ON COMPLETENESS IN AFFINE

DIFFERENTIAL GEOMETRY

Katsumi Nomizu

Sonderforschungsbereich Theoretische Mathematik Beringstraße 4 D - 5300 Bonn 1 Max-Planck-Institut

für Mathematik

Gottfried-Claren-Str. 26

D - 5300 Bonn 3

MPI/SFB 84 - 33

On Completeness in Affine Differential Geometry

Katsumi Nomizu

In affine differential geometry there are at least three notions of completeness for nondegenerate hypersurfaces M of the affine space \mathbb{R}^{n+1} :

- (1) affine metric completeness, namely, completeness of the Levi-Civita connection of the affine metric of M (whether it is positive-definite or not);
- (2) Euclidean completeness, namely, completeness of the Riemannian metric on M induced from a Euclidean metric in \mathbb{R}^{n+1} :
- (3) completeness of the canonical equiaffine connection on M.
- R. Schneider [6] has studied conditions (1) and (2) and has given an example of a surface in \mathbb{R}^3 which is Euclidean-complete but not affine metric-complete. E. Calabi's work in [1], [2] shows the importance of condition (1) in some global problems. In the present paper, we consider one more completeness property:
- (2) Lorentzian completeness, namely, completeness of the metric (assumed nondegenerate) induced on M from a flat Lorentzian metric in \mathbb{R}^{n+1} .

It was shown in [4] that if M is a spacelike hypersurface in \mathbb{R}^{n+1} with Lorentzian metric $\sum\limits_{k=1}^n \mathrm{d} x_k^2 - \mathrm{d} x_{n+1}^2$ and if the

induced metric on M is complete, then the metric induced on M ${n+1 \atop rom}$ the Euclidean metric $\sum\limits_{k=1}^{n+1} dx_k^2$ is also complete. In this k=1 sense, we may say that (2') implies (2) at least for a spacelike hypersurface.

We wish to propose a more systematic study of these completenes conditions, but the purpose of this paper is to give an example of a spacelike surface M in \mathbb{R}^3 with metric $\mathrm{d} x^2 + \mathrm{d} y^2 - \mathrm{d} z^2$ (that is, the Lorentz-Minkowski space L^3) whose induced metric is complete but whose affine metric is not complete.

In order to clarify our approach to affine differential geometry we shall start with a brief introduction to the subject which emphasizes the notion of equiaffine structure. An equiaffine structure on a differentiable manifold is a pair (∇,θ) , where ∇ is a linear connection with zero torsion and θ is a volume element which is parallel relative to ∇ . This approach was first given in my talk at the Conference in Differential Geometry, Münster, June 1982.

1. Basic theory for hypersurfaces:

Let \mathbb{R}^{n+1} be an (n+1)-dimensional affine space with a volume element given by the determinant: $det(e_1, \dots e_n) = 1$, where $\{e_1, \dots, e_n\}$ is the standard basis of the underlying vector space for \mathbb{R}^{n+1} . We denote by D the standard linear connection in \mathbb{R}^{n+1} relative to which the volume element det is parallel.

To deal with a more general situation, let us consider an (n+1)-dimensional manifold \widetilde{M} with a certain equiaffine structure (D,ω) , namely, a linear connection D with zero torsion and a volume element ω which is parallel relative to D. Let M be a hypersurface, namely, an n-manifold with an immersion f into \widetilde{M} . For a local theory, we think of M as imbedded and supress f in all basic formulas we write. Let ξ be a transversal field of tangent vectors on M so that for each x in M, the tangent space $T_{X}(\widetilde{M})$ is the direct sum of the tangent space $T_{X}(M)$ and the span of ξ . For tangent vector fields X and Y on M, we decompose $D_{X}Y$ at each point x in the form

(1)
$$D_XY = \nabla_XY + h(X,Y)\xi$$
,

where $\nabla_X Y$ is the component tangent to M and $h(X,Y)\xi$ is the component in the direction of ξ . It is quite routine to check that

$$(2) \quad (X,Y) \longrightarrow \nabla_X Y$$

defines a linear connection on M with zero torsion and that

$$(3) \quad (X,Y) \longrightarrow h(X,Y)$$

defines a bilinear symmetric form on each tangent space of M,

called the second fundamental form. Note that both the connection ∇ and the form h depend on the choice of ξ . In addition to (1), we may also decompose $D_{\chi}\xi$ in the form

