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Introduction

This paper is concemed with a certain Rankin-Selberg convolution of!Wo

variables for a cusp form F on an orthogonal group of signature (m -1, 2). The main

object is to show that the convolution splits into a product of two standard L-functions

attached to F.

To be more precise, let H =O(m -1,2) be an orthogonal group suitably

embedded in G1 = O(m, 2) (cf. §2.1). Let B1 be a Q-minimal parabolic subgroup of

G1. Then its Levi component is isomorphie to GL1 x GL1 x Go' where Go =O(m - 2)

is a definite orthogonal group. For an automorphic fonn cp on Go' we can attach an

Eisenstein series E(*, cp; s, so) of two variables s and So on G1 with respect to B1,

Let F be a cusp fonn on H and suppose that Fand cp are Hecke eigenforms. The

convolution we study in this paper is defined by

E:p,<p(s, so) = J F(h) B(h, cp; s, so) dh.
HQ\HA

The main result (Theorem 3.1) asserts that, under certain assumptions on orthogonal

groups, the integral E:p,<p(s, so> decomposes into a product of an Euler product
L(F; s) L(F; so)

1 1 and a local factor at infinity. Here L(F; s) and L{cp; s)
L(cp; s+ 2) L(cp; so+ 2)
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denote the standard L-functions associated with F and cp. The loeal factor at infinity

can be explicitly ealculated if F is holomorphic (Theorem 3.2).

To prove the results, we employ two main ingredients; Shintani functions (§4.3)

and generalized Whittaker functions (§5.1). They have been introduced and studied in

[MS1] and [Su] respectively, where we proved certain fOTmulas relating certain integrals

of these functions to some Euler factors (see Proposition 4.1 and Proposition 5.1).

These formulas are essential in the calculation of the local integrals.

We now explain a'brief account of the paper. In §1, we review the definition of

the standard L-functions for orthogonal groups. We introduce various orthogonal groups

and their embeddings in §2. The main results of this paper is stated in §3 (Theorem 3.1

and Theorem 3.2). The next two sections are devoted to the praof of Theorem 3.1. In

§4, we first recall the definition of Shintani funetians. Using the basic identity proved in

[MS1], we show that EpJcp(s, so> is a product of the quotient L(F; s)lL(cp; S4) of L-

functions and a certain integral ~(F, cp; s, sJ at the infinite place. In §5, we prove that

the integral AeI)(F, cp; s, so) is expressed as a certain integral of generalized Whittaker

function. By virtue of the result of [Su], we see that the integral is a product of
1

L(F; so)!L(Cp; so~) and a loeal factor del)(F, cp; s, sJ that depends only on tbe data at

the infinite place. Theorem 3.1 is proved by combining these results. In the final

section, we calculate del)(F, cp; s, so) in an explicit form in the case where F is

holomorphic.

In the forthcoming paper ([MS2]), applying tbe above results to the case m = 3,

we study the pullback of Eisenstein senes on PGSP2 (isogeneous to 0(3,2» to a Hilbert

modular group (isogeneous to 0(2, 2).

The first named autbor would like to express a deep gratitude to M.ax-Planck

Institut für Mathematik for its generous support and hospitality.

Notation

Let Qv be the completion of Q at a prime v of Q and A be the adele ring of
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Q. For a linear algebraie group X defined over Q, we denote by ~ (resp. XA) tbe

group of Qv (resp. A) -rational points of X. For eaeb prime v of Q, Ilv stands for tbe

normalized valuation of Qv given by d(ax) = lalv dx (a E Q~), where dx is a Haar

measure on Qv' Let IxlA =TI IXvlv be the norm of an idele x =(xv) E Ax. Tbe finite
v

part of A is denoted by Ar. We fix the additive charaeter '4' of A trivial on Q so that

'4'(xoo) = e[xoo] := exp(23tixoo) for Xoo E R.

