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COlllbinations of rational double points
on the deforlllation of quadrilateral

singularities Ir

by Tohsuke Urabe

§o. Introduction

In this article we would like to continue to study the relation between hypersurlace
quadrilateral singularities and Dynkin graphs. In particular, we study 3 kinds of hy­
persurface quadrilateral singularities J3 ,0, Zl,O ancl Q2,O. Two kinds of transfonnations
of Dynkin graphs, which we have proposed in previous articles (Urabe [5], [6], (7)), play
essential roles. '~Te give a proof of following Ivlain Theorem, which have been announced
in Part I (Urabe [7]). Every algebraic variety is asslllned to be clefined over thc con1plex
number field C. As for the exact definition of Dynkin graphs, we follow that in Part I.

Let X be a dass of quadrilateral singularities. Let PC(X) denote the set of Dynkin
graphs G with con1ponents of type A, D, 01' E only such that there exists a fiber Y
in the selni-universal defonnation falnily of a singularity belonging to X satisfying the
following two conditions depending on G.
(1) The fiber Y has only rational double points as singularities.
(2) The cOlnbination of rational double points on Y just corresponds to the graph G.
(Note the phenomenon called "exceptional deformations", which was pointed out in
,~rall [9].)

Main Theorenl. Consider Olle of J3,o, Zl,O, and Q2,O as tlle c1ass X oE hypersulface
quadrilateral singulaJ·ities. A Dynkin graph G belangs to PC(X) jf and only if eitller
following (1) 01' (2) holds.
(1) G is Olle of tlle following exeeptions.
(2) G ean be lJlade froln Olle of tlle following essential basic Dynkin graplls by ele­

InentalY 01' tie transformations applied 2 tilnes (VVe CBll apply 2 different kinds oE
trallsEonnations once for eaclJ, 01' ca,n apply 2 trallsfonl]ations of tlle sanle kind.),
allel G contains no vertex corresponding to a SllOl't root.

The essential basic Dynkin graphs:
TiJe case X = J3 ,o : Es + F4

TiJe case X = Zl,O : E7 + F4 , Es + CB3

Tlle ease X = Q2,O : E 6 + F4 , Es + F2

The exceptions:
3A3 + 2A2

None
3A3 + A 2

'\Te know by results in Part I that the "if" part under the condition (2) is true.
Thus in this Part 11 we would like to show the "only if" part first.

Let 1\.3 be the even unimodular lattice of signature (19, 3), and P be the lattice
associated with the hypersulface quaclr'ilateral singularity. (See Part I.) Let Q(G) be
the root lattice associated with a Dynkin graph G with C0l11pOnents of type A, D or
E only. If G E PC(.Y), then we have an embedding P EB Q(G) '"--+ 1\.3 COlne from an
actual defonnation fiber Y. The elnbedcling satisfies Looijenga's conditions (a) and (b)
and the induced elnbedding Q(G) ~ 1\.3/P is full. Also we have an elliptic 1<3 sulface
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<I> : Z ~ C(~ P 1 ) corresponding to the embedding. Then, thanks to the results in Part
I, we have only to show the following. .

Proposition 0.1. HG E PC(X), and ifG is not in the exception list in Main Theorem,
tllen, with respect to some fuli embeddillg Q( G) '--+- A31P, tllere exists a primitive
isotropie element u in A31P in a niee position, i.e., SUell that either 1L is ortllogonal to
Q(G), 01' there is a root basis .6. C Q(G) and a long root Q' E .6. SUell that ß . u = 0 for
evelY ß E .6. witl] ß =1= a and a . u = 1.

To show this proposition we use the theory of the 1110nodro111Y for elliptic surfaces
and eonstruet a certain transcendental eycle in the elliptic 1(3 surfaee Z -Jo C. V\Te
utilize the faet that the monodrolny around a singular fiber of type I; has a very silnple
fonn, i.e., simply lnultiplying -1.

Now, the elliptic sUlface Z ~ C has a singular fibre F I of type I; in our situation
by definition. Reeall that by 05 we have denoted the ilnage of a section 0 ~ Z, and 0 5

and Ft are contained in the eurve IF at infinity. The curve IF at infinity has 6 (when
X = J3,0), 7 (when X = Zt,o) or 8 (when X = Q2,0) eomponents. The lattiee P has a
basis associated with the dual graph of the components of IF. The union E of slnooth
rational curves on Z not interseeting I F coincides with the union of cOlnponents not
intersecting I F of singular fibers of Z ~ C. The dual graph of S is G by definition.

VVe divide the ease into three.
((1)) The sUlface Z -+ C has another singular fiber of type 1* apaxt froln Ft .

((2)) Z -Jo C has a singular fiber of type 11*, I 11* 01' IV".
((3)) Z -+ 0 has 110 singular fiber of type 1*, 11*, I I 1* 01' IV'" apart from Ft .

In ease ((1)) we ean show that there exists a non-zero transeendental 2-eycle S in
Z with =:;2 = 0 which is orthogonal to the seetion 0 5 and to all irreducible e0l11pOnents
of fibers of Z -+ C. In partieular, the orthogonal cOlnplement of S = P EB Q(G) in Aa
contains an isotropie elelnent, and thus wc have a clesired isotropie element in AalP.
This ease ((1)) is t reated in section 1.

Case ((2)) is diseussed in seetion 2. In this case we ean show by the theory of the
monoclrolny that there exists a transcendental 2-cycle :=; on Z with :=;2 = 4 such that 3
is orthogonal to GIS and to all cOlnponents offibers of Z -+ C. Therefore the orthogonal
eOlllplelnent of S neeessarily contains an element ewith e2 = -4. By drawing the
Coxeter-Vinberg gTaph for ](IP where ]( is the orthogonal conlplement of Ze in Aa1

we show the existence of an isotropie elelnent in a nice position in this ease.
In ease ((3)) it is diffieult to construct a niee transcentental eycle applicable to all

exalnples. Therefore we lnake the list of all possible Dynkin graph G in this ease (In this
ease all eomponents are of type A.), and we analyze theIn by the theory of 1(3 surfaces
and by the theory of elliptic sutfaees ease by case. This ease is diseussed in section 3.

Lastly, we have to show that for a Dynkin graph G in the above exeeption list there
exists the eOITesponding varieties Z, Y. This is shown in seetion 4. We apply Nikulin's
lattiee theory in this part (Nikulin (3)).

Here we have a relnark. Assunle that a Dynkin graph G with eomponents of type
A, D 01' E only can be made froln one of the essential basie graphs by elementary or tie
transfonnations applied twice. Then we can construct a fuH enlbedding Q(G) '--+- 1\3/P
whieh has a prilnitive isotropie element in a nice position. Trus i8 a eonsequence of the
theories in [5], [6], [7]. (See Theorem 1.1 in [6], Theorenl 4.4 etc. in [7].) Of course, the
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eonstrueted embedcling may not be equivalent to the given embedding. However, we
eau use this remark to show Proposition 0.1 without any problem. Note moreover that
under the assumption we have G E PC(X) by the "if" part of Main Theorem.

§1. An transcendental isotropie cycle

Recall that we have an isomorphisrll H 2(Z, Z) ....:::... A3 preserving bilinear forms up to
sign. (Note that it reverses the sign.) Via this isomorphism we can use the geometry
on the elliptie !(3 surfaee 1> : Z ---+ C to show anisotropie element in A3 .

\\Te denote the fiber 1> -1 (a) over a point a E C by Fa for sirnplicity. By l: =
{Cl, C2, ... ,Ct} we denote the set of eritieal values of <P. We put Fi = FCi for simplieity.

'\Te cml assurne the following in our situation.
(1) There is a section So : GI ---+ Z (i.e., a morphism of varieties with 1>(so(x)) = x for

x E C) whose image is denoted by C5.

(2) For SOlne point Cl E E the fiber F l over Cl is a singular fiber of type I;.
'\Te have the following facts. (Kodaira [1], Shioda [4])

• C "'" pl.
• For every smooth rational curve A in Z, the self-intersection nUluber A2 is equal

to -2.
• Let e(F) denote the Euler number of a fiber F. Then we have

t

:L e(Fi ) = 24.
i=l

(1)

• The set E of a11 sections of 1> has a structure of an abelian group when we fix an
elenlent, say so, as the unit elernent. This abelian group E is finitely generated.
Let a be the rank of E and p be tbe Picard nUlnber of Z (= rank Pic(Z)).

t

p=2+~+ :L(m(Fi )-l)
i=l

(2)

where 1n(F) denotes the number of irreducible cOluponents of a singular fiber F.
(See Lenuna 1.4.)

• H a singular fiber F is not of type I, then m(F) = e(F) - 1, while if F is of type
I, then '1n(F) = e(F).

• Let tl denote the nuruber of singular fibers of type I of 1>. The number of all
singular fibers of 1> is t. By above (1) and (2) we have:

p = 26 + a - 2t + t l . (3)

• H the functional invariant J : C ---+ p1 of the elliptic sUlfaee cI> is not constant, then

20 - p + a ~ v(I;) + v(II) + v(III) + v(IV), (4)

where v(T) denotes the number of singular fibers of type T. (Shioda (4]. For
general elliptic surfaces 20 should be replacecl by b2 - 2pg. In our case the second
Betti l1u111ber b2 = 22, tbe geonletrie genus Pg = 1.)
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Proof. Since p :::; dim H 1(Z, f21) = 20, by (3) we have 2t 2: 6 + a + t 1 2: 6. Q.E.D.

Here recall the notion of parallel translation along a path. Let r : [0, 1] ~ C - ~

be a path. '\'e have the indueed lnapping

Z(1') = U Fr(r) ~ [0,1].
O~r~l

Since [0,1] is contraetible, trus fanlily Z(r) ~ [0,1] is trivial, i.e., there is a homeomor­
phism X : Fr(o) x [0, 1] ~ Z(r) such that its eOlnposition with Z(r) ~ [0,1] eoincides
with the projection Fr(o) x [0, 1] ~ [0,1]. For °~ T ~ 1 by Xr we denote the eomposition
of the natural isomorphism Fr(o) ~ Fr(o) X {T} and the restrietion of X to Fr(o) x {T}.
The homeomorphism XrXr l -

1
: Fr(rl) ~ Fr(r) is induced for T, T' E [0,1]. This is ealled

the parallel translation from r(T') to r(T) along r. It depends on the hOlneomorphism
X, but the isotopy class of the parallel translation depends only on the hOlnotopy class
of the path in C - ~ eonnecting 1'(T') and r(T). In partieular, we can define an iso­
nlorphisill of eoholllology groups T* : H*(Fr(rl), Z) ~ H*(Fr(r), Z) assoeiated with the
parallel translation, which depends only on the hOlnotopy dass of the path r. (Thus we
can denote it by r *.)

Now, let br be the intersection point of C5 = So (C) and Fr ( r) . The seetion So

induces a section [0, 1] ~ Z(r) whose ilnage of T is br . Here note that we ean take X
such that X(bo, T) = br for °::; T ~ 1. Th~n the indueed homeomorphism Fr(r l ) ~ Fr(r)
sends br, to br .

The induced homomorphism r* : H*(Fr(o), Z) -. H*(Fr(o), Z) for a c10sed path r
is called the monodromy along r.

The fixed base point is denoted by b E C - ~. For 1 ::; i ::; t let li be a path
eonneeting b anel Ci eontained in C - E exeept the ending point Ci. Here we take them
in such a way that li and Ij has no eommon point except the starting point b, if i =j:. j.

By Ti we elenote the elosed path which starts fronl b, goes along li until a point just
before Ci, then switches to a eircle with a small radius with center Ci, proeeeds on it in
the positive direetion round onee, anel then goes again along li in the opposite direetion
back untill the base point b. 'Ve ean assurne that no points in ~ is inside the cireular
part of ri except Ci.

Set H = H 1 (Fb, Z). For any closed path r in C - E with the starting point anel
the euding point b, we have the assoeiated 111onodronlY r* : H ~ H. It is a linear
isomorphism preserving the interseetion form· on H.

Choosing a basis Q', ß of H with a .ß = 1, we can represent the nlonodrolny T * by an

integral 2 by 2 matrix (; ~) with determinant 1. This implies that Cl' is transformed

to xa + zß and ß to ya + wß when we go along the closed path r.
Here we would like to give a renlark. I(odaira's paper on elliptic surfaces (Kodaira

[1]) is a very in1portant reference. However, we shoulcl note that in it he uses a basis a ' ,
ß' of H such that 0.' . ß' = -1 anel ß' . a ' = 1, and n10reover that he writes the trans­
posed matrix of the one uneler standard representation to represent linear mappings. If
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(~: ~,) is Kodaira's matrix, it implies that a ' is transformed to x'a' + y'ß' and ß' to

( X Y) (x' -Z')z' 0:' + w'ß'_Thus Kodaira's matrix is represented by =" under
z w -y w

our notation.

