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HAUSDORFF DIMENSION OF BOUNDARIES OF RELATIVELY

HYPERBOLIC GROUPS

LEONID POTYAGAILO AND WEN-YUAN YANG

Abstract. In this paper, we study the Hausdorff dimension of the Floyd and

Bowditch boundaries of a relatively hyperbolic group, and show that for the
Floyd metric and shortcut metrics respectively, they are are both equal to a

constant times the growth rate of the group.

In the proof, we study a special class of conical points called uniformly
conical points and establish that, in both boundaries, there exists a sequence

of Alhfors regular sets with dimension tending to the Hausdorff dimension and

these sets consist of uniformly conical points.

1. Introduction

1.1. Main results. The main goal of the paper is to calculate the Hausdorff di-
mension of the limit set of a geometrically finite action of a finitely generated group
G on a compactum X. Every action G y X we consider is a convergence action,
i.e. the induced action on the space of the distinct triples is discontinuous. We say
that Gy X is minimal if X coincides with the limit set ΛXG (or ΛG if X is fixed)
of the action, which is the set of the accumulation points of every orbit Gx (x ∈ X).

A point ξ ∈ X is called conical if there exists a sequence of elements gn ∈ G
(n ≥ 1) such that the closure of {(gnξ, gnη) : n ≥ 1} in X2 is disjoint from the
diagonal ∆(X2) = {(x, x) : x ∈ X} for any η ∈ X \ ξ. If, in addition, the set of
elements {gng−1

n+1 : n ≥ 1} is in a uniformly bounded distance from the identity,
then ξ is called uniformly conical. A quantitative version of an L-uniformly conical
point for L ≥ 0 is given in Definition 2.2.

The action of a subgroup H < G on X is parabolic if H fixes a point p ∈ X,
called parabolic fixed point. The parabolic action is bounded parabolic if H acts
properly and cocompactly on X \{p}. We will always assume that the action of the
whole group G is non-parabolic so there is no a global fixed point.

A minimal non-parabolic action G y X is called geometrically finite (or rela-
tively hyperbolic) if every point x ∈ X is either conical or bounded parabolic (cf.
Definition 2.2). The stabilizer of a parabolic point is a maximal parabolic subgroup
of G. We denote by P the set of maximal parabolic subgroups and call it peripheral
system for the action. A group is called relatively hyperbolic with respect to P if
G admits a geometrically finite action on X with the peripheral system P. If the
compactum X on which G acts is metrizable then the action is geometrically finite
if and only if the induced action on the space of distinct pairs is co-compact [10]. If
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the opposite is not stated we will always assume that a relatively hyperbolic group
is finitely generated and so X is metrizable.

Let G be a group with a finite generating set S. Assume that 1 /∈ S and S = S−1.
Consider the word metric dS onG. Denote B(n) = {g ∈ G : dS(1, g) ≤ n} for n ≥ 0.
The growth rate δG,S of G relative to S is the limit

δG,S = lim
n→∞

log ]B(n)

n
.

Recall that Floyd completion of a group G generated by S is the Cauchy com-
pletion of the Cayley graph G (G,S) equipped with the distance ρoλ obtained by

rescaling the length of an edge e ∈ G (G,S) by a scalar function λd(e,o) for a fixed
λ ∈]0, 1[ and a basepoint o ∈ G. The distance ρoλ is called Floyd distance at o, and
we use the notation ρ if o and λ are clear from the context (see Subsection 2.2 for
more details). We denote by Gλ and ∂λG the corresponding Floyd completion and
its boundary respectively. By V. Gerasimov’s theorem [11, Proposition 3.4.6] for
every finitely generated relatively hyperbolic group the space ∂λG is the universal
pullback space for every geometrically finite action of G y X in the sense that
there exists an equivariant continuous mapping F : ∂λG→ X (called Floyd map).

A. Karlsson proved that the action ofG on the compact spaceGλ is a convergence
action [16]. Let ∂cλG (resp. ∂ucλ G) denote the set of all (resp. uniformly) conical
points for the action. We denote by Hdimρ the Hausdorff dimension with respect
to ρ = ρλ,o. The first main result of the paper is the following.

Theorem 1.1. Let G be a relatively hyperbolic group with a finite generating set
S. There exists a constant 0 < λ0 < 1 such that

Hdimρ(∂λG) = Hdimρ(∂
c
λG) = Hdimρ(∂

uc
λ G) = − δG,S

log λ

for any λ ∈ [λ0, 1).

Remark. It is well-known that for a hyperbolic group the Floyd metric is bilipschitz
equivalent to the visual metric on the Gromov boundary (with appropriate choices
of parameters). So the result of M. Coornaert [6] for the hyperbolic groups is a
partial case of Theorem 1.1.

Note that the action of G on the Floyd boundary ∂λG is not necessarily geomet-
rically finite, as it is shown in [25] for Dunwoody’s inaccessible groups. In particular
the Floyd boundary is not in general homeomorphic to the limit set ΛG. So it is
natural to ask if an analogous result to Theorem 1.1 is true for ΛG.

Consider a minimal geometrically finite action of G on a compact X = ΛG. It is
shown in [13] that the Floyd metric ρ transferred by the Floyd map F : ∂λG→ ΛG
is a metric on ΛG, called shortcut metric, and is denoted by ρ̄ (see subsection 2.2).

Our next goal is to calculate the Hausdorff dimension Hdimρ̄ of ΛG with respect
to ρ̄. Denote by ΛucG the set of uniformly conical points of ΛG. The following
theorem provides the same conclusion for the shortcut metric as in the case of the
Floyd metric.

Theorem 1.2. Let G be a group with a finite generating set S acting geometrically
finitely on a compactum X = ΛG. Then there exists a constant 0 < λ0 < 1 such
that

Hdimρ̄(ΛG) = Hdimρ̄(Λ
ucG) = − δG,S

log λ
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for any λ ∈ [λ0, 1).

The above theorems implies the following.

Corollary 1.3. For any shortcut metric ρ̄, the Hausdorff dimension of the limit
set of every relatively hyperbolic action of a group G is constant and is equal to

Hdimρ(∂λG) = Hdimρ̄(ΛG) = − δG,S
log λ

for any λ ∈ [λ0, 1[ where λ0 ∈]0, 1[ is a fixed number.

We say that a metric space X is Ahlfors Q-regular for a constant Q > 0 if there
exists a Borel measure µ on X such that the following holds

µ(B(x, r)) � rQ

for any open ball B(x, r) centered at x ∈ X of radius r > 0.
Our next main result shows that the Hausdorff dimension of the Floyd boundary

and of the limit set of a relatively hyperbolic action can be well-approximated by
a sequence of Ahlfors regular subsets.

Theorem 1.4. Let G be a finitely generated relatively hyperbolic group with a finite
generating set S. Then there exists a sequence of Ahlfors Qi-regular subsets Xi in
∂λG or ΛG such that Xi consists of uniformly conical points, 0 < Qi < δG,S and
Qi → δG,S as i→∞.

The proof of Theorem 1.4 is based on the existence of an L-transitional geodesic
tree T = T (L) ⊂ G (Lemma 3.7) depending on a parameter L � 0. Every vertex
of T is a central point of a geodesic interval, whose size depends on L, and which
belongs to a neighbourhood of a left coset (horosphere) gP where P ∈ P (see
Subsection 2.4). We show that the endpoints of such a tree are L-uniformly conical
(Lemma 2.12). However it is not true in general that every uniformly conical point
appears as an endpoint of an L-transitional tree for a bounded L (see the discussion
after Lemma 2.12). The proof of Theorem 1.4 shows that the Hausdorff dimension
of the endpoints of L-transitional trees well approximate the Hausdorff dimension
of the Floyd boundary (or the limit set) if L→∞. We recapitulate all these facts
in the following.

Corollary 1.5. There exists a sequence Ti of Li-transitional trees such that Xi =
∂Ti are Ahlfors Qi-regular spaces from the statement of Theorem 1.4.

Our next result given in Section 5 generalizes the result of [14] that the geodesics
of the Floyd metrics are approximated by so called tight paths. Considering gener-
alized tight paths (see Definition 5.9) we show that they approximate the geodesics
with respect to the shortcut metric defined on the limit set.

Let ∂ucL,oG and ΛucL,oG denote subsets of uniformly conical points in ∂ucλ G and

ΛucG depending on the above parameter L (see Subsection 2.4 for the precise
definitions). The following result is central in this Section.

Theorem 1.6 (Proposition 5.13). Under the assumptions of Theorem 1.1 there
exists 0 < λ0 < 1 such that for any L > 0 and λ ∈ [λ0, 1[ we have

ρλ,o(ξ, η) �L λn, ∀ ξ 6= η ∈ ∂ucL,oG
and

ρ̄λ,o(ξ, η) �L λn, ∀ ξ 6= η ∈ ΛucL,oG,
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where n = d(o, [ξ, η]).

1.2. Historical remarks and motivations. We provide here a short history of
the study of the Hausdorff dimension of the limit set of various convergence actions:
Kleinian, hyperbolic and relatively hyperbolic.

The identification of the Hausdorff dimension with the critical exponent of Poincaré
series was first established by S. Patterson [18]. He introduced a probability mea-
sure on the limit set of the convex-cocompact Fuchsian groups, and proved that up
to a constant it is equal to the Hausdorff measure. D. Sullivan generalized this re-
sult and constructed such measures (called since then Patterson-Sullivan measures)
on the limit sets of geometrically finite Kleinian groups acting on the hyperbolic
space Hn of dimension n [21]. To finish the discussion of the case of Kleinian
groups, we note the result of C. Bishop and P. Jones who proved in [1] that for
a non-elementary Kleinian group acting on the hyperbolic 3-space the Hausdorff
dimension of the conical limit set is equal to the critical exponent of the Poincaré
series (compare with our Theorems 1.1 and 1.2). The latter results were general-
ized by F. Paulin [19] to discrete groups of isometries of Riemannian manifolds of
strictly negative curvature.

M. Coornaert has generalized the results of Patterson-Sullivan to the class of
word-hyperbolic groups [6]. In particular he proved that the Hausdorff dimension
of the (Gromov) boundary of such a group with respect to the visual metric is equal
to the critical exponent of the Poincaré series.

A natural question arises whether Coornaert’s theorem holds for the class of
relatively hyperbolic groups. However it was shown by M. Burger and S. Mozes
that if G is a closed subgroup of the isometry group of a CAT(−1) space X and the
parabolic subgroups of G are not amenable then the critical exponent is infinite [4,
Proposition 1.6]. Such an example of a relatively hyperbolic group whose parabolic
subgroups contain non-cyclic free subgroups was constructed by D. Gaboriau and
F. Paulin [9, Example 1, p. 189]. By [19] it then follows that the Hausdorff
dimension of the limit set for the action of such a group with respect to the visual
metric is infinite too. So in order to generalize Coornaert’s theorem to the class of
relatively hyperbolic groups one must replace the visual metric by a different one.

The Floyd metric obtained by a rescaling procedure of the word metric is a natu-
ral candidat as it extends to the Floyd compactification of a group. Furthermore by
a theorem of V. Gerasimov there exists an equivariant and continuous map from the
Floyd boundary ∂λG to the limit set of any relatively hyperbolic action of G [11].
In particular, if G is hyperbolic, the Floyd and Gromov boundaries are bilipschitz
equivalent for some exponential Floyd function.

M. Bourdon has observed (private communication) that the Hausdorff dimension
of the Floyd boundary of a relatively hyperbolic group, calculated with respect to
the Floyd metric obtained with the exponential rescaling function λn (λ ∈ (0, 1) is

always upper bounded by − δG,Slog λ (cf. Lemma 4.1). However the question whether it

admits a lower strictly positive bound, which is equal to the same constant remained
open. This was our first motivation giving rise to Theorem 1.1. Theorem 1.2 is
then obtained by transferring the Floyd metric from the Floyd boundary ∂λG to
the limit set ΛG of the geometrically finite action using the above Gerasimov’s map.

The lower bound estimate for the Hausdorff dimension in Theorems 1.1 and
1.2 follow from Theorem 1.4 providing the approximation of the boundary points
by Ahlfors regular subsets Xi. These subsets entirely consist of uniformly conical
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points which are the space of ends of subtrees of the Cayley graph of G. Note
that the idea of such an approximation by trees is quite standard in both settings:
hyperbolic (see e.g. [15, 6.1]) or Kleinian (see [1]). However these constructions of
trees essentially use the hyperbolicity of the ambiant space. The latter property
is not true for a relatively hyperbolic group: the Cayley graph is not in general
hyperbolic and the relative Cayley graph is hyperbolic but the action on the set of
vertices is not proper. The approximating trees constructed in the paper admits
certain periodicity allowing us to obtain a Patterson-Sullivan measure µ on Xi also
having periodic properties. Theorem 1.4 then shows that these measures converge to
the Hausdorff measure on a subset of uniformly conical points and whose dimension
coincides with the full Hausdorff dimension of the ambiant space.

Acknowledgments. The authors are deeply grateful to Marc Bourdon for several
discussions motivating our initial interest to the subject of the paper, we owe the
proof of Lemma 4.1 to him as well as the references to the papers [4] and [9].

During the work on this paper the first author was partially supported by the
ANR grant DiscGroup (BLAN 2011 BS01 013 04). He is also very grateful to
the Max-Planck-Institut für Mathematik in Bonn for the hospitality and support
during his research stay at the Institute where a part of the work was done.

The second author is grateful to the CNRS for providing him a research fellowship
at the University of Lille 1, and was partially supported by the ERC starting grant
GA 257110 RaWG when he was a postdoc in Orsay.

2. Preliminaries

2.1. Notations and Conventions. Let (Y, d) be a geodesic metric space. Given
a subset X and a number r ≥ 0, let Nr(X) = {y ∈ Y : d(y,X) ≤ r}. For x ∈ Y
denote B(x, r) = Nr({x}). Sometimes, we will write Bd(x, r) to emphasize the
metric d.

Given a point y ∈ Y and a subset X ⊂ Y , let ProjX(y) be the set of points x
in X such that d(y, x) = d(y,X). The projection of a subset A ⊂ Y to X is then
ProjX(A) = ∪a∈AProjX(a).

We always consider a rectifiable path α in Y with arc-length parametrization.
Denote by `(α) the length of α, and by α−, α+ the initial and terminal points of α
respectively. Let x, y ∈ α be two points which are given by parametrization. Then
denote by [x, y]α the parametrized subpath of α going from x to y. We also denote
by [x, y] a choice of a geodesic in Y between x, y ∈ Y .

