TWO RESULTS ON CENTRALISERS OF NILPOTENT ELEMENTS

DMITRI I. PANYUSHEV

INTRODUCTION

Let *X* and *Y* be commuting nilpotent endomorphisms of a finite-dimensional vector space *V* over a field k. In [4, Sect. 3], McNinch shows that, for all but finitely many points $(a : b) \in \mathbb{P}^1_{\mathbb{k}}$, both *X* and *Y* belong to the nilpotent radical of the centraliser of aX + bYin GL(V). (There is an additional restriction on aX + bY if char $\mathbb{k} =: p > 0$; namely, $(aX + bY)^{p-1}$ has to be zero.) From this, he deduces a similar result for commuting nilpotent elements of arbitrary semisimple Lie algebras if char k is sufficiently large, see [4, Theorem 26 and Prop. 28]. However, the proof for GL(V) is rather tedious. It requires lengthy manipulations with Jordan normal forms of *X* and *Y* and consideration of nilpotent elements over the field $\mathbb{k}(t)$.

The goal of this note is two-fold. First, we provide a very short alternative proof of McNinch's results if k is algebraically closed and p = 0 or sufficiently large. We use only standard properties of \mathfrak{sl}_2 -triples and centralisers of nilpotent elements, and work with an arbitrary simple Lie algebra. Second, we characterise the nilpotent elements *e* such that *G* · *e* is the largest nilpotent orbit meeting the centraliser of *e*. Such nilpotent elements (orbits) are said to be *self-large*. In the last section, we discuss some problems related to self-large orbits.

Acknowledgements. This work was done during my stay at the Max-Planck-Institut für Mathematik (Bonn) in Spring 2007. I am grateful to this institution for warm hospitality and support.

1. A SHORT PROOF OF MCNINCH'S RESULT

Throughout, *G* is a connected simple algebraic group over \Bbbk , where \Bbbk is algebraically closed and char $\Bbbk = 0$, and $\mathfrak{g} = \operatorname{Lie} G$. Write \mathfrak{g}_x for the centraliser of $x \in \mathfrak{g}$ and \mathcal{N} for the nilpotent cone in \mathfrak{g} . The nilpotent radical of a Lie algebra \mathfrak{q} is denoted by \mathfrak{q}^u .

Let us start with a reformulation of the McNinch's result. Given commuting (nonproportional) elements $x, y \in \mathcal{N}$, we consider the "commutative nilpotent" plane $\mathcal{P} = \mathbb{k}x + \mathbb{k}y \subset \mathcal{N} \subset \mathfrak{g}$. It is then claimed that, for almost all $e = ax + by \in \mathcal{P}$, x and y belong to $(\mathfrak{g}_e)^u$. Let us give a more precise meaning to the words "almost all". Since the closure of $G \cdot \mathcal{P}$ is irreducible, there is a unique nilpotent G-orbit, \mathcal{O} , such that $\mathcal{O} \cap \mathcal{P}$ is dense in \mathcal{P} . So we will actually require that $e \in \mathcal{O}$.

Supported in part by R.F.B.R. grants 05–01–00988 and 06–01–72550.

Theorem 1.1. Suppose $e, x \in \mathcal{N}$, [e, x] = 0, and the intersection of the orbit $G \cdot e$ with $\mathcal{P} = \Bbbk e + \Bbbk x$ is dense in \mathcal{P} . Then $x \in (\mathfrak{g}_e)^u$.

