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MUMFORD-TATE GROUPS OF MIXED HODGE STRUCTURES

AND THE THEOREM OF THE FIXED PART

Yves Andre

The present paper grew out of an attempt of understanding group-theoretically the

consequences of Hodge theory which are explained in Deligne [4] 11 4, with an eye towards

applications to algebraic independence.

After some preliminaries about representations of linear algebraic groups, we define

and study Mumford-Tate groups of mixed Hodge structures' over noetherian subrings R

of the fieId IR of real numbers. Though in the sequel we restrict ourselves to the crucial

case R = 11 , we refer to the appendix for a study of some pathologies which may OCCUI in

the case of other ground rings. We then turn to a more precise study of Mumford-Tate

groups ariaing from 1-motives (see [4] III 10).

In the fourth paragraph a mild generalization of a reault by Deligne about the

monodromy of variation of Hodge structure is given; we also present our main object of

study, that is Steenbrink-Zucker's notion of a good variation of mixed Bodge structure.

In paragraph 5, we give a group-theoretic formulation of the theorem of the fixed

part proved in [12]: for almost allstalk of a given polarizable good variation of mixed

Hodge structure, the connected monodromy group Hx ia anormal subgroup of the derived

Mumford-Tate group ~Gx' We then sta.te straightforward consequences about

monodromy groups. In the next paragraph, we study how big can H be in ~G ; wex x

end by applying these considerations to the study of algebraic independence of Abelian

integrals depending on some parameters.
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1. Some facts about linear algebraic groups

Let K be a field of characteristic 0, and V ~ KN some K-vector space. We shall

consider a closed algebraic subgroup G of GL(V) = GLN . For non-negative integers m,

v~ v
n, we set Tm,n = Tm,n(V) = V&m GD V ,where V denotes the dualspace of V (with

the contragredient action of GLN ). Hy "representaÜon of G 11 or "G-module" , we shall

always mean a finite-dimensional rational one. The following two properties are

well-known [13; 3.5 § 16.1], [6; I 3.1]:

1) every representation of G is a subquotient representation of a finite direct sum of

Tm,n,s ,

2) G is the stabilizer of same one-dimensional L in same finite direct sum

m.,n.
e T 1 1: G = Stab L .

For any representation W of G , and any character X E XK(G) of G over K, we

denote by WG the fixed part of Wunder G and by WX the aubmodule of W on

which G acts according to x. We write EndGW for the endomorphisms of the

G-module W , 80 that EndGW = (EndKW)G , and we denote by Z(EndGW) ita center.

Lemma 1. Aaaume that G is connected, and let H (G be a closed subgroup. The

following conditiona are equivalent:

i) H <J G , that ia, H is normal in G ,

ü) for every tensor space ~,n, and for every X EXK(H) , (TU,n)x ia stable

under G ,
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iii) every H-isotopical component of any representation of G is stable under G.

H moreover G is reductive, these conditions imply that Z(EndHV) ( Z(EndGV) .

Proof: iii) =t ii) is obvioUB, and we shall first prove that ü) =t i) , independently of the

connectedness assumption on G. We know by 2) that there exists sorne one-dimensonal

m.)n.
L in some ED T 1 1 such that H = Stab L . Let W be the G-module spanned by L.

The line L defines a character X EXK(H) ; we have L ( W X , and

m',n.
W X = w n ($'I 1 l)X = W , according to the hypothesis ii). Let cp be the natural

morphism G~ GL(End W) ; it is clear that H ( ker cp . Conversely if g E ker cp, g

commutes with any endomorphism of W , that is, g is scalar; tbis implies that g

stabilizes L, so that gEH. Hence H = ker r.p is anormal subgroup.

We now prove i) =t iii). Let W be a G-module, and W ' the G-submodule of the SUffi of

its irreducible submodules. It suffices to prove that the H-isotypical components of W '

are G-stable. Let H I ,G I denote the natural images of H and G respectively in

GL(W ') , so that H't> G'. The normality property implies that (End W I ) H I is stahle

under G', inside the G I -module End W I . For w E EndH I W I ,let C
w

be the kerne!

of the commutator map [W,.] in EndH I W I • It is easy to derive the formula

gC = C , so that Z(EndH I W ') = n C is again a G I -module. But
w gw wEEndH/W' w

Z(EndH I W ') is a finite-dirnensional semi-simple algebra over K. Moreover G' acts

on EndH, W ' py g~x) = g~g-lx) ,hence g(cpo,) = gcp 0 g, ,and this gives rise to a

morphisID from G' to the etale group scheme AutK(Z(Endn, W / ) . Hy the

connectedness of G', tbis morphism has trivial target, that is, Z(EndH, W / ) is a trivial

G' -module. Now the H--isotypical components of W ' are given by p.W ' ,where p

runs among the minimal indempotents of Z(EndH I W ') . We just proved that p
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commutes with the action of G' on W ' ,and this implies that p.W ' is stable under

G' .

When G is reductive, we have V' = V , and ihe above proof shows that Z(EndaV) is a

trivial G-module, whence an obvious imbedding Z(EndHV) C Z(EndGV) .

o
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2. Mnm{ord-Tate groups and mixed Badge structures

We first recall BOrne definitions. Let R be same Noetherian subring of IR such that

K := R e11. Cl is a field. Let V be a noeterian R-module. A (pure R-) Bodge structure of

weigth M E 11. on V is a morphism h: Rea(/lRe --+ GL(V eR IR) such that hw(x) is

the multiplication by xM ; here w denotes the embedding CmJR Co.-.+ ReS(/IRCm given

by r: ( (x . Equivalently, it is abigraduation on V e ( =: V( = $ vp,q with
R p+q=M

vp,q = vq,p , or a decreasing filtration FP on V( such that FP fD p(M-p+1)~ V(
I M I

(FP = l vP , -P ). For instance, there ia one and only one Bodge structure of weight

p/~p

-2M on V = (2W".y=I)MR , called "the Tate Bodge structure" and denotes by R(M). A

polarization of the Bodge structure (V,h) of weight M is a morphism of Hodge structures

(in the obvious sense) ,: V e V~ R(-M) such that (2w-vCI)M f(.,h(A).) is a

scalar product on VIR := V e IR . Elements of Tm,n(V
K

) := V&m. ~ (Hom(V,R))'h e Cl
11.

(endowed with the natural K-Bodge-fitructure of weight (m-n)M) which are of type

(0,0) are called "Hadge tensors". In fact Hodge tensors are nothing but elements of

FO(Tm,n(V()) n Tm,n(VK) of weight ° (and thus m = n ).

A mixed Hodge structure (M.H.S) ia a noetherian R-module V , together with a finite

increasing filtration W. of the K-space VK := V e q , and a finite decreasing filtration
11.

