On the representation of primes by polynomials (a survey of some recent results)

B.Z. Moroz

0. This survey article has appeared in: Proceedings of the Mathematical Institute of the Belarussian Academy of Sciences, 13 (2005), no. 1, pp. 114119. Multiplying it as an MPIM preprint, I should mention a new book, in which some of the problems, mentioned in my paper, are discussed in detail: G. Harman, Prime-detecting sieves, LMS Monographs series 33, Princeton University Press, Princeton, NJ, 2007.
1. About seven years ago J. Friedlander and H. Iwaniec [3] - [5] proved that there are infinitely many primes of the form $x^{2}+y^{4}$. Inspired by their work, but by a different method, D.R. Heath-Brown [7] shows that the binary cubic form $x^{3}+2 y^{3}$ represents infinitely many prime numbers, thereby confirming the conjecture of G.H. Hardy and J.E. Littlewood on the infinity of primes expressible as a sum of three cubes. Subsequently, it has been shown [8] that any irreducble primitive binary cubic form with integral rational coefficients takes infinitely many prime values if it takes at least one odd value. Indeed, we prove [9] an analogous theorem even for certain binary non-homogeneuos cubic polynomials. I intend to briefly describe the background of the problem, to formulate the main theorems proved in the works [4], [5], [7]-[9], and to survey some of the ideas leading to the proof of those results.

Notation. As usual, \mathbb{Q}, \mathbb{Z}, and \mathbb{N} stand for the field of rational numbers, the ring of rational integers, and the set of positive rational integers respectively; let $P=\{ \pm 2, \pm 3, \pm 5, \ldots\}$ be the set of the rational primes. Let $\# S$ stand for the cardinality of a set S; given a subset S of \mathbb{Z}, let h.c.f.(S) denote the highest common factor of the elements of S.

In 1854, V. Ya. Bouniakowsky proposed the following conjecture (cf. [1, p. 33]).

Conjecture 1. Let $f(t) \in \mathbb{Z}[t]$ and suppose that the polynomial $f(t)$ is irreducible in $\mathbb{Q}[t]$ and that h.c.f. $(\{f(a): a \in \mathbb{Z}\})=1$. Then the set

$$
\{f(a): a \in \mathbb{Z}\} \cap P
$$

is infinite.
So far Conjecture 1 has been settled only for linear polynomials (L.G. Dirichlet, 1837; cf. [1, p. 415]). The following conjecture is an easy consequence of Conjecture 1 (cf. [14, Lemma 4 on p. 33]).

Conjecture 2. Let $f(\vec{x}) \in \mathbb{Z}[\vec{x}], \vec{x}:=\left(x_{1}, \ldots, x_{n}\right)$, and suppose that the polynomial $f(\vec{x})$ is irreducible in $\mathbb{Q}[\vec{x}]$ and that h.c.f. $\left(\left\{f(\vec{a}): \vec{a} \in \mathbb{Z}^{n}\right\}\right)=1$. Then the set

$$
\left\{f(\vec{a}): \vec{a} \in \mathbb{Z}^{n}\right\} \cap P
$$

is infinite.
On the other hand, in 1970 Yu.V. Matiyasevich [12] proved the following theorem.

Theorem 1. For any listable subset \mathcal{A} of \mathbb{N}, there is a polynomial $Q_{\mathcal{A}}(\vec{x})$ in $\mathbb{Z}[\vec{x}]$ such that

$$
\left\{Q_{\mathcal{A}}(\vec{a}): \vec{a} \in \mathbb{Z}^{n}\right\} \cap \mathbb{N}=\mathcal{A} .
$$

Corollary 1. There are polynomials $Q_{1}(\vec{x})$ and $Q_{2}(\vec{x})$ in $\mathbb{Z}[\vec{x}]$ such that

$$
\left\{Q_{1}(\vec{a}): \vec{a} \in \mathbb{Z}^{n}\right\} \cap \mathbb{N}=P \cap \mathbb{N}
$$

and

$$
\left\{Q_{2}(\vec{a}): \vec{a} \in \mathbb{Z}^{n}\right\} \cap \mathbb{N}=\mathbb{N} \backslash P .
$$

Proof. Since both $P \cap \mathbb{N}$ and $\mathbb{N} \backslash P$ are listable sets, the assertion follows from Theorem 1.