Before giving a proof, we fix some notation and state an auxiliary result. Let $\{e, h, f\}$ be an \mathfrak{sl}_2 -triple containing e and $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ the corresponding \mathbb{Z} -grading of \mathfrak{g} . Here $\mathfrak{g}(i)$ is the *i*-eigenspace of ad h. In particular, $\mathfrak{g}(0) = \mathfrak{g}_h$. Then $\mathfrak{p} = \bigoplus_{i \ge 0} \mathfrak{g}(i) =: \mathfrak{g}_{\ge 0}$ is a parabolic subalgebra and $\mathfrak{p}^u = \mathfrak{g}_{\ge 1}$. Set $\mathfrak{g}_e(i) = \mathfrak{g}(i) \cap \mathfrak{g}_e$. As is well known, $\mathfrak{g}_e = \bigoplus_{i \ge 0} \mathfrak{g}_e(i)$ and $\mathfrak{g}_e(0)$ is a Levi subalgebra of \mathfrak{g}_e . Furthermore, $\mathfrak{g}_e(0) = \mathfrak{g}_e \cap \mathfrak{g}_f$ [1, Ch. 3]. Let $\alpha_h : \mathbb{k}^{\times} \to G$ be the one-parameter subgroup such that $\alpha_h(t) \cdot y = t^i y$ for any $y \in \mathfrak{g}(i)$.

The following observation is extracted from the proof of Proposition 1.2 in [6].

Lemma 1.2 (Premet). If $x_0 \in g_e(0)$ is nonzero and nilpotent, then $e + x_0$ and e are not conjugate. Moreover, e lies in the closure of $G \cdot (e + x_0)$.

Proof. For convenience of the reader, we recall Premet's argument. Since $x_0 \in \mathfrak{g}_e(0)$ is nilpotent, there is an \mathfrak{sl}_2 -triple $\{x_0, h', y\}$ contained in $\mathfrak{g}_e(0)$. It follows that $\{e+x_0, h+h', f+y\}$ is also an \mathfrak{sl}_2 -triple. Being a member of an \mathfrak{sl}_2 -triple, h' lies in $[\mathfrak{g}(0), \mathfrak{g}(0)]$. Therefore h and h' are orthogonal with respect to the Killing form, κ , on \mathfrak{g} and hence $\kappa(h+h', h+h') > \kappa(h, h)$. It follows that $h \not\sim h + h'$ and hence $e \not\sim e + x_0$ [1]. Finally, we have

$$\alpha_{h+h'}(t)\alpha_h(-t)\cdot(e+x_0) = e + t^2x_0, \text{ which implies that } e \in G \cdot (e+x_0).$$

Proof of Theorem 1.1. Using the above notation, write $x = x_0 + x_1 + ...$, where $x_i \in \mathfrak{g}(i)$. Our goal is to prove that $x_0 = 0$. Since $e \in \mathfrak{g}(2)$, we have $[e, x_i] = 0$ for all i.

Consider the commutative nilpotent planes $\mathcal{P}_t = \alpha_h(t) \cdot \mathcal{P}$ for $t \in \mathbb{k}^{\times}$. Clearly, \mathcal{P}_t is spanned by e and $\alpha_h(t) \cdot x = x_0 + tx_1 + t^2x_2 + \ldots$. The limit $\lim_{t\to 0} \mathcal{P}_t$ exists in the Grassmannian of 2-planes in \mathfrak{g} and for $x_0 \neq 0$ it is equal to $\mathcal{P}_0 := \mathbb{k}e + \mathbb{k}x_0$. We thus obtain another commutative plane, \mathcal{P}_0 . Furthermore, $\mathcal{P}_0 \subset \mathcal{N}$ (as the limit of $\{\mathcal{P}_t\}$), hence x_0 is nilpotent.

By Lemma 1.2, $e + ax_0$ is not conjugate to e for every $a \neq 0$. Hence $G \cdot e \cap \mathcal{P}_0$ is not dense in \mathcal{P}_0 . Since $\lim_{t\to 0} \mathcal{P}_t = \mathcal{P}_0$, we conclude that $G \cdot e \cap \mathcal{P}_t$ is not dense in \mathcal{P}_t for almost all $t \in \mathbb{k}^{\times}$, and because all \mathcal{P}_t are G-conjugate, this is also true for $\mathcal{P} = \mathcal{P}_1$. This contradiction shows that $x_0 = 0$, i.e., $x \in (\mathfrak{g}_e)^u$.

Remark 1.3. a) Under the assumptions of the theorem, we proved that $x_0 = 0$. One may ask whether it is true that $x_1 = 0$ as well. In general, the answer is negative. This follows from Proposition 2.4 below.

b) The previous proof certainly works, if char k is sufficiently large. E.g. if char k > 4h - 1, where h is the Coxeter number of \mathfrak{g} .