A path α is called a c-quasi-geodesic for c ≥ 1 if the following holds

`(β) ≤ c · d(β−, β+) + c

for any rectifiable subpath β of α.
Let α, β be two paths in Y . Denote by α · β (or simply αβ) the concatenated

path provided that α+ = β−.
A path α going from α− to α+ induces a first-last order as follows. Given a

property (P), a point z on α is called the first point satisfying (P) if z is among
the points w on α with the property (P) such that `([α−, w]α) is minimal. The last
point satisfying (P) is defined in a similar way (replacing [α−, w]α by [w,α+]α).

Let f, g be real-valued functions with domain understood in the context. Then
f ≺ci g means that there is a constant C > 0 depending on parameters ci such that



6 LEONID POTYAGAILO AND WEN-YUAN YANG

f < Cg, and �ci is defined similarly. We use the symbol �ci if both inequalities
are true. For simplicity, we omit ci if they are some universal constants.

Denote by ‖ · ‖ the diameter of a set in a metric space. Recall the notion of
Hausdorff measures in a metric space.

Definition 2.1. Let X be a subset in a metric space (Y, d). Given numbers ε, s ≥ 0,
define

Hsε(X) = inf{
∑
‖Ui‖s : X ⊂

∞⋃
i=1

Ui, Ui ⊂ Y, ‖Ui‖ ≤ ε}.

Define Hs(X) = lim
ε→0
Hsε(X), the s-dimensional Hausdorff measure of X. The

Hausdorff dimension of X is defined as follows,

Hdimd(X) = inf{s ≥ 0 : Hs(X) = 0} = sup{s ≥ 0 : Hs(X) =∞}.

By convention, set inf ∅ = sup{s ∈ R≥0} =∞. Thus, HdimdX ∈ [0,∞]. Note that
Hs(X) may be zero for s = HdimdX.

2.2. Floyd boundary and relative hyperbolicity. Let G be a group with a
finite generating set S. Assume that 1 /∈ S and S = S−1. Let G (G,S) be the
Cayley graph of G with respect to S. Denote by dS (or simply by d if there is no
ambiguity) the word metric on G (G,S).

Fix 0 < λ < 1 and a basepoint o ∈ G. We define a Floyd metric ρλ,o as follows.
The Floyd length lλ,o(e) of an edge e in G (G,S) is λn, where n = d(o, e). The Floyd
length lλ,o(γ) of a path γ is the sum of Floyd lengths of its edges. This induces a
length metric ρλ,o on G (G,S), which is the infimum of Floyd lengths of all possible
paths between two points.

Let Gλ be the Cauchy completion of G with respect to ρλ,o. The complement

∂λG of G (G,S) in Gλ is called Floyd boundary of G. The ∂λG is called non-trivial
if ]∂λG > 2. We refer the reader to [8], [11], [13], [16] for more details.

By construction, the following equivariant property holds

(1) ρλ,o(x, y) = ρλ,go(gx, gy)

for any g ∈ G. The Floyd metrics with different basepoints are related by a bi-
Lipschitz inequality:

(2) λd(o,o′) ≤ ρλ,o(x, y)

ρλ,o′(x, y)
≤ λ−d(o,o′)

for any two points o, o′ ∈ G.
We now recapitulate few standard definitions concerning geometrically finite

convergence actions which will be often used further.

Definition 2.2. Let X be a compact metrizable space on which G admits a minimal
and non-trivial convergence action by homeomorphisms.

(1) A point ξ ∈ X is called conical if there exists a sequence of elements gn ∈ G
(n ≥ 1) such that the closure of {gn(ξ, η) : n ≥ 1} in X2 is disjoint from
the diagonal ∆(X2) = {(x, x) : x ∈ X} for any η ∈ X \ ξ.

If, in addition, there exists L > 0 such that d(1, gng
−1
n+1) ≤ L, then ξ

is called L-uniformly conical (or uniformly conical if the constant L is not
important).
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(2) A point ξ ∈ X is called bounded parabolic if the stabilizer Gξ of ξ in G is
infinite, and acts properly and co-compactly on X \ ξ. The subgroup Gξ is
called maximal parabolic.

(3) A convergence group action of G on X is called geometrically finite if every
limit point ξ ∈ X is either a conical point or a bounded parabolic point.

As it was mentioned in the Introduction a pair (G,P) is relatively hyperbolic if
G admits a geometrically finite group action on a compact metrizable space X such
that P coincides with the collection of maximal parabolic subgroups (peripheral
system). Using the relative Cayley graph one can construct the limit set ΛG of the
action with the boundary of this graph [3]. We will often call Bowditch boundary
the limit set ΛG of a geometrically finite action. Bowditch proved that if G is
finitely generated then ΛG up to an equivariant homeomorphism depends only on
the pair (G,P) [2]. We also note the same result still holds in general case when G
is not finitely generated [?, Corollary 6.1.e].

The following result establishes the following universal pullback property of the
Floyd boundary.

Proposition 2.3. [11] Suppose (G,P) is a relatively hyperbolic pair. Then there exists
0 < λ0 < 1 such that for any λ ∈ [λ0, 1) there exists a continuous G-equivariant
surjective map (called Floyd map):

Fλ : ∂λG→ ΛG.

Let Gp be the stabilizer of a parabolic point p ∈ X for the action Gy X = ΛG.
Denote by Λ∂λG(Gp) and ∂λGp the limit set of Gp for its action on the Floyd
boundary ∂λG of G, and the Floyd boundary of Gp respectively. The following
result precisely describes the kernel of the Floyd map.

Proposition 2.4. [13] Under the assumption of Proposition 2.3, the following holds

F−1
λ (p) = Λ∂λG(Gp) = ∂λGp

for any parabolic point p in ΛG. Moreover, F−1
λ (p) consists of one point if p is a

conical point.

We equip ΛG with a shortcut metric as follows: let

ω = {(η, ξ) ∈ ∂λG× ∂λG : Fλ(ξ) = Fλ(η)}
be the relation on ∂λG given by the Floyd map Fλ : ∂λG→ ΛG. For any ξ, η ∈ Gλ,
define a pseudo-distance ρ̃λ,o(ξ, η) on Gλ to be

(3) ρ̃λ,o(ξ, η) = inf
n≥1
{
n∑
i=1

ρλ,o(ξi, ηi) : (ηi, ξi+1) ∈ ω, 1 ≤ i < n, ξ1 = ξ, ηn = η}.

We have

(4) ∀ξ, η ∈ Gλ : ρ̃λ,o(ξ, η) ≤ ρλ,o(ξ, η),

and it is a maximal pseudo-metric on Gλ×Gλ satisfying this inequality. It is shown

in [11] that the space Λ̃G := ΛG t G (G,S) (called attractor sum) is compact. The

action G y Λ̃G is convergence such that its restriction on G (G,S) is the identity
and on ΛG it coincides with the initial action. Furthermore the Floyd map Fλ
extends to an equivariant continuous map (denoted by the same symbol):

Fλ : Gλ → Λ̃G
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such that Fλ|G ≡ id. Pushing forward ρ̃λ,o with Fλ, we obtain a shortcut pseudo-

metric on Λ̃G :

(5) ∀x, y ∈ Λ̃G : ρ̄λ,o(x, y) = ρ̃λ,o(F
−1
λ (x), F−1

λ (y)),

which turns out to be a real metric on Λ̃G (see [13, Section 3] for details). By the
above construction, one can easily see that the shortcut metrics ρ̄λ,o satisfy the
properties (1) and (2) too.

Convention 2.5. Since now on we will always suppose that λ ∈ [λ0, 1) where λ0 is
given by Proposition 2.3. We omit the index λ in lλ,o, ρλ,o and ρ̄λ,o if λ is given in
the context.

Finally, we recall the following Visibility Lemma.

Lemma 2.6 (Visibility lemma). [16] There is a function ϕ : R≥0 → R≥0 such that for
any v ∈ G and any geodesic γ in G (G,S), we have if lv(γ) ≥ κ, then d(v, γ) ≤ ϕ(κ).

Remark. The same result is valid for quasi-geodesics or more general Θ-geodesics
where Θ : N→ G is a polynomial distortion function [13, Lemma 5.1].

2.3. Floyd geodesics. In this subsection, we provide a few basic tools to study
Floyd geodesics.

We say that a path α : Z → G (G,S) ends at ξ ∈ ∂λG if ξ = limn→∞ α(n).
Denote in this case α+ = ξ, and α− = limn→−∞ α(n). It follows from Lemma 2.6
that every geodesic ray ends at a point of the Floyd boundary. Moreover, Gλ is a
geodesic metric space and is a visual boundary: any two distinct points ξ, η ∈ Gλ
are connected by a bi-infinite word geodesic belonging to the Cayley graph [13,
Proposition 2.4].

We note that a Floyd geodesic between ξ, η does not necessarily belong to the
graph (e.g. an example of such situation is given by the Floyd geodesic [n,+∞] ∪
[−∞,−n] between −n and n for the group Z + Z). A method to overcome this
problem was proposed in [14]. It consists in introducing a special type of paths
called tight paths (see Definition 5.1 in section 5) situating in the Cayley graph
which will approximate well the Floyd geodesics. To provide a certain development
of this method we will need the following preliminary statements.

Lemma 2.7. [14, Lemma 7.2] For any l > 0, there exists 0 < λ0 < 1 such that the
following property hold for any λ ∈ [λ0, 1).

Let x, y ∈ G (G,S) such that d(x, y) ≤ l, and p be a path with α− = x such
that `(α) ≥ d(x, y) + 1. Then lλ,o(α) > ρλ,o(x, y). In particular, the ρλ,o-geodesic
between x, y is a geodesic in G (G,S)

We consider the following shortening procedure introduced in [14]: consider
two points x, y ∈ Gλ, we take a sequence of paths γn in G (G,S) such that (γn)− →
x, (γn)+ → y and

lλ,o(γn)→ ρλ,o(x, y).

For every l > 0 we can choose λ0 ∈]0, 1[ such that γn is an l-local geodesic. Indeed,
if a segment between two points of γn at distance at most l is not a geodesic, then it
can be replaced by a geodesic. Applying this procedure several times, we obtain a
l-local geodesic, still denoted by γn, whose Floyd length is not increased by Lemma
2.7 (see Lemma 5.8 for more details).

The following lemma states that word geodesic rays are also Floyd and shortcut
geodesics.
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Lemma 2.8. Let o ∈ G be a base point and γ be a geodesic ray with γ− = o. Then
for any v ∈ γ we have

lλ,o([v, x]γ) = ρ̄λ,o(v, y),

and

lλ,o([v, x]γ) = ρλ,o(v, x),

where x = γ+ ∈ ∂λG and y = F (x) ∈ ΛG where F is the Floyd map given in
Proposition 2.3.

Proof. We only prove the result for the shortcut metric. In the case of Floyd
metric a straightforward calculation shows that the geodesic ray γ as well as every
its subray is also a ρλ,o-Floyd geodesic.

By definition (3) of a shortcut metric, for any n ∈ N, there exist pairs (ηi, ξi+1) ∈
ω where 1 ≤ i < m such that

ρ̄λ,o(v, y) ≥
∑

1≤i≤m

ρλ,o(ξi, ηi)−
1

2n
,

where ξ1 = v, ηm = x. Every geodesic ray [o, η1] is also a Floyd geodesic so we can
choose η̃1 ∈ [o, η1] such that ρλ,o(η̃1, η1) ≤ 1

2n . It follows

ρ̄λ,o(v, y) ≥ ρλ,o(v, η̃1)− 1

n
.

Choose w ∈ [v, y]γ such that d(v, w) = d(v, η̃1) = m. Then the following is true:

(6) ρλ,o(v, η̃1) ≥ ρλ,o(v, w).

Indeed, connect v and η̃1 by a curve α. There exists a point u = α(t0) such
that d(v, u) = m and choose a sub-curve α′ = [v, u]α containing m edges. Since
γ is a word geodesic, for the k-th edge e ∈ α′ and the k-th edge e1 ∈ [v, w]γ we
have lλ,o(e) ≥ lλ,o(e1) (k ∈ {0, ...,m}). Then lλ,o(α) ≥ lλ,o(α

′) ≥ ρλ,o(v, w). So (6)
follows.

α
η

η

1

1

v

u w

o

x

= 1ξ

We have

ρ̄λ,o(v, y) ≥ ρλ,o(v, η̃1)− 1

2n
≥ ρλ,o(v, w)− 1

n
≥

≥ lλ,o([v, x]γ)− λn

1− λ
− 1

n
.

Passing to the limit we obtain ρ̄λ,o(v, y) ≥ lλ,o([v, x]γ) = ρλ,o(v, x). Since
ρλ,o(v, x) ≥ ρ̄λ,o(v, y), we conclude that lλ,o([v, γ+]γ) = ρ̄λ,o(v, γ+). �
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2.4. Transitional paths and uniformly conical points. In this subsection we
shall give a description of uniformly conical points in ΛG using the geometry of
Cayley graph.

Let (G,P) be a relatively hyperbolic pair. Denote P = {gP : g ∈ G,P ∈ P̃},
where P̃ is a maximal set of non-conjugate subgroups in P. Following [13] we call
the elements of P horospheres.

Definition 2.9. Fix ε, R > 0. Let γ be a path in G (G,S) and v ∈ γ a vertex. Given
X ∈ P, we say that v is (ε, R)-deep in X if

γ ∩B(v,R) ⊂ Nε(X).

If v is not (ε, R)-deep in any X ∈ P, then v is called an (ε, R)-transition point of γ.

The following lemma together with Lemma 2.6 will be invoked several times.

Lemma 2.10. (1) For any c ≥ 1, R > 0, there exists ε = ε(c), κ = κ(ε, R) > 0
such that for any c-quasi-geodesic γ and an (ε, R)-transitional point v in γ,
we have

ρv(γ−, γ+) ≥ ρ̄v(γ−, γ+) > κ.

(2) For any c ≥ 1, κ, ε > 0 there exists R = R(c, κ, ε) > 0 such that for any
c-quasi-geodesic γ and a point v ∈ γ with ρ̄v(γ−, γ+) > κ, we have that v
is an (ε, R)-transitional point of γ.

Proof. Let us first prove (2). Suppose not, then ∃c ≥ 1, κ, ε > 0 : ∀n, ∃ c-quasi-
geodesics γn and vn ∈ γn such that vn is (ε, n)-deep and ρ̄vn((γn)−, (γn)+) > κ.
Up to a normalization we may assume that vn = v = γn(0). Then γn(] − n, n[) ⊂
Nε(Xn) for Xn ∈ P. By compactness of geodesics in the Tikhonoff topology, we
obtain a limit horocycle α such that α± = q and every part of α belongs to γn for
sufficiently large n (see [14, Prop. 5.2.3] for more details). Then the diameter of
∂(γn ∩ α) with respect to the distance ρv tends to 0. As γn are geodesics whose
all interior points are in the graph we must have ρ̄v((γn)−, (γn)+) → 0 which is a
contradiction.