For a symmetrie matrix A E Mr, we put A(x, y) =txAy and A[x] =txAx for

r-column veetors x and y. We write 0r for the zero column veetor of size r.
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§l. Review of the standard L-functions for orthogonal groups

Let S E ~(Z) be a non-degenerate even integral symmetrie matrix. Assume

that S is maximal; namely, L = Zm is a maximal Z-lattice with respect to S. Let G =

O(S) be tbe orthogonal group of S. By maximality of S,~ =G(Z~ is a maximal

open compact subgroup of Gp = G(Q~ for every p. Let H(Gp'~ be the algebra of

comp~ctlysupported bi-~ invariant functions on Gp' Then the Heeke algebra

H(Gp'~) is isomorphie to the affine algebra C[X=ll, "', x.:l ]Wvp via the Satake
p

homomorphism, where vp is the Witt index of S at p and Wy is the subgroup ofthe
p

automorphism group of C[X=ll, "', X:l ] generated by the involutions ~ --+ XiI
p

and tbe permutations of the indeterminates Xl'"'' Xv (see [SaD. It follows that each
p

C-algebra homomorphism '1> of H(Gp'~ to C determines the Satake parameter

(al' "', 0v ) E (Cx)vPjWy .
P P

To define an L-faetor attaehed to ~ we introduce certain invariants of S at p.

Let r.; = S-l4> be the duallattice of 4> = Z; with respeet to S. Put r..;, = {x E r; I
S[x] E p-lZp}' By maximality of S, l1> is a Zp.lattice containing ~. We set dp(S) =

dirn r...p!Lp. It is known that 0 s dp(S) :s 2 and that dp(S) = 0 for almost all p(ef.
ZplpZp

[SuD. Let no,p = m - 2vp(S) be tbe dimension of the maximal anisotropie subspace of

Q; (O:s: no,p :s: 4). We define the standard L-factor ~('1>; s) as follows:

Vp

(1.1) Lp(A.p; s) = As,p(s)' U(l--ajp-sr1 (l--ajlp-srt.
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1

(1 + pl/2-S)

(1 _ p-2s)-1

(1 _ p-s)-1

(1 _ p-S)-I(1 + pl-S)

(1 _ P-112-s)-1

(1 _ p-l/2-s)-1(1 + pl/2-s)

(1 _ p-S)-l(1 _ p-l-S)-l

if (no,p(S),ap(S» = (0, 0) or (1, 0)

(1, 1)

(2,0)

(2, 1)

(2,2)

(3, 1)

(3,2)

(4, 2).

We denote by M(Kr) the space of automorphic forms on GA that are invariant

under right Kr = Tl ~ ..translations (see [BJ)). By definition, fE M(Kr) is a smooth
p<oo

function on GQ\GAIKt which satisfies the following conditions:

(1.2) The function f is Z(Lie(Goo)C>..finite, where Z(Lie(Goo)C> is the center of the

universal enveloping algebra of the complexified Lie algebra Ue(Goo)C of Goo'

(1.3) For any gf E GAr the function goo ..... f(~f) is of moderate growth on Goo'

The subspace of cusp forms in Mo<r) is denoted by S(Kr). The Hecke algebra

(8)' H(Gp'~) acts on Mo<r) by convolution on the right:
p<oo

f*cp(h) =f f(gx-1)cp(x)dx (f E M<Kt), cp E ~~H(Gp' ~), gE GA)·
GAr

We say that f E MCKr) is a Hecke eigenform if, for each rational prime p, we have

f*'Pp =~,p('P~'f for any 'Pp E H(Gp'~) with /..r,p E Homc(H(Gp' K~ ,C). The

global standard L-function L(f; s) for a Hecke eigenform f is defined by the Ewer

product

(1.4) L(f; s) = Tl Lp(Ar p; s).
p<oo '

5



§2. Embeddlng of orthogonal groups

2.1 Let Q be a non·degenerate even symmetrie matrix of rank m - 2 i!: 1. Let R =

[
Q -QA]

t 0 with Ao E Q-IZm-2 and a E Z, and put tJ. = Q[Ao] + 2a. Let
-A Q -Zao

In what follows, we assume Q >°and tJ. > 0. Then the signatures of Q, R, S, T and

SI are given by (m - 2, 0), (m - 2, 1), (m -1, 1), (m -1, 2) and (m,2) respectively.