2. Self-large nilpotent elements/orbits

Recall that $e \in \mathcal{N}$ or $G \cdot e$ is said to be *even* if the eigenvalues of ad h are even; it is called *dis*tinguished if $\mathfrak{g}_e(0) = \{0\}$. It is known that "distinguished" implies "even" [1, Thm. 8.2.3].

Following Premet [6], we say that *e* is *almost distinguished* if $\mathfrak{g}_e(0)$ is toral (= Lie algebra of a torus). Let $\mathcal{N}(\mathfrak{g}_e)$ denote the set of nilpotent elements of \mathfrak{g}_e . It is easily seen that $\mathcal{N}(\mathfrak{g}_e) = \mathcal{N}(\mathfrak{g}_e(0)) \times (\mathfrak{g}_e)_{\geq 1} = \mathcal{N}(\mathfrak{g}_e(0)) \times (\mathfrak{g}_e)^u$. Therefore $(\mathfrak{g}_e)^u = \mathcal{N}(\mathfrak{g}_e)$ if and only if *e* is almost distinguished.

Definition 1. A nilpotent element e (orbit $G \cdot e$) is said to be *self-large* if $G \cdot e \cap \mathfrak{g}_e$ is dense in $\mathcal{N}(\mathfrak{g}_e)$. In other words, this means that $G \cdot e$ is the largest nilpotent orbit meeting \mathfrak{g}_e .

Our consideration of self-large orbits was motivated by attempts to better understand Premet's results on "nilpotent commuting variety" [6, Sect. 1] and generalise it to some other situations.

In this section, we give a characterisation of self-large elements. The answer is being given in terms of the \mathbb{Z} -grading associated with an \mathfrak{sl}_2 -triple $\{e, h, f\}$.

Theorem 2.1. Suppose $e \in \mathcal{N}$, and let $\mathfrak{g}_e = \bigoplus_{i \ge 0} \mathfrak{g}_e(i)$ be the \mathbb{N} -grading determined by h. Then e is self-large if and only if $\mathfrak{g}_e(0)$ is toral and $\mathfrak{g}_e(1) = 0$.

For future use, we record the following simple assertion:

(2.1) $\operatorname{ad} f : \mathfrak{g}_e(1) \to \mathfrak{g}_f(-1)$ is a bijection, and the inverse map is just $\operatorname{ad} e$.

From this one readily deduce the following

Lemma 2.2. For any nonzero $\xi \in \mathfrak{g}_f(-1)$ there is $\eta \in \mathfrak{g}_f(-1)$ such that $\kappa(e, [\xi, \eta]) \neq 0$. In particular, $(\xi, \eta) \mapsto \kappa(e, [\xi, \eta])$ is a non-degenerate skew-symmetric $\mathfrak{g}_e(0)$ -invariant bilinear form on $\mathfrak{g}_f(-1)$.

Lemma 2.3. Assume that there is $z \in \mathfrak{g}_f(-1)$ such that $[z, [z, e]] \neq 0$. Then $[z, e] \in \mathfrak{g}_e(1)$ and the orbit $G \cdot (e + [z, e])$ is larger than $G \cdot e$.

Proof. Set $v_z = [z, e]$. By Eq. (2.1), $v_z \in \mathfrak{g}_e(1)$ and also $z = [v_z, f]$. Then

$$\exp(-z)(e+v_z) = e+v_z - [z, e+v_z] + \frac{1}{2}[z, [z, e+v_z]] + \dots$$
$$= e - [z, v_z] + \frac{1}{2}[z, v_z] + \dots = e - \frac{1}{2}[z, v_z] + (\text{terms in } \mathfrak{g}_{\leq -1}) .$$

Here the element $[z, v_z]$ lies in $\mathfrak{g}(0)$ and an easy computation shows that it commutes with e. Hence it also commutes with f. Thus, we have shown that $\exp(-z)(e + v_z) \in e + \mathfrak{p}^-$, where $\mathfrak{p}^- = \mathfrak{g}_{\leq 0}$, and the component of degree zero lies in $\mathfrak{g}_e(0) = \mathfrak{g}_f(0)$.

