# Shintani Function and Its application to Automorphic L-Functions for Classical Groups 

II. Rankin-Selberg Convolution of Two Variables for $\mathbf{O}(\mathrm{m}, 2)$

## Atsushi Murase and Takashi Sugano

Atsushi Murase

MaxPlanck Institut für Mathematik
Gotffried-Claren-Straße 26
5300 Bonn 3
Federal Republic of Germany

Takashi Sugano

Department of Mathematics
Faculty of Science, Hiroshima University
1-3-1 Kagamiyama
Higashi-hiroshima 724, Japan
and
Department of Mathematics
Faculty of Science
Kyoto Sangyo University
Motoyama, Kamigamo
Kyoto 603 Japan

# Shintani Function and Its Application to 

Automorphic L-functions

## II. Rankin-Selberg Convolution of Two Variables for $\mathbf{O}(\mathbf{m}, \mathbf{2})$

## by Atsushi Murase and Takashi Sugano

## Introduction

This paper is concerned with a certain Rankin-Selberg convolution of two variables for a cusp form $F$ on an orthogonal group of signature ( $m-1,2$ ). The main object is to show that the convolution splits into a product of two standard L-functions attached to F .

To be more precise, let $\mathrm{H}=\mathrm{O}(\mathrm{m}-1,2)$ be an orthogonal group suitably embedded in $\mathrm{G}_{1}=\mathrm{O}(\mathrm{m}, 2)$ (cf. §2.1). Let $\mathrm{B}_{1}$ be a $\mathbf{Q}$-minimal parabolic subgroup of $\mathrm{G}_{1}$. Then its Levi component is isomorphic to $\mathrm{GL}_{1} \times \mathrm{GL}_{1} \times \mathrm{G}_{\mathrm{o}}$, where $\mathrm{G}_{\mathrm{o}}=\mathrm{O}(\mathrm{m}-2)$ is a definite orthogonal group. For an automorphic form $\varphi$ on $G_{0}$, we can attach an Eisenstein series $E\left(*, \varphi ; s, s_{0}\right)$ of two variables $s$ and $s_{0}$ on $G_{1}$ with respect to $B_{1}$. Let $F$ be a cusp form on $H$ and suppose that $F$ and $\varphi$ are Hecke eigenforms. The convolution we study in this paper is defined by

$$
\Xi_{F, \varphi}\left(s, s_{o}\right)=\int_{H_{Q} \backslash H_{A}} F(h) \mathbb{E}\left(h, \varphi ; s, s_{0}\right) d h .
$$

The main result (Theorem 3.1) asserts that, under certain assumptions on orthogonal groups, the integral $\Xi_{F, \varphi}\left(\mathrm{~s}, \mathrm{~s}_{\mathrm{o}}\right)$ decomposes into a product of an Euler product $\frac{L(F ; s) L\left(F ; s_{0}\right)}{L\left(\varphi ; s+\frac{1}{2}\right) L\left(\varphi ; s_{0}+\frac{1}{2}\right)}$ and a local factor at infinity. Here $L(F ; s)$ and $L(\varphi ; s)$
denote the standard L-functions associated with F and $\varphi$. The local factor at infinity can be explicitly calculated if F is holomorphic (Theorem 3.2).

To prove the results, we employ two main ingredients; Shintani functions (\$4.3) and generalized Whittaker functions (\$5.1). They have been introduced and studied in [MS1] and [Su] respectively, where we proved certain formulas relating certain integrals of these functions to some Euler factors (see Proposition 4.1 and Proposition 5.1). These formulas are essential in the calculation of the local integrals.

We now explain a brief account of the paper. In §1, we review the definition of the standard L-functions for orthogonal groups. We introduce various orthogonal groups and their embeddings in §2. The main results of this paper is stated in §3 (Theorem 3.1 and Theorem 3.2). The next two sections are devoted to the proof of Theorem 3.1. In §4, we first recall the definition of Shintani functions. Using the basic identity proved in [MS1], we show that $\Xi_{F, \varphi}\left(s, s_{0}\right)$ is a product of the quotient $L(F ; s) / L\left(\varphi ; s+\frac{1}{2}\right)$ of $L$ functions and a certain integral $\Lambda_{\infty}\left(F, \varphi ; s, s_{0}\right)$ at the infinite place. In §5, we prove that the integral $\Lambda_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{s}_{\mathrm{o}}\right)$ is expressed as a certain integral of generalized Whittaker function. By virtue of the result of [ Su ], we see that the integral is a product of $\mathrm{L}\left(\mathrm{F} ; \mathrm{s}_{\mathrm{o}}\right) / \mathrm{L}\left(\varphi ; \mathrm{s}_{\mathrm{o}}+\frac{1}{2}\right)$ and a local factor $\mathrm{d}_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{s}_{0}\right)$ that depends only on the data at the infinite place. Theorem 3.1 is proved by combining these results. In the final section, we calculate $d_{\infty}\left(F, \varphi ; s, s_{0}\right)$ in an explicit form in the case where $F$ is holomorphic.

In the forthcoming paper ([MS2]), applying the above results to the case $\mathrm{m}=3$, we study the pullback of Eisenstein series on $\mathrm{PGS}_{2}$ (isogeneous to $\mathrm{O}(3,2)$ ) to a Hilbert modular group (isogeneous to $\mathrm{O}(2,2)$ ).

The first named author would like to express a deep gratitude to Max-PlanckInstitut für Mathematik for its generous support and hospitality.

## Notation

Let $\mathbf{Q}_{\mathbf{v}}$ be the completion of $\mathbf{Q}$ at a prime v of $\mathbf{Q}$ and $\mathbf{A}$ be the adele ring of
Q. For a linear algebraic group $X$ defined over $\mathbf{Q}$, we denote by $X_{V}\left(\right.$ resp. $\left.X_{A}\right)$ the group of $\mathbf{Q}_{\mathbf{v}}$ (resp. A) -rational points of $\mathbf{X}$. For each prime $\mathbf{v}$ of $\mathbf{Q},\| \|_{v}$ stands for the normalized valuation of $Q_{v}$ given by $d(a x)=|a|_{v} d x\left(a \in Q_{v}^{x}\right)$, where $d x$ is a Haar measure on $Q_{v}$. Let $\left.\left|x_{A}=\prod_{v}\right| x_{v}\right|_{v}$ be the norm of an idele $x=\left(x_{v}\right) \in A^{x}$. The finite part of $\mathbf{A}$ is denoted by $\mathbf{A}_{\mathbf{f}}$. We fix the additive character $\psi$ of $\mathbf{A}$ trivial on $\mathbf{Q}$ so that $\psi\left(\mathbf{x}_{\infty}\right)=\mathbf{e}\left[\mathbf{x}_{\infty}\right]:=\exp \left(2 \pi i \mathbf{x}_{\infty}\right)$ for $\mathbf{x}_{\infty} \in \mathbf{R}$.

For a symmetric matrix $A \in M_{r}$, we put $A(x, y)={ }^{t} x A y$ and $A[x]={ }^{t} x A x$ for $r$-column vectors $x$ and $y$. We write $0_{r}$ for the zero column vector of size $r$.

## §1. Review of the standard L-functions for orthogonal groups

Let $S \in M_{m}(\mathbf{Z})$ be a non-degenerate even integral symmetric matrix. Assume that S is maximal; namely, $\mathrm{L}=\mathrm{Z}^{\mathrm{m}}$ is a maximal Z -lattice with respect to S . Let $\mathrm{G}=$ $O(S)$ be the orthogonal group of $S$. By maximality of $S, K_{p}=G\left(Z_{p}\right)$ is a maximal open compact subgroup of $\mathrm{G}_{\mathrm{p}}=\mathrm{G}\left(\mathrm{Q}_{\mathrm{p}}\right)$ for every p . Let $H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ be the algebra of compactly supported bi- $\mathrm{K}_{\mathrm{p}}$ invariant functions on $\mathrm{G}_{\mathrm{p}}$. Then the Hecke algebra $H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ is isomorphic to the affine algebra $\mathrm{C}\left[\mathrm{X}_{1}^{ \pm 1}, \cdots, \mathrm{X}_{\mathrm{v}_{\mathrm{p}}}^{ \pm 1}\right]^{\mathrm{W}_{\mathrm{v}_{\mathrm{p}}}}$ via the Satake homomorphism, where $v_{p}$ is the Witt index of $S$ at $p$ and $W_{v_{p}}$ is the subgroup of the automorphism group of $\mathrm{C}\left[\mathrm{X}_{1}^{ \pm 1}, \cdots, \mathrm{X}_{v_{\mathrm{p}}}^{ \pm 1}\right]$ generated by the involutions $\mathrm{X}_{\mathrm{i}} \rightarrow \mathrm{X}_{\mathrm{i}}^{-1}$ and the permutations of the indeterminates $\mathrm{X}_{1}, \cdots, \mathrm{X}_{\mathrm{v}_{\mathrm{p}}}$ (see [Sa]). It follows that each C-algebra homomorphism $\lambda_{\mathrm{p}}$ of $H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ to C determines the Satake parameter $\left(\alpha_{1}, \cdots, \alpha_{v_{p}}\right) \in\left(C^{\times}\right)^{v_{p}} / W_{v_{p}}$.

