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INTRODUCTION

Let X and Y be commuting nilpotent endomorphisms of a finite-dimensional vector
space V over a field k. In [4, Sect. 3], McNinch shows that, for all but finitely many points
(a : b) ∈ P

1
k
, both X and Y belong to the nilpotent radical of the centraliser of aX + bY

in GL(V ). (There is an additional restriction on aX + bY if char k =: p > 0; namely,
(aX + bY )p−1 has to be zero.) From this, he deduces a similar result for commuting nilpo-
tent elements of arbitrary semisimple Lie algebras if char k is sufficiently large, see [4,
Theorem 26 and Prop. 28]. However, the proof for GL(V ) is rather tedious. It requires
lengthy manipulations with Jordan normal forms of X and Y and consideration of nilpo-
tent elements over the field k(t).

The goal of this note is two-fold. First, we provide a very short alternative proof of
McNinch’s results if k is algebraically closed and p = 0 or sufficiently large. We use only
standard properties of sl2-triples and centralisers of nilpotent elements, and work with
an arbitrary simple Lie algebra. Second, we characterise the nilpotent elements e such
that G·e is the largest nilpotent orbit meeting the centraliser of e. Such nilpotent elements
(orbits) are said to be self-large. In the last section, we discuss some problems related to
self-large orbits.
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support.

1. A SHORT PROOF OF MCNINCH’S RESULT

Throughout, G is a connected simple algebraic group over k, where k is algebraically
closed and char k = 0, and g = LieG. Write gx for the centraliser of x ∈ g and N for the
nilpotent cone in g. The nilpotent radical of a Lie algebra q is denoted by qu.

Let us start with a reformulation of the McNinch’s result. Given commuting (non-
proportional) elements x, y ∈ N , we consider the ”commutative nilpotent” plane P =

kx+ ky ⊂ N ⊂ g. It is then claimed that, for almost all e = ax+ by ∈ P, x and y belong to
(ge)

u. Let us give a more precise meaning to the words ”almost all”. Since the closure of
G·P is irreducible, there is a unique nilpotent G-orbit, O, such that O∩P is dense in P. So
we will actually require that e ∈ O.
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Theorem 1.1. Suppose e, x ∈ N , [e, x] = 0, and the intersection of the orbitG·ewith P = ke+kx

is dense in P. Then x ∈ (ge)
u.

Before giving a proof, we fix some notation and state an auxiliary result. Let {e, h, f} be
an sl2-triple containing e and g =

⊕

i∈Z

g(i) the corresponding Z-grading of g. Here g(i) is

the i-eigenspace of adh. In particular, g(0) = gh. Then p =
⊕

i>0

g(i) =: g>0 is a parabolic

subalgebra and pu = g>1. Set ge(i) = g(i) ∩ ge. As is well known, ge =
⊕

i>0

ge(i) and ge(0)

is a Levi subalgebra of ge. Furthermore, ge(0) = ge ∩ gf [1, Ch. 3]. Let αh : k
× → G be the

one-parameter subgroup such that αh(t)·y = tiy for any y ∈ g(i).

The following observation is extracted from the proof of Proposition 1.2 in [6].

Lemma 1.2 (Premet). If x0 ∈ ge(0) is nonzero and nilpotent, then e+x0 and e are not conjugate.
Moreover, e lies in the closure of G·(e + x0).

Proof. For convenience of the reader, we recall Premet’s argument. Since x0 ∈ ge(0) is
nilpotent, there is an sl2-triple {x0, h

′, y} contained in ge(0). It follows that {e+x0, h+h′, f+

y} is also an sl2-triple. Being a member of an sl2-triple, h′ lies in [g(0), g(0)]. Therefore h
and h′ are orthogonal with respect to the Killing form, κ, on g and hence κ(h+h′, h+h′) >

κ(h, h). It follows that h 6∼
G

h+ h′ and hence e 6∼
G

e + x0 [1]. Finally, we have

αh+h′(t)αh(−t)·(e+ x0) = e + t2x0, which implies that e ∈ G·(e+ x0). �

Proof of Theorem 1.1. Using the above notation, write x = x0 + x1 + . . ., where xi ∈ g(i).
Our goal is to prove that x0 = 0. Since e ∈ g(2), we have [e, xi] = 0 for all i.