Proposition 1.2. Assume that cI> has another singular tibre of type 1* except F I . Then
tbere exists an isotropie element u E H 2 (Z, Z) satisfying the following conditions (1)
and (2)_
(1) u is orthogonal to the co110mology c1ass of the section C5 = So (C) and to a11 tbe

cohomology c1asses of irreducib1e components of singular tibers.
(2) Let 8 : C ~ Z be an arbitrary section. Jf 8 has finite order in the abe1ian group E

of sections with the unit element 80, thell u is also ort110gonal to the cOhOlTIology
c1ass of tl1e image 8 ( C)_

Proof_ \\Te can assurne that F2 is of type I~. Aceording to I<odaira [1), the monodromy

(-1 0) (-1 0)around Cl and C2 can be represented by 0 -1 and n -1 respectively. In

particular the monodromy r1 ... equals to the multiplication of -1. The monodrolny T2*

around C2 has a primitive element fEH such that it transforms f 1---+ -,. We cau
represent the class f by an oriented simple closed curve r on Fb - We choose r such that
it does not pass through the intersection point bo of Cs = so(C) and Fb- Let r = r2rl be
the connected closed path made by connecting r2 after rl' The path r can be regarded
as a continuous mapping r : [0, 1] ~ C - E with r(O) = r(l) = b. Let r T be the image
of r by the parallel translation along r from b to r(T) _ r T is an oriented simple closed
curve on the Riemann sunace Fr(r) of genus 1. r = r o- \\Te can assulne that r r does
not pass through the intersection point br of Fr(r) and Cs. Consider the 2-chain

r = U r r C Z - cI>-l(E) - Cs ­
O~r~l

The boundary satisfies ar = - r + r 1- Vle have

The class f of r is transformed to -, when we go along rl- Next, -, is transfonned
to , when we go along r2' Thus the dass of r 1 is also ,_ Two curves r and r 1 are
homologous in thc compact Rielnann sUlface Fb .

Here note that
H1 ( Fb) ~ HI (Fb - {ba}).

Thus there exists a 2-chain e in the punctul'ed Riemann surface Fb - {bo} such that
ae = r - r l -

Considel' the chain of sum U = r + e. This is a 2-cycle and defines a dass
[U] E H2 (Z, Z). Let u E H 2(Z, Z) be the Poincare-dual dass of [U]. By construction
U intersects neithel' es nol' any cOlnponent of singular fibel's, and thus 'lL is orthogonal
to the cohomology dasses of them_
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Now, let r' be a closed path in C - E homotope to r. (Here we consider homotopy
without any base point.) We can repeat the above construction using r' instead of r.
Let U' be the resulting 2-cycle. Then U' is homologous to U in Z. Since we can take r'
with no intersection point with r, we can construct U' without intersection points with
U. Thus we have

u2 = [U] . [U' ] = O.

Lastly we would like to show u :j:. O. Note that we have the third singular fiber by
Lemma 1.1.

Ö Case 1. One of the singular fibers F i (3 ~ i ::; t) is not of type 1.

We can assurne that F3 is not of type 1. F3 is simply connected.
We can choose a slnooth path q : [0, 1] ~ C such that q(O) = Cl, q(l) = C3, q(T) ~ E

for 0 < T < 1, and q intersects r = rl ro at only one point Cu in a neighbourhood of Cl'
We can assume further that q and r intersect at Cl I transversally.

Let BI and B 3 be sufficiently small non-empty open discs on C with center Cl and
C3 respectively. We take BI such that BI is contained inside the circular part of the
path rl' Note that the inverse images q.-I(BI ) and (ll-I(B3 ) are simply connected.

Let '"Y' E H I (Fcll ) be the image of , E H I (Fb) by the parallel translation along rl

to cu. Let 8' E H I ( F cll ) be a primitive element wi th " . 8' :j:. O. The dass 8' can be
realized by a simple closed curve ß on the Riemann surface F cll • By ß r \ve denote the
image of ß by the parallel translation to .q(T) along q . ß r is a simple dosed curve on
the Riemann sunace Fq( r)' Choose a sufficiently small posi tive real number € such that
q(€) E BI and q(l - €) E B 3 . Set

ß = U ß r .

t:5 r :51-t

LS. is a 2-chain and the boundary satisfies the following.

Since ep-I(BI ) and (ll-I(B3 ) are simply connected, we have 2-chains Li' and Li" in
<I>-I(BI ) and q.-I(B3 ) respectively such that afS.' = ß t ,8LS." = -.6.1 - 10 ' The chain of
sum V = LS. +Li' + fS.u is a 2-cyde and it defines a dass [V] E H 2 (Z, Z). Cycles U and
V intersect only on the fiber F Cll and by construction their intersection number satisfies

[U] . [V] = ±,' .8' ::J O.

Thus we have [U] :j:. 0 and u ::J O.

Ö Case 2. Every singular fiber F i for 3 ~ i ~ t is of type 1.

Set C' = pi, and let f : Cf ~ C be the branclung double cover branching at Cl
and C2. Let Z' be the normalization of the fiber product of Z and C' over C. This Zl
is a branched double cover of Z. The branching locus is the union of 8 disjoiut smooth
rational curves on Z. Singular fibers FI and F2 contain 4 components with multiplicity
1 respectively. The union of them is the branching locus.
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Let ci be the unique inverse image of Cl by /, and C~ be that of C2. The fiber over ci
of the indueed morphism Z' ~ C' eontains 4 disjoint smooth rational eurves whieh are
inverse images of the branehing loeus, and they are exeeptional eurves of the first kind
on ZI. Similarly the fiber over ~ eontains 4 exeeptional eurves of the first kind. We
eau eontraet these 8 exeeptional curves and let Z' denote the resulting smooth surfaee.
We have the indueed morphism <p' : Z' ~ C'.

z'
1~'
C' C' f

--?

z
1~
C

The section So : C --t Z induces the seetion s~ : C' --t Z'. Set c~ = s~(C'). For simplicity
by F~ we denote the fiber <p'-I (a) over a E C'. For every point a E C' the fiber F~ does
not contain an exeeptional eurve of the first kind. F~, is a smooth elliptic eurve and F~,

1 2

is a (singular) fiber of type I2n . (A fiber of type 10 is a smooth elliptic eurve.) Let E'
denote the set of critical values for <P'. i-I({C3, . .. ,Ct}) C E' C i-I ({C3, ... ,Ct}) U {c~}.

Let b' and b" be the inverse images of b by f. We fix one b' of two as the base
point of C'. Let ci be the ending point of the lifting 1i of 1i with the starting point
b'(3 ~ i ~ t). Let ci' be the ending point of the lifting 1~' of 1i with the starting point
b"(3 ~ i ~ t). For 3 ~ i ~ t the fibers F~,. and F~~, are isomorphie to F Ci and are of
type I by definition. I'

We define paths on C'.
Let I be the lifting of rl with the starting point b'o The path I passes through a

neighbourhood of c~ and has the ending point b". Let 1~ be the lifting of 12 with the
starting point b'. The ending point of 1~ is c~. We define the closed path r~ to be the
one whieh starts from b', goes first along 1~, then switches to a small circle with center
c~ just befare c~, proeeeds round onee on the eircle in positive direction, and again along
l~ comes back to b'o

For 3 ~ i ~ t, let ri be the lifting of ri with the starting point b'o Note that the
ending point of ri is not b" hut b' and ri is a closed path. It goes round ci just onee. Let
ri he the lifting of ri with the starting point b". Set ri' = I-Iril. It is the composition
of 1, ri and 1 in the inverse direetion, has the starting point b', and goes round ci' just
onee.

By construction H' = H 1 (F~" Z) is identified with H = HI(Fb , Z) via the induced
isomorphism f * .

For each oue r of 2t - 3 closed paths

the monodromy transformation r ... : H' --t H ' is defined. Let G be the subgroup in the
self-isomorphism group of H' generated hy these 2t - 3 monodromy transformations.
We define the sheaf Q on C' by

r . ·*RI.:F..' Z
~ = J*J '±'... Z',



8

where j : CI - ~I <--+ C' is the inclusion morphism and ZZI is the constant sheaf on Z'
with values in the set of integers Z. By definition we have

HO(C', Q) "J H'o = {x E H' Ig(x) = x for every 9 E G}.

Lemma 1.3. (I(odaira)

Proof. Let N be the nonnal bundle of C~ = s~(C') in Z'. By:F we denote the pull­
back of N by 8~, which is a sheaf on C'. According to Kodaira [1], we have an injective
homomorphism of sheaves Q -t:F. By [1] Theorem 12.3 we have deg:F = -X(OZI).
Moreover by [1] Theorem 12.2 X(OZI) > O. Thus HO(:F) = 0 and HO(Q) = O. Q.E.D.

Now, , E H = H' is a primitive element transformed ,1--+ -7 by r2•.
Since the monodromy (r~)* equals to (r2.?' , E H' is invaliant by (r~).. By

Lemma 1.3 the following (5) 01' (6) holds.

(rD*, f , for some i with 3 ~ i ~ t. (5)

(r~/)., f , for some i with 3 ~ i ~ t. (6)

Assume that the case (5) takes place. H we regard , E H by going down to the
world of H via 1* : H' -t H, we have (/.ri)., f ,. However, since /*ri = ri by
definition, one knows

ri.' i= ,. (7)

Assume that the case (6) takes place. Similarly (/.r~/)., f ,. Here by definition
I*ri' = r)""11'i r l . The homomorphism rl. has been the multiplication of -1. Thus
(/*r~/). = (rl);lri.rl. = ri*' Therefore the above (7) holels also in this case.

In the following \ve fix a number i with 3 :::; i :::; t satisfying (7).

The monodromy r;. has the matrix representation in the form (_lb; ~ ). Thus

we have a unique primitive elenlent 8 E H with ri.8 = 8 up to sign. 8 is a vanishing
cycle of a singular point of the singular fiber Fi and it is defined associated with the
path li with the starting point b and with the ending point Ci. By (7) , f ±8. Since,
is also primitive, one knows that the intersection number satisfies

Now, we can discuss similarly as in Case (1).
Let q : [0,1] -t C be a smooth path satisfying the following conditions.

(1) The starting point Cl, the ending point Ci, i.e., q(O) = Cl, q(1) = Ci.

(2) For 0 < T < 1 q(T) ~ E. .
(3) The closed path F = 1'2rl and q intersect only at one point Cu on the circular part

of rl in a neighbourhood of Cl. They intersect at Cl I transversally.
(4) The composition path 1i 1)"" 1 and q are homotope in (C - E) U { Cl, Ci} with the

starting point Cl and the ending point Ci keeping fixed.
(5) For some suffident ly slnall positive real number € I q(r) and li (T) coineide for 1-€ I :::;

r:::;1.
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Let {/ ,,' E HI (Fell) be the image of S" E H I (Fb) by the parallel translation along
r1 from b to CIl' We ean represent the dass S' by an oriented simple dosed eurve !J.

on the Riemann surface Fell of genus 1. Let ~T C Fq(T) denote the image of ~ by the
parallel translation along q from CIl to q(T). Let Bi be a suffieiently small non-empty
open disc on C with the center Ci, and BI be a sufficiently small non-empty open disc on
C with the center Cl' Let € be a sufficiently small positive real number with q( €) E B},
q(l - f) E Bi and 0 < f < fl.

Set
!J. = U !J. T •

(;:5 T :5I-(;

Li is a 2-chain satisfying

afi = -!J. t + !J.l-t,

Now, since the inverse image «r>-I(BI) is simply connected, we have a 2-chain fi' in
<I>-l(Bl ) such that aiS.' = ~t.

Next we consider ~l-t. The class S" defined in Hl(Fq(l_t») by ~l-(; is the image
of S' by the parallel translation from Cll along q. Let a be the rounding number around
Cl of the closed path r;1 q#rf where q# denotes the part of q between Cu and Ci, and
rf denotes the part of Tl behveen b and Cl 1. Since the monodromy around Cl is the
multiplication of -1, we have

S" = (-lrS#,

where S# denotes the image of 8 E H l (Fb) by the parallel translation along li to
q(l - f) = li(l - f). In particular, one knows that ~l-€ is a vanishing cycle along
li. Thus we have a 2-chain iS." in <I>-l(Bd with aiS." = -.6..1 -(;' The 2-chain of SUffi

V = Li + fi' + iS." is a 2-eycle and defines the dass (V] E H 2 ( Z, Z). The intersection
number satisfies

[U] . [V] = ±,' . S' = ±, .6 :f O.

