_1 z_2 = z_3^2\} \longrightarrow \Delta_2$$
,

(ii)
$$\Delta_2 \cap C_2 = \{Z_1 = Z_2 = Z_3\} \longrightarrow \Delta_2$$
.

(Step III). Let $\delta_3: X_3 \longrightarrow X_2$ be the blowing up along C_2 and put $C_2' = \delta_3^{-1}(C_2)$. By Step II, we have that $C_2' \cong \mathbb{F}_2$. Let Y_3 , E_3 be the proper transforms of Y_2 , E_2 in X_3 respectively. We find that Y_3 is a smooth surface. Then there exists the isomorphism

$$\mu_3 : \widetilde{Y} \xrightarrow{\sim} Y_3$$
.

We put $C_3 = \mu_3(C)$, $f_i^{(3)} := \mu_3(f_i)$ (i = 1,2), $l_i^{(3)} = \mu_3(l_i)$ (i = 1,2). Then we have

$$c_2 \cdot Y_3 = f_2^{(3)} + c_3$$

in particular, $f_2^{(3)}$ (resp. C_3) is a fiber (resp. negative section) of the ruled surface $C_2^{'} \cong \mathbb{F}_2$, and $f_1^{(3)}$, $l_1^{(3)}$ (i = 1,2), C_3 are the proper transforms of $f_1^{(2)}$, $l_1^{(2)}$ (i = 1,2), C_2 in X_3 respectively. Thus we have

$$(1_1^{(3)} \cdot 1_1^{(3)})_{E_3} = (f_2^{(3)} \cdot f_2^{(3)})_{E_3} = -1, (f_1^{(3)} \cdot f_1^{(3)})_{E_3} = -2,$$

 $(1_2^{(3)} \cdot 1_2^{(3)})_{E_3} = 0$ and

$$(c_3 \cdot l_1^{(3)})_{Y_3} = 0, (c_3 \cdot f_2^{(3)})_{Y_3} = 1.$$

Since $K_{X_3} = \delta_3^* K_{X_2} + C_2^!$, we have

$$(C_3 \cdot K_{X_3}) = (C_2 \cdot K_{X_2}) + (C_3 \cdot C_2)$$

= 0,

hence

$$deg N_{C_3|X_3} = -2$$
.

Since Y_3 is smooth, applying Lemma 3, we have

$${}^{N}C_{3}|X_{4} = {}^{0}C_{3}^{(-1)} \oplus {}^{0}C_{3}^{(-1)}$$

(Step IV). Let $\delta_4: X_4 \longrightarrow X_3$ be the blowing up along C_3 and put $C_3' = \delta_4^{-1}(C_3)$. By Step III, we have that $C_3' \cong \mathbb{P}^1 \times \mathbb{P}^1$. Let Y_4 , E_4 be the proper transforms of Y_3 , E_3 in X_4 respectively. Since Y_3 is smooth, we have also the isomorphism

$$\mu_4 : \widetilde{Y} \xrightarrow{\sim} Y_4$$
.

Let f_3 be a fiber of the ruled surface $\delta_4 |_{C_3} : C_3^i \longrightarrow C_3$. We identify \widetilde{Y} with Y_4 via the isomorphism μ_4 , and put, for simplicity, $f_i = \mu_4(f_i)$, $l_i = \mu_4(l_i)$ (i = 1, 2), $\widetilde{\Gamma} = \mu_4(\widetilde{\Gamma})$ and $C = \mu_4(C)$. Then we have

$$C_3 \cdot Y_4 = C$$
,

in particular, f_i , l_i (i = 1,2), C are the proper transforms of $f_i^{(3)}$, $l_i^{(3)}$, C_3 in X_4 respectively, and $(C \cdot C)_{C_3} = 0$, $(C \cdot f_3)_{C_3'} = 1$.

$$(1_{1} \cdot 1_{1})_{E_{4}} = -1, (1_{2} \cdot 1_{2})_{E_{4}} = 0$$

$$(f_{1} \cdot f_{1})_{E_{4}} = (f_{2} \cdot f_{2})_{E_{4}} = -2$$

$$(f_{3} \cdot f_{3})_{E_{4}} = -1,$$

$$(3.1)$$

and the figure below (see also Pagoda (5.8) in Reid [7]), where \bar{C}_1' , \bar{C}_2' are the proper transform of C_1' , C_2' in X_4 .

(Figure 1)

Now, since $Y_{j+1} = \delta_{j}^{*}Y_{j} - C_{j}^{!}$ (1 \leq j \leq 3), we have $Y_{4} = \delta_{4}^{*}\delta_{3}^{*}\delta_{2}^{*}\delta_{1}^{*}H - 2\delta_{4}^{*}\delta_{3}^{*}\delta_{2}^{*}E_{1} - 3C_{3}^{!} - 2\overline{C}_{2}^{!} - \overline{C}_{1}^{!}$.

Therefore, a general hyperplane section H of X , we have

$$0_{Y_4}(Y_4) = 0_{Y_4}(\widetilde{\Gamma} - 2Z - f_1 - 2f_2 - 3C)$$
,

where $Z = l_1 + l_2 + f_1 + f_2$ (see (2.2) in § 2). By (2.4), we have

$$\theta_{Y_4}$$
 (Γ - 2 Z - f_1 - 2 f_2 - 3 C) \cong θ_{Y_4} (f)
$$\cong \theta_{\widetilde{V}}$$
 (f) .