To define an L-factor attached to $\lambda_{\mathrm{p}}$, we introduce certain invariants of S at p . Let $L_{p}^{*}=S^{-1} L_{p}$ be the dual lattice of $L_{p}=Z_{p}^{m}$ with respect to $S$. Put $L_{p}^{\prime}=\left\{x \in L_{p}^{*} \mid\right.$ $\left.\mathrm{S}[\mathrm{x}] \in \mathrm{p}^{-1} \mathbf{Z}_{\mathrm{p}}\right\}$. By maximality of $\mathrm{S}, \mathrm{L}_{\mathrm{p}}^{\prime}$ is a $\mathbf{Z}_{\mathrm{p}}$-lattice containing $\mathrm{L}_{\mathrm{p}}$. We set $\partial_{\mathrm{p}}(\mathrm{S})=$ $\operatorname{dim}_{\mathbf{Z}_{p} / p \mathbf{Z}_{p}} L_{\mathrm{L}}^{\prime} / L_{\mathrm{p}}$. It is known that $0 \leq \partial_{\mathrm{p}}(\mathrm{S}) \leq 2$ and that $\partial_{\mathrm{p}}(\mathrm{S})=0$ for almost all $\mathrm{p}(\mathrm{cf}$. [Su]). Let $n_{o, p}=m-2 v_{p}(S)$ be the dimension of the maximal anisotropic subspace of $Q_{p}^{m}\left(0 \leq n_{o, p} \leq 4\right)$. We define the standard L-factor $L_{p}\left(\lambda_{p} ; s\right)$ as follows:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{p}}\left(\lambda_{\mathrm{p}} ; s\right)=\mathrm{A}_{\mathrm{S}, \mathrm{p}}(\mathrm{~s}) \cdot \prod_{\mathrm{i}=1}^{v_{\mathrm{p}}}\left(1-\alpha_{\mathrm{i}} \mathrm{p}^{-s}\right)^{-1}\left(1-\alpha_{i}^{-1} \mathrm{p}^{-s}\right)^{-1}, \tag{1.1}
\end{equation*}
$$

$$
A_{S, p}(s)= \begin{cases}1 & \text { if }\left(n_{o, p}(S), \partial_{p}(S)\right)=(0,0) \text { or }(1,0) \\ \left(1+\mathrm{p}^{1 / 2-s}\right) & (1,1) \\ \left(1-\mathrm{p}^{-2 s}\right)^{-1} & (2,0) \\ \left(1-\mathrm{p}^{-s}\right)^{-1} & (2,1) \\ \left(1-\mathrm{p}^{-s}\right)^{-1}\left(1+\mathrm{p}^{1-s}\right) & (2,2) \\ \left(1-\mathrm{p}^{-1 / 2-s}\right)^{-1} & (3,1) \\ \left(1-\mathrm{p}^{-1 / 2-s}\right)^{-1}\left(1+\mathrm{p}^{1 / 2-s}\right) & (3,2) \\ \left(1-\mathrm{p}^{-s}\right)^{-1}\left(1-\mathrm{p}^{-1-s}\right)^{-1} & (4,2)\end{cases}
$$

We denote by $\mathrm{M}\left(\mathrm{K}_{\mathrm{f}}\right)$ the space of automorphic forms on $\mathrm{G}_{\mathrm{A}}$ that are invariant under right $K_{f}=\prod_{\mathrm{P}<\infty} K_{\mathrm{p}}$-translations (see [BJ]). By definition, $\mathrm{f} \in \mathrm{M}\left(\mathrm{K}_{\mathrm{f}}\right)$ is a smooth function on $G_{\mathbf{Q}} \backslash \mathrm{G}_{\mathbf{A}} / K_{f}$ which satisfies the following conditions:
(1.2) The function $f$ is $Z\left(\operatorname{Lie}\left(G_{\infty}\right)_{C}\right)$-finite, where $Z\left(\operatorname{Lie}\left(G_{\infty}\right)_{C}\right)$ is the center of the universal enveloping algebra of the complexified Lie algebra $\operatorname{Lie}\left(\mathrm{G}_{\infty}\right)_{\mathrm{C}}$ of $\mathrm{G}_{\infty}$.
(1.3) For any $g_{f} \in G_{A_{f}}$, the function $g_{\infty} \rightarrow f\left(g_{\infty} g_{f}\right)$ is of moderate growth on $G_{\infty}$.

The subspace of cusp forms in $\mathrm{M}\left(\mathrm{K}_{\mathrm{f}}\right)$ is denoted by $\mathrm{S}\left(\mathrm{K}_{\mathrm{f}}\right)$. The Hecke algebra $\underset{\mathrm{p}<\infty}{\otimes^{\prime} H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right) \text { acts on } \mathrm{M}\left(\mathrm{K}_{\mathrm{f}}\right) \text { by convolution on the right: }}$

$$
\mathrm{f} * \varphi(\mathrm{~h})=\int_{\mathrm{G}_{\mathrm{A}_{\mathrm{f}}}} \mathrm{f}\left(\mathrm{gx}^{-1}\right) \varphi(\mathrm{x}) \mathrm{dx} \quad\left(\mathrm{f} \in \mathrm{M}\left(\mathrm{~K}_{\mathrm{f}}\right), \varphi \in \underset{\mathrm{p}<\infty}{\otimes^{\prime}} H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{~K}_{\mathrm{p}}\right), \mathrm{g} \in \mathrm{G}_{\mathrm{A}}\right)
$$

We say that $f \in M\left(K_{f}\right)$ is a Hecke eigenform if, for each rational prime $p$, we have $\mathrm{f} * \varphi_{\mathrm{p}}=\lambda_{\mathrm{f}, \mathrm{p}}\left(\varphi_{\mathrm{p}}\right) \cdot \mathrm{f}$ for any $\varphi_{\mathrm{p}} \in H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ with $\lambda_{\mathrm{f}, \mathrm{p}} \in \operatorname{Hom}_{\mathrm{C}}\left(H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right), \mathbf{C}\right)$. The global standard L-function $L(f ; s)$ for a Hecke eigenform $f$ is defined by the Euler product

$$
\begin{equation*}
L(f ; s)=\prod_{p<\infty} L_{p}\left(\lambda_{f, p} ; s\right) \tag{1.4}
\end{equation*}
$$

## §2. Embedding of orthogonal groups

2.1 Let $Q$ be a non-degenerate even symmetric matrix of rank $m-2 \geq 1$. Let $R=$ $\left[\begin{array}{cc}\mathrm{Q} & -\mathrm{Q} \lambda_{\mathrm{o}} \\ -\lambda_{0} \mathrm{Q} & -2 \mathrm{a}\end{array}\right]$ with $\lambda_{\mathrm{o}} \in \mathrm{Q}^{-1} \mathbf{Z}^{\mathrm{m}-2}$ and $\mathrm{a} \in \mathbf{Z}$, and put $\Delta=\mathrm{Q}\left[\lambda_{\mathrm{o}}\right]+2 \mathrm{a}$. Let

$$
\mathrm{S}=\left[\begin{array}{ll} 
& \mathrm{Q}^{1} \\
1 &
\end{array}\right], \mathrm{T}=\left[\begin{array}{ll} 
& \\
& \\
&
\end{array}\right], \mathrm{S}_{1}=\left[\begin{array}{ll} 
& \\
& \\
& \\
&
\end{array}\right]
$$

In what follows, we assume $Q>0$ and $\Delta>0$. Then the signatures of $Q, R, S, T$ and $S_{1}$ are given by $(m-2,0),(m-2,1),(m-1,1),(m-1,2)$ and $(m, 2)$ respectively. We consider the orthogonal groups

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{o}}=\mathrm{O}\left(\mathrm{Q}, \mathrm{~V}_{0}\right), \mathrm{V}_{\mathrm{o}}=\mathrm{Q}^{\mathrm{m}-2} ; \mathrm{H}_{\mathrm{o}}=\mathrm{O}\left(\mathrm{R}, \mathrm{~W}_{\mathrm{o}}\right), \mathrm{W}_{\mathrm{o}}=\mathrm{Q}^{\mathrm{m}-1} \\
& \mathrm{G}=\mathrm{O}(\mathrm{~S}, \mathrm{~V}), \mathrm{V}=\mathrm{Q}^{\mathrm{m}} ; \mathrm{H}=\mathrm{O}(\mathrm{~T}, \mathrm{~W}), \mathrm{W}=\mathrm{Q}^{\mathrm{m}+1} \\
& \mathrm{G}_{1}=\mathrm{O}\left(\mathrm{~S}_{1}, \mathrm{~V}_{1}\right), \mathrm{V}_{1}=Q^{\mathrm{m}+2}
\end{aligned}
$$

Define embeddings $V \xrightarrow{j_{0}} W \xrightarrow{j} V_{1}$ of vector spaces by

$$
\begin{aligned}
& \mathrm{j}_{0}\left(\left[\begin{array}{l}
\mathrm{v}_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
\mathrm{v}_{1} \\
\mathrm{v}_{2} \\
0 \\
v_{3}
\end{array}\right] \quad\left(\mathrm{v}_{1}, \mathrm{v}_{3} \in \mathrm{Q}, \mathrm{v}_{2} \in \mathbf{Q}^{\mathrm{m}-2}\right), \\
& j\left(\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
-\mathrm{a} w_{3}-Q\left(\lambda_{0}, w_{2}\right) \\
w_{1} \\
w_{2} \\
w_{4} \\
w_{3}
\end{array}\right] \quad\left(w_{1}, w_{3}, w_{4} \in \mathbf{Q}, w_{2} \in \mathbf{Q}^{m-2}\right) .
\end{aligned}
$$

Then we have $T\left[j_{0}(v)\right]=S[v], S_{1}[j(w)]=T[w]$ for $v \in V, w \in W$. Moreover we see $j_{0}(V) \perp \mathbf{Q \xi}$ and $\mathrm{j}(\mathrm{W}) \perp \mathbf{Q} \eta$ with respect to $T$ and $S_{1}$ respectively, where we put

$$
\xi=\left[\begin{array}{c}
0 \\
\lambda_{0} \\
1 \\
0
\end{array}\right] \Delta^{-1} \in W, \quad \eta=\left[\begin{array}{c}
a \\
\lambda_{0} \\
0 \\
1
\end{array}\right] \in V_{1} .
$$

