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This paper is a continuation of the study of stable homotopy types of polyhedra
by H.-J. Baues and the author. Namely, we consider (k − 1)-connected polyhedra
of dimension n + k in the stable range, i.e. with k ≥ n + 1. Such polyhedra have
been described for n ≤ 3 [5] and it is known that for n ≥ 4 their classification is a
wild problem, i.e. contains classification of representations of all finitely generated
algebras over a field [4]. If we only consider polyhedra with torsion free homologies,
the situation differs. For n ≤ 5 such polyhedra have been described in [2, 3]; in this
case there are only finitely many homotopy types of them. It was also known (and
easy) that the classification of torsion free polyhedra is wild for n ≥ 11 [12]. In this
paper we give a description of torsion free polyhedra for n = 6 and show that for
n > 6 this problem is wild.

As in our previous papers, we use the technique of matrix problems, mainly of
bimodule categories, in the version elaborated in [12, Section 4]. In Section 2 we
specialize it for our purpose. Section 1 contains the necessary definitions and pre-
liminaries, and Section 3 presents polyhedra of small dimensions that play an essen-
tial role in our calculations. In Section 4 we calculate the local homotopy types of
torsion free polyhedra for n = 6, and in Section 5 glue them into congruence classes
in the sense of Freyd [13]. Recall that the congruence classes of local polyhedra form
a basis of the corresponding Grothendieck group [13]. Finitely, in Section 6 we show
that for n > 6 the classification problem of torsion free polyhedra is wild.

This paper has been prepared during my visit to the Max-Plank-Institut für Math-
ematik in Bonn. I am grateful to the Institute for support and perfect research con-
ditions. I am also grateful to H.-J. Baues, my guide to the topology and co-author
of many papers.

1. Preliminaries

In this paper space means a punctured space; we denote by ∗X (or by ∗ if there can
be no ambiguity) the marked point of the space X. Bn and Sn−1 denote respectively
the n-dimensional ball and the (n − 1)-dimensional sphere. As usually, we denote
by X ∨Y the wedge (or one point union) of X and Y , i.e. the factor space of X tY
by the relation ∗X = ∗Y , identify it with ∗X × Y ∪ X × ∗Y ⊂ X × Y , and set
X ∧ Y = X × Y/X ∨ Y . In particular, we denote by X[1] = S1 ∧X the suspension
of X and by X[n] its n times iterated suspension. The word “polyhedron” is used as
a synonym of “finite CW-complex.” One can also consider wedges of several spaces
∨s

i=1Xi; if all of them are copies of a fixed space X, we denote such a wedge by sX.
Recall several facts about the stable homotopy category (cf. [7]). We denote by

Hot(X, Y ) the set of homotopy classes of continuous maps X → Y and by CW

the homotopy category of polyhedra, i.e. the category whose objects are polyhedra
1
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and morphisms are homotopy classes of continuous maps. The suspension functor
defines a natural map Hot(X, Y )→ Hot(X[1], Y [1]). Moreover, the Whitehead the-
orem [15, Theorem 10.28 and Corollary 10.29] shows that the suspension functor re-
flects isomorphisms of simply connected polyhedra. It means that if f ∈ Hot(X, Y ),
where X and Y are simply connected, f is an isomorphism (i.e. a homotopy equiv-
alence) if and only if so is f [1]. We set Hos(X, Y ) = lim

−→n
Hot(X[n], Y [n]). If

α ∈ Hot(X[n], Y [n]), β ∈ Hot(Y [m], Z[m]), one can consider the class β[n] ◦α[m] ∈
Hot(X[m+n], Z[n+m]) whose stabilization is, by definition, the product βα of the
classes of α and β in Hos(X,Z). Thus we obtain the stable homotopy category of
polyhedra CWS. Actually, if we only deal with finite CW-complexes, we need not
go too far, since the following result holds [7, Theorem 1.21].

Proposition 1.1. If dimX ≤ d and Y is (n − 1)-connected, where d < 2n − 1,
then the map Hot(X, Y ) → Hot(X[1], Y [1]) is bijective. If d = 2n − 1, this map
is surjective. In particular, the map Hot(X[m], Y [m]) → Hos(X, Y ) is bijective if
m > d− 2n+ 1 and surjective if m = d− 2n+ 1.

Here (n − 1)-connected means, as usually, that the k-th homotopy group πk(X)
is trivial for k ≤ n − 1. Thus for all polyhedra of dimension at most d the map
Hot(X[m], Y [m]) → Hos(X, Y ) is bijective if m ≥ d and surjective if m = d − 1.
Note also that the natural functor CW → CWS reflects isomorphisms of simply
connected polyhedra.

It is convenient to extend CWS adding formal negative shifts X[−n] (n ∈ N) of
polyhedra and setting Hos(X[−n], Y [−m]) = Hos(X[m], Y [n]). In particular, we
denote S−n = S0[−n]. Actually, we consider this extended category and denote it
by CWS too. (It is the category S of [7]).

Since we are only interested in stable homotopy classification, we identify, in
what follows, polyhedra and continuous maps with their images in CWS. We denote
by CWF the full subcategory of CWS consisting of all spaces X with torsion free
homology groups Hi(X) = Hi(X,Z) for all i.

The stable category CWS is a triangulated category [14]. Namely, since any sus-
pension X[n] is an H-cogroup [15, Chapter 2], commutative if n ≥ 2, the category
CWS is an additive category. The suspension plays role of the translation functor,

and the distinguished triangles are the cone sequences X
f
−→ Y → Cf → X[1] (and

isomorphic ones), where Cf = CX ∪f Y is the cone of the map f , i.e the factor
space CX t Y by the relation (x, 0) ∼ f(x); CX = X × I/X × 1 is the cone over
the space X. Note that cone sequences coincide with cofibration sequences in the
category CWS [15, Proposition 8.30]. Recall that a cofibration sequence is a such
one

(1) X
f
−→ Y

g
−→ Z

h
−→ X[1]

f [1]
−→ Y [1]

that for every polyhedron P the induced sequences

Hos(P,X)
f∗
−→ Hos(P, Y )

g∗
−→ Hos(P, Z)

h∗−→ Hos(P,X[1])
f [1]∗
−→ Hos(P, Y [1]),

Hos(Y [1], P )
f [1]∗

−→ Hos(X[1], P )
h∗

−→ Hos(Z, P )
g∗

−→ Hos(Y, P )
f∗

−→ Hos(X,P )
(2)
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are exact. In particular, we have an exact sequence of stable homotopy groups

(3) πS
k (X)

f∗
−→ πS

k (Y )
g∗
−→ πS

k (Z)
h∗−→ πS

k−1(X)
f [1]∗
−→ πS

k−1(Y ),

where πS
k (X) = lim

−→m
πk+m(X[m]) = Hos(Sk, X). Certainly, one can prolong the

sequences (2) and (3) into infinite exact sequences just taking further suspensions.
It is also known [7, Theorem 4.8] that the category CWS is fully additive, i.e. every

idempotent e ∈ Hos(X,X) splits. In our case it means that there is a decomposition
X[m] ' Y ∨ Z for some m, such that e comes from the map ε : Y ∨ Z → Y ∨ Z
with ε(y) = y for y ∈ Y and ε(z) = ∗Y ∨Z for z ∈ Z. We call a polyhedron
X indecomposable if X ' Y ∨ Z implies that either Y or Z are contractible (i.e.
isomorphic in CW to the 1-point space).

