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Combinations of rational double points
on the deformation of quadrilateral
singularities IT

by Tohsuke Urabe

§0. Introduction

In this article we would like to continue to study the relation between hypersurface
quadrilateral singularities and Dynkin graphs. In particular, we study 3 kinds of hy-
persurface quadrilateral singularities J30, Z1,0 and @2,0. Two kinds of transformations
of Dynkin graphs, which we have proposed in previous articles (Urabe [5], [6], (7]), play
essential roles. We give a proof of following Main Theorem, which have been announced
in Part I (Urabe [7]). Every algebraic variety is assumed to be defined over the complex
number field C. As for the exact definition of Dynkin graphs, we follow that in Part I.
Let X be a class of quadrilateral singularities. Let PC(X') denote the set of Dynkin
graphs G with components of type A, D, or E only such that there exists a fiber ¥’
in the semi-universal deformation family of a singularity belonging to X satisfying the
following two conditions depending on G.
(1) The fiber ¥ has only rational double points as singularities.
(2) The combination of rational double points on Y just corresponds to the graph G.
(Note the phenomenon called “exceptional deformations”, which was pointed out in
Wall [9].)

Main Theorem. Consider one of Js3 0, Z1,0, and Q2 as the class X of hypersurface
quadrilateral singularities. A Dynkin graph G belongs to PC(X) if and only if either
following (1) or (2) holds.

(1) G is one of the following exceptions.

(2) G can be made from one of the following essential basic Dynkin graphs by ele-
mentary or tie transformations applied 2 times (We can apply 2 different kinds of
transformations once for each, or can apply 2 transformations of the same kind.),
and G contains no vertex corresponding to a short root.

The essential basic Dynkin graphs:  The exceptions:

The case X = J3 0 : By + Fy 3A; + 24,
The case X = Z, : E7 + Fy, Eg + CBy None
The caseX=Q2,g: E¢ + Fy,Eg + I3 3A3 + A,

We know by results in Part I that the “if” part under the condition (2) is true.
Thus in this Part I we would like to show the “only if” part first.

Let Az be the even unimodular lattice of signature (19, 3), and P be the lattice
associated with the hypersurface quadrilateral singularity. (See Part 1.) Let @(G) be
the root lattice associated with a Dynkin graph G with components of type A, D or
E only. If G € PC(X), then we have an embedding P @ Q(G) — A3 come from an
. actual deformation fiber Y. The embedding satisfies Looijenga’s conditions {a) and (b}
and the induced embedding Q(G) — A3 /P is full. Also we have an elliptic {3 surface
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® : Z — C(= P') corresponding to the embedding. Then, thanks to the results in Part
I, we have only to show the following.

Proposition 0.1. If G € PC(X), and if G is not in the exception list in Main Theorem,
then, with respect to some full embedding Q(G) — A3/P, there exists a primitive
isotropic element u in A3 /P in a nice position, i.e., such that either u is orthogonal to
Q(G), or there is a root basis A C Q(G) and a long root a € A such that f-u =0 for
every fEA withf#aanda-u=1.

To show this proposition we use the theory of the monodromy for elliptic surfaces
and construct a certain transcendental cycle in the elliptic K3 surface Z — C. We
utilize the fact that the monodromy around a singular fiber of type Ij has a very simple
form, i.e., simply multiplying —1.

Now, the elliptic surface Z — C has a singular fibre F of type I§ in our situation
by definition. Recall that by Cs we have denoted the image of a section C — Z, and Cs
and Fy are contained in the curve I'F at infinity. The curve IF at infinity has 6 (when
X = J30), T (when X = Z,) or 8 (when X = Qo) components. The lattice P has a
basis associated with the dual graph of the components of IF. The union &£ of smooth
rational curves on Z not intersecting IF coincides with the union of components not
intersecting I'F of singular fibers of Z — C. The dual graph of £ is G' by definition.

We divide the case into three.

((1)) The surface Z — C has another singular fiber of type I'* apart from Fj.
((2)) Z — C has a singular fiber of type II*, III* or IV*.
((3)) Z — C has no singular fiber of type I'*, IT*, IIT* or IV* apart from Fi.

In case ((1)) we can show that there exists a non-zero transcendental 2-cycle = in
Z with =% = 0 which is orthogonal to the section C5 and to all irreducible components
of fibers of Z — C. In particular, the orthogonal complement of $ = P& Q(G) in A3
contains an isotropic element, and thus we have a desired isotropic element in As/P.
This case ((1)) is treated in section 1.

Case ((2)) is discussed in section 2. In this case we can show by the theory of the
monodromy that there exists a transcendental 2-cycle = on Z with =2 = 4 such that =
is orthogonal to Cs and to all components of fibers of Z — C. Therefore the orthogonal
complement of S necessarily contains an element ¢ with é2 = —4. By drawing the
Coxeter-Vinberg graph for /P where I is the orthogonal complement of Z¢ in Aj,
we show the existence of an isotropic element in a nice position in this case.

In case ((3)) it is difficult to construct a nice transcentental cycle applicable to all
examples. Therefore we malke the list of all possible Dynkin graph G in this case (In this
case all components are of type A.), and we analyze them by the theory of K3 surfaces
and by the theory of elliptic surfaces case by case. This case is discussed in section 3.

Lastly, we have to show that for a Dynkin graph G in the above exception list there
exists the corresponding varieties Z, Y. This is shown in section 4. We apply Nikulin’s
lattice theory in this part (Nikulin {3}).

Here we have a remark. Assume that a Dynkin graph G with components of type
A, D or E only can be made from one of the essential basic graphs by elementary or tie
transformations applied twice. Then we can construct a full embedding Q(G) — A3/P
which has a primitive isotropic element in a nice position. This is a consequence of the
theories in [5], [6], [7]. (See Theorem 1.1 in [6], Theorem 4.4 etc. in [7].) Of course, the
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constructed embedding may not be equivalent to the given embedding. However, we
can use this remark to show Proposition 0.1 without any problem. Note moreover that
under the assumption we have G € PC(X) by the “if” part of Main Theorem.

§1. An transcendental isotropic cycle

Recall that we have an isomorphism H?*(Z, Z) — Aj preserving bilinear forms up to
sign. (Note that it reverses the sign.) Via this isomorphism we can use the geometry
on the elliptic K3 surface ® : Z — C to show an isotropic element in Aj.

We denote the fiber ®~*(a) over a point a € C by F, for simplicity. By T =

{c1,¢2,..., ¢} we denote the set of critical values of ®. We put F; = Fi; for simplicity.

(1)
()

We can assume the following in our situation.

There is a section sg : € — Z (i.e., a morphism of varieties with ®(so(z)) = z for
z € C) whose image is denoted by Cs.

For some point ¢; € L the fiber F} over ¢; is a singular fiber of type Ij.

We have the following facts. (I{odaira [1], Shioda [4])

o C =P
o For every smooth rational curve A in Z, the self-intersection number A? is equal

to —2.
Let e(F') denote the Euler number of a fiber F. Then we have

> e(Fy) =24, (1)

=1

The set E of all sections of & has a structure of an abelian group when we fix an

element, say so, as the unit element. This abelian group E is finitely generated.
Let a be the rank of E and p be the Picard number of Z (= rank Pic(Z)).

p=2+a+ 3 (m(F)-1) (2)

i=1

where m(F') denotes the number of irreducible components of a singular fiber F.
(See Lemma 1.4.)

If a singular fiber F is not of type I, then m(F) = e(F) — 1, while if F' is of type
I, then m(F) = e(F).

Let t; denote the number of singular fibers of type I of &. The number of all
singular fibers of ® is ¢. By above (1) and (2) we have:

p=26+a—2t+f1. (3)
If the functional invariant J : ¢ — P1 of the elliptic surface @ is not constant, then
20— p+a>v(ly)+v(II)+v(III)+ v(IV), (4)

where v(T) denotes the number of singular fibers of type T. (Shioda [4]. For
general elliptic surfaces 20 should be replaced by by, — 2p,. In our case the second
Betti number b, = 22, the geometric genus p, = 1.)



Lemma 1.1. t>3.
Proof. Since p < dim H!(Z, Q) = 20, by (3) we have 2t > 6+a +t;, > 6. Q.E.D.

Here recall the notion of parallel translation along a path. Let r : [0,1] - C —
be a path. We have the induced mapping

Z(r) = U F. —[0,1).
0<r<1

Since [0, 1] is contractible, this family Z(r) — [0, 1] is trivial, i.e., there is a homeomor-
phism x : Fry X [0,1] — Z(r) such that its composition with Z(r) — [0, 1] coincides
with the projection Fyoyx[0,1] — [0,1]. For 0 < r < 1 by x, we denote the composition
of the natural isomorphism Fygy 2 F (o) X {7} and the restriction of x to Fy.0y x {r}.
The homeomorphism x,x, 1 : Fr(ry = Fy(s) is induced for 7,7' € [0,1]. This is called
the parallel translation from r(7') to r(7) along r. It depends on the homeomorphism
X, but the isotopy class of the parallel translation depends only on the homotopy class
of the path in C — I connecting r(7') and (7). In particular, we can define an iso-
morphism of cohomology groups 7, : H*(Fy(;+), Z) — H*(Fy(r), Z) associated with the
parallel translation, which depends only on the homotopy class of the path r. (Thus we
can denote it by r..)

Now, let b, be the intersection point of C5 = so(C) and F,(;y. The section sq
induces a section [0,1] — Z(r) whose image of 7 is b,. Here note that we can take yx
such that y(bo,T) = by for 0 < 7 < 1. Then the induced homeomorphism Fy(ry = Fr(r)
sends b, to br.

The induced homomorphism r. : H*(Fr(g), Z) = H*(Fy(0), Z) for a closed path r
is called the monodromy along r.

The fixed base point is denoted by b € C = Z. For 1 < 7 < t let I; be a path
connecting b and ¢; contained in C — ¥ except the ending point ¢;. Here we take them
in such a way that I; and /; has no common point except the starting point b, if 7 # 5.

By r; we denote the closed path which starts from b, goes along !; until a point just
before ¢;, then switches to a circle with a small radius with center ¢;, proceeds on it in
the positive direction round once, and then goes again along I; in the opposite direction
back untill the base point b. We can assume that no points in ¥ is inside the circular
part of r; except ¢;.

Set H = H!(Fy, Z). For any closed path r in C — I with the starting point and
the ending point b, we have the associated monodromy r. : H — H. It is a linear
isomorphism preserving the intersection form - on H.

Choosing a basis «, 8 of H with a-f = 1, we can represent the monodromy r, by an

Y

integral 2 by 2 matrix with determinant 1. This implies that « is transformed

to zo + 28 and f to ya + wf when we go along the closed path r.

Here we would like to give a remark. Kodaira’s paper on elliptic surfaces (Kodaira
[1]) is a very important reference. However, we should note that in it he uses a basis o,
B' of H such that o' - ' = —1 and 8’ - &’ = 1, and moreover that he writes the trans-
posed matrix of the one under standard representation to represent linear mappings. If
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i i
(z, :‘{),) is Kodaira’s matrix, it implies that &' is transformed to z'a’ +¥'8’ and f' to

ro_
Z'a’ +w'B’. Thus Kodaira’s matrix is represented by (Z g)) = (_my, wz’ ) under
our notation.

Proposition 1.2. Assume that ® has another singular fibre of type I'* except Fy. Then

there exists an isotropic element v € H?*(Z, Z) satisfying the following conditions (1)

and (2).

(1) u is orthogonal to the cohomology class of the section Cs = 3¢(C') and to all the
cohomology classes of irreducible components of singular fibers.

(2) Let s : C — Z be an arbitrary section. If s has finite order in the abelian group E
of sections with the unit element s, then u is also orthogonal to the cohomology
class of the image s(C).