F' of V( such that for each n, (Gr'Z'(VK),Gr'Z'(F')) ia a K-Hodge structure ofweight

n . We say that a M.B.S. V ia of~ E ( 11. )( 11. if its Bodge numbers hP,q are °for

(p,q) ~ E , and that it ia trivial if it ia of type {(O,O)}. The category of mixed K-Bodge

structures is an Abelian K-linear tensor category [4; th 12.10] which is rigid and has an

obvious exact faithful K-linear tensor functor 6J: (VK;\Y,F') t-----t VK . For fixed mixed

R-Hodge structure (V,W.,F·) , let < V > denote the Tannakian subcategory generated

by (VK,\Y,F') ,and Wy the restriction of the fiber functor to < V > ; in other words,
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< V > is the smallest full subcategory containing (VK,W.,F·) and the trivial

K-M.B.S. , and stable under EI, GD , taking subquotients. Then the functor All18 (Wy) is

representable by some closed K-algebraic subgroup G = G(V) of GL(VK) ,and fI)

defines an equivalence of categoriea .< V >~ B&RKG ,cf. [6; 112.11] . We call G

the Mumford-Tate groun of (V,Vi,t) .

Lemma 2. a) Any tensor fixed by G in some TID,n ia a Bodge tensor (an element of

FO(TID,n(V()) nWo~,n(VK) ) ,and G is the biggest subgroup of gL(VK) which fixes

Badge tensors.

b) If (V,W.,F·) arises from pure Badge structure (V,h) ,G is the K-Zariski closure of

the image of h in GL(VK) (hence G ia connected), and if moreover V ia polarizable,

then G is inductive.

c) In general, G preserves W. and, the image of G in GL(GrWVK) is G(GrWVK);

in fact G(V) is an extension of G(GrWVK) by same unipotent group (hence it ia

connected)i in particular if V is polarizable, G(GrWVK) ia the quotient of G by its

unipotent radical.

Remark: Thia definition of MumIord-Tate group ia slightly different from that given in

[6; I, 3.2] in the case of pure Bodge structuresi if the weight ia non-zero, however, this

leads to an isogenoUB group.

Proof of the lemma: a) Any invariant tensor tunder G span a trivial representation LK
corresponding to a M.BoS., say L, such that < L > ia equivalent to ~K . Thus L is

a trivial M.B.S., that is to say, t ia a Bodge tensor. By 1.2), we know that G is the

m.,n.
stabilizer of some line LK in EBT 1 1, which corresponds to a M.RoSo of rank one (up to

isogeny), that is, to same Tate Badge atructure L = R(N1) 0 If the weight of V ia zero,
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Nt = 0 and G = Fix(t) for any generator of L . If the weight of V is non-zero, there

exists an integer N such that the weight of Det WN(VK) , 8ay N2 ' i8 non-zero. Taking
y

if necessary VK instead of VK ' one can &Ssume moreover that Nt and N2 have the

same sign. Let r be the rank of the M.B.S. WN(VK) over K, and let t be a generator

-IN I r WlIN I
of the one-dimensional subspa.ce LK 2 - (A WN(VK)) t inside

m.,n.8I N2 1 r WlINtl
(EDT 1 1) 8 (A VK) . Then G = Fix(t) .

b) The arguments given in [6; I, 3,4-6] prove the statement about pure Bodge structures.

c) G preserves W. because each Wk ia a mixed K-Hodge substructure of VK . In fact

since < GrWVK > is a Tannakian subcategory of < V > , G maps onto G(GrWVK).

Now let p be the subgroup of GL(VK) which respects the weight filtration W. ,and N

the subgroup of P which acts triviallyon GrW(VK). Then G C P and N is unipotent.

Moreover G(GrWVK) ia the image of G in PIN . Bence G is an extension of

G(GrWVK) by a (necessarily unipotent) Bubgroup of N . [J

Remark: The description of Mumford-Tate groups by their invariant tensors implies same

restrietions on the group which may occur; for example, G cannot be a Borel subgroup of

GL(VK) ,cf. [6; I 3.2]. However, there are other restrictions on the structure of

Mumford-Tate groups, as we shall see now:

Lemma 3. Let G be the Mumford-Tate group of M.B.S. over R, say V , such that

GrWV ia polarizable. Then the abelianized group Gab = GI 9JG is a torus. The group of

real points oe its quotient Gab/ GabnlGm is compact (lGm = homothety group).

Proo!: Since all morphism in < V > are strict, one has GrWV ' E Ob < GrWV > for

any V' E Ob < V > ,thus GrWV' is polarizable. Take for V' the M.B.S.

corresponwng to a faithful representation VK of the quotient U of Gab by its maximal
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torus. We find that G(GrWV') = 0 (see lemma 2). Thus V' ,which is a successive

extension oI trivial H.S., is also a trivial H.S., and G(V') = U = 0 . Now let

X EX((G) = X((Gab) , and let V& be sorne real plane such that Va: ~ X EI X; after

twisting ä.la Tate, Det V~ corresponds to a trivial real H.S. Therefore Gab/ GabnG}m IIR

acts triviallyon Det ViR ' which yields IXI = 1 . All representations of

Gab/ GabnG}m IIR ' are unitary, so that this torus is compact. 0

Remark. The same argument shows in the same situation that if G is nilpotent, then

G = ~m )( T (or G = T if V is pure of weight 0), where T denotes a compact torus.
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3. Mumford-Tate gropps of I-motiyes

We recall that I-motive over (, denoted by M = [$....!....t E] , ia the following

data:

i) an extension 0 -+ T ---+ E~ A --+ 0 of an Abelian variety A by a torus T,

ii) a morphism u from a free Abelian group .% to E(G:).

One associates to al-motive a mixed Hodge structure V =V(M) = (V1l,W.,F·) , given

by:

Vll = {(t,x) ELie E )( .%/ exp t = u{x)}

Wo=V~

W_1 = H1{E) e", (thus Gr_1 ~ H1(A) ia polarizable)

W-2 = HI(T) e '"
FO = Ker(V~ @ (;~ Lie E) .

MorphiSmB of 1-motives being defined in the obvious way, thia rule M ---+ V(M) defines

a functor which is an equivalence of categories with the category of torsion-free ll-MHS of

type {(O,O),(0,-1),(-1,O),(-1,-1)} with polarizable Gr_I ([4] m 10.1.3). We denote by

G the Mumford-Tate group of V , and by G_1 that of W-1 . Let E' be the connected

component of identity in the Zariski closure of u($) , and let us write

F := (End E') 8 Q.

Proposition 1. Let H <J G such that W~.cW-1 (for instance we may take H = G ). Let

us assume that E is a split extension (E" = A )( T) . Then U(H):= Ker(H ---+ G(W-1))

ia canonically iaomorphic to tt:= HomF(F.u( .%) jH1(E I ) e ~) .

Proof (inspired by Kummer's theory of division points on Abelian varieties): let UB first
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remark that the Q-M.H.S. V~ does not change if one replaces .% by any aubgroup of

finite indeL After such areplacement (which therefore does not affect G), one may

assume that u($) has no torsion, and that E' is the Zariski closure of u($) .

Given m = (t,x) EVy" the map U(H) ----+ W-1 : (J~ am-m depends only on u($)

and defines therefore a G-equivariant homomorphism U(H)....!P..-. Homy' (u($); W-1) .

The vanishing of <p«(J) implies that (J fixes WO' which ia a faithful representation of H ;

thus u = 1 , and this shows the injectivity of cp. Because of Poincare's complete

reducibility lemma applied to products of Abelian varieties and tori, the exact sequence of

I-motives 0 ---i [$ -+ E'] ---i [$ -+ E] ---i [0 -+ E/E / ] ---i °splits (up to

isogeny, i.e. in the category of Gr-M.H.S. ).