Every CW-complex is obtained by attaching cells. Namely, if Xn is the n-th
skeleton of X, then there is a wedge of balls B = mBn+1 and a map f : mSn → Xn

such that Xn+1 is isomorphic to the cone of f , i.e. to the space B ∪f X
n. It gives

cofibration sequences like (1) and exact sequences like (2) and (3).
We denote by CW

n
k the full subcategory of CW formed by (k − 1)-connected

(n+k)-dimensional polyhedra and by CWF
n
k the full subcategory of CW

n
k formed by

the polyhedra X with torsion free homology groups Hi(X) for all i. Proposition 1.1
also implies the following fact.

Proposition 1.2. The suspension functor induces equivalences CW
n
k

∼
→ CW

n
k+1 for

all k > n + 1. Moreover, if k = n + 1, the suspension functor CW
n
k → CW

n
k+1 is a

full representation equivalence, i.e. it is full, dense and reflects isomorphisms.
(Dense means that every object from CW

n
k+1 is isomorphic (i.e. homotopy equiv-

alent) to X[1] for some X ∈ CW
n
k .)

Therefore, setting CW
n = CW

n
n+2 ' CW

n
k for k > n + 1, we can consider it as

a full subcategory of CWS. The same is valid for CWF
n = CWF

n
n+2. Moreover, all

objects of these categories actually are of the form X[1] for some X ∈ CW
n
n+1. It

leads to the following notion [1].

Definition 1.3. An atom is an indecomposable polyhedron X ∈ CW
n
n+1 not be-

longing to the image of CW
n
n. A suspended atom is a polyhedron X[m], where X is

an atom. An atom (suspended atom) is called torsion free if it belongs to CWF. We
denote by Ad (AF

d) the set of isomorphism classes of atoms (respectively, torsion
free atoms) of dimension n.

Thus any polyhedron X from CW
n
k (CWF

n
k) with k ≥ n+1 is homotopy equivalent

to a wedge of spheres and suspended atoms (respectively, torsion free suspended
atoms), in particular, spheres and suspended atoms are the only indecomposable
objects in these categories. Note that, by definition, all atoms are of odd dimension,
and the sphere S1 ' S0[1] is not an atom.

The atoms of dimension d are known for d ≤ 9 [5] (see also [12]). If d > 9, the
classification of atoms of dimension d becomes a wild problem [4, 12]. It means
that it contains the classification of pairs of linear maps in finite dimensional vector
spaces over a field. It is known (see, e.g., [11]) that the last problem contains the
classification of finite dimensional representations of any finitely generated algebra,
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so it is hardly believable that such a problem has more or less clear solution. A
description of torsion free atoms of dimension d ≤ 11 is given in [2, 3] (see also [12]).
Our aim is to give a description of torsion free atoms of dimension d = 13 and to
prove that such a classification for d > 13 is a wild problem.

Recall the results of Freyd [13, 7] on localizations and Grothendieck group G =
G(CWS) of polyhedra. By definition, the latter is the abelian group generated by
symbols [X], where X runs through isomorphism classes (in CWS) of polyhedra,
subject to the relations [X∨Y ] = [X]+[Y ]. A polyhedron X is called p-local, where
p is a prime number, if there is a commutative diagram (in CW)

X
ps

·1X
//

%%KKKKKK X ,

W

88rrrrrr

where W is a wedge of spheres and s > 0. We denote by Ad
p (AF

d
p) the subset of

p-local atoms in Ad (AF
d). Two polyhedra, X and Y , are called congruent if there

is a polyhedron Z such that X ∨Z ' Y ∨ Z (actually, Z can always be chosen as a
wedge of spheres [7, Theorem 4.26]). Then we write X ≡ Y . Obviously, it implies

that [X] = [Y ]. Let Ãp be the set of congruence classes of p-local atoms.

Theorem 1.4 (Freyd’s Theorem). The group G is free; a set of its free generators
is

{

[Sn] | n ∈ Z
}

∪
(

⋃

p

{

[X[n]] | X ∈ Ãp, n ∈ Z
})

.

More precisely, for any polyhedron X there is a wedge of spheres W such that X ∨
W '

∨s

i=1Xi, where all Xi are p-local suspended atoms (perhaps for different p);
moreover, if X ∨W ′ '

∨r

i=1 Yi is another such decomposition, then W ' W ′, r = s
and Xi ≡ Yσi for some permutation σ of indices [7, Theorems 4.40 and 4.44].

Certainly, if X is torsion free, so are all summands Xi.

For any additive category C and any ring R we denote by R ⊗ C the category
with the same set of objects, but with the sets of morphisms R ⊗ C(X, Y ). We
are especially interested in cases when R = Q and R = Z(p) =

{

m/n | m,n ∈

Z, p - n
}

⊂ Q, where p is a prime number. Then we denote C(p) = Z(p) ⊗ C
and C(∞) = Q ⊗ C; L(p) denotes the natural functor C → C(p) (p prime or ∞).
If X ∈ CWS is not a wedge of spheres, we denote by P(X) the set of all primes
dividing the order of one of the groups πS

k (X) with k ≤ dimX; if X is a wedge of
spheres, we set P(X) = {∞}. Then the following result holds [7, Theorem 4.41].

Theorem 1.5. For any two polyhedra X, Y ∈ CWS the following properties are
equivalent:

(1) X ≡ Y ;
(2) L(p)X ' L(p)Y for all prime p;
(3) L(p)X ' L(p)Y for all p ∈ P(X ∨ Y ).

Note that, for any X ∈ CWS, the additive group of the ring Hos(X,X) is finitely
generated and its torsion part T(X,X) is a nilpotent ideal. Moreover, if X is a
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p-local atom, the ring Z(p) ⊗ Hos(X,X) is local [7, Theorem 4.47]. It implies that
the category CWS(p) is also fully additive. Moreover, decompositions in CWS can
be constructed locally.

lemma 1.6. Suppose that, for every p ∈ P(X), there is a decomposition L(p)X '
Yp ⊕ Zp such that L(∞)Yp ' L(∞)Yq for all p, q ∈ P(X). Then X ' Y ⊕ Z, where
L(p)Y ' Yp and L(p)Z ' Zp for all p.

