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Minimal immersions of projective spaccs

into spheres
Hajime URAKAWA

Introduction and statement of results.

The purpose of this paper is to show positivity of the
dimension of the parameter space of equivalence classes of all
full isometric minimal immersions of the complex projective space
P’(C) (n Z 2 ) or the guaternion projective space P2(H) into
spheres.

Let (M,g) be a d-dimensional irreducible Riemannian
symmetric space of compact type. An isometric immersion g, of

£+ 1

L2
(M,g) into the unit sphere sl in R'

if for every normal deformations ?t of  with ?O =® , the

first variation of the volume (M, §t*g°) is zero at t=0, where

is called to be minimal

L2
go is the standard@ Riemannian metric on S1 with constant curvature

one. For a convenience, we call that a minimal immersion § of

(M,g) into s%c:r3*1 is full if the image $(M) is not contained

2+1

in a hyperplane of R , and that two such immersions ?_1 ' @2

L
are equivalent if there exist an isometry §p of 5, such that
2,=809, .

The first main problem of minimal immersions would be to
determine the set 0 of equivalence classes of all full isometric
minimal immersions of M into Sf . This problem was solved by
do Carmo and Wallach [2] , and Li[13].

We explain the standard construction of minimal immersions
of a compact irreducible Riemannian symmetric space (M,g) into

(ct. [2],05])
spheres| : Let £§g be the usual non-negative Laplace operator

of (M,g) acting on the space c®(M) of all real valued c”

functions on M. We denote by

‘“hie 1imwnl Te (aimaAatnids U R Meayv 1T Al Yl med 32000 (il tradh e o &0l



0=50< A1< _A_z(-o. <Ak< s o0 ’

the set of all mutually distinct eigenvalues of _ég , and by vk

—

the eigenspace of Ag with the eigenvalue A, . Put aim(v¥) =

m(k) + 1. For each k 2 1, let {f

0" "" 'fm (k)} be an orthonormal

basis of V* with respect to the inner product (¢,Y) = s P(x)Y (x)dp
- M -

with the canonical measure dl‘i of (M,g) normalized by

J d},_; = m(k) + 1. Then the mapping Xy of M into ]Rm(k)J'1
M
defined by
. m{k)+1
Xy 2 M3p+——(£,(p) EERE S (P))ER
A
gives a minimal isometric immersion of (M,"—g g), d=dim(M), into

S m(k)

the unit sphere 1 . Then the second main problem would be :

Problem (A). Is the minimal immersion Xy rigid ?
full
Here the rigidity means, if ® is another|{minimal isometric

m(k) -
54

Now the results of do Carmo and Wallach, Li are the following :

immersion of M into , then § is equivalent to X -

Theorem 1 ( cf. do Carmo and Wallach[zj, Li [13], Ohnita [7])
1) Assume that there exists a full isometric minimal

immersion g of (M,Cg) with a positive constant C, into a unit

Then, for some k21, f < m(k) and C = % .

sphere Sf’ .
2) The set 0 of equivalence classes of all full isometric

A
minimal immersions of (M,-’—]c;- g ) into Sg' (2 < m(k) ) can be

smoothly parametrized by a convex body L in a vector space w2

such that the interior points of L correspond to those [2] for

which £ = m(k), and the boundary points of L correspond to those

L[i] for which £ < m(k).

Theorem 1 answers the first problem and Problem(A) is reduced



in some sense to the following :
Problem (A'). Whether or not is dim(wz) positive ?
In fact, do Carmo and Wallach showed :

v
Theorem 2 ( cf. quarmo and Wallach [2] )
Assume that (M,g) 1is the d-dimensional unit sphere of

constant curvature. Then

L dim(w,) Z 18 for @ 23, and k 7 4.

- Therefore the rigidity does not hold in the situation of Theorem 2.

On the contrary,

Theorem 3 ( cf. calabi [12], do Carmo and Wallach [2]))

In case of M = 52 ; or sd (d23 ) and Xk < 3, every full

Ak L
isometric minimal immersion @ of (M,=5 g) into Sy is

'{fqﬁivalent to Xy o that is, the rigidity holds.

Theorem 4 ( cf. Wallach [10] , Mashimo [5],[6] )
In case of M = Pn(C), Pn(H), or P2(Cay), the rigidity holds

in some sense for k = 1 , i.é., dim(wz) = 0 for the immersion Xqe
L- .

In the other cases, the problems (A), (A') have been left
to be open because of a technical difficulty to estimate the
dimension of w2 below. In this paper, we answer partially

problems (A), (A') as follows :

B Theorem B. Assume that M is the complex projective

space P"(C) = SU(n+1)/S(U(1)xU(n)) with the SU(n+1)-invariant

Riemannian metric g¢g. Then we have

dim(wz) Z 9 for n 22, and k 2 4.

That is, in this case, the rigidity does not hold and arbitrary



two full minimal isometric immersions of (Pn(C),§§ g) into S1m‘k)

can be deformed into each other by a smooth homotopy of minimal

| immersions of the same type. Here m(k)+1 = n(n+2k)(iﬂ%¥:%%i)2 .

p—

Theorem C. Let Pz(H) Sp(3)/sp(1)xsSp(2) be the
quaternion projective space of real simension 8 with the §Sp(3)-

invariant Riemannian metric g. Then we have
dim(wz) 2 29,007 for Xk 7 4.

That is, in this case, the rigidity does not hold -and arbitrary

A . m(k
two full minimal isometric immersions of (Pz(H),—% g) into S1 (x)
can be deformed into each other by a smooth homotopy of minimal

'
L}mmersions of the same type. Here m(k)+1 = :t:g;ié?;?;; (2k+5).
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§§ 5,6 and to Mr. Y. Ohnita ‘who pointed some mistakes in the
first draft and gave'valuable comments. The author wishes
also to thank the Max-Planck-Institut fiir Mathematik for its

hospitality.



§ 1. The standard minimal immersions.

In this section, we give the notion of the standard minimal
immersions after [2], [5].

Let M = G/K be a d-~-dimensional irreducible symmetric space of
compact type, and let g be a G-invariant Riemannian metric on M
= G/K. We denote the set of all mutually distinct eigenvalues of
the Laplace-Beltrami operator ég of (M,g) acting on the space

(-] [ ]
C (M) of all real valued C functions on M by
0 =29 ¢ 27¢ Apdaaad Ay one

and the eigenspace of _Ag corresponding to the eigenvalue &k by vk

Put dim(Vk) = m(k)+1. We give the Lz-inner product ( , ) on Vk

by (£,h) =J f h d}i « NEW = (£, f)1/2, where dp is the canonical

measure of (M,g) normalized by J d)u = m(k)+1.
Suppose that k 2 1. Let {f f1""'fm(k)} be an orthonormal

basis for Vk with respect to ( , ) and define a mapping Xy of

Rm(k)-r‘l by

xk (P) = (fo (P} If1 (P)-: LA Ifm(k) (P) ) ’ peM’