Consider the commutative nilpotent planes Pt = αh(t)·P for t ∈ k
×. Clearly, Pt is

spanned by e and αh(t)·x = x0 + tx1 + t2x2 + . . .. The limit limt→0 Pt exists in the Grass-
mannian of 2-planes in g and for x0 6= 0 it is equal to P0 := ke + kx0. We thus obtain
another commutative plane, P0. Furthermore, P0 ⊂ N (as the limit of {Pt}), hence x0 is
nilpotent.

By Lemma 1.2, e+ ax0 is not conjugate to e for every a 6= 0. Hence G·e∩P0 is not dense
in P0. Since limt→0 Pt = P0, we conclude that G·e ∩ Pt is not dense in Pt for almost all
t ∈ k

×, and because all Pt are G-conjugate, this is also true for P = P1. This contradiction
shows that x0 = 0, i.e., x ∈ (ge)

u. �

Remark 1.3. a) Under the assumptions of the theorem, we proved that x0 = 0. One may
ask whether it is true that x1 = 0 as well. In general, the answer is negative. This follows
from Proposition 2.4 below.

b) The previous proof certainly works, if char k is sufficiently large. E.g. if char k >

4h − 1, where h is the Coxeter number of g.
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2. SELF-LARGE NILPOTENT ELEMENTS/ORBITS

Recall that e ∈ N or G·e is said to be even if the eigenvalues of ad h are even; it is called dis-
tinguished if ge(0) = {0}. It is known that ”distinguished” implies ”even” [1, Thm. 8.2.3].

Following Premet [6], we say that e is almost distinguished if ge(0) is toral (= Lie algebra
of a torus). Let N (ge) denote the set of nilpotent elements of ge. It is easily seen that
N (ge) = N (ge(0)) × (ge)>1 = N (ge(0)) × (ge)

u. Therefore (ge)
u = N (ge) if and only if e is

almost distinguished.

Definition 1. A nilpotent element e (orbit G·e) is said to be self-large if G·e∩ ge is dense in
N (ge). In other words, this means that G·e is the largest nilpotent orbit meeting ge.

Our consideration of self-large orbits was motivated by attempts to better understand
Premet’s results on ”nilpotent commuting variety” [6, Sect. 1] and generalise it to some
other situations.

In this section, we give a characterisation of self-large elements. The answer is being given
in terms of the Z-grading associated with an sl2-triple {e, h, f}.

Theorem 2.1. Suppose e ∈ N , and let ge =
⊕

i>0

ge(i) be the N-grading determined by h. Then e

is self-large if and only if ge(0) is toral and ge(1) = 0.

For future use, we record the following simple assertion:

(2.1) ad f : ge(1) → gf (−1) is a bijection, and the inverse map is just ad e.

From this one readily deduce the following

Lemma 2.2. For any nonzero ξ ∈ gf (−1) there is η ∈ gf (−1) such that κ(e, [ξ, η]) 6= 0. In
particular, (ξ, η) 7→ κ(e, [ξ, η]) is a non-degenerate skew-symmetric ge(0)-invariant bilinear form
on gf(−1).

Lemma 2.3. Assume that there is z ∈ gf(−1) such that [z, [z, e]] 6= 0. Then [z, e] ∈ ge(1) and
the orbit G·(e+ [z, e]) is larger than G·e.

Proof. Set vz = [z, e]. By Eq. (2.1), vz ∈ ge(1) and also z = [vz, f ]. Then

exp(−z)(e + vz) = e + vz − [z, e + vz] +
1

2
[z, [z, e + vz]] + . . .

= e− [z, vz] +
1

2
[z, vz] + . . . = e−

1

2
[z, vz] + (terms in g6−1) .