Thus one knows that [U] :f 0 and u :f O.
Lastly we have to show (2) in Proposition 1.2.
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Lemma 1.4. Assume that an elliptie [(3 surfaee .p : Z --+ C has a seetion 80 wbose
image is denoted by Cs . Let S be tbe subgroup of tbe Pieard group Pic( Z) of Z
generated by C5 and all irreducible eomponents of singular fi. bers of.p. By E we denote
the abelian group of sections of.p wi tb the uni t element so. Then there exists a nat ural
group isomorphism

Pic(Z)/S~ E.

Proof. Not difficult.

Under the condition in Proposition 1.2 (2) one knows by Lemma 1.4 that s(C)
can be written as a rational linear combination of the classes of Cs and irreducible
components of singular fibers. Thus (2) follows from (1) in the same proposition. This
completes the proof of Proposition 1.2. Q.E.D.

Let S C H 2 (Z, Z) be the subgroup generated by the classes corresponding to the
irreducible components of the curve I F at infinity (Urabe [7] section 1) and rational
smooth curves on Z not intersecting I F . Note that such a smooth curve on Z is a
component of a singular fiber. In the case of J3 ,0, ZI,O, or Q2,O' C5 is the unique
component of I F wmch is an image of a section. The other components of I F than Cs
are components of singular fibers. Thus in these cases we have

SeS c Pic(Z) c H 2 (Z, Z),

where S is the group in Lemma 1.4. Under the isomorphism H 2 (Z, Z) ~ A3 S corre­
sponds to P EB Q(G), P corresponds to the subgroup in S generated by components of
I F, and Q(G) corresponds to the subgroup in S generated by smooth rational curves
on Z not intersecting IF. Reversing the sign of bilinear forms, we have the following
by Proposition 1.2.

Corollary 1.5. Consider the ease of X = J3,o, ZI,O or Q2,O. Let G E PC(X). H
the corresponding elliptic 1(3 surfaee Z --+ C has a singular fiber of type I· apart
from tbe Olle of type I;, then the orthogonal complement of Q(G) with respeet to the
eorresponding embedding Q(G) t.....+ A3 / P eontains an isotropie element. In particular,
then, tbere is an isotropie element in a mee position.

Note that this corollary claims stronger than Proposition 0.1 under the assumption
((1)) in the introduction.

The following corollary is interesting in itself. Here recall that IF = F1 U Cs if
X = J3 ,0, IF = FI U Cs U Ca if X = ZI,O, IF = F1 U Cs U Ca U C7 if X = Q2,O, where
Ca, C7 are smooth rational curves not intersecting FI satisfying Ca . Cs = 1, C7 • Ca = 1
and C7 • Cs = O.

Corollary 1.6. Consider the case of X = J3 ,0, ZI,O, or Q2,0. Assume tbat a Dynkin
graph G E PC(X) has a conlponent of type D k for some k ~ 4. Assume moreover that
if X = ZI,O, then k -f 6. Then for any full embedding Q(G) C--.t A3 / P the orthogonal
eomplement of the image eontains an isotropie element, and thus in particular. tbe
equivalent conditions [II](A) and [II](B) in Part I (Urabe (7]) Theorem 0.3 are satisfied.

Proof. Ey assumption the corresponrung 1(3 surface Z contains a combination [1 of
k smooth rational curves not intersecting I F whose dual graph is the Dynkin graph of
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type Dk. EI is contained in sorne singular fiber Fi of Z ~ C with Fi =1= F I . H Fi is
of type I"", the claim follows from Corollary 1.5. Otherwise F i is of type I I*, I I I*, or
IV*, and it contains several components of the curve IF at infinity. Since the union of
components of F i disjoiut from IF is a combination of type Dk, one knows X = ZI,O,
F i is of type 111*, and k = 6. Q.E.D.

§2. A transcendental cycle with the positive self-intersection number

In this section we treat the case where the corresponcling elliptic K3 surface q. : Z ----+ C
has a singular fiber of type 11*, I I I*, or IV·. Reeall that by C5 we denote the image
of the section so: C ~ Z. C5 is a cornponent of the curve I F at infini ty. By [3] we
denote the homology class of a eycle B or the eohomology class of 3.

Proposition 2.1. Assume that the elliptic 1(3 surface q. witb a section So bas a singular
fiber oE type II*, 1[1*, or IV* apart from tbe singular fiber FI oE type [0' Then tbere
exists a cohomology dass ~ E H 2(Z, Z) satisfying the Eollowing conclitions (1)-(4).
(1) (2 = +4.
(2) The dass ~ is orthogonal to the dass oE C5 and to all the dasses of irredueible

components oE singular fibers oE q..
(3) For some two irreducible components C' and C" oEFI with multiplieity 1 whicb have

DO mtersection with Cs , we can write ~ + [C'] + [C"] = 211 Eor some 11 E H 2 (Z, Z).
(4) Let 8 : C ~ Z be an arbitrary section. H s has finite order in the abelian group E

oE sections witb the unit element 80, then ~ is orthogonal to tbe cohomology dass
oE the image s(C).

Proof. We assurne that the singular fiber F2 over C2 E E is of type [1*, I I 1*, or IV"'.
Consider the paths on C as in the following figure.

The path j and k go on circles with centet; C2 with a sufficiently srnall radius in the
positive direetion. j has a less radius than k. The point a and a' lie on the path j and
k respectively. These are regarded as the starting point and the ending point of the
respective closed path. The smooth path q has the starting point a and the ending point
a', and it does not intersect j and k exeept at a and a'. The path p is a srnooth path
which has also the starting point a and the ending point a', it has no intersection with
j except at a, and p and k has a unique interseetion point d except the ending point a'.
At d they intersect transversally. The eomposition path r = q-Ip goes round the point
Cl just onee in the positive direetion. The inner domain sUITounded by k contains no
points in the set E of eritical values of q. except C2, and the inner domain surrounded
by r contains no points in E exeept Cl.
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Let u, ß be a basis of H = HI(Fa, Z) with 0' . ß = 1 such that the associated
matrix of the monodromy j. is the following.

(0 -1)1 1 (case of type Ir*)

(-1 -1)1 0 (case of type IV·)

Let A be an oriented simple dosed curve on the Rlemann surface Fa representing the
cohomology dass a. V'le can assume that A has no interseetion with es. The dosed
path j : [0, 1] ~ C - ~ with j(O) = j(l) = adefines the parallel translation Fa ~ Fj(r)

for 0 :5; T :::; 1. By Ar C Fj(r) we denote the image of A by the parallel translation. For
every T with 0 :5; T :5; 1 we can assurne that Ar has no intersection with C~. We can
define a 2-chain J by the following:

J = U Ar C Z - q,-I(E) - es.
0::; r::; I

The boundary satisfies aJ = -A + Al. The cohomology dass of aJ in H I (Fa) is equal
to j*a - 0'.

Next, let A' C Fa' be the image of A by the parallel translation along q. We can
choose such an A' that it has no intersection with es. Also the dosed path k : [0,1] ~
C - ~ with k(O) = k(l) = a' defines the parallel translation. By A~ C Fk(r) we denote
the image of A' by the parallel translation along k. We can assume that for every T

with 0 .::; T ::s; 1 A~ does not intersect C15. A 2-chain K is defined by

K = U A~ c Z - q,-l(~) - es.
O::;r::;l

Bi< = -A' + Ai. The cohomology dass of aK in HI(Fa ,) is the image of j.O' - 0' by
the parallel translation q. : H I (Fa) ~ HI(Fa,).

Now, we have an oriented simple c10sed curve f C Fa representing the cohomology
dass j*O' - a, since j.O' - a is primitive in H. By f r C Fp(r) we denote the image of r
by the parallel translation along the path p : [0,1] -t C - ~ with p(O) = a, p(l) = a'.
For every 0 :::; T :::; 1 we choose such a r r that it has DO intersection wi th es. Set

The boundary satisfies 8P = -r + f).
Here the cohomology dass of -A+A I -f is zero, and the support of this cycle does

not pass through the intersection point ao of Fa and C~. Since H I (Fa) i'V H I (Fa - {ao}),
we have a 2-chain e in the punctured Rlemann surface Fa - {ao} such that ae =
A-A I +f.

Consider the image f' C Fa of r) c Fa' by the parallel translation along the
inverse of q. The homology dass of r ' coincides with the homology dass of f applied
by the monodromy r * around Cl, and thus it is -(j*Q - 0'). It follows from this that the
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homology class of _A' + A~ + r 1 is zero in Fa" There exists a 2-chain 8' in Fa, with
8S' = A' - A~ - r 1 such that the support of 8' does not pass through the intersection
point a~ of Fal and C~.

The chain of sum 3 = J+K+P+8+8' is a 2-cycle, and defines the homology class
[3] E H 2 ( Z, Z). Let eE H 2

( Z, Z) be the PoincaJ'e dual class of [3]. Hy construction e
satisfies the condition (2) obviously.

In order to see the eondition (3) we need several construetions. First let r; c
Fq(T) be the image of r by the parallel translation along q. Adjusting the parallel
translation along p, we can assurne that ri coincides with r l except that the orientation
is opposite. Secondly we ehoose a slnooth map T : [0,1] X [0,1] -+ C - ~ such that
T(r,O) = j(r), T(r, 1) = k(r), and T(O,a) = T(l,a) = q(a) for r,O' E [0,1]. Denoting
~-I(T(r,a)) = FT,u, we have the pallarel translation Fa = Fo,o -+ FT,u associated
with T. By AT,u and by r T,U we denote the image of A and r by the translation
assoeiated with T respeetively. We can assume AT = AT,o, and A~ = AT,I' Setting

Q= - UO~O'~1 Ao,u + UO::;U~1 AI,u, and Q = UO~u:S;1 r;, we divide 3 into three parts.

Set 3 1 = J+K+Q, 3 2 = -Q+Q+8+6', and 3 3 = }5-Q. Obviously 3 = 3 1 +32 +33 .

However, 3 i (i = 1, 2, 3) is not a eycle if we use Z as the coefficients.
Here let us use Z/2-coefficients. We eonsider homology groups over Z/2. Then

Si (i = 1,2,3) are cycles. Besides, 8n = 3 1 for a 3-ehain n = UO<T<1 O<u<l AT,u. Let
8 u be a eontinuous faluily of 2-chains such that aGu = Ao,u - A~,u-+ f: ~ chains in

Fq(u), andGo = G, GI = G'. Then we have ae = 3 2 for the 3-chain e= UO<u<1 8 u .

Consequently one knows that [3] = [33] in H2 (Z, Z/2). - -
Now, let U C C be a contractible neighbourhood of the point Cl eontaining

the path r = q-Ip and not containing any point in ~ except Cl' The class [33 ] E

H 2 ( ib- l (U), Z/2) is defined. Let Co, ... , C4 be the irreducible components of the cen­
tral singular fiber FI . We assurne that Co has multiplicity 2, and C4 intersects Cs. By
construction the interseetion [33] • [Ci] = °for °:::; i ::; 4.

On the other hand, since H2(q,-1 (U), Z/2) ,...., H2(FI, Z/2) = L::=o Z/2[Ci ], we
can express [33)as the linear combination of [Ci]'S. Setting Uo = 2[Co) + L::=l [Ci), we
have elements €, bo, ... ,b3 E Z/2 with (33 ) = €Uo + L:~=o bdCi). Then, f = fUo • [Cs] =
[33 ] . [Cs) = [3] . [C5 ) = 0. bo = [33 ] . [Cl] = 0, and bl + b2 + b3 = [33 ) . [Co) = 0.
It implies that either for some two C', C" of CI, C2 , C3 , (2) = [33] = [C') + [C"], or
[3] = [2:3 ] = 0. If the first case takes place, then by the universal coefficient theorem
H2 (Z, Z/2) = H2 (Z, Z) ® Z/2, we have the condition (3). If the second case takes
plaee, we ean write e= 21] for SOHle 1] E H2 (Z, Z). Here we assume the condition (1)
[3)2 = 4. Then we have 1J2 = 1, which contradiets that H 2 (Z, Z) is an even lattice. In
the following proof of the condition (1) we do not use the condition (3). Thus we can
complete the proof of condition (3).

As for the condi tion (4), it follows from the condition (2) as in Proposi tion 1.2.
The condition (1) is remaining. To eompute the self-intersection number we eon-.

sider the small perturbation j', k' ,p' of the paths j, k, p as in the following figure.
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p'

Four intersection points occur. Let b1 be the intersection point of p' and j, ~ be
that of p' and k, and b3 , b4 be those of k' and p. We assurne that b3 is nearer to d than
b4 • Let 3' be the 2-cycle associated with j', k' and pi which is constructed similarly to
the case for 3. We can check that 3 and 3' are homologous. Thus the self-intersection
number ~2 is equal to the intersection number of 3 and 3'.