Proof. We can assume that F; is of type I);. According to Kodaira [1], the monodromy
around ¢; and ¢y can be represented by _01 _01 and _nl _01 respectively. In
particular the monodromy ri. equals to the multiplication of —1. The monodromy rs,
around ¢z has a primitive element v € H such that it transforms v — —y. We can
represent the class v by an oriented simple closed curve I" on F. We choose I" such that
it does not pass through the intersection point by of Cs = 30(C) and F. Let ¥ = ro7r; be
the connected closed path made by connecting ry after ;. The path 7 can be regarded
as a continuous mapping 7 : [0,1] — C' — X with 7(0) = 7(1) = b. Let I'; be the image
of I" by the parallel translation along 7 from b to 7(7). I'; is an oriented simple closed
curve on the Riemann surface Fy(,y of genus 1. T' = I's. We can assume that I'; does

not pass through the intersection point &, of Fx(;) and Cs. Consider the 2-chain

T= |J r-cz-27(%)-Cs.
0<7r<1

The boundary satisfies 8T = —I' 4 I';. We have
P,F} C Fb - {bg}

The class v of I is transformed to —y when we go along r;. Next, —v is transformed
to 4 when we go along ro. Thus the class of I'; is also 4. Two curves I and I'; are
homologous in the compact Riemann surface Fj.

Here note that

Hy(Fp) = Hy(Fy — {bo}).

Thus there exists a 2-chain © in the punctured Riemann surface F}, — {bg} such that
6@ =I- P]. .

Consider the chain of sum U = I' 4+ ©. This is a 2-cycle and defines a class
[U] € Hy(Z, Z). Let v € H*(Z, Z) be the Poincare-dual class of [U]. By construction
U intersects neither Cs nor any component of singular fibers, and thus u is orthogonal
to the cohomology classes of them.
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Now, let 7' be a closed path in C'— X homotope to 7. (Here we consider homotopy
without any base point.) We can repeat the above construction using r' instead of 7.
Let U’ be the resulting 2-cycle. Then U’ is homologous to U in Z. Since we can take r’
with no intersection point with ¥, we can construct U’ without intersection points with
U. Thus we have

= [U]-[U]=0.

Lastly we would like to show u # 0. Note that we have the third singular fiber by
Lemma 1.1.

¢ Case 1. One of the singular fibers F; (3 < < t) is not of type L

We can assume that F3 is not of type 1. F3 is simply connected.

We can choose a smooth path ¢ : [0,1] — C such that ¢(0) = ¢1,¢(1) =¢3,9(7) ¢ &
for 0 < 7 < 1, and ¢ intersects ¥ = r;rg at only one point ¢;; in a neighbourhood of ¢;.
We can assume further that ¢ and 7 intersect at ¢;; transversally.

Let B; and Bj be sufficiently small non-empty open discs on C with center ¢; and
c3 respectively. We take B; such that B; is contained inside the circular part of the
path 7;. Note that the inverse images ®~!(B;) and $~!(B;) are simply connected.

Let ' € HY(F,,,) be the image of v € H'(F}) by the parallel translation along r,
to c11. Let §' € H!(F,,,) be a primitive element with ' - §' # 0. The class §' can be
realized by a simple closed curve A on the Riemann surface F¢,,. By A, we denote the
image of A by the parallel translation to ¢(7) along ¢ . A, is a simple closed curve on
the Riemann surface Fy(;). Choose a sufficiently small positive real number € such that
q(e) € By and ¢(1 — €) € Bj. Set

A= U a-

e<r<l—e
A is a 2-chain and the boundary satisfies the following.
A= =D+ Do, A CIHB), A—c CEY(B)

Since ®~'(B;) and ®~1(B;) are simply connected, we have 2-chains A’ and A” in
®~1(B;) and ®~!(B;) respectively such that A’ = A, A" = —A;_,. The chain of
sum V = A + A’ + A" is a 2-cycle and it defines a class [V] € Hy(Z,Z). Cycles U and
V intersect only on the fiber F;,, and by construction their intersection number satisfies

U]-[V] = £7/ -6 #0.
Thus we have [U} # 0 and u # 0.

¢ Case 2. Every singular fiber F; for 3 <: <t is of type L.

Set C' = P!, and let f : C' — C be the branching double cover branching at ¢
and c;. Let Z' be the normalization of the fiber product of Z and C' over C. This Z'
is a branched double cover of Z. The branching locus is the union of 8 disjoiut smooth
rational curves on Z. Singular fibers F; and F, contain 4 components with multiplicity
1 respectively. The union of them is the branching locus.
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Let ¢} be the unique inverse image of ¢; by f, and ¢}, be that of ¢;. The fiber over ¢}
of the induced morphism Z' — C' contains 4 disjoint smooth rational curves which are
inverse images of the branching locus, and they are exceptional curves of the first kind
on Z'. Similarly the fiber over ¢, contains 4 exceptional curves of the first kind. We

can contract these 8 exceptional curves and let Z' denote the resulting smooth surface.
We have the induced morphism &' : Z' — C'.

7' — 7' — Z

LT
¢ = ¢ L
The section 8¢ : C — Z induces the section s;, : C' — Z'. Set Cf = s4(C"). For simplicity

by F. we denote the fiber ®'~!(a) over a € C'. For every point a € C’ the fiber F} does
not contain an exceptional curve of the first kind. F, is a smooth elliptic curve and F,

is a (singular) fiber of type I5,. (A fiber of type Iy 1is a smooth elliptic curve.) Let 23
denote the set of critical values for ®'. f~1({cs,...,¢c}) CZ' C f7'({ea, ..., c})U{ch}.

Let &' and b be the inverse images of b by f. We fix one ¥’ of two as the base
point of C'. Let ¢} be the ending point of the lifting I} of I; with the starting point
b'(3 <2 £ t). Let ¢! be the ending point of the lifting !} of l; with the starting point
b"(3 <2< t). For 3 <i¢ <t thefibers F., and F), are isomorphic to F,; and are of
type I by definition. . '

We define paths on C’.

Let ! be the lifting of r; with the starting point . The path I passes through a
neighbourhood of ¢] and has the ending point b". Let I} be the lifting of I; with the
starting point 4'. The ending point of I, is ¢;,. We define the closed path 7} to be the
one which starts from &', goes first along I, then switches to a small circle with center
¢y just before ¢, proceeds round once on the circle in positive direction, and again along
I5 comes back to b'.

For 3 <i <t, let r; be the lifting of r; with the starting point §'. Note that the
ending point of 7} is not & but 4’ and 7} is a closed path. It goes round ¢ just once. Let
T; be the lifting of r; with the starting point b”. Set r! = I=17;l. It is the composition
of I, 7; and [ in the inverse direction, has the starting point &', and goes round ¢! just
once.

By construction H' = H'(F},, Z) is identified with H = H!(F}, Z) via the induced
isomorphism f,.

For each one r of 2t — 3 closed paths

NN PN 7] "
TosTgyer 3y Ty Tgy o3 Ty

the monodromy transformation r. : H' — H' is defined. Let G be the subgroup in the

self-isomorphism group of H' generated by these 2t — 3 monodromy transformations.
We define the sheaf G on C' by

G =" R'®,Zz,
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where j : C' — &' < C' is the inclusion morphism and Zz: is the constant sheaf on Z’
with values in the set of integers Z. By definition we have

HYC' §)= H'® = {z € H' | g(z) =z for every g € G }.
Lemma 1.3. (Kodaira) HO(C', G)=0.

Proof. Let N be the normal bundle of C} = s3(C') in Z'. By F we denote the pull-
back of N by sp, which is a sheaf on C’. According to Kodaira {1], we have an injective
homomorphism of sheaves G — F. By [1] Theorem 12.3 we have deg F = —x(Oz).
Moreover by (1] Theorem 12.2 x(Oz:) > 0. Thus H°(F) =0 and H°(G) =0. Q.E.D.

Now, v € H = H' is a primitive element transformed v — —;y by 79..
Since the monodromy (r3). equals to (r.)%, v € H' is invaliant by (r}).. By
Lemma 1.3 the following (5) or (6) holds. .

(ri)ay # v for some i with 3 <: < t. (5)

(ri)ay # v for some i with 3 <7 <t. (6)

Assume that the case (5) takes place. If we regard v € H by going down to the
world of H via f, : H' — H, we have (f.r})sy # v. However, since fur; = r; by
definition, one knows

TinY # 7. _ (7)
Assume that the case (6) takes place. Similarly (f,r}').y # . Here by definition
furl’ = r7'r;7;. The homomorphism r;, has been the multiplication of —1. Thus

(Ffur!)e = (r1)71r;u71, = 7;.. Therefore the above (7) holds also in this case.

In the following we fix a number ¢ with 3 <7 < ¢ satisfying (7).

The monodromy r;, has the matrix representation in the form __lb_ (1)) Thus
we have a unfque primitive element § € H with r;.é6 = 6 up to sign. § is a vanishing
cycle of a singular point of the singular fiber F; and it is defined associated with the
path l; with the starting point b and with the ending point c;. By (7) v # £4. Since
is also primitive, one knows that the intersection number satisfies

v-6#£0.

Now, we can discuss similarly as in Case (1).
Let ¢ : [0,1] — C be a smooth path satisfying the following conditions.

(1) The starting point ¢;, the ending point ¢;, i.e., ¢(0) = ¢1, ¢(1) = ¢;.

(2) ForO<r<1lg(r)¢ZX. '

(3) The closed path ¥ = ryr; and ¢ intersect only at one point ¢;; on the circular part
of r1 in a neighbourhood of ¢;. They intersect at ¢;; transversally.

(4) The composition path /7! and ¢ are homotope in (C — Z) U {¢1,¢; } with the
starting point ¢, and the ending point ¢; keeping fixed.

(5) For some sufficiently small positive real number €, ¢(7) and [;(7) coincide for 1—¢; <
T<1.



Let §',4' € H(F,,,) be the image of §,y € H'(F}) by the parallel translation along
r; from b to c¢;;. We can represent the class §' by an oriented simple closed curve A
on the Riemann surface F,, of genus 1. Let A, C F,(,) denote the image of A by the
parallel translation along ¢ from ¢i; to ¢(7). Let B; be a sufficiently small non-empty
open disc on C with the center ¢;, and B, be a sufficiently small non-empty open disc on
C with the center ¢;. Let € be a sufficiently small positive real number with ¢(¢) € B,
g(l—€)€e B;and 0 < e <¢;. '
Set _
A= |J a-.

e<T<l—¢
A is a 2-chain satisfying
A=A+ D1, A CENBY), A CET(B).

Now, since the inverse image ®~'(B)) is simply connected, we have a 2-chain A' in
&~1(B,) such that A’ = A,.

Next we consider Aj—.. The class §” defined in H'(F,;_¢)) by Ai—. is the image
of §' by the parallel translation from ¢,;; along ¢. Let a be the rounding number around
¢ of the closed path li_lq#rf where ¢* denotes the part of ¢ between ¢y; and ¢;, and
r# denotes the part of r; between b and ¢1;. Since the monodromy around ¢; is the
multiplication of —1, we have

8" = (—1)*6%,
where 6% denotes the image of § € H!(F)) by the parallel translation along I; to
g(1 — €) = li(1 — ¢). In particular, one knows that A,_, is a vanishing cycle along
l;. Thus we have a 2-chain A" in &=1(B;) with A" = —A;_,. The 2-chain of sum
V=A+A" +A"isa 2-cycle and defines the class [V] € Hy(Z, Z). The intersection
number satisfies

U] [V]=2v 8 =27 -6 #0.

Thus one knows that (U] # 0 and u # 0.
Lastly we have to show (2) in Proposition 1.2.
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Lemma 1.4. Assume that an elliptic K3 surface ® : Z — C has a section sq whose
image is denoted by Cs. Let S be the subgroup of the Picard group Pic(Z) of Z
generated by Cy and all irreducible components of singular fibers of ®. By E we denote
the abelian group of sections of & with the unit element so. Then there exists a natural
group isomorphism

Pic(Z)/S — E.

Proof. -Not difficult.

Under the condition in Proposition 1.2 (2) one knows by Lemma 1.4 that s(C)
can be written as a rational linear combination of the classes of Cs and irreducible
components of singular fibers. Thus (2) follows from (1) in the same proposition. This
completes the proof of Proposition 1.2. Q.E.D.