Set $N = \exp(\mathfrak{g}_{\leq -2})$. It is a unipotent group and $e + \mathfrak{p}^-$ is an *N*-stable subvariety of \mathfrak{g} . There is an isomorphism of *N*-varieties

$$e + \mathfrak{p}^- \simeq N \times (e + \mathfrak{g}_f) ,$$

3

where the *N*-action on $e + \mathfrak{g}_f$ is trivial, and *N* acts on itself by left translations. In other words, for every $y \in \mathfrak{p}^-$, the *N*-orbit of e + y is isomorphic to *N* and contains a unique element from $e+\mathfrak{g}_f$. For regular nilpotent elements, this is implicit in [3, Sect. 4]. A general proof is given by Katsylo [2, § 5]. Let $\psi(e+y)$ denote the unique point in $N \cdot (e+y) \cap (e+\mathfrak{g}_f)$. It is important that the *N*-action does not affect the zero component of y, y_0 , whenever $y_0 \in \mathfrak{g}_e(0)$. It follows that

(2.2)
$$\psi\left(\exp(-z)(e+v_z)\right) = e - \frac{1}{2}[z,v_z] + \left(\operatorname{terms in} \,(\mathfrak{g}_f)_{\leqslant -1}\right)$$

The affine subspace $e + \mathfrak{g}_f$ is the *transverse* (or Slodowy) slice to $G \cdot e$ at e. It follows from [7, 7.4] that $G \cdot e \cap (e + \mathfrak{g}_f) = \{e\}$. If $[z, v_z] \neq 0$, then Eq. (2.2) shows that $G \cdot (e + v_z) \cap (e + \mathfrak{g}_f)$ contains a point different from e, which implies that $e + v_z \notin G \cdot e$. Since $G \cdot (e + v_z) \supset e + \Bbbk^{\times} v_z$ (cf. Proof of Lemma 1.2), we actually have $e \in \overline{G \cdot (e + v_z)}$.

Proof of Theorem 2.1. (a) The sufficiency is easy. If $\mathfrak{g}_e(0)$ is toral and $\mathfrak{g}_e(1) = 0$, then $\mathcal{N}(e) = (\mathfrak{g}_e)^u \subset \mathfrak{g}_{\geq 2}$. Since $P \cdot e$ is dense in $\mathfrak{g}_{\geq 2}$, the assertion follows.

(b) Let us prove the necessity. If $\mathfrak{g}_e(0)$ is not toral, then there is a nilpotent element $x_0 \in \mathfrak{g}_e(0)$. Then $\tilde{e} = e + x_0 \in \mathcal{N}(e)$ and $\tilde{e} \notin \overline{G \cdot e}$, see Lemma 1.2.

In the rest of the proof we assume that $\mathfrak{g}_e(0)$ is toral. If $\mathfrak{g}_e(1) \neq 0$, then our goal is to find an element $v \in \mathfrak{g}_e(1)$ such that e + v lies in a larger orbit. By Lemma 2.3, it suffices to find $z \in \mathfrak{g}_f(-1)$ such that $[z, [z, e]] \neq 0$.

Claim 1. The space of \mathfrak{h} -fixed vectors in $\mathfrak{g}_f(-1)$ is trivial.

For, consider the semisimple Lie algebra $\mathfrak{s} = [\mathfrak{l}, \mathfrak{l}]$, where $\mathfrak{l} = \mathfrak{g}^{\mathfrak{h}}$. Then $e, h, f \in \mathfrak{s}$ and e is distinguished as element of \mathfrak{s} . In particular, e is even in \mathfrak{s} . Since $\mathfrak{l} = \mathfrak{h} \oplus \mathfrak{s}$ and $\mathfrak{h} \subset \mathfrak{g}(0)$, we have $0 = \mathfrak{s}(-1) = \mathfrak{l}(-1) = \mathfrak{g}(-1)^{\mathfrak{h}}$.