(1). By [13, Corollary 3.9] there exists a constant ε = ε(c) such that for every
X ∈ P any c-quasi-geodesic with endpoints in X lies in Nε(X) (all horospheres
are uniformly quasi-convex). For the constants c and ε = ε(c) the statement now
follows from [12, Corollary 5.10], following a similar argument as above. �

We introduce a special class of paths, which plays an important role in the
present study.

Definition 2.11. Given ε, R, L > 0, a path γ in G (G,S) is called (ε, R, L)-transitional
(or simply transitional if the choice of the constants is not important) if for any
point v ∈ γ, there exists an (ε, R)-transitional point w ∈ γ such that `([v, w]γ) ≤ L.

We say that an infinite path γ in G (G,S) is eventually (ε, R, L)-transitional if
there exists v ∈ γ such that [v, γ+)γ is (ε, R, L)-transitional.

We fix the constant ε = ε(1) > 0 given by Lemma 2.10.1. The following lemma
characterizes uniformly conical points as the endpoints of transitional geodesic rays.

Lemma 2.12. Let (G,P) be a relatively hyperbolic pair. There exists R > 0 for
which tplhe following property is true:

a point ξ ∈ ΛG is uniformly conical if and only if some (or any) geodesic ray
ending at ξ is eventually an (ε, R, L)-transitional geodesic ray for some L > 0.
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Proof of “ ⇒ ”. Since G acts geometrically finitely on ΛG, it follows from [22,
Theorem 1C] that there exists δ > 0 such that for any conical point ξ ∈ ΛG, there
exists a sequence (gn) ⊂ G such that for all points η ∈ (ΛG ∪ G) \ ξ one has
ρ̄1(gnξ, gnη) > δ. Denote r0 := ϕ(δ/2), where ϕ is given by Lemma 2.6.

Assume that ξ is an L-uniformly conical point for some L > 0. Let γ = [γ−, ξ[
be a geodesic ray ending at ξ and (gn) ⊂ G be the above sequence taken for the
pair (γ−, ξ). Then ρ̄1(gnξ, gnγ−) = ρ̄g−1

n
(ξ, γ−) > δ/2 and d(1, gng

−1
n+1) ≤ L for

all n ≥ 1. By Lemma 2.6, γ ∩ B(g−1
n , r0) 6= ∅ for n ≥ 1. Let vn ∈ γ such that

d(vn, g
−1
n ) < r0. By the inequality (2) such that ρ̄vn(γ−, ξ) > κ where κ = λr0 · δ/2

is a uniform constant. Moreover, d(vn, vn+1) ≤ L+ 2r0.
Hence, Lemma 2.10.2 gives rise to a uniform constant R for which vn are all

(ε, R)-transitional for n ≥ 1.
Proof of “ ⇐ ”. Let γ be an (ε, R, L)-transitional geodesic ray at ξ = γ+, and

vn (n ≥ 0) a sequence of (ε, R)-transitional points in γ such that d(vn, vn+1) ≤ L
and vn → ξ. Then ρ̄vn(γ−, ξ) ≥ κ, where κ > 0 is given by Lemma 2.10.1. Denote
gn := v−1

n . Then ρ̄1(gnγ−, gnξ) ≥ κ. In other words, {(gnγ−, gnξ)} lies outside a
uniform neighborhood of the diagonal ∆(ΛG2).

Since the action is convergence the point ξ is conical. As d(1, gng
−1
n+1) ≤ L it is

uniformly conical. �

Remarks. (1) The proof of the “ ⇐ ” direction equally applies to a conical
point in Floyd boundary ∂λG without assuming the geometrical finiteness
of the action.

(2) The existence of the uniform constant δ > 0 which measures the size of
a compact fundamental set for the co-compact action of G on the set of
distinct pairs was only used to prove the implication “ ⇒ ” (in order to
get a uniform constant R). The existence of such a constant implies that
the action of G on a metrizable space ΛG is 2-cocompact; the converse
statement that the 2-cocompact and 3-discontinuous non-elementary action
is geometrically finite is shown in [10] and its proof does not request the
metrisability of the space X = ΛG.

(3) As a corollary we see that for each L > 0 the set of L-uniformly conical
points is G-invariant, although this is not clear at all from the dynamical
definition.

Corollary 2.13. Let ε = ε(1) > 0 given by Lemma 2.10.1. For any R,L > 0, an
(ε, R, L)-transitional geodesic ray ends at a uniformly conical point ξ ∈ ∂λG.

As another consequence of the proof, we have the following result.

Corollary 2.14. Let G y X be a geometrically finite action. Then there exists a
constant L > 0 such that for any conical point ξ ∈ X there is a sequence of elements
gn ∈ G such that for any geodesic γ ending at ξ, we have

[v, ξ[γ⊂ ∪n≥1B(gn, L)

for some v ∈ γ.

Remark. In the setting of Kleinian groups, this property is used to define uni-
formly conical points, cf. [20]. Here we do not need to assume that G acts geo-
metrically finitely on ∂λG. Also the corollary holds for “quasi-geodesics” instead
of “geodesics”.
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We setup some notations for future discussions about uniformly conical points.
Let ε, R be given by Lemma 2.12. Denote by ΛucL G the set of uniformly conical

points ξ ∈ ΛG such that there exists an (ε, R, L)-transitional geodesic ray γ ending
at ξ. It is obvious that ΛucL G is a G-invariant set.

Fixing a basepoint o ∈ G, denote by ΛucL,oG the set of all uniformly conical points

ξ ∈ ΛucL G where a geodesic γ between o and ξ is (ε, R, L)-transitional.
Clearly, G·ΛucL,oG = ΛucL G. Thus, the set ΛucL,oG can be thought as a fundamental

domain for the action of G on the set ΛucL G.
Similarly, we define the set of uniformly conical points ∂ucL,oG and ∂ucL G on the

Floyd boundary ∂λG. By Proposition 2.4, there exists one-to-one correspondence
between ΛucL G and ∂ucL G.

2.5. Contracting property. Recall that ‖ · ‖ denotes the diameter of a set in a
metric space.

Definition 2.15. For c ≥ 1, a subset X is called c-contracting in a metric space Y
if there exists µc, Dc > 0 such that the following holds

(7) ‖ProjX(γ)‖ < Dc

for any c-quasi-geodesic γ in Y with Nµc(X) ∩ γ = ∅.
A collection of c-contracting subsets is referred to as a c-contracting system if

µc, Dc depends only on c.

A system X has a bounded intersection property if for any ε > 0 there exists
R = R(ε) > 0 such that

‖Nε(X) ∩Nε(X ′)‖ < R
for any two distinct X,X ′ ∈ X.

In what follows, our discussion applies to the Cayley graph of a relatively hyper-
bolic group (G,P) with a finite generating set S. In particular, we are interested
in the contracting system with bounded intersection given by the following lemma.

Lemma 2.16. [13] Let P = {gP : g ∈ G,P ∈ P̃}, where P̃ is a complete set of
conjugacy representatives in P. There exists R : R>0 → R>0 such that the collection
P is a c-contracting system with the R-bounded intersection for each c ≥ 1.

Proof. The contracting property is proven in [13, Proposition 8.5], and the bounded
intersection is in [13, Corollary 5.7]. �

The following lemma will be often used further on.

Lemma 2.17. Let P be the collection of horospheres in (2.16). For any c ≥ 1, there
exist εc = ε(c) > 0 such that for every c-quasi-geodesic γ in G (G,S) and ε ≥ εc we
have:
∀R ≥ 0,∃L = L(ε, R) > 0 such that the condition max{d(γ−, X), d(γ+, X)} <

ε, for some X ∈ P, implies that every point z ∈ γ satisfying d(z, γ−), d(z, γ+) > L
is (εc, R)-deep in X.

Proof. The result is proved in [23, Lemma 2.8] for geodesics. We provide below a
proof to precise the choice of the constants.

By Lemma 2.16, let µc, Dc be the constants such that for any X ∈ P, for any c-
quasi-geodesic outsideNµc(X), the diameter of its projection toX is upper bounded
by Dc.
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Set εc := c(2µc +Dc) + c. If a c-quasi-geodesic has two endpoints in Nµc(X) for
X ∈ P, then it lies in Nεc(X). Indeed, if x, y ∈ γ satisfy

max{d(x,X), d(y,X)} ≤ µc
and ]x, y[γ∩Nµc(X) = ∅, then by Lemma 2.16, d(x, y) ≤ 2µc + Dc. Since γ is
c-quasi-geodesic we have `([x, y]γ) ≤ εc and [x, y]γ ⊂ Nεc(X).

Set L = c(2ε+Dc)+c+R for ε ≥ εc. We first claim γ∩Nµc(X) 6= ∅. Otherwise,
we obtain using projection the following

2L ≤ `(γ) ≤ cd(γ−, γ+) + c ≤ c(2ε+Dc) + c.

This gives a contradiction by the choice of L. Thus, there exist the entry point x
and the exit point y of γ in Nµc(X).

By the same argument one obtains

max{`([γ−, x]γ), `([y, γ+]γ)} ≤ c(ε+ µc +Dc) + c < L.

Since min{d(z, γ−), d(z, γ+)} > L, we have z ∈ [x, y]γ . Then we obtain

min{d(x, z), d(z, y)} ≥ L− (ε+ µc +Dc) > R.

By definition of εc, we have [x, z]γ ⊂ Nεc(X) and [z, y]γ ⊂ Nεc(X). So z is
(εc, R)-deep in X. �

Remark. By the proof, we actually have εc > µc, where µc is uniform for every
X ∈ P by Lemma 2.16.

In what follows, we take constants ε, R as in Convention 2.18.

Convention 2.18 (About εc, Rc). When talking about (εc, Rc, L)-transitional c-quasi-
geodesics, or (εc, Rc)-transitional and (εc, Rc)-deep points in a c-quasi-geodesic, we
assume without explicitely specifying the quantifiers:

(1) εc = ε(c) > µc to satisfy Lemmas 2.10 and 2.17, where µc is given by
Definition 2.15.

(2) Rc > R(ε), where R is given by Lemma 2.16.

Besides the peripheral cosets (horospheres), transitional quasi-geodesics provide
another source of contracting subsets.

Lemma 2.19 (Transitional geodesic is contracting). For any L ≥ 0, any (ε, R, L)-
transitional geodesic γ is 1-contracting.

Remark. The same argument also applies (with natural changes for the constants)
to show that if γ is c-quasi-geodesic then it is c-contracting for any c ≥ 1. For our
purposes, we only need to consider the case when c = 1.

Proof. Let κ = κ(ε, R) given by Lemma 2.10 and φ given by Lemma 2.6. By Lemma
2.6, there exists D0 = φ(κ/4) > 0 such that for any v ∈ G, a geodesic segment
outside the ball B(v,D0) has lv-Floyd length less than κ/4.

Let D = 2(L + 2D0 + 1) and µ = φ(κ/2). Let β be a geodesic such that
β ∩Nµ(γ) = ∅. Let x, y ∈ Projγ(β) such that d(x, y) = ‖Projγ(β)‖. We are going
to prove that d(x, y) ≤ D. Suppose by contradiction that d(x, y) > D.

Assume that x, y are projection points of x̃, ỹ ∈ β respectively. Observe that

(8) 2d(z, [x, x̃]) ≥ d(z, x), 2d(z, [y, ỹ]) ≥ d(z, y),

for any z ∈ [x, y]γ . We only prove the first inequality; the second one is completely
analogous. Let m ∈ [x, x̃] such that d(z,m) = d(z, [x, x̃]). Note that d(m, z) +
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d(m, x̃) ≥ d(z, x̃) and d(x, x̃) = d(x,m) + d(m, x̃). Since d(z, x̃) ≥ d(x, x̃) by the
shortest point property, we have d(m, z) ≥ d(x,m). Then d(z, x) ≤ d(z,m) +
d(m,x) ≤ 2d(z,m). Thus (8) is proved.

Since d(x, y) > D, there exists z ∈ [x, y]γ such that

min{d(z, x), d(z, y)) > D/2 = L+ 2D0 + 1.

Since γ is (ε, R, L)-transitional, one of the intervals [x, z]γ or [z, y]γ contains an
(ε, R)-transitional point v such that min{d(x, v), d(y, v)} > 2D0. Hence by (8),
min{d(v, [x, x̃]), d(v, [y, ỹ]))} > D0. By the choice of D0 = φ(κ/4), we have

max{ρv(x, x̃), ρv(y, ỹ)} < κ/4.

From the other hand, v is (ε, R)-transitional, so ρv(x, y) ≥ κ by Lemma 2.10. Hence,
ρv(x̃, ỹ) > κ/2 and thus d(v, β) ≤ µ which is impossible. �

For a c-quasigeodesic we denote by εc = ε(c), Rc = R(εc) any numbers satis-
fying Convention 2.18 (in particular ε1 and R1 correspond to geodesics). In the
following Proposition we will establish a ”thinness” of a triangle whose two sides
are transitional geodesics.

Proposition 2.20 (Transitional triangle is thin). For any L, c > 0 and the there exist
constants D = D(c),M = M(L, c), L′ = L′(L, c) > 0 with the following properties.

Let α1, α2 be (ε1, R1, L)-transitional geodesic rays issuing at o and ending at
ξ 6= η ∈ ΛG respectively. Then for any c-quasi-geodesic γ with γ− ∈ α1, γ+ ∈ α2,
the following holds.

(1) γ is (εc, Rc, L
′)-transitional.

(2) If the length of γ is sufficiently large then there exists an (εc, Rc)-transitional
point z ∈ γ such that d(z, α1 ∪ α2) ≤ D and d(z, αi) ≤M for i = 1, 2.

(3) Let d(o, [ξ, η]) denote the distance from o to a geodesic between ξ, η. If
min{d(γ−, o), d(γ+, o)} � 0. Then |d(o, [ξ, η])− d(o, γ)| ≤M .

Remark. Note that in (2) D is a uniform constant not depending on L, this will
play a crucial role in establishing Lemma 5.13 below.

Proof. Let κ = κ(εc, Rc) given by Lemma 2.10 and D = φ(κ/2), where φ is given
by Lemma 2.6. The constant L′ will be computed below.

(1) Given a point x in γ, assume that x is (ε, Rc)-deep in some X ∈ P. Let
x−, x+ be the entry and exit points of γ in Nεc(X) respectively.

Observe first that x−, x+ are (εc, Rc)-transitional in γ. Indeed, if not, there
exists Y ∈ P such that x− is (εc, Rc)-deep in Y. Then Y 6= X by the choice of x− as
the entry point of γ in Nεc(X). Since d(x, x−) ≥ Rc, we have ‖Nε(X) ∩Nε(Y )‖ ≥
Rc > R(εc) by Convention 2.18. This contradicts to Lemma 2.16.

