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On Completeness in Affine Differential Geometry

Katsumi Nomizu

In affine differential geometry there are at least three
notions of completeness for nondegenerate hypersurfaces M of
the affine space Rn” s
(1) affine metric completeness, namely, completeness of the
Levi-Civita connection of the affine metric of M (whether
it is positive-definite or not);

(2) Euclidean completeness, namely, completeness of the
Riemannian metric on M induced from a Euclidean metric
in Rn”;

(3) completeness of the canonical equiaffine connection on M.

R. Schneider [6] has studied conditions (1) and (2) and has
given an example of a surface in R3 which is Euclidean-com-
plete but not affine metric-complete. E. Calabi's work in [1], [2]
shows the importance of condition (1) in some global problems. In
the present paper, we consider one more completeness property:

(2) Lorentzian completeness, namely, completeness of the
metric (assumed nondegenerate) induced on M from a flat Lorent-

zian metric in Rn” .

It was shown in [4] that if M is a spacelike hypersurface

2 2

n
n+1 -
in R with Lorentzian metric k-t1 c:lxk dxn . and if the



induced metric on M is complete, then the metric induced oh M
from the Euclidean metric :g:dxi - is also complete. In this
sénsé, we may say that (2') implies (2) at least for a spacelike
hypersurface. |

We wish to propose a more systematic study of these completenes
conditions, but the purpose of this paper is to give an example

3 with metric dx2+ dy2 - d22

of a spacelike surface M in TR
(that is, the Lorentz-Minkowski space L3) whose induced metric
is complete but whose affine metric is not complete.

In order to clarify our approach to affine differential
geometry we shall start with a brief introduction to the subject
which emphasizes the notion of equiaffine structure. An equiaggine
8tructurne on a differentiable manifold is a pair (v,8), where
V‘ is a linear connection with zero torsion and 6 is a volume
element which is parallel relative to V . This approach was

first given in my talk at the Conference in Differential Geometry,

Minster, June 1982.



1. Basic theory for hypersurfaces:

Let l!n”

be an (n+1)-dimensional affine space with a
volume element given by the determinant: det(e1,...gn) = 1,
where {31,....en} is the standard basis of the underlying

vector space for :Rn*1. We denote by D the standard linear

connection in ]Rn”

relative to which the volume element det
is parallel.

To deal with a more general situation, let us consider an
(n+1)~-dimensional manifold M with a certain equiaffine struc-
ture (D,w) , namely, a linear connection D with zero torsion
and a volume element w which is parallel relative to D .

Let M be a hypersurface, namely, an n-manifold with an immer-
sion f into M . For a local theory, we think of M as im-
bedded and supress £ in all basic formulas we write. Let ¢ be
a transversal field of tangent vectors on M so that for each

x in M, the tangent space Tx(ﬁ) is the direct sum of the
tangent space Tx(u) and the span of ¢ . Por tangent vector

fields X and Y on M , we decompose D, Y at each point x in

X
the form
(1) DY = V¥ + h(X,Y)¢e .
where va is the component tangent to M and h(X,Y)¢ is the

component in the direction of ¢ . It is quite routine to check that
(2)  (X,X) ——ﬁ“va
defines a linear connection on M with zero torsion and that

(3) (X,Y) —> hi(X,Y)

defines a bilinear symmetric form on each tangent space of M ,



called the second fundamental form. Note that both the connec-
tion V and the form h depend on the choice of ¢ . In addi-

tion to (1), we may also decompose D in the form

x&
(4) Dyt = -S(X) + t(X)¢ ,

where S(X) is the component tangent to M and =+t(X)f is the
component in the direction of ‘£ . We see that S is a (1,1)

tensor and 1t is a 1-form. We shall also define a volume ele-

ment v on M by
(5) e(x1""'xn) = w(x1l°'-lxnl£)l

for any tangent vectors x1,...,x on M, It is easy to check

n
that

(6) Vxﬂ = (X))o .