Since f is a fiber of the ruled surface $\widetilde{Y}=Y_4$, $|0_{Y_4}^{}(f)| \text{ has no fixed component and no base point. Thus,} \\ |0_{Y_4}^{}(f)| \text{ defines a morphism } \phi:=\phi_{|0_{Y_4}^{}(f)|}:Y_4\longrightarrow \mathbb{P}^1 \text{ . Then } Y_4$ is a ruled surface over a smooth rational curve \mathbb{P}^1 with exactly one singular fiber $2C+2f_2+f_1+l_1$, in particular, l_2 is a section. Let us consider the exact sequence:

$$0 \longrightarrow \mathcal{O}_{\mathbb{X}_{4}} \longrightarrow \mathcal{O}_{\mathbb{X}_{4}}(\mathbb{Y}_{4}) \longrightarrow \mathcal{O}_{\mathbb{Y}_{4}}(\mathbb{Y}_{4}) \longrightarrow 0 .$$

Since $H^1(X_4, 0_{X_4}) = 0$ and the linear system $|0_{Y_4}(Y_4)|$ has no fixed component and no base point, so is $|Y_4| = |0_{X_4}(Y_4)|$. Therefore, it defines a morphism

$$\overline{\Psi} := \overline{\Psi}_{|Y_{\Delta}|} : X_{\Delta} \longrightarrow \mathbb{P}^2$$

of X_4 onto \mathbb{P}^2 such that

$$\overline{\Psi} \star O_{\mathbf{X}_{4}}(1) \cong O_{\mathbf{X}_{4}}(\mathbf{Y}_{4})$$
.

In particular, we have the following diagram:

$$\begin{array}{c} x_1 < \frac{\delta}{\sqrt{\delta_1}} x_4 \\ \downarrow^{\delta_1} \downarrow^{\Phi} \downarrow^{\Psi} \\ x \longrightarrow \mathbb{P}^2 \end{array}$$

where $\delta = \delta_2 \circ \delta_3 \circ \delta_4$.

This is the desired resolution of indeterminancy of the rational map

$$\Phi^{(1)} : x_1 ----> \mathbb{P}^2$$
.

§ 4. Structure of V₅

Let X_4 , $Y_4 = \widetilde{Y}$, $C_3^1 \cong \mathbb{P}^1 \times \mathbb{P}^1$, and C be as in § 3. Since

$${}^{N}C_{3}|_{X_{3}} = {}^{0}C_{3}^{(-1)} \oplus {}^{0}C_{3}^{(-1)}$$

by Corollary 5.6 in Reid [9], there exists the birational morphism $\phi: X_4 \longrightarrow V$ of X_4 onto a smooth 3-fold with $b_2(V) = 2$, and the morphism $\pi: V \longrightarrow \mathbb{P}^2$ of V onto \mathbb{P}^2 , and the birational map which is called "flip"

$$\rho$$
 : X_1 ----> V such that
$$\rho = \phi \, \circ \, \delta^{-1} \quad \text{and}$$

$$\bar{\Psi} = \pi \, \circ \, \phi$$

In particular, $\bar{f}_3:=\phi(\bar{C}_1'\cup\bar{C}_2'\cup C_3')$ is a smooth rational curve in V , and

$$x_4 - (\bar{c}_1' \cup \bar{c}_2' \cup \bar{c}_3') \xrightarrow{\phi} v - \bar{f}_3 < \frac{\rho}{\sim} x_1 - c_1$$
 (4.1)

We put $A = \phi(Y_4)$ and $\Sigma = \phi(E_4)$. Then,

$$-K_{\chi \gamma} = 2A + 2\Sigma \tag{4.2}$$

$$O_{V}(A) = \pi * O_{IP}^{2}(1)$$
 (4.3)

In fact, since $-K_{X_1} = 2\delta_1^*H - 2E_1 = 2Y_1 + 2E_1$ and $\mathcal{O}_{X_4}(Y_4) \cong \overline{\Psi}^*\mathcal{O}_{\mathbb{P}^2}(1)$, by (4.1), we have (4.2), (4.3). We put $\overline{1}_i = \phi(1_i)$ (i = 1,2) and $L = \pi(\overline{1}_2) \hookrightarrow \mathbb{P}^2$. Then $\overline{1}_i$'s are smooth rational curves in V and L is a line in \mathbb{P}^2 , in particular, $\pi|_A:A\longrightarrow L$ has a structure of the \mathbb{P}^1 -bundle F_1 with $\overline{1}_1$ a fiber and $\overline{1}_2$ the negative section. Moreover, Σ has only one singularity q of A_2 -type. The rational curves $\overline{1}_1$, $\overline{1}_2$, \overline{f}_3 , which are also contained in Σ , intersect only at the point q (see Figure 2).

(Figure 2)

By construction, $\sigma:=\phi|_{E_4}:E_4\longrightarrow\Sigma$ is the minimal resolution of the singularity of Σ with $\sigma^{-1}(q)=f_1\cup f_2$, and $\bar{l}_i=\sigma(l_i)$ (i = 1,2), $\bar{f}_3=\sigma(f_3)$ (see (3.1) and Figure 3).

We put $\lambda := \pi|_{\Sigma} : \Sigma \longrightarrow \mathbb{P}^2$. Then

$$(\lambda \circ \sigma) (f_1 \cup f_2 \cup l_1) = L \cap \underline{f}_3 = \{p\}$$
 (a point)

where $\underline{f}_3 = \pi(\overline{f}_3)$.