The intersection points of =: and S' are contained in U~=l Fb". After computing
the local intersection number in the neighbourhood of Pb", we can take the sumo

First we consider the neighbourhood of Fb 1 • We assume that j (TO) = b1 and
p' (Tl) = bl • Let BI be a sufficiently small meighbourhood of bl in C. The inverse image
q,-1 (B l ) ean be identified with the produet BI X Pb1 • Let p~ be the part in B 1 of the
path p'. and j B be the part in BI of j. 3 ean be identified locally with j B x A ro , while
3' ean be identified with P'a x r~1' Under the identification by the parallel translation
along j TO =:; T =:; 1, the homology class of A ro coincides with j.O', while that of r~1 is
j.O' - 0'. Thus

int(Aro , r~1) = j.0' . (j.a - 0') = 1.

Here we denote the local intersection number of X and Y by int(X, V). (Note that the
order of two 1-eycles and the sign.) In tI>-1(B1), we have

int(3, 3') = int(jB X Ara, P'a X r~1)

= -int(j B, P'a) int( Ara, r~1)

= -( -1) x 1

= +1.

Similarly one knows that for each V (v = 1, 2, 3, 4), :=: and 3' has the local intersec-
tion number +1 in the neighbourhood of Fb".

Therefore ~2 = +4. Q.E.D.

We apply Proposition 2.1 aod show an nice isotropie element.
First we consider the case for J3 ,0. Let G E PC( J2,0). Obviously under our

assumption in this section G contains a component of type E. Let S = P EB Q(G) t.......+ A3

be the corresponding lattice embedding. By Proposition 2.1 we have an element eE A3

orthogonal to S such that ~2 = -4. (Note that when we move from H 2 (Z, Z) to A 3 ,

we reverse the sign of the bilinear form.) The induced embedding Q(G) t.......+ A3 / P is
full, and the image is eontained in the orthogonal eomplement L of Z~ in A3 / P. L has
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signature (14,1) and thus we can define the Coxeter-Vinberg graph for L. Since Q(G)
is full even in L, G is a subgraph of the Coxeter-Vinberg graph for L.

Therefore we would like to draw the Coxeter-Vinberg graph for L.
Recall that the dual module Hom(V, Z) of a Z-module V is denoted by V*. H V is

a non-degenerate lattice, we ean regard V c V· = {x E V 0 Q I For every y E V, x· Y E
Z} c V0Q.

Set R = P ffi Z~. The discriminant group of R is R* / R ~ (Z/2 + Z/2) ffi Z/4.
For Cl' = (al, a2, b) E R* / R, the diseriminant quadratie form ean be written qR( Cl') ==
a~ + al a2 + a~ - (b2 /4) mod 2Z. Thus qR =°{::> Cl' = (0,0,0), (1,0,2), (0,1,2), or
(1, 1,2). One knows in partieular that any subgroup in R* / R eonsisting of elements a

with qR(a) =0 has order:S 2. It implies [R: R] :S 2 for the primitive.....hull Rof R in A3 .

On the other hand the conditi~n (3) in Proposition 2.1 implies that [R : R]~s a~ultiple
of 2. Consequently one has [R : R] = 2. After some caleulation one has R· / R ~ Z/4
and qEi(~) =3c2 /4 mod 2Z.

Let M be the orthogonal complement of R in A3 . M*/ M rv R* /R rv Z/4.
Next, let K be the orthogonal eomplement of Ze in A3 • The group [(* /!( has order

4. The quotient I(/ P ean be identified with L, and we ean regard M as its subgroup
with finite index. 'Sinee M EB P C I( and sinee the group (M EB P)* /(M EB P) has order
16, one has [K/P : M] = [I( : lvI EB P] = 2.

Consequently L = I( / P is a unimodulax lattice of signature (14,1). It is known
that such a lattice is unique up to isomorphisms (Milnor-Husemoller [2]), and we can
find its Coxeter-Vinberg graph in Vinberg [8}, which is as in the following figure.
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The Coxeter-Vinberg graph for L.

By ,i we denote the fundamental root in L associated with the vertex in the above
graph with the at tached number i.

Proposition 2.2. Consider the ease for J2 ,0. Let G E pe(J2,0), and GI be an arbitralJ'
component of G. Assume tbat the corresponding elliptic 1(3 surfaee <I> : Z ~ C has
a singular fi ber of type II*, I 11* or IV * . We regard Q(G) as a su bmodule of A3 / P
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by the eorresponding embedding. Then, there exists an isotropie element u in A31P
satisfying either the following eondition (1) or (2).
(1) u is orthogonal to Q(G).
(2) For some raot basis 6.. c Q(G) there is a long root Q' E 6.. - 6..1 such that u . Q' = 1

and u . ß = 0 for every ß E .6. with ß =1= 0', where 6..1 denotes the eomponent of 6..
eorresponding to GI.

Remark. H u satisfies the a;bove condition (2), then u is automatieally primitive in

A31p ·

Proof. We can assume that the root basis .6. C Q(G) is contained in the set {,i I 1 ~
i ~ 17} of the fundamental roots of L. ObviouslY'14, ,17 t/:. 6.., sinee they are short
roots. Moreover either ,6, ,7 or ,8 does not belong to 6.., sinee G contains a subgraph
of type E. Thus one ean eoncIude that either ,5 t/:. 6.. 1 or ,9 ~ 6.1 , sinee the graph
eorresponding to 6.. 1 is eonnected.

First we eonsider the case where ,5 ~ 6..1. Set Ul = -(2,1 + 2,2 + 2,3 +,4 + ,IS +
2'17)' We ean check that Ul is an isotropie element in L C A31P. Moreover,

u . ,i = 0 for 1 ~ i ~ 17, i =1= 5, 14

U ',5 = U . ,14 = 1

Set Q' = ,5. H /5 ~ 6., then u1 satisfies the above (1), while if /5 E .6., t hen it satisfies
(2).

The seeond ease,9 t/:. 6.. 1 is similar. By the symmetry of the graph it is obvious
that the element U2 = - (,10 + 2'11 + 2/12 + 2,13 + 2,14 + ,16) satisfies conditions.

Q.E.D.

We proceed to the case of ZI,O and Q2,0' By X we denote either ZI,O or Q2,0'
Let G E PC(X). We consider the corresponding elliptic !(3 surface Z -7 C. In this
case there is a unique singular fiber containing a component of I F apart from F1 . We
assurne that a singular fiber F2 contains a component of I F.

We would like to reduce our case to the case of J3 0. Now, let IF denote the union
of F1 and Cs = so(C). IF is a tmion of same comp~nents of IF, and is same as IF
in the case of J3 ,o. Let E (resp. E) denote the union of irredueible components not
intersecting IF (resp. IF) of singular fibers Fi , 2 ~ i ~ t. One has

t t

E n (UFi ) = en (UFi ) and (E n F2 ) U T C ce n F2 ) U B = F2 •

i=3 i=3

Here B denotes the component of F2 intersecting C5 , and T denotes the union of
components of IF not contained in IF. Note in particular that B consists of a unique
component, and that it has multiplicity 1 as a component of F2 •

Assume that for some component EI of E contained in U:=3 Fi the cohomology
class U E H 2 (Z) satisfies the following.

[EI] . U = -1, [Ci] . U = 0 for every component Ci of IF, and [E] . U = 0 for
every component E of E with E =I EI.

Then U is orthogonal to the general fiber of cI> and orthogonal to all components of F2

except possibly one component B. However, U is orthogonal also to B since the class
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of B can be written as an integral linear combinations of the dass of the general fiber
and the dasses of other components of F2 • Thus one can condude that U is orthogonal
to all components of I F and to all components of E with a unique exception EI'

By the same reason if U is orthogonal toall components of IF and to all components
of &, then it is orthogonal to all components of IF and to all components of E.

By translating this fact to the lattiee theory we ean get the proof.
By P we denote the sublattice of P generated by the part of the basis corresponding

to the eomponents in I F. (Recall that P has a basis whieh has one-to-one correspon­
dence with the components of I F.) rank P = 6 and P = PJ fJJ Ho in the notation in Part
I. Moreover P is isomorphie to P in the case of J3 ,0. Let G (resp. G) be the dual graph
of E (resp. &), and GI (resp. GI) be the sub-dual-graph of G (resp. G) corresponding
to E n F2 (resp. E n F2 ). GI has a unique eomponent and G - GI = G - GI = Go. By
the above we have P EI1 Q(GI ) ::> P EI1 Q(GI ). The lattice P EI1 Q(G I ) ffi Q(Go) has the
embedding into A3 eomming from the geometrie situation. By Proposition 2.2 one has
an isotropie element u E A3 / P satisfying either (1) or (2) in Proposition 2.2 for the pair
of graphs G and GI. 1L is orthogonal to Q(ÖI) in any case. The orthogonal complement
of P in A3 eontains an isotropie element ü wmch eorresponds to u under the quotient
map A3 -. A3 / P. u is orthogonal to P ffi Q(GI ). The image of u by the quotient map
A3 -+ A3 / P is an isotropie element in a nice position.

We have shown Proposition 0.1 for X = J3 ,0, ZI,O or Q2,O under the assumption
((2)) in the introduetion.

§3. Combinations of graphs of type A

Let G be a graph in PC(X) with the number of vertices r. We assume moreover in this
section that all singular fibers of the corresponding elliptic K3 surface q. : Z -+ C are
of type I, I I, I I I or IV except the unique exception FI of type Iö. Every component
of G is of type A under this assumption.

By ]"1p we denote the p-Sylow subgroup of an abelian group M, and I(M) denotes
the minimum number of generators of M.

We begin with the case X = J3 ,o, Let A ni be the dual graph of the components
not intersecting Cs of the singular fiber Fi for 2 S; i S; t. (Here Ao stands for the empty
graph 0.) We have G = L:~=2 Ani •

Proposition 3.1. We consider onJy the case X = J3 ,0 under the assumption as above.
(1) If p = 6 + r, tben the group E oE sectiollS is finite.
(2) v(G) S; 18 - r, where v(G) denotes the number oE components oEG.
(3) r S; 13.
(4) Set N(p) = {i I 2 S; i S; t, ni + 1 =0 (mod p)}. If the corresponcling embedding
P EI1 Q(G) C-...+ A3 is not primitive, tben there is a subset T C N(2) such tbat L:iET(ni +
1) = 12.
(5) For any odd prime number p N(p) contains at most 15 - r elements.

Proof. (1) Since r = L:~=2 ni, we have a+ L:~=2(m(Fd-ni -1) = 0 by the equality (2)
at the beginning of section 1. By definition m(Fd > ni, and thus a = 0, which implies
E is finite.
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(2) Without lass of generality we ean assume p = 6 + r by Theorem 1.2 in Part I (7).
In the equality (3) at the beginning of section 1, we ean substitute a = 0, t - t l =
1 + v(II) + v(III) + v(IV), t1 = v(G) -v(III) - v(N) + v(II ). Thus v(G) = 18 - r­

{2v(II) + v(III) + v(IV) + v(II )}.

(3) If r > 13, then r = 14 since 20 2:: p 2:: 6 + r. Assuming r = 14, we will deduce a
contradiction.

First then we have p = 20 = 6 + r. Thus a = 0 by (1). If the functional invariant
J is not constant, then we have

o= 20 - P+ a 2:: v(I;) + v(II) + v(lII) + v(IV) 2:: v(I;) = 1,

by the inequality (4) in section 1, which is a contradiction. Thus J is constant and all
singular fibers are of type II, III, or IV. This implies that all components of G are of
type, Al or A 2 , and thus v(G) 2:: 7 since G has 14 vertices. On the other hand by (2)
we have v(G) ~ 4, which is a contradiction.
(4) Let S be the subgroup of Pic(Z) generated by the class of C5 and the classes of all
components of singular fibers. Since in our case under the isomorphism H 2 ( Z, Z) ~ A3

S corresponds exactly to P EB Q (G), t he assumption in (4) implies S/S 1= 0 for the
primitive hull S of S in H 2 (Z, Z).

On the other hand by Lemma 1.4 the quotient Pic(Z) / S is isomorphie to the group
E of seetions. Here S C Pie(Z) sinee Pie(Z) is always prif!litive in H2 (Z, Z), and one
knows that S/S is isomorphie to the subgroup Tor E of E eonsisting of all elements
with finite order. Thus we have a section s' : C --+ Z such that s' 1= So and s' E Tor E.
Ey C' we denote the image of s'. [C'] E S.

Now, let Si denote the subgroup of S generated by the classes of components not
intersecting IF of the singular fiber Fi' We have S = (Z[F] + Z[F + Cs]) EB EB~=1 Si,
where F denotes a general fiber of q>. Thus we ean write

t

[C'] = m[F] + [F + C5 ] + LXi,
i=I

for some mEZ, Xi E Sr
Here we recall general facts on elliptie surlaces, which may be to be added in the

beginning of seetion 1. (I<odaira (I], Shioda [4])

• Let Z# be the set of points on Z at which the Jacobian matrix of q> has rank 1.
Z# --+ C has the structure of a group variety over C. In particular for every point
a E C pt = q>-l(a) n Z# has the induced structure of a eomplex Lie group. This
group structure depends only on Fa. (F! is the set of simple points of the fiber
Fa = q>-l(a).)