Our approach is the following. Asuming non-degeneracy of
M (as explained below) we first show that there is a choice
of & for which the form <t vanishes identically so that the
volume element 6 is parallel relative to the connection V.
We then impose one further condition which will determine ¢,V
and 6 uniguely. The resulting pair (v,0) is the canondical

equdaffine structure on M .,

Now for our purpose, we begin with

Lemma 1. Let "% = Z+rf be another choice of a transversal
vector field, where 2 is tangent to M and r>0 1is a dif-

ferentiable function. Then we have the relationships



(1) h =rxh

(14)  vY = v Y + h(X,Y)2

b
(iii) T(X) =1(X) + Xr/r + h(X,2)/r

|
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for

-]

between V,h and t for £ and ©V,h and

Proof: Straightforward.

From (i) it follows that the condition that h is nondegene-
rate is independent of the choice of &. In this case, we say

that M is nondegenerate. Now we have

Lemma 2. If M is nondegenerate, then we can choose £ so
that v = 0 (and thus 6 is parallel relative to ¢§).
Proof: For r =1, we can find Z such that h(X,z) = -1(X)

for every tangent vector X.

Remark: If : denotes the set of transversal vector fields
for which 1 = 0., then the map £€I — 8 is injective. For,
if E,E€r , then in the notation of Lemma 1, 6= 8 implies
r=1 . From +t=7=0, we have h(X,Z) = 0 for all X , so
that 2 = 0.

Now we impose a further conditionon & . For h corres-

ponding to & ,let v be the volume element on M defined by

(6)  viXy,.o.sX ) = VIGeEIR(X X1,

where {x1,...,xn} is any basis in the tangent space. Let us

consider the condition
(C) v = 0.

By choosing a basis {x1,...,xn} such that a(x1....,xn)=1,
let



(7) h -;h(xi,x and H = dct[hij].

1y 3!
Then v(x?u.;,xh)-fiﬁl ‘and hence v = YTH[ ¢ , Condition (C)
is thus equivalent to |[H| = 1,

Lemma 3. Let E,E€X , and write H and H for the values
for £ and t defined in (7). If T = Z+rf as in Lemma 1,
then

h=rh and H = r*2F

Proof: gtraightforward.

In view of Lemma 3, we see that

2

(8) h = h/m*2

is independent of the choice of & . (8) is called the af{ine
metnic for the nondegenerate hypersurface M . If E€I satisfies
eondition (C), then '|H| =1 so that' fi=sh in’ (8)..Thus the volume
element 6 =v for.{ coincides with the volume element 3 for the
affine metric % . The uniqueness part in the following theorem

follows from the remark just after Lemma 2.

Theorem 1. If M is a nondegenerate hypersurface in M : wWe
can choose a unique transversal vector field " g€r  satisfying

condition (C).

Proof: By Lemma 2, we choose ¢(€r and compute H = H
1

By taking r = H™'?

€

we chooge a tangent vector field 2 such
that T = 2Z+rf 4s in [ again. Then H = HT is given by
H/r = H/|H| so that |HI= 1 . Thus £€r satisfies condition(C).



The transversal vector field ¢ established in Theorem 1
is cailea”the“aéﬁlﬁt‘no&mat‘for'the%nondegenerate hypersurface M.
Por this £ ,-the gsecond fundamental form h coincides with the
affine metric h » and the volume element 6 coincides with
the volume element 3 of the affine metric ﬁ . The linear
connection V arising from theraffine normal is called the
canonical afgine connection oh M . The affine metric h is
nondegenerate. The Levi-Civita connection on M for the metric
ﬁ will be called the affine metric connection.

When ﬁbs lﬁr'1 with its equiaffine structure (D,det),
we obtaih the canonical equiaffine structure (V,w) on any

n+1

nondegenerate hypersurface M in R . This is indeed the

object of study in classical affine differential geometry.