(Figure 3)

For a general fiber F of the morphism $\pi: V \longrightarrow \mathbb{P}^2$, we have, by (4.2),

$$deg(K_F) = (K_V \cdot F) = -2(\Sigma \cdot F)$$

$$\leq -2$$

hence $F\cong \mathbb{P}^1$ and $(\Sigma \cdot F)=1$, where K_F is the canonical divisor on F. Therefore Σ is a meromorphic section of $\pi:V\longrightarrow \mathbb{P}^2$.

Proposition 1. $\pi: V \longrightarrow \mathbb{P}^2$ is a \mathbb{P}^1 -bundle over \mathbb{P}^2 and Σ is a holomorphic section on \mathbb{P}^2 - $\{p\}$.

Proof. By construction,

$$\mathbb{C}^3 \cong X - Y \cong X_1 - (Y_1 \cup E_1) \stackrel{\rho}{\cong} V - (A \cup \Sigma)$$
.

In particular, $\pi: V - (A \cup \Sigma) \longrightarrow \mathbb{P}^2 - L$ is an affine morphism. Assume that there exists an irreducible divisor D on V such that $\pi(D) = \{\text{one point}\}$. Then one dimensional scheme D \cap Σ is contracted to one point, hence, Supp $(D \cap \Sigma) = \overline{1}_1$. Since $\overline{1}_1 \subseteq A = \pi^{-1}(L)$ and $\pi|_A: A \longrightarrow L$ is a \mathbb{P}^1 -bundle, this is a contradiction. Thus π is equi-dimensional, hence, π is proper flat morphism. Let G be an arbitrary scheme theoric fiber. Then $(\Sigma \cdot G)_V = 1$. Since $V - (A \cup \Sigma) \cong \mathbb{T}^3$ contains no compact analytic curve, G must be irreducible. Since $(K_V \cdot G) = -2(\Sigma \cdot G) = -2$, G is a smooth rational curve. Therefore $\pi: V \longrightarrow \mathbb{P}^2$ is a smooth proper morphism. By the upper semicontinuity theorem, we have that $\mathbb{R}^1\pi_*\mathcal{O}_V(\Sigma) = 0$ and $\pi_*\mathcal{O}_V(\Sigma)$ is a vector bundle of rank 2 over \mathbb{P}^2 . Moreover, for every point $\mathbf{x} \in \mathbb{P}^2$,

$$\pi_{\star} \mathcal{O}_{\mathbf{V}}(\Sigma) \otimes \mathbf{C}(\mathbf{x}) \cong \mathbf{H}^{0}(\pi^{-1}(\mathbf{x}), \mathcal{O}_{\mathbf{V}}(\Sigma) \otimes \mathcal{O}_{\pi^{-1}(\mathbf{x})})$$

$$\cong \mathbf{H}^{0}(\mathbb{R}^{1}, \mathcal{O}_{\mathbb{R}^{1}}(1))$$

$$\cong \mathbf{C}^{2}.$$

Thus the natural homomorphism

$$\pi * \pi_* \mathcal{O}_{\mathbf{V}}(\Sigma) \longrightarrow > \mathcal{O}_{\mathbf{V}}(\Sigma)$$

is surjective and induces the isomorphism $V\cong \mathbb{P}(\pi_{\star} \mathcal{O}_{V}(\Sigma))$ over \mathbb{P}^2 . The rest is clear.

Q.E.D.

 $\underline{\text{Remark.}}$ π is the contraction of an extremal ray of the smooth projective 3-fold $\,V$.

Finally, we will study the vector bundle $\pi_{\star} \mathcal{O}_{V}(\Sigma)$ of rank 2 over \mathbb{P}^2 .

Lemma 4.
$$O_{\Sigma}(\Sigma) = O_{\Sigma}(-3\overline{1}_1 + A)$$
.

<u>Proof.</u> Since the singularity of Σ is rational double point, we have

$$\sigma^*K_{\Sigma} = K_{E_4}$$

$$= -2f_1 - f_2 - 3l_2 ,$$

hence $K_{\Sigma} = -3\overline{1}_2$. On the other hand, since

$$K_{\Sigma} = K_{\mathbf{V}|\Sigma} + \Sigma|_{\Sigma}$$
$$= -2A|_{\Sigma} - \Sigma|_{\Sigma}$$

we have

$$\Sigma \big|_{\Sigma} = -2A \big|_{\Sigma} - K_{\Sigma}$$
$$= -2A \big|_{\Sigma} + 3\overline{1}_{2} .$$

Since $A|_{\Sigma} = \overline{1}_1 + \overline{1}_2$, we have

$$\Sigma \big|_{\Sigma} = -3\overline{1}_1 + A \big|_{\Sigma} ,$$

namely,
$$\theta_{\Sigma}(\Sigma) = \theta_{\Sigma}(-3\overline{1}_1 + A)$$
.

Q.E.D.

Let us consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbf{V}} \longrightarrow \mathcal{O}_{\mathbf{V}}(\Sigma) \longrightarrow \mathcal{O}_{\Sigma}(\Sigma) \longrightarrow 0.$$

Taking π_{\star} , we have

$$0 \longrightarrow 0 \longrightarrow \pi_{\star} 0_{\mathbf{V}}(\Sigma) \longrightarrow \pi_{\star} 0_{\Sigma}(\Sigma) \longrightarrow 0 . \quad (4.4)$$

Taking π^* in (4.4), we have the diagram:

$$0 \longrightarrow 0_{V} \longrightarrow \pi * \pi * 0_{V}(\Sigma) \longrightarrow \pi * \pi * 0_{\Sigma}(\Sigma) \longrightarrow 0$$

$$0 \longrightarrow 0_{V} \longrightarrow \pi * \pi * 0_{V}(\Sigma) \longrightarrow 0$$

in particular, we have the surjection

$$\pi^*\pi_*\mathcal{O}_{\Sigma}(\Sigma)$$
 $\longrightarrow > \mathcal{O}_{\Sigma}(\Sigma)$.