Let S € H%*(Z, Z) be the subgroup generated by the classes corresponding to the
irreducible components of the curve IF at infinity (Urabe [7] section 1) and rational
smooth curves on Z not intersecting IF. Note that such a smooth curve on Z is a
component of a singular fiber. In the case of J39, Z19, or @20, Cs is the unique
component of IF which is an image of a section. The other components of IF than Cs
are components of singular fibers. Thus in these cases we have

S c 8 cPi2)c HY(Z, Z),

where S is the group in Lemma 1.4. Under the isomorphism H%(Z, Z) = A; S corre-
sponds to P @ Q(G), P corresponds to the subgroup in S generated by components of
IF and Q(G) corresponds to the subgroup in S generated by smooth rational curves
on Z not intersecting IF. Reversing the sign of bilinear forms, we have the following
by Proposition 1.2.

Corollary 1.5. Consider the case of X = J30,Z10 or Q20. Let G € PC(X). If
the corresponding elliptic K3 surface Z — C has a singular fiber of type I* apart
from the one of type Ij, then the orthogonal complement of Q(G) with respect to the
corresponding embedding Q(G) < A3/P contains an isotropic element. In particular,
then, there is an isotropic element in a nice position.

Note that this corollary claims stronger than Proposition 0.1 under the assumption
((1)) in the introduction.

The following corollary is interesting in itself. Here recall that IF = F} U Cs if
X = J3,0, IF = F] UC5UC§ f X =Zl,g, IF=F1U05UCG UC‘( le =Q2,0, where
Cg, Cr7 are smooth rational curves not intersecting Fy satisfying C-Cs =1, C7-Cs =1
and C'r . 05 =0.

Corollary 1.6. Consider the case of X = J3, Zy 0, or Q20. Assume that a Dynkin
graph G € PC(X) has a component of type Dy, for some k > 4. Assume moreover that
if X = Zyp, then k # 6. Then for any full embedding Q(G) — A3/P the orthogonal
complement of the image contains an isotropic element, and thus in particular the

equivalent conditions [IIJ(A) and [II}(B) in Part I (Urabe [7]) Theorem 0.3 are satisfied.

Proof. By assumption the corresponding K3 surface Z contains a combination &; of
k smooth rational curves not intersecting IF whose dual graph is the Dynkin graph of
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type Di. £ is contained in some singular fiber F; of Z — C with F; # Fy. If F; is
of type I'*, the claim follows from Corollary 1.5. Otherwise Fj is of type II*, III* or
IV*, and it contains several components of the curve IF at infinity. Since the union of

components of F; disjoiut from I'F is a combination of type Di, one knows X = 7, o,
F;is of type III*, and k = 6. Q.E.D.

§2. A transcendental cycle with the positive self-intersection number

In this section we treat the case where the corresponding elliptic K3 surface ® : Z — C
has a singular fiber of type IT*, III*, or IV*. Recall that by Cs we denote the image
of the section sg : C — Z. (s is a component of the curve IF at infinity. By [Z] we
denote the homology class of a cycle = or the cohomology class of =.

Proposition 2.1. Assume that the elliptic K3 surface ® with a section s¢ has a singular

fiber of type II*, III*, or IV* apart from the singular fiber Fy of type Ij. Then there

exists a cohomology class ¢ € H?(Z, Z) satisfying the following conditions (1)-(4).

(1) €2 = +4.

(2) The class £ is orthogonal to the class of Cy and to all the classes of irreducible
components of singular fibers of ®.

(3) For some two irreducible components C' and C" of Fy with multiplicity 1 which have
no intersection with Cs, we can write £ + [C'] + [C"'} = 2y for some n € H*(Z, Z).

(4) Let s: C — Z be an arbitrary section. If s has finite order in the abelian group E
of sections with the unit element 3o, then £ is orthogonal to the cohomology class
of the image s(C).

Proof. We assume that the singular fiber F, over c; € ¥ is of type II*, III*, or IV™.
Consider the paths on C as in the following figure.

The path j and k& go on circles with center ¢; with a sufficiently small radius in the
positive direction. j has a less radius than k. The point a and @’ lie on the path 7 and
k respectively. These are regarded as the starting point and the ending point of the
respective closed path. The smooth path ¢ has the starting point a and the ending point
a', and it does not intersect j and k except at a and a'. The path p is a smooth path
which has also the starting point a and the ending point @', it has no intersection with
J except at a, and p and k has a unique intersection point d except the ending point a'.
At d they intersect transversally. The composition path r = ¢~!p goes round the point
c1 just once in the positive direction. The inner domain surrounded by k contains no
points in the set T of critical values of ® except ¢z, and the inner domain surrounded
by r contains no points in ¥ except ¢;.
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Let a, § be a basis of H = H'(F,, Z) with a - 8 = 1 such that the associated
matrix of the monodromy j, is the following.

((1} _}) (case of type II*) ((IJ _(1)) (case of type ITI*)

(_i —(1)) (case of type IV*)

Let A be an oriented simple closed curve on the Riemann surface F, representing the
cohomology class . We can assume that A has no intersection with C5. The closed
path j : [0,1] —» C — T with j(0) = j(1) = a defines the parallel translation F, — Fj(,)
for 0 < 7 < 1. By A, C Fj(;) we denote the image of A by the parallel translation. For
every T with 0 < 7 < 1 we can assume that A, has no intersection with Cs. We can

define a 2-chain J by the following:

J= |J 4 cZ2-97(2)-Cs.
0<r<1

The boundary satisfies 8J = —A + 4;. The cohomology class of dJ in H? (Fa) is equal
to J.o — a.

Next, let A’ C F,» be the image of A by the parallel translation along ¢g. We can
choose such an A’ that it has no intersection with Cs. Also the closed path k: [0,1] —
C — T with k(0) = k(1) = a’ defines the parallel translation. By A} C Fg(,) we denote
the image of A’ by the parallel translation along k. We can assume that for every 7
with 0 € 7 £ 1 AL does not intersect Cs. A 2-chain K is defined by

E=|J A, cz-374%)~Cs.
0<r<1 .

OK = —A' + A!. The cohomology class of 8K in H1(F,) is the image of jua — @ by
the parallel translation g, : H(F,) —» H(F,/).

Now, we have an oriented simple closed curve I' C F, representing the cohomology
class jua — a, since j,a — a is primitive in H. By I'; C F,(,) we denote the image of T’
by the parallel translation along the path p : [0,1] - C — £ with p(0) = a, p(1) = d'.
For every 0 < 7 <1 we choose such a I'y that it has no intersection with Cy. Set

The boundary satisfies dP = -T + r,.

Here the cohomology class of —A+ Ay —T is zero, and the support of this cycle does
not pass through the intersection point ag of F, and Cs. Since H, (Fo) = Hi(Fy—{ao}),
we have a 2-chain © in the punctured Riemann surface F, — {ag} such that §0 =
A—A,+T.

Consider the image I'' C F, of Iy C F, by the parallel translation along the
inverse of ¢. The homology class of I coincides with the homology class of T' applied
by the monodromy r, around ¢, and thus it is —(j.a — «). It follows from this that the
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homology class of —A' + A} + Iy is zero in F,,. There exists a 2-chain @' in F,» with
00’ = A' — A| —T'; such that the support of ©' does not pass through the intersection
point aj of Fs and Cs.

The chainof sum E = J+ K +P+0+0'isa 2-cycle, and defines the homology class
[Z] € Hy(Z, Z). Let £ € H*(Z, Z) be the Poincare dual class of [Z]. By construction ¢
satisfies the condition (2) obviously.

In order to see the condition (3) we need several constructions. First let I'; C
Fy(+) be the image of I' by the parallel translation along q. Adjusting the parallel
translation along p, we can assume that I'T coincides with I'y except that the orientation
is opposite. Secondly we choose a smooth map T : [0,1] x [0,1] — C — Z such that
T(T 0) = j(r), T(T 1) = k(7), and T(0,0) = T(1,0) = ¢(o) for 7,0 € [0,1]. Denoting

®-!(T(r,0)) = F.,, we have the pallarel translation F, = Fyo — F;, associated
with T. By A,, and by I'; , we denote the image of A and T' by the translation
a.ssocia.ted with T respectively. We can assume A, = A,, and A} = A,;. Setting

U0<0<1 Ao+ U0<a<1 Ao, and Q= U0<U<1 I'*, we divide E into three parts.

Set 2y = J+I(+Q, oo = —Q+Q+®+(’3 and =3 = P G ObVlOLlSly = =Z1+Z2+23.
However, Z; (¢ = 1,2,3) is not a cycle if we use Z as the coeflicients.

Here let us use Z/2-coefﬁcients. We consider homology groups over Z/2. Then
Zi (2 = 1,2,3) are cycles. Besides, I = Z; for a 3-chain II = U0<T<1’0<6<1 A o. Let
O, be a continuous family of 2-chains such that 00, = Ag ¢ AI 0'_+ f ‘as chains in
Fy(0), and©p = O, ©; = ©'. Then we have 80 = Z, for the 3-chain © = Us<co<1 ©
Consequently one knows that [Z] = [Z3] in Ho(Z, Z/2).

Now, let U C C be a contractible neighbourhood of the point ¢; containing
the path r = ¢~!p and not containing any point in & except ¢;. The class [Z;3] €
H,(®~1(U), Z/2) is defined. Let Cy,...,Cs be the irreducible components of the cen-
tral singular fiber ;. We assume that Cy has multiplicity 2, and Cy intersects C5. By
construction the intersection [Z3]-[C;]=0for 0 <i < 4.

On the other hand, since Ho(®@~1(U), Z/2) = Ho(Fy, 2/2) = S35, 2/2[C)), we
can express [S3] as the linear combination of [C;]’s. Setting up = 2[Co] + i, [Cil, we
have elements ¢, &,...,8; € Z/2 with [Z3] = euq + E:—o [Ci]. Then, € = euq - [Cs5] =
[E5] - [C5) = [E] - [C5] =0. b = [E3]-[Ch] =0, and b; + 82 + 63 = [E3] - [Co] = 0.
It implies that either for some two C', C" of Cl, Ca, Cs, [E] = [23) = [C'] +[C"}, or
[E] = [E3] = 0. If the first case takes pla.ce then by the universal coefficient theorem
H*(Z,Z/2) = H*(Z,Z) ® Z/2, we have the condition (3). If the second case takes
place, we can write £ = 25 for some n € H?(Z, Z). Here we assume the condition (1)
[Z]2 = 4. Then we have 5* = 1, which contradicts that H%(Z, Z) is an even lattice. In
the following proof of the condition (1) we do not use the condition (3). Thus we can
complete the proof of condition (3).

As for the condition (4), it follows from the condition (2) as in Proposition 1.2.

The condition (1) is remaining. To compute the self-intersection number we con-
sider the small perturbation j', %', p’ of the paths 7, k, p as in the following figure.
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Four intersection points occur. Let b, be the intersection point of p’ and 7, b, be
that of p' and k, and b3, by be those of k' and p. We assume that b3 is nearer to d than
bs. Let =/ be the 2-cycle associated with j', k' and p’ which is constructed similarly to
the case for =. We can check that = and =’ are homologous. Thus the self-intersection
number £2 is equal to the intersection number of = and Z'.

The intersection points of Z and Z' are contained in | Ji_, F},. After computing
the local intersection number in the neighbourhood of Fj,, we can take the sum.

First we consider the neighbourhood of Fy,. We assume that j(m0) = 5 and
p'(m1) = b1. Let By be a sufficiently small meighbourhood of b; in C. The inverse image
®~1(B,) can be identified with the product B; x Fj,. Let p'g be the part in B, of the
path p’. and jg be the part in By of j. = can be identified locally with jg x A4,,, while
' can be identified with p’p x T, . Under the identification by the parallel translation
along j 7o < 7 < 1, the homology class of A, coincides with j.c, while that of T' is
jsa — . Thus

—
.
L=

int(Ar, T7) =Jee- (Jua —a) =1

Here we denote the local intersection number of X and Y by int(X, Y'). (Note that the
order of two 1-cycles and the sign.) In $~'(B,), we have

int(ZE, ') = int(jp X A, pp xXT7)
= ~int(jp, p)int(A., 7))
=—(-1)x1
= +1.