To find a constant L′ we will check when the opposite inequality:

(9) min{`([x, x−]γ), `([x, x+]γ)} > L′

is not valid. We have `([x−, x+]γ) ≥ 2L′. Since x−, x+ are (εc, Rc)-transitional, by
Lemma 2.10,

min{ρx−(γ−, γ+), ρx+
(γ−, γ+)} > κ.

By the triangle inequality

max{ρx−(γ−, o), ρx−(o, γ+)} ≥ κ

2
,
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and the same for ρx+
. Then max{d(x−, α1 ∪ α2), d(x+, α1 ∪ α2)} ≤ D = φ(κ/2).

For concreteness consider the case that

(10) d(x−, α1), d(x+, α2) ≤ D;

the other cases are similar and even easier.
Project x−, x+ to x′−, x

′
+ ∈ X so that d(x−, x

′
−), d(x+, x

′
+) ≤ εc. So

d(x′−, α1), d(x′+, α2) ≤ εc +D

and ND+εc(X) ∩ αi 6= ∅ (i = 1, 2).
Let w ∈ X be a projection point of o to X. We claim that

(11) d(w,αi) ≤ D2 := max{D + εc +D1, µ1 +D1} (i = 1, 2),

where µ1, D1 > 0 are given for 1-contracting X ∈ P such that (7) holds.
Indeed if, first, o ∈ Nµ1

(X) then there is nothing to prove. If not, there are two
more cases: if αi∩Nµ1

(X) = ∅, then by the contracting property we have d(w,αi) ≤
D+ εc +D1; otherwise the projection on X of the maximal connected subcurve of
γ, situated outside of Nµ1(X) and containing o, gives d(w,αi) ≤ µ1 +D1. So (11)
follows.

Let L0 = L(εc +D +D2, R1 + L) given by Lemma 2.17. Set

(12) L′ = 2c(D2 +D + L0 + 2εc) + c2.

Since γ is a c-quasi-geodesic, we have

d(x′−, x
′
+) ≥ `([x−, x+]γ)/c− c− 2εc ≥ 2L′/c− c− 2εc

≥ 4(εc +D +D2 + L0).

Since max{d(x′−, α1), d(x′+, α2)} ≤ εc +D, we obtain from (11)

‖α1 ∩Nεc+D+D2(X)‖ ≥ d(x′−, w), ‖α2 ∩Nεc+D+D2(X)‖ ≥ d(x′+, w).

We have d(x′−, w) + d(x′+, w) ≥ d(x′−, x
′
+) ≥ 4(εc +D +D2 + L0). Thus

max
i=1,2

‖αi ∩Nεc+D+D2
(X)‖ ≥ 2(εc +D +D2 + L0).

Hence, αi contains a subcurve of length at least 2L0 such that its endpoints lie
in Nεc+D+D2

(X). By the choice of L0 and Lemma 2.17, αi contains an (ε1, R1 +L)-
deep point in X. This gives a contradiction, as αi is (ε1, R1, L)-transitional. So for
the value of L′ chosen in (12) the inequality (9) is not valid. The statement (1) is
proved.

(2) By the statement (1) γ is (εc, Rc, L
′)-transitional. Lemma 2.19 implies that γ

is contracting. By the projection argument (used to prove (11)) we have a constant
D3 = D3(εc, Rc, L

′) > 0 such that for any projection point v of o to γ we have
d(v, αi) ≤ D3 for i = 1, 2.

Remark. We need a new constant D3 (and not D2 used above) since we project
now on γ and not on a horosphere.

Recall that D = φ(κ/2). By Lemma 2.6, for any z ∈ G, a geodesic segment
outside B(z,D) has lz-Floyd length less than κ/2.

Assuming that the length of γ is bigger than c(D+D3 +L′ + c) we find a point
z′ ∈ γ such that c(D+D3 +L′+c) ≤ l([v, z′]γ) ≤ c(D+D3 +L′+c)+1. Since γ is c-
quasigeodesic we have d(z′, v) ≥ D+D3+L′. In addition γ is (εc, Rc, L

′)-transitional
so there exists an (εc, Rc)-transitional point z ∈ γ for which d(z′, z) ≤ L′. We have

(13) D +D3 ≤ d(v, z) ≤ (c2 + 1)L′ + c2(D3 +D) + c3 + 1.
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Using the right part we obtain

d(z, αi) ≤ d(z, v) + d(v, αi) ≤M,

where M = (c2 + 1)L′ + (c2 + 1)D3 + c2D + c3 + 1.
To prove the first claim of (2) assume for definiteness that z ∈ [v, γ+]. Lemma

2.10 yields ρz(v, γ+) ≥ κ.
Let z2 ∈ α2 such that d(v, z2) ≤ D3. We have d(z, [v, z2]) ≥ d(z, v)− d(z2, v) ≥

D +D3 −D3 = D. By Lemma 2.6 ρz(v, z2) < κ/2 and so ρz(z2, γ+) ≥ ρz(v, γ+)−
ρz(v, z2) ≥ κ/2. Lemma 2.6 gives

d(z, α2) ≤ D.
The statement (2) is proved.

(3) Since ξ, η are distinct, by Lemma 2.6, there exists n0 = n0(ξ, η), r = r(ξ, η) >
0 such that if

min{d(γ−, o), d(γ+, o)} > n0,

then d(o, γ) ≤ r. In the proof of the statement (2), we projected o to a point v in
γ, and found an (ε, R)-transitional point z ∈ γ such that d(v, z) ≤M .

Since d(o, z) ≤M + r (and these constants do not depend on γ) up to increasing
n0, by Lemma 2.6 we have

max{ρ̄z(ξ, γ−), ρ̄z(η, γ+)} ≤ κ/4.
The point z is (ε, R)-transitional, thus ρ̄z(γ−, γ+) ≥ κ, and so ρ̄z(ξ, η) ≥ κ/2.
Consequently d(z, [ξ, η]) ≤ D which yields:

d(o, [ξ, η]) ≤ d(o, z) + d(z, [ξ, η]) ≤ d(o, γ) +M + d(z, [ξ, η])
≤ d(o, γ) +M +D.

By symmetry, we obtain d(o, γ) ≤ d(o, [ξ, η]) +M +D.
Since D is a uniform constant not depending on L we put M := M+D. Then the

statements of (2) and (3) are both valid for the same constant M. The Proposition
is proved. �

The claim (3) of the Proposition and Lemma 2.12 imply:

Corollary 2.21. Suppose (G,P) is a relatively hyperbolic pair. Then for any L > 0,
there exists M = M(L) such that for any ξ, η ∈ ΛucL,oG or ξ, η ∈ ∂ucL,oG, the distance

d(o, [ξ, η]) is comparable with the distance d(o, γ) where γ is a c-quasi-geodesic with
the endpoints on the corresponding geodesic rays converging to ξ and η..

3. Patterson-Sullivan measures on ends of a geodesic tree

In this section, we shall construct an iterated transitional tree having several
nice properties which will allow us to carry out the Patterson’s construction on this
tree. The space of ends of the tree equipped with the Patterson-Sullivan measure
will give rise to an Ahlfors regular subset of the boundary.

3.1. Iterated Transitional Trees. Let (G,P) be a relatively hyperbolic pair and
G (G,S) the Cayley graph of G with respect to S. The existence of large transitional
trees is established in [23, Theorem 5.9]. The main difference of the construction
below is that these trees will be equipped with certain periodicity. By this reason
we call them iterated transitional trees. We start by recalling several results from
[23].



HAUSDORFF DIMENSION OF BOUNDARIES OF RELATIVELY HYPERBOLIC GROUPS 17

Definition 3.1 (Partial Cone). For ε, R ≥ 0, the partial cone Ωε,R(g) at g ∈ G is
the set of elements h ∈ G such that there exists a geodesic γ = [1, h] containing g
and one of the following holds.

(1) d(1, h) ≤ d(1, g) + 2R,
(2) γ contains an (ε, R)-transitional point v such that d(v, g) ≤ 2R.

For ∆ ≥ 0, n ≥ 0, define

A(g, n,∆) = {h ∈ G : n−∆ ≤ d(1, h)− d(1, g) < n+ ∆},
for any g ∈ G. For simplicity we write A(n,∆) := A(1, n,∆). For r, ε, R,∆ > 0,
define

Ωε,R(g, n,∆) = Ωε,R(g) ∩A(g, n,∆),

for any g ∈ G,n ≥ 0.
For fixed ε, R > 0, two partial cones Ωε,R(g),Ωε,R(g′) are of same type if

g′g−1 · Ωε,R(g) = Ωε,R(g′).

By abuse of language, we say that g, g′ have the same partial cone types.
The following result generalizes the result of Cannon [5] for hyperbolic groups.

Lemma 3.2 (Finiteness of partial cone types). [23, Lemma B.1] There exist ε, R0 > 0
such that for any R > R0, there are at most M = M(ε, R) types among all (ε, R)-
partial cones {Ωε,R(g) : g ∈ G}.

The following is a key technical result in [23, Lemma 5.8].

Lemma 3.3. There exist ε, R,∆, θ, L0 > 0 with the following property.
For any L > L0 there exists a subset Ĝ of G such that

(14) ](Ωε,R(g, L,∆) ∩ Ĝ) > θ · exp(L · δG,S), 1 ∈ Ĝ

for any g ∈ Ĝ.

Convention 3.4 (ε, R,∆). Until the end of Section 3, the constants ε, R,∆ > 0 are
given by Lemmas 3.2 and 3.3, and satisfy Convention 2.18.

The following terminology comes from the paper [1] which was certainly very
motivating for us.

Definition 3.5 (Iterated Tree Set). For given L > 0, an L-iterated tree set T in G
is a union of a sequence of sets Ti (i ≥ 0) in G defined inductively as follows.

Let T0 = {1}. Assume that Ti is defined for i ≥ 0. The children T (x) of x ∈ Ti
is a subset in Ωε,R(x, L,∆). Then Ti+1 is the union of children of all x ∈ Ti.

Recall that a subset Z of a metric space space (X, d) is called C-separated if the
distanced(z1, z2) ≥ C for every pair of distinct points {z1, z2} ⊂ Z. The following
fact is elementary.

Lemma 3.6. Let (X, d) be a proper metric space on which a group G ⊂ Isom(X)
acts properly on X. For any orbit Go (o ∈ X) and C > 0 there exists a constant
θ = θ(Go,C) > 0 with the following property.

For any finite set Y in Go, there exists a C-separated subset Z ⊂ Y such that
]Z ≥ θ · ]Y .

Proof. Let Z be a maximal C-separated set in Y . We have Y ⊂ NC(Z). Since the
action of G on (X, d) is proper, any ball of radius C contains at most N points in
Go. The result follows for θ := 1/N . �
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An (ε, R, L)-transitional geodesic tree T rooted at o in G (G,S) is a tree subgraph
with a distinguished vertex x such that every branch in T originating at x is a
(ε, R, L)-transitional geodesic in G (G,S).

In order to obtain a useful theory of Patterson-Sullivan measures, certain sym-
metry on the iterated tree set is required. This is the content of the following.

Lemma 3.7 (Existence of iterated transitional trees). There exist L0, C0, t0, n0 > 0
such that:

for L > L0, C > C0, there exist θ = θ(C) and L′ = L′(L) and an iterated tree
set T parameterized by (ε, R, L) with the following properties:

(1) x−1T (x) = y−1T (y) for any x ∈ Tt, y ∈ Tt+n0 and t ≥ t0,
(2) x−1T (x) = y−1T (y) for any x, y ∈ Tt and t ≥ t0.
(3) ]T (x) ≥ θ · exp(δG,SL) for any x ∈ T .
(4) T (x) is C-separated for any x ∈ T .
(5) there exists an (ε, R, L′)-transitional geodesic tree T rooted at 1 in G (G,S)

such that the vertex set T 0 contains T , and lies in NL′(T ).

Proof. Set L0 = ∆, and all other constants will be defined in the proof. We divide
the proof into 3 steps for the reader convenience.

Step 1: At this step we construct the iterated tree set T with properties (1-3).
The construction proceeds by an induction argument. Set T0 = {1} to start.

Let M be the number of (ε, R)-partial cone types in G given by Lemma 3.2, and

Ĝ the set by Lemma 3.3. Then there exists T1 ⊂ Ωε,R(1, L,∆)∩ Ĝ such that every
element in T1 has the same partial cone type and the inequality (14) holds for g = 1
where the constant κ is divided by M . By Lemma 3.6, we can also require that
T1 is C-separated, where κ is further decreased and depends on C (given in Step 3
below).

Fix some x1 ∈ T1. Up to dividing θ by M again, we choose Y to be a subset
of Ωε,R(x1, L,∆) ∩ Ĝ such that the inequality (14) holds for Y and every element
in Y has the same partial cone type. By the same reason, we can choose Y to be
C-separated. Since all x ∈ T1 are of same type as x1, we could define

T (x) := xx−1
1 Y ⊂ Ωε,R(x, L,∆).

Then all elements in the union T2 := ∪x∈T1
T (x) have the same partial cone types.

We note that Y is chosen to be contained in Ĝ, but T2 may not be in Ĝ.
We repeat the same argument to construct Ti for i ≥ 3, with a sequence of

divisions of κ. By construction, all elements in the constructed Ti are of the same
partial cone type. Since there are finitely many partial cone types, we obtain that
there are 1 ≤ t0, n0 ≤ M so that x−1T (x) = y−1T (y) for any x ∈ Tt, y ∈ Tt+n0

and t ≥ t0. This also implies that the division of θ stops after at most n0 times,
and thus θ in the inequality (14) can be chosen uniformly for all T (x) where x ∈ Ti
(i ≥ 1). The set T satisfies the properties (1− 3).

Step 2: Using the iterated tree set T , we will now construct a geodesic graph
T .

Without loss of generality assume that κ < 1. The root of T is T0 = {1}. Assume
that Ti is defined for i ≥ 0 and for each terminal vertex x ∈ Ti, denote by γx the
geodesic [1, x] in Ti. We choose a geodesic [x, y] for each y ∈ T (x). Since Ti(x) is a

subset in Ωε,R(x, L,∆) ∩ Ĝ, we set

(15) Ti+1 = ∪x∈Ti(∪y∈T (x)γx · [x, y]),
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where γx·[x, y] is a geodesic in G (G,S). Inductively, we get the limit T = limi→∞ Ti.
By construction, each geodesic ray originating at 1 is (ε, R, L′)-transitional for L′ :=
L+ 2R+ ∆. By construction we have T ⊂ T 0 ⊂ NL′(T ).