(4)
$$D_{X}^{\xi} = -S(X) + \tau(X)\xi$$
,

where S(X) is the component tangent to M and $\tau(X)\xi$ is the component in the direction of ξ . We see that S is a (1,1) tensor and τ is a 1-form. We shall also define a volume element v on M by

(5)
$$\theta(X_1,...,X_n) = \omega(X_1,...,X_n,\xi),$$

for any tangent vectors $\mathbf{X}_1, \dots, \mathbf{X}_n$ on M . It is easy to check that

(6)
$$\nabla_{\mathbf{X}} \theta = \tau(\mathbf{X}) \theta$$
.

Our approach is the following. Assuming non-degeneracy of M (as explained below) we first show that there is a choice of ξ for which the form τ vanishes identically so that the volume element θ is parallel relative to the connection ∇ . We then impose one further condition which will determine ξ , ∇ and θ uniquely. The resulting pair (∇,θ) is the canonical equiaffine structure on M.

Now for our purpose, we begin with

Lemma 1. Let $\bar{\xi} = Z + r\xi$ be another choice of a transversal vector field, where Z is tangent to M and r > 0 is a differentiable function. Then we have the relationships

(i) $\mathbf{h} = \mathbf{\hat{r}} \mathbf{\hat{h}}$

(ii)
$$\nabla_{\mathbf{X}} \mathbf{Y} = \overline{\nabla}_{\mathbf{X}} \mathbf{Y} + \overline{\mathbf{h}} (\mathbf{X}, \mathbf{Y}) \mathbf{Z}$$

(iii)
$$\overline{\tau}(X) = \tau(X) + Xr/r + h(X,Z)/r$$

between ∇ , h and τ for ξ and $\overline{\nabla}$, \overline{h} and $\overline{\tau}$ for $\overline{\xi}$. Proof: Straightforward.

From (i) it follows that the condition that h is nondegenerate is independent of the choice of ξ . In this case, we say that M is nondegenerate. Now we have

Lemma 2. If M is nondegenerate, then we can choose ξ so that $\tau = 0$ (and thus θ is parallel relative to ξ).

<u>Proof:</u> For r = 1, we can find Z such that $h(X,z) = -\tau(X)$ for every tangent vector X.

Remark: If Σ denotes the set of transversal vector fields for which $\tau=0$, then the map $\xi \in \Sigma \longrightarrow \theta$ is injective. For, if $\xi, \overline{\xi} \in \Sigma$, then in the notation of Lemma 1, $\theta=\overline{\theta}$ implies r=1. From $\tau=\overline{\tau}=0$, we have h(X,Z)=0 for all X, so that Z=0.

Now we impose a further condition on ξ . For h corresponding to ξ , let ν be the volume element on M defined by

(6)
$$v(X_1, \ldots, X_n) = \sqrt{|\det[h(X_1, X_1]|},$$

where $\{x_1, \ldots, x_n\}$ is any basis in the tangent space. Let us consider the condition

(C) $v = \theta$.

By choosing a basis $\{X_1, \dots, X_n\}$ such that $\theta(X_1, \dots, X_n) = 1$, let

(7) $h_{ij} = h(X_i, X_j)$ and $H = det[h_{ij}]$.

Then $v(X_1,...,X_n) = \sqrt{|H|}$ and hence $v = \sqrt{|H|} \theta$, Condition (C) is thus equivalent to |H| = 1.

Lemma 3. Let $\xi, \overline{\xi} \in \Sigma$, and write H and \overline{H} for the values for ξ and $\overline{\xi}$ defined in (7). If $\overline{\xi} = Z + r\xi$ as in Lemma 1, then

$$h = r\overline{h}$$
 and $H = r^{n+2}\overline{H}$

Proof: Straightforward.