Here the element [z, vz] lies in g(0) and an easy computation shows that it commutes with
e. Hence it also commutes with f . Thus, we have shown that exp(−z)(e + vz) ∈ e + p−,
where p− = g60, and the component of degree zero lies in ge(0) = gf (0).

Set N = exp(g6−2). It is a unipotent group and e+p− is an N -stable subvariety of g. There
is an isomorphism of N -varieties

e+ p− ' N × (e + gf) ,
3



where the N -action on e + gf is trivial, and N acts on itself by left translations. In other
words, for every y ∈ p−, the N -orbit of e + y is isomorphic to N and contains a unique
element from e+gf . For regular nilpotent elements, this is implicit in [3, Sect. 4]. A general
proof is given by Katsylo [2, § 5]. Let ψ(e+y) denote the unique point inN ·(e+y)∩(e+gf).
It is important that the N -action does not affect the zero component of y, y0, whenever
y0 ∈ ge(0). It follows that

(2.2) ψ
(

exp(−z)(e + vz)
)

= e−
1

2
[z, vz] +

(

terms in (gf )6−1

)

The affine subspace e + gf is the transverse (or Slodowy) slice to G·e at e. It follows from
[7, 7.4] that G·e∩ (e+ gf ) = {e}. If [z, vz] 6= 0, then Eq. (2.2) shows that G·(e+ vz)∩ (e+ gf )

contains a point different from e, which implies that e+vz 6∈ G·e. SinceG·(e+vz) ⊃ e+k
×vz

(cf. Proof of Lemma 1.2), we actually have e ∈ G·(e+ vz). �

Proof of Theorem 2.1. (a) The sufficiency is easy. If ge(0) is toral and ge(1) = 0, then N (e) =

(ge)
u ⊂ g>2. Since P ·e is dense in g>2, the assertion follows.

(b) Let us prove the necessity. If ge(0) is not toral, then there is a nilpotent element
x0 ∈ ge(0). Then ẽ = e + x0 ∈ N (e) and ẽ 6∈ G·e, see Lemma 1.2.

In the rest of the proof we assume that ge(0) is toral. If ge(1) 6= 0, then our goal is to find
an element v ∈ ge(1) such that e + v lies in a larger orbit. By Lemma 2.3, it suffices to find
z ∈ gf(−1) such that [z, [z, e]] 6= 0.

Claim 1. The space of h-fixed vectors in gf(−1) is trivial.
For, consider the semisimple Lie algebra s = [l, l], where l = gh. Then e, h, f ∈ s and e is
distinguished as element of s. In particular, e is even in s. Since l = h⊕ s and h ⊂ g(0), we
have 0 = s(−1) = l(−1) = g(−1)h.

It follows from Claim 1 and Lemma 2.2 that the weight decomposition of gf(−1) with
respect to h = ge(0) can be written as

gf(−1) =
⊕

γ∈A

(Vγ ⊕ V−γ) ,

where A is a subset of X(h) such that A ∩ (−A) = ∅.

Claim 2. There are µ ∈ A and weight vectors ξ ∈ Vµ, η ∈ V−µ such that κ(e, [ξ, η]) 6= 0.

By Lemma 2.2, there are some ξ̃, η̃ ∈ gf (−1) such that

(2.3) κ(e, [ξ̃, η̃]) 6= 0 .

Let ξ̃ =
∑

γ∈A aγξγ , aγ ∈ k, be the weight decomposition, and likewise for η̃. Substituting
this to Eq. (2.3), one readily finds that for some γ, the components ξγ and η−γ satisfies the
required property.

Having found such weight vectors, we take t ∈ h such that [t, ξ] = ξ and [t, ν] = −ν. Then

κ([[e, ξ + η], ξ + η], t) = 2κ(e, [ξ, η]) 6= 0 ,

which shows that [[e, ξ + η], ξ + η] 6= 0. Hence z = ξ + η is a required element. �
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Notice that in order to construct a suitable element v ∈ ge(1), we take the sum of two
different weight vectors: v = [e, ξ] + [e, η]. The reason is that a single weight vector is not
suitable, as shows the following

Proposition 2.4. Suppose h = ge(0) is toral and v ∈ ge(1) is an h-weight vector. Then e + v ∈
G·e.