• With respeet to the induced group homomorphism E --+ F!, the induced homo­
morphism Tor E --+ Tor Pt! is injeetive for every point a E C. Here by Tor lvI
we denote the subgroup of an abelian group M consisting of all elements of finite
order.

We eonsider Xl. C' intersects a unique eomponent of F l with multiplicity 1, and
the component intersecting C' do not intersect es, since Tor E --+ Tor Fl# is injective

and every component of F I contains at most one point in Tor F1#. It implies Xl 1= 0,
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and under the isomorphism S; .-v Q(D4 }* Xl corresponds to a fundamental weight
associated with avertex of the Dynkin graph D4 with only one edge. Consequently one
knows X~ = -1. By injectivity one knows moreover that s' has order 2 in E.

Next we consider Xi for 2 ~ i ~ t. Assurne Xi =f O. Since Tor E -+ Tor Fi# is
injective, Fi# contains a point with order 2 which is not on the component intersecting
C5 . It implies Fi is of type either 111 or 12J. for sorne k. We have ni + 1 =0 (mod 2).
The injectivity also implies that under the isomorphism Si .-v Q(AnJ'" Xi corresponds
to the fundamental weight associated with the central vertex of the Dynkin graph A ni •

In particular one has xr = -(ni + 1)/4.
We calculate m. By injectivity for Tor E --+ Tor F! a E C, C' and Cs have no

intersection. Thus

o= [C'] . [C5 ] = m[F] . [C~] + [F + Cs] . [Cs] = m - 1.

We have m = 1.
Set T = {i I2 ::; i ::; t, Xi =f O}. By the above one has T C N(2), and

which implies the equality in (4).
(5) Assuming that for some odd prime p N(p) contains a set U with 16 - r elements,
we deduce a contradiction.

For M = {i 12 ~ i ~ t, ni t O} we have M :> U. First we would like to show that
M =f U. Indeed, if N(p) contains 17 - r or more elements, then M :> N(p) =f U. Thus
we can consider only the case where M = N(p) and M has just 16 - r elements. Now,
since r = L:iEA1 ni, we have 16 = r + (16 - r) = L:iEM(ni + 1) =0 (mod p), which
contradicts that p is an odd prime.

Choose an element e E M - U. The singular fiber Fe over Ce E ~ is either of type
Im for m = n e + 1, or of type I I I, or of type IV, since n e > O.

Next we consider the homotopy theory.
Fixing a base point b E C - E, we draw a path li connecting b and a point Ci E E

for 1 ~ i ::; t as in the begjnning part of section 1. Here by exchanging the numbering
we assume moreover that when we go on a small circle with center b in the positive
direction, we encounter li 's in the order of the attached ntllllber i. Associated with
li, we define the closed path rias in section 1. The homotopy classes [r i] of r i are
generators of 7r1(C - E, b) and are subject to a unique relation [rI](r21 ... [rt] = 1.

Let J : C - EI -+ pi - {oo} be the functional invariant of the elliptic surface cl'
where we denote EI = E - {Cl}' Ey j : 1i -+ pi - {oo} we denote the j-function from
the upper half plane 1i = {z E C 1 Im z > O}. The multivalued function j-l J deBnes
the monodromy representation X : 7rl(C - EI, b) --+ PSL(2, Z) = SL(2, Z)/{+l, -I}.
Let f : SL(2, Z) ---+ PSL(2, Z) denote the canonical surjective homomorphism, and E 2

be an arbitrary finite set with EI C E 2 C C - {b}.
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Lemma 3.2. (I{odaira [1]) The following two sets have one-to-one correspondence.
(1) The set of an isomorpbism dass of an elliptic surface W -+ Cover C witb a

section So : C -+ W whose critical values are contained in E2 and whose functionaJ
invariant coincides with J.

(2) .The set of a representation X : 1l'1 (C - E2 , b) -+ SL(2, Z) such that the composition

Ix coincides with the composition 7I"1(C - E2 , b) -+ 7I"1(C - EI, b) L PSL(2, Z).
The correspondence is given by associating the e11iptic surface W -+ C with the mon­
odromy representation on the first cohomology group HI(Fb, Z) oE the fiber over b.

Lemlua 3.3 (Kodaira [1]) An elliptic surface W -+ D is a K3 surface if and only if
D I"V pl and the surn oE the Euler numbers oE singular tibers is equal to 24.

Let Xl : 7I"1(C - E, b) -+ 8L(2, Z) denote the representation associated with our
elliptic I{3 surface Z -+ C. We have Xl ([rl]) = -1 and Xl ([rl])' Xl ([r2])' .. Xl ([rt]) = l.
We can construct another representation X2 by setting X2([TI]) = 1, X2([re]) = -Xl ([re])
and X2( [Ti]) = Xl ([ri]) for 1 5 i ~ t with i i 1, e. Since -1 commutes with any element
X2([rl]) . X2([r2])" . X2([rt]) = 1 and it defines a representation of 71"1 (C - E, Z) such
that IX2 = lXI = X·

Let W -+ C be the corresponding elliptic surface to X2. By I{odaira [1] the type of a
singular fiber is uniquely detennined by the 8L(2, Z)-conjugacy class of the monodromy
matrix around it. Thus the fibers over Ci with 1 5 ist, i i 1, e are same as those of
Z -+ C. However, the fiber over Cl is smooth and the fiber over Ce is of type [:n, [[[*

or [[*, according as that in Z is of type [m, [II or IV. The combinatian 10+ Im has
been replaced by 10 + I:n in the first case. Here note that for the both pairs of singular
fibers the SUffi of the Euler numbers is m + 6, and they are equal. Thus by Lemma 3.3
one can conclude that 111 is also a 1(3 surface. In the second case 10+ I I I has been
replaced by 10 +I 11*. Also in this case for the both pairs the surn of the Euler nurnbers
is 9. In the third case I ö+ IV has been replaced by Io + II*. For the both pairs the
surn of them is 10. By Lemma 3.3 W is a I{3 surface even in these cases.

Next we cornpare Dynkin graphs. Let Gw be the dual graph associated with the
set of all components of singular fibers in W not intersecting the image so(C) of the
section So. By construction we have Gw = G - A m - l + D m +4 in the first case. Thus
Gw has r + 5 vertices. In the second, third case we have Gw = G - Al + E7 and
Gw = G - A 2 + Es respectively. Thus Gw has r + 6 vertices.

Let Sw c Pic(W) be the subgroup generated by the classes of so(C) and all the
components of singular fibers of W -+ C. Setting Go = D m +4 , E 7 or Es according as
the first, second or third case takes place, we have

t

Sw I"V Ho ffi Q( -Gw) ~ Ho ffi Q( -Go) ffi EB Q( -Ani)'
i=2
i~e

where Q(-X) denotes the negative definite root lattice associated with a Dynkin graph
X (The bilinear fann on Q(-X) is (-1) times that on Q(X).), and Ho denotes a
hyperbolic plane. rank Sw ~ r + 7. Note that the discriminant group Siv / Sw has at
least (16 - r) of p-torsions corresponding to U.
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Let Sw be the primitive huB of Sw in H2(W, Z). The quotient SwI Sw is isomor­
phie to the group of all seetions of W ~ C with finite order, and it is isomorphie to
a subgroup in thegouP of the singular fiber over Ce' Since the fiber over Ce is either
I:n, 111"" or 11"", SIS is a 2-primary group. Thus for the p-Sylow subgroup we have
(SwISw)p = 0, since pis odd. We have 1«SwISw)p) = l«SwISw)p) 2:: 16 - r.

Let Tw be the orthogonal complement of Sw in H2(W, Z) which has rank 22.
rankTw ~ 22 - (r + 7) = 15 - r. Thus l«Tw/Tw)p) ~ l(TwITw) ~ 15 - r. On
the other hand, since Sw/Sw f'V Tw/Tw, we have 1«TwITw)p) 2:: 16 - r, which is a
contradiction. Q.E.D.

We have a byproduct of the proof of (4).

Lemma 3.4. Assume that G = EiEI A,l;j E PC( J3 ,o). Then for any embedding S =
P EB Q(G) L-? A3 satisfying Looijengas conditions (a), (b) the followings hold.
(1) For the primitive hull S every non-zero element in the quotient SIS bas order 2.
(2) Any non-zero element a in SIS can be written

a = Xo +LXi,
iET

for some subset Tel, where O:f XO E P"" IP f'V Q(D4 )"" /Q(D4 ), Xi E Q(AkJ"" /Q(AkJ
has order 2, ki + 1 =0 (mod 2) for i E T and L:iET(k i + 1) = 12.

(3) H SIS js not cyc1ic, tben there are subsets Tl, T2 C N(2) = {i E I I ki + 1 =0
(mod 2)} such that L:iET~(ki + 1) = 12 for v = 1 and 2, and EiET

1
nT2(k i + 1) = 6.

Let us consider the case r = 13 further. By Proposition 3.1 (2) we cau consider only
the graph G = Akl + Ak2 + Aka + Ak4 + A k6 corresponding to the division k1 + k2 + k3'+
k4 + ks = 13 of 13 into a surn of 5 non-negative integers kl ~ k2 2:: k3 2:: k4 ~ k!; ~ O.
There are 57 kinds of such divisions as follows, We omit O.

(1) 13
(5) 9+4
(9) 10+2+1

(13) 8+3+2
(17) 6+6+1
(21) 5+4+4
(25) 8+2+2+1
(29) 6+5+1+1
(33) 5+5+2+1
(37) 4+4+4+1
(41) 8+2+1+1+1
(45) 6+3+2+1+1
(49) 5+3+3+1+1
(53) 4+4+2+2+1
(57) 3+3+3+2+2

(2) 12+1
(6) 8+5

(10) 9+3+1
(14) 7+5+1
(18) 6+5+2
(22) 10+1+1+1
(26) 7+4+1+1
(30) 6+4+2+1
(34) 5+4+3+1
(38) 4+4+3+2
(42) 7+3+1+1+1
(46) 6+2+2+2+1
(50) 5+3+2+2+1
(54) 4+3+3+2+1

(3) 11+2
(7) 7+6

(11) 9+2+2
(15) 7+4+2
(19) 6+4+3
(23) 9+2+1+1
(27) 7+3+2+1
(31) 6+3+3+1
(35) 5+4+2+2
(39) 4+3+3+3
(43) 7+2+2+1+1
(47) 5+5+1+1+1
(51) 5+2+2+2+2
(55) 4+3+2+2+2

(4) 10+3
(8) 11+1+1

(12) 8+4+1
(16) 7+3+3
(20) 5+5+3
(24) 8+3+1+1
(28) 7+2+2+2
(32) 6+3+2+2
(36) 5+3+3+2
(40) 9+1+1+1+1
(44) 6+4+1+1+1
(48) 5+4+2+1+1
(52) 4+4+3+1+1
(56) 3+3+3+3+1

Note that in each itern the number of odd nurnbers is 1, 3, or 5.
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A. For the following 24 items we can make the corresponding graph Akl +Ak2 +Aks +
A k• +Ak~ from the essential Dynkin graph Es +F4 by tie transfonnations repeated twice.
In the following table we also indicate an example of the Dynkin graph which we can
make by the first tie transformation.

(I)+- B l3 (2)+- B l3 (3)+- Au + Al
(5)+- B l3 (6)+- A s + Er (8)+- Au + Al
(9)+- Ag + A z + Al (10)+- Ag + A z + Al (lI)+- Ag + A z + Al

(12)+- As + A4 (17)+- A6 + Ea (18)+- A6 + E6

(20)+- As + E 7 (21)+- A 4 + Es (23)+- Ag + A z + Al
(26)+- A 7 + D s (27)+- A 7 + Ds (30)+- A 4 + Es
(32)+- A 6 + E6 (34)+- A s + Er (43)+- A7 + Az + Al + B z
(47)+- As + D~ + Bz (49)+- As + Ds + Bz (53)+- A4 + E6 + Bz

B. For the three items (40), (42), (56) the item contains 5 odd numbers and N(2)
do not contain subsets TI, Tz satisfying the condition in Lemma 3.4 (3). Thus the
corresponding graph G is not a member of PC = PC(J3 •0 ).