From this follows an equality of kernels:

Ker(H -+ G(W-1» = Ker(H -+ G(H1(E')) n Ker(H --+ G(HI(E/E /»
c. Ker(H ' ----+ G(HI (E '))) ,

where H' = H n G(V( [$ -!!...... E'])) . Thus cp factorizes through

HOIDy'(u($); HI(E ') 8 ~) j also it ia easily seen that elements in the image of cp are

F-linear in the sense that r,o{U(H») c. tt .
Replacing E by E' and .$ by u(.%), we may now &Saume that u ia a dominant

embedding and identify .% and u(.%).

Since E is a split extension, we have F ~ EndG W-1 (this is because the
-1

category of products of Abelian varieties and tori up to isogeny is equivalent to the

category of pola.rizable ~Hodge structures of type {(-I,-I),(-l,O),(O,-I)}), whence

Enda t1 ~ (EndF F$)op j also W-1 ' whence t1 (with trivial action of G_1 on F$),
-1

is a semi-tiimple G_i-module. ThuB <P(U(H» is the kernel of some G_I-equivariant
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endomorphism , of tf ; that is to say, there exists f E F such that

(Mu))· m = oim-fm = 0, Vu E U(H), Vm E F$. If CP(U(H)) 4= tf , then ,4= 0 ,

therefore we can find xE FX such that U(H)x = x and x *0 .

We set $x = 7lx, Mx = [$x~ E] ,and we denote by a subscript x the objects

Gx ' Vx etc.... associated to this I-motive. Because U(H)x = x , there ia a natural

injection H = H n G cL GL(W 1)' Since E spUts, W 1 ~ W 1 is a directx x x,- x,- -

SUffi of polarizable pure Bodge structures, so that H <J G is reductive. Therefore W 1x x x~

is a direct summand in the H -module WO' which means that we could choosex x,

x t w 1 so that H x = x : indeed, H acts trivially (like G ) on W O/W 1x,- x x x x, x,-

whose type ia (0,0). Recall that w~.cw-1 ; this implies the corresponding inclusion

H
W x .c. W since H commutes with the action of F . Therefore we get a contraction,x,O x,-l

and dednce that tp(U(H)) = tf .

Corollary. If E splits, with non trivial Abelian part, one has a split exact sequence

o-----t tf ---+ G ----i G(HI(A)) ----i 0 .

Remark. If one drops the assumption that E splits, U(G) can be much smaller than tf .

In "Deficient points on extensions of abelian varieties by ~m 11 J. Number theory - (1987),

O. Jacquinot and K. Bibet have constructed same examples (by means of endomorphisms

of A which are antisymmetric with respect to a polarization) where U(G) = 0 ,

correaponding to some self-duall-motives.
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4. Variations of mixed Bodge structure

In the sequel we shall concentrate on the case R = 71 (see the appendix for other

ground rings). Hy a variation of M.R.S., we shall mean a finitely filtered object in the

category of Iocal systems of noetherian 7l-modules over a fixed connected compiex manifold

x,

together with a decreasing filtration of the compiex bundle V( atta.ched to

V( := Yll e (: by subbundles FP, such that on each fibre Yll s' (W.,F·) induces a,
M.R.S. and that the Hat covariant derivative V aatisfies VFP C FP-l e ni .A morphism

of variation of M.R.S. ia a morphism of Iocal system which respects Vi and whose

compiexification respects the filtration FP pointwise. This yields an abelian category (any

morphism is strict1y compatible with the filtrations).

One calls such a variation (Y71' W., F') a (graded)-poiarizable one if each of the

Iocal systems Gr': V71. cames abilinear from with values in 7l(-n)X which is a

morphism oI localsystem and pointwise a polarization. Any subquotient of a polarizable

variation and any object isogenious to a polarizable one are polarizable. The integral

relative cohomology modules of the compiement of a divisor with relatively normal

crossings in a projective smooth scheme over an algebraic variety X furnish examples of

polarizable variations of M.R.S. over X (see [7j 4.3] for instance). For a variaton of

M.R.S., and for a point x of X , we denote by Rx the connected monodromy grouD, that

is the connected component of identity of the smallest algebraic 8ubgroup of GL(V1ft ),.,x
containing the image of 1:1(X,x) . We also denote by Gx the Mumford-Tate group of the

M.R.S. carried by the stalk V71 .,x
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o
Lemma 4 (cf. [5i 7.5]) On the complement X of some meager subset of X , Gx is locally

o
constant. H the variation is polarizable, then Hx (Gx for any x EX.

Proof: for a polarizable variation of pure Bodge strueture, this is stated in loe. cit. We shall

write down a detailed proof, though (thanks to lemma 2) there is no new complieation in

the mixed case. Let ~ be the universal eovering of (X,O) , for some base point °EX.

The inverse image of the (polarized) variation of M.B.S. is a (polarized) variation of

M.B.S. over ~,whose underlying filtered loeal system (~1l'\'I.) is eonstant. For

t E Tm,n(r~~) ~ Tm,n(tt~:O) , we set

~(t) := {x E 't / t E Tm,n(ttK\ ) is a Hodge tensor}
x "'C.x

Sinee FOWO is a subbundle, ~(t) is an analytic subvariety of ~ , and its natural

projection ~*~(.t) on X is an analytic subvariety too. We set

o
X = X \ ( U r.~(t) ) , which is a (dense) countable intersection of

t
such that ~*~(t )=FX

o
dense open subsets of X . Hy definition of X, any t ETm,n(rttq) , whose stalk at some

o 0

Xo E .,.1 X ia a Hadge tensor, ia in fact a Hodge tensor at every point of ~. For x EX,

G is then the biggest subgroup of GL(VK\ ) which fixes the variOUB tensors inx 'll(,X

o
Tm,n(V1\ ) which litt to FOTm,n(rtt.r). Therefore G is locally canstant on X. We

'll(,X 'L x

now assume that the variation is polarized and we shall see that r 1(X,x) acts (through a

o
finite group) on the spaces HT~,n of Bodge tensors in Tm,n(Vq,x) for any x EX i this

will be sufficient to prove the lemma, since Gx can be described aB Fix(t), for one
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m.,n. 0

element t of one space eHT 1 1. We have seen that HTm,n (for x EX) is thex x

subspace of Tm,n(VG;l,x) compoaed of tensors which litt to FOTm,n(rV() j in particular

this subspace islocally conatant. Hence H~,n is the rational stalk at x a880ciated to a
x

sub-variation of M.H.S. (VH,W.,F I.) of (Tm,~(Vll)' TID,n(W.), Tm,n(F')), which is

actually pure of type (0,0) and which inherits a polarization. This polarization jJ on

VR,x is a scalar product, invariant under J'"1(X,x). Thus 'K1(X,x) factors through the

discrete group Aut VH,x on one hand and through the compact orthogonal group

o(VIR' ,tP) on the other hand; hence the connected group H acta triviallyon HTm,n.,x x x

Remark: a variation of M.H.S. Y is said to be semi-sirnple if for any x EX, the relevant

category < Yx > is semi4iimple (notations of § 2). It is easily seen that a poIarizabIe

M.B.S. ia semi-ßimple if and only if it is a finite direct suro of variations of pure H.S. up to

isogeny. Indeed, it ia easy to see that both conditions imply the reductivity of Gx for any

o
x EX. Conversely, a8sume that for sorne x EX, G is reductive. Then by loealx

o 0

constancy of Gy on X, the same ia true for Gy for any y EX.