Step 3: We now prove that T is a geodesic tree rooted at 1 in G (G,S). Indeed, if
not, there exist two distinct geodesics α1, α2 in T with the same endpoints x,w ∈ T
such that the length of α1, α2 is minimal among all such choices. Assume that x is
closer to 1 than w. Consider two points yi ∈ αi ∩ T (x) for i = 1, 2. By the choice
of α1, α2, we have y1 6= y2. Then by construction, d(yi, w) ≥ L − ∆ for i = 1, 2.
Moreover, there exists an (ε, R)-transitional point z1 ∈ α1 such that d(y1, z1) ≤ 2R.

Let D0 = φ(κ), where φ is given by Lemma 2.6 and κ = κ(ε, R) by Lemma 2.10.
There exists z2 ∈ α2 such that d(z1, z2) ≤ D0 and then d(y1, z2) ≤ 2R+D0. We can
choose ỹ2 ∈ α2 such that d(x, ỹ2) = d(x, y1). Hence d(z2, ỹ2) = |d(x, z2)−d(x, ỹ2)| =
|d(x, z2)− d(x, y1)| ≤ 2R+D0. It follows that d(y1, ỹ2) ≤ 2(2R+D0).

Since y1, y2 lie in the annulus A(x, L,∆), we get |d(x, y1)− d(x, y2)| ≤ 2∆, and
then d(y2, ỹ2) = |d(x, ỹ2)−d(x, y2)| ≤ 2∆. It follows that d(y1, y2) ≤ 2(2R+D0+∆).
Choosing now the constant C to be greater than

(16) C0 := 2(2R+ φ(κ/2) + ∆)

we obtain that T (x) is C-separated in Ωε,R(x, L,∆), and d(y1, y2) ≥ C0 > 2(2R +
D0 + ∆) which is a contradiction. Thus, T is a rooted geodesic tree. �

Remarks. (1) By Lemma 2.12 the boundary of the tree T (in ΛG or in ∂λG)
constructed above consists of uniformly conical points.

(2) The constant C0 in (16) is bigger than we really need in the above proof
(it is enough to replace ϕ(κ/2) by the smaller term D0 = ϕ(κ))) but we do
need such a constant in the next lemma.

In the next two lemmas, we shall derive more properties of the sets T and T
constructed in Lemma 3.7. To this end, we recall the notion of Poincaré series.

For a subset X ⊂ G and a point o ∈ G, set

ΘX(s, o) =
∑
g∈X

exp(−sd(o, g)), s ≥ 0.

Define the critical exponent of ΘX(s, o) to be

(17) δX,S = lim sup
n→∞

log ](B(o, n) ∩X)

n
,

where S is a fixed finite symmetric generating set of G, and B(o, n) is the ball in
the word metric of radius n centered at o.

It is elementary fact that ΘX(s, o) converges for s > δX,S , and diverges for
s < δX,S .

Recall that the bilipschitz equivalence �const between two functions means that
they are comparable up to a constant (see Section 2). We have the following.

Lemma 3.8. Under the same assumptions as in Lemma 3.7, we have

ΘT (s, x) �L ΘT (s, y)

for any x, y ∈ T and s ≥ 0, whenever one of the series converges.

Proof. Let Ω(x) be a cone at x ∈ T , which is the union of y ∈ T such that the
unique geodesic [1, y] in the geodesic tree T contains x.
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Claim. The Poincaré series of T is bilipschitz equivalent to that of any cone at a
vertex in T :

(18) ΘT (s, 1) �L ΘΩ(x)(s, x),

for any x ∈ T .

Proof of the Claim. It follows from Lemma 3.7.(1 that after a finite time t0, the set
T is periodic with a fixed period n0. So it is enough to show (18) for x ∈ T such
that t0 ≤ d(1, x) ≤ n0 + t0. By Lemma 3.7.2, the cones based at points y ∈ Tt have
the same type where t = d(1, x). Thus the number an of points in T situated at
the distance n from 1 is at most C · bn,x. Here C is the number of elements in the
ball B(1, t), and b(n, x) is the number of elements of Ω(x) at the distance n from
x. The same argument works in the opposite sense. The Claim follows. �

To complete the proof of the lemma, by (18), it suffices to establish the following

(19) ΘT (s, 1) �L ΘT\Ω(x)(s, x),

as 18 and 19 would imply ΘT (s, 1) �L ΘT (s, x),∀x ∈ T.
For y ∈ T \ Ω(x), let o be the farrest point to 1 such that o ∈ T and [1, o] ⊂

[1, x] ∩ [1, y], where the geodesics [1, x] and [1, y] are in the geodesic tree T . The
point o will be referred to as the branch point of [1, x] and [1, y].

By Lemma 3.7, [1, x], [1, y] are (ε, R, L′)-transitional geodesics, where L′ = L′(L).
By Proposition 2.20, [x, y] is transitional and so is contracting by Lemma 2.19.

Claim. There exists a uniform constant D = D(L) > 0 such that d(o, [x, y]) ≤ D.

Proof of the Claim. Let z ∈ [x, y] be the projection of o to a geodesic [x, y] in the
Cayley graph G (G,S). By the contracting property of [x, y], there exists D1 =
D1(ε, R, L′) such that

max{d(z, [o, x]), d(z, [o, y])} ≤ D1.

So, let x1 ∈ [o, x], y1 ∈ [o, y] such that d(z, x1) ≤ D1 and d(z, y1) ≤ D1.
Set d(o, z) = d, then

(20) min{d(o, x1), d(o, y1)} ≥ d− 2D1

Let w ∈ [o, x1] ∩ T (o) where T (o) ⊂ Ωε,R(o, L,∆). Then d(o, w) < L + ∆.
Furthermore, since x1 ∈ Ωε,R(o) there exists an (ε, R)-transitional point x2 ∈ [o, x1]
such that d(w, x2) ≤ 2R. Hence, d(o, x2) ≤ L+ ∆ + 2R. Using (20) we deduce
(21)
d(x2, [x1, y1]) ≥ d(x1, o)−d(x2, o)−2D1 ≥ K−2D1, whereK = d−2D1−L−∆−2R.

We affirm that

(22) K − 2D1 ≤ φ(κ/2),

where κ and φ are universal constants given by Lemmas 2.10 and 2.6. respectively.
Indeed, suppose (22) is not true, then d(x2, [x1, y1]) ≥ φ(κ/2). By Lemma 2.6
we have ρx2

(x1, y1) ≤ κ/2. Since x2 is transitional, Lemma 2.10 then implies
ρx2

(o, x1) ≥ κ. It follows ρx2
(o, y1) ≥ κ/2, and thus ∃ x̃2 ∈ [o, y] : d(x2, x̃2) ≤

φ(κ/2).
Following the argument of Step (3) of Lemma 3.7 we choose a vertex w′ ∈

[o, y] such that d(o, w′) = d(o, w). Then we have d(x̃2, w
′) = |d(o, x̃2) − d(o, w)| ≤

d(x̃2, w) ≤ 2R + φ(κ/2). Then d(w′, w) ≤ d(w′, x̃2) + d(x̃2, w) ≤ 2(2R + φ(κ/2)).
Let w′′ ∈ T (o)∩ [o, y]. Since both points w′ and w′′ belong to Ωε,R(o, L,∆) we have
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d(w′′, w′) ≤ 2∆. Therefore for the vertices w′′, w ∈ T (0) ⊂ T we have d(w,w′′) ≤
2(φ(κ/2) +R+ ∆). This is impossible by (16). The obtained contradiction implies
that K ≤ 2D + φ(κ/2) and by definition of K (see (21)), we have

d(0, z) = d ≤ D = 4D1 + φ(κ/2) + L+ ∆ + 2R.

The claim is proved. �

The second claim implies

(23) d(o, x) + d(o, y) ≥ d(x, y) ≥ d(o, x) + d(o, y)− 2D.

Given o ∈ [1, x) ∩ T , we denote by Yo the set of elements y ∈ T \ Ω(x) such that
o ∈ [1, x] is the branch point of [1, y] and [1, x] in T . The argument of the first
Claim also yields

ΘΩ(o)(s, o) �L ΘYo(s, o).

Then (18) and (23) imply∑
y∈Yo

exp(−sd(x, y)) �L exp(−sd(o, x)) ·ΘT (s, 1),

for every o ∈ [1, x) ∩ T . By construction of T in Lemma 3.7 the sequence of points
[1, x)∩ T has the property that any two consecutive points has a distance between
L−∆ and L+ ∆. Summing up over all o ∈ [1, x) ∩ T , we get∑

y∈T\Ω(x)

exp(−sd(x, y)) �L
∑

0≤k<d(1,x)

exp(−sk) ·ΘT (s, 1) �L ΘT (s, 1),

which proves (19). The Lemma is proved. �

Lemma 3.9. Under the same assumptions in Lemma 3.7, the Poincaré series ΘT (s, 1)
is divergent at s = δT,S. Furthermore, lim

L→∞
δT,S = δG,S.

Proof. It is inspired by the proof of Proposition 4.1 in [7]. Consider the annulus
set in T ,

AT (g, n, 3∆0) := A(g, n, 3∆0) ∩ T,
where ∆0 := ∆ + L+ 2R and n ≥ 0. Observe that there exists c > 0 such that

(24) c−1 · ]AT (g′, n, 3∆0) ≤ ]AT (g, n, 3∆0) ≤ c · ]AT (g′, n, 3∆0)

for any g, g′ ∈ T and n ≥ 0. Indeed, this is a direct consequence of Lemma 3.7 that
T has certain periodicity. Moreover, we claim that

Claim. The following inequality holds

]AT (1, n+m, 3∆0) ≤ c · ]AT (1, n, 3∆0) · ]AT (1,m, 3∆0),

for n,m ≥ 0.

Proof of the Claim. For h ∈ AT (n + m, 3∆0), we connect 1 and h by a geodesic
[1, h] in T . Assume that d(1, h) = m+ n+ 3∆1 for some |∆1| ≤ ∆0. Let z ∈ [1, h]
such that d(1, z) = n + 3/2 · ∆1. Note that z might not be in T . However, by
Lemma 3.7.4), there exists w ∈ T such that d(z, w) ≤ ∆ + L+ 2R = ∆0 and then
d(w, h) ≤ m + 3∆0. This implies that w ∈ A(1, n, 3∆0) and h ∈ AT (w,m, 3∆0).
The conclusion thus follows from (24). �
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Define an = c · ]AT (1, n, 3∆0). The above Claim implies that an+m ≤ anam.

So the sequence (log an)n is subadditive. Then by Fekete Lemma lim
n→∞

log an
n

=

inf
{ log an

n
: n ≥ 1

}
. Since (an)n is non-decreasing we have an ≤

∑
0≤i≤n ai ≤ nan.

So

δT,S = lim sup
n→∞

log
∑

0≤i≤n ai

n
= lim
n→∞

log an
n

= inf
{ log an

n
: n ≥ 1

}
.

It follows that ]AT (1, n,∆0) ≥ c−1 exp(nδT,S) for n ≥ 1. Observe that

ΘT (s, 1) �L,∆
∑
n≥0

]AT (1, n,∆0) · exp(−sn), s ≥ 0,

whenever both parts are finite. Thus, ΘT (s, 1) is divergent at s = δT,S .
To prove the second statement we estimate the lower bound of δT,S . By Lemma

3.7, we notice that

](B(1, i(L+ ∆)) ∩ T ) ≥ θi · exp(i · δG,S · L),

for i ≥ 0. This implies that

δT,S ≥
log ]BT (1, i(L+ ∆)) ∩ T

i(L+ ∆)
≥ L · δG,S + log θ

L+ ∆
.

We obtain lim
L→∞

δT,S ≥ δG,S . Since δT,S ≤ δG,S (∀L), the lemma follows. �

3.2. Patterson-Sullivan measures on the space of ends of an iterated tran-
sitional tree. In this and next subsections, for any L � 0, let T and T be the
iterated tree set and transitional tree respectively given by Lemma 3.7. At the
same time, assume that they satisfy Lemmas 3.8 and 3.9.

We denote by the common notation ∂T the limit set of T in either the Bowditch
boundary ΛG or in the Floyd boundary ∂λG. In this subsection, we shall construct
a Patterson-Sullivan measure on ∂T .

Consider the setM(T̃ ) of finite Borel measures on T̃ := T∪∂T , which is endowed

with the weak-convergence topology. Then µn → µ for µn ∈ M(T̃ ) if and only if

lim inf
n→∞

µn(U) ≥ µ(U) for any open set U ⊂ T̃ . Note that a set of uniformly bounded

measures in M(T̃ ) is relatively compact.

We first construct a family of measures {µsv}v∈T ⊂M(T̃ ) supported on T . Set

µsv =
1

ΘT (s, 1)

∑
g∈T

exp(−sd(v, g)) ·Dirac(g),

where s > δT,S and v ∈ T . By Lemma 3.8, the measures {µsv}v∈T are bounded by
a uniform constant depending on L.

By Lemma 3.9, for any v ∈ T , ΘT (s, v) is divergent at s = δT,S . Choose

si → δT,S such that µsiv converge in M(T̃ ). The limit measures µv = limµsiv are
called Patterson-Sullivan measures at v. Clearly, {µv}v∈G are absolutely continuous
with respect to each other.

In the sequel, we will write PS-measures as shorthand for Patterson-Sullivan
measures.
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A horofunction co-cycle Bξ : G × G → R at conical points ξ ∈ ΛG or ξ ∈ ∂λG
was studied in [23]. The precise definition is not relevant here, but we have the
following estimation.

Lemma 3.10. [23, Lemma 2.20] For any L > 0 there exists C = C(L) > 0 such that
the following holds.

Fix ξ ∈ ∂T . For any x, y ∈ G, there is a neighbourhood V of ξ in Gλ or G∪ΛG
such that the following property holds:

|Bξ(x, y)−Bz(x, y)| < C,∀z ∈ V ∩G,

where Bz(x, y) := d(z, x)− d(z, y).

Remarks. (on the proof) The above statement is proved in [23, Lemma 2.20] for
a conical point of the Bowditch boundary, where the constant C is universal (not
depending on L). In our setting by Lemma 3.7 there exists an (ε, R, L′)-transitional
ray in the tree T ending at ξ in ∂T . Then by Lemma 2.12 the constant R is uniform
for every ξ ∈ ∂T . So the same proof as [23, Lemma 2.20] works to produce a
constant C = C(L).

We have to warn the reader that the constant C > 0 cannot be made uniform
for all conical points for the action Gy ∂λG on the Floyd boundary as the action
is not necessarily geometrically finite (see the discussion after Lemma 2.12).
End of remarks.

With the help of Lemma 3.10, the following can be proven exactly as Théorème
5.4 in [6].