The action of G on M induces a natural one on Vk by (6-£f)(p) =

1 m(k)

f(b_'- pP),6€ G, peM. The orthonormality of {f }l 0 and the

homogeneCity of M imply the image Xy (M) 4is included in the unit

sphere s1m(k) of the Euclidean space ]Rm(k)”. Moreover by the

G-invariance of the metric g and the assumption of the irreducib-
ility of the linear isotropy action of K, the mapping Xy is an
immersion and the induced metric ¢ = xk*go coincides with the metric

g up to a positive constant C, where 9 is the standard

Euclidean metric of Rm(k)”. Since X 3 (M,g)—> S1m(k) is an
1

isometric immersion and the Laplace-Beltrami operator é'é' =C Qg

~ 2x
of (M,g) satisfies Qa £, ¢ £y, i=0,1,...,m(k), a theorem of



Takahashi [9] implies that Xy is a minimal immersion of (Mlal

A
into a sphere of radius %9 . It follows that C = :g . The
-k
isometric minimal immersion X, ¢ (M,E)—_+ s1m(k) is called the

k-th standard minimal immersion. Note that another orthonormal

k

basis of V gives also an isometric minimal immersion of (M,E)

m(k)
1

to the immersion x

into S , which is equivalent in the sense of the introduction

k.
Now we choose an element f in VX as f(eX) ¥ 0, and put

o= £ '/"f 'l , where dk 1is -the Haar measure

on K normalized by J dk = 1. Then kf0 = fo, k€ X, and f (eK) X(

f kadk and f

That is, the G-module vk is a class one representation of the
pair (G,K). We can take an orthonormal basis {fi}i;g(k) of VX

in such a way that (f0 (eK) ,f1 (eK),.. "fm(k) (eK)) = (1,0,...,0),
because there exists an isometry A of the Euclidean space rPx)+1

such that A(xk(el()) = (1,0,...,0). Then it can be proved that

(1. 1) xk( §K) = (fo(i‘.K) ,f1 (§K)'°°"fm(k) (§K)’ = §.'f0'

for every €¢G , under the identification llRm(k)+1

9 (ao’..o,am(k)’
—_ K)o

i=0 1
can be obtained as the orbit Xy (6K) = g-fo + 6€G, in the class

i € Vk Therefore the standard immersion x,

one représentation v over R of (G,K).

The differential x of X, can be expressed in terms of the

k*
Lie algebra g of G as follows : Let k be the Lie subalgebra

of g corresponding to the Lie group K, and let p be the ortho-

- —

gonal complement of k in g with respect to the Killing form of

g . We identify p with the tangent space T /M by P Xr—X y€T it

'

and the tangent space Ts._ka at g-f0 with Vk itself. Then
=70

the differential x of Xy at S6K€ G/K 1is given by

k*SK

o 7]

(.11 %ok TeaXey) = G ¥k (g XPEXIK) g = S (X-£o),



where T, 1is the differential of the translation by & : G/K 3¢'K

F—>6¢'K € G/K. Moreover we give an inner product ( , ) on p
A
from the G-invariant metric '5 = 'é——k g by
~
(X gr¥ex) = (X,¥), X,Yep.

Then the mapping x, is isometric from (M,5) into VX if and only
if

(1.2) (8 X-£,,6 x-£f5) = (X,X) , Xe¢p , and §€G,

-

by (1.1) and the above identifications. The mappihg X, is
immersion of M into Vk if and only if the mapping p>3 x»,_,ax-foevk

is injective.

§ 2. Parametrization of minimal immersion.
In this section, we preserve the notations in §1. Let (M = G/K,¢

Riemannian
be an irreducible|symmetric space of compact type and let Xy be the
k-th standard minimal isometric immersion of (Mca’) into S1m(k).

Then we have :

i Theorem 2.1 ( c£. [2], [7], [13])
1) Assume that there exists a full isometric minimal immersion
of (M,Cg) with a positive constant C, into a unit sphere Sy4 -
Then , for some k21, ¢ m(k) and C = %}5 , where @ = dim(M).

2) The set (U of equivalence classes of all full isometric
minimal immersions of (M,?‘—;5 g) into Sf’ + £< m(k), can be smoothly
parametrized by a convex body L 1in a vector space W, such that
the interior points of L correspond to those [$] for which L=
m(k), and the boundary points of L correspond to those [@] for

which £<¢ m(k).

.

The sets W L. in the above theorem can be constructed as

2'



k

follows : Let V \'/ be the K-invariant subspaces of V

o' "1

defined by

By the G-invariance of the inner product ( , ) of Vk, the subspaces

V, and V., are mutually orthogonal with restect to (, ). Put

0 1
V' the orthogonal complement of the sum v0+v1 in the space Vk

with respect to ( , ). Then we get the decomposition of Vk as

K-modules :
(2.1 V' =v, @V, @V .

Let P1 be the projection of vk into V under this decomposition.

1
Let S be the set of all linear ( over IR ) mappings of V'k into

itself which are symmetric with respect to' ( , ). Define the
G-actionon S by 6¢<A=6A 9_-1 +8€G, A€ S , and the G-invariant
inner product (, ) on S by (A,B) = trace(AB), A,B€ S.

let S be the set of all symmetric linear mappings of V1 into

1

itself. The set S1 can be considered as a subset of S.

For every u.v&vk, define a linear mapping P by P (t) =
u,v u,v

=
a,v - :_,(Pu'v + Pv,u’ belongs

R uevk, coincides with S.

(u,t) v, t€ v. Then the mapping Q

to S and the linear span of Q‘_1 u
’

Moreover Qu,v € Sy for u,veV1 (and the linear span of Qu,u' uev,,

coincides with S1. Note that

(2.2) (B'Qu,u) = (B(u),u) , for every B¢ S and u(-vk

by definition.

Now let W, be the linear span of the G-orbit of S, in S

1
and wz = {Ae S ; (A,w1) = O} its orthogonal complement.



Define the sub&et L of W by

2
L={cew,;c+130]},

where 1 is the identity mapping of Vk and C+ I 2 0 means
that ((C+I)(u),u) 2 0 for all ue vE.
Theorem 2.1 can be proved by the same manner as Theorems 1.3

and 1.5 in [5] ( cf. see Li [13]).

§ 3. Estimation of the dimension of w2.

We preserve the notations in §2. Consider the natural
isomorphism Q of the symmetric square 52Vk of vk onto S
induced by 82Vk Su-v y——-)Qu_'ve S. The G-action on Vk is extended
naturally to Szvk, and the G-invariant inner product ( , ) on vk

can be extended to the G-invariant one on Szvk. Since we have

§-Qu,v ~ gou,v g = qu,sv » and

(Q (u-v,u'.v'), for s¢G, u,v,u',v'e Vk,

u,vl ul 'Vl) -

the mapping Q is G-isomorphic and isometric. Moreover the image
Q(52V1) of the symmetric square 82V1 of Vv, in (2.1) by Q

coincides with S Therefore the space W, is identified by Q

1.
with the linear span of the G-orbits of szvi in s?v® and W, is
also identified with its orthogonal complement in Szvk.