Next consider a section u of the inclusion (Wm)y .c. (Wm+1)y in the category

o
X.< V >, and let,., be a path (up to homotopy) from y to a nearby point z iny y,z

Then because of the horizontality of the filtration W. and the Iocal constancy of

(G ) EW
o

,the section 7 (u) deduced by transporting u along,., is a section ofy y Y,z y,z
o

(W ) .c. (W +1) in the category < V >. Thus YIX is a direct suro of variations ofrn z m z z

pure H.S. np to isogeny, which extend to X by continuity. The semi-mmplicity of V

follows from ihia.

We shall now recall a concept introduced by Steenbrink-Zucker [12] (cf. also [15]). Let
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us assume that X is a smooth connected algebraic variety over (. The variation of mixed

Rodge structure is considered gQQQ if it satisfies the following condition at infinity: there

exists a compactification X of X , for which X - X is a divisor with normal crossings,

Buch that

i) The Hodge filtration bundles FP extend over X to sub-bundles rp of the
N

canonical extension V( of V( , such that they induce the correapondign thing for

GrW(YZ,W.,F·) ,

ü) for the logarithm Nj of the unipotent part of a Ioeal monodromy transformation

about a component of X\X , the weight filtration of Nj relative to W. exists.

The fact that these conditions are sufficient to imply those of [12] (3.13) is pointed

out in [15] 1.5) and follows from [16] 4 and [12] A. The following classes of variations of

M.R.S. are known to be good:

1) poIarizabIe semi-simple variations of M.B.S. over algebraic bases [10], [14]

2) relative cohomology modules of the complement of a divisor with relatively normal

crossings in a projective smooth X-scheme, at least when X is a curve) see [12] 5.7.

Moreover, the category of good variations of M.R.S. over X is stable under standard

constructions of linear algebra, $, ~ , duality ... , see [12] A.

Example: smooth I-motives.

R.ecall from [4] m 10.1.10 that a smooth I-motive M over X is the following data:

i) and extension 0 --+ T --+ E --+ A --+ 0 of a (polarizabIe) Abe1ian scheme A

If
X
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over X by a torus T over X

ii) a morphism ll: J --+ E from a group scheme J over X to E i one &Ssumes

that locally for the etale topology on X, S ia conatant and defined by a free ll-module

of finite type.

The construction V(M) = (V7l.,W.,F·) :

V11 = Wo('Y:n) = Me E/ X xE:J defined by the exponential sequence,

W-1 = Ker exp = R1~ 7l

W-2 = (X((T))v

F
O

= Ker (V~ --+!Je E/X) ,

which is fibrewise compatible with that of § 3, yields a polarizable variation of M.R.S. over

X.

Lemma 5. Assume that X is a curve. Then the variation V(M) associated to the smooth

1-motive M ia good.

(Sketch 00 Proof: according to M. Raynaud [C.R.A.S. 262 (1966) 413--416] , there exists a

Neron model of E over the smooth completion X of X , such that 11 extends to

n: ::t I E ; note that the smooth group scheme E/X is not of finite type in general.

\~ -
X

Replacing .$ by a subgroup---ficheme of finite index, which yields an isogenous variation of

M.B.S., we mayassume that ii(~) lies in the neutral component :t> of E . Condition i)

defining good variations is fulfilled with
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In order to verify ii), we may proceed by induetion since we know that both W_1

(hy point 2) above: the geometrie situation) and WO/W (hy duality of I-motives and
-2

point 2) ) satisfy ii).

Granting ii) for W-1 ' it follows from theorem 2.20 of [12] (formula 2.21) that ii)

for Wo reads equivalently:

t i-
N Wo n W-1 CN W-1 + (-2)M_1.-1 ' for all l. > 0 ; here (-2)M-t-l

is the relative weight filtration of W-2 ' which is W-t-l since the unipotent part of the

loeal monodromy of W-2 is trivial (see [12] 2.14; the point is that T is necessarily

locally eonstant). Therefore (*) follows from property ii) for WO/ W .
-2

D
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5. Normality

We keep the notations of the previoUB paragraph. The following result is a simple

consequence of the theorem of the fixed part (Griffiths-Sehmid-Steenbrink-Zueker).

Theorem 1. Let V = (Vy",W.,F·) be a (graded-) polarizable good variation of mixed

o
Hodge strueture over a smooth connected algebraie variety X. Then for any x EX, the

connected monodromy group Hx is a normalsubgroup of the derived Mumford-Tate

group .!t'Gx .

Proof: we first prove that Hx <I Gx ' using the implication ii) ~ i) in lemma 1. Since we

already know by lemma 4 that H (G = GO , it aufliees to prove ii) for H , G . Sineex x x x x

r 1(X,x) acts on the free ll-module TID,n(V1l,x)/torsion, any action of r 1(X,x) on a line

inside Tm,n(VIn ) mllSt fador through {::I: 1} (the only possible eigenvalues). Thus the
"4I(,X

connected group Hx has only trivial rational eharacter.

Replacing X by the finite eovering defined by the maximal aubgroup (of finite index) of

""1(X,x) which faetors through the connected component Hx of the monodromy group, we

are reduced to prove that the largest constant sub-local system of Vfz = Tm,n(V1/) is a

(constant) sub-variation of M.R.S.. For a finite direet SUID of polarizable variation of pure

B.S., this is precisely the theorem of the fixed part of Griffiths-8ehmid, see [3] [10]. For

a general polarizable good variation cf M.B.S. in Steenbrink-Zucker' sense, this is the

theorem of the fixed part of these authors, see [12] 4.19. In fact, in loe. cit., this theorem

is stated for a. one-dimensional basis X, but we can reduce to ihis case by considering

curves in X, see [7] § 4.3.4.0, for the detailed argument.

So far we have proved that Hx t> Gx ; to show that Hx t> .!t'Gx ' it suffiees to prove
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that ~H = H . We know that H ab .c. G ab is a torus (lemma 3). Let X a complexx x x x

character of Hx . We just proved that Hx I(: <] Gx I( , 80 that according to i) =t ii) in

lemma 1 for K = (:, (Tm,ny /J' )X + (rn,ny /J' )'X is stable under G I/J'; it is even the
~,x ~,x x ~

complexification of a real spate W lR stable under Gx IlR . Thus after suitable Tate twist,

Det WIR e lR(n) becomes a trivial Gx IIR-module. 1t follows that Det WIR is a trivial

Hx IIR-module, which yields the equality: IXI = 1 . Therefore all representations of H~b

are unitarYi this means that H:tIR is a compact torus. .

m',n. b
Let Y I CED T 1 Iy f\ a faithIul representation of Ha . A subgroup 01 finite index of

~,x x
m.,n.

