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0. This survey article has appeared in: Proceedings of the Mathematical
Institute of the Belarussian Academy of Sciences, 13 (2005), no. 1, pp. 114-
119. Multiplying it as an MPIM preprint, I should mention a new book, in
which some of the problems, mentioned in my paper, are discussed in detail:
G. Harman, Prime-detecting sieves, LMS Monographs series 33, Princeton
University Press, Princeton, NJ, 2007.

1. About seven years ago J. Friedlander and H. Iwaniec [3] - [5] proved
that there are infinitely many primes of the form x2 + y4. Inspired by their
work, but by a different method, D.R. Heath-Brown [7] shows that the bi-
nary cubic form x3 + 2y3 represents infinitely many prime numbers, thereby
confirming the conjecture of G.H. Hardy and J.E. Littlewood on the infinity
of primes expressible as a sum of three cubes. Subsequently, it has been
shown [8] that any irreducble primitive binary cubic form with integral ra-
tional coefficients takes infinitely many prime values if it takes at least one
odd value. Indeed, we prove [9] an analogous theorem even for certain binary
non-homogeneuos cubic polynomials. I intend to briefly describe the back-
ground of the problem, to formulate the main theorems proved in the works
[4], [5], [7] - [9], and to survey some of the ideas leading to the proof of those
results.

Notation. As usual, Q,Z, and N stand for the field of rational numbers,
the ring of rational integers, and the set of positive rational integers respec-
tively; let P = {±2,±3,±5, . . . } be the set of the rational primes. Let # S
stand for the cardinality of a set S; given a subset S of Z, let h.c.f.(S) denote
the highest common factor of the elements of S.

In 1854, V. Ya. Bouniakowsky proposed the following conjecture (cf. [1,
p. 33]).

Conjecture 1. Let f(t) ∈ Z[t] and suppose that the polynomial f(t) is
irreducible in Q[t] and that h.c.f.({f(a) : a ∈ Z}) = 1. Then the set

{f(a) : a ∈ Z} ∩ P
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is infinite.

So far Conjecture 1 has been settled only for linear polynomials (L.G.
Dirichlet, 1837; cf. [1, p. 415]). The following conjecture is an easy conse-
quence of Conjecture 1 (cf. [14, Lemma 4 on p. 33]).

Conjecture 2. Let f(~x) ∈ Z[~x], ~x := (x1, . . . , xn), and suppose that the
polynomial f(~x) is irreducible in Q[~x] and that h.c.f.({f(~a) : ~a ∈ Zn}) = 1.
Then the set

{f(~a) : ~a ∈ Zn} ∩ P

is infinite.

On the other hand, in 1970 Yu.V. Matiyasevich [12] proved the following
theorem.

Theorem 1. For any listable subset A of N, there is a polynomial QA(~x) in
Z[~x] such that

{QA(~a) : ~a ∈ Zn} ∩ N = A.

Corollary 1. There are polynomials Q1(~x) and Q2(~x) in Z[~x] such that

{Q1(~a) : ~a ∈ Zn} ∩ N = P ∩ N

and
{Q2(~a) : ~a ∈ Zn} ∩ N = N \ P.

Proof. Since both P ∩ N and N \ P are listable sets, the assertion follows
from Theorem 1.

Corollary 1 shows that the set P can not be replaced by the set P ∩ N
of positive primes in Conjecture 2, although Conjecture 1 can be, of course,
re-stated as follows.

Conjecture 1a. Let f(t) ∈ Z[t]; suppose that the polynomial f(t) is
irreducible in Q[t], that h.c.f.({f(a) : a ∈ Z}) = 1, and that f(a) → ∞ as
a→∞. Then the set

{f(a) : a ∈ Z} ∩ P ∩ N

is infinite.

In 1840, L.G. Dirichlet proved Conjecture 2 for binary quadratic forms
(cf. [1, p. 417]). H. Iwaniec [11] extended Dirichlet’s result to quadratic
polynomials in two variables.
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Let us cite a few lines from Heath-Brown’s work [7]: ”In measuring the
quality of any theorem on the representation of primes by integer polynomial
f(x1, . . . , xn) in several variables, it is useful to consider the exponent α(f),
defined as follows. Let |f | denote the polynomial obtained by replacing each
coefficient of f by its absolute value, and define α(f) to be the infimum of
those real numbers α for which

# {(x1, . . . , xn) ∈ Zn : |f |(x1, . . . , xn) ≤ X} ≤ Xα.

Thus α(f) measures the frequency of values taken by f . If α(f) ≥ 1 we
expect f to represent at least X1−ε of the integers up to X, while if α(f) < 1
we expect around Xα such integers to be representable. Thus the smaller
the value of α(f), the harder it will be to to prove that f represents primes.”