We consider the orthogonal groups

G = O(S, V), V = Qm; H = O(T, W), W =Qm+l;

io i
Define embeddings V -... W -+ VI of vector spaces by

-aw3-Q(Ao'wi>
wl

w2

w4

w3

Then we have T[jo(v)] =S[v], Sl[j(w)] =T[w] for v E V, w E W. Moreover we see

jo(V).l Qs and j(W).l Qrl with respect to T and SI respeetively, where we put
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0
a

0

~=
1..0 L\-1 E W ,,= 1..

0 EV1·,
1

0
0

1

L
O

L

We define the embeddings G -t> H ~ GI of orthogonal groups to be

L(h)(t" + j(w)) = t" + j(hw)

for tE Q, v E V, w E W, gE G and hE H. Then Lo(G) (resp. L(H)) is the isotropy

subgroup of ; (resp.,,) in H (resp. GI)' For xE Qm-2 and y E Qm-l, put na(X) =

[

1 _txQ -2-
1
Q[x] ] [1 _tyR -Z-IR[y] ]

o Im-2 x E GQ and nH(y) = o Im-l y E HQ. Then PQ =

o 0 1 0 0 1

{nG(x) [~~ ~ ] IxE Qm-2, tE QX, ~ E Go,Q} and PH,Q ={nH(Y) [~~o ~ ] I
OO~ oo~

YE Qm-l, tE QX, ho E Ho,Q} are maximal Q-parabolic subgroups of G and H

respectively. Tbe following is easily verified (cf. [MS1, §2]).

Lemma 2.1

(i) For p = na(x) [~~ ~ ] E P, we have
o 0 Cl

t 0 0 0

o ~ (l-~)Ao 0

o 0 1 0

o 0 o

(ü)
[

1 ~S(l-g) ~s(g-l)A] [ 0 ]
L(Lo(g)) = ~ ~ (1-;)",' where gE G anti '" = ~o E V.
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In what follows, we often regard G (resp. H) as a subgroup of H (resp. GI) via Lo

(resp. L) and simply write g (resp. h) for Lo(g) (resp. L(h» if there is no fear of

eonfusion.

2.2 We define symmetrie domains D and Dl of type QV) as follows:

D ={z E ern-li R[Im z] < O}, D1 ={Z E Crn IS[Im Z] < O}.

Note that both D and D1 have two connected components. For z E D and Z E D1,

put

The aetion of Hoo (resp. GI 00) on D (resp. D1) and the automorphie faetor JH :,

Hoo x D --+ C X (resp. Jo : G1 00 x D1 --+ eX
) are defined 10 be

1 '

(h E H oo' g1 E G1 00' z E D, Z E D1). These aetions are transitive and holomorphie.,

Put Uoo = {h E Hoo Ih<zo> = zo} and K1 00 = {g1 E Gt 00 Igt <Zo> = Zo} where Zo =, ,

[

2-
1ru]

["/] E D and Zo = ~: E D1, We note !hat Ueo and K1•eo are compact and

[
_2-l~]

isomorphie to O(m-I) x 50(2) and O(m) x 50(2) respectively. Put Vo = O~_2 E

VR. Since S[vo] = - A. < 0, the subgroup K oo = {g E Goo Igvo = vo} of Goo is

compaet and isomorphie 10 O(m-l).

Lemma 2.2
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(ii) For hE HooJ we have Ja (l(h), ZJ =(- iz")'JH(h, zJ where h<zo> =[z' ] E
1 Z"

D (Z' E cm- 2, Z" E C).

_2-16,

Proof. Observe z; = Aoi = jo(vcJ + 1;·6,i. Then, for k E ~, we have lo(k)z~
i
1

=jo(kv0) +1;'!ii =jo(v0) + 1;'6,i =z~, which implies (i). The remaining parts follow

-a-Q[Aol

2-1!ii
from the observation that Z~ = A

O

-i
1

=j(z~'(-i). q. e. d.

2.3 We defme a holomorphic embedding p : D --+ D1 by

- ~ z,,-10 [z']+O(A<>,z')+az"

p(z) = z,,-lz'

,,-1
z

[

-2-
1
R[Z] ]

,,-1=Z Z'

. 1

for Z =[z/ ] E D (z' E Cm
-

2
, z" E C). Note that S[Im p(z)] = ----L

2
R[Im z] for z E

z" 1z"1
D and that p(zJ = Zoo The following is easily verified.