We define the embeddings $G \xrightarrow{l_{0}} H \xrightarrow{\mathfrak{l}} G_{1}$ of orthogonal groups to be

$$
\begin{aligned}
& \mathrm{t}_{0}(\mathrm{~g})\left(\mathrm{t} \xi+\mathrm{j}_{0}(\mathrm{v})\right)=t \xi+\mathrm{j}_{0}(\mathrm{gv}), \\
& \mathrm{t}(\mathrm{~h})(\mathrm{t} \eta+\mathrm{j}(\mathrm{w}))=\mathrm{t} \eta+\mathrm{j}(\mathrm{hw})
\end{aligned}
$$

for $t \in Q, v \in V, w \in W, g \in G$ and $h \in H$. Then $l_{o}(G)$ (resp. $u(H)$ ) is the isotropy subgroup of $\boldsymbol{\xi}$ (resp. $\eta$ ) in $H$ (resp. $G_{1}$ ). For $x \in Q^{m-2}$ and $y \in Q^{m-1}$, put $n_{G}(x)=$
 $\left\{\left.n_{G}(x)\left[\begin{array}{ccc}t & 0 & 0 \\ 0 & g_{0} & 0 \\ 0 & 0 & t^{-1}\end{array}\right] \right\rvert\, x \in Q^{m-2}, t \in Q^{x}, g_{0} \in G_{o, Q}\right\}$ and $P_{H, Q}=\left\{\left.n_{H}(y)\left[\begin{array}{ccc}t & 0 & 0 \\ 0 & h_{0} & 0 \\ 0 & 0 & t^{-1}\end{array}\right] \right\rvert\,\right.$ $\left.y \in \mathbf{Q}^{m-1}, t \in \mathbf{Q}^{\times}, h_{0} \in H_{0, Q}\right\}$ are maximal $Q$-parabolic subgroups of $G$ and $H$ respectively. The following is easily verified (cf. [MS1, §2]).

## Lemma 2.1

(i) For $\mathrm{p}=\mathrm{n}_{\mathrm{G}}(\mathrm{x})\left[\begin{array}{ccc}\mathrm{t} & 0 & 0 \\ 0 & \mathrm{~g}_{\mathrm{o}} & 0 \\ 0 & 0 & \mathrm{t}^{-1}\end{array}\right] \in \mathrm{P}$, we have

$$
\mathrm{L}_{\mathrm{o}}(\mathrm{p})=\mathrm{n}_{\mathrm{H}}\left(\left[\begin{array}{l}
\mathrm{x} \\
0
\end{array}\right]\right) \times\left[\begin{array}{cccc}
\mathrm{t} & 0 & 0 & 0 \\
0 & \mathrm{~g}_{0} & \left(1-\mathrm{g}_{\mathrm{o}}\right) \lambda_{\mathrm{o}} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \mathrm{t}^{-1}
\end{array}\right]
$$

(ii) $\quad \mathrm{l}\left(\mathrm{l}_{\mathrm{o}}(\mathrm{g})\right)=\left[\right.$| $1^{\mathrm{t}} \lambda \mathrm{S}(1-\mathrm{g})$ | $\lambda \mathrm{S}(\mathrm{g}-1) \lambda$ |  |
| :---: | :---: | :---: |
| 0 | g | $(1-\mathrm{g}) \lambda$ |
| 0 | 0 | 1 |$]$, where $\mathrm{g} \in \mathrm{G}$ and \(\lambda=\left[\begin{array}{c}0 <br>

\lambda_{\mathrm{o}} <br>
0\end{array}\right] \in \mathrm{V}\).

In what follows, we often regard $G$ (resp. $H$ ) as a subgroup of $H$ (resp. $G_{1}$ ) via $\iota_{o}$ (resp. t ) and simply write g (resp. h) for $\mathrm{l}_{\mathrm{o}}(\mathrm{g})(\mathrm{resp} . \mathrm{l}(\mathrm{h})$ ) if there is no fear of confusion.
2.2 We define symmetric domains $D$ and $D_{1}$ of type (IV) as follows:

$$
D=\left\{z \in C^{m-1} \mid R[\operatorname{Im} z]<0\right\}, \quad D_{1}=\left\{Z \in C^{m} \mid S[\operatorname{Im} Z]<0\right\}
$$

Note that both D and $\mathrm{D}_{1}$ have two connected components. For $\mathrm{z} \in \mathrm{D}$ and $\mathrm{Z} \in \mathrm{D}_{1}$, put

$$
z^{\sim}=\left[\begin{array}{c}
-2^{-1} R[z] \\
z \\
1
\end{array}\right] \in W_{C}, \quad Z^{\sim}=\left[\begin{array}{c}
-2^{-1} S[Z] \\
Z \\
1
\end{array}\right] \in V_{1, C}
$$

The action of $H_{\infty}$ (resp. $G_{1, \infty}$ ) on $D$ (resp. $D_{1}$ ) and the automorphic factor $J_{H}$ : $H_{\infty} \times D \rightarrow C^{\times}\left(\right.$resp. $\left.J_{G_{1}}: G_{1, \infty} \times D_{1} \rightarrow C^{\times}\right)$are defined to be

$$
h \cdot z^{\sim}=(h\langle z\rangle)^{\sim} \cdot J_{H}(h, z), g_{1} \cdot Z^{\sim}=\left(g_{1}\langle Z\rangle\right)^{\sim} \cdot J_{G_{1}}\left(g_{1}, Z\right)
$$

( $h \in H_{\infty}, g_{1} \in G_{1, \infty}, z \in D, Z \in D_{1}$ ). These actions are transitive and holomorphic. Put $\mathrm{U}_{\infty}=\left\{\mathrm{h} \in \mathrm{H}_{\infty} \mid \mathrm{h}<\mathrm{z}_{\mathrm{o}}>=\mathrm{z}_{0}\right\}$ and $\mathrm{K}_{1, \infty}=\left\{\mathrm{g}_{1} \in \mathrm{G}_{1, \infty} \mid \mathrm{g}_{1}<\mathrm{Z}_{\mathrm{o}}>=\mathrm{Z}_{\mathrm{o}}\right\}$ where $\mathrm{z}_{\mathrm{o}}=$ $\left[\begin{array}{c}\lambda_{\mathrm{o}} i \\ i\end{array}\right] \in \mathrm{D}$ and $\mathrm{Z}_{\mathrm{o}}=\left[\begin{array}{c}2^{-1} \Delta i \\ \lambda_{0} \\ -i\end{array}\right] \in \mathrm{D}_{1}$. We note that $\mathrm{U}_{\infty}$ and $\mathrm{K}_{1, \infty}$ are compact and isomorphic to $O(m-1) \times S O(2)$ and $O(m) \times S O(2)$ respectively. Put $\mathrm{v}_{\mathrm{o}}=\left[\begin{array}{c}-2^{-1} \Delta \\ 0_{\mathrm{m}-2} \\ 1\end{array}\right] \in$ $V_{\mathbf{R}}$. Since $S\left[v_{0}\right]=-\Delta<0$, the subgroup $K_{\infty}=\left\{g \in G_{\infty} \mid g v_{0}=v_{0}\right\}$ of $G_{\infty}$ is compact and isomorphic to $\mathrm{O}(\mathrm{m}-1)$.

## Lemma 2.2

(i) We have $\mathrm{\iota}_{0}\left(\mathrm{~K}_{\infty}\right) \subset \mathrm{U}_{\infty}^{1}=\left\{\mathrm{u} \in \mathrm{U}_{\infty} \mid \mathrm{J}_{\mathrm{H}}\left(\mathrm{u}, \mathrm{z}_{0}\right)=1\right\}$.
(ii) For $\mathrm{h} \in \mathrm{H}_{\infty}$, we have $\mathrm{J}_{\mathrm{G}_{1}}\left(\mathrm{t}(\mathrm{h}), \mathrm{Z}_{\mathrm{o}}\right)=\left(-i \mathrm{z}^{\prime \prime}\right) \cdot \mathrm{J}_{\mathrm{H}}\left(\mathrm{h}, \mathrm{z}_{\mathrm{o}}\right)$ where $\mathrm{h}\left\langle\mathrm{z}_{\mathrm{o}}>=\left[\begin{array}{l}\mathrm{z}^{\prime} \\ \mathrm{z}^{\prime \prime}\end{array}\right] \in\right.$ $D\left(z^{\prime} \in C^{m-2}, z^{\prime \prime} \in C\right)$.
(iii) We have $\mathrm{t}\left(\mathrm{U}_{\infty}\right) \subset \mathrm{K}_{1, \infty}$ and $\mathrm{J}_{\mathrm{G}_{1}}\left(\mathrm{l}(\mathrm{u}), \mathrm{Z}_{0}\right)=\mathrm{J}_{\mathrm{H}}\left(\mathrm{u}, \mathrm{z}_{0}\right)$ for $\mathrm{u} \in \mathrm{U}_{\infty}$.

Proof. Observe $\tilde{z_{o}}=\left[\begin{array}{c}-2^{-1} \Delta \\ \lambda_{0} i \\ i \\ 1\end{array}\right]=j_{o}\left(v_{0}\right)+\xi \cdot \Delta i$. Then, for $k \in K_{\infty}$, we have $L_{o}(k) z_{o}^{\sim}$
$=\mathrm{j}_{0}\left(\mathrm{kv}_{0}\right)+\xi \cdot \Delta i=\mathrm{j}_{0}\left(\mathrm{v}_{0}\right)+\xi \cdot \Delta i=\mathrm{z}_{\mathrm{o}}^{\sim}$, which implies $(\mathrm{i})$. The remaining parts follow from the observation that $Z_{o}^{\sim}=\left[\begin{array}{c}-\mathrm{a}-\mathrm{Q}\left[\lambda_{\mathrm{o}}\right] \\ 2^{-1} \Delta i \\ \lambda_{0} \\ -i \\ 1\end{array}\right]=\mathrm{j}\left(\mathrm{z}_{\mathrm{o}}^{\sim}\right) \cdot(-i)$. $\quad$ q.e.d.
2.3 We define a holomorphic embedding $\rho: D \rightarrow D_{1}$ by

$$
\rho(z)=\left[\begin{array}{c}
-\frac{1}{2} z^{\prime \prime-1} \mathrm{Q}\left[\mathrm{z}^{\prime}\right]+\mathrm{Q}\left(\lambda_{o}, z^{\prime}\right)+\mathrm{az} z^{\prime \prime} \\
z^{\prime \prime-1} z^{\prime} \\
z^{\prime-1}
\end{array}\right]=z^{\prime \prime-1}\left[\begin{array}{c}
-2^{-1} \mathrm{R}[\mathrm{z}] \\
z^{\prime} \\
1
\end{array}\right]
$$

for $z=\left[\begin{array}{l}z^{\prime} \\ z^{\prime \prime}\end{array}\right] \in D\left(z^{\prime} \in C^{m-2}, z^{\prime \prime} \in C\right)$. Note that $S[\operatorname{Im} \rho(z)]=\frac{1}{\left|z^{\prime \prime}\right|^{2}} R[\operatorname{Im} z]$ for $z \in$ $D$ and that $\rho\left(z_{o}\right)=Z_{o}$. The following is easily verified.