Proof. Any decomposition of X comes from an equality 1 = e + f , where e, f ∈
Hos(X,X) are orthogonal idempotents. Since T(X,X) is nilpotent, we may replace
Hos(X,X) by the ring R = Hos(X,X)/T(X,X), which has free additive group and
no nilpotent ideals. Therefore, decompositions of X are in one-to-one correspon-
dence with decompositions of the regular R-module. But for such decompositions
the statement of the lemma is well known [8, Theorem 31.12]. �

2. Technique

We use the technique developed in [12], which reduces the classification of poly-
hedra to a “matrix problem,” more precisely, to the classification of elements of a
bimodule.

Definition 2.1. Let A and B be additive categories, U be an A-B-bimodule, i.e.
a biadditive functor Aop × B → Ab, the category of abelian groups. We define the
bimodule category El(U) (or the category of elements of the bimodule U) as follows:

• Its set of objects is the disjoint union
⋃

A,B U(A,B), where A runs through
the objects of A, B runs through the objects of B.
• A morphism α → β, where α ∈ U(A,B), β ∈ U(A′, B′) is a pair of mor-

phisms f : A → A′, g : B → B′ such that gα = βf ∈ U(A,B ′). (We write
gα instead of U(1, g)α and βf instead of U(f, 1)β.)

Obviously, El(U) is also an additive category; it is fully additive if so are A and B.
The background of our calculations is the following.

Theorem 2.2. Let n < m ≤ 2n. Denote by B the full subcategory of CWF
n =

CWF
n
n+1 consisting of all complexes of dimension at most m and by A the full sub-

category of CWF
n
n+1 consisting of all (m − 1)-connected complexes of dimension at

most 2n. Let Γ(A,B), where A ∈ A, b ∈ B, denotes the subgroup of Hos(A,B)
consisting of such maps f : A → B that Hm(f) = 0. We consider Γ as A-B-
bimodule. Denote by I the ideal of the category CWF

n consisting of all morphisms
that factors both through B and through A[1] and by J the ideal in the category
El(Γ) consisting of all morphisms (α, β) : f → f ′ such that β factors through f ′

and α factors through f . Then CWF
n/I ' El(Γ)/J . Moreover, I2 = J 2 = 0,

hence both projections CWF
n → CWF

n/I and El(Γ)→ El(Γ)/J are representation
equivalences. In particular, there is a natural one-to-one correspondence between
isomorphism classes of objects from CWF

n and El(Γ).

Proof. Let X ∈ CWF
n, B be the m-th skeleton of X. Then X/B ∈ CW

2n−m
m+1 and

m > 2n − m + 1, so X/B ' A[1], where A ∈ CW
2n−m
m . Moreover, there is a
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cofibration sequence

(4) A
f
−→ B

g
−→ X

h
−→ A[1]

f [1]
−−→ B[1],

which induces an exact sequence

Hk(A)
Hk(f)
−−−→ Hk(B)→ Hk(X)→ Hk−1(A)

Hk−1(f)
−−−−−→ Hk−1(B)

for every k. If k < m, Hk(A) = Hk−1(A) = 0, thus Hk(X) ' Hk(B), so the latter is
torsion free. Since Hm(B) is also torsion free, B ∈ B. If k > m, Hk(B) = 0, hence
Hk(X) ' Ker Hk−1(f). The latter subgroup contains the torsion part of Hk−1(A),
since Hk−1(B) is torsion free. Thus this torsion part equals zero and A ∈ A. At
last, Hm(X) ' Cok Hm(f), thus Cok Hm(f) is torsion free. If Hm(f) 6= 0, there
is a common direct summand of Hm(A) and Hm(B) isomorphic to Z. It comes
from some maps φ : Sm → A and ψ : B → Sm such that ψfφ = Id. Thus

A ' Sm ∨A′, B ' Sm ∨B′ and with respect to these decompositions f =

(

1 0
0 f ′

)

for some f ′ : A′ → B′. Hence we get a cofibration sequence

A′ f ′

−→ B′ → X → A[1]′
f [1]′

−−−→ B[1]′.

If still Hm(f ′) 6= 0, we can repeat this procedure. At last we get a cofibration
sequence like (4) but with Hm(f) = 0. Hence, every object X ∈ CWF

n is isomorphic
to the cone of a map f : A→ B with A ∈ A, B ∈ B and Hm(f) = 0, so f ∈ Γ(A,B).

Note that Hos(B,A[1]) = 0 for all A ∈ A, B ∈ B. Suppose that a polyhedron X ′

is included into a cofibration sequence

A′ f ′

−→ B′ g′

−→ X ′ h′

−→ A[1]′
f [1]′

−−→ B[1]′,

where A′ ∈ A, B′ ∈ B, f ′ ∈ Γ(A′, B′), and γ : X → X ′. Then h′γg = 0, hence
γg = g′β for some β : B → B′. By the properties of cofibration sequences, the pair
(β, γ) can be included into a commutative diagram

(5)

A
f

−−−→ B
g

−−−→ X
h

−−−→ A[1]
f [1]
−−−→ B[1]

α





y

β





y

γ





y





y

α[1]





y

β[1]

A′
f ′

−−−→ B
g′

−−−→ X
h′

−−−→ A[1]′
f [1]′

−−−→ B[1]′.

In particular, (α, β) : f → f ′ in El(Γ). Let (α′, β ′) : f → f ′ is another pair that can
be included into a diagram of the form (5) with the same γ. Then g ′(β − β ′) = 0
and h(α[1] − α′[1]) = 0, hence β − β ′ factors through f ′ and α[1] − α′[1] factors
through f [1]. Thus (α − α′, β − β ′) ∈ J . On the other hand, if (α, β) ∈ J , then
g′β = (α[1])h = 0, so the diagram (5) with γ = 0 commutes.

In the same way, if (α, β) : f → f ′, there is a map γ : X → X ′ such that the
diagram (5) is commutative. If γ can be replaced by γ ′, then (γ−γ′)g = 0, so γ−γ′

factors through h, and h′(γ− γ′) = 0, so γ− γ′ factors through g′. Thus γ− γ′ ∈ I.
On the other hand, if γ ∈ I, then h′γ = γg = 0, so the diagram (5) with α = β = 0
commutes too. Therefore we really get an equivalence CWF

n/I ' El(Γ)/J .
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The equality I2 = 0 follows from the fact that Hos(B,A[1]) = 0 for all A ∈
A, B ∈ B. On the other hand, if f : A→ B (A ∈ A, B ∈ B) and Hm(f) = 0, then
f(Am) ⊆ Bm−1. For any morphisms ξ : B ′ → A and η : B → A′, Im ξ ⊆ Am and
η|Bm−1 = 0, wherefrom ηfξ = 0. It implies immediately that J 2 = 0. �

If we are interested in p-local atoms, especially in their congruence classes, we have
to replace in Theorem 2.2 the categories CWF

n and El(Γ) by their localizations
CWF

n(p) and El(Γ)(p). The latter coincide in fact with the bimodule category
El(Γ(p)), where Γ(p) is the A(p)-B(p)-bimodule Z(p)⊗ Γ.