We put $\lambda := \pi \big|_{\Sigma} : \Sigma \longrightarrow \mathbb{P}^2$. Taking $\lambda \star$ in (4.4), we have the diagram

where $L:=\ker \tau$ is a line bundle, and the image of the global section 1 of \mathcal{O}_{Σ} via the map $\mathcal{O}_{\Sigma} \longrightarrow L$ defines an effective Cartier divisor D with $\operatorname{Supp}(D)=\overline{1}_1$.

Proposition 2. $\lambda * \pi_* \mathcal{O}_V(\Sigma)$ is an extension of $\mathcal{O}_\Sigma(\Sigma)$ by $\mathcal{O}_\Sigma(3\overline{1}_1)$.

<u>Proof.</u> We have only to prove that $D = 3\overline{1}_1$. Since $\lambda^*(\det(\pi_* \mathcal{O}_V(\Sigma))) = \mathcal{O}_{\Sigma}(\Sigma) \otimes \mathcal{O}_{\Sigma}(3\overline{1}_1)$, $(\Sigma \cdot \overline{1}_1)_{\Sigma} + (D \cdot \overline{1}_1)_{\Sigma} = 0$. Since $\mathcal{O}_{\Sigma}(\Sigma) = \mathcal{O}_{\Sigma}(-3\overline{1}_1 + A)$ by Lemma 4, we must have $D = 3\overline{1}_1$, and also, by (4.3), we have $\det(\pi_* \mathcal{O}_Y(\Sigma)) = \mathcal{O}_{D^2}(1)$.

Q.E.D.

§ 5. A construction of a compactification of \mathbb{C}^3

One can easily construct the surfaces E_3 , Σ and the morphisms $\sigma: E_4 \longrightarrow \Sigma$, $\lambda: \Sigma \longrightarrow \mathbb{P}^2$ in § 4 independent of the arguments there. Therefore we may assume the existence of these surfaces and morphisms. We recall some facts on them;

(i) Σ has exactly one singular point q of A_2 -type

(ii)
$$E_4^-(f_1Uf_2) \xrightarrow{\circ} \Sigma - \{q\}$$
 (isomorphic)

(iii)
$$\Sigma - \overline{1}_1 \xrightarrow{\lambda} \mathbb{P}^2 - \{P\}$$
 (isomorphic)

(iv)
$$L = \lambda(\bar{l}_2)$$
, $\underline{f}_3 = \lambda(\bar{f}_3)$ are two lines on \mathbb{P}^2 .

Lemma 5. As Q-Cartier divisors, we have

$$\begin{cases}
\sigma^* \bar{1}_1 \sim_{\mathbb{Q}} 1_1 + \frac{1}{3} f_1 + \frac{2}{3} f_2 \\
\sigma^* \bar{1}_2 \sim_{\mathbb{Q}} 1_2 + \frac{2}{3} f_1 + \frac{1}{3} f_2 \\
\sigma^* \bar{f}_3 \sim_{\mathbb{Q}} f_3 + \frac{1}{3} f_1 + \frac{2}{3} f_2
\end{cases}$$
(5.1)

and the linear equivalences

$$\begin{cases} 1_{1} + f_{2} + f_{3} \sim 1_{2} \\ \overline{1} \sim \overline{1}_{2} + \overline{1}_{1} \sim \overline{f}_{3} + 2\overline{1}_{1} \\ K_{E_{4}} = \sigma * K_{\Sigma} \sim \sigma * (-3\overline{1}) + f_{1} + 2f_{2} + 31_{1}, \quad (5.2) \end{cases}$$

where K_{E_4} is the canonical divisor on E_4 , and $\bar{1} = \lambda * 0$ (1) .

<u>Proof.</u> Since $(\sigma * \overline{1}_1 \cdot f_1) = (\sigma * \overline{1}_2 \cdot f_1) = (\sigma * \overline{f}_3 \cdot f_1) = 0$ for i = 1, 2, we have (5.1). By a similar calculation we have (5.2).

Now, we will prove the existence of a vector bundle of rank 2 over ${\bf P}^2$ which is an extension of $\theta_{\Sigma}(-3\bar{1}_1+\bar{1})$ by $\theta_{\Sigma}(3\bar{1}_1)$.

Lemma 6.