Lemma 3.11. PS-measures {µg}g∈T on ∂T satisfy the following property,

(25)
dµg
dµh

(ξ) �L exp(−δT,SBξ(g, h)),

for µh-a.e. points ξ ∈ ∂T and any g, h ∈ T .

3.3. Shadow Lemma. We shall establish a shadow lemma for {µg}g∈T on ∂T .

Definition 3.12 (Shadow). The shadow Πr(g) at g ∈ T is the set of points ξ ∈ ∂T
such that there exists SOME geodesic [1, ξ] in T intersecting B(g, r).

Lemma 3.13 (Shadow Lemma). There exists r0 > 0 such that the following holds

exp(−δT,Sd(1, g)) ≺ µ1(Πr(g)) ≺r exp(−δT,Sd(1, g))

for any r > r0 and g ∈ T .

Remark. In [23] the Shadow lemma was proved for the whole group G. The current
lemma describes the shadows of the points g ∈ T in terms of δT,S .

Proof. By Lemmas 3.10 and 3.11, there exists C1 = C1(L), C2 = C2(L) > 0 such
that the following holds

(26) C1 exp(−δT,Sd(1, g)) ≤ dµ1

dµg
(ξ) ≤ C2 exp(−δT,Sd(1, g))

for µ1-a.e. points ξ ∈ ∂T . So in order to estimate µ1(Πr(g)) we can do it for
µg(Πr(g)).
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Claim. Given any ε > 0, there is a constant r0 > 0 such that the following holds

µg(∂T \Πr(g)) < ε

for all g ∈ T and r > r0.

Proof of the Claim. Note that Πr(g) is a closed set. We consider the convex cone
C(∂T \Πr(g)) of ∂T \Πr(g), which consists of all geodesic rays in T originating at
1 and terminating at a point in ∂T \ Πr(g). Let V be the set of vertices of T in
C(∂T \Πr(g)).

For any x ∈ V , consider the branch point o of [1, x] and [1, g] in T (defined in
the proof of Lemma 3.8). Since x /∈ C(Πr(g)), we have d(g, o) > r. By a similar
argument to that of Lemma 3.8, we get

ΘV (s, g) =
∑
x∈V

exp(−sd(x, g)) �
∑

r≤k≤d(1,g)

exp(−sk) ·ΘT (s, 1).

So,

µsg(V ) =
ΘV (s, g)

ΘT (s, 1)
�

∑
r≤k≤d(1,g)

exp(−sk),

which tends to 0 when r →∞ and s > δT,S .
Thus, the µsg-measure of the open set V ∪ (∂T \ Πr(g)) can be arbitrarily small

for r large enough, and so is µg(∂T \Πr(g)). This proves the claim. �

By Lemma 3.8, we have that {µg(∂T )}g∈T are lower and upper bounded by a
uniform constant depending on L. Let η1 = 1/2 inf{µg(∂T ) : g ∈ T} > 0 and
η2 = sup{µg(∂T ) : g ∈ T} < ∞. By the above Claim, there is a constant r0 > 0
such that the following holds

(27) η1 < µg(Πr(g)) < η2, ∀r > r0,

for all g ∈ T . So (26) implies that

η1C1 exp(−δT,Sd(1, g)) ≤ µ1(Πr(g)) ≤ η2C2 exp(−δT,Sd(1, g)),

for all g ∈ G. The Lemma is proved. �

By Shadow Lemma to estimate the PS-measure of balls we need to compare it
with that of shadows a in the boundary ∂T . Below, we use the symbol bsc to denote
the integer part of s ∈ R. Denote by Bρλ,1(ξ, t) (resp. Bρλ,1(ξ, t)) the ball in ∂T
around ξ ∈ ∂T of radius t with respect to the metric ρλ,1(resp. ρ̄λ,1).

Lemma 3.14 (Shadows � Balls). Let r0 given by Lemma 3.13. There exists 0 <
λ0 < 1 such that for any λ ∈ [λ0, 1) and L > 0, there exist r = r(L, λ) > r0 and
C = C(L, λ) > 0 with the following property.

For any ξ ∈ ∂T and 0 < t < λ, the following holds

(28) Bρλ,1(ξ, C−1t) ⊂ Πr(g) ⊂ Bρλ,1(ξ, Ct),

and

(29) Bρ̄λ,1(ξ, C−1t) ⊂ Πr(g) ⊂ Bρ̄λ,1(ξ, Ct),

where g ∈ [1, ξ] is chosen such that d(1, g) = blogλ tc.



HAUSDORFF DIMENSION OF BOUNDARIES OF RELATIVELY HYPERBOLIC GROUPS 25

Proof. Let λ0 be given by Proposition 2.3. For any λ ∈ [λ0, 1[, we consider the
family of Floyd metrics {ρλ,v}v∈G.

For any 0 < t < λ, let g ∈ [1, ξ] such that d(1, g) = blogλ tc. Thus,

λd(1,g)+1 < t ≤ λd(1,g).

By construction of T (see Lemma 3.7.5), we know that [1, ξ] is (ε, R, L)-transitional.
So there exists an (ε, R)-transitional point z in [1, ξ] such that d(z, g) ≤ L. By
Lemma 2.10.2, there exists κ = κ(λ, ε,R) such that ρ̄λ,z(1, ξ) ≥ κ. By property (2),
we have ρλ,g(1, ξ) ≥ ρ̄λ,g(1, ξ) ≥ κ · λL.

Set 2C1 = κ · λL and r = max{φλ(C1), r0} where the function φ is given in
Lemma 2.6. Let η ∈ Bρλ,1(ξ, C1t). By property (2), it follows that ρλ,g(η, ξ) ≤
λ−d(g,1)ρλ,1(η, ξ) ≤ C1. Then ρλ,g(1, η) ≥ C1 and by Lemma 2.6, we have d(g, [1, η]) ≤
r. So η ∈ Πr(g). This proves the first inclusions of (28) and (29) for C = C1

Let η ∈ Πr(g) so that d(g, [1, η]) ≤ r for some geodesic [1, η]. Consequently,
there exists w ∈ [1, η[ such that d(1, w) = d(1, g) and d(g, w) ≤ 2r. By Lemma 2.7

any segment of [1, ξ] is a Floyd geodesic with respect to ρλ,1, so ρλ,1(ξ, g) = λd(1,g)

1−λ .
Let α be a word geodesic between w and g. Every edge of α is in the word distance
at most d(1, g)− 2r from 1. So the Floyd length of α is at most 2r · λd(1,g)−2r. We
obtain

ρ̄λ,1(ξ, η) ≤ ρλ,1(ξ, η) ≤ ρλ,1(g, ξ) + ρλ,1(w, η) + ρλ,1(g, w)

≤ 2( 1
1−λ + r

λ2r ) · λd(g,1).

Let C2 = 2λ−1(
1

1− λ
+

r

λ2r
). Then ρ̄λ,1(ξ, η) ≤ ρλ,1(ξ, η) ≤ C2t and so the second

inclusions of (28) and (29) follow.
Setting C = max{C1, C2} we complete the proof of the lemma. �

3.4. Proof of Theorem 1.4. We recapitulate the main results of the previous
Subsections in the following.

Proposition 3.15. There exists λ0 > 0 such that for every λ ∈ [λ0, 1) and L � 0,
there exist an L-iterated tree set T and a PS-measure µ1 on ∂T satisfying:

(30) µ1(Bρλ,o(ξ, t)) �λ,L t−δT,S/ log λ,

for any ξ ∈ ∂T and 0 < t < λ.

Proof. The existence of the tree T is proved in Lemma 3.7. Lemmas 3.13 and 3.14
and direct calculations imply that ∂T is Alhfors Q-regular for Q = −δT,S/ log λ
(see the definition in the Introduction). Hence, (30) follows. �

By Lemma 2.12 ∂T consists of uniformly conical points, so Proposition 3.15
implies the first claim of the Theorem. The statement Qi → δG,S (i → ∞) is
proved in Lemma 3.9. Theorem 1.4 is proved.

4. Proofs of Theorems 1.1 and 1.2

We consider the Floyd metric on ∂λG and shortcut metric on ΛG, where the
corresponding Theorems 1.1 and 1.2 are proved with the same argument.

The following lemma giving the upper bound for the Hausdorff dimension is due
to Marc Bourdon. We notice that it is a general fact which is true for a finitely
generated group G without assuming that it is relatively hyperbolic.
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Lemma 4.1 (M. Bourdon, oral communication). For every λ ∈ (0, 1), the Haus-
dorff dimension Hdimρλ,1 of ∂λG (respectively Hdimρ̄λ,1 of ΛG) with respect to
the Floyd metric ρλ,1 (respectively to the shortcut metric ρ̄λ,1 is upper bounded by
−δG,S/ log λ.

Proof. To give an upper bound, it suffices to prove that Hs(∂λG) = 0 for any fixed
s > −δG,S/ log λ.

Define Sn = {g ∈ G : d(1, g) = n}. For any g ∈ Sn, define the cone Ωg := {ξ ∈
∂λG, g ∈ [1, ξ]}, where [1, ξ] is a geodesic between 1 and ξ.

For any ξ ∈ ∂λG, consider a point x ∈ [1, ξ]∩Sn. By Lemma 2.8 the sub-ray [x, ξ)

is a ρλ,1-Floyd geodesic. So ρλ,1(x, ξ) = λn

1−λ for any ξ ∈ ∂λG. Thus, {Ωg : g ∈ Sn}
is an ε-covering of ∂λG, where ε := 2λn

1−λ .

For any t ∈] − δG,S
log λ , s[, we have −t log λ > δG,S and so ]Sn ≺t λ−tn for n ≥ 1.

We obtain for all n ≥ 1:

Hs(∂λG) ≤
∑
g∈Sn

εs ≺ λ(s−t)n

which then tends 0 as n→∞. Thus, Hs(∂λG) = 0 for any s > − δG,Slog λ . The lemma

is proved. �

So the upper bound on the Hausdorff dimension of ∂λG and ΛG in Theorems
1.1, 1.2 is proved. In the remainder of proofs, we aim to establish the lower bound
for the Hausdorff dimension.

Taking into account Proposition 3.15: there exists a universal λ0 > 0 such that
for each L� 0, there exist an L-iterated tree T and a PS-measure µ1 on ∂T such
that (30) holds and δT,S → δG,S as L→∞.

The following lemma shows that PS-measures constructed in Section 3 are actu-
ally the Hausdorff measures on ∂T with respect to the Floyd metric ρλ,1 restricted
on ∂T .

Lemma 4.2. Let µ1 be a PS-measure on ∂T in ΛG or ∂λG. Denote σ = −δT,S/ log λ.
Then we have

Hσ(A) �L µ1(A).

for any subset A ⊂ ∂T .

Proof. In the proof, we assume that ∂T is a subset of the Bowditch boundary. The
proof for ∂T ⊂ ∂λG is similar.

Let B be an ε-covering of A for ε > 0. Then µ1(A) ≤
∑
B∈B µ1(B). Let ε→ 0.

By Proposition 3.15, we obtain that µ1(A) ≺L Hσ(A).
For the other inequality, we need to make use of the following well-known covering

result. Let B be a metric ball of radius rad(B) in a proper metric space X. Denote
by 5B the union of all balls of radius 2 · rad(B) intersecting B so that ‖5B‖ ≤
10 · rad(B). Then by [17, Theorem 2.1] for a family of balls B in X with uniformly
bounded radii there exists a sub-family B′ ⊂ B of pairwise disjoint balls such that
the following holds

(31)
⋃
B∈B

B ⊂
⋃
B∈B′

5B.

Note that µ1,Hσ are Radon measures. Then for any τ > 0 there exists a compact
set K and an open set U such that K ⊂ A ⊂ U and Hσ(U \K) < τ, µ1(U \K) < τ .
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Set ε0 := ρ1(K,ΛG \ U) > 0. For any 0 < ε < ε0, let B be an ε-covering of K.
By (31) and Proposition 3.15, there exists a sub-family B′ of B such that

Hσ(K) ≤
∑
B∈B′

(‖5B‖)σ ≤
∑
B∈B′

(10 · rad(B))σ ≺L µ1(U).

The condition τ → 0 yields Hσ(A) ≺ µ1(A). �

Remark. We note that µ1 is unique in the following sense: if µ1, µ
′
1 are two PS-

measures, then dµ1/dµ
′
1 is bounded from up and below.

Lemma 4.2 proves that the Hausdorff dimension of ∂T is equal to σ. Since ∂T
is a subset of the set of uniformly conical points in ∂λG and ΛG, the dimension
σ = −δT,S/ log λ of ∂T gives a lower bound of Hdimρλ,1(∂ucλ G) and Hdimρ̄λ,1(ΛucG).

Letting L→∞, we have δT,S → δG,S by Proposition 3.15. So,

Hdimρλ,1(∂ucλ G) ≥ −δG,S/ log λ

and

Hdimρλ,1(ΛucG) ≥ −δG,S/ log λ.

The proofs of Theorems 1.1 and 1.2 are complete.

5. Tight Paths and Floyd metrics

In this section, we shall develop a detailed understanding of shortcut geodesics
via a class of well-controlled paths called (generalized) tight paths.

5.1. Tight paths. It is well-known that in hyperbolic spaces, a sufficiently “long”
local geodesic becomes globally a quasi-geodesic. This property in general fails for
the Cayley graph of a relatively hyperbolic group. V. Gerasimov and L. Potyagailo
proposed in [14] a notion of tight paths as a generalization of local geodesics to the
relative setting. The following definition is a small modification of it.

Definition 5.1. For c ≥ 1, l > 0, a path γ is called (c, l)-tight path if for any two
points x, y ∈ γ with d(x, y) ≤ l the subpath [x, y]γ is a c-quasi-geodesic.

Remark. This definition is a partial case of [14, Definition 6.1] where a local quasi-
geodesicity is requested outside of the horospheres only and an additional condition
is assumed for the horospheres. So if a path is tight in the sense of Definition 5.1
it is also tight in the sense of [14, Definition 6.1] but not necessarily vice versa. In
particular we can use all results proven in [14]. In addition, the above definition
implies that every subpath of a tight path is a tight path itself, which is not always
true in the general case. This stability of the tightness for subpaths will be often
used below.

We also stress that the above definition does not coincide with the standard
notion of local (quasi-)geodesicity when the assumption that the length of a subpath
(and not its diameter) is small implies its (quasi-)geodesicity.

In what follows, to reduce cumbersome quantifiers, we continue to use Convention
2.18 without explicit mention on the constants ε, R, which depend on the parameter
c > 0 in tight paths.

We recall the following result about tight paths proved in [14].
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Lemma 5.2. For any c ≥ 1, there exist κ = κ(c), l0 = l0(c) > 0 with the following
property.