In view of Lemma 3, we see that

(8)
$$\hat{h} = h/|H|^{\frac{1}{n+2}}$$

is independent of the choice of ξ . (8) is called the affine metric for the nondegenerate hypersurface M. If $\xi \in \Sigma$ satisfies condition (C), then '|H| =1 so that h=h in (8). Thus the volume element $\theta = \nu$ for ξ coincides with the volume element $\hat{\theta}$ for the affine metric \hat{h} . The uniqueness part in the following theorem follows from the remark just after Lemma 2.

Theorem 1. If M is a nondegenerate hypersurface in \widetilde{M} , we can choose a unique transversal vector field $\xi \in \Sigma$ satisfying condition (C).

Proof: By Lemma 2, we choose $\xi \in \Sigma$ and compute $H = H_{\xi}$.

By taking $r = H^{n+2}$ we choose a tangent vector field 2 such that $\overline{\xi} = \mathbb{Z} + r\xi$ is in Σ again. Then $\overline{H} = H_{\xi}$ is given by H/r = H/|H| so that $|\overline{H}| = 1$. Thus $\overline{\xi} \in \Sigma$ satisfies condition (C).

The transversal vector field ξ established in Theorem 1 is called the affine normal for the nondegenerate hypersurface M. For this ξ , the second fundamental form h coincides with the affine metric \hat{h} , and the volume element θ coincides with the volume element $\hat{\theta}$ of the affine metric \hat{h} . The linear connection ∇ arising from the affine normal is called the canonical affine connection on M. The affine metric \hat{h} is nondegenerate. The Levi-Civita connection on M for the metric \hat{h} will be called the affine metric connection.

When $\widetilde{M} = \mathbb{R}^{n+1}$ with its equiaffine structure (D,det), we obtain the canonical equiaffine structure (∇ , ω) on any nondegenerate hypersurface M in \mathbb{R}^{n+1} . This is indeed the object of study in classical affine differential geometry.

2. An example.

We shall give an example of a spacelike surface in the Lorentz-Minkowski space L³ whose induced metric is complete but whose affine metric is not complete. In fact, this surface is one of the surfaces constructed in [3] in the following way.

Let f be a mapping of \mathbb{R}^2 into \mathbb{L}^3 with metric $dx^2 + dy^2 - dz^2$:

$$(u,\phi) \in \mathbb{R}^2 \longrightarrow f(u,\phi) = (x,y,z) \in L^3$$

where

(9)
$$x = \int_0^u \sqrt{1+e^{2t}} dt$$
, $y=e^u \sinh \phi$, $z=e^u \cosh \phi$.

Then f is an imbedding of the entire (u,ϕ) -plane \mathbb{R}^2 into L^3 and the induced metric on \mathbb{R}^2

(10)
$$ds^2 = du^2 + e^{2u} d\phi^2$$

is positive-definite. This metric is complete, since the transformation $(u,\phi) \longrightarrow (X,Y)$, where $X=\phi$ and $Y=e^{-u}$ takes it into the Poincaré metric $(dX^2+dY^2)/Y^2$ in the upper-half plane Y>0, which is known to be complete. It also follows that (10) has constant Gaussian curvature -1. We denote by M_0 this spacelike surface $f: \mathbb{R}^2 \longrightarrow L^3$.

In order to view \mathbf{M}_0 from the affine point of view, we take a unit timelike normal vector field $\boldsymbol{\xi}$ and the corresponding second fundamental form h. It is known, in the theory of submanifolds of a Lorentzian manifold, that the Gaussian curvature K, which is -1 for our surface \mathbf{M}_0 , is related to h by the Gauss equation

$$-\kappa = h(x_1, x_1) h(x_2, x_2) - h(x_1, x_2)^2$$
,

where $\{X_1, X_2\}$ is an orthonormal basis (relative to the metric (10)) in the tangent space. This means that from the affine point of view, the quantity H defined in (7) for ξ is equal to 1. Thus the affine metric of M_0 coincides with h. We know from [3] that

$$h(\partial/\partial u, \partial/\partial u) = e^{u} / \sqrt{1 + e^{2u}}, h(\partial/\partial u, \partial/\partial \phi) = 0,$$

 $h(\partial/\partial \phi/\partial/\partial \phi) = e^{u} / \sqrt{1 + e^{2u}}.$

Thus h may be written in the form

(11)
$$d\sigma^2 = (e^{u}/\sqrt{1+e^{2u}})du^2 + (e^{u}\sqrt{1+e^{2u}})d\phi^2$$
.