Lemma 2.3 Let $\mathrm{z}=\left[\begin{array}{l}\mathrm{z}^{\prime} \\ \mathrm{z}^{\prime \prime}\end{array}\right] \in \mathrm{D}\left(\mathrm{z}^{\prime} \in \mathrm{C}^{\mathrm{m}-2}, \mathrm{z}^{\prime \prime} \in \mathrm{C}\right)$.
(i) We have $\mathrm{j}\left(\mathrm{z}^{\sim}\right)=\rho\left(\mathrm{z}^{\sim} \cdot \mathrm{z}^{\prime \prime}\right.$.
(ii) For $\mathrm{h} \in \mathrm{H}_{\infty}$, let $\mathrm{h}\left\langle\mathrm{z}>=\left[\begin{array}{l}\mathrm{z}_{1}^{\prime} \\ \mathrm{z}_{1}^{\prime \prime}\end{array}\right]\right.$. Then we have

$$
l(h)<\rho(z)>=\rho(h<z>), \quad J_{G_{1}}(l(h), \rho(z))=z^{\prime-1} z_{1}^{\prime \prime} \cdot J_{H}(h, z) .
$$

## §3. Main results

3.1 From now on we assume that $Q$ and $R$ are maximal. Let $K_{o, p}, K_{p}, U_{p}$ and $K_{1, p}$ be the groups of $Z_{p}$-rational points of $G_{o}, G, H$ and $G_{1}$, which are maximal open compact subgroups of $G_{o, p}, G_{p}, H_{p}$ and $G_{1, p}$ respectively. Put $K_{o, f}=$ $\prod_{\mathrm{p}<\infty} \mathrm{K}_{\mathrm{o}, \mathrm{p}}$. Define $\mathrm{K}_{\mathrm{f}}, \mathrm{U}_{\mathrm{f}}$ and $\mathrm{G}_{1, \mathrm{f}}$ similarly. Throughout this paper, we assume that the condition

$$
\begin{equation*}
\partial_{\mathrm{p}}(\mathrm{Q})=\partial_{\mathrm{p}}(\mathrm{R}) \tag{3.1}
\end{equation*}
$$

holds for every p. Under this assumption, we have

$$
\begin{equation*}
\mathrm{t}_{\mathrm{o}}\left(\mathrm{G}_{\mathrm{p}}\right) \cap \mathrm{U}_{\mathrm{p}}=\mathrm{t}_{\mathrm{o}}\left(\mathrm{~K}_{\mathrm{p}}\right), \mathrm{l}\left(\mathrm{H}_{\mathrm{p}}\right) \cap \mathrm{K}_{1, \mathrm{p}}=\mathrm{t}\left(\mathrm{U}_{\mathrm{p}}\right) \tag{3.2}
\end{equation*}
$$

for every p (cf. [MS1, Proposition 3.7]).
3.2 Let $S\left(U_{f}\right)$ be the space of cusp forms on $H_{A}$ invariant under right $U_{f}$ translations (see §1). We fix an even positive integer $l$ and denote by $\mathrm{S}_{f}\left(\mathrm{U}_{\mathrm{f}}\right)$ the space of $F \in S\left(U_{f}\right)$ satisfying $F\left(h u_{\infty}\right)=F(h) J_{H}\left(u_{\infty}, z_{0}\right)^{-l}$ for $h \in H_{A}$ and $u_{\infty} \in U_{\infty}$. Put $K_{o}=G_{0, \infty} K_{o, f}$. Note that $G_{0, \infty}$ is compact and that $G_{0, Q} \backslash G_{o, A} / K_{o}$ is a finite set since Q is positive definite. Let $\mathrm{M}\left(\mathrm{K}_{\mathrm{o}}\right)$ be the space of automorphic forms on $G_{o, A}$ invariant under right $\mathrm{K}_{0}$-translations.

### 3.3 Let

$$
B_{1, Q}=\left\{\left.\left[\begin{array}{ccccc}
t & * & * & * & * \\
0 & t_{0} & * & * & * \\
0 & 0 & g_{0} & * & * \\
0 & 0 & 0 & t_{0}^{-1} & * \\
0 & 0 & 0 & 0 & t^{-1}
\end{array}\right] \in G_{1, Q} \right\rvert\, t, t_{0} \in \mathbf{Q}^{\times}, \mathrm{g}_{0} \in G_{0, \mathbf{Q}}\right\}
$$

be a $\mathbf{Q}$-minimal parabolic subgroup of $G_{1}$. Then each $g_{1} \in G_{1, \mathbf{A}}$ is decomposed into $\mathrm{b}_{1}\left(\mathrm{~g}_{1}\right) \mathrm{k}_{1}\left(\mathrm{~g}_{1}\right)$ with

$$
\mathrm{b}_{1}\left(\mathrm{~g}_{1}\right)=\left[\begin{array}{ccccc}
\alpha\left(g_{1}\right) & * & * & * & * \\
0 & \alpha_{0}\left(g_{1}\right) & * & * & * \\
0 & 0 & \beta_{0}\left(g_{1}\right) & * & * \\
0 & 0 & 0 & \alpha_{0}\left(g_{1}\right)^{-1} & * \\
0 & 0 & 0 & 0 & \alpha\left(g_{1}\right)^{-1}
\end{array}\right] \in B_{1, A},
$$

$\alpha\left(g_{1}\right), \alpha_{0}\left(g_{1}\right) \in A^{x}, \beta_{o}\left(g_{1}\right) \in G_{o, A}$ and $k_{1}\left(g_{1}\right)=\prod_{v \leq \infty} k_{1}\left(g_{1}\right)_{v} \in K_{1}=K_{1, \infty} K_{1, f}$. We can choose $\alpha\left(g_{1}\right)$ and $\alpha_{0}\left(g_{1}\right)$ so that $\alpha\left(g_{1}\right)_{\infty}, \alpha_{0}\left(g_{1}\right)_{\infty}>0$. The Eisenstein series $\mathbb{E}\left(\mathrm{g}_{1}, \varphi, l ; \mathrm{s}, \mathrm{s}_{0}\right)$ attached to $\varphi \in \mathrm{M}\left(\mathrm{K}_{0}\right)$ with respect to $\mathrm{B}_{1}$ is defined as follows:

$$
\begin{align*}
\mathbb{R}\left(\mathrm{g}_{1}, \varphi, l ; \mathrm{s}, \mathrm{~s}_{\mathrm{o}}\right)= & \sum_{\gamma_{\mathrm{I}} \in \mathrm{~B}_{1, \mathrm{Q}} \mathrm{G}_{1, \mathrm{Q}}} \varphi\left(\beta_{\mathrm{o}}\left(\gamma_{1} \mathrm{~g}_{1}\right)\right)\left|\alpha\left(\gamma_{1} \mathrm{~g}_{1}\right)\right|_{\mathbf{A}}^{\mathrm{s}+\mathrm{m} / 2}\left|\alpha_{0}\left(\gamma_{1} \mathrm{~g}_{1}\right)\right|_{\mathbf{A}}^{\mathrm{s}_{\mathrm{o}}+(\mathrm{m}-2) / 2} \\
& \times \mathrm{J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}\left(\gamma_{1} \mathrm{~g}_{1}\right)_{\infty}, \mathrm{Z}_{\mathrm{o}}\right)^{l}
\end{align*}
$$

$\left(g_{1} \in G_{1, \mathbf{A}},\left(s, s_{0}\right) \in \mathbf{C}^{2}\right.$ ). Thanks to Langlands ([La]), the series (3.3) converges absolutely in the region $\left\{\left(\mathrm{s}, \mathrm{s}_{\mathrm{o}}\right) \in \mathrm{C}^{2} \mid \operatorname{Res}-\operatorname{Re} \mathrm{s}_{\mathrm{o}}>1, \operatorname{Res}>\frac{\mathrm{m}-2}{2}\right\}$ and can be continued to a meromorphic function of ( $s, s_{0}$ ) on $\mathbf{C}^{2}$.
3.4 Let $\mathrm{F} \in \mathrm{S}_{f}\left(\mathrm{U}_{\mathrm{f}}\right)$ and $\varphi \in \mathrm{M}\left(\mathrm{K}_{0}\right)$ be Hecke eigenforms and $\mathrm{L}(\mathrm{F} ; \mathrm{s})$ and $\mathrm{L}(\varphi ; \mathrm{s})$ be the corresponding standard L-functions (see $\S 1$ ). The object of this paper is to study the following Rankin-Selberg convolution of two variables:

$$
\begin{equation*}
\Xi_{F, \varphi}\left(s, s_{o}\right)=\int_{H_{\mathbf{Q}} \backslash H_{A}} F(h) \mathbb{E}\left(ᄂ(h), \varphi ; s-\frac{1}{2}, s_{o}-\frac{1}{2}\right) d h . \tag{3.4}
\end{equation*}
$$

The integral (3.4) can be continued to a meromorphic function of ( $s, s_{0}$ ) on $C^{2}$. The main result of this paper is stated as follows.