Let γ be a (c, l)-tight path for l ≥ l0. Then ρv(γ−, γ+) ≥ κ for any (ε, R)-
transitional point v ∈ γ.

Comments on the proof. The statement that ρv(γ−, γ+) ≥ κ is first established in
[14, Proposition 6.7] for a special sub-sequence of transitional vertices v ∈ γ. Then
it is shown in the proof of [14, Theorem B] that the tigthtness of a path implies it
for every transitional vertex (up to decreasing the constant κ). �

We call below a sequence of points zi = γ(ti) of a length-parametrized path γ
well-ordered if ti > ti−1 (ti ∈ Z).

The following lemma is an intermediate step in the proof of Proposition 5.6 below
which is the main result of this subsection.

Lemma 5.3 (Transitional tight path is quasi-geodesic). For any c, L ≥ 0, there exist
l0 = l0(L), c′ = c′(c) ≥ 1 with the following property.

Let γ be a (c, l)-tight path for l ≥ l0. Assume that γ is an (ε, R, L)-transitional
path, where ε, R satisfy Convention 2.18. Then γ is a c′-quasi-geodesic.

Proof. By Lemma 5.2, there exists κ = κ(c) ≥ 0 such that ρx(γ−, γ+) ≥ κ for every
(ε, R)-transitional point x ∈ γ. Set D0 = φ(κ/2). Choose l0 ≥ 2(L+D0).

Since any subpath of γ is (c, l)-tight, it is enough to prove that there exists a
linear bound for `(γ) with respect to d(γ−, γ+). Let α be a geodesic with the same
endpoints as γ. The idea of proof is to find two sequences of well-ordered points in
γ and α respectively which are uniformly close.

Since γ is (ε, R, L)-transitional, there exists a maximal set of (ε, R)-transitional
well-ordered points {zi : 1 ≤ i ≤ n} in γ such that

`([zi, zj ]γ) ≥ 2D0

for i 6= j and
`([zi, zi+1]γ) ≤ 2(L+D0)

for 1 ≤ i < n. Indeed, let z1 be the first (ε, R)-transitional point in γ. Suppose zi
is chosen for i ≥ 1. If `([zi, γ+]) ≤ 2(L + D0) then zi+1 = γ+. Consider the point
z in [zi, γ+]γ such that `([zi, z]γ) = L + 2D0. If z is (ε, R)-transitional in γ, then
set zi+1 = z. Otherwise, there exists an (ε, R)-transitional point zi+1 such that
`([z, zi+1]γ) ≤ L and `([zi, zi+1]γ) ≤ 2(L+D0).

By Lemma 5.2, there exists κ > 0 such that

ρzi+1
(zi, γ+) ≥ κ

for any 1 ≤ i < n. By Lemma 2.6, there exists w1 ∈ α such that d(z1, w1) ≤ D0.
We now choose other wi inductively for i ≥ 1.

Suppose wi ∈ α is chosen such that d(zi, wi) ≤ D0. Since d(zi+1, zi) ≥ 2D0,
we obtain [zi, wi] ∩ B(zi+1, D0) = ∅. By the choice of D0 = φ(κ/2), we know
that for any v ∈ G, any geodesic outside B(v,D0) has lv-length at most κ/2.
So ρzi+1(wi, zi) ≤ κ/2 and then ρzi+1(wi, γ+) ≥ κ/2. Thus there exists wi+1 ∈
[wi, α+]α such that d(zi+1, wi+1) ≤ D0. Clearly, the obtained points wi are well-
ordered on α.

As l0 > 2(L+D0), [zi, zi+1]γ is a c-quasi-geodesic by the tightness property. Since
wi are well-ordered on α, we see that γ is a c′-quasi-geodesic for c′ := c+ 2D0. �

The following lemma will be often used further.
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Lemma 5.4 (Bounded overlap). For c ≥ 1 and (ε, R) given by Convention 2.18,
there exist K0, l0 > 0 with the following property.

Let γ be a (c, l)-tight path for l ≥ l0. Assume that β1, β2 are two maximal
connected segments of γ such that (βi)−, (βi)+ ∈ Nε(Xi) for some Xi ∈ P with
i = 1, 2. Then `(β1 ∩ β2) ≤ K0. In particular, the endpoints of βi are (ε, R)-
transitional for i = 1, 2.

Proof. By Definition 5.1 a subpath of a tight path is itself tight. Then by [14,
Proposition 7.6] it follows that there exists l0 > 0 such that for all l ≥ l0 the
elements of P are uniformly quasi-convex with respect to the system of (c, l)-tight
paths. This implies that there exists a uniform constant ε = ε(ε, c) > 0 such that
βi ⊂ Nε(Xi) for i = 1, 2. By Lemma 2.16 we find a constant R = R(ε) > 0 such that
‖Nε(X) ∩Nε(X ′)‖ ≤ R for every X,X ′ ∈ P. Assume that l0 > cR+ c. Since βi
are l-local c-quasi-geodesic for l > l0, it follows that `(β1∩β2) ≤ K0 := cR+ c. �

Remark. By the bounded intersection of P, this lemma holds trivially if γ is a
quasi-geodesic. However, the tight path γ above is a local quasi-geodesic only.

Let γ be a (c, l)-tight path. Let ε = ε(c) given by Convention 2.18 and K0

given by Lemma 5.4. For K > K0, we consider all maximal connected segments
βi in γ (1 ≤ i ≤ m) such that `(βi) ≥ K and (βi)−, (βi)+ ∈ Nε(Xi) for some
Xi ∈ P. Consequently, Xi 6= Xj for i 6= j. These (βi, Xi) shall be referred to as
(ε,K)-components of γ.

We stress that by the argument of Lemma 5.4 the segment βi belongs to Nε(Xi)
for a uniform ε > 0 and unique Xi.

We now introduce a modification of a tight path to make the obtained path a
quasi-geodesic.

Definition 5.5 (Truncation of a tight path). Let γ be a (c, l)-tight path for c ≥
1, l > 0. Consider all (ε,K)-components (βi, Xi) (1 ≤ i ≤ m) for a fixed K > 2K0,
where K0 > 0 is given by Lemma 5.4.

Set y1 = (β1)−, x2 = (β1)+. If βi ∩ βi−1 = ∅ for i ≥ 2, denote yi = (βi)−, xi+1 =
(βi)+; otherwise, set yi = xi−1, xi+1 = (βi)+. Replace [yi, xi+1]γ by a geodesic
segment [yi, xi+1] for each i ≥ 1.

The path γ̄ obtained in this way is called a K-truncation of γ.

Remark. The following observation is elementary and useful: every βi produces an
(ε,K/2)-deep point in Xi in the truncation path γ̄. Consequently, if γ̄ does not
contain an (ε, R)-deep point, then d((βi)−, (βi)+) ≤ 2R for all βi.

The following lemma is the main result of this subsection. It provides a further
generalization of Lemma 5.3 to the truncated tight paths.

Lemma 5.6 (Truncation is quasi-geodesic). For any c ≥ 1, there exist l0 = l0(c),K =
K(c), c′ = c′(c) > 0 with the following property. For any l ≥ l0, the K-truncation
of a (c, l)-tight path is a c′-quasi-geodesic.

Proof. Let K > 2K0 be a fixed integer, where K0 is given by Lemma 5.4. Let γ̄ be
the K-truncation of a (c, l)-tight path γ. Keeping the notations as in Definition 5.5,
we have by Lemma 5.4 that yi, xi+1 for 1 ≤ i ≤ m are (ε, R)-transitional points in
γ. Furthermore since [xi, yi]γ contains no (ε,K)-components for 1 ≤ i < m, we see
that [xi, yi]γ is an (ε, R, L)-transitional path for L := K/2. By Lemma 5.3, there
exist l0 = l0(L), c0 = c0(c) ≥ 1 such that [xi, yi]γ is a c0-quasi-geodesic.
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The geodesic [yi, xi+1] belongs to the ε-neighbourhood Nε(Xi) for some Xi ∈ P
where we assume that yi is the entry point of γ ∩Nε(X) and xi+1 is the exit point
of it. We will now show that γ is a quasi-geodesic in a neighbourhood of yi.

Since yi is (ε, R)-transitional, ρyi(xi, xi+1) ≥ κ where κ is given by Lemma 5.2.
Hence, d(yi, [xi, xi+1]) ≤ D0 := φ(κ) where φ is the function given by Lemma
2.6. Connect the point xi with an arbitrary point z ∈ [yi, xi+1] by a geodesic
β. By the triangle inequality we have d(xi, yi) + d(yi, xi+1) ≤ d(xi, xi+1) + 2D0.
Since d(yi, z) +d(z, xi+1) = d(yi, xi+1) we obtain d(xi, yi) +d(yi, z) ≤ d(xi, xi+1)−
d(z, xi+1) + 2D0 ≤ d(xi, z) + 2D0. Finally

`([xi, z]γ̄) = `([xi, yi]γ) + `([yi, z])
≤ c0d(xi, yi) + c0 + d(yi, z)
≤ c0d(xi, z) + c0 + 2c0D0.

So [xi, z]γ̄ is a c1-quasi-geodesic for c1 := c0(2D0 + 1).
We have that any subpath γ̃ of the truncated path γ̄ is the union of three

types of c1-quasi-geodesic subpaths: a) γi = [xi, yi]γ , b) βi = [yi, xi+1]γ and c)
δ = [a, b]. Both vertices of the intervals of types a) and b) are transitional on the
corresponding tight path γ, and every γi is (ε, R, L)-transitional whereas βi is an
(ε,K)-component. The path γ̃ can contain at most two intervals δ of type c) such
that one of the endpoints of δ coincides with an endpoint of γ̃ and is an interior
point of a geodesic truncation of γ̄.

Repeating the argument of Lemma 5.3 consider a maximal well-ordered subset
V of the transitional vertices {vj ∈ γ̃} in the set W := γ̃ ∩ {yi, xi+1 : 1 ≤ i ≤ m}
such that d(vj , vj+1) ≥ 2D0. We connect the endpoints of γ̃ by a geodesic α. Then
for each vj ∈ V , there exists v′j ∈ α such that d(vj , v

′
j) ≤ D0 and v′j ∈ [v′j−1, v

′
j+1]α.

Since V is maximal inW , for any w ∈W there exists v ∈ V such that d(v, w) ≤ 2D0.
If W = {w1, w2, · · · , wn}, there exists a well-ordered set W ′ = {w′1, w′2, · · · , w′n} of
vertices in α such that d(wi, w

′
i) ≤ 3D0. Then [γ̃−, w1]γ̃ , [wi, wi+1]γ and [wn, γ̃+]γ̃

are all c1-quasi-geodesics by the above argument. We have

`(γ̃) ≤ c1(d(γ̃−, w1) +
∑n−1
i=1 d(wi, wi+1) + d(wn, γ̃+)) + c1

≤ c1(3D0 + d(γ̃−, w
′
1) +

∑n−1
i=1 (d(w′i, w

′
i+1) + 3D0) + d(w′n, γ̃+) + 3D0) + c1

≤ c′d(γ̃−, γ̃+) + c′,

where c′ := (1 + 3D0)c1. The Lemma is proved. �

Convention 5.7. For any c ≥ 1, we will assume further on that l0,K > 0 satisfy
both Lemmas 5.2 and 5.4.

5.2. Shortcut metrics and generalized tight paths. Recall that a Floyd geo-
desic in the Floyd completion does not in general belongs to the Cayley graph and
the shortening procedure described in subsection 2.3 allows one to approximate
them by local geodesics in the graph. Furthermore the following lemma shows that
this approximation can be done using the tight paths:

Lemma 5.8. [14, Corollary 7.8] For any l > 0 there exists λ0 ∈]0, 1[ such that for
every λ ∈]λ0, 1[ if the Floyd geodesic γ ⊂ Gλ (with respect to the metric ρλ,o)

joining two distinct points x, y in Gλ does not belong to the Cayley graph G (G,S),
then for ε > 0 there exists a tight path γ̃ ⊂ G (G,S) such that |lλ,o(γ̃)− lλ,o(γ)| < ε.



HAUSDORFF DIMENSION OF BOUNDARIES OF RELATIVELY HYPERBOLIC GROUPS 31

The goal of this subsection is to extend this result to the geodesics with respect
to the shortcut metrics {ρ̄λ,o}o∈G on ΛG (see Section 2.2). For this purpose we
generalize the notion of a tight path as follows.

Definition 5.9 (Generalized tight paths and truncations). Let γ be a finite sequence
of (c, l)-tight paths γi in G (G,S) (1 ≤ i ≤ n) such that (γi)+, (γi+1)− ∈ Nε(Xi) for
some Xi ∈ P where Xi 6= Xj (1 ≤ i 6= j < n).

We say that γ is a (c, l)-generalized tight path if for each pair of entry and
exit points yi, xi+1 of γi and γi+1 respectively in Nε(Xi) we have d(yi, xi+1) ≥ l
(1 ≤ i < n).

Fix K > 0. For n > 1, consider the K-truncation γ̄i of [xi, yi]γi where 1 ≤ i ≤ n.
The path

γ̃ = γ̄1 · [y1, x2] · γ̄2 · · · [yn−1, xn] · γ̄n
is called the K-truncation of a generalized (c, l)-tight γ.

Remark. Note that a generalized tight path is possibly not connected. If it is
connected, then it is a tight path in Definition 5.1.

Lemma 5.10 (Generalized truncation is quasi-geodesic). For any c ≥ 1, there exist
l0,K, c

′ ≥ 1 such that for any l > l0, the K-truncation of a (c, l)-generalized tight
path is a c′-quasi-geodesic.

Proof. Let K = K(c) be given by Lemma 5.6. Let γ̃ be the K-truncation of a
generalized (c, l)-tight path γ. We keep the notations of Definition 5.9. If n = 1,
the proof is finished by Lemma 5.6. Assume that n ≥ 2.

By Lemma 5.6, there exists c1 > 0 such that each γ̄i is a c1-quasi-geodesic for
each 1 ≤ i < n. We prove below that γ̄i and γ̄i+1 have bounded projection to
Nε(Xi) where Xi ∈ P.

By Lemma 2.16, X ∈ P is c1-contracting and there exist µc1 , Dc1 > 0 such that
the (7) holds. By Convention 2.18, we have ε ≥ µc1 . Let z be the entry point of γ̄i
in Nε(Xi).

Claim. There exists a constant C > 0 such that d(z, yi) ≤ C.

Proof of Claim. Since yi is the entry point of γi in Nε(Xi), there exists an (ε,K)-
component β of γi such that z ∈ β. Consider the tight subpath [β+, yi]γi and
its K-truncation β1. By the argument in Lemma 5.6, the path [z, β+] · β1 is a
c2-quasi-geodesic for some c2 > 0.