~1(X,x) acts on Y I through GL(Y I n EB T 1 Iy 1l,x) which is discrete, and also

through a compact torus. Because 01 the connectedness of Bx ' it follows that y' is a

trivial Hx-module, that is: Hx = Ii'Hx ' 0

As a consequence of these group-theoretic arguments, we recover:

Corollary 1 (see [4j 4.2.6-9]). The loeal system ~ underlying a polarizable variation of

I!!!rn Bodge structure is semi-Bimple; each isotypical component carries a sub-variation of

pure Hodge atructure; the center of End(~) ia purely of type (0,0). For any x EX, the

connected monodromygroup Hx ia semi-simple.

o
Proof: since Hx <] ~Gx for x EX, and since 9'Gx is a semi-simple group (lemma 2),

it follows that B is semi-simple; since B ia locally cOIlBtant on X, H is in factx x x

semi-simple for any x EX. This implies the complete reducibility of the action of

~l(X,x) on Vf\ and the first assertion follows (the normality H <J G would suffice
~,x x x

o
here). By i) =t iii) in lemma 1, applied to B <J G for x EX, we get on each stalk ofx x

each isotypical component of the localsystem ~ I~ a Bodge sub--structure. By

o
continuity, these Bodge sub-structures extend a.cross X\X and patch together to give rise
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to a sub-variation of Q-Hodge strueture on the isotypieal component of ~ . The third

assertion follows from lemma 1 in the same manner.

Corollary 2 (see [4; 4.2.9b]). The radical of the conneeted monodromy group Hx

associated to a pola.rizable variation of M.B.S. is unipotent.

Proof: let P be the 8ubgroup of GL(VtI\ ) whieh respeets the wight filtration W. , and
x ~~

N the 8ubgroup of P whieh acts triviallyon GrW(VtI\ ). Then B ( P and N isx "(,x x x x

unipotent. Moreover the conneeted monodromy group, say GrHx ' of GrW(Yll) at x is

the image of Hx in Px/Nx . Hence Hx ia an extension of GrHx ' whieh (according to

the previous corollary) satisfies GrHx = 9GrHx ' by a (necessa.rily unipotent) subgroup

o

o
Remark: eorollary 2 shows in particular that if G is solvable for some x EX, then thex

variation of M.H.S. is unipotent in the sense of [15].

Remark: theorem 1 applies to the geometrie situations considered in § 4 since in the course

of proving it, we have made a restrietion to eurves.

Counterexample: we produce an example, following Steenbrink-Zucker (see [12] 3.16), to

show that some extra hypothesis upon the variation of M.B.S. is necessaIy.

n 0

Consider a smooth l-motive M. = [11 c n t--+ x t G;m] over X = G;m . Here the set X

is (x,(~ors . The corresponding good variation of M.B.S. V is an extension of 11. by

llU.l inside ,{. We denote by E_2 the generator + i of 11(1) ~ W-2 and by €o any

element of XlI'W-2 ; then < €O,E_2 > spans Vll . For some suitable determination of
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log x (depending on the ehoice of EO)' the section EO:= EO_12Y 7:x E_2 of V( spans
N

FO and extends to a section of V( over !pI . We ~ow eombine notations from § 3 and § 4.

o
For x EX, we have U(Hx(M)) = U(Gx(M)) = tt ~ Ca according to proposition 1. On

the other hand Hx(M) =U(HxCM)) aceording to the previous corollary.

For any entire funetion f, let us now consider the following perturbation yf of

y : (yi,W~) = (Y.:I1.;W.) but (rI)O is spanned by EO+ f E_2 . The corresponding groups

Hx(Mf), Gx(Mf) admit the same description. The following assertions are easily seen to

be equivalent:

a) yf is good

b) f extends analytically at m

c) f is constant

d) yf ':: Y

e) Y' := Hom(y,yf) ia good.

The group Hx(Y') is isomorphie to ~a; viewed as a subgroup of G12 )( GL2

acting on (Yß V e y! ), its "typical" element takes the form
'(JX '(,x

The "typieal ll element of G (y ') takes the formx

a being independent of e if (and only if) yf ':: Y . Therefore we see in this example that

Hx(Y') <J ~GX(V/) if and only if y' is good.
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6. Maximality

o
Let (y7l.'W. ,F') a polarizable good variation of mixed Hodge st ruetures on X. Let x EX

as in lemma 3. By the theorem, we know that Hx <3 .!i'Gx . We now study how big can

Hx be in !i'Gx '

Proposition 2. Assume that for some y EX, Gy is nilpotent (hence abelian, aecording to

o
the remark following lemma 3). Then for any x EX, B =!i'G .x x

Proof: according to the remark whieh followslemma 3, Gy is actually a torus. Since the

assertion is invariant under taking finite coverings of X , it suffices to show that any

tensor t. ETID,ny ... invariant under 'K1(XrX) spans aG-module W on whieh the
1III(1X x x

action of Gx is abelian. 1t follows from the f1fixed part" theorem that Wx is fixed by

o
1r1(X,x) , and the loca! constancy of Gx on X, together with an argument oI continuity,

shows that Wx extends to a eonstant sub-variation of M.B.S., say (V' ,W.,F'·) ,

(Tm,n~, Tm,nh) . In particular the action of G
x

on y~ = y~ is the same as the action

of G on y' 1 whieh is abelian.y y

For an application to smooth one-motives, see theorem 2 below.

o
Remark 1. By the normality theorem, the equality Bx = .!i'Gx (x EX) holds whenever

.91G is ~imple and the variation of M.B.S. does not beeome constant over any finitex

covering of X . Hy way of example, we consider a non-trivial polarized family of Abelian

varieties with many endomorphisIDs over a complex algebraic base X; by this, we mean

that the generic fibre ffJ of f (that makes sense since f is automatically algebraic)
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enjoya the following property: (End f ) ~ ~ ia a division ring which contains a
1] 71.

commutative fielda of degree dim f1] over ~. Then the derived Mumford-Tate group of

the stalk (R1f*~)x can be computed for any Weil generic point x of X (so that

End f = End f ): it turns out that 9JG ~ Res + G, where Z+ denotes the
r] x x - Z /~

maximal totally real subfield of the center of (End fr]) ~ll ~ ,and G is an absolutely

simple group over Z+ (in fact GI (: ~ 8L2 ); thus in this case !iJGx ia simple over ~

(see also the appendix, and [9, lemma 2.3], [1, th. 2]). (1)

o
Rernark 2. On the other hand, the equality Hx = 9JGx (x E X) rnay faH for trivial

reasons, namely when sorne Jordan-Hölder constituent of (V71,W.,F·) is a locally constant

V.M.H.S., with non-abelian Mumford-Tate group. However this is not the only

obstruction to the maximality of Hx in general, a.s we shall now show. (2)

Scholie. There exists a non-isotrivial Abelian scherne A ---+ X over some curve X, with

o
simple geometrie generic fibre, such that Hx f 9JGx ~ Gx/Cm for any x EX.

Proof: we use M. Borovoi's construction of a simple complex Abelian variety A of

dimension 8 with Mumford-Tate group G = ResZ/~SLl (DI )( D2) , where D1 and D2

are quaternion algebras over some real quadratic field 'Z, with the same invariants at

every finite place of Z , and of type compact-non compact (resp. non--eompact--eompact)

(1) Other examples of ~mple M-T-group are constructed in Mustafin's paper cited in
the introduction.