It follows from Claim 1 and Lemma 2.2 that the weight decomposition of $\mathfrak{g}_f(-1)$ with respect to $\mathfrak{h} = \mathfrak{g}_e(0)$ can be written as

$$\mathfrak{g}_f(-1) = \bigoplus_{\gamma \in \mathcal{A}} (V_\gamma \oplus V_{-\gamma}) ,$$

where \mathcal{A} is a subset of $\mathfrak{X}(\mathfrak{h})$ such that $\mathcal{A} \cap (-\mathcal{A}) = \emptyset$.

Claim 2. There are $\mu \in \mathcal{A}$ and *weight vectors* $\xi \in V_{\mu}$, $\eta \in V_{-\mu}$ such that $\kappa(e, [\xi, \eta]) \neq 0$. By Lemma 2.2, there are *some* $\tilde{\xi}, \tilde{\eta} \in \mathfrak{g}_f(-1)$ such that

(2.3)
$$\kappa(e, [\tilde{\xi}, \tilde{\eta}]) \neq 0$$

Let $\tilde{\xi} = \sum_{\gamma \in \mathcal{A}} a_{\gamma} \xi_{\gamma}$, $a_{\gamma} \in \mathbb{k}$, be the weight decomposition, and likewise for $\tilde{\eta}$. Substituting this to Eq. (2.3), one readily finds that for some γ , the components ξ_{γ} and $\eta_{-\gamma}$ satisfies the required property.

Having found such weight vectors, we take $t \in \mathfrak{h}$ such that $[t, \xi] = \xi$ and $[t, \nu] = -\nu$. Then

$$\kappa([[e,\xi+\eta],\xi+\eta],t) = 2\kappa(e,[\xi,\eta]) \neq 0$$

which shows that $[[e, \xi + \eta], \xi + \eta] \neq 0$. Hence $z = \xi + \eta$ is a required element.

Notice that in order to construct a suitable element $v \in g_e(1)$, we take the sum of <u>two</u> different weight vectors: $v = [e, \xi] + [e, \eta]$. The reason is that a single weight vector is not suitable, as shows the following

Proposition 2.4. Suppose $\mathfrak{h} = \mathfrak{g}_e(0)$ is toral and $v \in \mathfrak{g}_e(1)$ is an \mathfrak{h} -weight vector. Then $e + v \in G \cdot e$.

Proof. Let $z \in \mathfrak{g}_f(-1)$ be the unique element such that v = [z, e]. Then $[z, v] \in \mathfrak{g}(0)$ and [[z, v], e] = [[z, e], v] = 0. Thus, $[z, v] \in \mathfrak{h}$ is semisimple. Let $\gamma \in \mathfrak{X}(\mathfrak{h})$ be the \mathfrak{h} -weight of v. Then $\gamma \neq 0$ (Claim 1), z has the same weight, and the weight of [z, v] equals 2γ . If follows that [z, v] is nilpotent as well. Hence [z, v] = 0. Therefore $\exp(z) \cdot e = e + [z, e] = e + v$. \Box

Example 2.5. We describe the almost distinguished orbits in all simple Lie algebras and point out the self-large ones among them.

1. For $\mathfrak{g} = \mathfrak{g}(V)$ classical, the nilpotent orbits are parametrized via partitions of $n = \dim V$. If $\lambda = (\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_s)$ is a partition of n, then \mathcal{O}_{λ} stands for the corresponding orbit. For $e \in \mathcal{O}_{\lambda}$, a description of $\mathfrak{g}_e(0)$ via λ is due to Springer and Steinberg, see e.g. [1, Thm. 6.1.3]. This allows us to quickly find all almost distinguished orbits.

(a) $\mathfrak{g} = \mathfrak{sl}(V)$. Here λ is an arbitrary partition and \mathcal{O}_{λ} is almost distinguished if and only if all parts of λ are distinct. Furthermore, $\mathfrak{g}_e(1) \neq 0$ if and only if $\lambda_i = \lambda_{i+1} + 1$ for some i < s [5, Prop. 3.4]. Thus, the self-large orbits are those satisfying the property $\lambda_i - \lambda_{i+1} \ge 2$ for each i < s.