3. Small dimensions

Recall the results for small values of d. If n = 1, m = 2, indA = indB =
{

S2
}

and there are no nonzero morphisms f with H2(f) = 0. Hence, there are no torsion
free atoms of dimension 3. For n = 2, m = 4, indB =

{

S3, S4
}

, indA =
{

S4
}

and
there is a unique indecomposable element in El(Γ), namely the (suspended) Hopf
map η : S4 → S3, which gives rise to a new atom C5 of dimension 5 included into a
cofibration sequence

S4 η
−→ S3 → C5 → S5 η[1]

−−→ S4.

It induces a commutative diagram of Hos-groups with exact rows and columns

Z

��

0oo

��

Hos(C5, S4)oo

��

Z/2oo

��

Zoo

��

Z/2

��

Zoo

��

Hos(C5, S3)oo

��

Z/2oo

��

Z/2oo

��

Hos(S4, C5)

��

Hos(S3, C5)oo

��

Hos(C5, C5)oo

��

Hos(S5, C5)oo

��

Hos(S4, C5)oo

��
0

��

0oo

��

Hos(C5, S5)oo

��

Zoo

��

0oo

��

Z 0oo Hos(C5, S4)oo Z/2oo Z ,oo

where all maps Z → Z/2 are surjective and all maps Z/2 → Z/2 are bijec-
tive. It gives that Hos(C5, S4) = Hos(S4, C5) = 0, and one can naturally identify
Hos(S3, C5) = Hos(C5, S5) = Z, Hos(C3, S3) = Hos(S5, C5) = 2Z; then all maps
Z→ Z are identities and 2Z→ Z are natural inclusions. Therefore Hos(C5, C5) can
be identified with the subring in Z×Z consisting of all pairs (a, b) with a ≡ b mod 2.
We denote the suspended atoms C5[k] by C5+k.

If n = 3, m = 6, indA =
{

S6
}

, indB =
{

S4, S5, S6, C6
}

. Moreover, nonzero
maps S6 → S6 and S6 → C6 induce nonzero maps of the 6th homologies, thus
do not belong to Γ. Therefore, the only atom C7

2 of dimension 7 comes from the
iterated Hopf map η2 : S6 → S4. Again we denote C7

2 [m] by C7+m
2 . The cofibration

sequence

S6 η2

−→ S4 → C5 → S7 η2 [1]
−−→ S5
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induces a commutative diagram with exact rows and columns

Z

��

0oo

��

Hos(C7
2 , S

6)oo

��

Z/2oo

��

0oo

��

Z/2

��

Zoo

��

Hos(C7
2 , S

4)oo

��

Z/24oo

��

Z/2oo

��

Hos(S6, C7
2)

��

Hos(S4, C7
2)

oo

��

Hos(C7
2 , C

7
2)

oo

��

Hos(S7, C7
2 )oo

��

Hos(S5, C7
2)

oo

��
0

��

0oo

��

Hos(C7
2 , S

7)oo

��

Zoo

��

0oo

��

Z/2 Z/2oo Hos(C7
2 , S

5)oo Z/2oo Z ,oo

where all maps to Z/2 are surjective and all maps from Z/2 are injective. It im-
plies that Hos(C7

2 , S
6) ' Hos(S5, C7

2) ' Z/2, Hos(S4, C7
2) ' Hos(C7

2 , S
7) ' Z,

Hos(C7
2 , S

4) ' Hos(S7, C7
2) ' 2Z ⊕ Z/12, and Hos(C7

2 , C
7
2) can be identified with

the set of triangular matrices of the form
(

a b
0 c

)

with a, c ∈ Z, b ∈ Z/12, a ≡ c mod 2.

The cases n = 4 and n = 5 are considered in [2, 3], where it was shown that there
are only finitely many atoms of dimensions 9 and 11. Since we need not information
about these atoms, we do not reproduce here the calculations. In [12] they are given
using the same technique as in the present paper.

4. Atoms of dimension 13: localization

Let now n = 6, m = 10. Then indA =
{

Sk (10 ≤ k ≤ 12), C12
}

, indB =
{

Sk (7 ≤ k ≤ 10), C9, C10, C10
2

}

. Tables 1–3 on page 9 contain the values of
Γ(A,B), Hos(A′, A) and Hos(B,B′) for A,A′ ∈ indA, B, B′ ∈ indB. In these ta-
bles we present the values for the spaces Ck and Ck

2 with respect to the defining
cofibration sequence, as we did for Hos(C7

2 , C
7
2) above. Thus we show after colon

the dimensions of spheres surrounding the corresponding space in such a cofibra-
tion sequence. The marks = at Z in the cells belonging to the same space shows
that the corresponding entries are congruent modulo 2. The marks ∗ show that we
identify the elements of period 2 of the mentioned groups. For instance, in fact,
Γ(C12, C10

2 ) ' Z/24, but it is convenient to consider it as (Z/24 ⊕ Z/2)/〈 (12, 1)
〉

.
Under these notations, the action of Hos-groups on Γ-groups is just given by the ma-
trix multiplication of the tables. All calculations for these tables are quite analogous
to the calculations for C5 and C7

2 above, so we omit them.
Therefore, objects from El(Γ) can be considered as 10×5 block matrices γ = (γij),

where the entries of γij are from the (ij)-th cell of Table 1. Morphisms γ → γ ′ are
given by block matrices α = (αij)5×5 and β = (βij)10×10, where αij has entries from
the (ij)-th cell of Table 2, βij has entries from the (ij)-th cell of Table 3, their
sizes are compatible with those of γij and γ′ij, and βγ = γ′α. Such a morphism is
invertible if and only if all diagonal blocks of α and β are square, and both detα
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Table 1. Γ(A,B)

S10 S11 S12 C12 : 10 12
S7 Z/24 0 0 Z/24 0

C10
2 : 7 Z/12 0 0 Z/24∗ 0

10 0 0 Z/2 0 Z/2∗

C9 : 7 Z/12 0 0 Z/24∗ 0
9 0 0 Z/24 0 Z/24∗

S8 Z/2 Z/24 0 0 0
C10 : 8 0 Z/12 0 0 0

10 0 0 0 0 0
S9 Z/2 Z/2 Z/24 0 Z/12
S10 0 Z/2 Z/2 0 0

Table 2. Hos(A,A′)

S10 S11 S12 C12 : 10 12
S10 Z Z/2 Z/2 2Z 0
S11 0 Z Z/2 0 0
S12 0 0 Z 0 Z

C12 : 10 Z 0 0 Z= 0
12 0 0 2Z 0 Z=

Table 3. Hos(B,B′)