2. An example.

We shall give an example of a spacelike surface in the

3

Lorentz-Minkowski space L whose induced metric is complete

but whose affine metric is not complete. In fact, this surface
is one of the surfaces constructed in [3] in the following way.

et f be a mapping of Bz into L3 with metric

dx2 + dyz - d22=

(u,¢) € RZ—> £(u,4) = (x,y,2z)€L3,

where

t

(9) x= [0“'. 1+~ dt, y=eu sinh ¢ , z=e" cosh ¢ .



Then £ 4s an imbedding of the entire (u,¢)-plane R?> ‘in-

to’ L3 and the induced metric on :Rz

(10) ds? = au® + 2% g¢2

is positive~definite. This metric is complete, since the trans-
formation (u,¢) —> (X,Y) , where X = ¢ and Y = e ° ﬁtakes
it into the Poincaré metric (dx2 + de)/Y2 in the upper-half
plane Y >0 , which is known to be complete. It also follows
that (10) has constant Gaussian curvature -1. We denote by Mo
this spacelike surface f : ]Rz—-> L3.

In order to view Mo from the affine point of view, we
take a unit timelike normal vector field £ and the corres-
ponding second fundamental form h . It is known, in the theory
of submanifolds of a Lorentzian manifold, that the Gaussian

curvature K , which is -1 for our surface Mo » is related

to h by the Gauss equation
2
-K = h(x1,x1) h(xz.xz)-h(x1,x2) ’

where {x1,x2} is an orthonormal basis (relative to the metric
(10)) in the tangent space. This means that from the affine point
of view, the quantity H defined in (7) for ¢ is equal to 1.

Thus the affine metric of M coincides with h . We know

0
from [3] that

h(3/2u,3/3u)=e%/ V1 + e, h(3/3u,3/24 =0,

h(a/2s/3/3¢)=e® V1 + &?% .



Thus h may be written in the form

(1) a0 = (€% VA+e2® yau? + (V1 + e2® jae? .

This affine metric is elliptic. In order to show that it is
not complete, we use the following lemma, whose proof is easy.

2 are two Riemannian

2

Lemma 4. Suppose that do2 and dx
metrics on a differentiable manifold such that dozsdr
(1) 1If {xn} is a Cauchy sequence relative to dtz, it is so
relative to da2

(11) 1If do2 is complete, so is ar? .

To apply this lemma, let

2 2u 2

dr” = + e do” = el du” + eu(1+e )dé¢

and observe that
do” s + e do” = dr” .

We shall show that the metric drz is not complete. This
implies that do2 is not complete.

‘Consider the curve C given by u=-t, ¢=0, where O0st<~ .
The tangent vector (du/dt,d¢/dt) = (-1,0) has the length

t/2

(relative to dt%) equal to e . So the arclength of C is

&;e-tlz dt = 2 .

Obviously, the curve C has no limit point as t+«= 6K This proves

that drz is not complete.
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Remark 1. The canonical affine connection v of M coin-

0
cides with the Levi-Civita connection of the metric ds’ .
Hence~it'1s comp1ete. Thus Mo is also an example showing that

condition (3) in the introduction does not imply condition (1).

Remark 2. It was also shown in [3] that for each a>0, a=1,

3 which is a non-standard im-

there is a surface M, in L
bedding of the hyperbolic plane into L3 . We can show that each
of these surfaces is affine-metric complete in the following
way.

The surface M, is defined by
x= I(;‘\/1 + azshit dt, y=achush¢, z=a ch uchs¢.

The induced metric on M is

2 2

ds™ = du 2

+ azch u doz ’
and the affine metric (which coincides with the'second fundamen-

tal form of Ma as a spacelike surface of L3) is given by
dazs(a ch u/ + a“sh™u ) du2+ vVl aishiu achu d¢2 .

Case: a<1: We have

2.2 2 2 2

"1 + ash®u<1 + sh?u=ch?u so (a chu/V 1 + a%sh?u )> a

from which we have

2

do" > a duz + adoz'.
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Since the metric on the right hand side is complete, so is

a? by Lemma 4.

Case 2: a>1 . We have

a ch u/\/‘l + azshzu > 1

so0 that

c14:2>d\;12 + a dtz .

Again, do2 is complete.
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