Indeed, let T be the orthogonal complement of S = P EB Q(G) in A3 and 8 be
the primitive huB of S. rankT = 3. Since 8*/8 f"V T·/T, l(S·/S) - 21(8/S) ::;
l(S· /5) :s rank T = 3. On the other hand, l(S· / S) ;::: l«S· / S)z) = l«P· / P)z) +
I«Q(G)* /Q(G)z) = 2 + #N(2) = 7. (#M denotes the number of elements in a set
M.) Consequently one has I(S/S) ;::: 2, and thus S/S is not cyclic. By Lemma 3.4 any
embedding P EB Q (G) L....+ A3 do not satisfy (a), or (b). It implies G fJ. P C by Theorem
1.2 in Part I [7].

C. Any one of the following 12 items contains 3 odd numbers and N(2) do not contain
a subset T as in Proposition 3.1 (4). Thus the eorresponding graph G i:. PC.

(14) (22) (24) (29) (31) (36) (41) (44) (45) (48) (52) (54)

Indeed, in this ease 1(S/S) ;::: 1 and the embedding P EB Q(G) L....+ A3 is not primitive.
By Proposition 3.1 (4) we ean eonclude G fJ. P C.

D. For the following 9 items, the eorresponding N(p) = {i E I I ki + 1 =0 (mod p)}
contains 3 or more elements for p = 3 or 5. Thus G f/:. PC by Proposition 3.1 (5).

(25) (28) (33) (35) (37) (46) (50) (51) (55)

E. An item not refered to in the above A, B, C, D is one of the following 9.

(4) (7) (13) (15) (16) (19) (38) (39) (57)

For these 8 items except the last one (57) we cau show that the corresponding graph
G is not in PC. Note that the last one (57) 3+3+3+2+2 correpsonds to the exception
3A3 + 2Az in Main Theorem. This itelTI will be treated in the last section 4. For the 6
items (4), (7), (13), (15), (19), (38) there is no T satisfying the eondition in Proposition
3.1 (4). Thus we can consider only the primitive embedding P EB Q(G) L....+ A3 .

Here we explain (4) 10+3 G = A10 +A3 .

Assume that G E pe. Then we have an embedding S = P EB Q(G) L....+ A3 sat­
isfying (a), (b). We eau assume that it is primitive. The discriminant group S· / S ~

(Z/2 + Z/2) ffi Z/4 ffi Z/ll. Here the first and the second direct summand Z/2 + Z/2
correspond to p. /P. The third Z/4 corresponds to Q(A3 )· /Q(A3 ), and the fourth
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Z/ll to Q(A10 )'" /Q(A10 )' The discriminant quadratic form qS on S'" / S can be written
qs(ab az, b, c) =a~ + al az + a~ + 3bz/4 + 10cz/11 fiod 2Z for (al, az, b, c) E (Z/2 +
Z/2) ffi Z/4 ffi Z/l1. Let T denote the orthogonal complement of S. T has signature
(1,2), and the discriminant D of T is positive. We have an isomorphism T'" /T :: S'" /S.
Via trus isomorphism the discriminant quadratic form qT of T satisfies qT -qs.
One has D = IDI = #T'" /T = 11 .24

• On the other hand, we consider the lattice
Tz = T C9 Zz over 2-adic integers Zz. Tz'" /Tz I"V (T· /Th I"V (Z/2 + Z/2) ffi Z/4, and the
discriminant quadratic form q on Tz satisfies q(a) == (ai + al a2 + a~) - 3b2 /4 mod 2Z
for an element Q = (a1 , az, b). This implies that Tz is equivalent over Z2 to the lat tice

defined by the matrix A = (; ~ ~). (See Nikulin [3] Theorem 1.9.1.) Thus

° ° -3.2
2

D =det A = -3z .24 mod Z;2. By the 2 expressions of D one knows that 11 = _jL2 for
same J.L E Z2 = Z2-2Z2, which is equivalent to 11 =-1 (mod 8). It is a contradiction.
Thus G ~ pe.

For (7), (13), (15), (19) and (38) the reasoning is similar. By a 2-adic method we
can show G rt. PC for these 5 items.

Next we discuss (16) 7+3+3 G = A 7 + 2Aa.
Assuming G E PC, we define a lattice S, an embedding S t...-+ Aa, the orthogonal

comp..!.ement T and its discriminant D similarly to the above case (4). In this case
I = S/ S is not zero, since N(2) contains 3 elements. On the other hand, we have no
subsets TI, T2 as in Lemma 3.4. Thus I is cyclic of order 2.

Now, S· / S I"V (Z/2+Z/2)ffiZ/4ffiZ/4ffiZ/8. The discriminant quadratic form q ean
be written q(a) - Xi+XIX2+X~+3(yi+y~)/4+7z2 /8 mod 2Zforä = (Xt,X2, Yl, Yz, z) E
S· / S . Here note that P I"V Ho EB Q(D4) and Q(D4) has an action of the symmetrie
group of degree 3 associated with the symmetry of the Dynkin graph D 4 • Thus by
Lemma 3.4 (2) we can assume without loss of generality that I is generated by the
element a = (1,0,2,0,4). One can check that the orthogonal complement [.L of I
with respeet to the diseriminant bilinear form b on S'" / S is generated by Q, and ßl =
(0,0,0,1,0), ß2 = (0,1,1,0,0), ßa = (0,1,0,0,1). (b: S'" / S x S· / S -+ Q/Z is defined
by 2b(u, r) = q(u + r) - q(a) - q(r).) Note that ß i (i = 1, 2, 3) are mutually orthogonal
with respeet to b, and q(ß1 ) =3/4, q(ß2 ) =-1/4, q(ß3) - -1/8 (mod 2Z). Thus the
discriminant quadratie form ql on S· /S ~ I.L / I I"V Z/4 EB Z/4 EB Z/8 ean be written
ql(a,b,c) - 3a2 /4 - bZ/4 - c2/8 mod 2Z for (a,b,c) E Z/4 EB Z/4 EB Z/8. One has
27 = D -3.27 mod Z;2, wruch is equivalent to -3 - 1 (mod 8). It is a contradiction.
We conclude A7 + 2A3 ~ PC.

The ease (39) 4+3+3+3 G = A4 + 3A3 is similar to the case (16). S· / S I"V

(Z/2+Z/2)ffi(Z/4)3 ffi Z/5. One can assurne that [ = S/S is generated by (1,0,2,2,2,0).
The orthogonal complement [.L is generated by [ and (0,1,1,0,0,0), (0,1,0,1,0,0),
(0,1,0,0,1,0), (0,0,0,0,0,1). Thus the discriminant form on S'" /S I"V (Z/4)3 EB Z/5 can
be written in the form -(ai + a~ + a~)/4 + 4b2 /5. We have 5 .26 = D = 26 mod Z;2,
which is a contradiction. A4 + 3A3 rt. pe.
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Remark. For the following 11 cases the root lattice Q = Q(G) associated with the
corresponding Dynkin graph G satisfies the ari thmetic condi tion "fp ( Q) = 1 for every
prime p" which appears in Theorem 0.3 [11] in Part 1.

(16), (22), (24), (36), (39), (40), (41), (42), (44), (52), (56)
Note that therefore we need not treat these items by Theorem 0.3 in Part I, if we want
to show only our Main Theorem. In the above we gave an explicit proof that they are
not in pe.

Let us proceed to the case r = 12.
By Proposition 3.1 (2) this case corresponds to the division of 12 = L:~=l ki into

a SUffi of 6 non-negative integers k1 2:: k2 2:: ... 2:: k6 2:: o. There are 57 kinds of such
divisions as in the following table. We omit O.

[1] 12
[5] 8+4
[9] 9+2+1

[13] 7+3+2
[17] 5+5+2
[21] 8+2+1+1
[25] 6+3+2+1
[29) 5+3+3+1
[33] 3+3+3+3
[37] 6+2+2+1+1
[41] 4+4+2+1+1
[45] 3+3+3+2+1
[49] 5+3+1+1+1+1
[53] 4+2+2+2+1+1
[57] 2+2+2+2+2+2

[2] 11+1
[6] 7+5

[10] 8+3+1
[14] 6+5+1
[18] 5+4+3
[22] 7+3+1+1
[26] 6+2+2+2
[30] 5+3+2+2
[34] 8+1+1+1+1
[38] 5+4+1+1+1
[42] 4+3+3+1+1
[46] 3+3+2+2+2
[50] 5+2+2+1+1+1
[54] 3+3+3+1+1+1

[3] 10+2
[7] 6+6

[11] 8+2+2
[15] 6+4+2
[19] 4+4+4
[23] 7+2+2+1
[27] 5+5+1+ 1
[31] 4+4+3+1
[35] 7+2+1+1+1
[39] 5+3+2+1+1
[43] 4+3+2+2+1
[47] 7+1+1+1+1+1
{51] 4+4+1+1+1+1
[55] 3+3+2+2+1+1

[4] 9+3
[8] 10+1+1

[12] 7+4+1
[16] 6+3+3
[20] 9+1+1+1
[24] 6+4+1+1
[28] 5+4+2+1
[32] 4+3+3+2
[36] 6+3+1+1+1
[40] 5+2+2+2+1
[44] 4+2+2+2+2
[48] 6+2+1+1+1+1
[52] 4+3+2+1+1+1­
[56] 3+2+2+2+2+1

In order to simplify descriptions we would like to use the following proposition
effectively in what follows. This proposition is a direct consequence of our theory of
elementary transfonnations and tie transformations. (Urabe [5], [6], [7))

Proposition 3.5. Jf a Dynkin graph G can be obtained from a basic Dynkin graph Go
by elementary or tie transformations applied twice, then any subgraph G' of G can be
obtained from Go by elementary or tie transformations applied twice.

[A]. For each item [al among the above 57 items except the following 13 we can find an
item (b) in the case r = 13 paragraph A such that the corresponding graph G(b) to (b)
contains the corresponding graph G[al to [al. (Thus G[a] C G(b) E pe.)

[16], [32], [33], [34], [36], [40], [44], [47], [48], [51], [52], [56], [57].
By Proposition 3.5 for the other items than in the above 13, we can construct the
corresponding graph from Es +F4 by elementary or tie transfonnations applied twice.

We can discuss only the above 13 items in what follows. It turns out that every
one of the above 13 does not belong to PO.
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[B]. In the case [47] the division of 12 contains 6 odd numbers, but tl:.ere are no Tl, T2
as in Lemma 3.4 (3). H the eorresponding graph G is in PC, then l(S / S) 2: 2, and by
Lemma 3.4 (3) we have a contradiction. Thus G ~ PC.

[Cl. For the case [34], [36], [48], [51], and [52], the division of 12 contains 4 ocld numbers,
but there is no T satisfying the condition in Proposition 3.1 (4). H G E PC, then
l(S/S) 2: 1, ,and we have a contradietion by Proposition 3.1 (4). G f/:. PC.

[D]. Next, we eonsider the case [40], [44], [56), [57]. In these cases the set N(3) contains
4 or more elements. Thus by Proposition 3.1 (5) the corresponding graph is not a
member of PC.

[E]. The remaining items are the following three; [16], [32], [33].
For the former 2 eases [16], [32], the division eontains 2 odd numbers, and there is

no T as in Proposition 3.1 (4).
We consider [16] 6+3+3 G = A 6 + 2A3 • H G E pe, then the embedding S =

P ffi Q( G) L.-+ A3 is primitive. On the discriminant group S"" / S '"V (Z/2 + Z/2) ffi Z/4 ffi
Z/4 ffi Z/7 the discriminant quadratic form qs of S ean be written qs(al, a2, bl , b2, c) =
ai + ala2 + a~ + 3(bi + b2 )/4 + 7c2/8 mod 2Z. Thus the discriminant D of the orthog­
onal complement T of S is D = #S"" / S = 7 . 26 . On the other hand, the discriminant
quadratic form of T2 = T ~ Z2 coincides with -(qsh, where (QS)2 denotes the re­
striction of qs to the 2-Sylow subgroup of S" / S. It implies that D =33 . 26 mod Z;2.
Consequently we have 7 =33 (mod 8), which is a contradiction.

For the case [32] 4+3+3+2 G = A4 + 2A3 + A 2 , the reasoning is similar to that in
[16]. We eau conclude G ~ pe.

Now, we consider the last case [33] 3+3+3+3 G = 4A3 . Since it eontains 4 odd
numbers, we have 1(1) 2: 1 for 1= S/S. Sinee there are no Tl and T2 as in Lemma 3.4
(3), I is eydic of order 2.

On the other hand the diseriminant quadratic form of S can be wri t ten Q(0:') ==
(ai +ala2 +a~)+3 L:f=l b~ /4 for an element 0:' = (al, a2, b}, b2, b3, b4) in S· / S '"V (Z/2+
Z/2) EB (Z/4)4. We can assume I is generated by (1,0,2,2,2,0). 1.1 is generated by I
and (0,1, 1,0,0, O),JO,~,0, 1,0,0), (0, 1,0,0, 1,0), (0,0,0,0,0, 1). Thus the discriminant
quadratic form on S· / S '"V 1.1 / I '"V (Z/4)4 cau be written ql (al, a2, a3, b) _ -(ai + a~ +
a~)/4 + 3b2 /4. Computing the discriminant of the orthogonal complement of S in two
different ways, we obtain 28 =-3 . 28 mod Z;2, which is a contramction.