The two classical theorems of L.G. Dirichlet mentioned above, as well
as the theorem of H. Iwaniec [11], all correspond to the value α(f) = 1.
Conjecture 2 had been proved for no polynomial f with α(f) < 1 prior to
the work of J. Friedlander and H. Iwaniec [3] - [5]. It is clear that α(f) = 3

4

for the polynomial f(x1, x2) = x2
1 + x4

2 of Friedlander and Iwaniec and that
α(f) = 2

3
if f(x1, x2) is a binary cubic form. For the simplest non-linear

polynomial f(x) = x2 + 1 of one variable, α(f) = 1
2
.

2. Let us now state the recent results alluded to in no 1.

Theorem 2(see [4]). Conjecture 2 holds true for the polynomial

f(x1, x2) = x2
1 + x4

2.

Specifically, ∑
~a∈N2, f(~a)≤X

Λ(f(~a)) =
4

π
κX

3
4 (1 +O(

log logX

logX
))

as X →∞, where Λ is the von Mangoldt function and

κ :=

∫ 1

0

(1− t4)1/2 = Γ(
1

4
)2/6
√

2π.

Theorem 3(see [7]). Conjecture 2 holds true for the polynomial

f(x1, x2) = x3
1 + 2x3

2 .

Specifically, there is a positive constant c such that, if η = η(X) = (logX)−c,
then the number of primes of the form a3 +2b3 with integer a, b in the interval
X < a, b ≤ X(1 + η) is equal to

σ0
η2X2

3 logX
{1 +O((log logX)−1/6)}
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as X →∞, where

σ0 :=
∏

p∈P∩N

(1− νp − 1

p
)

and νp stands for the number of solutions of the congruence x3 ≡ 2 mod p.

Theorem 4(see [8]). Let f(~x) be a primitive binary cubic form with integral
rational coefficients irreducible in Z[~x]. There are infinitely many primes of
the form f(~a) with ~a ∈ Z2 unless f(~a) is divisible by 2 for each ~a in Z2, in
which case there are infinitely many primes of the form 1

2
f(~a) with ~a ∈ Z2.

Theorem 5(see [9]). Let f0(~x) be a binary cubic form with integral rational
coefficients irreducible in Z[~x]. For d ∈ Z and ~γ ∈ Z2, let the positive integer
γ0 be chosen so that f(~x) = γ−1

0 f0(~γ + d~x) is a primitive polynomial with
integral rational coefficients. Suppose, moreover, that

h.c.f.({f(~a) : ~a ∈ Zn}) = 1.

Then the set f(Z2) contains infinitely many rational primes.

Remark 1. One can actually obtain an asymptotic formula for the
relevant number of primes in Theorems 4 and 5, of the same shape as in
Theorem 3.

The statement of Theorem 5 has been used, as an unproved hypothesis,
in Heath-Brown’s work [6] on rational solubility of diagonal cubic equations
in five variables. We can now establish these results unconditionally, as a
corollary to Theorem 5 (see [9, Corollary 1.1] and [6] for the details).

Corollary 2. Let H be the hypersurface defined by the equation

5∑
i=1

aix
3
i = 0

with ai ∈ Z for 1 ≤ i ≤ 5. Suppose that the integers ai, 1 ≤ i ≤ 5,
are divisible neither by 3, nor by p2 for p ∈ P, p ≡ 2 mod 3. Then the
hypersurface H satisfies the Hasse principle, providing that the Selmer Parity
Conjecture holds for the class of elliptic curves given by the equations

x3 + y3 = A

with A ∈ Z/{0, 1}.
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The next corollary follows from the work of P. Satgé [13] and Theorem 5;
cf. [9, Corollary 1.2].

Corollary 3. Let a and b be coprime rational integers satisfying one of the
following congruence conditions:

a± b ≡ 0 (mod 9) or {ā, b̄} ∩ {±2,±3} 6= ∅,

where c̄ stands for the residue of the integer c modulo 9. Then the equation

x3
1 + 2x3

2 + ax3
3 + bx3

4 = 0

has infinitely many solutions (x1, x2, x3, x4) in Z4 with

h.c.f.(x1, x2, x3, x4) = 1.

3. Theorems 2 - 5 are proved by sieve methods. Given a sequence

A = (an)n∈N

of non-negative integers, one should like to evaluate asymptotically the sum∑
p∈P∩N, p≤x

ap

or, as in Theorem 2, the sum

S(x) :=
∑
n≤x

anΛ(n).

Let
A(x) :=

∑
n≤x

an;

it follows that
S(x) = −

∑
d≤x

(µ(d) log d)Ad(x),

where
Ad(x) :=

∑
n≤x, d|n

an.