Similarly one knows that for each v (v = 1,2,3,4), = and Z' has the local intersec-
tion number +1 in the neighbourhood of Fj, .
Therefore £2 = +4. Q.E.D.

We apply Proposition 2.1 and show an nice isotropic element.

First we consider the case for J30. Let G € PC(Jz2p). Obviously under our
assumption in this section G contains a component of type E. Let S = P® Q(G) — A
be the corresponding lattice embedding. By Proposition 2.1 we have an element £ € A3
orthogonal to S such that £2 = —4. (Note that when we move from H%(Z, Z) to A;,
we reverse the sign of the bilinear form.) The induced embedding Q(G) <« A3/P is
full, and the image is contained in the orthogonal complement L of Z¢ in A3 /P. L has
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signature (14,1) and thus we can define the Coxeter-Vinberg graph for L. Since Q(G)
is full even in L, G is a subgraph of the Coxeter-Vinberg graph for L.

Therefore we would like to draw the Coxeter-Vinberg graph for L.

Recall that the dual module Hom(V| Z) of a Z-module V is denoted by V*. If V' is
a non-degenerate lattice, we canregard V C V* = {x e V@Q |Foreveryy e V, z-y €
Z} CcVveaQ.

Set R = P @ Z¢. The discriminant group of Ris R*/R = (Z/2+ Z/2) D Z /4.
For @ = (a;,a2,b) € R*/R, the discriminant quadratic form can be written gr(@) =
a? + aja; + a — (b*/4) mod 2Z. Thus ggr = 0 & @ = (0,0,0),(1,0,2),(0,1,2), or
(1,1,2). One knows in particular that any subgroup in R*/R consisting of elements @
with gr(@) = 0 has order< 2. It implies [fé R] < 2 for the primitive hull Rof Rin As.
On the other hand the condition (3) in Proposition 2.1 implies that [R R] is a multiple

of 2. Consequently one has [R : R] = 2. After some calculation one has R*/R= Z/4
and ¢3(c) = 3c? /4 mod 2Z.

Let M be the orthogonal complement of R in A;. M*/M = R*/R~Z/4.

Next, let K be the orthogonal complement of Z¢ in A3. The group K*/K has order
4. The quotient K/P can be identified with L, and we can regard M as its subgroup
with finite index. Since M @ P C K and since the group (M @ P)*/(M @ P) has order
16, one has [K/P: M]=[K: M @ P] = 2.

Consequently L = K/P is a unimodular lattice of signature (14,1). It is known
that such a lattice is unique up to isomorphisms (Milnor-Husemoller [2]), and we can
find its Coxeter-Vinberg graph in Vinberg [8], which is as in the following figure.

14
]_ hﬂh_:_() 13
2 012
16
3 O———0 11 ]
4 ¢ 10

O—=O0—0 9
6 7 8
The Coxeter-Vinberg graph for L.

By v: we denote the fundamental root in L associated with the vertex in the above
graph with the attached number 3.

Proposition 2.2. Consider the case for Ja 9. Let G € PC(Ja,0), and G be an arbitrary
component of G. Assume that the corresponding elliptic K3 surface ® : Z — C has
a singular fiber of type II*, III* or IV*. We regard Q(G) as a submodule of A3/P
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by the corresponding embedding. Then, there exists an isotropic element u in A3/P

satisfying either the following condition (1) or (2).

(1) u is orthogonal to Q(G).

(2) For some root basis A C Q(G) there is a long root « € A — A, such that u-a =1
and u- 3 =0 for every 8 € A with § # «, where Ay denotes the component of A
corresponding to Gj.

Remark. If u satisfies the above condition (2), then u is automatically primitive in
A3/P.

Proof. We can assume that the root basis A C Q(G) is contained in the set {y; |1 <
¢ < 17} of the fundamental roots of L. Obviously y14,v17 ¢ A, since they are short
roots. Moreover either g, 47 or 43 does not belong to A, since G contains a subgraph
of type E. Thus one can conclude that either v5 ¢ A; or 49 ¢ A, since the graph
corresponding to A; is connected.

First we consider the case where y5 ¢ A;. Set uy = —(2v1 + 272 + 2y + y4 + 7115 +
2917). We can check that u, is an isotropic element in L C A3/P. Moreover,

-y =0for1 <1 <17, 1 #5, 14
. u.75=u'714=1

Set o = 5. If 45 ¢ A, then u; satisfies the above (1), while if y5 € A, then it satisfies
(2).
The second case v € A, is similar. By the symmetry of the graph it is obvious
that the element u; = —(y10 + 2v11 + 272 + 2713 + 2714 + 716) satisfies conditions.
Q.E.D.

We proceed to the case of Z; 9 and Q;9. By X we denote either Z;14 or @s0.
Let G € PC(X). We consider the corresponding elliptic K3 surface Z — C. In this
case there is a unique singular fiber containing a component of I'F' apart from Fy. We
assume that a singular fiber F; contains a component of IF.

We would like to reduce our case to the case of J3 9. Now, let TF denote the union
of Fy and Cs = 3¢(C). IF is a union of some components of IF, and is same as IF
in the case of J39. Let £ (resp. £) denote the union of irreducible components not
intersecting IF (resp. IF) of singular fibers F}, 2 <4 < ¢. One has

80(0F,~)=Z"O(OF,-) and (ENR)UTC (ENF)UB=F,.

=3

Here B denotes the component of Fj intersecting Cs, and T denotes the union of
components of IF not contained in IF. Note in particular that B consists of a unique
component, and that it has multiplicity 1 as a component of F;.

Assume that for some component F; of £ contained in U:=3 F; the cohomology
class U € H?(Z) satisfies the following.

[E1]- U = -1, [Ci] - U = 0 for every component C; of IF, and [E]-U = 0 for
every component E of £ with E # E;.

Then U is orthogonal to the general fiber of & and orthogonal to all components of Fy
except possibly one component B. However, U is orthogonal also to B since the class
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of B can be written as an integral linear combinations of the class of the general fiber
and the classes of other components of F;. Thus one can conclude that U is orthogonal
to all components of IF and to all components of £ with a unique exception Ej.

By the same reason if U is orthogonal to all components of ITF and to all components
of £, then it is orthogonal to all components of IF and to all components of £.

By translating this fact to the lattice theory we can get the proof.

By P we denote the sublattice of P generated by the part of the basis corresponding
to the components in IF. (Recall that P has a basis which has one-to-one correspon-
dence with the components of IF.) rank P =6and P = Pj@ H; in the notation in Part
I. Moreover P is isomorphic to P in the case of J; g. Let G (resp. G) be the dual graph
of £ (resp. €), and G, (resp. G;) be the sub-dual-graph of G (resp. G) corresponding
to ENF, (resp. €N Fy). G; has a unique component and G — G, = G — G| = Gy. By
the above we have P &® Q(_G-l) D P& Q(G1). The lattice P Q(-Cj]) ® Q(Go) has the
embedding into A3 comming from the geometric situation. By Proposition 2.2 one has
an isotropic element u € A3 /P satisfying either (1) or (2) in Proposition 2.2 for the pair
of graphs G and G;. u is orthogonal to Q(G;) in any case. The orthogonal complement
of P in A3 contains an isotropic element % which corresponds to u under the quotient
map Az — A3/P. u is orthogonal to P @ Q(G;). The image of % by the quotient map
A3 — A3 /P is an isotropic element in a nice position.

We have shown Proposition 0.1 for X = J3 4, Z; or {29 under the assumption
((2)) in the introduction.

§3. Combinations of graphs of type A

Let G be a graph in PC(X) with the number of vertices r. We assume moreover in this
section that all singular fibers of the corresponding elliptic K3 surface ® : Z — C are
of type I, II, III or IV except the unique exception Fj of type I§. Every component
of G is of type A under this assumption.

By M, we denote the p-Sylow subgroup of an abelian group M, and (M) denotes
the minimum number of generators of M.

We begin with the case X = J3 . Let A,; be the dual graph of the components
not intersecting Cs of the singular fiber F; for 2 < i < t. (Here A stands for the empty
graph §.) We have G = _._, An,.

Proposition 3.1. We consider only the case X = J3 ¢ under the assumption as above.
(1) If p = 6 + r, then the group E of sections is finite.

(2) v(G) £ 18 — r, where v(G) denotes the number of components of G.

(3) r <13.

(4)Set N(p) ={: |2<1<t, n;+1=0 (modp)}. Ifthe corresponding embedding
P @ Q(G) — Az is not primitive, then there is a subset T C N(2) such that ZieT(”f +
1) = 12.

(5) For any odd prime number p N(p) contains at most 15 — r elements.

Proof. (1) Sincer = 3i_, ni, we have a+ i_,(m(F;) —ni—1) = 0 by the equality (2)
at the beginning of section 1. By definition m(F;) > n;, and thus a = 0, which implies
E is finite.
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(2) Without loss of generality we can assume p = 6 + r by Theorem 1.2 in Part I [7].
In the equality (3) at the beginning of section 1, we can substitute a = 0, ¢t —¢; =
1+v(ID)+v(IID+v(IV), t, = v(G)—v(III)—v(IV)+v(l;). Thus v(G) =18 —r —
{2v(I1) + v(I11) + v(IV) 4+ v(11)}}.
(3) If r > 13, then r = 14 since 20 > p > 6 + r. Assuming r = 14, we will deduce a
contradiction.

First then we have p = 20 = 6 + 7. Thus a = 0 by (1). If the functional invariant
J is not constant, then we have

0=20—p+a2v(ly)+vIIl)+vIII)+v(IV)2v(l§) =1,

by the inequality (4) in section 1, which is a contradiction. Thus J is constant and all
singular fibers are of type II, III, or IV. This implies that all components of G are of
type A; or A;, and thus v(G) > 7 since G has 14 vertices. On the other hand by (2)
we have v(G) < 4, which is a contradiction.
(4) Let S be the subgroup of Pic(Z) generated by the class of Cs and the classes of all
components of singular fibers. Since in our case under the isomorphism H2(Z, Z) = A;
S corresponds exactly to P @ Q(G), the assumption in (4) implies S /S # 0 for the
primitive hull S of § in H%(Z, Z).

On the other hand by Lemma 1.4 the quotient Pic(Z)/S is isomorphic to the group
E of sections. Here § C Pic(Z) since Pic(Z) is always primitive in H2(Z, Z), and one
knows that S /S is isomorphic to the subgroup Tor E of E consisting of all elements
with finite order. Thus we have a section s' : C — Z such that s' # sy and s' € Tor E.
By C' we denote the image of s'. [C'] € S.

Now, let S; denote the subgroup of S generated by the classes of components not
intersecting IF' of the singular fiber F;. We have § = (Z[F] + Z[F + Cs)) ® @i, S,
where F' denotes a general fiber of ®. Thus we can write

(€] = mF]+[F+Cs]+ 3 xi

=1

for some m € Z, x; € S5}.
Here we recall general facts on elliptic surfaces, which may be to be added in the
beginning of section 1. (Kodaira {1], Shioda [4])

o Let Z# be the set of points on Z at which the Jacobian matrix of ® has rank 1.
Z# — C has the structure of a group variety over C. In particular for every point
a € C F# =& 1(a)N Z# has the induced structure of a complex Lie group. This
group structure depends only on F,. (F¥ is the set of simple points of the fiber
F,=%"1(a).)

o With respect to the induced group homomorphism E — F¥, the induced homo-
morphism Tor E — Tor F#* is injective for every point a € C. Here by Tor M
we denote the subgroup of an abelian group M consisting of all elements of finite
order.

We consider x;. C' intersects a unique component of F; with multiplicity 1, and
the component intersecting C' do not intersect Cs, since Tor E — Tor F]# is injective

and every component of F} contains at most one point in Tor F]#. It implies x1 # 0,
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and under the isomorphism S} = Q(D4)* x1 corresponds to a fundamental weight
associated with a vertex of the Dynkin graph D, with only one edge. Consequently one
knows x? = —1. By injectivity one knows moreover that s’ has order 2 in E.