S7 C10
2 : 7 10 C9 : 7 9 S8 C10 : 8 10 S9 S10

S7 Z 2Z Z/12 2Z 0 Z/2 0 Z/12 Z/2 Z/24
C10

2 : 7 Z Z= Z/12 2Z 0 Z/2 0 Z/12 0 Z/12
10 0 0 Z= 0 0 0 0 Z 0 2Z

C9 : 7 Z Z Z/12 Z= 0 0 0 Z/12 0 Z/12
9 0 0 0 0 Z= 0 0 0 2Z 0

S8 0 0 0 0 0 Z 2Z 0 Z/2 Z/2
C10 : 8 0 0 0 0 0 Z Z= 0 0 0

10 0 0 2Z 0 0 0 0 Z= 0 2Z
S9 0 0 Z/2 0 Z 0 0 0 Z Z/2
S10 0 0 Z 0 0 0 0 Z 0 Z
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and det β equal ±1. One can easily see that only entries from Z or 2Z give nonzero
input to these determinants, so they belong indeed to Z.

To solve this matrix problem, first localize it at 2, i.e. replace CWF
6 by CWF

6(2)
and El(Γ) by El(Γ(2)). It means that in all tables we must replace Z by Z(2), Z/24
by Z/8, and Z/12 by Z/4. Then consider it modulo 2, thus replace all nonzero
entries in Table 1 by Z/2. It gives a matrix problem, which is an example of a bunch
of chains (cf. [6] or [10, Appendix]; we use the notations and terminology of the
latter paper). Namely, there are 4 pairs of chains:

E1 =
{

e1 < e2 < e4
}

, F1 =
{

f4 < f1

}

;

E2 =
{

e5 < e9
}

, F2 =
{

f3 < f5

}

;

E3 =
{

e6 < e7
}

, F3 =
{

f2

}

;

E4 =
{

e3 < e10 < e′9 < e′6
}

, F3 =
{

f ′

1 < f ′

2 < f ′

3

}

with the equivalence relation ∼ such that the only nontrivial equivalences are:

ei ∼ e′i (i = 6, 9), e2 ∼ e3, e4 ∼ e5,

fj ∼ f ′

j (j = 1, 2, 3), and f4 ∼ f5.

We set x − y if x ∈ Ei, y ∈ Fi or vice versa, Xi = Ei ∪ Fi and X =
⋃4

i=1 Xi.
Recall that, according to [6, 10], indecomposable objects for this bunch of chains
are described by full words

w = x1r2x2r2 . . . xn−1rnxn,

where xk ∈ X, rk ∈
{

∼,−
}

and xk−1rkxk according to the above definitions of
∼ and −; moreover, if r2 = − (rn = −), then x1 6∼ y (respectively xn 6∼ y) for
any y ∈ X, y 6= x1 (y 6= xn). Namely, each full word w defines an indecomposable
string object us(w). We call w a cycle if r2 = rm =∼ and xn − x1; this cycle is
called aperiodic if w 6= v − v − · · · − v for any shorter word v. If w is an aperiodic
cycle and π(t) 6= td is a power of an irreducible polynomial from Z/2[t], there is
also an indecomposable band object ub(w, π(t)), and every indecomposable object is
isomorphic either to a string or to a band one. Moreover, all isomorphisms between
such objects come either from a cyclic shift of a cycle or from replacing a word w by
the reverse word w∗ ([10, Theorem A.12]). For every pair of mutually reverse words
we choose one of them and denote by W the set of all these representatives. We call
x1 (or xn) an exceptional end of the word w = x1r2 . . . rnxn if r2 =∼ and x1 /∈ X4

(respectively rn =∼ and xn /∈ X4). Note that it can happen that both ends of w
are exceptional. We also consider ei (i = 1, 7) as the unique exceptional end of the
word w = ei.

Suppose that we know the reduction γ̄ of γ modulo 2: γ̄ =
⊕

l rlγ̄l, where γ̄l are
pairwise non-isomorphic string and band objects. We lift each γ̄l to a (fixed) object
γl of El(Γ) and set γ̂ =

⊕

l rlγl. An obvious way to do it is just to consider the
elements of matrices defining γ̄ (which are 0 and 1) as elements from Z/8 or Z/4,
if necessary. Then γ = γ̂ + 2γ ′, and the entries of γ′ are at most from Z/4. Again
denote by γ̄′ the reduction of γ′ modulo 2.
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Recall that, according to [10, Definitions A.10,A.11], string and band objects are
actually block matrices, where all blocks are invertible (1× 1 for string objects) and
correspond to the entries xk − xk+1 in the word w. Note that if xk and xk+1 belong
to X4, then neither xk−1 nor xk+2 (if they exist) belong to X4 (if w is a cycle, we
set xn+k = xk). Therefore, every new horizontal and vertical stripe in a band object
contains an invertible block corresponding to an entry x− y with x, y /∈ X4 (we call
such a block a ν-block). It easily implies that if γ̄l is a band object, γ̂l splits out of
the whole γ. If γ̄l is a string object corresponding to a full word w, again all new
stripes corresponding to xk − xk+1 contain an invertible ν-block, except the case
when this stripe correspond to an exceptional end. So if w has no exceptional ends,
γ̂l also splits out of γ.

Denote by X′ the set of pairs (w, x), where w ∈W and x is an exceptional end of
w. We call x the type of such a pair. Set also

E′

i =
{

(w, x) ∈ X′ | x ∈ Ei

}

;

F′

j =
{

(w, x) ∈ X′ | x ∈ Fj

}

and define orderings on each E′

i and F′

j setting (w, x) < (w′, x′) if there is a morphism
uw → uw′ such that its component corresponding to the stripes x of w and x′ of w′

is nonzero. One can check that all these orderings are linear (it follows immediately
from the reduction algorithm of [6]). We also set (w, x) ∼ (w, x′) if x, x′ are two
exceptional ends of the same word. Thus we obtain a new bunch of chains. It
obviously describes the admissible transformations of γ̄ ′. Thus we can again use the
description of indecomposable objects from [6, 10] and suppose that γ̄ ′ is decomposed
into a direct sum of string and band objects. Then rewrite γ ′ as γ̂′ + 2γ′′, where γ̂′

is a lift of this canonical form of γ̄ ′ and γ′′ only has entries corresponding to those
blocks of the original problem, which had the entries from Z/24. Moreover, we can
repeat the same considerations as above to split out all new bands and only keep
the strings having exceptional ends. This time the list of such strings is very short,
since we can use transformations adding Z/2-entries multiplied by 4 to Z/8-entries.
Namely, the only nonzero entries in γ ′′ can occur at the places corresponding to the
horizontal stripes in the words a1 = e1, a2 = e3 ∼ e2, a5 = e4 ∼ e5, a6 = e′6 ∼ e6 or
a9 = e′9 ∼ e9 and the vertical stripes in the words b1 = f1 ∼ f ′

1, b2 = f2 ∼ f ′

2, b4 =
f4 ∼ f5, b(3,0) = f3 ∼ f ′

3 and other pairs b(3,k) of type f3. Note the latter vertical
stripes can only be combined with the horizontal stripe corresponding to e4 ∼ e5
and it is impossible that one chain have two exceptional end of type f3. This time
we get one new pair X′′ of chains:

E′′ =
{

a1 < a2 < a5 < a6 < a9

}

, F′′ =
{

b(3,k) < b4 < b1 < b2
}

(under some linear order on the set
{

b(3,k)

}

) and the relation ∼ is empty. Therefore,
it only has 1-dimensional representations corresponding to the words ai − bj with
i = 1, j = 1, 4, or i = 2, j = 4, or i = 5, j ∈

{

4, (3, k)
}

, or i = 6, j = 2, or
i = 9, j = (3, 0).