Furthermore, in order to estimate dimension of wz, we consider

its complexification wzm. We denote by wm the complexification of
a real vector space W. We extend the inner product ( , ) on szvk
to the hermitian inner product on (Szvk)lr = Sz(Vkm). Then W1‘r

is the linear span of the G-orbit of 82(V1m) in Sz(Vkm) and

T

W,

is its orthogonal complement in sz(vkm). We have :

Lemma 3.1.

Let W be the sum of G-submodules of s2(vk¢) over €, not

3



10

containing the K-irreducible components of Sz(v1m). Then Wq

c
2 L]

is included in W
Proof. It can be proved by the same manner as Lemma 5.4
in [2]. We have only to consider unitary representations instead

of real orthogonal ones of compact Lie groups, making use of the

Frobenius reciprocity theorem as in [1], [3]. Proof is omitted.

By Lemma 3.1, we can give an estimation of dim(wz) by the

analogous way as in [2]. In order to estimate dim(W;), note that,
c

if the symmetric space M = G/K is of rank one , i.e., a maximal
abelian subalgebra of g contained in P is one dimensional, then
every eigenspace of the Laplace-Beltrami operator is an irreducible
class one representation of the pair (G,K) over R and its
complexification is also irreducible. Therefore we can make use

of a finite dimensional unitary representation theory of a compact

Lie group to estimate dim(w3), which are carried out in the following
T

sections, in case of projective spaces.



$ 4, Complex projective spaces (I).

4,1, In this section, we use the following notations:

G = Su(n+1), n 2 2,
det
K= s(u(1)xu(n)) ={[1/°e : :.] ; §€U(n)}.
g = su(n+l) = {xem .(€) ; "X+ x = 0, trace(X) = o},

k

{[- tr:cé(X) :]; X € ”n([) , t-i + X = 0}9

B(x,¥) = 2(n+1) trace(XY), X,Y€ég , the Killing form of g ,

o -;1 ses =2

. n

z ®
B= :1 0 E”n+1(m) ’ z1pooo.an E},

z

n

2 )

€, 0 ' n+1
T = 0 .- Eﬂn+1(t) : gie E,I§i|=1, gj; Ei =1 ¢,
§n+1
E s{'H(X1,X2,...,Xn+1) ; Xiem ’ §:+1 xi = o}'
X4
vhere H(x1,x2,...,xn+1) = 2K[-1 x2. 0 . Then we can identify
o °*.
Xnet

pn(c) with the coset space G/K having the G-invariant Riemannian

metric induced from the inner product (X,Y) = - E%T B(X,Y) , X,Y¢ P .

Define an element Li. in the dual space ﬁ“ of t over R by
53*“x1.x2,...,xn+1)k—~9xi, 1€14 g n+1, and introduce a lexicographic

order > on t° in such a way that
Z-L1 2 &2>"'>5n> 02 249 -
Put

ole) '{/.\' );f.: mgAg €85 m€2Z (1gign), "‘1?=’“23”'Z'"n2°}'



D(K) = { A= TN 7 5 k€ Z (1¢ign), k2ky2e e+ 2k 20].
Then D(G) (resp. D(K)) is the set of all dominant integral forms of
G (resp. K ) wuwith respect to t . Thus there exist a bijection
between a2 complete set S(G) (resp. O(K) ) of nonequivalent irredu-
cible modules of G (resp. K ) over € and the set D(G) (resp. D(K) )
assigning A€ D(G) (resp. D(K) ) to an element V = V{_\E.B(G)
(resp. ® (K) ) with the highest weight A. Under the above situations,

we have

B Theorem 4,1. ( the branching theorem )

Let V = VU, be an irreducible G-module over { with highest

veight A = Z‘," miXg s m1>m2>...2mn20. Then V = Vp decomposes
i=1 * 7 e = 0E LT

as a K-modules, into irreducible ones 3

V = V L LN ’
A Z kg Aqderedk AL

where the summation runs over all the integers k1,...,kn for which

there exist a non-negative integer k satisfying

m1;k2+k;m23k3+kgmsz ose ;mn_1;kn+kzmn2k , and

nn my - " kg + (n+1)k .
j=q i=1

Proof. See [3].

Note that the irreducible modules V

with highest
k51-k§

n+1
wveight kA, - KA bq = 2kdy + kA, + ooc + kA, k 2 0, exhaust all
class one ( i.e., including the trivial representation of K ) irredu-

cible modules of the pair (G,K) over €. The modules V, Ay = KApn

are represented as follous ( ses for nxamplo[S’J)‘ :



k,k
Let S (En*1) be the space of all complex valued ¢~ functions

n+1 n+1

such that f(xz) =|§|2k f(z) for every ze¢fl y A€l .

Put Hk'k(mn+1) = { fe Sk.k(ch+1) : Aof. - 0}‘, where éo = E n+1 a?/azia‘;
= i=1
. Define an action of U(n+1) , also

f on @

the standard Laplacian of E"+1

SU(n+1) on Sk’k(ﬁn+1) by

(s F)(2) = f( §-1z), zelI"”, s € U(n+l).

Then HKX'K(e™71) 35 the SUln+1)-irreducible submodule of s<*X(z"™*")

. Let C7(¢™',R) be the set

and put V" =

with heighest weight k Aq - k-§n+1

of all real valued c® functions on En+1

k
H 'k(mn+1)n CN(EQ+1,P) . Then VX is a class one representation

over R of the pair ( G,K ) uwhose complexification vk® g

v
k}1-k;n+1 = Hk'k(m"+1), and it induces the eigenspace of the Laplace-

Beltrami operator of the G-invariant Riemannian metric on G/K

corresponding to the inner product - F%T B with the eigenvalue k(k+n).

4.2, Nou by Theorem 4,1, the class one representation ch

is decomposed into irreducible K-modules as follous ¢

(4.1)  vk€ . Z Z v,

P=0,1,ece9k Q=0,1,...,k Py

wvhere Vp q* PeQ = Oy19eeeyk, are the irreducible K-modules with
1

highest weight
(2p=q) A, +(p+a) 2, +p2A;+...+p2

p(é,n“'én‘_“)'*Q(-a_u‘ +a_-2)= (ng3)

(2p-q) A, +(p+a)2, (n=2)

o u ...U
1 n
The K-module pE -{ z, 5240 W€ a (1<i<n)} is decomposed
- : U = =
Zn

into irreducible K-modules as follous :

C
p = \Li,o ® Vo.1'



Then the components of the decomposition ng = (Vo)u C)(V1)[ C)(V')E
are given as K-modules by

€ ¢ N

(V)" = vy o v (V)" = vy @V, 44 end (V') o5 Vo q

vhere I = {(p,q) ! p,Q = 0,1,....k}\\ {(0.0).(0.1):(1:0)} .
Then the K-module 52(V1E) is decomposed as follous :

2, Ty _ v
(4:2) 37003 7) = Vy(y 7 2net) @ gd gy @ V-220022, @ Yoso

Therefore we have :

r Lemma 4.2,
Every G-module over € which contains some of the K-irreducible

components (4.2) of 52(\/13) has the highest weight %:: miAg

where me oy 1<14 g n , are one of the n-tuples in the following table :

(i) Incaseof n 24,

m, 2k 2k=1 2k~2 2k+3 2k+2 2k+6
m, k k+1 k+2 k+1 k+2 k+2
m3 k K k k+1 k+1 k+2
' K42
meo-1 k k k k+1 k+1 +

m k k k k k k
n .