- 1) $\operatorname{Ext}_{\Sigma}^{1}(\mathcal{O}_{\Sigma}(-3\overline{1}_{1}+\overline{1}), \mathcal{O}_{\Sigma}(3\overline{1}_{1})) \cong \operatorname{Ext}_{E_{4}}^{1}(\sigma \star \mathcal{O}_{\Sigma}(-3\overline{1}_{1}+\overline{1}), \sigma \star \mathcal{O}_{\Sigma}(3\overline{1}_{1}))$.
- 2) $\operatorname{Ext}_{\mathbf{I}_{4}}^{1}(\sigma^{*}\mathcal{O}_{\Sigma}(-3\overline{\mathbf{I}}_{1}+\overline{\mathbf{I}}), \sigma^{*}\mathcal{O}_{\Sigma}(3\overline{\mathbf{I}}_{1})) \longrightarrow$ $\longrightarrow \operatorname{Ext}_{\mathbf{I}_{1}}^{1}(\sigma^{*}\mathcal{O}_{\Sigma}(-3\overline{\mathbf{I}}_{1}+\overline{\mathbf{I}}) \otimes \mathcal{O}_{\mathbf{I}_{1}}, \sigma^{*}\mathcal{O}_{\Sigma}(3\overline{\mathbf{I}}_{1}) \otimes \mathcal{O}_{\mathbf{I}_{1}}) \text{ is surjective.}$
- 3) $\dim \operatorname{Ext}_{\Sigma}^{1}(O_{\Sigma}(-3\overline{1}_{1}+\overline{1}), O_{\Sigma}(3\overline{1}_{1})) = 3$ $\dim \operatorname{Ext}_{1_{1}}^{1}(\sigma * O_{\Sigma}(-3\overline{1}_{1}+\overline{1}) \otimes O_{1_{1}}, \sigma * O_{\Sigma}(3\overline{1}_{1}) \otimes O_{1_{1}}) = 1.$

Proof. 1) Since $\operatorname{Ext}_{\Sigma}^{1}(\mathcal{O}_{\Sigma}(-3\overline{1}_{1}+\overline{1}), \mathcal{O}_{\Sigma}(3\overline{1}_{1})) \cong H^{1}(\Sigma, \mathcal{O}_{\Sigma}(6\overline{1}_{1}-\overline{1}))$ and $\operatorname{Ext}_{E_{4}}^{1}(\sigma^{*}\mathcal{O}_{\Sigma}(-3\overline{1}_{1}+\overline{1}), \sigma^{*}\mathcal{O}_{\Sigma}(3\overline{1}_{1})) \cong H^{1}(E_{4}, \sigma^{*}\mathcal{O}_{\Sigma}(6\overline{1}_{1}-\overline{1}))$, we have only to prove $H^{1}(\Sigma, \mathcal{O}_{\Sigma}(6\overline{1}_{1}-\overline{1})) \xrightarrow{\sim} H^{1}(E_{4}, \sigma^{*}\mathcal{O}_{\Sigma}(6\overline{1}_{1}-\overline{1}))$. Since $R^{1}\sigma_{*}\mathcal{O}_{E_{4}} = 0$, it is clear. 2) We have only to prove that the morphism $H^{1}(E_{4}, \sigma^{*}\mathcal{O}_{\Sigma}(6\overline{1}_{1}-\overline{1})) \xrightarrow{\sim} H^{1}(1_{1}, \sigma^{*}\mathcal{O}_{\Sigma}(6\overline{1}_{1}-\overline{1}) \otimes \mathcal{O}_{1_{1}})$ is surjective. For this, let us consider the exact sequence:

$$^{0} \rightarrow \sigma^{*} \mathcal{O}_{\Sigma} \left(6\overline{1}_{1} - \overline{1} \right) \otimes \mathcal{O}_{\mathbb{E}_{4}} \left(-1_{1} \right) \rightarrow \sigma^{*} \mathcal{O}_{\Sigma} \left(6\overline{1}_{1} - \overline{1} \right) \rightarrow \sigma^{*} \mathcal{O}_{\Sigma} \left(6\overline{1}_{1} - \overline{1} \right) \otimes \mathcal{O}_{\mathbb{I}_{1}} \rightarrow 0 \ .$$

By Lemma 5, we have

Therefore, we have the surjection

$$H^{1}(E_{4}, \sigma * O_{E_{4}}(6\bar{1}_{1}-\bar{1})) \longrightarrow H^{1}(1_{1}, \sigma * O_{E_{4}}(6\bar{1}_{1}-\bar{1}) \otimes O_{1_{1}})$$
.

Since

$$(\sigma^*(-3\bar{1}_1+\bar{1}) \cdot 1_1)_{E_4} = 1, (\sigma^*(3\bar{1}_1) \cdot 1_1)_{E_4} = -1,$$

we have

$$\operatorname{Ext}_{1_{1}}^{1} (\sigma * O_{\Sigma} (-3\overline{1}_{1} + \overline{1}) \otimes O_{1_{1}}, \sigma * O_{\Sigma} (3\overline{1}_{1}) \otimes O_{1_{1}})$$

$$\cong \operatorname{Ext}_{\mathbb{P}^{1}}^{1} (O(1), O(-1)) \cong \operatorname{H}^{1} (\mathbb{P}^{1}, O(-2)) \cong \mathbb{C} .$$

Finally, we prove that $H^1(E_4, 0_{E_4}(2K_{E_4} + 5\sigma * \overline{1})) = \mathbb{C}^3$. By Lemma 5, $K_{E_4} = -3\sigma * \overline{1} + f_1 + 2f_2 + 3l_1$. We put $G := \sigma * \overline{1}$. Then $(G^2)_{E_4} = 1$, $(G \cdot f_1)_{E_4} = (G \cdot f_2)_{E_4} = (G \cdot l_1)_{E_4} = 0$, and $f_1 \cup f_2 \cup l_1$ can be contracted to a smooth point of

We need the following well known

Lemma 7. Let $\nu: S \longrightarrow T$ be the blowing up at the point P on a smooth surface T , and put $\nu^{-1}(P) = C$. Them a vector bundle E on S is the pullback of a vector bundle on T if and only if

$$E|_{C} \cong O_{C}^{\oplus r}$$
,

where r = rank E.