Theorem 3.1 Let $\mathrm{F} \in \mathrm{S}_{( }\left(\mathrm{U}_{\mathrm{f}}\right)$ and $\varphi \in \mathrm{M}\left(\mathrm{K}_{\mathrm{o}}\right)$ be Hecke eigenforms. Assume that Q and R are maximal and that the condition (3.1) is satisfied. Then we have

$$
\begin{aligned}
\Xi_{\mathrm{F}, \varphi}\left(\mathrm{~s}, \mathrm{~s}_{\mathrm{o}}\right)= & \frac{\mathrm{L}(\mathrm{~F} ; \mathrm{s}) \mathrm{L}\left(\mathrm{~F} ; \mathrm{s}_{\mathrm{o}}\right)}{\mathrm{L}\left(\varphi ; \mathrm{s}+\frac{1}{2}\right) \mathrm{L}\left(\varphi ; \mathrm{s}_{\mathrm{o}}+\frac{1}{2}\right)} \\
& \times \zeta\left(\mathrm{s}+\mathrm{s}_{\mathrm{o}}\right)^{-1} \zeta\left(\mathrm{~s}-\mathrm{s}_{\mathrm{o}}+1\right)^{-1} \times \begin{cases}1 & \text { if } \mathrm{m} \text { is even } \\
\zeta(2 \mathrm{~s})^{-1} \zeta\left(2 \mathrm{~s}_{\mathrm{o}}\right)^{-1} & \text { if } \mathrm{m} \text { is odd }\end{cases} \\
& \times \mathrm{d}_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{~s}_{\mathrm{o}}\right)
\end{aligned}
$$

Here the local factor at infinity $\mathrm{d}_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{s}_{0}\right)$ is given by the integral

$$
\begin{aligned}
& \int_{\mathfrak{l}_{0}\left(P_{\infty}\right) \backslash H_{\infty}} \mathrm{dh} \int_{\mathbf{R}^{x}} \mathrm{dt}^{\times} \mathrm{W}_{\mathrm{F}, \varphi}\left(\left[\begin{array}{lll}
\mathrm{t} & & \\
& 1_{\mathrm{m}-1} & \\
& & \mathrm{t}^{-1}
\end{array}\right] \mathrm{h}\right)|\mathrm{t}|^{\mathrm{s}-\frac{\mathrm{m}-1}{2}} \\
& \\
& \left|\alpha_{0}(\mathrm{~h})\right|^{\mathrm{s}_{0}+\frac{\mathrm{m}-3}{2}}|\alpha(\mathrm{~h})|^{\mathrm{s}+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h})_{\infty}, \mathrm{Z}_{\mathrm{o}}\right)^{l}
\end{aligned}
$$

where $\mathrm{W}_{\mathrm{F}, \varphi}$ is a generalized Whittaker function associated with $\mathrm{F}, \varphi$ (for the precise definition, see $\$ 5.1)$.

Remark. The local factor $\mathrm{d}_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{s}_{\mathrm{o}}\right)$ depends only on $l$ and $\left.\mathrm{W}_{\mathrm{F}, \varphi}\right|_{\mathrm{H}_{\infty}}$.
3.5 Let $\mathrm{S}_{l}^{\text {hol }}\left(\mathrm{U}_{\mathrm{f}}\right)$ be the space of holomorphic cusp forms on H of weight $l$. By definition, $F \in S_{l}^{\text {hol }}\left(U_{f}\right)$ is an element of $S_{l}\left(U_{f}\right)$ such that, for every $h_{f} \in H\left(A_{f}\right)$, the function $\mathrm{F}\left(\mathrm{z} ; \mathrm{h}_{\mathrm{f}}\right):=\mathrm{F}\left(\mathrm{h}_{\infty} \mathrm{h}_{\mathrm{f}}\right) \mathrm{J}_{\mathrm{H}}\left(\mathrm{h}_{\infty}, \mathrm{z}_{\mathrm{o}}{ }^{l}\right.$ is holomorphic in $\mathrm{z}=\mathrm{h}_{\infty}<\mathrm{z}_{\mathrm{o}}>\in \mathrm{D}$. We can calculate $\mathrm{d}_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{s}_{\mathrm{o}}\right)$ explicitly in the case where $\mathrm{F} \in \mathrm{S}_{l}^{\text {hol }}\left(\mathrm{U}_{\mathrm{f}}\right)$.

Theorem 3.2 Assume $\mathrm{F} \in \mathrm{S}_{l}^{\mathrm{hol}}\left(\mathrm{U}_{\mathrm{f}}\right)$. Then we have

$$
\mathrm{d}_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{~s}_{\mathrm{o}}\right)=\mathrm{c} \cdot \mathrm{~W}_{\mathrm{F}, \varphi}(1) \cdot 2^{-\left(\mathrm{s}+\mathrm{s}_{\mathrm{o}}\right)^{-} \mathrm{s}_{\mathrm{o}}} \times \frac{\Gamma\left(\mathrm{s}+l-\frac{\mathrm{m}-1}{2}\right) \Gamma\left(\mathrm{s}_{\mathrm{o}}+l-\frac{\mathrm{m}-1}{2}\right)}{\Gamma\left(\frac{\mathrm{s}+\mathrm{s}_{0}+l}{2}\right) \Gamma\left(\frac{\mathrm{s}-\mathrm{s}_{\mathrm{o}}+l+1}{2}\right)},
$$

where $\mathrm{c}=\mathrm{e}^{2 \pi} \Delta^{\frac{\mathrm{m}-2}{2}}(\operatorname{det} \mathrm{Q})^{-\frac{1}{2}} 2^{-(2 l-\mathrm{m})} \pi^{-\left(l-\mathrm{m}+\frac{1}{2}\right)}$.

## §4. Shintani functions and the basic identity

4.1 Let $M(K)$ be the space of automorphic forms on $G_{A}$ invariant under right $K=$ $\mathrm{K}_{\infty} \mathrm{K}_{\mathrm{f}}$-translations (see §1). The Shintani function associated with $\mathrm{F} \in \mathrm{S}_{\boldsymbol{f}}\left(\mathrm{U}_{\mathrm{f}}\right)$ and $\mathrm{f} \in$ $\mathrm{M}(\mathrm{K})$ is given by

$$
\begin{equation*}
\omega_{F, f}(h)=\int_{G_{\mathbf{Q}}{ }^{\prime G_{A}}} F(g h) f(g) d g \quad\left(h \in H_{A}\right) \tag{4.1}
\end{equation*}
$$

(cf. [MS1, §1]). Observe that $\omega_{\mathrm{F}, \mathrm{f}}$ is an eigen function under the action of $\underset{\mathrm{p}<\infty}{\otimes^{\prime}} H\left(\mathrm{H}_{\mathrm{p}}\right.$, $\left.\mathrm{U}_{\mathrm{p}}\right)$ on the right and that of $\underset{\mathrm{p}<\infty}{\otimes} H\left(\mathrm{G}_{\mathrm{p}}, \mathrm{K}_{\mathrm{p}}\right)$ on the left, if F and f are Hecke eigenforms. In [MS1, Theorem 1.6], we have proved

Proposition 4.1 Assume (3.1). Let $\mathrm{F} \in \mathrm{S}_{f}\left(\mathrm{U}_{\mathrm{f}}\right)$ and $\mathrm{f} \in \mathrm{M}(\mathrm{K})$ be Hecke eigenforms. Then

$$
\int_{G_{A_{f}} \backslash H_{A_{f}}} \omega_{F, f}\left(\beta(h)^{-1} h\right)|\alpha(h)|_{\mathbf{A}_{f}}^{s+\frac{m-1}{2}} \mathrm{dh}=\frac{\mathrm{L}(\mathrm{~F} ; \mathrm{s})}{\mathrm{L}\left(\mathrm{f} ; \mathrm{s}+\frac{1}{2}\right)} \times \begin{cases}1 & \text { if } \mathrm{m} \text { is even } \\ \zeta(2 s)^{-1} & \text { if } \mathrm{m} \text { is odd }\end{cases}
$$

4.2 Let $P_{1}=\left\{\left.\left[\begin{array}{ccc}t & * & * \\ 0 & g & * \\ 0 & 0 & t^{-1}\end{array}\right] \in G_{1} \right\rvert\, t=0, g \in G\right\}$ be a maximal parabolic subgroup of $G_{1}$. Then each $g_{1} \in G_{1, A}$ is decomposed into
$\left[\begin{array}{ccc}\alpha\left(g_{1}\right) & * & * \\ 0 & \beta\left(g_{1}\right) & * \\ 0 & 0 & \alpha\left(g_{1}\right)^{-1}\end{array}\right] k_{1}\left(g_{1}\right)$, where $\alpha\left(g_{1}\right) \in A^{\times}, \beta\left(g_{1}\right) \in G_{A}$ and $k_{1}\left(g_{1}\right) \in K_{1}=$
$K_{1, \infty} K_{1, f^{*}}$ For $f \in M(K)$ and $l \in \mathbf{Z}_{\mathbf{z} 0}$, we define the Eisenstein series on $G_{1, A}$ with respect to $\mathrm{P}_{1}$ by

The series (4.2) can be continued to a meromorphic function of $s$ on $\mathbf{C}$.
4.3 Let us consider the convolution

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{~s})=\int_{\mathrm{H}_{\mathbf{Q}} \backslash \mathrm{H}_{\mathbf{A}}} \mathrm{F}(\mathrm{~h}) \mathrm{E}\left(\mathrm{l}(\mathrm{~h}), \mathrm{f}, l ; \mathrm{s}-\frac{1}{2}\right) \mathrm{dh} . \tag{4.3}
\end{equation*}
$$