(b) $\mathfrak{g} = \mathfrak{so}(V)$. Here each even part of λ must occur an even number of times. The orbit \mathcal{O}_{λ} is almost distinguished if and only if λ has no even parts and each odd part occurs at most twice. Such orbits are even, hence self-large.

(c) $\mathfrak{g} = \mathfrak{sp}(V)$. Here each odd part of λ must occur an even number of times. The orbit \mathcal{O}_{λ} is almost distinguished if and only if λ has no odd parts and each even part occurs at most twice. Such orbits are even, hence self-large.

2. For g exceptional, we only indicate the almost distinguished orbits with non-trivial toral part $g_e(0)$. Such orbits exist only in type **E**, see Table 1.

Table 1: Almost distinguished orbits in \mathbf{E}_n with non-trivial $\mathfrak{g}_e(0)$

\mathfrak{g}	label	diagram	$\mathfrak{g}_e(0)$	$\dim \mathfrak{g}_e(1)$	$\dim \mathfrak{g}_e$
E ₈	$\mathbf{D}_7(a_1)$	2-0-0-2-0-0-2 0	\mathfrak{t}_1	0	26
	$\mathbf{E}_6(a_1) + \mathbf{A}_1$	2-0-1-0-1-0-1 0	\mathfrak{t}_1	2	30
	$\mathbf{D}_7(a_2)$	1-0-1-0-1-0-1 0	\mathfrak{t}_1	2	32

Almost distinguished orbits in \mathbf{E}_n , cont.								
	$\mathbf{D}_5 + \mathbf{A}_2$	2-0-0-2-0-0-0 0	\mathfrak{t}_1	0	34			
\mathbf{E}_7	$\mathbf{E}_6(a_1)$	0-2-0-2-0-2 I 0	\mathfrak{t}_1	0	15			
	$\mathbf{A}_4 + \mathbf{A}_1$	0-1-0-1-0-1 I 0	\mathfrak{t}_2	4	29			
E ₆	\mathbf{D}_5	2-0-2-0-2 1 2	\mathfrak{t}_1	0	10			
	$\mathbf{D}_5(a_1)$	1-1-0-1-1 1 2	\mathfrak{t}_1	2	14			
	$\mathbf{A}_4 + \mathbf{A}_1$	1–1–0–1–1 1	\mathfrak{t}_1	2	16			
	$\mathbf{D}_4(a_1)$	0-0-2-0-0 1 0	\mathfrak{t}_2	0	20			

Remark. It turns out, a posteriori, that for $\mathfrak{g} \neq \mathfrak{sl}_n$, every self-large orbit is even.

3. PROBLEMS AND EXAMPLES

Results of Section 2 show that there is a hierarchy of nilpotent *G*-orbits:

 $\{$ distinguished orbits $\} \subset \{$ self-large orbits $\} \subset \{$ almost distinguished orbits $\},\$

where all inclusions are proper.

Lemma 3.1. Suppose $e, e' \in \mathcal{N}$ are self-large and [e, e'] = 0. Then $e \sim e'$.

Proof. Consider an \mathfrak{sl}_2 -triple containing *e* and the related \mathbb{Z} -grading, as above. Since $e' \in \mathbb{Z}$ $\mathcal{N}(\mathfrak{g}_e) = (\mathfrak{g}_e)^u$ and $\mathfrak{g}_e(1) = 0$, we have $e' \in \mathfrak{g}_{\geq 2} = \overline{P \cdot e}$. The assertion follows by the symmetry of e and e'.

Below we discuss several related problems.

Since $\mathcal{N}(\mathfrak{g}_e)$ is irreducible, there is always a unique *maximal* nilpotent orbit meeting \mathfrak{g}_e . That is, we obtain the mapping $\mathcal{D} : \mathcal{N}/G \to \mathcal{N}/G$ which assigns the dense *G*-orbit in $G \cdot \mathcal{N}(\mathfrak{g}_e)$ to $G \cdot e$.