Let $E_4 \xrightarrow{\sigma} \Sigma \xrightarrow{\lambda} \mathbb{P}^2$ be as before. We put $\mu := \lambda \circ \sigma$. Then $E_4 - (f_1 U f_2 U l_1) \stackrel{\mu}{=} \mathbb{P}^2 - \{0\}$, indeed, E_4 can be obtained from \mathbb{P}^2 by 3 times blowing ups, and $f_1 U f_2 U l_1$ is the exceptional divisor associated with the blowing ups.

Let $E=E_\xi$ be the vector bundle on E_4 determined by an element $\xi\in \operatorname{Ext}^1_{E_4}(\sigma*\mathcal{O}_\Sigma(-3\overline{1}_1+\overline{1}),\ \sigma*\mathcal{O}_\Sigma(3\overline{1}_1))$, where the image of ξ by the surjection:

$$\operatorname{Ext}^1_{\operatorname{E}_4}(\sigma^*\mathcal{O}_\Sigma(-3\overline{1}_1+\overline{1}),\sigma^*\mathcal{O}_\Sigma(3\overline{1}_1)) \longrightarrow \operatorname{Ext}^1_{\operatorname{1}_1}(\sigma^*\mathcal{O}_\Sigma(-3\overline{1}_1+\overline{1}),\sigma^*\mathcal{O}_\Sigma(31_1)) \cong \mathfrak{C}$$

is not zero.

Then $E \otimes O_{1}$ induces the non-split exact sequence

$$0 \longrightarrow \mathcal{O}_{1_1}(-1) \longrightarrow E \otimes \mathcal{O}_{1_1} \longrightarrow \mathcal{O}_{1_1}(1) \longrightarrow 0 ,$$

hence

a surface. By Lemma 5, we also have

$$2K_{E_4} + 5\sigma * \tilde{1} = -G + 2f_1 + 4f_2 + 6l_1$$
.

Since $f_1 \cup f_2 \cup l_1$ can be contracted to a smooth point, we have

$$H^{0}(E_{4}, O_{E_{4}}(-G+2f_{1}+4f_{2}+6l_{1})) = 0$$
,
 $H^{2}(E_{4}, O_{E_{4}}(-G+2f_{1}+4f_{2}+6l_{1})) \cong H^{0}(E_{4}, O_{E_{4}}(-2G-f_{1}-2f_{2}-3l_{1})) = 0$.

By Riemann-Roch theorem, we have easily

$$\dim H^{1}(E_{4}, O_{E_{4}}(-G+2f_{1}+4f_{2}+6l_{1})) = 3$$
,

hence

$$H^{1}(E_{4}, O_{E_{4}}(2K_{E_{4}} + 5\sigma * \overline{1})) \approx \mathbb{C}^{3}$$
.

Q.E.D.

$$E \otimes O_{1_1} \cong O_{1_1} \oplus O_{1_1}$$
.

On the other hand, we have

Thus

$$E \otimes O_{f_1} \cong O_{f_1}^{\oplus 2}$$
 $E \otimes O_{f_2} \cong O_{f_2}^{\oplus 2}$.

By Lemma 7, there exist a vector bundle \widetilde{E} on ${\rm I\!P}^2$ such that $E=\mu\star\widetilde{E}$, and then we have the exact sequence

$$0 \longrightarrow \sigma \star O_{\Sigma}(3\overline{1}_{1}) \longrightarrow \mu \star \widetilde{E} \longrightarrow \sigma \star O_{\Sigma}(-3\overline{1}_{1}+\overline{1}) \longrightarrow 0$$
 (5.1)

Taking σ_{\star} , we have the exact sequence

$$0 \longrightarrow 0_{\Sigma}(3\overline{1}_{1}) \longrightarrow \lambda^{*}\widetilde{E} \longrightarrow 0_{\Sigma}(-3\overline{1}_{1}+\overline{1}) \longrightarrow 0$$
 (5.2)

Further, taking λ_{\star} , we have

$$0 \longrightarrow 0 \longrightarrow \chi_{\mathbb{P}^2} \longrightarrow \widetilde{E} \longrightarrow \chi_{\star} 0 \longrightarrow \chi_{\Sigma} (-3\overline{1}_1) \otimes 0 \longrightarrow 0 , \qquad (5.3)$$

since $R^1 \lambda_* \theta_{\Sigma} (3\overline{1}_1) \cong 0$ by Grauert-Riemenschneider vanishing theorem.

We remark that $\lambda: \Sigma \longrightarrow \mathbb{P}^2$ is the blowing up of \mathbb{P}^2 by the ideal $J:=\lambda_* {}^0_\Sigma (-3\overline{1}_1)$. By (5.2), we have the \mathbb{P}^1 -bundle $V:=\mathbb{P}(\widetilde{E}) \xrightarrow{\pi} \mathbb{P}^2$ over \mathbb{P}^2 and a rational section $E \xrightarrow{\varepsilon} V$.

<u>Lemma 8</u>. $\widetilde{E} \otimes \mathcal{O}_{L} \cong \mathcal{O}_{L}(1) \oplus \mathcal{O}_{L}$.