Remark. Among the 13 items mentioned in paragraph [A] for the following 11 items
the arithmetic condition "d(Q) ~ Q;2 or fp(Q) = I" is satisfied for every prime p. Note
that therefore we need not discuss these cases by Theorem 0.3 [11], if we show only our
Main Theorem.

[16], [32], [33], [34], [36], [44], [47], [48], [51], [52], [56]

By the above we know that they are not members of PC~

We can complete the study in the case J3 ,0,

Let us proceed to the case ZI,O. Let G E PC = PC(ZI,O) be a graph with the
number of vertices r. Let 4> : Z ~ C be the corresponding elliptic 1(3 surface to G.
Z carries the curve IF at infinity associated with Zl 0. IF has 7 components. 5 of 7,
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are components of the singular fiber FI of type 10 of cI-. One of the remaining two is
the image Cs of the section So. The last remaining component C6 is a component of a
singular fiber. We assume that F2 contains Ce. The dual graph of the set of components
not intersecting I F of singular fibers is the graph G.

Here recall that we have assumed in this section that all singular fibers of cI- is of
type I, 11, IIIor IV. Note that we can assurne further that the Picard number p of
Z is equal to r + 7. (H p > r + 7, then a general defonnation of Z keeping the union
of the curve IF and the combination oi curves corresponding to the graph G has the
Picard number r + 7, and all the singular fibers of the structure of the elliptic surface
on it are of type 1,11,111, or IV except the unique exception of type 10,)

Lemma 3.6. Under the above assumptions the singular fiber F2 is oE type III or 12 .

Proof. For 2 :::; i :::; t let n(Fi) denote the number of components of F i not intersecting
IF. By definition we have E:=2 n(Fd = r. By the equality (2) in the beginning of
section 1, we have

t

a + m(F2 ) - n(F2 ) - 2 + L:(m(Fd - n(Fi ) - 1) = O.
i=3

Since m(F2 ) 2: n(F2 ) + 2 and m(Fd 2: n(Fi) + f for 3 :::; i :::; t, we have in particular
m(F2 ) = n(F2 ) + 2. It implies that a component of F2 intersecting C6 is unique except
C6 • It is easy to see that if F2 is of type either IV or In with n ~ 3, it has never this
property. Q.E.D.

Proposition 3.7. The Eollowing two conditions are equivalent.
(1) There exists a K3 surfaee Z containing the eurve IF assoeiated witb ZI,O such tbat

with respect to the associated structure cI- : Z --+ C oE the elliptic surface every
singular fiber is oE type I, 11, I I I or IV and sueh tha t the dual graph oE the set f,
o[ smooth rational eurves on Z not intersecting IF is G E PC(ZI,O)'

(2) G + Al E PC( J3,0) and every component o[ G is oE type A.

Proof. Assume that there is a 1<:3 surface Z with the above mentioned properties. We
cau assurne moreover p = r + 7. By Lemma 3.6 F2 contains only one component C' not
contained in I F. Let I F denote the union of F I and Cs . I F is the curve at infinity
in the case of J3 ,0. Obviously the set "& of smooth rational curves not intersecting I F
coincides with Eu {C'}. Thus the dual graph oft is G+AI and it belongs to PC(J3 ,0).

Obviously every component of G is of type A under the assumption.
Conversely assmne that a Dynkin graph G with components of type A only satisfies

G +Al E PC( J3,0). Let <I> : Z --+ C be the associated elliptic 1<:3 surlace with G +Al. <I>

has a singular fiber FI of type I; and Z has a curve Cs which is the image of a section.
The dual graph of the union of components not intersecting I F = F I U Cs of singular
fibers coincides with G + Al by definition.

Note that in the case J3 ,0 singular fibers of cI» with 2 or more components other
than F I have one-to-one correspondence with components of the Dynkin graph, and
the type of the singular fiber is uniquely determined by the type of the corresponding
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irreducible Dynkin graph except only that both type I I I and type 12 correspond to Al
and both type IV and type 13 correspond to A2 .

Thus our Z -+ C has a singular fiber F2 of type III or 12 corresponding to the
component Al of G +-A I . Every singular fiber except F I is of type I, II, III, or
IV. Anyway F2 has 2 components and only one C" of two intersects C5 . The curve
I F = I F Ueil is the curve at infinity in the case Zl ,0. The dual graph of all components
of singular fibers not intersecting IF coincides with G. Thus G E PC(ZI,O)' Q.E.D.

By Proposition 3.7 and by Proposition 3.1 (3) we cau assume r ::; 12. H r ::; 10,
thanks to Theorem 0.3 [11] in Part I, we have nothing to verify.

Let us consider the case r = 12 first. Thanks to Proposition 3.7 what we have
to do is to pick up items (kl , ... , k5 ) with L:~=l ki = 13 such th(~,t ki = 1 for some i
from the list in the paragraph A, and to check whether for each picked-up item the
graph G defined by G + Al = I:~=l A ki can be made from E7 + F4 or Es + CB3 by tie
transformations applied twice.

Of course, for eve7 picked-up item the answer is affirmative. In the following we
show the graph G = L:i=l A ki - Al (Note that this is different from L:~=l A ki .) and an
example of the Dynkin graph GI which can be made after the first tie transformation.
As the basic graph, E7 + F4 cau be used for the items from (2) until (34). For (43),
(47), (49), (53) Es + CB3 cau be used. There are 15 picked-up items.

G .-- GI
(2) A l2 t- All
(9) A IO +A 2 t- Ag +A 2

(12) As +A4 t- As +F4

(23) Ag + A 2 + Al t- Ag + A 2

(27) A 7 + A3 +A2 t- A7 +A3 +Al
(34) A 5 + A 4 + A 3 .-- E 7 +At
(47) 2A5 + 2A I t- D5 + A5 + CB I

(53) 2A4 + 2A2 t- E6 + A4 + CBI

(8) All + Al t- All
(10) Ag +A 3 t- Ag + A2

(1 7) 2A6 t- A 6 + As
(26) A 7 + A4 + Al t- A 7 + A 3 + Al
(30) A 6 + A4 + A 2 t- E 7 + A 4

(43) A 7 + 2A2 + A I .-- A 7 + A 2 +Al + CB I

(49) A5 + 2A3 + Al t- D 5 + A5 + CBI .

Next we consider the case r = 11. First we can pick up iterns (k I , • •• , k6 ) with
L:~=1 k i = 12 such that ki = 1 for some i from items (1]-[57] in the above list. Then, it
is not difficult to see that every picked-up item is either one of the 13 exceptions treated
in paragraph [AL or the corresponding graph G is a subgraph of a graph in the above
15 just discussed. We cau complete the proof by Proposition 3.5.

Remark. There are 8 items with ki = 1 for some i among the 13 exceptions in [A].
The corresponding graph G is as follows. (Note that G does not have 12 vertices but
11 ones.)

[34] A s + 3A I

{47] A7 + 4A I

[52] At + A 3 + A 2 + 2A I

[36] A6 +A3 + 2A I

[48] A6 + A2 + 3A!
[56] A 3 + 4A2

[40] A 5 +3A2

[51] 2A4 + 3AI

We can show that G rt PC for three items [40], [48], [56]. However, for the other 5
iterns we cau make the corresponding graph from E7 +F4 by tie transformations applied
twice.
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Note that this fact do not contradict Proposition 3.7, because in the case of these
5 graphs, in the corresponding elliptic K3 surface the singular fiber F2 containing the
component C6 of IF is of type either 1*,11*,111* or IV"'.

We complete the case Zl ,0,

The third case is Q2,O. We can show the following in trus case.

Proposition 3.8. Tbe following two eonditions are equivaJent.
(1) There exists a K3 surfaee Z eontaining the eurve I F assoeiated with Q2,O such that

with respeet to the assoeiated strueture q> : Z -+ C oE the elliptie surfaee every
singular fiher is oE type I, 11, I I I or IV and sueh that the dual graph oE the set E:
oE smooth rational eurve8 not interseeting IF on Z i8 G E PC(Q2,O)'

(2) G + A 2 E PC( J3 ,0) and eveIJ' eomponent oE G is oE type A.

Ey Theorem 0.3 [11] in Part I, Proposition 3.1 (3) and Proposition 3.8 we cau
consider only the ease r = 11 or r = 10.

First we treat the case r = 11. Ey Proposition 3.8 we can consider the division
(kl,' .. , ks ) of 13 with k j = 2 for some i.

Note that the case (57) 3+3+3+2+2 corresponding to the exception 3Aa + 2A2 in
Main Theorem satisfies ks = 2. We consider this case separatedly in the final section.

Excluding (57), what we have to do to show Main Theorem is the following; First
to pick up items (k1 , .•. ,k..,) with kj = 2 for some i from the list in paragraph A in the
case J3 ,o r = 13. Secondly to check for each picked-up item whether the graph G defined

by G + A 2 = L:~::;:l Aki can be made from E6 + F4 or Es + F2 by tie transformations
applied twice.

We can check trus affinnatively for every picked-up item. The following list shows
the numbering of the picked-up item, the corresponding graph G, and an example of
the Dynkin graph GI which we can make after the first tie transformation. For every
item we can use E 6 + F4 at the start. The list contains 10 items.

G +- GI
(3) All +- Ag + Al

(11) Ag + A 2 +- Ag +Al
(23) Ag + 2A I +- Ag +Al
(30) A6 + A4 + Al +- A 6 +Al + F4

(43) A7 + A 2 + 2A I +- A 7 + Al +B 2

(9) AIO + Al +- Ag + Al
(18) AB +A.., +- 2As
(27) A 7 + Aa + Al +- A 7 + Al + B 2

(32) A6 + Aa +A2 +- A 6 + 2A2

(53) 2.A.t + A2 +Al +- A4 + 2A2 + B 2

We proceed to the case r = 10. In trus case our problem is reduced to the analysis
of the decompositions (k l , ... , k6 ) of 12 into 6 integers. It is not difficult to show one
of the following three conditions always holds for each item in the above [1]-[57].
(1) kj f; 2 for 1 ~ i ~ 6.
(2) k j = 2 for some 1 ~ i ::; 6 and the graph Go defined by Go + A 2 = 2:~=1 A ki is a

subgraph of one of the 10 graphs G in the list just above.
(3) It is one of the 13 items discussed in paragraph [A].

Ey Proposition 3.5 and Proposition 3.8 we can complete the proof.
In this section we have shown Proposition 0.1 for J3 ,0, ZI,O, and Q2,O under the

assumption ((3)) in the introduction.
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§4. The exception

In trus section we study the exception in Main Theorem.
First we consider G = 3A3 + 2A2 in the case J3 o.
In this case P = Hoff)P~, p~ ~ Q(D4 ) and Ho ='Zuo+Zvo, u6 = va = 0, UO'vo = 1.

Set S = P ff) Q(G). Consider the discriminant group S" / S I"V (Z/4)3 ff) (Z/2)2 ff) (Z/3)2.
Each of three Z/4-components corresponds to A 3 , (Z/2)2 corresponds to P, and (Z/3)2
to 2A2 . The discriminant quadratic fonn can be written q(aI, a2, a3, bl , ~,Xl, X2) =
3(a~ + a~ + a~)/4 + b~ + bl b2 + b~ + 2(x~ +x~)/3 mod 2Z.

Assume G E PC(J3 ,o). We have the corresponding elliptic !{3 surlace cI- : Z ~ C
and the corresponding embedding S <.......+ A3. Every singular fiber except one FI of type
10 is of type I, 11,111, or IV, since every component of G is of type A. Thus we can
apply the theories in section 3.

Since I((~.. / 8)2) = 5 > rank A3 - rank S = 3, there is no primitive embedding
S <.......+ A3. Let S be the primitive hull of S in A3. Every non-zero element in the quotient
I = S/S has order 2 by Lemma 3.4 (1). We have I I"V Z/2, since there are no TI, T2
satisfying the condition in Lenuna 3.4 (3). Hy Lenuna 3.4 (2) the generator of I is either
(2,2,2,1,0,0,0), (2,2,2,0,1,0,0) or (2,2,2, 1, 1,0,0).

Note that these three elements are conjugate with respect to the action of the
symmetrie group of degree 3 on P~ I"V Q(D4 ) induced by the symmetry of the Dynkin
graph D 4 •

Let SI be the inverse image by S· ~ S" / S of the subgroup in S· / S generated by
the element (2,2,2, 1,0,0,0). It is an even overlattice of S with index 2.