Problem 1. Determine explicitly \mathcal{D} , i.e., for every $G \cdot e \in \mathcal{N}/G$ describe the orbit $\mathcal{D}(G \cdot e)$. For classical Lie algebras, one should expect a recipe in terms of partitions. However, this seems to be a non-trivial task. Note that if $\mathcal{O}_{min} \subset \mathcal{N}$ is the minimal nonzero orbit and $v \in \mathcal{O}_{min}$, then \mathfrak{g}_v contains the nilpotent radical of a Borel subalgebra. Hence, for any $e \in \mathcal{N}$, the unique *minimal* nonzero nilpotent orbit meeting \mathfrak{g}_e is always \mathcal{O}_{min} .

Problem 2. Describe the image of \mathcal{D} .

By definition, the self-large orbits are those having the property that $\mathcal{D}(\mathcal{O}) = \mathcal{O}$. In particular, they belong to Im \mathcal{D} . Are there some other orbits? Equivalently, is it true that $\mathcal{D}^2 = \mathcal{D}$? At least, my direct computations of \mathcal{D} for small ranks provide only self-large orbits in Im \mathcal{D} .

Problem 3. Describe *all* nilpotent *G*-orbits meeting g_e .

The answer should be helpful for better understanding the structure of the nilpotent commuting variety. By Lemma 3.1, if e is self-large, then no other self-large orbits meet g_e .

Example 3.2. Suppose $\mathfrak{g} = \mathfrak{sl}_n$, $\lambda = (\lambda_1, \dots, \lambda_s)$, and $e \in \mathcal{O}_{\lambda}$. If e is not self-large, then it is easy to indicate larger nilpotent orbits meeting \mathfrak{g}_e . Namely, if $\lambda_i - \lambda_{i+1} \leq 1$ for some i, then one can replace two parts λ_i , λ_{i+1} with one part $\lambda_i + \lambda_{i+1}$ (with eventual rearranging the resulting parts). More generally,

(*)
$$\begin{cases} a \text{ substring } \dots, a^k, (a-1)^l, \dots \text{ of } \boldsymbol{\lambda} \text{ can be replaced} \\ \text{with the single part } ka + l(a-1). \end{cases}$$

One can do the same thing with *other* parts of the initial partition, if possible, but it is not allowed to apply this to newly obtained parts. However, concatenation of such steps is not sufficient for constructing $\mathcal{D}(\mathcal{O}_{\lambda})$. For instance, take $\lambda = (3, 1, 1)$ for \mathfrak{sl}_5 . Then

$$(3,1,1) \mapsto (3,2) \not\mapsto (5)$$
.

That is, $\mathcal{O}_{(3,2)}$ meets the centraliser of $e \in \mathcal{O}_{(3,1,1)}$. However, a direct verification shows that $\mathcal{D}(\mathcal{O}_{(3,1,1)}) = \mathcal{O}_{(4,1)}$. Note that $\mathcal{O}_{(4,1)}$ is self-large, while $\mathcal{O}_{(3,2)}$ is not. Similarly, for $\mathfrak{g} = \mathfrak{sl}_7$, we have $\mathcal{D}(\mathcal{O}_{(4,2,1)}) = \mathcal{O}_{(5,2)}$.

Let us justify rule (*). Taking the respective Jordan subspaces, it suffices to assume that $\lambda = (a^k, (a-1)^l)$. Let *e* be a regular nilpotent element of \mathfrak{sl}_n with n = ka + l(a-1). Then \mathcal{O}_{λ} is the orbit of e^{k+l} , hence the assertion.