Since Xi is quasi-convex, there exists ε = ε(ε, c2) > 0 such that any c2-quasi-
geodesic with two endpoints in Nε(Xi) lies in Nε(Xi). This implies that β1 ⊂
Nε(Xi). However, there exists no (ε,K)-components in [β+, yi]γi . Indeed, if not,
there exists an (ε,K)-component β′ in [β+, yi]γi and Y ∈ P such that β′± ∈ Nε(Y )
and d(β′−, β

′
+) > K > l0. Since yi is the entry point of γi in Nε(Xi), we have

Y 6= Xi. Since β′± ∈ Nε(Xi), we get d(β′−, β
′
+) ≤ R := R(max{ε, ε}) by Lemma

2.16. This is a contradiction as l0 > R(max{ε, ε}). The same reasoning shows that
d(z, β+) ≤ R.

Let L = L(ε, 1) be given by Lemma 2.17. If d(z, yi) > 2L + R, there exists an
interior point in [β+, yi]γi which is (εc, 1)-deep in Xi. This is a contradiction, since
yi is the entry point of [β+, yi]γi in Nε(Xi) and ε ≥ εc by Convention 2.18. Hence
we proved that d(z, yi) ≤ C := 2L+R. The claim is proved. �

By the contracting property 2.16 we see that ProjXi(γ̄i) ≤ τ := 2(Dc1 + ε) +C.
The same is true for ProjXi(γ̄i+1). Then γ̃ satisfies the following properties:
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(1) Each γ̄i is a c1-quasi-geodesic,
(2) max{ProjXi(γ̄i),ProjXi(γ̄i+1)} ≤ τ ,
(3) d(xi, yi+1) > l.

(These properties imply that γ̃ is (l, c1, c1, τ)-admissible in the sense of [24, Section
3]). Therefore by Corollary 3.3 in [24], there exist l0, c

′ > 0 such that for any l > l0
the truncation γ̃ is a c′-quasi-geodesic. The lemma is proved. �

Remark. An alternative way to prove the above Lemma is to use the arguments of
Proposition 6.1.1 in [12] to prove that γ̃ is a curve whose distortion is a quadratic
polynomial, then it follows from Proposition 7.2.2 in [12] that γ̃ is linearly distorted.

Proposition 5.11 (Approximation by generalized tight paths). For any l ≥ 0, there
exists 0 < λ0 < 1 such that the following property holds for any λ ∈ [λ0, 1).

For any ξ 6= η ∈ ΛG, there exists a sequence of generalized (1, l)-tight paths γn
with (γn)− ∈ [o, ξ], (γn)+ ∈ [o, η] such that

lim
n→∞

d(o, (γn)−) = lim
n→∞

d(o, (γn)+) =∞

and
lim
n→∞

lλ,o(γn) = ρ̄λ,o(ξ, η).

Proof. By definition of the shortcut metric (3), for any ε > 0, there are finitely
many pairs (ηi, ξi+1) ∈ ω where 1 ≤ i < m such that

(32) ρ̄λ,o(ξ, η) ≥
∑

1≤i≤m

ρλ,o(ξi, ηi)− ε/3,

where ξ1 := ξ, ηm := η. If m = 1, the proof is completed by Lemma 5.8. Assume
that m ≥ 2.

Let κ = min{ρo(ηi, ξi+1) : 1 ≤ i < m} > 0. For each 1 ≤ i < m, there exists
Xi ∈ P such that ηi, ξi+1 ∈ ∂λ(Xi) where ∂λ(Xi) is the topological boundary of Xi

in ∂λG.
First we claim that one can choose ξ̃1, η̃m and η̃i, ξ̃i+1 ∈ Xi for each 1 ≤ i < m

such that the following two conditions hold,

(1) max{ρo(ξ̃i, ξi), ρo(η̃i, ηi)} ≤ min{κ/4, ε
6m} for 1 ≤ i ≤ m.

(2) If there exists a path α between η̃i, ξ̃i+1 for 1 ≤ i < m such that `(α) ≤ 3l,
then it has lo-length at most κ/4.

Indeed, (1) is true for ξ̃i and η̃i sufficiently close to ξi and ηi respectively. To prove

(2), let R = min{d(1, ξ̃i), d(1, η̃i) : 1 ≤ i ≤ m}. We have d(1, α) ≥ R − 3l. So for
sufficiently large R the statement (2) follows from the visibility lemma 2.6.

By Lemma 5.8, we can connect ξ̃i, η̃i by a (1, l)-tight path γi for 1 ≤ i ≤ m such

that (γi)− = ξ̃i and (γi)+ = η̃i and

(33) |ρλ,o(ξ̃i, η̃i)− lλ,o(γi)| ≤
ε

6m
.

By the condition (1) above, (32) and (33) , the following holds

(34) ρ̄λ,o(ξ, η) ≥
∑

1≤i≤m

lλ,o(γi)−
5ε

6
.

Let yi, xi+1 be the entry and exit points of γi and γi+1 in Nε(Xi) respectively. If
d(yi, xi+1) ≥ l for all 1 ≤ i < m, then we are done: {γi} give the generalized tight
path. Otherwise, assume that d(xj+1, yj) ≤ l for some 1 ≤ j < m.
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Observe that max{d(η̃j , yj), d(ξ̃j+1, xj+1)} ≥ l+ 1. Indeed, if not, it follows that

η̃j , ξ̃j+1 are connected by a path of length at most 3l. By the above condition

(2), we have ρo(η̃j , ξ̃j+1) ≤ κ/4. By the condition (1), we have ρo(ηj , ξj+1) ≤
3κ/4. We arrive at a contradiction with the definition of κ. Thus, we proved that

max{d(η̃j , yj), d(ξ̃j+1, xj+1)} ≥ l + 1. By Lemma 2.7, we obtain the following

lλ,o([yj , η̃j ]γj ) + lλ,o([ξ̃j+1, xj+1]γj+1
) ≥ lλ,o([yj , xj+1]).

which yields

lλ,o(γj) + lλ,o(γj+1) ≥ lλ,o([ξ̃j , yj ]γj ) + lλ,o([yj , xj+1]) + lλ,o([xj+1, η̃j+1]γj+1
)

≥ ρλ,o(ξ̃j , η̃j+1).

This implies that we can drop the pair (ηj , ξj+1) in (32) such that the corresponding

inequality in (34) still holds. Precisely, choose a (1, l)-tight path αj between ξ̃j , η̃j+1

such that
|lλ,o(αj)− ρλ,o(ξ̃j , η̃j+1)| ≤ ε

6m
.

So lλ,o(γj) + lλ,o(γj+1) ≥ lλ,o(αj)−
ε

6m
. It follows by (34),

ρ̄λ,o(ξ, η) ≥
∑

1≤i≤m;i 6=j,j+1

lλ,o(γi) + lλ,o(αj)−
5ε

6
− ε

6m
.

Consider the new set of (1, c)-tight paths γi (i 6= j, j + 1) and αj . Repeat the
above argument for those j for which d(xj+1, yj) ≤ l. Since m is finite, for every
ε > 0 we obtain a generalized tight path γ such that ρ̄λ,o(ξ, η) ≥ lλ,o(γ) − ε. The
Proposition is proved. �

5.3. Floyd and shortcut metrics on uniformly conical points. A priori, the
shortcut metrics as quotient of the Floyd metrics might be distorted in a unexpected
way. The main result of this subsection is to show that this distortion is not severe
for uniformly conical points.

Fix a basepoint o ∈ G. Recall that, in Section 2.4, ΛucL,oG denotes the set

of uniformly conical points ξ ∈ ΛG for which there exists an (ε, R, L)-transitional
geodesic ray between o and ξ. Similarly, denote by ∂ucL,oG the set of uniformly conical
points in ∂λG based at o. By Proposition 2.4, there exists one-to-one correspondence
between ΛucL,oG and ∂ucL,oG.

The following is a version of Proposition 2.20 for generalized tight paths.

Proposition 5.12. There exist l0, D > 0 such that for any L > 0, there exists
M = M(L) > 0 with the following property.

Denote α1 = [o, ξ] and α2 = [o, η] for ξ 6= η ∈ CLG. Let γ be a generalized (1, l)-
tight path for some l ≥ l0 with γ− ∈ α1 and γ+ ∈ α2. If d(o, γ−), d(o, γ+) � 0,
then there exists z ∈ γ such that d(z, α1 ∪ α2) ≤ D and d(z, αi) ≤ M for i = 1, 2.
Moreover, |d(o, z)− d(o, [ξ, η])| ≤M .

Proof. Let l0, c
′ ≥ c,K > 0 given by Lemma 5.10 such that the K-truncation γ̃ of

a generalized (c, l)-tight γ for l ≥ l0 is a c′-quasi-geodesic. By Proposition 2.20,
there exists an (εc′ , Rc′)-transitional point z in γ̃ such that the conclusion of this
Proposition holds. If the point z lies on γ, then we are done. So below, we assume
that z /∈ γ, and then have two cases to consider as follows.

Let L1 = L(εc, Rc′) be given by Lemma 2.17, where εc′ ≥ εc ≥ ε1 and they all
satisfy Convention 2.18. Assume that l0 ≥ 2L1.
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Case 1. The point z lies in some (εc,K)-component β of a (c, l)-tight path γi.
Then max{d(β−, γ), d(β+, γ)} ≤ L1. Indeed, if not, then min{d(z, β−), d(z, β+)} ≥
L1. By applying Lemma 2.17 for the geodesic β, we have z ∈ γ̃ is (ε1, Rc′)-deep in
Xj . This is a contradiction, as z is an (εc′ , Rc′)-transitional point in γ̃.

Case 2. The point z lies in some [yj , xj+1] for some j, where [yj , xj+1] is given in
Definition 5.9 of a generalized tight path. By the same reasoning as above, we apply
Lemma 2.17 for the geodesic [(β)−, (β)+]. Then min{d(z, yj), d(z, xj+1)} ≤ L1.

Thus, we proved that z has a distance at most 2L1 to a point in γ. The conclusion
follows as a consequence of Proposition 2.20. �

The main result of this subsection is the following.

Proposition 5.13 (Visual Floyd/shortcut metric). There exists 0 < λ0 < 1 such that
the following holds for any L > 0 and λ ∈ [λ0, 1).

We have

ρλ,o(ξ, η) �L λn, ∀ ξ 6= η ∈ ∂ucL,oG
and

ρ̄λ,o(ξ, η) �L λn, ∀ ξ 6= η ∈ ΛucL,oG

where n = d(o, [ξ, η]).

Proof. Let us consider the shortcut metric case only. The Floyd metric case is
similar and even easier.

Let α1, α2 be two (ε1, R1, L)-transitional geodesic rays originating at o and ter-
minating at ξ, η respectively.

Let l0, D > 0 be given by Proposition 5.12, and we choose λ0 ∈]0, 1[ verifying
Proposition 5.11 for l = l0. Then by Propositions 5.12 and 5.11 there exists M =
M(L) > 0 such that the following holds:

(1) For each k > 0, there exists a sequence of generalized (1, l0)-tight paths γk
with (γk)− ∈ α1, (γk)+ ∈ α2 and such that (γk)− → ξ, (γk)+ → η and

(35) |lλ,o(γk)− ρ̄λ,o(ξ, η)| ≤ 1/k.

(2) There exists zk ∈ γk such that d(zk, α1 ∪ α2) ≤ D and d(zk, αi) ≤ M for
i = 1, 2. Moreover, |d(o, zk)− d(o, [ξ, η])| ≤M .

Denote uk := (γk)− and vk := (γk)+.
Upper bound. Choose xk ∈ α1 and yk ∈ α2 such that max{d(zk, xk), d(zk, yk)} ≤

M . Then for every point t ∈ [xk, zk] ∪ [zk, yk] we have

d(o, t) ≥ d(o, zk)−M ≥ n− 2M.

Hence

max{lλ,o([xk, zk]), lλ,o([yk, zk])} ≤M · λn−2M .

We also have

max{lλ,o([xk, ξ]α1
), lλ,o([yk, η]α2

)} ≤ λmin{d(o,xk),d(o,yk)}
1−λ ≤ λn−2M

1−λ .

It follows that

(36)
ρ̄λ,o(ξ, η) ≤ lλ,o([xk, ξ]α1) + lλ,o([yk, η]α2) + lλ,o([xk, zk]) + lλ,o([yk, zk])

≤ 2λn−2M ( 1
1−λ +M).

Let C1 := 2λ−2M ( 1
1−λ +M). Then ρ̄λ,o(ξ, η) ≤ C1λ

n.
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Lower bound. Since d(zk, α1 ∪ α2) ≤ D, there exists wk ∈ α1 ∪ α2 such that
d(zk, wk) ≤ D. Assume that wk ∈ α2 for concreteness.

By Lemma 2.8, any segment of α2 is a Floyd geodesic. Since vk → η and
d(o, wk) ≤ n+D, we can assume that wk ∈ [o, wk]α2

for all k � 0. So

ρλ,o(vk, wk) = lλ,o([wk, vk]α2) = λd(o,wk)

1−λ − λd(o,vk)

1−λ

≥ λd(o,zk)+D

1−λ − λd(o,vk)

1−λ .

We have

ρλ,o(vk, wk) ≤ lλ,o(γk) + lλ,o([wk, zk]).

Since d(zk, wk) ≤ D we have

lλ,o([wk, zk]) ≤ D · λd(o,zk)−D.

Thus

(37)

lλ,o(γk) ≥ ρλ,o(vk, wk)− lλ,o([wk, zk])

≥ lλ,o([vk, wk]α2
)− lλ,o([wk, zk])

≥ ( λ
D

1−λ −
D
λD

)λd(o,zk) − λd(o,vk)

1−λ

≥ ( λ
D

1−λ −
D
λD

) · λM · λn − λd(o,vk)

1−λ .

Since D does not depend on L by Lemma 5.12, there exists 1 > λ0 > 0 such that

(38)
λD

1− λ
− D

λD
≥ λD0

1− λ0
− D

λD0
> 0,

for any λ ∈ [λ0, 1). Let C2 := (
λD0

1−λ0
− D

λD0
) · λM > 0. Note that d(o, vk) → ∞ as

k →∞. By (35) and (37), passing to the limit when k →∞, we obtain

ρ̄λ,o(ξ, η) ≥ C2λ
n,

for any ξ 6= η ∈ ΛucL,oG and any L > 0. The proof is then complete. �

Remark. (1) The fact that the constant D does not depend on L is crucial for
the choice of λ0 in (38).

(2) This lemma gives an asymptotic formula for two uniformly conical points
with respect to Floyd metric and shortcut metric. This could be used to
give an alternative proof of Lemma 3.14, but cannot be derived from (the
proof of) Lemma 3.14.
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