Corollary 1 shows that the set P can not be replaced by the set $P \cap \mathbb{N}$ of positive primes in Conjecture 2, although Conjecture 1 can be, of course, re-stated as follows.

Conjecture 1a. Let $f(t) \in \mathbb{Z}[t]$; suppose that the polynomial $f(t)$ is irreducible in $\mathbb{Q}[t]$, that h.c.f. $(\{f(a): a \in \mathbb{Z}\})=1$, and that $f(a) \rightarrow \infty$ as $a \rightarrow \infty$. Then the set

$$
\{f(a): a \in \mathbb{Z}\} \cap P \cap \mathbb{N}
$$

is infinite.
In 1840, L.G. Dirichlet proved Conjecture 2 for binary quadratic forms (cf. [1, p. 417]). H. Iwaniec [11] extended Dirichlet's result to quadratic polynomials in two variables.

Let us cite a few lines from Heath-Brown's work [7]: "In measuring the quality of any theorem on the representation of primes by integer polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ in several variables, it is useful to consider the exponent $\alpha(f)$, defined as follows. Let $|f|$ denote the polynomial obtained by replacing each coefficient of f by its absolute value, and define $\alpha(f)$ to be the infimum of those real numbers α for which

$$
\#\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}:|f|\left(x_{1}, \ldots, x_{n}\right) \leq X\right\} \leq X^{\alpha}
$$

Thus $\alpha(f)$ measures the frequency of values taken by f. If $\alpha(f) \geq 1$ we expect f to represent at least $X^{1-\epsilon}$ of the integers up to X, while if $\alpha(f)<1$ we expect around X^{α} such integers to be representable. Thus the smaller the value of $\alpha(f)$, the harder it will be to to prove that f represents primes."

The two classical theorems of L.G. Dirichlet mentioned above, as well as the theorem of H . Iwaniec [11], all correspond to the value $\alpha(f)=1$. Conjecture 2 had been proved for no polynomial f with $\alpha(f)<1$ prior to the work of J. Friedlander and H. Iwaniec [3] - [5]. It is clear that $\alpha(f)=\frac{3}{4}$ for the polynomial $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{4}$ of Friedlander and Iwaniec and that $\alpha(f)=\frac{2}{3}$ if $f\left(x_{1}, x_{2}\right)$ is a binary cubic form. For the simplest non-linear polynomial $f(x)=x^{2}+1$ of one variable, $\alpha(f)=\frac{1}{2}$.
2. Let us now state the recent results alluded to in $n^{o} 1$.

Theorem 2 (see [4]). Conjecture 2 holds true for the polynomial

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{4} .
$$

Specifically,

$$
\sum_{\vec{a} \in \mathbb{N}^{2}, f(\vec{a}) \leq X} \Lambda(f(\vec{a}))=\frac{4}{\pi} \kappa X^{\frac{3}{4}}\left(1+O\left(\frac{\log \log X}{\log X}\right)\right)
$$

as $X \rightarrow \infty$, where Λ is the von Mangoldt function and

$$
\kappa:=\int_{0}^{1}\left(1-t^{4}\right)^{1 / 2}=\Gamma\left(\frac{1}{4}\right)^{2} / 6 \sqrt{2 \pi} .
$$

Theorem 3(see [7]). Conjecture 2 holds true for the polynomial

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+2 x_{2}^{3} .
$$

Specifically, there is a positive constant c such that, if $\eta=\eta(X)=(\log X)^{-c}$, then the number of primes of the form $a^{3}+2 b^{3}$ with integer a, b in the interval $X<a, b \leq X(1+\eta)$ is equal to

$$
\sigma_{0} \frac{\eta^{2} X^{2}}{3 \log X}\left\{1+O\left((\log \log X)^{-1 / 6}\right)\right\}
$$

as $X \rightarrow \infty$, where

$$
\sigma_{0}:=\prod_{p \in P \cap \mathbb{N}}\left(1-\frac{\nu_{p}-1}{p}\right)
$$

and ν_{p} stands for the number of solutions of the congruence $x^{3} \equiv 2 \bmod p$.
Theorem 4 (see [8]). Let $f(\vec{x})$ be a primitive binary cubic form with integral rational coefficients irreducible in $\mathbb{Z}[\vec{x}]$. There are infinitely many primes of the form $f(\vec{a})$ with $\vec{a} \in \mathbb{Z}^{2}$ unless $f(\vec{a})$ is divisible by 2 for each \vec{a} in \mathbb{Z}^{2}, in which case there are infinitely many primes of the form $\frac{1}{2} f(\vec{a})$ with $\vec{a} \in \mathbb{Z}^{2}$.