(2) This contradicts the conjectural statement IX 3.1.6. in the author's "G-functions and
Geometry" Vieweg 1989.
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at (I) .(1). In fact, such polarized Abelian varieties (with suitable level structure) can be

put into a family uof Badge type 11 An ---t Xo' parametrized by a Shimura variety

Xc = K\G(R)/r = 1\G
1

(1R)/ 1)( 2\G
2
(R)/ 2 where

K r K r

ai = Resz/~SLI(Di ) J

ri is a torsion-free congruence subgroup in Gi,

r = r 1 r 2 ,

Ki = maximal compact subgroup in Gi(lR) ,

K = K 1 K2 .

o
Now choose y EXo ,let Y1 denote its projection on the curve 1\GI(IR)/ l' and let

K r
2

A ----+ X := y1 )( ( 2\G C~·)/ 2) be the pull-back of An ----+ Xo.
K r

It is elear that H C G2 for every x EX. However G = G = G1)( G2 for everyx x y
o

xE X.

Remark 3. In this example, Z is the center of the centralizer of Hx in End BI(A.x,(l) ,

and this provides by the way a non-trivial instance where the conditions 4.4.11 of [4] II

faH.

(1) M. Borovoi, the Badge group and the algebra of endomorphisms of an Abelian
variety: Questions of Group theory and Bomologica.l Algebra (A.L. Onishchik, ed.)
Yaroslav, Ges. Univ. 1981 (Russian).
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7. Algebraic independence oI Abelian integrals

The heuristic idea underlying this section is that Itperiods" descri1>e the location 01

the Hodge filtration with respect to the integrallattice, so that large Mumford-Tate

groups reflect randomness or periods. We illustrate tbis principle in the case 01 I-motives

(periodB are then Abelian integrals).

Suppose we are given some I-motive M over the algebraic variety X; its generic

fibre M:= M1'] is then ai-motive over the Iunction field ((X).

According to [4] III 10.1.7, there exists a universal extension Mi, oI M by a

vector group:

o 1$ - $

1* 1 1
o---+ Extl(M,~) ---+ E* --+ E ---+ 0 .a

The De Rham cohomological realization of M is by definition HÖR(M) := Co Lie E*.
Moreover, the exa.ct sequence

induces an exact sequence

where H~R(E) is the De Rham cohomological realization 01 the i-motive [0 --+ E] ,

identified with the usual first algebraic De Rham cohomology group 01 E .

Let Kx denote the fraction field 01 the local ring () an at sorne point x EX.
X ,x
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Construction [4] m 10.1.8 then yields a canonical i80morphism:

Let Van the flat connection over V( such that (V()V
an

=y( . According to Griffiths,

Gr'Y Van has only regular singular points (see [3]). It follows that Van itself haB only

regular singular points (because extensions of regular connections a.re regular), henceforth is

induced by a connection V over H~R(M). In fact (*) is a sequence in the category of

((X)-vector 8paces with ((X)/(--eonnection, inducing the Gauss-Manin connection on

Hf>R(E) , and a trivial connection on Hom($',Ga).

By definition of V, we have

Homv(H0
1R(M),K ) = VIt' inside V( 8 K .

X 'L,X ,x X

Let us translate (*) and (**) in more down-to-earth terms, assuming that $ -!!.-.... E ia

injective, and that J is constant over X. Then $' may be considered aB a group of

sections of E Lx, and Y71. is spanned by < 10gE.%' Ker expE > , at least if we

restriet ourselves to the suhset of X where u is fibrewise injective. By means of suitable

hases, a fundamental solution matrix of a Picard-Fuchs differential system of order one

associated to HÖR(M) can be expressed in some neighbourhood of xa E X by:

where "'i (resp. 7j , resp. {k) runs over some

basis of HÖR(E/x)GD 0x,Jto (resp.of (1R1c:n() J

resp. of J ), 80 that the entries of Z are elements of tJ an . On the left side, we
xa X ~O

can recognize the c1assical "period matrixII solution of a Picard-Fuchs differential system
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associated to the quotient HÖR(E); such a matrix Z was already eonsidered by Y.

Manin [17].

Dur next theorem deals with a smooth 1-motive of the form [0 ----i m.

Theorem 2. Assurne that~ fibre of E --L X splits: E = T x A , and that A
xl xl xl xl

is of CM type.

Then the transeendence degree of the ((X)-extension generated by all the "periods l1

,( (J). equals the dimension of the "generie lt derived Mumford-Tate group ~G.
j ij 1

o
Proof: by "generie", we mean the dimension Ö of .9J(Gx(Y( [0 --+ E]))) for any x EX.

The group G is a torus, a.ceording to the CM type hypothesis. Since the variation of
xl

M.H.S. is good (at least when restrieted to eurves, see the example at the end of § 4),

proposition 2 applies to establish the equality ö = dim Hx . Since the eonneetion has only

regular singular points, we get furthennore that 6 is the dimension of the differential

Galois group associated to H:6R(E). Hut differential Galois theory tells us that tms

dimension is the transcendence degree of the ((X)--extension generated by the entries of

the fundamental solution matrix Z (see [1] J [2]). Cl

Dur last theorem is eoncerned with a smooth 1-motive of the form [J u ~ A] J where

A --L X is an Abelian scheme.

Theorem 3. Assurne that, over any finite etale covering of X , the map induced by

u : &% ----i AIfixed part remains injective. Then the transcendence degree of the

G:(X)(( f t.li). )-exten8ion generated by the germ8 of analytic function8 J{k t.li ( {k a8
ij IJ 0

above), equals the dimension of the generie group tt introduced in § 3.
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Proof: using similar arguments !rom differential Galois theory, we can see that it is enough

io show thai

According to theorem 1, we have Hx <J Gx ; thus in order to apply proposition 1, it suffices

H
to show thai W 0~x CW-1,x' At the cost of replacing X by finite etale covering, we

may assume that Hx is the whole monodromy group (not only its neutral component).

We identify .$ with its image in A and consider it as a group of sections of f. Let

H
Vx EW 0Xx j it extends to global section v of :wo ;setting e=Exp v E .% , we thus,

S
e(x) 1

have V(d/dx) 0 "'x =0 , for any section '" of HOR(A/X) e t'X,x and any

derivation d/dx of ((X) . According to Manin [17], tbis implies that some integral

multiple of e belongs to the fixed pan of A . However the hypothesis we have made upon

u implies in turn thai e is torsion, 80 that v Erw -1 .

Remark: tbis result is the geometrie variant of the "Kummer theoryll on Abelian varieties,

which studies the extension of the field of rationality of same torsion points, generated by

the division points of sorne non-torsion points.