Proposition 4.1. Any embedding S = Ho ff) P6 ff) Q(3A3 + 2A2 ) <.......+ A3 satisfying
Looijenga's conditions (a) and (b) is the composition of an isomorphism S -=4 S induced
by an isomorphism P~ .::+ P~ ofthe direct summand and aprimitive embedding SI '-Jo A3 .

Next, we compute the discriminant quadratic form q1 of SI. Let Ul, U2, U3 E
S" / S be the elements of order 4 corresponding to (1,0,0,0,1,0,0), (0, 1,0,0, 1,0,0),
(0,0,1,0, 1,0,0) E (Z/4)3 EB (Z/2)2 ff) (Z/3)2 respeetively. Let 71, 72 E S· / S be the
elements of order 3 corresponding to (0,0,0,0,0, 1,0) and (0,0,0,0,0,0, 1) respectively.
We can check that the orthogonal cornplement 11. of I with respect to the discriminant
bilinear form b on S· / S is the direct surn of I and the 5 cyclic groups generated bya1,
a2, a3, TI, T2. Thus we have S;/S1 I"V I1./II"V (Z/4)3 EB(Z/3)2. Note that any two of
(71, U2, a3, TI, T2 are orthogonal with respect to b, q(uv ) _ -1/4 mod 2Z (v = 1,2,3),
and q(rv) == 2/3 mod 2Z (v = 1,2). Thus the discriminant quadratic form ql of 51
ean be written

_ 1 2 22 2 22
ql (a) =-4(a 1 + a 2 + a3 ) + 3(b1 + b2 ) mod 2Z,

for an element 7J E Si / SI corresponding to (al, a2, a3, bl, ~) E (Z/4)3 ffi (Z/3)2.
In what follows we consider 5; /SI I"V (Z/4)3EI1(Z/3)2. Let Rl and R2 be the elements

of order 12 in S; /51 corresponding to (1,2,0,1,1) and (2,1,0,1, -1) respectively. Let
'X E S; /51 be the element of order 4 corresponding to (0,0,1,0,0). We can check that
5; /SI is the direct SUffi of three eyclic groups generated by ;:CI, K2 and >:. After some
calculation one has
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for al, a2 E Z/12, b E Z/4.

Proposition 4.2. (1) 51 has a primitive embedding into the even ummodular lattice
A3 oE signature (19,3).
(2) H 1] E 51, 1] rt 5 and 1] . Uo = 0, tben 1]2 ;:: 4.

Proof. (1) Let T be the lattice of rank 3 defined by the diagonal matrix whose diagonal
entries are -12, -12 and 4. T is an even lattice and we can define the discriminant
quadratic form qy on T* /T. By the above calculation one knows that we have an iso­
morphism r/> : 5; /51 .::t T* /T such that -qyrP coincides with the discriminant quadratic
form ql of 51.

Consider the direct sum U = SI ffi T. Let J be the graph of the isomorphism rP
defined in the discriminant group U* /U = (5; / SI) ffi (T* /T) of U. J is a subgroup in
U· /U and the restrietion to J of the discriminant quadratic form of U is zero. Thus
the inverse image A of J by the natural surjeetive homomorphism U· ~ U* /U is an
even lattiee. Sinee the square of the order of J is equal to the order of U* /U, A is
ummodular. The signature of 51 is equal to that of 5 and thus it is equal to (18, 1).
Since the signature of T is (1,2), A has signature (19,3). The even unimodular lattiee
with signature (19,3) is umque up to isomorphisms (Milnor-Husemoller [2]), and A r'V A3 .

Let SI denote the primitive hull of 51 in A. Since SI/SI r'V (SI +T)/U = ((5; /51 )ffi
{O}) n J = {O}, SI is primitive in A.
(2) Let Wo E (P~)'" be the element corresponding under the isomorphism (P~)'" r'V

Q(D4 )* to the fundamental weight associated with one of three vertices at the end of the
Dynkin graph D 4. For v = 1, 2, 3 let Xv E Q( G)* be the fundamental weight associated
with the central vertex of the v-th component of G of type A3. Set e= Wo +X1 +X2 +X3.
We cau assurne 51 = 5 U (5 + e).

Now, by assumption we can write 7J = e+ ( for some ( E 5. We have 0 = 1] . Uo =
e.Uo + ( . Uo = ( . Uo· Thus ( = muo + (0 for some mEZ, (0 E P~ ffi Q(G). Setting
7Jo = e+ (0, one h~ 7J2 = 7J5, since TJ = TJo + muo and 7Jo . Uo = O. Dur problem is
reduced to showing 7J~ ;:: 4.

Here recall the nation of the characteristic number. (Part I Urabe [7] section 2
Lemma 2.1 etc.) So = P~EI1Q(G) is an even positive definite lattice, and we can define the
characteristic number v(x) for each element xE S;/So. For an element'x E 5; we write
x = x mod So E 5; /50 . By definition TJ5 2:: V(17o) = v(e) = v(wo + Xl + X2 + Xa) = 4.

Q.E.D.

Corollary 4.3. In tbe case of Ja,o the lattiee P EB Q(3A3 +2A2 ) has an embedding into
A3 satisfying Looijenga's conditions (a), (b). In partieular 3A3 + 2A2 E PC(J3 ,0).

Proposition 4.4. In ease J3 ,o with respect to any full embedding Q(3A3 +2A2 ) C-.+

Aa/ P there is DO isotropie element in a IDee position.

Proof. Assume that we have a primitive embedding P ~ A3 , a full embedding Q(G) C-.+

A3 / P and a primitive isotropie element ü E A3 / P in a nice position. We will deduce a
contradiction.

Let u E A3 be the element in the orthogonal complement of P whose image under
the canomcal surjective homomorphism Aa ~ A3 / Pis ü. Such au exists by Proposition
3.6 in Part 1. By the definition of a nice position we have a root basis ß C Q( G) and a
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long root a E .6. such that ß .u = 0 for every ß E .6. with ß f=. Q' and Q' • u = 1 or O. We
have the indueed embedding S = P EB Q(G) ~ A3 satisfying Looijenga's (a) and (b).

Assume that Q' • u = O. Then we have f p (Q(3A3 + 2A2 )) = 1 for every prime p,
since the orthogonal complement of PEBQ(G) contains an isotropie element u. However,
f3(Q(3A3 + 2A2 )) = (3,3)J = -1, which is a contradietion. One knows Q' • u = 1.

Let T be the orthogonal complement of S in A3. Sinee P EB Q(G) EB T c A3 C

P* ffi Q(G)* EB T* and sinee u is orthogonal to P, we can write u = W +7 for W E Q(G)*,
7 E T*. The element W E Q(G) is the fundamental weight associated with Q' and .6..

Here note that considering w(u) instead of u for an element W of the Weyl group of
Q(G), we ean assume moreover that the root basis .6. coincides with a previously given
root basis.

We have two cases.
(a) The long root a lies on a eomponent of type A 3 •

(b) a lies on a eomponent of type A2 •

First we eonsider ease (a). We use the notations~,Wo, XII in the proof of Proposition
4.2 (2). By Proposition 4.1 there is an isomorphism a : S ----+ S keeping every element
in Q(G) fixed such that a(() E A3. We have Z 3 u . aCe) = w . e= W • XII' Here we
assumed that a lies on the v-th A 3-eomponent of.6.. H a eorresponds to a vertex of
the Dynkin graph A3 at the end, then W . XII = 1/2. Thus a corresponds to the eentral
vertex of A3 apd W = Xv' In particular w2 = 1.

Since 0 = u 2 =w 2 + 7
2, one has 7

2 = -1 for 7 E T ....
Next, we eonsider the lattice T* @ Z2 = (T @ Z2)* over 2-adie integers Z2. By

Proposition 4.1 the diseriminant quadratic form of T2 = T @ Z2 coincides with -(Ql)2,
where (ql)2 denotes the restriction to the 2-Sylow subgroup of the diseriminant quadratie
form ql of SI. The diserilninant D of T is equal to that of T2 , and it satisfies D = 26 .32 =
26 mod Z;2.

Let T' = (Z2)3 be the Z2-lattice whose interseetion matrix is the diagonal matrix
with diagonal entries 4, 4, 4. By the ealeulation of ql before Proposition 4.2 one knows
that T2 and T' have the same rank, the same discriminant quadratie form, and the same
discrirninant modula Z;2. By Corollary 1.9.3 in Nikulin [3] they are isomorphie as Z2­
lattices. Thus there is an isomorphism T2'" ~ (Z2)3 such that the quadratie form is given
by x2 = (xi + x~ + x~)/4 for an element x E T2* corresponding to (Xl, X2, X3) E (Z2)3.

Assume 7 E T; corresponds to (Xl, X2, X3) E (Z2)3. One has x~ + x~ + x~ = -4.
Let k] be the number of xv's (v = 1,2,3.) with Xv rt 2Z2. One has -4 _ kl (mod 4).
Thus kl = O. We ean write Xv = 2yv with Yv E Z2 for v = 1,2,3. Let k2 be the number
of Yv's (v = 1,2,3.) with YII ~ 2Z2. One has -1 = y~ + yi + y~ =k2 (mod 4), and
k2 = 3. Then one has eongruent relations modulo 8 y~ == 1 (mod 8) (v = 1,2,3). We
have -1 = vi + y~ + yi - 3 (mod 8), whieh is a eontradietion. The case (a) never
takes place.

We proceed to the ease (b). Sinee w is a fl.U1damental weight of Q(A2 ), 3w E Q(G) c
S and w 2 = 2/3. 3 is invertihle in Z2 and we have wES ® Z2. Sinee w mod S® Z2 = 0
corresponds to T mod T2 under the eanonical isomorphism (S @ Z2)* / (S ® Z2) r"V Ti /T2 ,

7 E T2 = T @ Z2. We ean identify the quadratic form on T2 with 22(x~ + x~ +x5) and
7

2 E Z2 is a multiple of 22.
On the other hand 7

2 = u 2 - w2 = -2/3, whieh is not a multiple of 22. We have a
eontradietion. Thus the case (h) never takes place, either. Q.E.D.
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Corollary 4.5. The Dynkin graph 3A3 +2A2 can never be made from Es +F4 or B I2
by applying elementary transfonnations or tie transfonnations twice.

The case G = 3A3 + A 2 for X = Q2,O follows easily from the above ea.se. By
Proposition 3.8 one has G E PC(Q2,O) sinee G + A2 = 3A3 + 2A2 E PC(J3 ,o).

Next, assume that there are an embedding P EB Q( G) '-+ A3 satisfying (a) and
(b) and a primitive isotropie element u E A3 / P in a nice position. Let u E A3 be the
element orthogonal to P and mapped to TI' by A3 -+ A3 / P. u is also a primitive isotropie
element.

Here note that the lattice P in our ease Q20 has the deeomposition P = P EB T
where P is isomorphie to P defined in the ease J3 ,0 and T r"V Q(A2 ). Thus the given
embedding induees the embedding P EB Q(G +A 2 ) c--+ A3 . Regarding trus embedding as
the one defined in the ease J 3 ,0, we would like to show that this also satisfies (a) and
(b) .

Let us consider the associated elliptie surlaee tI> : Z -+ C with p = r + 8 = 19. Let
FI be the singular fiber of tP eontained in the eurve at infinity I F. FI is of type Iö' Let
F2 be another singular fiber containing 2 eomponents of IF. The other singular fibers
than FI and F2 are of type I, II, III, or IV, since G has only components of type A.

H F2 is of type I· then the orthogonal complement of PEBQ( G) contains an isotropie
element by Proposition 1.2. Thus Ep(Q(G» = (3, -d(Q(G»)p for every prime p. How­
ever, E3(Q(G» = (-1,3h = -1 and (3,-d(Q(G»)3 = (3,-26 .3)3 = (3,-3h = +1,
which is a contradietion.

Assurne that F2 is of type either II·, III- or IV·. Let GI be the dual graph of
the set of components not interseeting I F in F2 • One knows GI is of type either E6 ,

A s or 2A2 • Neither of them is contained in G = 3A3 + A 2 , which is a contradietion.
Consequently F2 is also of type I or IV, and by the proof of Proposition 3.7 one

knows that the embedding P EB Q(G + A2 ) <---+ A3 also satisfies (a) and (b).
The image of u by the surjective homomorphism A3 -+ A3 / P is a primitive isotropie

element in anice position with respeet to the embedding Q(3A3 +2A2 ) = Q(G+A2 ) '-+

A3 / P, which contradicts Proposition 4.4.

Proposition 4.6. (1) 3A3 + A 2 E PC(Q2,0)'
(2) In case CJ2,0 with respect to any full embedding Q(3A3 + A 2 ) <---+ A3 / P there is no
isotropie element in a niee position.
(3) The Dynkin graph 3A3 +A 2 can never be made from any one of E 6 +F4 , Es +F2 ,

B g by applying elementary transformations ·or tie transformations twiee.
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