Theorem 5 (see [9]). Let $f_{0}(\vec{x})$ be a binary cubic form with integral rational coefficients irreducible in $\mathbb{Z}[\vec{x}]$. For $d \in \mathbb{Z}$ and $\vec{\gamma} \in \mathbb{Z}^{2}$, let the positive integer γ_{0} be chosen so that $f(\vec{x})=\gamma_{0}^{-1} f_{0}(\vec{\gamma}+d \vec{x})$ is a primitive polynomial with integral rational coefficients. Suppose, moreover, that

$$
\text { h.c.f. }\left(\left\{f(\vec{a}): \vec{a} \in \mathbb{Z}^{n}\right\}\right)=1 .
$$

Then the set $f\left(\mathbb{Z}^{2}\right)$ contains infinitely many rational primes.
Remark 1. One can actually obtain an asymptotic formula for the relevant number of primes in Theorems 4 and 5, of the same shape as in Theorem 3.

The statement of Theorem 5 has been used, as an unproved hypothesis, in Heath-Brown's work [6] on rational solubility of diagonal cubic equations in five variables. We can now establish these results unconditionally, as a corollary to Theorem 5 (see [9, Corollary 1.1] and [6] for the details).

Corollary 2. Let H be the hypersurface defined by the equation

$$
\sum_{i=1}^{5} a_{i} x_{i}^{3}=0
$$

with $a_{i} \in \mathbb{Z}$ for $1 \leq i \leq 5$. Suppose that the integers $a_{i}, 1 \leq i \leq 5$, are divisible neither by 3, nor by p^{2} for $p \in P, p \equiv 2 \bmod 3$. Then the hypersurface H satisfies the Hasse principle, providing that the Selmer Parity Conjecture holds for the class of elliptic curves given by the equations

$$
x^{3}+y^{3}=A
$$

with $A \in \mathbb{Z} /\{0,1\}$.

The next corollary follows from the work of P. Satgé [13] and Theorem 5; cf. [9, Corollary 1.2].

Corollary 3. Let a and b be coprime rational integers satisfying one of the following congruence conditions:

$$
a \pm b \equiv 0 \quad(\bmod 9) \text { or }\{\bar{a}, \bar{b}\} \cap\{ \pm 2, \pm 3\} \neq \emptyset,
$$

where \bar{c} stands for the residue of the integer c modulo 9. Then the equation

$$
x_{1}^{3}+2 x_{2}^{3}+a x_{3}^{3}+b x_{4}^{3}=0
$$

has infinitely many solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in \mathbb{Z}^{4} with

$$
\text { h.c.f. }\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1 .
$$

3. Theorems 2-5 are proved by sieve methods. Given a sequence

$$
\mathcal{A}=\left(a_{n}\right)_{n \in N}
$$

of non-negative integers, one should like to evaluate asymptotically the sum

$$
\sum_{p \in P \cap \mathbb{N}, p \leq x} a_{p}
$$

or, as in Theorem 2, the sum

$$
S(x):=\sum_{n \leq x} a_{n} \Lambda(n) .
$$

Let

$$
A(x):=\sum_{n \leq x} a_{n} ;
$$

it follows that

$$
S(x)=-\sum_{d \leq x}(\mu(d) \log d) A_{d}(x),
$$

where

$$
A_{d}(x):=\sum_{n \leq x, d \mid n} a_{n} .
$$

J. Friedlander and H. Iwaniec [5] introduce the following assumptions:

$$
\begin{equation*}
A(x) \gg A(\sqrt{x})(\log x)^{2}, \quad A(x) \gg x^{1 / 3}\left(\sum_{n \leq x} a_{n}^{2}\right)^{1 / 2} ; \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
A_{d}(x)=g(d) A(x)+r_{d}(x), \tag{2}
\end{equation*}
$$

where g is a multiplicative function such that

$$
\begin{gather*}
0 \leq g\left(p^{2}\right) \leq g(p)<1, g(p) \gg p^{-1}, g\left(p^{2}\right) \gg p^{-2}, \text { for } p \in P \cap \mathbb{N}, \text { and } \\
\sum_{p \in P \cap \mathbb{N}, p \leq x} g(p)=\log \log y+c_{0}(g)+O\left((\log y)^{-c_{1}}\right) \tag{3}\\
A_{d}(x) \ll \frac{\tau(d)^{c_{2}}}{d} A(x) \tag{4}
\end{gather*}
$$