Next we consider x; for 2 < 2 < t. Assume x; # 0. Since Tor E — TorF'-# is
injective, F‘-# contains a point with order 2 which is not on the component intersecting
Cs. It implies Fj; is of type either III or I for some k. We have n; +1=0 (mod 2).
The injectivity also implies that under the isomorphism S} = Q(A,,;)* x: corresponds
to the fundamental weight associated with the central vertex of the Dynkin graph A,,.
In particular one has x? = —(n; + 1)/4.

We calculate m. By injectivity for Tor E — Tor F¥ a € C, C' and Cs have no
intersection. Thus

0=[C'][Cs] =m[F]-[Cs]+ [F + Cs]- [Cs] =m — 1.

We have m = 1.
Set T = {i]|2 <: <, xi #0}. By the above one has T' C N(2), and
_ 2 _ (ni +1)
o (P = (F)+F4 O 4+ Y =2 P

=2 1€T

which implies the equality in (4).
(5) Assuming that for some odd prime p N(p) contains a set U with 16 — » elements,
we deduce a contradiction.

For M ={i|2<i<t, n #0} wehave M D U. First we would like to show that
M # U. Indeed, if N(p) contains 17 — r or more elements, then M D N(p) # U. Thus
we can consider only the case where M = N(p) and M has just 16 — r elements. Now,
since 1 = 3 .cp i, wehave 16 = r + (16 —r) = 3,2 (n; +1) =0 (mod p), which
contradicts that p is an odd prime.

Choose an element e € M — U. The singular fiber F. over ¢, € T is either of type
I, for m=n,+ 1, or of type IIl, or of type IV, since n, > 0.

Next we con31der the homotopy theory.

Fixing a base point b € C — %, we draw a path [; connectmg b and a point ¢; € &
for 1 £ ¢ £t as in the beginning part of section 1. Here by exchanging the numbering
we assume moreover that when we go on a small circle with center b in the positive
direction, we encounter /;’s in the order of the attached number i. Associated with
l;, we define the closed path r; as in section 1. The homotopy classes [r;] of r; are
generators of 7, (C — I, b) and are subject to a unique relation [ry][rz] - [r¢] = 1.

Let J : C — 31 — P! — {00} be the functional invariant of the elliptic surface ®
where we denote &; = & — {¢;}. By j : H = P! — {00} we denote the j-function from
the upper half plane H = {z € C | Imz > 0}. The multivalued function j~!J defines
the monodromy representation ¥ : m(C — 4, b) — PSL(2, Z) = SL(2, Z)/{+1, —-1}.
Let f : SL(2, Z) — PSL(2, Z) denote the canonical surjective homomorphism, and X,
be an arbitrary finite set with £; ¢ &, C C — {b}.
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Lemma 3.2. (Kodaira [1]) The following two sets have one-to-one correspondence.

(1) The set of an isomorphism class of an elliptic surface W — C over C with a
section sg : C — W whose critical values are contained in 35 and whose functional
invariant coincides with J.

(2) The set of a representation x : m1(C ~ Lq, b) — SL(2, Z) such that the composition

fx coincides with the composition m1(C — 3, b) = 71(C — L4, b) X, PSL(2, Z).
The correspondence is given by associating the elliptic surface W — C with the mon-
odromy representation on the first cohomology group H'(F}, Z) of the fiber over b.

Lemma 3.3 (Kodaira [1]) An elliptic surface W — D is a K3 surface if and only if
D = P! and the sum of the Euler numbers of singular fibers is equal to 24.

Let x1 : m(C —~ X, b) — SL(2, Z) denote the representation associated with our
elliptic K3 surface Z — C. We have x([r1]) = —1 and x;([r1]) x1([r2]) - - - xa([re}) = 1.
We can construct another representation x2 by setting x2([r1]) = 1, x2([re]) = —xa([re])
and x2([ri]} = xa([r:]) for 1 < ¢ <t with ¢ £ 1, e. Since —1 commutes with any element
x2([r1]) - x2([r2]) - - - x2([r¢]}) = 1 and it defines a representation of m (C — X, Z) such
that fx2 = fxa =X '

Let W — C be the corresponding elliptic surface to x2. By Kodaira [1] the type of a
singular fiber is uniquely determined by the SL(2, Z)-conjugacy class of the monodromy
matrix around it. Thus the fibers over ¢; with 1 < ¢ < ¢, 7 # 1, e are same as those of
Z — C. However, the fiber over ¢; is smooth and the fiber over ¢, is of type I}, III*
or II*, according as that in Z is of type I, III or IV. The combination I + I,, has
been replaced by I + I, in the first case. Here note that for the both pairs of singular
fibers the sum of the Euler numbers is m + 6, and they are equal. Thus by Lemma 3.3
one can conclude that W is also a K3 surface. In the second case I + III has been
replaced by Iy + IIT*. Also in this case for the both pairs the sum of the Euler numbers
is 9. In the third case I§ + IV has been replaced by Iy + II*. For the both pairs the
sum of them is 10. By Lemma 3.3 W is a K3 surface even in these cases.

Next we compare Dynkin graphs. Let Gw be the dual graph associated with the
set of all components of singular fibers in W not intersecting the image so(C) of the
section 8y. By construction we have Gw = G — A,,_1 + D44 in the first case. Thus
Gw has r 4+ 5 vertices. In the second, third case we have Gw = G — 4; + E7 and
Gw = G — Az + Ejg respectively. Thus Gw has r + 6 vertices.

Let Sw C Pic(W) be the subgroup generated by the classes of 3o(C) and all the
components of singular fibers of W — C. Setting Gy = D,,44, E7 or Eg according as
the first, second or third case takes place, we have

t
Swe2Ho®Q(-Gw) = Ho® Q(—Go) @ @ Q(—Aqn,),
by
where Q(—X) denotes the negative definite root lattice associated with a Dynkin graph
X (The bilinear form on @Q(—X) is (—1) times that on Q(X).), and Hp denotes a
hyperbolic plane. rank Sw > r + 7. Note that the discriminant group S}, /Sw has at
least (16 — r) of p-torsions corresponding to U.
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Let §W be the primitive hull of Sw in H’(W, Z). The quotient §W/Sw is isomor-
phic to the group of all sections of W — C with finite order, and it is isomorphic to
a subgroup in the group of the singular fiber over c.. Since the fiber over ¢, is either
In, IIT* or IT*, 5/§ is a 2-primary group. Thus for the p-Sylow subgroup we have
(Sw/Sw), = 0, since p is odd. We have I((S3y,/Sw)p) = (S /Sw)p) = 16 — r.

Let Tw be the orthogonal complement of Sw in H?(W, Z) which has rank 22.
rankTw < 22— (r 4+ 7) = 15 — r. Thus (T /Tw),) < (T /Tw) < 15—r. On
the other hand, since S}y /Sw = T3, /Tw, we have I((Ty/Tw),) 2 16 — r, which is a
contradiction. Q.E.D.

We have a byproduct of the proof of (4).

Lemma 3.4. Assume that G = ) .. Ay, € PC(J30). Then for any embedding S =
P & Q(G) — A, satisfying Looijengas conditions {(a}, (b) the followings hold.

(1) For the primitive hull S every non-zero element in the quotient S /S has order 2.
(2) Any non-zero element @ in §/S can be written

E=Y0+‘2Yi1

for some subset T C I, where 0 #£ X, € P*/P = Q(D,)*/Q(D4), X; € Q(Ax; )"/ Q(Ax;)
has order 2, k;+1=0 (mod 2) fori €T and } ;. (k; +1)=12.

(3) If §/8 is not cyclic, then there are subsets Ty, Ty C N(2) = { € I | k;+1 =0
(mod 2)} such that 3 ..p (ki +1) =12 forv =1 and 2, and }_,cp Ay, (ki +1) = 6.

Let us consider the case » = 13 further. By Proposition 3.1 (2) we can consider only
the graph G = Ay, + Ar, + Ar, + A, + Ay, corresponding to the division ky + ko + k3'+
kg + k5 = 13 of 13 into a sum of 5 non-negative integers k1 > ko > k3 > k4 > ks 2 0.
There are 57 kinds of such divisions as follows. We omit 0.

(1)13 (2) 12+1 (3) 11+2 (4) 10+3

(5) 9+4 (6) 845 (7) 7+6 (8) 114+1+1

(9) 10+2+1 (10) 94+3+1 (11) 942+2 (12) 8+4+1
(13) 8+3+2 (14) T4+5+1 (15) 7T+4+2 (16) 7+3+3
(17) 64+6+1 (18) 6+5+2 (19) 6+4+3 (20) 5+5+3
(21) 5+4-+4 (22) 10+1+141  (23) 9+2+1+1  (24) 84-3+1+1

(25) 84+2+2+1
(29) 64+5+1+1
(33) 5+5+2+1
(37) 4+4+4+1
(41) 8+2+14+1+1
(45) 6+3+2+1+1
(49) 5+3+3+1+1
(53) 4+4+2+2+1
(57) 34+3+3+2+2

(26) T+4+141
(30) 6+4+2+1
(34) 54+4+3+1
(38) 4+4+3+2
(42) T+3+1+1+1
(46) 6+2+2+2+1
(50) 5+3+2+2+1
(54) 44+3+3+2+1

(27) T+3+2+1
(31) 64-3+3+1
(35) 5+4+2+2
(39) 4+3+3+3
(43) TH+242+1+1
(47) 5+5+1+1+1
(51) 5+2+2+2+2
(55) 4+3+2+2+2

(28) T+2+2+2
(32) 64+3+2+2
(36) 5+3+3+2
(40) 9+1+1+4141
(44) 6+4+1+141
(48) 5+4+2+1+1
(52) 4+4+3+1+1
(56) 3+3+3+3+1

Note that in each item the number of odd numbers is 1, 3, or 5.
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A. For the following 24 items we can make the corresponding graph Ay, + A, + Ax, +
Ak, + Ay, from the essential Dynkin graph Eg+ Fy by tie transformations repeated twice.
In the following table we also indicate an example of the Dynkin graph which we can
make by the first tie transformation.

(1)1"' Bl3 (2)4— B]3 (3)1— All + Al

(5)— Bis (6)— As + Er (8)— An + A

(9)— As+ A2+ A1 (10)— Ag+ A2+ A (11)— Ag+ Az + A
(12)€—— Ag + Ay (17)4— Ag + E¢ (18)1-- Ag + Eg
(20)'!— As + En (21)4— Ay + Eg (23)&— Ag+ A + A

(47)*— As + Ds + B, (49)4— As + Ds + B, (53)4— Ay + Es + B,

B. For the three items (40), (42), (56) the item contains 5 odd numbers and N(2)
do not contain subsets Ty, T; satisfying the condition in Lemma 3.4 (3). Thus the
corresponding graph G is not a member of PC = PC(J3).

Indeed, let T be the orthogonal complement of S = P & Q(G) in A; and S be
the primitive hull of S. rankT = 3. Since §*/S = T*/T, I(5*/S) — 21(5/8) <
[(5*/S) < rankT = 3. On the other hand, ¥(S*/S) 2 I((S*/S)) = U(P*/P):) +
QG /Q(G)) =2+ #N(2) =17 (#M denotes the number of elements in a set
M.) Consequently one has I(S/S) > 2, and thus S/S is not cyclic. By Lemma 3.4 any
embedding P ® Q(G) — A; do not satlsfy (a), or {b). It implies G ¢ PC by Theorem
1.2 in Part I [7).

C. Any one of the following 12 items contains 3 odd numbers and N(2) do not contain
a subset T as in Proposition 3.1 (4). Thus the corresponding graph G ¢ PC.

(14) (22) (24) (29) (31) (36) (41) (44) (45) (48) (52) (54)

Indeed, in this case I(5/S) > 1 and the embedding P®Q(G) < As is not primitive.
By Proposition 3.1 (4) we can conclude G ¢ PC.

D. For the following 9 items, the corresponding N(p) = {t € I | k;+1=0 (mod p)}
contains 3 or more elements for p = 3 or 5. Thus G ¢ PC by Proposition 3.1 (5).