Proposition 4.2 (The basic identity) For $\mathrm{F} \in \mathrm{S}_{f}\left(\mathrm{U}_{\mathrm{f}}\right)$ and $\mathrm{f} \in \mathrm{M}(\mathrm{K})$, we have

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{~s})=\int_{\mathrm{G}_{\mathbf{A}} \backslash \mathrm{H}_{\mathbf{A}}} \omega_{\mathrm{F}, \mathrm{f}}\left(\beta(\mathrm{~h})^{-1} \mathrm{~h}\right)|\alpha(\mathrm{h})|_{\mathbf{A}}^{\mathrm{s}+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h})_{\infty}, \mathrm{Z}_{\mathrm{o}}\right)^{l} \mathrm{dh} . \tag{4.4}
\end{equation*}
$$

Proof. While this result has been already mentioned in [MS1, $\S 1.8$, Remark], we give a sketch of proof for completeness. First observe the following facts (cf. [MS1, §2]):
(a) $\quad G_{1}=P_{1} \cdot(\mathrm{H}) \cup \mathrm{P}_{1} \cdot \Upsilon_{0} \cdot \mathrm{l}(\mathrm{H})$ (disjoint union),
where $Y_{o}=\left[\begin{array}{lll} & & \\ & 1 \\ 1 & & \end{array}\right]\left[\begin{array}{ccc}1 & -X_{0} S & -2^{-1} S\left[X_{o}\right] \\ 0 & 1_{m} & X_{o} \\ 0 & 0 & 1\end{array}\right] \in G_{1, Q}, X_{o}=\left[\begin{array}{c}a \\ 0_{m-2} \\ 1\end{array}\right] \in Q^{m}$.
(b) $\quad \mathrm{P}_{1} \cap \mathrm{l}(\mathrm{H})=\imath\left(\mathrm{l}_{\mathrm{o}}(\mathrm{G})\right)$.
(c) $Y_{0}^{-1} P_{1} Y_{0} \cap t(H)=t\left(P^{\prime}\right)$, where $P_{Q}^{\prime}=\left\{h \in H_{Q} \left\lvert\, h \cdot\left[\begin{array}{c}-a \\ 0_{m-2} \\ 1 \\ -1\end{array}\right]=t \cdot\left[\begin{array}{c}-a \\ 0_{m-2} \\ 1 \\ -1\end{array}\right]\right., t \in\right.$
$\left.Q^{\times}\right\}$is a maximal $Q$-parabolic subgroup of $H$.
(d) $Y_{o} \cdot t\left(\mathrm{~N}^{\prime}\right) \cdot \Upsilon_{0}^{-1} \subset \mathrm{~N}_{1}$, where $\mathrm{N}^{\prime}\left(\right.$ resp. $\left.\mathrm{N}_{1}\right)$ is the unipotent radical of $\mathrm{P}^{\prime}$ (resp. $\mathrm{P}_{1}$ ).

By (a), (b) and (c), we have

$$
\begin{aligned}
\mathrm{E}(\imath(\mathrm{~h}), \mathrm{f}, l ; \mathrm{s} & \left.-\frac{1}{2}\right)=\sum_{\gamma \in \mathrm{G}_{\mathbf{Q}} \backslash \mathrm{H}_{\mathbf{Q}}} \mathrm{f}(\beta(\gamma \mathrm{~h}))|\alpha(\gamma \mathrm{h})|_{\mathbf{A}}^{s+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\gamma \mathrm{~h})_{\infty}, \mathrm{Z}_{\mathrm{o}}\right)^{l} \\
& +\sum_{\gamma \in \mathrm{P}_{\mathbf{Q}}^{\prime} \backslash \mathrm{H}_{\mathbf{Q}}} \mathrm{f}\left(\beta\left(\Upsilon_{0} \gamma \mathrm{~h}\right)\right)\left|\alpha\left(\Upsilon_{0} \gamma \mathrm{~h}\right)\right|_{\mathbf{A}}^{s+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}\left(\Upsilon_{0} \gamma \mathrm{~h}\right)_{\infty}, \mathrm{Z}_{0}\right)^{l} .
\end{aligned}
$$

Then $Z_{F, f}(s)$ equals

$$
\begin{aligned}
& \int_{\mathrm{G}_{\mathbf{Q}} \backslash \mathrm{H}_{\mathbf{A}}} \mathrm{F}(\mathrm{~h}) \mathrm{f}(\beta(\mathrm{~h}))|\alpha(\mathrm{h})|_{\mathrm{A}}^{\mathrm{s}+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h})_{\infty}, \mathrm{Z}_{0}\right)^{l} \mathrm{dh} \\
& +\int_{\mathrm{P}_{\mathbf{Q}} \backslash \mathrm{H}_{\mathbf{A}}} \mathrm{F}(\mathrm{~h}) \mathrm{f}\left(\beta\left(\Upsilon_{0} \mathrm{~h}\right)\right)\left|\alpha\left(\Upsilon_{0} \mathrm{~h}\right)\right|_{\mathbf{A}}^{\mathrm{s}+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}\left(\Upsilon_{0} \mathrm{~h}\right)_{\infty}, \mathrm{Z}_{0}\right)^{l} \mathrm{dh} .
\end{aligned}
$$

The first term of the above sum is equal to the right hand side of (4.4), since $\beta(\mathrm{gh})=$ $\mathrm{g} \cdot \beta(\mathrm{h})$ and $|\alpha(\mathrm{gh})|_{\mathbf{A}}=|\alpha(\mathrm{h})|_{\mathbf{A}}$ for $\mathrm{g} \in \mathrm{G}_{\mathbf{A}}$ and $\mathrm{h} \in \mathrm{H}_{\mathbf{A}}$. By Lemma 2.2 and the decomposition $H_{A}=P_{A}^{\prime} U$, the second term is equal to

$$
\begin{equation*}
\left.\int_{P_{\dot{Q}}^{\prime} \mid P_{A}^{\prime}} \mathrm{F}\left(\mathrm{p}^{\prime}\right) \mathrm{f}\left(\beta \Upsilon_{\mathrm{o}} \mathrm{p}^{\prime}\right)\right)\left|\alpha\left(\Upsilon_{\mathrm{o}} \mathrm{p}^{\prime}\right)\right|_{\mathrm{A}}^{s+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}\left(\Upsilon_{\mathrm{o}} \mathrm{p}^{\prime}\right)_{\infty}, \mathrm{Z}_{\mathrm{o}}\right)^{l} \mathrm{~d}_{l} \mathrm{p}^{\prime} \tag{4.5}
\end{equation*}
$$

Let $\mathrm{P}^{\prime}=\mathrm{M}^{\prime} \mathrm{N}^{\prime}$ be a Levi decomposition of $\mathrm{P}^{\prime}$ and $\mathrm{dm}^{\prime}$ (resp. dn ) be a Haar measure on $M_{A}^{\prime}\left(\right.$ resp. $\left.N_{A}^{\prime}\right)$. Then $d_{l} p^{\prime}=\mu\left(m^{\prime}\right) d m^{\prime} d n^{\prime}$ with the module $\mu\left(m^{\prime}\right)=\frac{d\left(m^{\prime} n^{\prime} m^{\prime-1}\right)}{d n^{\prime}}$ of $\mathrm{M}^{\prime}$. In view of (d), (4.5) is equal to

$$
\int_{M_{\mathbf{Q}}^{\prime} M_{\mathbf{A}}^{\prime}} \mathrm{f}\left(\beta\left(\Upsilon_{0} m^{\prime}\right)\right)\left|\alpha\left(\Upsilon_{0} m^{\prime}\right)\right|_{\mathbf{A}}^{s+\frac{m-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}\left(\Upsilon_{0} m^{\prime}\right)_{\infty}, \mathrm{Z}_{0}\right)^{l}\left\{\int_{N_{\mathbf{Q}}^{\prime} \backslash N_{\mathbf{A}}^{\prime}} \mathrm{F}\left(\mathrm{n}^{\prime} m^{\prime}\right) \mathrm{dn} n^{\prime}\right\} \mu\left(m^{\prime}\right) \mathrm{dm}^{\prime}
$$

Since $F$ is cuspidal, the integral over $N_{\mathbf{Q}}^{\prime} \mathbf{N}_{\mathbf{A}}^{\prime}$ vanishes and hence the proposition is proved. q.e.d.

### 4.4 Combining Proposition 4.1 and Proposition 4.2, we get the following result.

Corollary 4.3 Under the same assumptions and notation of Proposition 3.1, we have

$$
\mathrm{Z}_{\mathrm{F}, \mathrm{f}}(\mathrm{~s})=\frac{\mathrm{L}(\mathrm{~F} ; \mathrm{s})}{\mathrm{L}\left(\mathrm{f} ; \mathrm{s}+\frac{1}{2}\right)} \times\left\{\begin{array}{ll}
1 & \text { if } \mathrm{m} \text { is even } \\
\zeta(2 \mathrm{~s})^{-1} & \text { if } \mathrm{m} \text { is odd }
\end{array}\right\} \times \mathrm{Z}_{\mathrm{F}, \mathrm{f}}^{(\infty)}(\mathrm{s})
$$

where

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{F}, \mathrm{f}}^{(\infty)}(\mathrm{s})=\int_{\mathrm{G}_{\infty} \backslash \mathrm{H}_{\infty}} \omega_{\mathrm{F}, \mathrm{f}}\left(\beta(\mathrm{~h})^{-1} \mathrm{~h}\right)|\alpha(\mathrm{h})|^{s+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h}), \mathrm{Z}_{0}\right)^{l} \mathrm{dh} . \tag{4.6}
\end{equation*}
$$