It completes the 2-local description of El(Γ), hence of CWF
6, which can be pre-

sented as follows.
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Definition 4.1. (1) Define symmetric relations c
— (c ∈ {1, 2, 4}) on X by the

following exhaustive rule:
• ei

c
— fj if and only if ei − fj and the (ij)-th entry in Table 1 is Z/m,

where r | m.
(2) Define an X(2)-word as a sequence

w = x1r2x2r2 . . . xn−1rnxn,

where xk ∈ X, rk ∈
{

∼, c
— | r = 1, 2, 4

}

such that
(a) for each 1 < k ≤ n, xk−1rkxk in X;
(b) if rk =∼, then rk+1 = c

— for some c and vice versa;
(c) if r2 6=∼ (rn 6=∼), then x1 6∼ y (respectively, xn 6∼ y) for any y ∈ X;
(d) if rk = 2

— , then either 2 < k < n, or k = 2, x1 = e1, or k = n, xn = e1;
(e) 4

— only can occur in the following words or their reverse:

e4 ∼ e5 4
— f3 ∼ . . . (any length),

e1 4
— f1 ∼ f ′

1, e1 4
— f4 ∼ f5, e3 ∼ e2 4

— f4 ∼ f5,

e′6 ∼ e6 4
— f2 ∼ f ′

2, e′9 ∼ e9 4
— f3 ∼ f ′

3.

(3) Define an X(2)-cycle as a pair (w, r1), where w is an X(2)-word with r2 =
rn =∼, which contain no entry 4

— , r1 ∈ { 1
— , 2

— } and xnr1x1 in X. For
such a cycle we set rqn+k = rk for any q and 1 ≤ k ≤ n.

(4) A cycle (w, r1) is called periodic if it is of the form vr1vr1 . . . r1v for a shorter
cycle v.

(5) If (w, r1) is an X(2)-cycle, w = x1r2x2r2 . . . xn−1rnxn, its k-th shift is, be
definition, the cycle (w(k), r2k+1), where w(k) = x2k+1r2k+2x2k+2 . . . r2kx2k.

Theorem 4.2. (1) Every X(2)-word w defines an indecomposable object P (w),
called string object, in the category El(Γ(2)).

(2) Two string objects, P (w) and P (w′) are isomorphic if and only if either
w′ = w or w′ = w∗ (the reverse word).

(3) Let π(t) 6= t is an irreducible polynomial over the field Z/2 with the lead-
ing coefficient 1. Every quadruple (w, r1, π(t), m), where (w, r1) is a non-
periodic X(2)-cycle and m is a positive integer, defines an indecomposable
object P (w, r1, π,m) ∈ El(Γ(2)), called band object.

(4) Two band objects, P (w, r1, π(t), m) and P (w′, r′1, π
′(t), m′), are congruent if

and only if m = m′ and one of the following possibilities holds:
(a) π′(t) = π(t) and either w′ ≡ w(k) with k even, r′1 = r2k+1, or w′ ≡ w∗(k)

with k odd, r′1 = rn−2k;
(b) π′(t) = tdπ(1/t), where d = deg π, and either w′ ≡ w(k) with k odd,

r′1 = r2k+1 or w′ ≡ w∗(k) with k even, r′1 = rn−2k.
(5) Every indecomposable object in El(Γ(2)) is isomorphic to either a string or

a band object.

Thus congruence classes of indecomposable 2-local polyhedra in CWF
6 correspond

to string and band objects of El(Γ(2)). We denote these classes by the same symbols
P (w) and P (w, r1, π(t), m) and call such polyhedra, respectively, string and band
polyhedra. Note that a string polyhedron from P (w) (respectively, band polyhedron
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from P (w, r1, π(t), m)) belongs to AF
13 if and only if the word w contains at least

one of the symbols e1, e2, e4 (corresponding to the sphere S7) and at least one of the
symbols f3, f5 (corresponding to S12).

If we consider the localizations CWF
6(3) and El(Γ(3)), we get:

C12 ' S10 ⊕ S12 in A(3);

C10 ' S8 ⊕ S10 in B(3);

C9 ' S7 ⊕ S9 in B(3);

C10
2 ' S7 ⊕ S10 in B(3);

Γ(3)(S10, B) = 0 for all B ∈ B(3).

Therefore, the only indecomposable objects in CWF
6(3), except the images of spheres,

correspond to 1×1 matrices (1) in Γ(3)(S10, S7), in Γ(3)(S11, S8) and in Γ(3)(S12, S9).
The first of them is an atom from AF

11, the other two are its suspensions. Hence
there are no 3-local atoms of dimension 13. Thus we have accomplished a local
description of atoms in CWS

6, in particular, of the Grothendieck group of this cat-
egory.

It will be convenient to introduce a new equivalence relation ≈ and a new sym-
metric relation ∗

— on X by the following exhaustive rules:

e1 ≈ e2 ≈ e4; e6 ≈ e7; e5 ≈ e9;

f1 ≈ f4; f3 ≈ f5;

ei
∗
— fj if ei ≈ e1 and fj ≈ f1,

or ei ≈ e6 and j = 2,

or ei ≈ e5 and fj ≈ f3.

Then we consider the 3-local polyhedra from CWF
6 as corresponding to the words

e1
∗
— f1, e6

∗
— f2, e5

∗
— f3 or their reverse.

5. Atoms of dimension 13: globalization

The description of indecomposable objects in CWF
6(2) and CWF

6(3), together
with Theorem 1.5 and Lemma 1.6 implies a classification of the congruence classes
of indecomposable polyhedra in CWF

6.