Remark: the exact sequence (*) of ((X)-vector spaces with connection splits if and only if

U(Hx) = 0 .
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Appendix

Automorphisms of certain Hadge structure over number fields

So far we have been constructed only with polarized Hodge structures (H7l,h,,) ~ 71,

and we uaed some variants of the argument that the automorphisms of (H71,h, ,) form a

finite group, say G: indeed G imbeds both into the discrete group GL(H71) and into the

compact orthogonal group tJ, = Aut(H71 GD IR , ';( • ,h(i)· )) . H 7l is replaced by the ring

of integers R of some totally real number field , the group GL(HR) is no longer discrete

in generalj even if one tries to use Weil's restrietion of scalars from R to 7l, it could

happen that the "conjugates" of tJ" are not compact. Here we shall study those polarized

Hodge structures over R which arise naturally as pieces of the cohomology of Abelian

varieties with many endomorphisms, and show how the finiteness of G involves

anthmetica.l questions.
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A. Classification of Abelian yarieties with manr endomorohisms

Let X be a complex simple Abelian variety of dimension g > 0 , such that

D = End X ~1l. ~ contains some commutative field E of degree g over q. Since X is

simple, D ia a division ring whose center is denoted by Z. Any polarization ; of X

defines a positive involution * over D; this implies that the subfield Z+ of Z fixed by

* ia a totally real number field. After Albert'a classification (cf. [8] 11), four cases can

occur apriori:

Type I:

Type 11:

Z+ = Z = E = D' X is then called a "Hilbert-Blumenthal" Abelian,

variety.

z+ = Z and for every real place p of Z, D ~ IR ~ M2(1R) .
Z,p

According to [8] loc. eit., there exista a E D , such that the reduced trace TrD/Z(a)

Yanishes, and such that the inyolution * is giyen by x* = a [TrD/ Z(x)-x] a-1 for any

x ED . Since D ia a quaternion algebra over Z, there exists b ED , such that the

reduced trace TrD/Z(b) vanishes, and which anticommutes with a. We then have

*b = b . So Z(b) is totally real and one can assume that E = Z(b) .

Typem: Z+ = Z and for every place p of Z, DZ,p ~ IR is isomorphic to the

Hamilton quaternion algebra (H • In fact this case does not occur under

our assumptions on X. Indeed the repreaentation of

Enrlm [BI(X
an ,IR) ~Z IR] over BI(Xan,IR) €Oz IR yielda, after,p ,p

complexification, two copies of the standard representation of 802

([9, lemma 2.3]). This representation thus decomposes into four
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sub-representations of degree one, whose endomorphism algebra has to

be IH G\ ( ~ M2(() : this is impossible.

Z is a totally imaginary quadratic extension of Z+ . Either

[Z:~] = 2g in which case X is said of "CM type" and we can choose

E = Z+ ,or [Z:~] = g and we can assume that E is a totally

imaginary quadratic extension of its subfield E+ fixed by * ,whence

the following diagram of extensions:

since [D:(l] ~ 2g, [E:Z] ~ [D:E] (from the commutativity of E ),

and [E:~] = g , we find that [E:Z] ~ 2 .

Except in the CM case, E is a maximal commutative subfield of D , and in any case we

shall write E+ for the subfield of E fixed by *, K for the Galois closure of E+ in IR,

and R for the ring of integers of K .
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B. The Badge structure H~ over R

Let U8 pick some primitive element , of E+ over ~ in the order (End X) n E+

of E+ . ThiB element acts via ,. on the free R-module H1(Xan,R) , and its

characteristic polynomial has rational integral coefficients and the same roots as the

minimal polynomial of 'j that the characteristic polynomial thus equals some power of

this (separable) minimal polynomial, so that same essential R-submodule of H1(Xan,R)

decomposes into a direct sum of Iree R-modules H~, the indices running among the

imbeddings of E+ into K. Let L be the compositum in ( of K and the image of E

through some complex imbedding, so that L =K except in the non-eM type IV case.

Then the rank of H~ is 2g/ [E:~] = 2 [L:K] . The free R-module H~ is naturally

endowed with a polarized Hodge structure (h~,t/J~) of type (0,1) + (1,0) over R, and

there ia an isomorphism of polarized K-Hodge structure

(Hl(Xan,K),h,~)= + EB (H ~R K, h , t/J ) . Furthennore when L f K j tP u
~:E ----+K J.' ~ J.' t-

comes Irom a L-hermitian form cpJ.l on the L-vector space HJ.l ~R K .
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C. Automorphisms Qf (H ,h ,~ )p p p

Proposition 3. The group G of L-linea.r automorphism of (Hp' hp' 1/1p) is infinite if and

only if one of the following statements holds:

i) K = L , and there exists some non-totally positive element k E KX such that

the multiple {i.e ofthe Weil morphisID e = hp(F1) on Hp SR IR

comes from an endomorphism of Hp SR K ,

ii) K =F L and the direct summand (Hp SR K) SL ( of Hp SR ( is

bihomogeneous.

We begin the proof with the case K = L .

Let us choose an R-basis of H such that the Riemann form t/J = <.,. > ia representedp p

by the matrix [~ ~J for some e E RX
, and let us eonsider the matrix of C in ihe basis

(viewed as a basis of H~ 0 R IR ): since C
2

= -1 , ibis matrix has the shape [-~ -3J '
for (a,ß, 7) E 1R3 satisfyjng the equation a1 = 1 + r? .It follows that a1 =F 0 . The

symmetrie form <. ,C( .» is represented by Q= [,& ~J .Let () E G I so that

(J E Aut Hp n O(Hp S lR, Q) , and let us write 0ij ER for the coefficients of the matrix of

(J • The equation t 9Q (J = Q is equivalent to the system

a(~1-1) + 2ß (J11(J21 + 1~1 =0

(E) 0911 (J12 + ß((J12 921 + 911 922 -1) + 1921 922 = 0

09~2 + 2ß 912 922 + 1( 9~2-1) = 0 .

a) Let us first deal with the case when· e is defined over some totally real algebraic
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extension of K . Then O,ß,1 are totally real algebraic numbers. Let (J E Gal(K/~) ,

and let 0(J, pr, ,(J be conjugates (necessarily real) of a,ß,1 respectively, above (J.

[
a(Je(J {J7e(J ] .

Setting Q(J = {J7e(J ,(Je(J , we find t f!'Q(J f!' = Q(J , and det Q(J = (e(J)2 > 0 ,

80 that f!' belongs to the compact orthogonal group 02(Q(J). Hy restriction of

scaJars ala Weil from K to ~, G imbeds into (ResK/~ Aut(HJl SR K))(71)

(which is discrete) and into TI 02(Q(J) (which is compact), so that G is finite in
(J

this case. Here we point out that the CM type is a special case: indeed the Hodge

bigraduation of HJl SR 4: comes from the CM decomposition

H SR L' =' [Hl(Xan,~) S L'] 4B [Hl(Xan,~) S L'], for same complex place
Jl -Z,v Z,V

11 of Z over Jl (here we denote by L' the compositum K· v(Z) whihc is a

quadratic totally imaginary extension of K ). Let us write L' = K(h) with

h2 = -g EIR- j the matrix of C (in some basis a.dapted to the above decomposition)

reads [i ~], thus C ia defined over the totally real number field
o -1

K( {g) = K(ih) .

b) Let U8 now assume that a,ß,1 span a line over K; since a14= 0 , we write

ß= ba, 1 = ca, for some (b,c) E K )( K
X

• This yields 0
2 =~ EK n !R+ .

a-b

Getting rid of the above possibility 2), we are reduced to the case i) of the proposition

with k = c-b
2

. Since any (J E G commutes with ~ C = [-~ -~ ] ' (J has the form

[

X -cy ]
for x,y,cy and 2by ER. The set of all these matrices is an order R'

y x+2by

[

X -cy ]
in the field K' = K({TiCC) = K(io) , as is seen by identifying y x+eby with

(x+by) + y{01=C . Since () ia invertible, it is identified with some unH in R' . The

equation t OQ 8 = Q then reads X2 + 2bxy + cy2 = 1 , that ia

(x+by) + y{01=C E Ker NK , /K .
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Hut NK , /K has maximal rank as a morphism between unit groups (R')x --+ RX
.