[ ']Z m 2
Lemma 2.3 Let z = E D (z' E C - ,z" E C).

z"

(i) We have j(z) = p(z)-·z".

(ii) For hE H ooJ let h<z> = [Zl ]. Then we have
z"1

1
L(h)<p(z» = p(h<Z»J Ja (l(h), p(z)) = z/'- Zl'·JH(h, Z).

1
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§3. Main results

3.1 From now on we assume that Q and R are maximal. Let ~,p'~'Up and

Kl,p be the groups of Zp-rational points of GO' G, Hand G1, which are maximal

open compact subgroups of Go,p' Gp' ~ and GI ,p respectively. Put Ko,f =

TI Ko p' Define Kr, Uf and GI f similarly. Throughout this paper, we assume that
p<co I ,

the condition

holds for every p. Under this assumption, we have

for every p (cf. [MS1, Proposition 3.7]).

3.2 Let S(Uf) be the space of cusp forms on HA invariant under fight Ur

translations (see §1). We fix an even positive integer land denote by Sl:Uf) the space

of FE S(Uf) satisfying F(huco) = F(h) JH(uoo' zJ-1
for hE HA and uoo E Uoo ' Put

Ko = Go,coKo,f' Note that GO,OO is compact and that Go,Q\Go.A1Ko is a finite set since

Q is positive definite. Let MCKo) be the spare of automorphic forms on Go,A

invariant under right Ko-translations.

3.3 Let

t ... * * ...

0 to ... ... ...

BI,Q = { 0 0 ~
... ... E Gl,Q It, to E QX, go E Go,Q}

0 0 0 -1to ...

0 0 0 0 Cl

be a Q-minimal parabolic subgroup of GI' Then each gi E GI ,A is decomposed into

bi (gI) kl (gI) with

10



O(gl) • • • •
0 0 0(81) • • •

b1(gl) = 0 0 ßo(gl) • • E BI A ',

0 0 0 °o(gl)-1 •
0 0 0 0 O(gl)-1

can choose O(gl) and 0o(gl) SO that 0(g1)00, 0o(gl)oo > O. The Eisenstein series

IB(g1' cp, l; s, sJ attached to cp E M(KJ with respect to BI is defined as follows:

(g1 E G1 A' (s, so) E C2
). Thanks to Langlands ([LaD, the series (3.3) converges

absolutel~ in the region {(s, s,) E c21 Re s - Re So > 1, Re s > m2"2} and can be

continued to a meromorphic function of (s, sJ on C2
.

3.4 Let FE St<Uf) and cp E M(KJ be Hecke eigenforms and L(F; s) and L(cp; s)

be the corresponding standard L-functions (see §1). The object of this paper is 10 study

the following Rankin-Selberg convolution of two variables:

The integral (3.4) can be continued to a meromorphic function of (s, so) on c2. The

main result of this paper is stated as follows.

Theorem 3.1 Let FE SlUf) anti cp E MCKo) be Hecke eigenforms. Assume that

Q and R are maximal and that the condition (3.1) is satisfied. Then we have

11



Here the local factar at infinity deQ(F, q>; s, so) is given by the integral

where WP,cp is a generalized Whittaker function associated with F, cp (Jor the precise

definition, see §5.1).

Remark. Tbc local factor deQ(F, q>; s, so) depends only on 1 and WP,c:p lH
lXl

"

3.5 Let Sr01(Uf) be the space of holomorphic cusp forms on H ofweight I. By

definition, FE SJol(Uf) is an element of SJ<Uf) such that, for every hf E H(Ar), the

function F(z; hr) := F(hcohf) JH(heQ' zo)l is holomorphic in z = hco<zo> E D. We can

calculate dco(F, q>; s, so) explicitly in the case where F E S~ol(Uf)"

Theorem 3.2 Assume F E S~OI(Uf)' Then we have

rn-I rn-I
) r(s+l- 2) r(so+l- 2)

d (F' ) -·W (1)'2-(8+8o -S0
00 ,q>, s, So - C F,c:p 1t X s+s +1 s-s +1+1 '

r( 2° ) r( °2 )