Definition 5.1. (1) We define new relations c ∗
— (c = 1, 2, 4) on X: x c ∗

— y if
and only if both x c

— y and x ∗
— y. Set R = {1, 2, 4, ∗, 1 ∗, 2 ∗, 4 ∗} and R∗ =

{∗, 1 ∗, 2 ∗, 4 ∗}.
(2) We define global words as sequences

w = x1r2x2r3 . . . xn−1rnxn,

where xk ∈ X, rk ∈ R ∪ {∼} and the following conditions hold:
(a) xkrkxk+1 in X for 1 ≤ k < n;
(b) if rk ∈ R, then rk±1 =∼ and vice versa;
(c) if r2 6=∼ (rn 6=∼), then x1 6∼ y (respectively, xn 6∼ y) for any y ∈ X;
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(d) if rk = 2
— or rk = 2 ∗

— , then either 2 < k < n, or k = 2, x1 = e1, or
k = n, xn = e1;

(e) if r = 4
— or r = 4 ∗

— , then r only can occur in the following words or their
reverse:

e4 ∼ e5 r f3 ∼ . . . (any length),

e1 r f1 ∼ f ′

1, e1 r f4 ∼ f5, e3 ∼ e2 r f4 ∼ f5,

e′6 ∼ e6 r f2 ∼ f ′

2, e′9 ∼ e9 r f3 ∼ f ′

3,

. . . ∗
— e4 ∼ e5 r f3 ∼ . . . (any length),

e3 ∼ e2 r f4 ∼ f5
∗
— . . . , e1 r f4 ∼ f5

∗
— . . . (any length).

(f) if w contains a subword ei
∗
— fj or its reverse, it does not contain any

subword ek
c

— fl or its reverse, where c ∈ {1, 2, 4}, ei ≈ ek and fj ≈ fl.
(3) We define a global cycle as a pair (w, r1), where w is a global word with

r2 = rn =∼, which contain no entry 4
— or 4 ∗

— , r1 ∈ R \ { 4
— , 4 ∗

— } and
xnr1x1 in X. For such a cycle we set rqn+k = rk for any q and 1 ≤ k ≤ n.

(4) A cycle (w, r1) is called periodic if it is of the form vr1vr1 . . . r1v for a shorter
cycle v.

(5) If (w, r1) is a global cycle, w = x1r2x2r2 . . . xn−1rnxn, its k-th shift is, be
definition, the cycle (w(k), r2k+1), where w(k) = x2k+1r2k+2x2k+2 . . . r2kx2k.

(6) We call two global words w,w′ elementary congruent if w = x1r2x2r3 . . . xn−1rnxn,
w′ = x1r

′

2x2r
′

3 . . . xn−1r
′

nxn (with the same xk) and there are two indices k, l
such that

rk = c ∗
— , rl = d

— for some c, d ∈ {1, 2, 4},

r′k = c
— , r′l = d ∗

— ,

xk ≈ xl or xk ≈ xl−1.

(7) We call two global words w,w′ congruent and write w ≡ w′ if there is a
sequence of words w = w1, w2, . . . , wm = w′ such that wk and wk+1 are
elementary congruent for 1 ≤ k < m.

Theorem 5.2. (1) Every global word w defines an indecomposable polyhedron
P (w) ∈ CWF

6, called string polyhedron.
(2) Two string polyhedra, P (w) and P (w′), are congruent if and only if either

w′ ≡ w or w′ ≡ w∗ (the reverse word).
(3) Let π(t) 6= t be an irreducible polynomial over the field Z/2 with the leading

coefficient 1. Every quadruple (w, r1, π(t), m), where (w, r1) is a non-periodic
global cycle and m is a positive integer, defines an indecomposable polyhedron
P (w, r1, π,m) ∈ CWF

6, called band polyhedron.
(4) Two band polyhedra, P (w, r1, π(t), m) and P (w′, r′1, π

′(t), m′), are congruent
if and only if m = m′ and one of the following possibilities holds:
(a) π′(t) = π(t) and either w′ ≡ w(k) with k even, r′1 = r2k+1, or w′ ≡ w∗(k)

with k odd, r′1 = rn−2k;
(b) π′(t) = tdπ(1/t), where d = deg π, and either w′ ≡ w(k) with k odd,

r′1 = r2k+1 or w′ ≡ w∗(k) with k even, r′1 = rn−2k.
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(5) Every indecomposable polyhedron in CWF
6 is congruent to either a string or

a band polyhedron.
(6) A string polyhedron P (w) (a band polyhedron P (w, r1, π(t), m)) is an atom

if and only if the word w contains at least one of the letters e1, e2, e4 and at
least one of the letters f3, f5.

It is convenient to present the string and band polyhedra from CWF
6 by their

attachment diagrams, as in [1–5,12]. In these diagrams the cells of dimension d
are presented by vertices at the d-th level, while their attachments are presented
by edges. Note that in our case all homotopy groups of spheres involved into the
calculations are cyclic. If the corresponding homotopy group is not of order 2, and θ
is its generator, we supply the edge with a coefficient a, which means that actually
this attachments is by the map aθ. If X arises from a cofibration sequence

(6) A
f
−→ B

g
−→ X

h
−→ A[1]

f [1]
−→ B[1]

with A ∈ A, B ∈ B, H10(f) = 0, the cells on the levels from 7 to 10 describe the
object B ' X10; the cells on the levels from 11 to 13 describe the object A[1] ' X/B.

Let w = x1r2x2r3 . . . xn−1rnxn be a global word and P (w) be the corresponding
string polyhedron. Then the cofibration sequence (6) and the attachment diagram
for X = P (w) can be reconstructed as follows.

(1) The indecomposable summands of A correspond to the following subwords
(or their reverse):

S10 to f1 ∼ f ′

1,

S11 to f2 ∼ f ′

2,

S12 to f3 ∼ f ′

3,

C12 to f4 ∼ f5.

(2) The indecomposable summands of B correspond to the following subwords
(or their reverse):

S7 to e1,

C10
2 to e2 ∼ e3,

C9 to e4 ∼ e5,

S8 to e6 ∼ e′6,

C10 to e7,

S9 to e9 ∼ e′9,

S10 to e10.

(3) The attachments correspond to the subwords ei r fj and their reverse, where
r∈ R. Namely, an attachment starts at the f -end of the corresponding
subword and terminates at its e-end. The coefficient a of this attachment
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equals

3c if r = c
— , (c ∈ {1, 2, 4}),

c if r = c ∗
— , (c ∈ {1, 2, 4}),

8 if r = ∗
— , and ei

4
— fj,

4 if r = ∗
— , and not ei

4
— fj.

Recall that the congruence relation ≡ for words allows to change these coefficients,
namely to divide one of them by 3 and simultaneously multiply by 3 another at an
“equivalent” place.

For instance, let

w = e10
1
— f ′

2 ∼ f2
∗
— e6 ∼ e′6

1
— f ′

1 ∼ f1
2 ∗
— e4 ∼

∼ e5 2
— f5 ∼ f4

1 ∗
— e2 ∼ e3 1

— f ′

3 ∼ f3
2 ∗
— e5 ∼

∼ e4 1
— f1 ∼ f ′

1
1
— e′9 ∼ e9 4

— f3 ∼ f ′

3.