This affine metric is elliptic. In order to show that it is not complete, we use the following lemma, whose proof is easy.

Lemma 4. Suppose that $d\sigma^2$ and $d\tau^2$ are two Riemannian metrics on a differentiable manifold such that $d\sigma^2 \le d\tau^2$.

(i) If $\{x_n^2\}$ is a Cauchy sequence relative to $d\tau^2$, it is so relative to $d\sigma^2$

(ii) If $d\sigma^2$ is complete, so is $d\tau^2$.

To apply this lemma, let

$$d\tau^2 = \sqrt{1 + e^{2u}} d\sigma^2 = e^u du^2 + e^u (1 + e^{2u}) d\phi^2$$

and observe that

$$d\sigma^2 \leq \sqrt{1 + e^{2u}} d\sigma^2 = d\tau^2.$$

We shall show that the metric $d\tau^2$ is not complete. This implies that $d\sigma^2$ is not complete.

Consider the curve C given by u=-t, $\phi=0$, where $0 \le t < \infty$. The tangent vector $(du/dt, d\phi/dt) = (-1,0)$ has the length (relative to $d\tau^2$) equal to $e^{-t/2}$. So the arclength of C is

$$\int_0^{\infty} e^{-t/2} dt = 2$$
.

Obviously, the curve C has no limit point as $t+\infty$. This proves that $d\tau^2$ is not complete.

Remark 1. The canonical affine connection ∇ of M_0 coincides with the Levi-Civita connection of the metric ds^2 . Hence it is complete. Thus M_0 is also an example showing that condition (3) in the introduction does not imply condition (1).

Remark 2. It was also shown in [3] that for each a > 0, $a \ne 1$, there is a surface M_a in L^3 which is a non-standard imbedding of the hyperbolic plane into L^3 . We can show that each of these surfaces is affine-metric complete in the following way.

The surface Ma is defined by

$$x = \int_0^u \sqrt{1 + a^2 sh^2 t} dt$$
, y=a ch u sh ϕ , z=a ch u ch ϕ .

The induced metric on M is

$$ds^2 = du^2 + a^2 ch^2 u d\phi^2,$$

and the affine metric (which coincides with the second fundamental form of M_a as a spacelike surface of L^3) is given by

$$d\sigma^2 = (a ch u / \sqrt{1 + a^2 sh^2 u}) du^2 + \sqrt{1 + a^2 sh^2 u} a ch u d\phi^2$$
.

Case: a < 1 . We have

$$1 + a^2 sh^2 u < 1 + sh^2 u = ch^2 u$$
 so $(a chu/\sqrt{1 + a^2 sh^2 u}) > a$

from which we have

$$d\sigma^2 > a du^2 + a d\phi^2$$
.

Since the metric on the right hand side is complete, so is 2 by Lemma 4.

Case 2: a > 1 . We have

$$a ch u/\sqrt{1 + a^2 sh^2 u} > 1$$

so that

$$d\sigma^2 > du^2 + a d\phi^2$$
.

Again, $d\sigma^2$ is complete.

Department of Mathematics Brown University Providence, R. I 02912 U.S.A.

and

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 5300 Bonn 3 Federal Republic of Germany

References

- [1] F. Calabi. Improper affine hypersheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105 126.
- [2] E. Calabi, Hypersurfaces with maximal affinely invariant area, Amer. J. Math. 104 (1982), 91 126.
- [3] J. Hano and K. Nomizu, On isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampère equation of a certain type, Math. Ann. 262 (1983), 245 253.
- [4] S. G. Harris and K. Nomizu, On the convexity of spacelike hypersurfaces with nonpositive curvature, Geom. Dedicata 13 (1983), 347 - 350.
- [5] K. Nomizu, What is affine differential geometry? Proceedings Differential Geometry Conference, Münster (1982), 42 43.
- [6] R. Schneider, Zur affinen Differentialgeometrie im Grossen I, Math. Zeits. 101 (1967), 375 - 406.