(25) (28) (33) (35) (37) (46) (50) (381) (585)
E. An item not refered to in the above A, B, C, D is one of the following 9.
4) (1) (13) (15) (16) (19) (38) (39) (57)

For these 8 items except the last one (57) we can show that the corresponding graph
G isnot in PC. Note that the last one (57) 343+ 3+ 242 correpsonds to the exception
3A3s + 24, in Main Theorem. This item will be treated in the last section 4. For the 6
items (4), (7), (13), (15), (19), (38) there is no T satisfying the condition in Proposition
3.1 (4). Thus we can consider only the primitive embedding P @ Q(G) — Aj;.

Here we explain (4) 1043 G = Ao + As.

Assume that G € PC. Then we have an embedding § = P @ Q(G) — Aj sat-
isfying (a), (b). We can assume that it is primitive. The discriminant group $*/S &
(Z/2+Z/2)®Z/4® Z/11. Here the first and the second direct summand Z/2 + Z /2
correspond to P*/P. The third Z/4 corresponds to Q(A3)*/Q(As), and the fourth
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Z/11 to Q(A10)*/Q(A10). The discriminant quadratic form gs on $*/S can be written
gs{ar,az,b,¢) = a? + aja; + @} + 3% /4 + 10¢* /11 mod 2Z for (ay,a,,b,c) € (Z/2 +
Z/2)®Z/4DZ/11. Let T denote the orthogonal complement of S. T has signature
(1,2), and the discriminant D of T is positive. We have an isomorphism T /T = §*/S.
Via this isomorphism the discriminant quadratic form gr of T satisfies ¢gr = —g¢s.
One has D = |D| = #T*/T = 11 - 2% On the other hand, we consider the lattice
T, =T @ Z, over 2-adic integers Z,. Ty /T, = (T*[/T) 2 (Z/2+ Z/2)® Z/4, and the
discriminant quadratic form ¢ on T; satisfies ¢(@) = (a? + ajaz + a}) — 3b*/4 mod 2Z
for an element @ = (a1, az,b). This implies that T is equivalent over Z; to the lattice

4 2 0
defined by the matrix A = | 2 4 0 ) (See Nikulin [3] Theorem 1.9.1.) Thus
0 0 -3-2?

D = det A = —3%-2* mod Z3%. By the 2 expressions of D one knows that 11 = —u? for
some pu € Z3 = Zy—2Z,, which is equivalent to 11 = —1 (mod 8). It is a contradiction.
Thus G ¢ PC.

For (7), (13), (15), (19) and (38) the reasoning is similar. By a 2-adic method we
can show G ¢ PC for these 5 items.

Next we discuss (16) 7+3+3 G = A7 + 24;.

Assuming G € PC, we define a lattice S, an embedding S — Aj, the orthogonal
complement T' and its discriminant D similarly to the above case (4). In this case
I=S5 /S is not zero, since N(2) contains 3 elements. On the other hand, we have no
subsets T, T, as in Lemma 3.4. Thus [ 1s cyclic of order 2.

Now, $*/S =2 (Z/2+Z/2)DZ/4dZ/4®Z/8. The discriminant quadratic form ¢ can
be written ¢(&) = zi+z1z2+23+3(yi+y3)/4472%/8 mod 2Z for @ = (1,22, y1,¥2,2) €
S5*/S. Here note that P = Hy @ Q(D4) and Q(D4) has an action of the symmetric
group of degree 3 associated with the symmetry of the Dynkin graph D,. Thus by
Lemma 3.4 (2) we can assume without loss of generality that I is generated by the
element &@ = (1,0,2,0,4). One can check that the orthogonal complement I+ of I
with respect to the discriminant bilinear form b on §*/S is generated by @, and 3, =
(0,0,0,1,0), B, = (0,1,1,0,0), By = (0,1,0,0,1). (b:5*/S x §*/S — Q/Z is defined
by 26(7,7) = ¢(T +T) — ¢(F) — ¢(T). ) Note that B; (i = 1,2,3) are mutually orthogonal
with respect to b, and ¢(B,) = 3/4, ¢(B;) = —1/4, ¢(8;) = —1/8 (mmod 2Z). Thus the
discriminant quadratic form ¢, on §*/S & 4/ = Z/4Z/4 D Z/8 can be written
q1(a,b,c) = 3a%*/4 — b2 /4 — c?/8 mod 2Z for (a,b,c) € Z/4 d Z/4 ® Z/8. One has
2" = D = —3-2" mod 232, which is equivalent to —3 =1 (mod 8). It is a contradiction.
We conclude A7 4 243 ¢ PC.

The case (39) 4434343 G = A, + 34; is similar to the case (16). S*/S§ &
(Z/24Z/2)®(Z/4)*®Z /5. One can assume that I = g/.S' is generated by (1,0, 2,2, 2,0).
The orthogonal complement It is generated by I and (0,1,1,0,0,0), (0,1,0,1,0,0),
(0,1,0,0,1,0), (0,0,0,0,0,1). Thus the discriminant form on §‘/§ > (Z/4)*®2Z/5 can
be written in the form —(a? + a2 + a2)/4 + 4b?/5. We have 5-2° = D = 2% mod Z3?,
which is a contradiction. A4 + 343 ¢ PC.
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Remark. For the following 11 cases the root lattice @ = Q(G) associated with the
corresponding Dynkin graph G satisfies the arithmetic condition “€,(Q) = 1 for every
prime p” which appears in Theorem 0.3 [II] in Part I.

(16), (22), (24), (36), (39), (40), (41), (42), (44), (52), (56)

Note that therefore we need not treat these items by Theorem 0.3 in Part I, if we want
to show only our Main Theorem. In the above we gave an explicit proof that they are
not in PC.

Let us proceed to the case r = 12.

By Proposition 3.1 (2) this case corresponds to the division of 12 = 3%, ki into
a sum of 6 non-negative integers ky > kg > -+ 2> k¢ 2 0. There are 57 kinds of such
divisions as in the following table. We omit 0.

1] 12 2] 11+1 3] 10+2 (4] 9+3

[5] 8+4 [6] 7+5 [7] 6+6 (8] 104+1+1

[9] 9+2+1 [10] 8+3+1 [11] 84242 [12] 7+4+1

[13] 74+3+2 [14] 64-5+1 [15] 64+4+2 [16] 64343
[17) 54542 [18] 54443 [19) 4+4+4 [20] 9+1+1+1
[21] 8+2+1+1 [22] 7434141 [23] 7+2+2+1 [24] 6+4+1+1
[25] 64+3+2+1 [26] 6+2+2+2 [27) 54+5+1+1 [28] 5+4+2+1
(29) 5+3+3+1 [30] 5+3+2+2 [31] 4+4+3+1 [32] 4+3+342
[33] 3+3+3+3 [34] 84+14+1+14+1  [35] TH241+141  [36] 643414141

[37] 6+24+2+1+1 [38] 5+4+1+1+1 [39] 54+3+2+1+1 [40] 5+2+2+2+1
[41] 444424141 [42] 44-3+3+1+1 [43] 443424241 [44] 442424242
[45] 3+3+3+2+1 [46] 343424242 [47] T+14+14+14+14+1  [48] 6+2+1+14+141
[49] 54+3+1+2+1+4+1 [50] 5+2+2+1+1+1 [51] 4+4+1+1+1+1 [52] 4+3+2+1+1+1
[53] 4+2+2+24+1+1 [54] 3+3+3+1+1+1 [55] 3+3+42+4+2+1+1 [56] 3+2+4+2+424241
[57] 24242424242

In order to simplify descriptions we would like to use the following proposition
effectively in what follows. This proposition is a direct consequence of our theory of
elementary transformations and tie transformations. (Urabe [5], [6], [7])

Proposition 3.5. If a Dynkin graph G can be obtained from a basic Dynkin graph G,
by elementary or tie transformations applied twice, then any subgraph G' of G can be
obtained from Gqy by elementary or tie transformations applied twice.

[A). For each item [a] among the above 57 items except the following 13 we can find an
item (b) in the case r = 13 paragraph A such that the corresponding graph G(b) to (b)
contains the corresponding graph Gla] to [a]. (Thus G[a] C G(b) € PC.)

[16], [32], [33], [34], [36], [40], [44], {47], [48], [51}, [52], [56), [57].
By Proposition 3.5 for the other items than in the above 13, we can construct the
corresponding graph from Eg + Fy by elementary or tie transformations applied twice.

We can discuss only the above 13 items in what follows. It turns out that every
one of the above 13 does not belong to PC.
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[B]. In the case [47] the division of 12 contains 6 odd numbers, but there are no T}, T3
as in Lemma 3.4 (3). If the corresponding graph G is in PC, then I(§/S) > 2, and by
Lemma 3.4 (3) we have a contradiction. Thus G ¢ PC.

[C]. For the case [34], [36], [48], [51], and [52], the division of 12 contains 4 odd numbers,
but there is no T satisfying the condition in Proposition 3.1 (4). If G € PC, then
[(S/S) 2 1, and we have a contradiction by Proposition 3.1 (4). G ¢ PC.

[D]. Next, we consider the case [40], [44], [56], [57]. In these cases the set N(3) contains
4 or more elements. Thus by Proposition 3.1 (5) the corresponding graph is not a

member of PC.

{E]. The remaining items are the following three; [16], [32], [33].

For the former 2 cases [16], [32], the division contains 2 odd numbers, and there is
no T as in Proposition 3.1 (4).

We consider [16] 64343 G = Ag + 24;. If G € PC, then the embedding § =
P & Q(G) — Aj; is primitive. On the discriminant group §*/S = (Z/2+Z/2)DZ/4 &
Z/4®Z/7 the discriminant quadratic form gg of S can be written ¢s(a1, a2, b1,b2,¢) =
a? + ayaz + a2 + 3(b2 + b?)/4 4 7¢?/8 mod 2Z. Thus the discriminant D of the orthog-
onal complement T of S is D = #5*/S = 7-25%. On the other hand, the discriminant
quadratic form of T, = T ® Z; coincides with —(gs)2, where (gs)2 denotes the re-
striction of gs to the 2-Sylow subgroup of §*/S. It implies that D = 33 - 2% mod Z32.
Consequently we have 7= 3% (mod 8), which is a contradiction.

For the case [32] 44+3+342 G = Ay + 2A;3 + A,, the reasoning is similar to that in
[16]. We can conclude G ¢ PC.

Now, we consider the last case [33] 3434343 G = 4A;. Since it contains 4 odd
numbers, we have I(I) > 1for I = g/S Since there are no T} and T, as in Lemma 3.4
(3), I is cyclic of order 2.

On the other hand the discriminant quadratic form of S can be written ¢(@) =
(a? +aja;+ad)+3 5%, b2 /4 for an element @ = (ay, ag, by, by, b3, bs) in §* /S = (Z/2+
Z/2)® (Z/4)*. We can assume [ is generated by (1,0,2,2,2,0). I+ is generated by I
and (0,1,1,0,0,0), (0,1,0,1,0,0), (0,1,0,0,1,0), (0,0,0,0,0,1). Thus the discriminant
quadratic form on §*/S & I+ /I = (Z/4)* can be written q1(a1, az,a3,b) = —(a? + a2 +
a?)/4 + 3b? /4. Computing the discriminant of the orthogonal complement of S in two
different ways, we obtain 2% = —3 - 28 mod Z3?, which is a contradiction.

Remark. Among the 13 items mentioned in paragraph [A] for the following 11 items
the arithmetic condition “d(Q) ¢ Q;z or €,(Q) =17 is satisfied for every prime p. Note
that therefore we need not discuss these cases by Theorem 0.3 [II), if we show only our
Main Theorem.

[16], [32], [33], [34], [36], [44], [47}, [48], [51], [52], [56]
By the above we know that they are not members of PC.

We can complete the study in the case J3 0.

Let us proceed to the case Z;o. Let G € PC = PC(Z,,) be a graph with the
number of vertices r. Let ® : Z — C be the corresponding elliptic K3 surface to G.
Z carries the curve I'F at infinity associated with Z; o. IF has 7 components. 5 of 7
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are components of the singular fiber Fy of type If of ®. One of the remaining two is
the image Cy of the section sy. The last remaining component Cg is a component of a
singular fiber. We assume that F, contains Cs. The dual graph of the set of components
not intersecting I'F' of singular fibers is the graph G.