Example 3.3. For some classes of orbits, the description of all orbits meeting $\mathcal{N}(\mathfrak{g}_e)$ is available. If $e \in \mathfrak{g} = \mathfrak{sl}_n$ is regular nilpotent, then e, e^2, \ldots, e^{n-1} form a basis for \mathfrak{g}_e . It is easily seen that if \mathcal{O} meets \mathfrak{g}_e , then $\mathcal{O} = SL_n \cdot e^k$ for some k. The partition of e^k has k nonzero parts; $n - k \left[\frac{n}{k}\right]$ parts are of size $\left[\frac{n}{k}\right] + 1$ and the remaining parts are of size $\left[\frac{n}{k}\right]$.

Similar situation occurs for \mathfrak{so}_{2n+1} and \mathfrak{sp}_{2n} , where one has to take odd powers of *e*.

Example 3.4. For $\mathfrak{g} = \mathfrak{sl}_7$, we have $\operatorname{Im} \mathfrak{D} = \{\mathcal{O}_{(7)}, \mathcal{O}_{(6,1)}, \mathcal{O}_{(5,3)}\}$, i.e., precisely the set of self-large orbits. The full description of \mathfrak{D} is given by the following data:

$$\mathcal{D}^{-1}(\mathcal{O}_{(7)}) = \{ \mathcal{O}_{(7)}, \mathcal{O}_{(4,3)}, \mathcal{O}_{(3,2,2)}, \mathcal{O}_{(2^3,1)}, \mathcal{O}_{(2^2,1^3)}, \mathcal{O}_{(2,1^5)} \}; \mathcal{D}^{-1}(\mathcal{O}_{(6,1)}) = \{ \mathcal{O}_{(6,1)}, \mathcal{O}_{(3,3,1)}, \mathcal{O}_{(3,2,1,1)}, \mathcal{O}_{(3,1^4)} \}; \mathcal{D}^{-1}(\mathcal{O}_{(5,2)}) = \{ \mathcal{O}_{(5,2)}, \mathcal{O}_{(5,1,1)}, \mathcal{O}_{(4,2,1)}, \mathcal{O}_{(4,1^3)} \}.$$

Example 3.5. For $\mathfrak{g} = \mathfrak{so}_7$, we again have 3 self-large orbits and

$$\mathcal{D}^{-1}(\mathcal{O}_{(7)}) = \{ \mathcal{O}_{(7)}, \mathcal{O}_{(3,2,2)}, \mathcal{O}_{(2^2,1^3)} \}, \mathcal{D}^{-1}(\mathcal{O}_{(5,1,1)}) = \{ \mathcal{O}_{(5,1,1)}, \mathcal{O}_{(3,1^4)} \}, \quad \mathcal{D}^{-1}(\mathcal{O}_{(3,3,1)}) = \{ \mathcal{O}_{(3,3,1)} \}.$$

References

- [1] D.H. COLLINGWOOD and W. MCGOVERN. "*Nilpotent orbits in semisimple Lie algebras*", New York: Van Nostrand Reinhold, 1993.
- [2] П.И. КАЦЫЛО. Сечения пластов в редуктивной алгебраической алгебре Ли, Изв. АН СССР. Сер. Матем. 46(1982), 477–486 (Russian). English translation: P.I. KATSYLO. Sections of sheets in a reductive algebraic Lie algebra, Math. USSR-Izv. 20(1983), 449–458.
- [3] B. KOSTANT. Lie group representations in polynomial rings, Amer. J. Math. 85(1963), 327-404.
- [4] G. MCNINCH. On the centralizer of the sum of commuting nilpotent elements, *J. Pure Appl. Algebra* **206**(2006), no. 1-2, 123–140.
- [5] D. PANYUSHEV. On reachable elements and the boundary of nilpotent orbits in simple Lie algebras, *Bull. Sci. Math.*, **128**(2004), 859–870.
- [6] A. PREMET. Nilpotent commuting varieties of reductive Lie algebras, *Invent. Math.* **154**(2003), no. 3, 653–683.
- [7] P. SLODOWY. "Simple singularities and simple algebraic groups", Lect. Notes Math. 815, Berlin: Springer, 1980.

INDEPENDENT UNIVERSITY OF MOSCOW, BOL'SHOI VLASEVSKII PER. 11, 119002 MOSCOW, RUSSIA *E-mail address*: panyush@mccme.ru