(ii) in case of n = 3,

m1 2k 2k=-1 2k+3 2k=2 2k+2 2k+6
m, k k+1 k+1 k+2 k+2 k+2
l My k k k k k k

[ (iii) in case of n = 2,

1 m, 2k 2k=-3 2k+3 2k+6 2k=6



vhere, in each case, k varies over the set of all non-negative integers.

Proof. For example, we determine the G-modules containing the

Kemodule V . The remains are proved by the same manner.
22 X4

The weight 52- Ln+1 coincides with §1+2‘&2+ Azt eee + AL (n;3)
or  A,+#2A, (n=2). By Theorem 4.1, the weight 5" m, A, of the
i=1

v-worivle should satisfy the following :

(i) in case of n 24,

n —
my22+k2my214kom,> ooe M _4Z14k2m >k , and §£1 m, = (n+1)(k+1),

(ii) in case of n = 3,

my22+kamy214kam,2k 4 and  mo+my4m, = 4(k+1),
(iii) in case of n = 2 ,

m,%22+k3m2k , and m, +m, = 3(k+1),

for a certein non-negative integer k . Thus we can determine

(m1....,mn) satisfying the above conditions. Q2.E.D.

4.3, Ve need the following lemma in order to decompose the

G-module SZ(VRG) into the sum of irreducible G-modules.

B Lemma 4,3,

For a Ge-module (V,9) over & with a character X , the

character 95(2) of the symmetric square 52\1 is given by

X2)(®) = 3 (X(T)? + X)), Teo.

Proof, See [8 ] for example. For completeness, we give here

its proof. For a fixed T€ G, let eie V be the eigenvectors of
z(’E) with the eigenvalue Aiv 1e0ay ._f_’(E) ey =A; 8, ,



131, cee .N-dim(V). Then the basis 91m" cee o eNmN (m1+o.o+mN=k)
of the k-th symmetric product Sk\l of V satisfies

.f(k)('_b_)(e1m‘l- see -aNmN) = 2_-1"'1 coe 7_\N'"N e,‘m‘l o« cee s eNmN

vhere eimi =85 o ees o 8y ( m, times ), and g(k)('E ) is the

G action on SkU induced from the one on V., Then the character

gc(k)(g) of f(k)('g) is given by

oo®) = T am e

m1+...+mN=k

Consider the following generating function of the characters :

P(z) = I 2 ) () .

k=0

Then we have

P(z) = 2. 2. (z2,0™ oo (2 ay)"N
k=0 m1+...+mN=k
= >0 T (za)Ma (za)™W

m1’...’mN=°

N -1
TT (1‘2&1)
i=1

det( I -z p(T) )"
exp( trace( E:w £ Ekk) Zk))
=1

= axp( ZN Z'(jk"i)' 2k ) ..

k=1

In fact, the series P(2z) has the convergent radius bigger than or

equal to (C'Z-('F. )| )'1, where the constant C satisfies lx,(‘_l:..l '§2)| S
c I')_g.( T, )”'2.(.( 'Ez)l for every T,
P, = P(")(o)/n! of P coincide with ’_){.(n)(‘_c_.) . For example,

Po=1, Py= X(T), P wH(X(e)2+X(TY), ... . Q.£.0.

’526 C . Then the coefficients



§ 5. Complex projective spaces (I1),

In this section, we investigate the irreducible decomposition of
the symmetric square 52(Vkm) due to Lemma 4.3. In order to shou
dim(W,) >0, we have only to show the existence of the irreducible
G-submodules of Sz(Ukm) which do not appear in the table in Lemma 4,2,

S.1. In this section, we use the following notations @

G = U(n+1),
€

<1
~ §2 0 }
T -{‘( . em . (8) 5 g€, |§i|=1 (1¢1¢n+1) f,
0 En+1
§'=u(n+1)={xem (m)'t'£+x=0}
ot - ne¥1t 7! '

1+

= {H(x“ coesX . a) 3 x;€ R (15___i§n+1)}.

n+1

o n ~x ~
Define an element &i in the dual space t of t over R by

E.BH(x1,....xn+1)p——e»xi ’ 1;i§n+1, and introduce 8 lexicographic

order > on E‘ in such a way that
~ e ~v ~
XyDAp > eee> X, >0> 1%

Note that A, is the restriction of X, to t (1¢i<n+1). Put

'S ~ n+1 Y. }
D(G) = {.é = }—;ﬂ fi Ay i fiez' f1zf2z"‘zfnzfn+1 *

Then 0(33 coincides with the set of all dominant integral forms of

G with respect to E' and there exists a bijection between a complsete
set H(G) of non-equivalent irreducible modules of G over (

and 0(G) ,assigning geD(E) to an element VU = UZ{ € B (G) wuith

the highest weight A. Moreover for each V = Vx € D (C) with A€
D(E), the module V = VIG s considered as a G-module, belongs to 9(8),

its highest weight A is the restriction of A tn t and its

~

character X, is the restriction of the one Xz of V to G.
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By the character formula of UWeyl [11],

£
(5.1) D('r\;) 'XK(?\') = ‘Einjl for each h = (1. 0 )&?,

=n+1

vhers |§ilj| is the determinant of (n+1)X (n+1) matrix whose (i,3j)

¢ L;

entries are €573

(5.2) nj =fyen+ - 3 ( 3=1yeeeyn+1),

and D(Rh) is given as follous :

g n+¥1=3 | _ T'f (£;- §3) .

(5.3) Do(R) = |¢
1;1(j§n+1

Note that the G-module VKT = HK'K(g™1) in 4.1 s also © = U(n+l)

-k A

irreducible module with highest weight k 31 A e

5.2, First let us consider the irreducible decomposition of

Sz(vkm) as G-modules :

(5.4) s2(v*0) Z: N(Fypenesfong) Ve

]
1""’fn+1
vhere f1,...,fn+1 vary over the set {'(f1.---,fn+1) ’ fie Z,
f1z---an+1}; Ve £ is the G-irreducible module with highest

1'...’ n+1

veight 21"” fi ?.‘:i y and the number N(F,l,....f
1=

.- 2, ke
plicity of v in s%(v"") .  Then since V
Fareeerr Fareerfingg

is also the G=irreducible module VA with highest weight {_\ = %:: my 5—‘1

n+1) is the multi=-

my = fi - fn+1 (i=1,¢..4n) , we obtain the irreducible decomposition
km)

of 52(V as G-modules :

2 ) = 2 Mimyyeenym ) U Zomg g



vhere Myyeeeym  run over the set {(m1,...,m ) mie'l, m ;...2 }

and n(m1,...,mn)= :Ei::: N(f1.---.f

n+1) is the

Fazeee2fnpqgomi=fi=fri
the multiplicity of the G-module Vo a  in the one s2(v*ly,  Then
Zi= 1’“1’;1
if we find an irreducible module Ve ¢ of T in (5.4) with
1°°°° " n+1
N(f1,...,fn+1))'o, then 52(th) includes at least one the irreducible

module V S Mm.oa of G, Therefore we have only to consider the
i<=i
i=1

kE)

decomposition (5.4) of S2(V as G-modules.