Here recall that we have assumed in this section that all singular fibérs of & is of
type I, II, IIT or IV. Note that we can assume further that the Picard number p of
Z isequal tor+ 7. (If p > r + 7, then a general deformation of Z keeping the union
of the curve I'F and the combination of curves corresponding to the graph G has the
Picard number r + 7, and all the singular fibers of the structure of the elliptic surface
on it are of type I, II, II1I, or IV except the unique exception of type Ij.)

Lemma 3.6. Under the above assumptions the singular fiber F is of type III or I,.

Proof. For 2 < i <t let n(F;) denote the number of components of F; not intersecting
IF. By definition we have ¥;_, n(Fi) = r. By the equality (2) in the beginning of
section 1, we have

a+m(Fy)~n(F) -2+ (m(F)-n(F)-1)=0.

i=3

Since m(Fy) 2 n(F3) + 2 and m(F;) > n(F;) + 1 for 3 <1 < £, we have in particular
m(Fy) = n(F,) + 2. It implies that a component of F; intersecting Cs is unique except
Cs. It is easy to see that if F, is of type either IV or I,, with n > 3, it has never this
property. Q.E.D.

Proposition 3.7. The following two conditions are equivalent.

(1) There exists a K3 surface Z containing the curve I'F associated with Z; g such that
with respect to the associated structure ® : Z — C of the elliptic surface every
singular fiber is of type I, II, III or IV and such that the dual graph of the set £
of smooth rational curves on Z not intersecting IF is G € PC(Z, ).

(2) G+ A, € PC(J3,) and every component of G is of type A.

Proof. Assume that there is a K3 surface Z with the above mentioned properties. We
can assume moreover p = r + 7. By Lemma 3.6 F, contains only one component C’ not
contained in IF. Let TF denote the union of Fy and Cs. IF is the curve at infinity
in the case of J3 9. Obviously the set € of smooth rational curves not intersecting TF
coincides with €U {C'}. Thus the dual graph of € is G+ 4, and it belongs to PC(J3).
Obviously every component of G is of type A under the assumption.

Conversely assume that a Dynkin graph G with components of type 4 only satisfies
G+ A, € PC(J30). Let & : Z — C be the associated elliptic K3 surface with G+ A,. ®
has a singular fiber F of type I and Z has a curve Cs which is the image of a section.
The dual graph of the union of components not intersecting IF = F, UCy of singular
fibers coincides with G + A; by definition.

Note that in the case J3 ¢ singular fibers of & with 2 or more components other
than F; have one-to-one correspondence with components of the Dynkin graph, and
the type of the singular fiber is uniquely determined by the type of the corresponding
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irreducible Dynkin graph except only that both type III and type I correspond to A,
and both type IV and type I correspond to A,.

Thus our Z — C has a singular fiber F, of type III or I, corresponding to the
component A; of G + A;. Every singular fiber except F) is of type I, II, III, or
IV. Anyway F, has 2 components and only one C" of two intersects Cs. The curve
IF = TFUC" is the curve at infinity in the case Z; o. The dual graph of all components
of singular fibers not intersecting I'F' coincides with G. Thus G € PC(Z,,). Q.E.D.

By Proposition 3.7 and by Proposition 3.1 (3) we can assume r < 12. If r < 10,
thanks to Theorem 0.3 [II] in Part I, we have nothing to verify.

Let us consider the case r = 12 first. Thanks to Proposition 3.7 what we have
to do is to pick up items (ky,...,ks) with E‘:-’=] ki = 13 such that k; = 1 for some 1
from the list in the paragraph A, and to check whether for each picked-up item the
graph G defined by G+ 4; = $°0_, Ay, can be made from E; + Fy or Eg + CBs by tie
transformations applied twice.

Of course, for every picked-up item the answer is affirmative. In the following we
show the graph G = 3 ;_, Ay, — A; (Note that this is different from Z?=1 Ay,.) and an
example of the Dynkin graph G which can be made after the first tie transformation.
As the basic graph, Ey + Fy can be used for the items from (2) until (34). For (43),
(47), (49), (53) Es + CBj can be used. There are 15 picked-up items.

G — Gl
(2) A2 — An (8) A + Ay — An
(9) Ao + A2 — Ay + A (10) Ag + A3 — Ag+ A,y
(12) Ag + A4 — AB + F4 (17) ZAG — Aﬁ - Ag,
(23) Ag + Ay + Ay Ag + Ay (26) A7 + Ag+ A4 — A7+ A3+ A
(27) A7 + Az + Aye— A7+ A3 + 44 (30) Ag + Ay + A2 — E7 + Ay
(34) As +A4+A3‘— E',' +A4 (43) A.'.’ +2A2+A1i— A7+A2 +A1 +CB]

(47) 2A5 + 2A] — D5 + A5 + CBl (49) A5 + 2143 + Al — D5 +4- A5 + CB]
(53) 2A4 + 2A2 — EG + A4 + C.B]

Next we consider the case r = 11. First we can pick up items (ky,...,ks) with
z:s:l k; = 12 such that k; = 1 for some : from items [1]-[57] in the above list. Then, it
is not difficult to see that every picked-up item is either one of the 13 exceptions treated
in paragraph [A], or the corresponding graph G is a subgraph of a graph in the above
15 just discussed. We can complete the proof by Proposition 3.5.

Remark. There are 8 items with k; = 1 for some ¢ among the 13 exceptions in [A].
The corresponding graph G is as follows. (Note that G does not have 12 vertices but
11 ones.)

(34] As + 34,4 [36] As + A3 + 24, [40] As + 34,
[47] A7 + 44, [48]) Ag + Az + 341 [51] 244 + 34,
[52] Ay + Az + A2 + 24, [56] A3 + 44,

We can show that G ¢ PC for three items [40], [48], [56]. However, for the other 5
items we can make the corresponding graph from E7 + Fy by tie transformations applied
twice.
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Note that this fact do not contradict Proposition 3.7, because in the case of these
5 graphs, in the corresponding elliptic K3 surface the singular fiber F, containing the
component Cg of IF is of type either I*, II*, III* or IV*.

We complete the case Z; o.

The third case is Q20. We can show the following in this case.

Proposition 3.8. The following two conditions are equivalent.

(1) There exists a K3 surface Z containing the curve IF associated with Q2 o such that
with respect to the associated structure ® : Z — C of the elliptic surface every
singular fiber is of type I, II, III or IV and such that the dual graph of the set £
of smooth rational curves not intersecting IF on Z is G € PC(Qz,0).

(2) G+ A; € PC(J3,) and every component of G is of type A.

By Theorem 0.3 [II] in Part I, Proposition 3.1 (3) and Proposition 3.8 we can
consider only the case r = 11 or r = 10.

First we treat the case r = 11. By Proposition 3.8 we can consider the division
(k1,...,ks) of 13 with k; = 2 for some :.

Note that the case (57) 343434242 corresponding to the exception 343 + 24, in
Main Theorem satisfies ks = 2. We consider this case separatedly in the final section.

Excluding (57), what we have to do to show Main Theorem is the following; First
to pick up items (ky,..., ks) with k; = 2 for some ¢ from the list in paragraph A in the
case J3 o 7 = 13. Secondly to check for each picked-up item whether the graph G defined
by G+ A; = Zf‘:] Ak, can be made from Es + Fy or Eg + F, by tie transformations
applied twice.

We can check this affirmatively for every picked-up item. The following list shows
the numbering of the picked-up item, the corresponding graph G, and an example of
the Dynkin graph G; which we can make after the first tie transformation. For every
1tem we can use Eg + Fy at the start. The list contains 10 items.

G — G]
(3) Ay — Ag+ Ay (9) Ao + Ay — Ay + A
(11) Ag + A, — Ag + A (18) As + As — 245
(23) Ag + 2A1 — Ag + Ay (27) A7+ Az + A — A7 + A] + B,

(30)A6+A4+A1 4—‘A6+A1+F4 (32)A5+A3+A2 i—A5+2A2
(43) A7 + Ay + 2A1— A7+ Ay + By (53) 244 + Ag + Ay A + 24, + B,

We proceed to the case » = 10. In this case our problem is reduced to the analysis
of the decompositions (ky,..., ks) of 12 into 6 integers. It is not difficult to show one
of the following three conditions always holds for each item in the above [1]-[57].

(1) ki #2for 1 <:i<6.

(2) k; = 2 for some 1 < i < 6 and the graph G, defined by Go + Az = Y5, Ay, is a
subgraph of one of the 10 graphs G in the list just above.

(3) It is one of the 13 items discussed in paragraph [A].

By Proposition 3.5 and Proposition 3.8 we can complete the proof.

In this section we have shown Proposition 0.1 for Js3 o, Z10, and Q¢ under the
assumption ((3)) in the introduction.
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§4. The exception

In this section we study the exception in Main Theorem.

First we consider G = 3A3 + 24, in the case J3¢.

In this case P = H(){BP(;, P(; = Q(D4) and Ho = ZUQ-l—ZUO, ug = vg = 0, Up-vUg = 1.
Set S = P® Q(G). Consider the discriminant group S5*/S = (Z/4)* & (Z/2)* ® (Z/3)*.
Each of three Z/4-components corresponds to A3, (Z/2)? corresponds to P, and (Z/3)*
to 2A4,. The discriminant quadratic form can be written g¢(ai, ag,as, by, be,21,22) =
3(a? + a2 + a?)/4 + b3 + biby + b} + 2(2? + 22)/3 mod 2Z.

Assume G € PC(J3p). We have the corresponding elliptic K3 surface @ : Z — C
and the corresponding embedding S < Ajz. Every singular fiber except one F of type
I3 is of type I, II, III, or IV, since every component of G is of type A. Thus we can
apply the theories in section 3.

Since 1((5*/S)2) = 5 > rank A3 — rank S = 3, there is no primitive embedding
S — Aj. Let S be the primitive hull of § in A;. Every non-zero element in the quotient
I = S§/S has order 2 by Lemma 3.4 (1). We have I = Z/2, since there are no 11, T3
satisfying the condition in Lemma 3.4 (3). By Lemma 3.4 (2) the generator of I is either
(2,2,2,1,0,0,0), (2,2,2,0,1,0,0) or (2,2,2,1,1,0,0).

Note that these three elements are conjugate with respect to the action of the
symmetric group of degree 3 on Py = Q(D,) induced by the symmetry of the Dynkin
graph Dj.

Let Sy be the inverse image by §* — 5*/S of the subgroup in §*/S generated by
the element (2,2,2,1,0,0,0). It is an even overlattice of S with index 2.

Proposition 4.1. Any embedding S = Ho @ Py ® Q(34;5 + 242) — Aj satisfying
Looijenga’s conditions {a) and (b) is the composition of an isomorphism $ = S induced
by an isomorphism P} = P, of the direct summand and a primitive embedding S; — Aj.

Next, we compute the discriminant quadratic form ¢; of 5. Let 71, 72, T3 €
S§*/S be the elements of order 4 corresponding to (1,0,0,0,1,0,0), (0,1,0,0,1,0,0),
(0,0,1,0,1,0,0) € (Z/4)® @ (Z/2)* ® (Z/3)? respectively. Let 71, T2 € 5*/S be the
elements of order 3 corresponding to (0,0,0,0,0,1,0) and (0,0,0,0,0,0,1) respectively.
We can check that the orthogonal complement I+ of I with respect to the discriminant
bilinear form b on 5*/S is the direct sum of I and the 5 cyclic groups generated by 7,
G2, 03, T1, T2. Thus we have S7/S) = I1/I = (Z/4)® @ (Z/3)%. Note that any two of
1,02, 03, T1, T2 are orthogonal with respect to b, ¢(¢,) = —1/4 mod 2Z (v =1,2,3),
and ¢(7,) = 2/3mod 2Z (v = 1,2). Thus the discriminant quadratic form ¢; of )
can be written

1 2
q(@) = —Z(a§ +ak+add)+ §(bf + b2) mod 22,

for an element & € S} /S; corresponding to (ai, az,as3,b1,b2) € (2/4)° & (Z/3)2.