4.5 To proceed further, we consider the Eisenstein series $\mathrm{E}_{\mathrm{G}}\left(\mathrm{g}, \varphi ; \mathrm{s}_{0}\right)$ on $\mathrm{G}_{\mathrm{A}}$ attached to $\varphi \in M\left(K_{0}\right)$ with respect to $P$ defined as follows. Decompose $g \in G_{A}$ into

$$
\left[\begin{array}{ccc}
\alpha_{0}(\mathrm{~g}) & * & * \\
0 & \beta_{0}(\mathrm{~g}) & * \\
0 & 0 & \alpha_{0}(\mathrm{~g})^{-1}
\end{array}\right] \mathrm{k}(\mathrm{~g})
$$

where $\alpha_{0}(g) \in A^{\times}, \beta_{0}(g) \in G_{0, A}, k(g) \in K=K_{\infty} K_{f}$. We set

$$
\begin{equation*}
\mathrm{E}_{\mathrm{G}}\left(\mathrm{~g}, \varphi ; \mathrm{s}_{\mathrm{o}}\right)=\sum_{\gamma \in \mathrm{P}_{\mathrm{Q}} \backslash \mathrm{G}_{\mathbf{Q}}} \varphi\left(\beta_{\mathrm{o}}(\gamma \mathrm{~g})\right)\left|\alpha_{0}(\gamma \mathrm{~g})\right|_{\mathbf{A}}^{\mathrm{s}_{\mathrm{o}}+\frac{\mathrm{m}-2}{2}} \tag{4.7}
\end{equation*}
$$

It is known that the series (4.7) can be continued to a meromorphic function of $\mathrm{s}_{\mathrm{o}}$ on $\mathbf{C}$ and that $\mathrm{E}_{\mathrm{G}}\left(*, \varphi ; \mathrm{s}_{\mathrm{o}}\right) \in \mathrm{M}(\mathrm{K})$. The following facts are easily verified.

Lemma 4.4 In the region $\left\{\left(\mathrm{s}, \mathrm{s}_{\mathrm{o}}\right) \in \mathrm{C}^{2} \mid \operatorname{Res}-\operatorname{Res} \mathrm{s}_{\mathrm{o}}>1, \operatorname{Re} \mathrm{~s}_{\mathrm{o}}>\frac{\mathrm{m}-2}{2}\right\}$, we have

$$
\mathrm{E}\left(\mathrm{~g}_{1}, \mathrm{E}_{\mathrm{G}}\left(*, \varphi ; \mathrm{s}_{0}\right), l ; \mathrm{s}\right)=\mathbb{E}\left(\mathrm{g}_{1}, \varphi, l ; \mathrm{s}, \mathrm{~s}_{0}\right)
$$

Lemma 4.5 If $\varphi \in \mathrm{M}\left(\mathrm{K}_{0}\right)$ is a Hecke eigenform, then $\mathrm{E}_{\mathrm{G}}\left(*, \varphi ; \mathrm{s}_{0}\right)$ is also a Hecke eigenform and $\mathrm{L}\left(\mathrm{E}_{\mathrm{G}}\left(*, \varphi ; \mathrm{s}_{0}\right) ; \mathrm{s}\right)=\mathrm{L}(\varphi ; \mathrm{s}) \cdot \zeta\left(\mathrm{s}+\mathrm{s}_{0}\right) \zeta\left(\mathrm{s}-\mathrm{s}_{\mathrm{o}}\right)$.
4.6 Applying Corollary 4.3 to $\mathrm{f}=\mathrm{E}_{\mathrm{G}}\left(*, \varphi ; \mathrm{s}_{\mathrm{o}}\right)$ and using Lemma 4.4 and Lemma 4.5 , we obtain the following result.

Proposition 4.6 Under the same assumptions of Theorem 3.1, we have

$$
\begin{aligned}
\Xi_{\mathrm{F}, \varphi}\left(\mathrm{~s}, \mathrm{~s}_{\mathrm{o}}\right)= & \frac{\mathrm{L}(\mathrm{~F} ; \mathrm{s})}{\mathrm{L}\left(\varphi ; \mathrm{s}+\frac{1}{2}\right)} \cdot \zeta\left(\mathrm{s}+\mathrm{s}_{\mathrm{o}}\right)^{-1} \zeta\left(\mathrm{~s}-\mathrm{s}_{\mathrm{o}}+1\right)^{-1} \cdot\left\{\begin{array}{ll}
1 & \text { if } \mathrm{m} \text { is even } \\
\zeta(2 \mathrm{~s})^{-1} & \text { if } \mathrm{m} \text { is odd }
\end{array}\right\} \\
& \times \Lambda_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{~s}_{\mathrm{o}}\right)
\end{aligned}
$$

where we put $\Lambda_{\infty}\left(F, \varphi ; s, s_{0}\right)=Z_{F, E_{G}\left(*, \varphi ; s_{0}\right)}^{(s)}(\mathrm{s})$.

## §5. Generalized Whittaker functions and the calculation of

 $\Lambda_{\infty}\left(\mathbf{F}, \varphi ; \mathbf{s}, s_{0}\right)$
### 5.1 We first recall the definition of the generalized Whittaker function $\mathrm{W}_{\mathrm{F}, \varphi}$ attached

 to $F \in S_{l}\left(U_{f}\right)$ and $\varphi \in M\left(K_{0}\right)$ (for detail, see [Su, $\left.\S 1\right]$ ). The Fourier coefficient $F_{\mu}$ of F at $\mu \in \mathbf{Q}^{m-1}$ is given by$$
F_{\mu}(\mathrm{h})=\int_{\mathbf{Q}^{\mathrm{m}-\mathrm{F}} \backslash \mathbf{A}^{\mathrm{m}-1}} \mathrm{~F}\left(\mathrm{n}_{\mathrm{H}}(\mathrm{y}) \mathrm{h}\right) \psi(-\mathrm{R}(\mu, \mathrm{y})) \mathrm{dy} \quad\left(\mathrm{~h} \in \mathrm{H}_{\mathrm{A}}\right)
$$

(for the definition of $\psi$, see Notation). Then we have

$$
\begin{equation*}
\mathrm{F}\left(\mathrm{n}_{\mathrm{H}}(\mathrm{y}) \mathrm{h}\right)=\sum_{\mu \in \mathrm{Q}^{\mathrm{h}-1}} \mathrm{~F}_{\mu}(\mathrm{h}) \psi(\mathrm{R}(\mu, \mathrm{y})) \quad\left(\mathrm{h} \in \mathrm{H}_{\mathrm{A}}, \mathrm{y} \in \mathrm{~A}^{\mathrm{m}-1}\right) \tag{5.1}
\end{equation*}
$$

Note that, for $\mathrm{F} \in \mathrm{S}_{l}^{\text {hol }}\left(\mathrm{U}_{\mathrm{f}}\right)$, we have $\mathrm{F}_{\mu}=0$ unless $\mathrm{R}[\mu]<0$. The generalized Whittaker function $\mathrm{W}_{\mathrm{F}, \varphi}$ is defined by

$$
W_{F, \varphi}(h)=\int_{G_{0, \mathbf{Q}} \backslash G_{0, A}} F_{-\xi_{0}}\left(\left[\begin{array}{lll}
1 & &  \tag{5.2}\\
& g_{0} & \\
& & 1
\end{array}\right] h\right) \varphi\left(g_{0}\right) d g_{0},
$$

where $\xi_{0}=\left[\begin{array}{c}\lambda_{0} \\ 1\end{array}\right] \Delta^{-1} \in Q^{m-1}$ and $G_{0}$ is embedded into $H_{0}$ via $g_{0} \rightarrow$ $\left[\begin{array}{cc}g_{0}\left(1-g_{0}\right) \lambda_{0} \\ 0 & 1\end{array}\right]$. Under this embedding, $G_{0}$ is the isotropy subgroup of $\xi_{0}$ in $H_{0}$. The function $W_{F, \varphi}$ has the following properties:
(a) $\quad W_{F, \varphi}\left(n_{H}(y) h\right)=\psi\left(-R\left(\xi_{0}, y\right)\right) W_{F, \varphi}(h) \quad\left(h \in H_{A}, y \in A^{m-1}\right)$
(b) If both F and $\varphi$ are Hecke eigenforms, $\mathrm{W}_{\mathrm{F}, \varphi}$ is an eigen function under the action of $\underset{\mathrm{p}<\infty}{\otimes \prime} H\left(\mathrm{H}_{\mathrm{p}}, \mathrm{U}_{\mathrm{p}}\right)$ on the right and that of $\underset{\mathrm{p}<\infty}{\otimes \prime} H\left(\mathrm{G}_{\mathrm{o}, \mathrm{p}}, \mathrm{K}_{\mathrm{o}, \mathrm{p}}\right)$ on the left.

We need the following formula later.