Now by Lemma 4.3, the character xﬁ(2) of the G-module

s2(vk) is given by :

¢ 2rj| }
'
-1 /D n+1 ),
. rj *
where |§1 ‘ is the determinant whose (i,j)-entries are E; I,

= IT (e;-¢) and

.4 2
(5.8) D,y 2§k(2) = %{Igir3| /Opyq *

r1=k+n0 rj=n+1‘j (j=2,....‘n), rn+1=-k ’ D

n+1 =)
1{i¢j<n+1
] = - N
0 n+1 I_‘ ( §i+ gj)' The right hand side of (5.5) can be
1§i<jgn+1
written as
n+1
-2k
'rl- éi pn+1( 81,000’ En+1) ’
i=1

where Pn+1( Eqreens gn+1) is the polynomial in ( £,,..., & )

=n+1
given by

(5.6) ﬁ; = —{!& pj‘ /Dn+1 + lgizpj‘/o.n+1}’

uhere p, =n+2K, p -k+n+1-j (3=244.4,n) and p__.=0. Note that the

polynomial lgipj‘ ( resp. ‘gizpj‘) can be divided formally by the

one D ., ( resp. D! 1 ) .



On the other hand, according to the decomposition (5.4), we get

(5.41) Drsd ?‘k(Z) = ;E: LLLOTTETTLANEY 'giljl ’

'12"‘2fn+1

wvhere nj = fj+n+1-j y J=1,00e,n41 Ve arrange the right hand side

] a
' Teeo n+1
of (5.4') as the sum of the terms §1 §n+1 with °1>'°'>°n+1
b

E Teoo € bn+1

and the terms & Shet

where there exist tuwo integers
1¢i¢j¢n+1 such that by < bj » that is,

) ] 2
k 1 n+
(5.4") Dn+1 ?9 (2) * ¢ 2: ¢ N('1""’fn+1) §1 "‘§n+1
122+ +& ne

+Q( §1.oco' _E_ )o

n+1

where Q( £,y¢.0y € _4) 1is the sum of the latter type.

Now we decompose the polynomial 3;+1( §1,..., [ ) in such

n+1
a way that
~ q1 L N ] q"*‘
(5.6") Pretr = Z Mq1""'Qr\<|»‘|) §1 -§n+1
q1>ooo> qn*12°
+ R( §.1.u.o. §ﬂ+1)’
b ... P
uwhere R( §1..... gn*1) is the sum of the monomials §1 ¢ §h+1

of 3;+1 where there exist two ihtegers 1<i<j<n+1 such that bl < bj‘

Then comparing with (5.4") and (5.6'), their first term sums coincide

each other, in particular, we have

A(q1aooooq ) = N('1v-0-o'

n+1 n+1)’

where fjqu-(n+1)-k+j, j=1,¢00yn+1.  Therefore we have only to

d o ' t k the term
ecompose P ( E,4.04, gn*1) ss (5.6') and to sees e terms
£ q1 eo e E qn+1

4 Sned ' 9, )...)qn’&o with a non-zero coefficient



A(q1o

3

follo

+1(

Here

given

wvhere 11 = k+n=-1 , lj = nej , j=m2,...,N.

oao.qn+1)o

Y = e

Then we obtain the G-module V n with
LTI

~(n+1) + 3, §=1,.0.,n, which is included in S

5.3. The task of the last step in 5,2

s,

(1) First, decompose P

§1'ICO. %

21’000' E

n0°)

)

n+1

n+1
in §n+1
in §n+1°

g1,..., §n’°) is

pn+1( E1""' -§n'°) =45, P

~ ‘f%
fa =
=n i=9

by

&

2k+1
and Pn

.

Z(Vkﬁ)

is accomplished as

as a sum of the constant term

eand the higher order term =

N+

Then the constant term

n

is the polynomial in ( Eqreces §n)

Pn = % {\gilj‘z /D, + \§121j‘/0”1}.

~
n+1

(ii) 1In case of

= Az p
-n

n + Qn+1 y

Then we havs

n 2 3, ve furthermore decompose P_ = into

the sum of the constant term Pn( 51,..., §n_1,o) in £ and the

higher order term Q. ( &,,..., &) in €.

Pl Eqvevey € _q90) 1is calculated as

Here

pn( §1!'°°' € 100) - én

Bpog =

given by

—n-

{ and Pn_1

1 P *

n-1

Sn

The former

is the polynomial in ( 51..... §n-1)



- 1 Enjlz /o IE njl /o
n-1 "2 ) |A n-1 ¥ |3 n=1"

2
wvhere ‘Igi jl is the determinant of (n=1)x(n-1) matrix whose entries

are §inj [] 1&1&"‘1, §1ak+n-2, Ijsn-1—j ’ j-z....,n-1. Then we hava

P = A

n -n=1 pn-1

+ Qn

(114) Go on inductively the above process, Lastly, we have

k+2 2 2(k+2) 2
SAUETL S AR >§1‘1/D'}
= - k+2 D, + 2(k+2 2
372) g g 1 3 _2( ) £° 1 3
K42 2(k+2 2
& & 1 & €&y 1
k+1 2 . 2(k+1)
ZEEH LN TR | et
§2k+1 1 éz2(k+‘|) 1

a, = & &, » and

P3(E1afaits) = Qg Py + Q5(E40 80 E5) o

where Q3 is the sum of the terms of P3 higher than the constant

in E3 . Then we have , in cass of n 23

nv ~o n
(5.7) Prpq = Bpfney ooeB2 Py + 220 B0 Bnoqeee D48 + Qo
vhere
¥ 2k+n=1 n 2k+n+1=J
(5.8) 4,8, q+++8, = E, ™ § '

X n
(5.9) K, Bpoqees &y = TT g2kenet-i  {fr ¢ Zkenst-]

ju1 3 jeisr 3 '
vhere 1i = 3,..., N,

In case of n = 2, we have
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(5.7') P A, Py + Qy ,

3= =22
where
(5.8') &, = ]2[ g, 24+
[ _2 "i L]
i=1

Note that the first term é Doq o008,y Py

homogeneous polynomial in (§1,...,§n) whose degree is 2k+n+1-1 in

P, of (5.7) is a

the variable & yi=3,...,n, and the sum of the degrees in g and

€, is 6K+2n~1, The terms Kn Dn_q +++ B; Q; are homogeneous

polynomials in (_(;.1,...,_8_.n) whose degrees in g, are greater than

2k+n+1=i, and the deqgree of the last term is greater

0 Bncte 822

v By F'i + Q

Qer 10 Enyg
than or equal to 1 ., Therefore all the monomials of

>

are different from the ones of Zn X_A

2n=n=1 n+1*
i=3

(iv) Now we calculate the polynomial P, in (€41 &) 3 for k24,

2

2{(&‘01-1 - §2k+1)2/(§1_§2) + (§12k+2 - 222k+2)/(§1+§2)}

1 k+1 k+1 k s 2k+1
=5 (¢ -&7) 3 s s 2k+1~s
2 { =1 éo ' sZo (-1) 2

~

2k41. 0 2K=1 2 )
= E1 _2 +§1 _§2 + 81 2k 3&,_ + ( the lowser order terms in §,_1)