J. Friedlander and H. Iwaniec [5] introduce the following assumptions:

A(x)� A(
√
x)(log x)2, A(x)� x1/3(

∑
n≤x

a2
n)1/2; (1)
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Ad(x) = g(d)A(x) + rd(x), (2)

where g is a multiplicative function such that

0 ≤ g(p2) ≤ g(p) < 1, g(p)� p−1, g(p2)� p−2, for p ∈ P ∩ N, and∑
p∈P∩N, p≤x

g(p) = log log y + c0(g) +O((log y)−c1); (3)

Ad(x)� τ(d)c2

d
A(x) (4)

uniformly in the range 1 ≤ d ≤ x1/3;∑
d≤D(x)(log x)c2

µ3(d)|rd(t)| ≤ A(x)(log x)−c3 (5)

for t ≤ x and some D(x) in the range x2/3 < D(x) < x, where µ3(d) stands
for the characteristic function of the cube-free integers and τ(d) denotes the
number of divisors of d in N.

Assumptions (1) - (5), or their analogues, belong to the standard theory of
sieve methods. It is well-known that those assumptions alone do not suffice
to obtain the desired asymptotic formulae, or even lower bounds, for the
sums A(x) or S(x) because of the following ”parity phenomenon” (cf. [15]).
Let an be the characteristic function of the set of those positive integers,
which are composed of an even number of prime factors, then the sequence
A = (an)n∈N satisfies conditions (1) - (5) but ap = 0 for p ∈ P ∩ N.

The crucial new assumption made in the works [3] - [5] is as follows:∑
m≤x

|
∑

N<n≤2N, mn≤x

h.c.f.(n,mΠ)=1

β(n,C) amn| ≤ A(x)(log x)−c4 (6)

for every N in the range √
D(x)

∆(x)
< N <

√
x

δ(x)

and every C in the range

1 ≤ C ≤ x

D(x)
,

where ∆(x) ≥ δ(x) ≥ 2,

β(n,C) = µ(n)
∑

d|n, d≤C

µ(d),
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and Π is equal to the product of the positive primes up to some p0, satisfying
the inequalities

2 ≤ p0 ≤ ∆(x)1/c5 log log x.

Here ci, 1 ≤ i ≤ 5, are suitable positive numerical constants.

Theorem 6(see [5]). Assume (1) - (6). Then the following asymptotic
formula holds true:∑

p∈P∩N, p≤x

ap log p = HA(x)(1 +O(
log δ(x)

log ∆(x)
))

with

H :=
∏

p∈P∩N

(1− g(p))(1− 1

p
)−1,

where the implied O-constant depends at most on g.

It is not too difficult to verify the assumptions (1) - (4) for the sequence

an := # {(b1, b2) ∈ N2 : b2
1 + b4

2 = n}

studied in [3] - [5]. Assumption (5) has been established for that sequence
by E. Fouvry and H. Iwaniec [2]. The main difficulty lies in proving the
estimate (6) for the bilinear forms; the authors’ strategy depends on the
subtle analysis in the spirit of Hecke’s ”multidimensional arithmetic” [10] for
the Gaussian field Q(

√
−1), as it has been explained in the Introduction to

the work [4] and in the note [3].
The sieve procedure, set up by Heath-Brown [7] to prove Theorem 3

and used in our works [8] and [9] to prove Theorems 4 and 5, has much in
common with the approach of Friedlander and Iwaniec in [3] - [5], although
their assumption (5) does not hold for the sequences

an := # {~b ∈ N2 : f(~b) = n}

in Theorems 3 - 5. The main novelty, introduced in the work [7] and further
developed in the works [8] and [9], is the ”Type II” bound which goes beyond
the standard assumptions (1) - (5) of the classical sieve theory, as does the
estimate (6) in the works [3] - [5].

Let k be a cubic number field, that is an extension of Q with [k : Q] = 3,
and let o be the ring of integers of k. Let {ω1, ω2} ⊂ o, suppose that
ω2 6= 0, ω1/ω2 6∈ Q, and let

A := {(a1ω1 + a2ω2)d−1 : (a1, a2) ∈ Z2, X < a1, a2 ≤ X(1 + η),
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h.c.f.(a1, a2) = 1},
where d stands for the ideal in o, generated by ω1 and ω2. Proving Theorem
4 amounts to estimating the number of prime ideals in A. The ”Type II”
bound is an upper estimate for the sums of the following form:∑

ab∈A

V <Nb≤2V

bagb

with V ranging over the interval

X1+τ � V � X3/2−τ , τ := (log logX)−1/6,

where the function a 7→ ba takes its values in the set {0, 1} and b 7→ gb is
a real-valued function. To estimate those sums one makes use of Hecke’s
three-dimensional arithmetic of a cubic number field; cf. [7] - [9].

Acknowledgement. It is a pleasure to thank Professor V.I. Bernik for
inviting me to attend the conference ”Diophantine analysis, uniform distri-
butions, and applications” in Minsk and for his kind hospitality during my
visit. I am indebted to Professor A. Schinzel for the reference [14].
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