12



(4.1)

§4. Sbintani functions and tbe basic identity

4.1 Let M(K) be the space of automorphic forms on GA invariant under right K =
I<ooKt -translations (see §l). The Shintanifunction associated with FE SßJf) and fE

M(K) is given by

O)F,tOt) = f F(gh) f(g) dg
GQ\GA

(cf. [MSl, §1]). Observe that O)F r is an eigen function under the action of <8>' H(Hp'
, p<oo

U~ on the right and that of ~:H(Gp'~) on the left, if Fand f are Hecke

eigenforms. In [MSl, Theorem 1.6], we have proved

Proposition 4.1 Assume (3.1). Let FE St<Uf) and fE M(K) be Hecke

eigen/arms. Then

f rn-I {I if m is even
0) t<ß(h)-lh) la(h)1,+2 dh = L(F; s) x

G \H F, Ar L(f; s+ -21) l;(2s)-1 if m is odd.
Ar Ar

4.2 Let Pt = {[ ~ : : ] E Gt It .. 0, g E G} be a maximal parabolic subgroup

o 0 Cl

of Gt . Theo each gt E Gt,A is decomposed ioto

KI,ooKI,r' For fE M(K) and 1E Z;d)' we define the Eisenstein series on Gt,A with

respect to Pt by

The series (4.2) can be continued to a meromorphic function of s on C.

13



4.3 Let us consider the convolution

(4.3) ZF,t<s) = f F(h) E(L(h), f, I; s -~) dh.
HQ\HA

Proposition 4.2 (fhe basic identity) For FE SßJf) and fE M(K), we have

(4.4)

Proof While this result has been already mentioned in [MSl, §1.8, Remark], we give

a sketch of proof for completeness. First observe the following facts (cf. [MSl, §2]):

(a) GI =P(L(H) U p(Yo'L(H) (disjoint union),

(e) ~t Pt ~o n L(H) =L(P'), where PQ={h E HQ Ih·

QX} is a maximal Q.parabolic subgroup of H.

-a -a

°m-2 °m-2
= t· , tE

1 1

-1 -1

(d) Yo·L(N,)·~l C Nt, where N' (resp. Nt) is the unipotent radical of P' (resp. Pt).

By (a), (b) and (e), we have

rn-I
1 ~ ~+--- I

E(L(h), f, I; s - 2) = LJ f(ß(yh» !a(yh)IA 2 JG (k1(yh)CXl' ZJ
YEGQ\HQ 1

Then ZF,t<s) equals

14



J F(h) f(ß(h» la(h)i,:m;! Ja! (k1(h)"". ZJI dh
GQ\HA

The first term of the above sum is equal to the right hand side of (4.4), since ~(gh) =

g'~(h) and la(gh)IA = la(h)IA for gE GA and h E HA' By Lemma 2.2 and the

decomposition HA = PAU, the second term is equal to

(4.5)

Let P' = M'N' be a Levi decomPQsition of P' and dm' (resp. dn') be a Haar measure

d(m/n'm,-l)
on MA(resp. NA). Then dIP' =~(m')dm'dn' with the module Il(m') = of

dn'

M'. In view of (d), (4.5) is equal to

Since F is cuspidal, the integralover Nb\NA vanishes and henee the proposition is

proved. q.e.d.

4.4 Combining Proposition 4.1 and Proposition 4.2, we get the following result.

Corollary 4.3 Under the same assumptions and notation 0/Proposition 3.1, we have

{

l if m is even} (_~
Z -') - L(F; s) Z - ( )F f\s - 1 x 1 x F s,

, L(f; s+2) ~(2s)- if m is odd '

where

(4.6)
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4.5 To proceed further, we consider the Eisenstein series Ea(g, cp; sJ on GA

attached to cp E MOCo) with respect to P defined as folIows. Decompose g E GA

into

where ao(g) E A
X

, ßo(g) E Go,A' k(g) E K =~Kr. We set

rn-2

(4.7) Ea(g, cp; sJ = 2 CP(ßo(yg)) lao(yg)~+-2 .
yEPQ\GQ

lt is known that the series (4.7) can be continued to a rnerornorphic function of So on C

and that Ea(*, cp; so) E M(K). The following facts are easily verified.