Thus ue have, in case of n 23, K24,

n .
~N 4k+n , 2K+n-1 2K+n+1-3
Ao BpoqeesDoPy = £,44 € T ¢

4K+n-2 _2Kyn+l 0 2K+N+1-)
+ & £ T &,
j=3

4xk4+n-4 2K4n+3 D 2x+n+1-J

+ &4 123 }1 &;

+ (the lower order terms in £i ).

q q

T N 1 n+1
herefore the polynomial P41 includes the terms g, ~ ... €

Sh+t '



§ 6. Quaternion projective spaces P""'(H) = Sp(n)/Sp(1)xSp(n-1).

6.1 In this section, we use the following terminologies :

G = Sp(n) --{xeu(2n) ; tya x = Jn}' n23,

n
wvhere Jn = (D! ;n) and In is the identity matrix of degree n .
n a 0O/b O
IO AlO B
, (a8 b A B
K = Sp(1)xSp(n-1) '{\ c ﬁ\d 0/ \e d)e 59(1)’(!: 0)559(0-1)}.
0 Ci0 D

o = sp(n) ={ xeu(2n) ; *x3_ + 3 x =0}

A 8

"{(.‘5 7;) : A.aenn(c),‘i +A=0,B = "B}.
x Uly 0
k = sp(1)xsp(n-1) -{ 0 z 2 Y\s x€ (iR, yec,x,venn_1(c),}
;y_'y-; -2-} t')-('«l-X-D, tY-Y

B(X,Y) = (2n+2) Trace( XY ), X,Y¢ég, the Killing form of g ,

H Z,UEM(1,n-1,t)}, the orthocomplement of Kk

in g relative to B ,

-

P EEE, |§] =1 (1gi¢n)h,

.o

-{H(x“...,xn) } x  €R (1319)} , the Carten subalgsbra of

et

X4 g end Kk,

W)
where H(x1,...,xn) - 25Fi "bx1 } o Then we can identify

, PPN(H)  with G/K having the Geinvariant Riemannian metric induced
from the inner product (X,Y) = « B(X,Y), X,YEp .



Define an element éi in the dual space ;f of t over R

by t 9H(x1,...,xn)i——-9rxi (1<¢i¢n) and introduce a lexicographic
order > on t* by

51 > ouo>én>° 3

tet (G).(resp. IY(K)) be the set of positive roots of the complex-

ification gE (resp. Em) of g (resp, k) relative to t . Then

ve have
Z+(G) = {&i : ?:j H 1<=1<j;n}u{2_l_i ; 1<1f__n} ’
LK) = {a, % A i 25__i<jgn}u{2§i ; 1gisnt .
Put
0(G) ={I_\= ey a5 a€Z (1gign), a.‘ZaZZ_...;anZo} ,
i=1

D(K) = {{}= z:n by Ay i biEﬂ(1;1;n),b1;o and bzz...;ano} .
_ i=1 '

Then D(G) .(resp. D(K) ) 1is the set of all dominant integral forms

of G (resp. K ) uith‘reépect to t . Moreover there exists a

bijection between D(G) (resp. D(K) ) and a complete set o&5(G)

(resp. §3(K) ) of non-equivalent irreducible modules of G (resp. K)

over 'corresponding QGD(G) (resp. D(K) ) to an element V =

V€ B (6) (resp. D(K) ) with the highest weight A.

Then we have ¢

Theorem 6.1, ( Lepousky [4‘] )

n n

multiplicity m(A,p) of the K-module VF in the G-module V, {is

A
given as follous :



Define

Ay = a, - max(az.bz),
Ay = min(ai,bi) - max(a1+1,b1+1) » 254 < n-1,

A, = min(an,bn) 20.

Then M(é.ﬁ) = 0 unless b1+ %1: Aie 2Z and A1.A2.....An_1zo .

Under these conditions,

1 n ooy
m(},r_) - Z (_1)“_] (n-2-IL|+ 2( b1+ﬁ1 Ai) :“ZL Ai) ’
L

n=2

where L runs over all the subsets of {1,2,...,n} (also the empty set),

ILI denotes the number of elements in L , and (;) denotes the

binomial coefficient, which is defined to be zero if x<y .

kE

It turns out by Theorem 6.1 that V " = V » k2o, are the

k51+k52
class one modules of the pair (G,K) over @ .

The complexification EE of p is the irreducible module of K
with highest weight §1f &2 . Then the symmetric square Sz(gc)
of em swhich is 52(V1E) in §3 , 1is decomposed as a K-module

into as follows :

2, 0
(6.1) S%(0%) = Wy 1py OV, OV, -

Then by Theorem 6.1, we have @

Lemma 6.2,
(1) Let n =3, Then svery G-moduls over & which includes
certain of the K-irriduciblo components (6.1) of sz(gc) has the

highest weight Z:s 8,34 » where the triple (01,l2..3) is ons of
im1

them. in the following table !



a1 k+4 k+2 k+3 K+ 2 K+1 k k+4 k+2 k 3

32 k k k k k k Kk k k 2

8y 2 2 1 1 1 1 0 o a o)
(k22) (k21) (ko)

(11) In cese of n 24, if a,2a,2 ... 2a 20 satisfy one of

~the following conditions :

(1) a s 23, (11) a, 22, or (iii) ay 2 1,for some 5<i<n ,

4

then the G-module VA with the highest weight A = E:n ah; includes
’ i=1

'no the K-irreducible components of Sz(gm) .

(5%

Proof. We give only a proof of (I1I), Case (I) can be proved
by the same manner as case (I11).

By (6.1), we have only to consider the K-modules Vo with highest

veight A= T b,

i=1 as followus :

(1) (b19b2,ooc,bn) = (2,2.9,.-.,0) ’
(2) (bysbysesasb ) = (0,1,1,0,00040) ,
(3) (b1,b2,...,bn) = (0y0p000s0) &

In ¢ach case, the numbers Ay 1€¢i&n-1 , as in Theorem 6.1 are given
as follous : For (1), A, = a,- max(az,Z), A, = min(a2,2) - aq,
- max(aq,1), Ay = min(aq,1) - a, , A, = - 2

For (3), A1 = a

iy v 38ign-1 . For (2), Ay = a; - max(az,1), A, = min(a2,1)
o1+ 8SEEN-1
, 2¢i¢n-1 .

1 " 80 Ay = -ay,
If either the conditions (i), (ii) or (iii) hold, then for every
case (1)~(3), one of the Aj's , 1¢i¢n=1, is negative. Thus

Theorem 6.1 implies (I11), Q.E.D.



ucible module VA

=1 X

By the character formula [11] » the character 'ZA of the irred-

with highest weight A = z:" a;a; 1is given by
0
£n

i=1
(6.2) D_(E) X\(E) = l_e_inj - f_;;ljl. for each = I‘-" J’
A o |%..