Proof. Let z ∈ gf (−1) be the unique element such that v = [z, e]. Then [z, v] ∈ g(0) and
[[z, v], e] = [[z, e], v] = 0. Thus, [z, v] ∈ h is semisimple. Let γ ∈ X(h) be the h-weight of v.
Then γ 6= 0 (Claim 1), z has the same weight, and the weight of [z, v] equals 2γ. If follows
that [z, v] is nilpotent as well. Hence [z, v] = 0. Therefore exp(z)·e = e+ [z, e] = e+ v. �

Example 2.5. We describe the almost distinguished orbits in all simple Lie algebras and
point out the self-large ones among them.

1. For g = g(V ) classical, the nilpotent orbits are parametrized via partitions of n =

dimV . If λ = (λ1 > λ2 > . . . > λs) is a partition of n, then Oλ stands for the corresponding
orbit. For e ∈ Oλ, a description of ge(0) via λ is due to Springer and Steinberg, see e.g. [1,
Thm. 6.1.3]. This allows us to quickly find all almost distinguished orbits.

(a) g = sl(V ). Here λ is an arbitrary partition and Oλ is almost distinguished if and only if
all parts of λ are distinct. Furthermore, ge(1) 6= 0 if and only if λi = λi+1 +1 for some i < s

[5, Prop. 3.4]. Thus, the self-large orbits are those satisfying the property λi − λi+1 > 2 for
each i < s.

(b) g = so(V ). Here each even part of λ must occur an even number of times. The orbit
Oλ is almost distinguished if and only if λ has no even parts and each odd part occurs at
most twice. Such orbits are even, hence self-large.

(c) g = sp(V ). Here each odd part of λ must occur an even number of times. The orbit
Oλ is almost distinguished if and only if λ has no odd parts and each even part occurs at
most twice. Such orbits are even, hence self-large.

2. For g exceptional, we only indicate the almost distinguished orbits with non-trivial
toral part ge(0). Such orbits exist only in type E, see Table 1.

Table 1: Almost distinguished orbits in En with non-
trivial ge(0)

g label diagram ge(0) dim ge(1) dim ge

E8 D7(a1)
2–0–0–2–0

0

–0–2
t1 0 26

E6(a1)+A1
2–0–1–0–1

0

–0–1
t1 2 30

D7(a2)
1–0–1–0–1

0

–0–1
t1 2 32
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Almost distinguished orbits in En, cont.

D5 + A2
2–0–0–2–0

0

–0–0
t1 0 34

E7 E6(a1)
0–2–0–2

0

–0–2
t1 0 15

A4 + A1
0–1–0–1

0

–0–1
t2 4 29

E6 D5
2–0–2

2

–0–2
t1 0 10

D5(a1)
1–1–0

2

–1–1
t1 2 14

A4 + A1
1–1–0

1

–1–1
t1 2 16

D4(a1)
0–0–2

0

–0–0
t2 0 20

Remark. It turns out, a posteriori, that for g 6= sln, every self-large orbit is even.

3. PROBLEMS AND EXAMPLES

Results of Section 2 show that there is a hierarchy of nilpotent G-orbits:

{distinguished orbits} ⊂ {self-large orbits} ⊂ {almost distinguished orbits} ,

where all inclusions are proper.

Lemma 3.1. Suppose e, e′ ∈ N are self-large and [e, e′] = 0. Then e ∼
G
e′.

Proof. Consider an sl2-triple containing e and the related Z-grading, as above. Since e′ ∈
N (ge) = (ge)

u and ge(1) = 0, we have e′ ∈ g>2 = P ·e. The assertion follows by the
symmetry of e and e′. �

Below we discuss several related problems.