2 rn-2
Lemma 4.4 In the region {(s, so) E C IRe s - Re So > 1, Re So > 2 }, we

have

Lemma 4.5 I/ cp E M(KJ is a Hecke eigen/orm, then EG(*, cp; sJ is also a Hecke

eigen/orm and L(Eo(*' cp; sJ; s) = L(cp; s)'(;,(s +sJ (;,(s - sJ.

4.6 Applying Corollary 4.3 to f = EG(*, cp; so) and using Lemma 4.4 and Lemma

4.5, we obtain the following result.

Proposition 4.6 Under the same assumptions 0/ Theorem 3.1, we have

{

1 i/ m is even }
.... ( ) L(F; s) ~( )-1 f"( 1)-1'='P,cP S, So = 1 ',=, S + So ':t S - So + . -1

L(cp; s+2) (;,(15) i/ m is odd

where we put Aoo(F, cp; s, sJ = 'ipOOt (* CP's ,(s).
, G ' , oJ

16



§5. Geoeralized Whittaker fuoctions aod tbe calculatioo of

Aoo(F, <p; s, so)

5.1 We first recall the definition of the generalized Whittaker function WP,q> attached

to F E St<Uf) and <p E M(Ka) (for detail, see [Su, §1]). The Fourier coefficient F1.1 of

F at J.1 E Qm-l is given by

F!!(h) = rnJ rn-I F(nH(y)h) ljJ(-R(IJ., y)) dy
Q \A

(for the definition of 11', see Notation). Tben we have

(5.1) F(nH(y)h) = "_ F1.1(h) 1p(R(f.!, y»
J.!E~ 1

Note that, for F E S~OI(Uf)' we have FJ.! = 0 unless R[f.!] < O. Tbe generalized

Whittaker function WP,q> is defined by

where 1;0 = [~o ] ti-I E Qm-I and Go is embedded into Ho via g,,->

[~ (l-~Ao ] . Under this embedding, Go is the isotropy subgroup of 1;" in Ho'

The function WF,q> has the following properties:

(b) If both Fand <p are Hecke eigenforms, WF,q> is an eigen function under the

action of (8)' H(Hp' Up) on the right and that of (8)' H(Go P' ~ ~ on the left.
p<oo p<oo , ,ty

We need the following formula later.

Proposition 5.1 ([Su], Theorem 1) Let the assumptions be the same as in Theorem

3.1. For hE Hoo ' we have

17



L(F; so) {1 if m is even }
= 1 x 1 x WF,~(h)

L(cp; So+ 2) l;(2s~- if m is odd.

5.2 We now go back to the calculation of the integral

First note that, for g E GA' we can choose a(Lo(g)) = 1, 0o(Lo(g)) = ao(g) and

ßo(Lo(g)) = ßo(g) in view ofLemma 2.1 (ii), Unwinding the Eisenstein series EG(*, cp;

So -~) in the integral Aco(F, cP; 5, so> and using the decomposition GA = PA~Kr, we

get

(5.3) Aco(F, cP; s, sJ = f dh f diP f dk F(pkß(h)-lh) CP(ßo(P»
Goo\Hoo PQ\PA ~

m-3 rn-I

lao(P)~+2 la(h)I~+TJGI(k1(h)co, ZJ/.

Here diP is a left invariant measure on PA given by d,p =ItQm-2) dx dXt dgo' where

p = n(x) [t go t-1 ] (x E Am- 2
, t E Ax, go E Go,A). We may suppose that ß(h) E

Pco' For hE Hco' we see lao(Pß(h))IA=lao(p)IA lao(ß(h»)loo and cp(ßo(P'ß(h») =

cp(ßo(P)ßo(h)) = cp(ßo(P»), since cP is right Go co-invariant. Thus, changing the variable,