In what follows we consider S7/S; = (Z/4)*®(Z/3)?. Let % and R; be the elements
of order 12 in S} /S, corresponding to (1,2,0,1,1) and (2,1,0,1, —1) respectively. Let
X € S7/S; be the element of order 4 corresponding to (0,0,1,0,0). We can check that
S1/S1 is the direct sum of three cyclic groups generated by %1, B2 and X. After some
calculation one has

1

- 1
q1{a1®1 + a2R2 + bA) = 1—2(a§ +a?) - ZbQ mod 2Z,
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for ay,a; € Z/12, b € Z /4.

Proposition 4.2. (1) S; has a primitive embedding into the even unimodular lattice
A3 of signature (19, 3).
(2) In€Si,n¢ S and n-ug =0, then n? > 4.

Proof. (1) Let T be the lattice of rank 3 defined by the diagonal matrix whose diagonal
entries are —12, —12 and 4. T is an even lattice and we can define the discriminant
quadratic form g on T*/T. By the above calculation one knows that we have an iso-
morphism ¢ : §}/S; = T*/T such that —gr¢ coincides with the discriminant quadratic
form q; of 5.

Consider the direct sum U = S @ T. Let J be the graph of the isomorphism ¢
defined in the discriminant group U*/U = (S7/51) ® (T*/T) of U. J is a subgroup in
U*/U and the restriction to J of the discriminant quadratic form of U is zero. Thus
the inverse image A of J by the natural surjective homomorphism U* — U*/U is an
even lattice. Since the square of the order of J is equal to the order of U*/U, A is
unimodular. The signature of S is equal to that of S and thus it is equal to (18,1).
Since the signature of T 15 (1,2), A has signature (19,3). The even unimodular lattice
with signature (19, 3) is unique up to isomorphisms (Milnor-Husemoller [2]), and A = Aj.

Let Sy denote the primitive hull of Sy in A. Since S /S1 = (5'1 +T)/U = ((S1/51)®
{0})Nn J = {0}, S; is primitive in A.

(2) Let wy € (Pg)" be the element corresponding under the isomorphism (P§)*
Q(Dy)* to the fundamental weight associated with one of three vertices at the end of the
Dynkin graph Dy. For v =1,2,3 let x, € Q(G)* be the fundamental weight associated
with the central vertex of the v-th component of G of type A3. Set £ =wp+x1+x2+Xx3.
We can assume S; = SU (S + §).

Now, by assumption we can write = { + ( for some ( € S. We have 0 =75 - up =
€-ug+(-up = (- up. Thus ( = mug + (o for some m € Z, (o € P;® Q(G). Setting
no = & + (o, one has n® = n?, since n = 1y + muy and 5y - v = 0. Our problem is
reduced to showing n3 > 4.

Here recall the notion of the characteristic number. (Part I Urabe [7] section 2
Lemma 2.1 etc.) Sy = Pi@PQ(G) is an even positive definite lattice, and we can define the
characteristic number v(Z) for each element T € S5 /Sp. For an element = € S§ we write
T = z mod Sy € S3/S0. By definition 5 > v(7,) = v(€) = v(@o + X; + X2 + X3) = 4.

Q.E.D.

Corollary 4.3. In the case of J3 ¢ the lattice P@®Q(3A; +2A2) has an embedding into
A3 satisfying Looijenga’s conditions {a), (b). In particular 3A; + 24, € PC(J30).

o~

Proposition 4.4. In case J3 o with respect to any full embedding Q(3As + 24,) —
A3 /P there is no isotropic element in a nice position.

Proof. Assume that we have a primitive embedding P — Aj, a full embedding Q(G) —
A3 /P and a primitive isotropic element % € A3/P in a nice position. We will deduce a
contradiction.

Let u € A3 be the element in the orthogonal complement of P whose image under
the canonical surjective homomorphism A; — A3/P is%. Such a u exists by Proposition
3.6 in Part 1. By the definition of a nice position we have a root basis A C Q(G) and a
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long root & € A such that f-u=0forevery f € A withf#aanda-u=1o0r 0. We
have the induced embedding S = P @ Q(G) — Aj satisfying Looijenga’s (a) and (b).

Assume that -« = 0. Then we have ¢,(Q(34; + 2432)) = 1 for every prime p,
since the orthogonal complement of P@Q(G) contains an isotropic element u. However,
e3(Q(3A3 + 245)) = (3,3)s = —1, which is a contradiction. One knows a-u = 1.

Let T be the orthogonal complement of § in Az. Since P® Q(G)@ T C Az C
P*®Q(G)* @ T* and since u is orthogonal to P, we can write u = w+ 7 for w € Q(G)*,
T € T*. The element w € Q(G) is the fundamental weight associated with a and A.

Here note that considering w(u) instead of u for an element w of the Weyl group of
Q(G), we can assume moreover that the root basis A coincides with a previously given
root basis.

We have two cases.

(a) The long root « lies on a component of type As.
(b) « lies on a component of type A,.

First we consider case (a). We use the notations £, wg, X, in the proof of Proposition
4.2 (2). By Proposition 4.1 there is an isomorphism o : § — 5 keeping every element
in Q(G) fixed such that o(£) € A;. Wehave Z 3 u-0() =w £ =w:X,. Here we
assumed that o lies on the v-th A3-component of A. If « corresponds to a vertex of
the Dynkin graph Aj; at the end, then w - ¥, = 1/2. Thus « corresponds to the central
vertex of A3 and w = x,. In particular w? = 1.

Since 0 = u? =w? 4- 72, one has 72 = —~1 for 7 € T™.

Next, we consider the lattice T* ® Z; = (T ® Z;)* over 2-adic integers Z;. By
Proposition 4.1 the discriminant quadratic form of T, = T' ® 2, coincides with —(q¢; )2,
where (q; ), denotes the restriction to the 2-Sylow subgroup of the discriminant quadratic
form ¢; of S;. The discriminant D of T is equal to that of T}, and it satisfies D = 26.3? =
2% mod Z32.

Let T = (Zg)3 be the Z,-lattice whose intersection matrix is the diagonal matrix
with diagonal entries 4, 4, 4. By the calculation of ¢; before Proposition 4.2 one knows
that T; and T' have the same rank, the same discriminant quadratic form, and the same
discriminant modulo Z}%. By Corollary 1.9.3 in Nikulin [3] they are isomorphic as Z,-
lattices. Thus there is an isomorphism T3 2 (Z2)® such that the quadratic form is given
by @ = (2% + 22 + %)/4 for an element « € T} corresponding to (z1,z2,73) € (Z2)3.

Assume T € T; corresponds to (z1,22,%3) € (Z;)*. One has z? + z3 + 22 = —4.
Let k; be the number of z,’s (v = 1,2,3.) with z, ¢ 2Z,. One has —4 = k; (mod 4).
Thus k1 = 0. We can write z, = 2y, with y, € Z3 for v = 1,2, 3. Let k; be the number
of y’s (v = 1,2,3.) with y, ¢ 2Z,. One has —1 = y? + y2 + y% = k2 (mod 4), and
k2 = 3. Then one has congruent relations modulo 8 y2 =1 (mod 8) (v = 1,2,3). We
have —1 = y2 + y2 + y2 =3 (mod 8), which is a contradiction. The case (a) never
takes place.

We proceed to the case (b). Sincew is a fundamental weight of Q(A4,), 3w € Q(G) C
S andw? = = 2/3. 3 is invertible in Z, and we have w € $® Zg Since w mod S@ Z,=0

corresponds to 7 mod T, under the canonical isomorphism (S’@ Z,)* /(S@Zz) =Ty /Ty,
7 € T =T @ Z. We can identify the quadratic form on Tp with 22(z? + 2% + z%) and
12 € Z3 is a multiple of 22.

On the other hand 72 = u? —w? = —2/3, which is not a multiple of 22. We have a
contradiction. Thus the case (b) never takes place, either. Q.E.D.
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Corollary 4.5. The Dynkin graph 3A; + 2A, can never be made from Eg + Fy or By
by applying elementary transformations or tie transformations twice.

The case G = 343 + A, for X = Q¢ follows easily from the above case. By
Proposition 3.8 one has G € PC(Q2,0) since G + Ay = 343 + 24, € PC(J3).

Next, assume that there are an embedding P @ Q(G) — Aj; satisfying (a) and
(b) and a primitive isotropic element @ € A3 /P in a nice position. Let u € A3 be the
element orthogonal to P and mapped to% by A3 — A3/P. u is also a primitive isotropic
element.

Here note that the lattice P in our case Q30 has the decomposition P = PoT
where P is isomorphic to P defined in the case J; 0 and T = @(A4;). Thus the given
embedding induces the embedding Po Q(G + A2) — Az. Regarding this embedding as
the one defined in the case J3 9, we would like to show that this also satisfies {(a) and

(b).

Let us consider the associated elliptic surface & : Z — C with p =7 + 8 = 19. Let
F be the singular fiber of ® contained in the curve at infinity IF. F is of type I5. Let
F, be another singular fiber containing 2 components of IF'. The other singular fibers
than F; and F; are of type I, II, III, or IV, since G has only components of type A.

If F; is of type I* then the orthogonal complement of P@Q(G) contains an isotropic
element by Proposition 1.2. Thus ¢ (Q(G)) = (3, —d(Q(G))), for every prime p. How-
ever, &3(Q(G)) = (~1,3)s = —1 and (3, ~d(Q(G)))s = (3,-2° - 8)s = (3,~3)a = +1,
which is a contradiction.

Assume that F, is of type either II* IIT* or IV*. Let (G, be the dual graph of
the set of components not intersecting IF in F,. One knows Gy is of type either Eg,
As or 2A,. Neither of them is contained in G = 343 4 A,, which is a contradiction.

Consequently Fj is also of type I or IV, and by the proof of Proposition 3.7 one
knows that the embedding P @ Q(G + Az) — A; also satisfies (a) and (b).

The image of u by the surjective homomorphism Az — A3 /P is a primitive isotropic
element in a nice position with respect to the embedding Q(3A4; +24,) = Q(G+ Az) —
A3 /P, which contradicts Proposition 4.4.

Proposition 4.6. (1) 34; + A; € PC(Q2,0).

(2) In case Qo with respect to any full embedding Q(3As + Ag) — A3/P there is no
i1sotropic element in a nice position.

(3) The Dynkin graph 3A; + A, can never be made from any one of Eg + Fy, Eg + F3,
By by applying elementary transformations or tie transformations twice.

References

[1] Kodaira, K.: On compact analytic surfaces I, III. Ann. of Math. 77, 563-626 (1963),
78, 1-40 (1963).

[2] Milnor, J., Husemoller, D.: Symmetric bilinear forms. Berlin-Heidelberg-New York:
Springer 1973.

[3] Nikulin, V. V.: Integral symmetric bilinear forms and some of their applications.
Mat. USSR Izv. 43 No. 1, (1979). (English translation: Math. USSR Izv. 14 No. 1,
103-167 (1980)).



33

[4] Shioda, T.: On elliptic modular surfaces. J. Math. Soc. Japan 24, No. 1, 20-59
(1972).

[5] Urabe, T.: Elementary transformations of Dynkin graphs and singularities on quar-
tic surfaces. Invent. math. 87, 549-572 (1987).

[6] Urabe, T.: Tie transformations of Dynkin graphs and singularities on quartic sur-
faces. preprint MPI/87-60, Bonn, Max-Planck-Institut fiir Mathematik (1987).

[7] Urabe, T.: Combinations of rational double points on the deformation of quadri-
lateral singularities I. preprint MPI/88-49, Bonn, Max-Planck-Institut fiir Mathematik
(1988).

[8] Vinberg, E. B.: On the groups of unit elements of certain quadratic forms. Mat.
USSR Sb. 16 No. 1, 18-36 (1972). (English translation: Math. USSR Sb. 16 No. 1, 17-35
(1972)).

[9] Wall, C. T. C.: Exceptional deformations of quadrilateral singularities and singular
K3 surfaces. Bull. London Math. Soc. 19, 174-176 (1987).