HyaBsumption, K' is not totally imaginary, so that by Dirichlet's theorem

rk(R')x > rk RX
• Thus the kernel of NK' /K in (R')x contains infinitely many

elements, and so does G in tbis case.

c) It remains to deal with the case when Q,ß,Y span a K-vector space of dimension at

least 2. This implies that &11 minors of (E) vanish. In particular,

(1) ( oi1-1)( 012021 + 011°22- 1) = 2oi1 °12 °21

(2) (~2-1)( 012021 + 011 (J22-1) = 2012022~2

(3) (~2-1)(o;2-1) = ~2~1

from which it follows that (012021 + 011 022-1)022-1)~2~1 = 2011 oi2~1 922 '

so that 012021 = 1 + 022011 if 012021 t 0 . Squaring, we find (using (3) again)

that 011 = -022 in tbis case, and from (1) we get 812 (J21 = 1-oil i that is,

det 0=-1 and tr 8 = 0 , from which it follows that 02 = 1 . If 812 821 = 0 , we

get from the vanishing of the other minors) that eil = ~2 = 1 , and moreover that

811 822 = -1 if 912 and 921 da not vanish simultaneouslYi so we are reduced to

the previouB case where 911 = -922 ' except if 0=:1: 1 . From this deacription we

see that any two elements of G , distinct from :I: 1 , are inverse up to signj this

implies that G is finite (with at most 4 elements).

We now turn to the case K t L .

Let UB choose aR-basis of HJj such that the L-hermitian form tpJj = <.,. > is

represented by"the matrix [~ ~ ] ,für some (e,f) E (Rx )2 . We identify L ~K IR with (:

by means of an element h of L such thai h2 = -g E K n IR' i since L is totally
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imaginary (like E), g is totally positive. The Weil morphism Cislinear with respect to

the complex structure induced by LeK IR on HJj eR IR , since it commutes with the

action of L .

a) Let us first deal with the case when (HJj eR K) e L ( is!!Q1 bihomogenoous. Through

the isomorphism (~L e K IR , (HJj eR K) e L ( can be identified with the complex plan

HJj eR IR ,and C denotes the two eigenvalues :I: i on HJj eR IR . Since 1/1Jj is a

morphism of the Hodge structure and since C ia (--linear, C belongs to the unitary group

of CPJ.' . Using this property, and the equations C2 = -1 and tr C = 0 , we get the

[
ht 7 ] 2.

following matrix representation for C: _0 -ht far t E IR, (a,1) E (: J and Wlth the

following equation:

aj + gt
2 = 1 and fii = ei .

Let us write a = v + hw ,for (v,w) E tR2 . Taking into account (*), we find the following

matrix representation for the symmetrie form Re h/g < · ,C( .» in the real basis of

HJj eR IR attached to the chosen complex basis:

--et 0 fw -fv

Q = 0 -ge t Iv gfw 3for (t,v,w) E IR .Jj
fw fv ft 0

-fv gfw o gft

Since QJj has maximal rank and index 0, the first main I-minor is nan-zero: t *0 . Let

us first assume that Q *0 . Since 8 E G commutes with C, we find that 8 has

folIowing matrix representation:

[x - 7Y/ a ] = [x - f ay/ ae ] ,for (x,y) E L2 .
y x+2hty/o y x+2hty/a
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F th th el t ·0 t" [e 0 ] (J -- [e
O

°f ] vields the systemur ermore e r a 1 n r1 0 f ~ ...

[

xi + f / e • yY = 1 (1)

xX +_(f/~+ 4gt 2~alih'Y" = 1 + 2ht/ aO<axY + axy) (2)

2htyy = axy - oxy (3)

Eliminating xi between (1) and (2) and yY between (2) and (3), one obtains iy = 0 ;

reporting tbis equation in (1) and (3) gives y = 0 and xi = 1 . (Note that since () is

invertible, x is a unit in L).

If on the contrary Q = 0 ,then 1 = 0 according to (*), so that 0 ia diagonal and

xi = 1 again. In both cases, to show that G is finite, it suffices to prove that the unH in

Ker NL/ K form a finite group. Since L is a totally imaginary quadratic extension of K ,

the unH groups UL and UK have the same rank [K:~] -1 , thus the desired statement

comes !rom Dirichlet '8 theorem.

b) It remaine to deal with the case ii) of the proposition. In this case C is the homothety

with scale z i E L ~K IR on Hp SR IR . The matrix of the symmetrie form

Re h <. ,C( .» in the~ basis of Hp a:oR IR attached to the chosen complex basis reads:

Q = Vi [ e ge f 0] g > 0, e,f Eur .
o gf

Since Q ia definite (positive or negative) it follows from Sylvester's eriterion that the

product 6163 of the first and third main minore of Q is positive: ef> 0 .

Let K I the imaginary quadratie extension of K generated hy v=err. We shall show

that K I ia not totally imaginary. Indeed, according to a resuIt of Shimura [11, th. 5] ,
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there exists at least one pIace up of K (u E Ga1(K/~)) such that H falls into case
UJ.'

a). We apply Sylvester'B eriterion to the matrix

-eUt 0 t'w -rD"v

Qup = 0 -gueu t t'v gU fUw

f7w fUv t't 0

-(Iv gU fUw 0 gUfU t

considered in ease a) (for H instead of H ).
up l'

The produet 0163 iS -{e2f)u t 2({'v2 + ('gUw2 + gUeU t 2) . Because of the relations (*),

this can be simplified: 010
3

= -{eu{'t)2eu{' . Wefind eU
{' < 0, so that K' is not

totally imaginary. Let () E G and 0 its L-determinant. The relation t7} [~ ~]

[
a -{f/ e)C6]

(J = e ä6 for the matrix of (J, with 5ö = 1 and eaä + fee = e . To show that

G ia infinite, it su.ffieea to consider the case where a,e E R and 0 = 1 . Then the set of

[
a -{f/e)e] 2

matriees e a with (a,e) EK ia a field isomorphie to K' . The aubring

consisting of matrices with entries in R ia an order R' ,and the subgroup of (R')x

consisting of unimodular matrices satisfying ea2 + fc2 = e is the kernel of NK , /K in

(R')x . The same argument a8 in the first part of the proof (K = L , case b), shows that

this group is infinite. This completes the proof of the proposition.

o

Along the lines of [4; 11 4.4.8], proposition 3 can be used to reprove the conjecture of

§ 6 for families of Abelian varieties with many endomorphisIDs. The point is that, except in

case ü), the Hodge filtration of HJj is locally constant if and only if the monodromy is

finite. Indeed, the Ioeal constancy of F' implies that the monodromy group (whose
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component of identity is semi-fiimple) imbeds into the automorphism group U which is

finite except in cases i), ii) and which is a torus in case i); here U denotes the Zariski

closure of the group G determined by proposition 3.
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