P into p'ß(h) in (5.3), we obtain

Aco(F, cP; s, sJ = f dh f dk' f diP F(Pk'h) cp(ßo(P»
Goo\Hoo ~ PQ\PA

m-3 m-3 rn-I

lao(P)~+-2- lao(ß(h»)I~+-2- la(h)I:+T JGI(k1(h)co' Zo)/,
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where dk' is the normalized Haar measure on ~ =ß(h)~ß(h)-l. For a while, we fix

h E Hco and let k' E ~. Since k' E Gco' we have la(k'h)loo = la(h)loo and

kl(k'h)oo = kl(h)oo' Next observe that ß(k'h) E k'ß(h)~ = ß(h)~, which implies

lao(ß(k'h)loo =lao(ß(h»loo =lao(h)loo' Since Goo =PooK~, we have proved the

following:

Lemma 5.2 We have

rn-3 rn-I

lao(h)I~+-2- la(h)I~+2JGI(kl (h)oo' ZJl dh.

5.3 In view of Proposition 4.6 and Lemma 5.2, the proof of Theorem 3.1 is now

reduced to the following.

Proposition 5.3 Let the assumptions be the same as in Theorem 3.1. For hE Hoo'

we have

1 .[. [t]L(F; s ) 1- m 1-S even s _rn-I

= 0 x 1 x WF ( 1rn-l h) Iq 0 2 dX t.
L(i; So+!) {~(2s,,r if m is odd } f. ,'I' Cl 00

Proo! The left hand side of (5.4) is equal to

By Lemma 2.1 (i) and (5.1), the integral r F(Lo(nG(x) [t go ] )'h) dx
Qrn-~rn-2 t-1

equals
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t

h) Qm-Lm-2 'iJ(R(tJ., [~]» dx.

Since the integral in the above formula is equal to one if I-t = u'(--;,J for some u E Q)(

and equal to zero otherwise, and since PUf.'(h) =Pf.'{ U Im-l u-
1

] h) for u E Q", tJ. E

Qm-l and h E HA' the left hand side of (5.4) equals

rn-l

h) CP(go) dgo } It~-2 dXt.

This proves the first equality of the proposition. The second one follows from

Proposition 5.1. q.e.d.

§6. Proof 01 Theorem 3.2

6.1 In this section we always assurne that F E 87°1. For hf E HA[ the function

F(z; hf) = F(heohf) JH(hoo, zJI (hoo E Hoo' z = hoo<Zo> E D) admits a Fourier expansion:

F(z; hf) = L ap(l-t; hf) e[R(I-t, z)] where f! runs over the set {f! E Qm-11 R[f!) < 0, -~i
~

and z are in the same connected component of D}. Then Ff.L(hoohr) is equal to

aF(f!; hf) e[R(f!, heo<zo»]) JH(heo, zo)-I if -~i and hoo<Zo> are in the same connected

component of D and equal 10 zero otherwise. Let D± = {z = [ z' ] E D I.± Im(z") > O}.
z"

We note that Zo E D+.

Lemma 6.1 Let hE Hoo and assume that h<zo> = [ z' ] E D+. Then we have
z"
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Proof Let tE RX
• By definition (5.2) of WP,q> and the above remark, we have

where B(t> 0) is equal to one if t> 0 and equal to zero otherwise. Note that

[t go,co Cl ] h<zo> E D+ if and only if t> O. Setting t =1 and h =1 in (6.1), we

get

and hence
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The lemma is an immediate consequence of the above equality. q.e.d.

6.2 Let H~ ={h E Hoo Ih<zo> E D+} and P~ ={nG(x) [t g" Cl] E Pool t > O}.

Then Lo(P~) eH:. Lemma 6.1 implies that doo(F, cp; s, sJ is equal to

where h<zo> = [ z' ] . By Lemma 2.2 (ii), we see that JG (k1(h)oo' Zo) =
z" 1

a(h)'Ja (L(h), Zo) = (- iz") a(h) JH(h, zo)' Thus we get
1

1 rn-I
2Jt m- -(5 +1 -)

(6.2) doo(F, cp; s, sJ =e Wp,fP(l) r(so + l-2) ,(231:) 0 - 2 .I(s, so),

where

Lemma 6.2 For h EH:, we have

where z = [ z' ] = h<zo> E D+.
Z"