Then the attachment diagram for P (w) is:

13 •

6
��
��
��
��

��
��
��
��

•

2









12 •

8
--

--
--

--

--
--

--
--

•

12
��
��
��

��
��
��

11 •

2
--

--
--

--

--
--

--
--

•

1
--

--
--

--

--
--

--
--

•

3
��
��
��
��

��
��
��
��

10 • •

9 • • •

8 •

7 • • •

Let now P (w, r1, π(t), m) be a band polyhedron, where (w, r1) is a non-periodic
global cycle and deg π = d. Then we must use the same procedure as before, but
take dm copies of each cell. All attachments are natural: we attach the k-th copy
from the upper level to the k-th copy from the lower one. Additionally, we must
attach the copies of the last cell to the copies of the first one. This attachment must
be twisted using the Frobenius matrix with the characteristic polynomial πm(t); the
coefficient a of this attachment is defined as above by the relation r1. Certainly, the
Frobenius matrix can be replaced by any conjugate one (for instance, by the Jordan
matrix, if the polynomial π(t) is linear).

For instance, consider the polyhedron P (w, 1 ∗
— , t2 + t+ 1, 2), where

w = e2 ∼ e3 1
— f ′

3 ∼ f3
2 ∗
— e9 ∼ e′9

1
— f ′

1 ∼ f1
1
— e4 ∼ e5 2

— f5 ∼ f4.
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Its attachment diagram can be symbolically presented as follows:

13 �

2

11
11

11
11

11
11

11
11

1

11
11

11
11

11
11

11
11

1 �

6

��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
�

12

11 �

3

11
11

11
11

11
11

11
11

1

11
11

11
11

11
11

11
11

1 �

1

�G
�G

�F
�F

�E
�D

�C
�A

�?
}=

z:
y9

w7
u5t4r2q1p0p0o/o/n.

10 �

9 � �

8

7 � �

To obtain the real attachment diagram, every square must be replaced by 4 copies
of the corresponding cell. The double lines must be replaced by the attachments
like

• • • •

• • • •

At last, the wavy line must be replaced by the attachments

•
??

??
? •

??
??

? •
??

??
? •
��

��
�

jjjjjjjjjj

• • • •

since the Frobenius matrix with the characteristic polynomial (t2 + t+ 1)2 is









0 0 0 1
1 0 0 0
0 1 0 1
0 0 1 0









.

6. Wildness of CWF
7

Recall that a classification problem is called wild if it contains the classification
of pairs of linear mappings in a vector space over a field k. Then it also contains the
classification of finite dimensional representations of an arbitrary finitely generated
k-algebra (see, e.g., [11]).

To prove the wildness of CWF
7, we use Theorem 2.2 for n = 7, m = 11. Then A

contains the polyhedron C14
2 , which arises from the cofibration sequence

(7) S13 η2

−−→ S11 → C14
2 → S14 η2 [1]

−−−−→ S12,

while B contains the spheres Sk (8 ≤ k ≤ 11). From the cofibration sequence (7)
we get the following exact sequences:

0← Z/24← Hos(C14
2 , S

8)← Z/2← 0 ,

Z/2← Z← Hos(C14
2 , S

11)← Z/24← Z/2 .
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Thus Γ(C14
2 , S

11) ' Z/12. Consider now the commutative diagram

S13 η
−−−→ S12 −−−→ C14 −−−→ S14 η

−−−→ S13

Id





y

η





y





y
Id





y





y

η[1]

S13 −−−→
η2

S11 −−−→ C14
2 −−−→ S14 −−−→

η2

S12,

where both rows are cofibration sequences. It gives the commutative diagram with
exact rows

0 ←−−− 0 ←−−− Hos(C14, S8) ←−−− Z/2 ←−−− 0
x





x





x




Id

x





x





0 ←−−− Z/24 ←−−− Hos(C14
2 , S

8) ←−−− Z/2 ←−−− 0 ,

which shows that the lower row splits, i.e. Γ(C14
2 , S

8) = Hos(C14
2 , S

8) ' Z/24⊕Z/2.
Consider the group Γ(r, s, t) = Γ(rC14

2 , sS
8 ∨ tS11). An element µ ∈ Γ(r, s, t) can be

presented by a triangular matrix

µ =

(

µ1 µ2

0 µ3

)

,

where µ1 ∈ Mat(s×r,Z/24) and µ2 ∈ Mat(s×r,Z/2) correspond respectively to the
direct summands srZ/24 and srZ/2 of Γ(rC14

2 , sS
8), while µ3 ∈ Mat(t × r,Z/12)

corresponds to the group Γ(rC14
2 , tS

11) ' trZ/12. If µ′ ∈ Γ(r′, s′, t′), morphisms
(α, β) : µ→ µ′ can be presented by triangular matrices

α =

(

α1 α2

0 α3

)

, β =

(

β1 β2

0 β3

)

,

where α1, α3, β1, β3 have coefficients from Z, α2 from Z/24 and β2 from Z/12, β1 ≡
β3 mod 2, αµ = µ′β, and the subdivisions of α and β are compatible with those of
µ and µ′. Note that actually only the residues of α1, β1 modulo 24, α3, β3 modulo
12 and of α2, β2 modulo 2 matters for the equality αµ = µ′β.

Suppose now that r = 2r1 + r2, s = 2r2, A,B ∈ Mat(t× r1,Z/2), C ∈ Mat(r1 ×
r2,Z/2), and consider the matrix µ = µ(A,B,C) with components

µ1 =

(

6Ir1
0 0

0 12Ir2
0

)

, µ2 =

(

0 Ir1
0

0 0 C

)

, µ3 =
(

6A 6B 0
)

.

If (α, β) : µ(A,B,C) → µ(A′, B′, C ′), set α1 = (ξij) (i, j = 1, 2), β1 = (ηij), β3 =
(ζij), (1 ≤ i, j ≤ 3), where theses subdivision are compatible with those of µk.
Then one easily checks that the following congruences modulo 2 hold: ξ21 ≡ ζ21 ≡ 0,
ηij ≡ 0 if i < j, ξ11 ≡ η11 ≡ ζ22 and ξ22 ≡ η22. Since also ζij ≡ ηij for all i, j, we get

ξ22C ≡ C ′ζ33, α3A ≡ A′ξ22, α3B ≡ B′ξ22.

Therefore, if we consider the triples (A,B,C) as representations of the quiver

(8) •
C

// •
A

**

B

44 •
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over the field Z/2, the elements µ(A,B,C) and µ(A′, B′, C ′) are isomorphic in El(Γ)
if and only if the representations (A,B,C) and (A′, B′, C ′) of the quiver (8) are
isomorphic. Since this quiver is wild [9], so is the category El(Γ), hence the category
CWF

7 as well.
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