Since N (ge) is irreducible, there is always a unique maximal nilpotent orbit meeting ge.
That is, we obtain the mapping D : N /G → N /G which assigns the dense G-orbit in
G·N (ge) to G·e.

Problem 1. Determine explicitly D, i.e., for every G·e ∈ N /G describe the orbit D(G·e).

For classical Lie algebras, one should expect a recipe in terms of partitions. However, this
seems to be a non-trivial task. Note that if Omin ⊂ N is the minimal nonzero orbit and
v ∈ Omin, then gv contains the nilpotent radical of a Borel subalgebra. Hence, for any
e ∈ N , the unique minimal nonzero nilpotent orbit meeting ge is always Omin.

Problem 2. Describe the image of D.
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By definition, the self-large orbits are those having the property that D(O) = O. In par-
ticular, they belong to Im D. Are there some other orbits? Equivalently, is it true that
D2 = D? At least, my direct computations of D for small ranks provide only self-large
orbits in Im D.

Problem 3. Describe all nilpotent G-orbits meeting ge.

The answer should be helpful for better understanding the structure of the nilpotent com-
muting variety. By Lemma 3.1, if e is self-large, then no other self-large orbits meet ge.

Example 3.2. Suppose g = sln, λ = (λ1, . . . , λs), and e ∈ Oλ. If e is not self-large, then it
is easy to indicate larger nilpotent orbits meeting ge. Namely, if λi − λi+1 6 1 for some i,
then one can replace two parts λi, λi+1 with one part λi + λi+1 (with eventual rearranging
the resulting parts). More generally,

(∗)

{

a substring . . . , ak, (a− 1)l, . . . of λ can be replaced
with the single part ka + l(a− 1).

One can do the same thing with other parts of the initial partition, if possible, but it is not
allowed to apply this to newly obtained parts. However, concatenation of such steps is
not sufficient for constructing D(Oλ). For instance, take λ = (3, 1, 1) for sl5. Then

(3, 1, 1) 7→ (3, 2) 67→ (5) .

That is, O(3,2) meets the centraliser of e ∈ O(3,1,1). However, a direct verification shows
that D(O(3,1,1)) = O(4,1). Note that O(4,1) is self-large, while O(3,2) is not. Similarly, for
g = sl7, we have D(O(4,2,1)) = O(5,2).

Let us justify rule (∗). Taking the respective Jordan subspaces, it suffices to assume that
λ = (ak, (a− 1)l). Let e be a regular nilpotent element of sln with n = ka + l(a− 1). Then
Oλ is the orbit of ek+l, hence the assertion.

Example 3.3. For some classes of orbits, the description of all orbits meeting N (ge) is avail-
able. If e ∈ g = sln is regular nilpotent, then e, e2, . . . , en−1 form a basis for ge. It is easily
seen that if O meets ge, then O = SLn·ek for some k. The partition of ek has k nonzero
parts; n− k

[

n
k

]

parts are of size
[

n
k

]

+ 1 and the remaining parts are of size
[

n
k

]

.

Similar situation occurs for so2n+1 and sp2n, where one has to take odd powers of e.

Example 3.4. For g = sl7, we have Im D = {O(7),O(6,1),O(5,3)}, i.e., precisely the set of
self-large orbits. The full description of D is given by the following data:

D−1(O(7)) = {O(7),O(4,3),O(3,2,2),O(23 ,1),O(22,13),O(2,15)};

D
−1(O(6,1)) = {O(6,1),O(3,3,1),O(3,2,1,1),O(3,14)};

D−1(O(5,2)) = {O(5,2),O(5,1,1),O(4,2,1),O(4,13)}.

Example 3.5. For g = so7, we again have 3 self-large orbits and

D−1(O(7)) = {O(7),O(3,2,2),O(22,13)},

D−1(O(5,1,1)) = {O(5,1,1),O(3,14)}, D−1(O(3,3,1)) = {O(3,3,1)}.
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