uniformly in the range $1 \leq d \leq x^{1 / 3}$;

$$
\begin{equation*}
\sum_{d \leq D(x)(\log x)^{c_{2}}} \mu_{3}(d)\left|r_{d}(t)\right| \leq A(x)(\log x)^{-c_{3}} \tag{5}
\end{equation*}
$$

for $t \leq x$ and some $D(x)$ in the range $x^{2 / 3}<D(x)<x$, where $\mu_{3}(d)$ stands for the characteristic function of the cube-free integers and $\tau(d)$ denotes the number of divisors of d in \mathbb{N}.

Assumptions (1) - (5), or their analogues, belong to the standard theory of sieve methods. It is well-known that those assumptions alone do not suffice to obtain the desired asymptotic formulae, or even lower bounds, for the sums $A(x)$ or $S(x)$ because of the following "parity phenomenon" (cf. [15]). Let a_{n} be the characteristic function of the set of those positive integers, which are composed of an even number of prime factors, then the sequence $\mathcal{A}=\left(a_{n}\right)_{n \in N}$ satisfies conditions (1) - (5) but $a_{p}=0$ for $p \in P \cap \mathbb{N}$.

The crucial new assumption made in the works [3] - [5] is as follows:

$$
\begin{equation*}
\sum_{m \leq x}\left|\sum_{\substack{N<n \leq 2 N, m n \leq x \\ \text { h.c.f. }(n, m \Pi)=1}} \beta(n, C) a_{m n}\right| \leq A(x)(\log x)^{-c_{4}} \tag{6}
\end{equation*}
$$

for every N in the range

$$
\frac{\sqrt{D(x)}}{\Delta(x)}<N<\frac{\sqrt{x}}{\delta(x)}
$$

and every C in the range

$$
1 \leq C \leq \frac{x}{D(x)}
$$

where $\Delta(x) \geq \delta(x) \geq 2$,

$$
\beta(n, C)=\mu(n) \sum_{d \mid n, d \leq C} \mu(d),
$$

and Π is equal to the product of the positive primes up to some p_{0}, satisfying the inequalities

$$
2 \leq p_{0} \leq \Delta(x)^{1 / c_{5} \log \log x} .
$$

Here $c_{i}, 1 \leq i \leq 5$, are suitable positive numerical constants.
Theorem 6(see [5]). Assume (1) - (6). Then the following asymptotic formula holds true:

$$
\sum_{p \in P \cap \mathbb{N}, p \leq x} a_{p} \log p=H A(x)\left(1+O\left(\frac{\log \delta(x)}{\log \Delta(x)}\right)\right)
$$

with

$$
H:=\prod_{p \in P \cap \mathbb{N}}(1-g(p))\left(1-\frac{1}{p}\right)^{-1},
$$

where the implied O-constant depends at most on g.
It is not too difficult to verify the assumptions (1) - (4) for the sequence

$$
a_{n}:=\#\left\{\left(b_{1}, b_{2}\right) \in \mathbb{N}^{2}: b_{1}^{2}+b_{2}^{4}=n\right\}
$$

studied in [3] - [5]. Assumption (5) has been established for that sequence by E. Fouvry and H. Iwaniec [2]. The main difficulty lies in proving the estimate (6) for the bilinear forms; the authors' strategy depends on the subtle analysis in the spirit of Hecke's "multidimensional arithmetic" [10] for the Gaussian field $\mathbb{Q}(\sqrt{-1})$, as it has been explained in the Introduction to the work [4] and in the note [3].

The sieve procedure, set up by Heath-Brown [7] to prove Theorem 3 and used in our works [8] and [9] to prove Theorems 4 and 5, has much in common with the approach of Friedlander and Iwaniec in [3] - [5], although their assumption (5) does not hold for the sequences

$$
a_{n}:=\#\left\{\vec{b} \in \mathbb{N}^{2}: f(\vec{b})=n\right\}
$$

in Theorems 3-5. The main novelty, introduced in the work [7] and further developed in the works [8] and [9], is the "Type II" bound which goes beyond the standard assumptions (1) - (5) of the classical sieve theory, as does the estimate (6) in the works [3] - [5].