1y

£ Y
wvhere £ 7 - §i

is the determinant of nxn-matrix whose (i,3)

entries are £ - £,
(6.3) lj =a; +n+ 1 -3, 143¢n , and
(6.4) D_(€) = I§1n+1-j N §1-(n+1-j)|
- T TT (ggg7 g™
i=1 1¢4¢3¢n

6.2, In the following, we assume n = 3,

By Lemma 4.3, the character Zy(z) of the symmetric square s2(vkly

kT
of the class one module V' = = Vk§1+k52 of the pair (G,K) is given by
K 1[p.(€)2 | D.(E) P,(€?)
(6.5) Da(g) Wyff) =5{ 3=+ 3= 3=
D5(e) Da(e")

k+3 “(k+3) ¢ k+2 ~(k+2) _e=1
L - 577§ 4 =&

Pa(E) = _§_2k+3 _gz-(k-o-:!) §2k+2 ’f‘z-(k+2) & _5_1 .
-(k+2) ¢

k+3 -(k+3 k+2 -1
- gy (k+3) &7 =& 3 &

(4 3

Assume that

2,ukEL
SE(VT) = ZE:Z . N(‘1'°2”3) Va1§1+°252*‘3&3
a1Za2 a3 (o}

Then we have the identity ¢



ol

2. -1.
(6.7) Ds(g)'&F(z)(g) - Y. N(a1,a2,a3)‘§i Ty Y,
3123223320

vhere Ij = aj + 4 -3, j=1,2,3. And then the right hand side of

(6.7) can be decomposed of the form :

>N Y E T3 E e T L ale, 606
- a1,az,83 54 <y Ca + 10 2!
8,28,228,20

9, Q, Qq
£ 'g 2¢ 3

where Q(€1, 2,6 ) is the sum of the monomials £ & "5 '

satisfying ons of the following conditions :

(6.8) (i) o ¢ ay , (ii) a4 < 9, 4 or (iii) q, S ay .

So let us decompose D3 7}(2) into the following :

9, 9, _Q
k 1 2 3
(6.9) 03%(2) = - Z A(q1’qZUQ3) §1 _{52 §3 +
0>04>09,794
+ R(E1v 2083) s
9, 9, _Q
where R(§1,§b,§3) is the sum of the monomials £, '€ €

satisiying one of the conditions (6.8) . Then we have

Alays8.,8,) = N(aj,a,,85) 4 qq==(a5+1), q,==(a,+1), a;=-(a,+3).
a, . 9, _ Qs
Therefore we have only to seek the monomials A(q1,q2,q3) §1 fé §3
. k
with A(g,485,04) § 0, ©0>ay>ay>0a5 of Da(E) Y (,y(E).  Then

2,.,kE .
th
e module S°(V"") includes the one V-(q3+3)é1—(q2+2)52-(q1+1)§3
with multiplicity A(q1,q2,q3).

6.3, The task of 6.2 is accomplished as foilouws :



First, we put
D3(E10 80 &) = £57° Byl 60650 &),

are the polynomials given by.

§1k+3 _f_l-(k-r‘.'a) §1k+2 _é-(k+2) g - 5-1

h 7 D
where 3 and 03

Y k+3 ~(k+3) _ k+2 -(k+2) -
PalbinEanly) = |67 -5 g2 hH T B -h
k+4 k+2
E,*4 -€,

2k+6 2k+5
7 - &3 =&

D3(E10bpr E) = (8= F™ 1) (&£, ) (£42-1) X

X (=Fpm & &7 M & B by 10 6 T E5) (Epy- B 710671 EY)

Then
PalEyrEps Eq)? 3’3(§,.62.g3)3'( 2,65 8%

(10820 £3) 5,02 ez,e,_, )

Dq 7_"“(2) =

(A% ~
D( €180 E5)P5 (6,208, %0 7) ) is

( resp. D (212,€22,832) ).

Here p3(§1’§2’§3)2 ( resp.
diviced formally by Dy(Ey, &, &)

Then it follous that

e
(6.10) —gifl—fgl:l- :E: ap(§1,§2) §39 , and
(31'.-2"-3) p;o
D (€as Err Er) Pal€e2) B2y &2)
(6.11) -3 'iz'%i’ " z&ré—' L balEye8y) &5°
D3(& % 6% E5°) P20

where both sums are in fact finite sums in p, eand both coefficients

a (61,_2) , b (§.',§2 are the sums of the form A(a1,|2) g1'1§2‘2 ’

84y 8, , &nd A(l1.l2) being integers . So decompose the constant
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%(a°(§1,§2)+b°(§1,g2)) in €, , into the sum of monomials
Alay,8,) €,%1 €,°2 , and seek the monomials - A(pyspys-2k-3) £,P1€,P2

with the conditions 0>Py>PyY -2k=3, Then the monomial

- A(P1apzo-2k-3)§1p1§2p2§3-2k-3 does never cancel with every terms of

1 -2k=3+p k

3 .

include the monomial =~ A(p1,p2,-2k-3)£1p1§2p253'2k' in the decompo-

k(I)

sition (6.9). Therefore the module 52(V should include the one

"2k51-(p2+2)32-(p1+1)53 with multiplicity A(p1,p2,-2k-3).

We have only to compute %(ao(§1,§2)+bo(§1.§2)). By (6.10),
and (6.11), we obtain

P’ 'Y Y 2 .2
(& ,€,) p3(§1'§2'°)2 Dy( &4 €y90)P5(E %057, 0)
ot =& v BolEygy) = ~ . 2 ¢ 2 '
0,(&,€,5,0) D (€%, €,%0)
where k+3_ . ~(k+3) k+2_ . =(k+2) -1
& -4 & T-§ 4-§
Y _ k+3 . =(k+3) k+2 o =(k+2) -1
P3(€11€ps0) = |E,7 78, L5 £-5

-1 o )

(_1 ) {(§1k+2 - §1"(k+2))(§7‘_§2-1)

- (§1_§1-1)(§2k+2_§é-(k+2))}'

and

Dy (€0 Epr0) = (=1)(E-E (66N E-EpmE "+ E ™)

(-1) & (B =& (8- 6,7 (E - (-,

~S

Oividing formally 3;(@1,§2,o)2 ( resp. 03(§1.§2,°)p3(§12.§22.°) )

~ ¥4
by Ds(éq,gé,o) ( resp Ds(§12,§22,o) ) , we have :



Lemma 6,.,3.

k+2 k+1 k 2k+2=-8-2t~u 1=8+U
(1) aglEg) = - 5572 5 Z{Q €2

s8=0 t=0 u=o

_£1k+1-s-u 3 k+2-8=2t+u - £ 2k+2=5=2t=-u € ~1+s5=U
=2 = ~2

k+1=8=-u k+s=2t=u
+& & }.