Proof. Let us consider the exact sequence

$$0 \longrightarrow \mathcal{O}_{\Sigma}(3\overline{1}_{1}) \otimes \mathcal{O}_{\overline{1}_{2}} \longrightarrow \lambda^{*} E \otimes \mathcal{O}_{\overline{1}_{2}} \longrightarrow \mathcal{O}_{\Sigma}(-3\overline{1}_{1} + \overline{1}) \otimes \mathcal{O}_{\overline{1}_{2}} \longrightarrow 0.$$

Since $(3l_1 \cdot \overline{l}_2)_{\Sigma} = (\overline{1} \cdot \overline{l}_2)_{\Sigma} = 1$, we have

$$0 \longrightarrow 0 \atop \mathbb{I}^{p_1}(1) \longrightarrow \lambda^* E \otimes 0 \atop \overline{1}_2 \longrightarrow 0 \atop \mathbb{I}^{p_1} \longrightarrow 0 \quad (exact),$$

namely, $\lambda \star E \otimes O_{\overline{1}_2} \cong O_{1} \oplus O_{1} (1)$.

Q.E.D.

By Lemma 8, $\pi^{-1}(L):=A$ is the ${\rm I\!P}^1$ -bundle ${\rm I\!F}_1$ over $L\cong {\rm I\!P}^1$. Since $\lambda^*(L)=\bar{1}_2+\bar{1}_1$ on Σ , we have

$$\Sigma \cdot A = \overline{1}_1 + \overline{1}_2$$
.

Lemma 9. $N_{\bar{f}_3}|V = 0 \ P^1 \ N_{\bar{f}_3}|V = N_{\bar{f}_3}|V$ is the normal bundle of $\bar{f}_3 \hookrightarrow \Sigma$ in V.

 $\underline{\text{Proof}}$. Let $K_{\overline{V}}$ be the canonical divisor on V . Then

$$K_{V} = \pi * (K_{D^{2}} + \det \widetilde{E}) - 2\Sigma$$

$$= -2A - 2\Sigma$$

$$O_{\Sigma}(\Sigma) = O_{\Sigma}(-3\overline{1}_{1} + A)$$

$$= O_{\Sigma}(-3\overline{1}_{1} + \overline{1}) .$$

Since
$$(K_V \cdot \overline{f}_3) = (-4\overline{1} + 6\overline{1}_1 \cdot \overline{f}_3)_{\Sigma}$$

= $-4 + 4 = 0$,

by Lemma 3, we have the claim.

Q.E.D.

Lemma 10. $V - (\Sigma \cup A) \cong \mathbb{C}^3$.

Proof. Since $\pi|_{V-(\Sigma UA)}: V-(\Sigma UA) \longrightarrow \mathbb{P}^2-L\cong \mathbb{C}^2$ is an affine C-bundle over \mathbb{C}^2 , we have $V-(\Sigma UA)\cong \mathbb{C}^3$. Q.E.D.

Let $\phi_1:V_1\longrightarrow V=\mathbb{P}(\widetilde{E})$ be the blowing up along \overline{f}_3 and put $C_1'=\phi_1^{-1}(\overline{f}_3)$. Then $C_1'\cong \mathbb{F}_2$ by Lemma 9. Let Σ_1 be the proper transform of Σ in V_1 . Then Σ_1 has the singularity P_1 of A_1 -type, and there exists the birational morphism $v_1:E_4\longrightarrow \Sigma_1$ such that $v_1^{-1}(P_1)=f_2$ and $E_4-f_2\stackrel{?}{\cong}^1\Sigma_1-\{P_1\}$. We put $f_1^{(1)}=v_1(f_1)$ and $f_3^{(1)}:=v_1(f_3)$. Then $\Sigma_1\cdot C_1'=f_1^{(1)}+f_3^{(1)}$, in particular, $f_1^{(1)}$ is a fiber and $f_3^{(1)}$ is the negative section of $C_1'\cong \mathbb{F}_2$. Since $P_1\in f_3^{(1)}$ and $(K_{V_1}\cdot f_3^{(1)})=(K_{V}\cdot \overline{f}_3)=0$, by Lemma 3, we have

$$N_{f_3^{(1)}}|v_1 \cong \emptyset \oplus \emptyset (-2) .$$

Let $\phi_2: V_2 \longrightarrow V_1$ be the blowing up along the curve $f_3^{(1)}$ and put $C_2' = \phi_2^{-1}(f_3^{(1)}) \cong \mathbb{F}_2$. Let Σ_2 be the proper transform of Σ_1 in V_2 . Then Σ_2 is a smooth surface and there exists the isomorphism $v_2: \mathbb{F}_4 \xrightarrow{\sim} \Sigma_2$. We put $f_1^{(2)}:=v_2(f_1)$ for i=1,2,3. Then we have $\Sigma_2\cdot C_2'=f_2^{(2)}+f_3^{(2)}$, in particular, $f_2^{(2)}$ is a fiber and $f_3^{(2)}$ is the negative section of $C_2'\cong \mathbb{F}_2$. Since $(K_{V_2}\cdot f_3^{(2)})=(K_{V_1}\cdot f_3^{(1)})=0$ and Σ_2 is smooth, by Lemma 3, we have

$$f_3^{(2)} | v_2 \approx 0(-1) \oplus 0(-1)$$
.

Let $\phi_3: V_3 \longrightarrow V_2$ be the blowing up along the curve $f_3^{(2)}$ and put $C_3' = \phi_3^{-1}(f_3^{(2)}) \cong \mathbb{P}^1 \times \mathbb{P}^1$. Let C be a fiber of the ruled surface $\phi_3|_{C_3'}: C_3' \longrightarrow f_3^{(2)}$, and Σ_3 be the proper transform of Σ_2 in V_3 . Then Σ_3 is a smooth surface and there exists the isomorphism $v_3: \mathbb{E}_4 \xrightarrow{\sim} \Sigma_3$. We put $f_i = v_3(f_i)$ $(1 \le i \le 3)$, $1_i = v_3(1_i)$ $(1 \le i \le 2)$, which are indeed the proper transforms of $f_i^{(2)}$ $(1 \le i \le 3)$, $v_2(1_i)$ $(1 \le i \le 2)$ in V_3 respectively. Then, $\Sigma_3 \cdot C_3' = f_3$, in particular, $(f_3^2)_{\Sigma_3} = 0$ and $(f_3 \cdot C)_{\Sigma_3} = 1$ (see Step IV and Figure 1 in § 4).