Let k be a cubic number field, that is an extension of \mathbb{Q} with $[k: \mathbb{Q}]=3$, and let \mathfrak{o} be the ring of integers of k. Let $\left\{\omega_{1}, \omega_{2}\right\} \subset \mathfrak{o}$, suppose that $\omega_{2} \neq 0, \omega_{1} / \omega_{2} \notin \mathbb{Q}$, and let

$$
\mathcal{A}:=\left\{\left(a_{1} \omega_{1}+a_{2} \omega_{2}\right) \mathfrak{d}^{-1}:\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}, X<a_{1}, a_{2} \leq X(1+\eta),\right.
$$

$$
\text { h.c.f. } \left.\left(a_{1}, a_{2}\right)=1\right\} \text {, }
$$

where \mathfrak{d} stands for the ideal in \mathfrak{o}, generated by ω_{1} and ω_{2}. Proving Theorem 4 amounts to estimating the number of prime ideals in \mathcal{A}. The "Type II" bound is an upper estimate for the sums of the following form:

$$
\sum_{\substack{\mathfrak{a} \mathfrak{b} \in \mathcal{A} \\ V<N \mathfrak{b} \leq 2 V}} b_{\mathfrak{a}} g_{\mathfrak{b}}
$$

with V ranging over the interval

$$
X^{1+\tau} \ll V \ll X^{3 / 2-\tau}, \tau:=(\log \log X)^{-1 / 6}
$$

where the function $\mathfrak{a} \mapsto b_{\mathfrak{a}}$ takes its values in the set $\{0,1\}$ and $\mathfrak{b} \mapsto g_{\mathfrak{b}}$ is a real-valued function. To estimate those sums one makes use of Hecke's three-dimensional arithmetic of a cubic number field; cf. [7] - [9].

Acknowledgement. It is a pleasure to thank Professor V.I. Bernik for inviting me to attend the conference "Diophantine analysis, uniform distributions, and applications" in Minsk and for his kind hospitality during my visit. I am indebted to Professor A. Schinzel for the reference [14].

References

[1] L.E. Dickson, History of the theory of numbers, vol. 1, Chelsea Publ. Company, New York, 1952.
[2] E. Fouvry and H. Iwaniec, Gaussian primes, Acta Arithmetica, 79 (1997), 249-387.
[3] J. Friedlander and H. Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial, Proceedings of the National Academy of Sciences of the USA 94 (1997), 1054-1058.
[4] J. Friedlander and H. Iwaniec, The polynomial $X^{2}+Y^{4}$ captures its primes, Annals of Mathematics, 148 (1998), 945-1040.
[5] J. Friedlander and H. Iwaniec, Asymptotic sieve for primes, Annals of Mathematics, 148 (1998), 1041-1065.
[6] D.R. Heath-Brown, The solubility of diagonal cubic Diophantine equations, Proceedings of the London Mathematical Society (3), 79 (1999), 241-259.
[7] D.R. Heath-Brown, Primes represented by $x^{3}+2 y^{3}$, Acta Mathematica, 186 (2001), 1-84.
[8] D.R. Heath-Brown and B.Z. Moroz, Primes represented by binary cubic forms, Proceedings of the London Mathematical Society (3), 84 (2002), 257-288.
[9] D.R. Heath-Brown and B.Z. Moroz, On the representation of primes by cubic polynomials in two variables, Proceedings of the London Mathematical Society (3), 88 (2004), 289-312.
[10] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Mathematische Zeitschrift, 6 (1920), 11-51.
[11] H. Iwaniec, Primes represented by quadratic polynomials in two variables, Acta Arithmetica, 24 (1974), 435-322.
[12] Yu.V. Matiyasevich, On the relation between two conjectures on polynomials, Doklady Akademii Nauk SSSR (ser. matemat.), 191 (1970), 279-282.
[13] P. Satgé, Un analogue du calcul de Heegner, Invent. Math., 87 (1987), 425-439.
[14] A. Schinzel, On the relation between two conjectures on polynomials, Acta Arithmetica, 38 (1981), 285-322.
[15] A. Selberg, On elementary methods in prime number theory, Collected papers, vol. 1, pp. 425-439, Springer-Verlag, 1989.

Author's address:
B.Z. Moroz,

Max-Planck-Institut für Mathematik,
Vivatgasse 7, D-53111 Bonn, Germany
E-mail address: moroz@mpim-bonn.mpg.de