Proof The first formula follows from ~G (L.(h), ZJI =a(h)-l and Lemma 2.2 (ii).
1

By Lemma 2.3, we have (L(h)<Zo»- =(p(z))- =[z';l ] . On the other hand, we have
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a(h) * * * *

o 0o(h) * * *

=JG (t(h), ZcJ-1JG (k1(h), ZcJ 0 0 ßo(h) 111 *
1 1

o 0 0 ao(h)-l y(h)

o 0 0 0 a(h)-l

-a-Q[AoJ

2-1ßj

1,.0

-i

1

with sorne y(h) E R This implies that z,,-l =- i oo(h)-l o(h) + a(h) y(h) and hence

that Im(z;) = oo(h)-l a(h). We are done. q.e.d.
~"1

Let G~,oo and H~,oo be the identity cornponents of Go,oo and Ho,oo' Since

Lo(P:) \ H: / U",'" {nHf:-2]). [1 ho JI vER, ho E G~.", \ ~,,,,} and

JHenHe[ °:_2
]). [1 ho 1]' zJ = 1. we get

Here z = [ ::. ] = nHe[ °:-2
]) [1 ho 1] <Zoo> and dho is the Haar measure on ~,,,,

(its nonnalization will be given in §6.3). Note that zn is, as a function of ho' left

G~ oo-invariant It is easy to see that ZU = i'A(hol +v, where A(hcJ > 0 is the (m - 1)-,

th component of ho [ ~o ] . By a straightfoIWard calculation, we obtain

rn-l
-(8+1- m+ 1) r(s+l- 2)

(6.4) I(s, so) =11:·2 2 s+s +1-m+2 s-s +1+ 1
r( 0 2 ) r( O2 )
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x f A(h~-(S+so+l-l) dh
o

'

+ +
Go oo\Ho 00, ,

6.3 To normalize the Haar measure dho on H~ 00' we consider asymmetrie space on,

which ~.oo acts. For xE Rm
-
2
, pul x- =[~] E Rm

-
1

. Let Do ={x E Rm
-

2
1

R[x-] < O}. We see "'0 E 0 0 , For ho E ~,OO' we define the action x ~ ho<X> on

Do and the automorphic factor Jo(he' x) E CX
by ho' x- = Jo(ho' x) (ho<X»-' The

action of ~,oo on 00 is transitive and the isotropy subgroup of "'0 in ~,oo is G~,eo'

For x E 00' put

(6.5)
1 ~ - Q[X-A ]

rex) = - ~- R[x-] = ~ 0

(recaU that tJ,. = Q[",o] + 2a > 0). We see that 0 < rex) :s 1 and r("'o) = 1. Moreover we

have r(ho<x» = Jo(ho' x)-2 rex) for ho E H~,oo and xE 0 0 , It follows that

(6.6)

m-l
Define the invariant measure on Da by d!J.(x) =r(x)--2- dXl'" dX m_2' We

normalize the Haar measure dho on ~ 00 by,

where d~ is the Haar measure on G~,oo with total volume one.

6.4 We now complete the calculation of I(s, s~, from which Theorem 3.2 follows

(see (6.2)).

Lemma 6.3 We have

(6.8)

Proo/. By (6.6), tbe left band side of (6.8) equals
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Jr(x)Sf2 dJ.t(x) = J r(x)(s-m+l)12 dx1·..dxm_2

Do Q[X-Ao]<a

=6.(m-2)12 J (1 - 0[xD(s-m+1)/2 dx("dx
m

_2

Q[x]<1

=L\(m-2)f2 (det 0)-112 J (1 - xi - ... - x~_z)(s-m+l)/2dxl'''dxm_2'
2 2

xl +"'+xm_2<1

wbicb is equal to the right hand side of (6.8) by a well-known formula. q.e.d.

Tbe following result follows from (6.4) and tbe previous lemma.

Proposition 6.4 We have

rn-1
) ) r(s+l--)

I( '\ = (d 0)-112 6.(m-2)12 2-(s+l-(m+1 12 m12 2
s, sol et :7t s+s +1 s-s +1+1 .

r( 2° ) r( °2 )
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