Since $C_3^!\cong \mathbb{P}(\mathcal{O}(-1)\oplus\mathcal{O}(-1))$, by Corollary 5.6 in Reid [7], $C_3^!$ can be blown down along the fiber f_3 , and, step by step, the blowing down is done, and finally we have the smooth 3-fold X_1 with $b_2(X_1)=2$ and the contraction morphism $\delta:V_3\longrightarrow X_1$.

We put $C_1:=\delta(C_3'\cup \overline{C}_2'\cup \overline{C}_1')$, $E_1:=\delta(\Sigma_3)$, and $Y_1:=\delta(A_3)$, where \overline{C}_j' (j=1,2), A_3 are the proper transforms of C_j' (j=1,2), A in V_3 respectively. Then, by construction, one can easily see that C_1 is a smooth rational curve in X_1 with $C_1\subset Y_1$, $E_1\cong \mathbb{P}^2$, and Y_1 is a singular del Pezzo surface with an singularity of A_2 -type. We put $\rho:=(\phi_1\circ\phi_2\circ\phi_3)^{-1}\circ\delta$. Then ρ is a birational map of V onto X_1 such that $\rho:V-\overline{f}_3\xrightarrow{\sim} X_1-C$ (isomorphic). Since $K_V=-2A-2\Sigma$, we have $K_{X_1}=-2Y_1-2E_1$. Since $E_1\cdot Y_1=1_1^{(1)}+1_2^{(2)}$, by the adjunction formula, $\theta_{E_1}(E_1)=\theta_{E_1}(-1_j^{(1)})$ for j=1,2, where $1_j^{(1)}:=\delta(1_j)$ is a line in $E_1\cong \mathbb{P}^2$. Thus E_1 can be blown down to a point of a smooth projective 3-fold X.

Let $\delta_1: X_1 \longrightarrow X$ be the contraction morphism. Then $Y:=\delta_1(Y_1)$ has an singularity of A_4 -type. Since all the transformations above are done on the divisor $E \hookrightarrow V$, we have $X-Y \stackrel{\sim}{\longrightarrow} V-(\Sigma \cup A)\cong \mathbb{C}^3$ (by Lemma 10). Thus, (X,Y) is a smooth projective compactification of \mathbb{C}^3 such that Y is a singular del Pezzo surface with an singularity of A_4 -type. This implies that X is a Fano 3-fold of index $Y = X = X \cdot \mathcal{O}_X(Y)$. Since $Y = X \cdot \mathcal{O}_X(Y)$ has an singularity of X_4 -type, we have deg $X_Y = X \cdot \mathcal{O}_X(Y) = X$

 \mathbb{C}^3 in case of the index r = 2 (see [1]).

Remark. We put $\bar{A}=\pi^{-1}(\pi(\bar{f}_3))$ \longrightarrow V. Then \bar{A} is a \mathbb{P}^1 -bundle over $\bar{f}_3\cong\mathbb{P}^1$. Let \bar{A}_3 be the proper transform of \bar{A} in V_3 and put $\bar{Y}=\delta(\bar{A}_3)$. Since $V-(\bar{A}\cup\Sigma)\cong\mathbb{C}^3$ and the transformations above are all on $\Sigma\longrightarrow V$, we also have $X-\bar{Y}\cong V-(\bar{A}\cup\Sigma)\cong\mathbb{C}^3$. By construction, \bar{Y} is not normal and its normalization is \bar{F}_3 . This (X,\bar{Y}) is the same example of a compactification of \mathbb{C}^3 with non-normal boundary as in [1].

Remark. The vector bundle E_ξ is completely determined by (X,Y). Therefore Theorem 2.4 (b) in [8] is not true.

References

- [1] Furushima, M.: Singular del Pezzo surfaces and analytic compactifications of 3-dimensional complex affine space C³. Nagoya Math.J. 104, 1-28 (1986).
- [2] Furushima, M.: On complex analytic compactifications of \mathbb{C}^3 . Preprint M.P.I. 87-19 (1987).
- [3] Furushima, M.: On complex analytic compactifications of \mathbb{C}^3 (II). Preprint M.P.I. (1987).
- [4] Hartshorne, R.: Algebraic Geometry. Graduate Texts 49, Springer, Heidelberg (1977).
- [5] Iskovskih, V.A.: Anticanonical models of three dimensional algebraic varieties. J. Soviet Math. 13-14, 745-814 (1980).
- [6] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem, Advanced Studies in pure Math. 10, 1987, Algebraic Geometry, Sendai, 283-360 (1985).
- [7] Morrison, D.: The birational geometry of surfaces with rational double points. Math. Ann. 271, 415-438 (1985).
- [8] Peternell, T., Schneider, M.: Compactifications of C³ (I).

 Preprint (1987).
- [9] Reid, M.: Canonical 3-folds. Advanced Studies in pure Math. 1, Algebraic Varieties and Analytic Varieties, 131-180 (1983).