(11) b (&,8) = - Zk (§12k-2s+2 _§1-2k+2s-2) %i-ﬂ(_,l)u 522“1-20

§=0 u=0

- Zk -§1 2k+1=2s8 {ZS(_1 )p+1§223f2-29 + ZS(_1 )p+8§2-2-ZSl

8=0 p=0 p=0

$=0 p=0 p=0

_Ek 81-1-23[fs (_1)p§22k+2-2s-2p _‘_zk_:-‘s(_.1 )k+1kp+s-§2-2-2

Proof. We have
30(21122) = ("1) _5_1 A B,
where

n = {502 L)) (e 1) - (g-g (5 (m))},c .
B = {(5“2'&-(“2))(52'5{1) - (§1_5-1)(§2k+2_§2-(k+2))}/0 .

Here € = (=87 ")(E,~E," ") and D = (§-£,)(§=-g, ") « Then

A = Z:k+1 (§1kf1-2t _§2k+1-2t)'
t=o0

and the numerator of B is rearranged as

(£%*2g, -5 -(k+2)) +-(§1-1§2k+2

-(k+2) k+2 . =1 -(k+2)
Bk : E)-(&7°8 - )

-.1

Sy greg Mg



Thus we have

+2
- k+1=5 . 1-5 =s . k+2=-s
B {i (§1 §2 "§1 _£.2 )

- Z (E k¢t SE -1=5 _E1"2-SE K+2=5 )} /(§1_§2)

+2 ~ k
_ k=s=-u 1-s+u -1+s-u
- 2__5 Z: §1 (_8_2 "82 ) .

s=0 u= -
Hence we have (i). For (ii), it follows that
b, (€,€,) =_(-1>_e_1{< R e
(28, M g P gy, gy e
= (=1) & E /(E+€ ) E467)(g+E) ,

vhere
= 2k+4_ o =2k-4 2 =2 2 =2 2k+4 ~2k-4.} -1.
- "{(§1 - M & -6 )-8 - 775, -5 W/CE+8

2k+4 E ~2k= 4E )

2k 2 =2 -2k=hy, (¢ -2
‘{(51 878 8 T g TTE

(g 2krhg "2 g 2¢ 2kl (g 2g Tked_ §1-Zk-4§2-2)}/(§1+§2~1) _

Then we have

k+5
- t=0 - - - -

2k+1

b 2kbbot =2-t__ -2-t. 2ked=t
- % (1R 2 ~H & ).

Thus we obtain

2k+5 2k+1
F a £, E/(§1+52) - > (_1)t+u(§12k+3 t u§22 t+u
- =0 u=0
~2+t-u

-a2k+3 -t=-y £y .



Ve rearrange F as follows :

2k+3 b
F = s (_1)3{ 2k+5-2-2t ; 8_; 2k+5-8-2t, -s}
sz-(2k+3) tzu'as & g4 17 ’

wvhere a, = 2, bo' 2k+3, 8, = 1, b, = 2k+2 =8 = 3, b = 2k+4,
?

1 -1 -1

8= 0 , b= 2k+3Jrs ( 822 ) and a__ = 2+s, b__ = 2k+5 ( 822 ).

Then we have

F = -(512k+2_ §1-2k-2)(§2_§2-1)

2k+1 k+1-3 . o
+ 3 _(_ﬂsté (g 2k3m8-2t_g Zk=1-a-2t) (¢ 842 g =8-2)
sS=0 =0

Thus

G = F/(E+E™") = - (sz”(-1)“512““'2“)(52-52")

U=Q
2k+1 2k+1=8 8.
mge2t . 2k~842t\, . 842 872
+;-o (=1)" Eo (g, 2kr2me-2t_g 2kosr2ly (g, g, )

Here we rearrange G as follous @
G-H+I’
H = the sum of terms of even order in §2, and

I = the sum of terms of odd order in §2 .

Then

k
Wom L (g 20228 g ~2k=2428) (g 2042_g 28-7) | gng
S=0Q

k - -28-
[ = "Z 512k+1-23{§22s+3 + (_ﬂséz _(_1)s§2 1 -5, 2s 3}

+Zk 5-1'2'{522("")*3 +(_1)k-agz_(_.‘)k-s§2-1_§2-2(k-s)-3}.



3/

Thus

k ) 2s+1
H/(?:z"'f-.z 1) - Z (512k+2-2s-§1-2k-2+2s)z (_1)u822s+1 2u , and
s$=0 u=0 -

k -2-
I/(§2+§2'1) - - gio §12k-c-1-25 I;‘_:(d )p‘§22.&s~|-2--2p+(__1 )s+1;;:(_1 )pi2 2!?]

k 1o k=s - - - k~s P -2-2p
. 2: 3 1-2s S (_1)p§22(k s)+2 2p+(_1)k s+1§: vt }
s=0 p=0 p=0 .

Therefore we obtain (ii), Q.E.D.

By Lemma 6.3, we obtain the following tables:

a, a,
(i) the monomials of -ao(§1,§2) = = Z:A(a1,az)§1 §2 :

-a, -a, A(a1,a2)
1) ~2k=-2+s42t+u -14s-u 1
2) -K=1+5+U ~k=2+s+2t=-u -1
3) ~2k=2+s+2t+u 1=-s+u -1
4) -k=1+s+U ~k-s+2t+u 1

where 0{ssk+2, ogt<k+1 , and ogugk .

b, b
(ii) The monomials of -b°(§1.§2) = - 259(b1.b2)§1 1§2 Z

-b, ~b, B(by4by)
5) -2k+25-2 -2s-1+2u (-1)"
6) 2k=28+2 -28=1+2u (-1)u*? Piugzer
7) ~2k-142s -28-242p (-1)P* e
8) -2k-1+28 2+2p (-=1)P*s Peha’
9) 1428 -2k-2+28+2p (-1)P
10) 1428 2+2p (-q)K+1¥pes Pipskes

vhere ogssk o



Making use of the above tables, it turns out that

%(8°(§1.§2)+b°(§1,§2)) includes the following monomials @

(i) - §1-1 gz-(2k+2) ( kZ.U ) ,
(11) - g~ gz'(zk‘ﬁ) ( k24 ) , and
(111) - g~4 g,~(2k-3) (kg4 ) .

Therefore 52(V®) includes the follouing G-irreducible modules
with multiplicity one :

(1) Vokp,ezy, L K20)
(i1) v2k§1+(2k-8)§2 ( kg6 ) , end
(111) v2k§1+(2k_5)}2+3&3 (k24 ) .

The module V2k§1+2k&2 appears in the table in Lemma 6,2 , but

both the latter ones V2k&1+(2k-8)§2 , v2k51*(2k-5)§2+3§3 ( k24 )

do not so , Thus ve obtain , if k 2 4,
din(Ug) 2 dim(Vain s(2u-8)a,) * H4MVoin 4 (21-5)r 430
2 1287 + 27720 = 29007 .
By Lenma 3.1, we obtain Theorem C.

Remark. In case of Pz(H) and k = 4, it follows that

m(4)+1 = 1,274, Then we have

29,007 § dim(W,) § (m(4)+1) (m(4)+2) = 812,175,
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