Proposition 5.1 ([Su], Theorem 1) Let the assumptions be the same as in Theorem
3.1. For $\mathrm{h} \in \mathrm{H}_{\infty}$, we have

$$
\begin{aligned}
& \int_{\mathbf{A}_{f}^{x}} W_{F, \varphi}\left(\begin{array}{llll}
t & & \\
& 1_{m-1} & \\
& & t^{-1}
\end{array}\right] \text { h) } \left\lvert\, t_{A_{f}}^{0_{0}-\frac{m-1}{2}} d^{x_{t}}\right. \\
& =\frac{\mathrm{L}\left(\mathrm{~F} ; \mathrm{s}_{\mathrm{o}}\right)}{\mathrm{L}\left(\varphi ; \mathrm{s}_{\mathrm{o}}+\frac{1}{2}\right)} \times\left\{\begin{array}{ll}
1 & \text { if } \mathrm{m} \text { is even } \\
\zeta\left(2 \mathrm{~s}_{\mathrm{o}}\right)^{-1} & \text { if } \mathrm{m} \text { is odd. }
\end{array}\right\} \times \mathrm{W}_{\mathrm{F}, \varphi}(\mathrm{~h})
\end{aligned}
$$

### 5.2 We now go back to the calculation of the integral

$$
\Lambda_{\infty}\left(F, \varphi ; s, s_{0}\right)=\int_{G_{\infty} \backslash H_{\infty}} \omega_{\mathrm{F}, \mathrm{E}_{\mathrm{G}}\left(*, \varphi ; \mathrm{s}_{\mathrm{o}}-\frac{1}{2}\right)}\left(\beta(\mathrm{h})^{-1} \mathrm{~h}\right)|\alpha(\mathrm{h})|^{\mathrm{s} \frac{\mathrm{~m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h}), \mathrm{Z}_{\mathrm{o}}\right)^{l} \mathrm{dh} .
$$

First note that, for $g \in G_{A}$, we can choose $\alpha\left(l_{0}(g)\right)=1, \alpha_{0}\left(l_{0}(g)\right)=\alpha_{0}(g)$ and $\beta_{0}\left(l_{\mathrm{o}}(\mathrm{g})\right)=\beta_{\mathrm{o}}(\mathrm{g})$ in view of Lemma 2.1 (ii). Unwinding the Eisenstein series $\mathrm{E}_{\mathrm{G}}(*, \varphi ;$ $s_{o}-\frac{1}{2}$ ) in the integral $\Lambda_{\infty}\left(F, \varphi ; s, s_{o}\right)$ and using the decomposition $G_{A}=P_{A} K_{\infty} K_{f}$, we get

$$
\begin{align*}
& \Lambda_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{~s}_{0}\right)=\int_{\mathrm{G}_{\infty} \backslash \mathrm{H}_{\infty}} \mathrm{dh} \int_{\mathrm{P}_{Q} \backslash \mathrm{P}_{\mathrm{A}}} \mathrm{~d} \mathrm{p} \int_{\mathrm{K}_{\infty}} \mathrm{dkF}\left(\mathrm{pk} \beta(\mathrm{~h})^{-1} \mathrm{~h}\right) \varphi\left(\beta_{0}(\mathrm{p})\right)  \tag{5.3}\\
& \left|\alpha_{0}(\mathrm{p})\right|_{A^{s}}^{\mathrm{s}^{+} \frac{\mathrm{m}-3}{2}}|\alpha(\mathrm{~h})|_{\infty}^{s+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h})_{\infty}, \mathrm{Z}_{0}\right)^{l} .
\end{align*}
$$

Here $d_{l} p$ is a left invariant measure on $P_{A}$ given by $d_{l} p=\mid t f_{A}^{(m-2)} d x d^{x} t d g_{0}$, where $p=n(x)\left[\begin{array}{llll}t & & \\ & g_{0} & \\ & & t^{-1}\end{array}\right]\left(x \in A^{m-2}, t \in A^{x}, g_{0} \in G_{o, A}\right)$. We may suppose that $\beta(h) \in$ $P_{\infty}$. For $h \in H_{\infty}$, we see $\left|\alpha_{0}(p \beta(h))\right|_{A}=\left|\alpha_{0}(p)\right|_{A}\left|\alpha_{0}(\beta(h))\right|_{\infty}$ and $\varphi\left(\beta_{0}(p \cdot \beta(h))\right)=$ $\varphi\left(\beta_{0}(\mathrm{p}) \beta_{0}(\mathrm{~h})\right)=\varphi\left(\beta_{0}(\mathrm{p})\right)$, since $\varphi$ is right $\mathrm{G}_{0, \infty}$-invariant. Thus, changing the variable $p$ into $p \cdot \beta(\mathrm{~h})$ in (5.3), we obtain

$$
\begin{aligned}
\Lambda_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{~s}_{0}\right) & =\int_{\mathrm{G}_{\infty} \backslash \mathrm{H}_{\infty}} \mathrm{dh} \int_{\mathrm{K}_{\infty}^{\prime}} \mathrm{dk}^{\prime} \int_{\mathrm{P}_{\mathbf{Q}^{\backslash P_{A}}}} \mathrm{~d} p \mathrm{p}\left(\mathrm{pk}^{\prime} \mathrm{h}\right) \varphi\left(\beta_{0}(\mathrm{p})\right) \\
& \left|\alpha_{0}(\mathrm{p})\right|_{\mathbf{A}}^{s_{0}+\frac{\mathrm{m}-3}{2}}\left|\alpha_{0}(\beta(\mathrm{~h}))\right|_{\infty}^{\mathrm{s}_{0}+\frac{\mathrm{m}-3}{2}}|\alpha(\mathrm{~h})|_{\infty}^{s+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h})_{\infty}, \mathrm{Z}_{0}\right)^{l}
\end{aligned}
$$

where $\mathrm{dk}^{\prime}$ is the normalized Haar measure on $\mathrm{K}_{\infty}^{\prime}=\beta(\mathrm{h}) \mathrm{K}_{\infty} \beta(\mathrm{h})^{-1}$. For a while, we fix $h \in H_{\infty}$ and let $k^{\prime} \in K_{\infty}^{\prime}$. Since $k^{\prime} \in G_{\infty}$, we have $\left|\alpha\left(k^{\prime} h\right)\right|_{\infty}=|\alpha(h)|_{\infty}$ and $k_{1}\left(k^{\prime} h\right)_{\infty}=k_{1}(h)_{\infty}$. Next observe that $\beta\left(k^{\prime} h\right) \in k^{\prime} \beta(h) K_{\infty}=\beta(h) K_{\infty}$, which implies $\mid \alpha_{0}\left(\left.\beta\left(\mathrm{k}^{\prime} \mathrm{h}\right)\right|_{\infty}=\left|\alpha_{0}(\beta(\mathrm{~h}))\right|_{\infty}=\left|\alpha_{0}(\mathrm{~h})\right|_{\infty}\right.$. Since $\mathrm{G}_{\infty}=\mathrm{P}_{\infty} \mathrm{K}_{\infty}^{\prime}$, we have proved the following:

Lemma 5.2 We have

$$
\begin{array}{r}
\Lambda_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{~s}_{\mathrm{o}}\right)=\int_{\mathrm{L}_{0}\left(\mathrm{P}_{\infty}\right) \backslash \mathrm{H}_{\infty}}\left\{\int_{\mathrm{P}_{Q} \backslash \mathrm{P}_{\mathrm{A}}} \mathrm{~F}(\mathrm{ph}) \varphi\left(\beta_{\mathrm{o}}(\mathrm{p})\right)\left|\alpha_{\mathrm{o}}(\mathrm{p})\right|_{\mathrm{A}}^{\mathrm{s}^{+}+\frac{\mathrm{m}-3}{2}} \mathrm{~d} p \mathrm{p}\right\} \\
\left|\alpha_{0}(\mathrm{~h})\right|_{\infty}^{\mathrm{s}_{0}^{\mathbf{o}^{+}+\frac{\mathrm{m}-3}{2}}|\alpha(\mathrm{~h})|_{\infty}^{\mathrm{s}+\frac{\mathrm{m}-1}{2}} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h})_{\infty}, \mathrm{Z}_{\mathrm{o}}\right)^{l} \mathrm{dh} .}
\end{array}
$$

5.3 In view of Proposition 4.6 and Lemma 5.2, the proof of Theorem 3.1 is now reduced to the following.

Proposition 5.3 Let the assumptions be the same as in Theorem 3.1. For $\mathrm{h} \in \mathrm{H}_{\infty}$, we have

$$
\begin{aligned}
& \left.=\frac{\mathrm{L}\left(\mathrm{~F} ; \mathrm{s}_{\mathrm{o}}\right)}{\mathrm{L}\left(\mathrm{f} ; \mathrm{s}_{\mathrm{o}}+\frac{1}{2}\right)} \times\left\{\begin{array}{lr}
1 & \text { if } \mathrm{m} \text { is even } \\
\zeta\left(2 \mathrm{~s}_{\mathrm{o}}\right)^{-1} & \text { if } \mathrm{m} \text { is odd }
\end{array}\right\} \times \int_{\mathbf{R}^{\times}} \mathrm{W}_{\mathrm{F}, \varphi}\left(\left[\begin{array}{lll}
\mathrm{t} & & \\
& 1_{\mathrm{m}-1} & \\
& & \mathrm{t}^{-1}
\end{array}\right] \mathrm{h}\right) \right\rvert\, \mathrm{t}_{\infty}^{\mathrm{s}_{\infty}-\frac{\mathrm{m}-1}{2}} \mathrm{~d}^{\times} \mathrm{t} .
\end{aligned}
$$

Proof. The left hand side of (5.4) is equal to

By Lemma 2.1 (i) and (5.1), the integral $\int_{\mathbf{Q}^{m-2} \mathbf{A}^{m-2}} F\left(\mathrm{t}_{0}\left(n_{G}(x)\left[\begin{array}{ll}t & \\ & g_{0} \\ & t^{-1}\end{array}\right]\right) \cdot h\right) d x$
equals

$$
\sum_{\mu \in Q^{m-1}} F_{\mu}\left(\left[\begin{array}{lll}
t & & \\
g_{0}\left(1-g_{0}\right) \lambda_{0} & \\
0 & 1 & \\
& & t^{-1}
\end{array}\right] \text { h) } \int_{Q^{m-2} A^{m-2}} \psi\left(R\left(\mu,\left[\begin{array}{l}
x \\
0
\end{array}\right]\right)\right) d x .\right.
$$

Since the integral in the above formula is equal to one if $\mu=u \cdot\left(-\xi_{0}\right)$ for some $u \in Q^{x}$ and equal to zero otherwise, and since $F_{u \mu}(h)=F_{\mu}\left(\left[\begin{array}{llll}u & & & \\ & 1_{m-1} & \\ & & \\ & & u^{-1}\end{array}\right]\right.$ h) for $u \in Q^{\times}, \mu \in$ $Q^{m-1}$ and $h \in H_{A}$, the left hand side of (5.4) equals

$$
\left.\int_{A^{x}}\left\{\int_{G_{0, Q} \backslash G_{o, A}} F_{-\xi_{0}}\left(\left[\begin{array}{lll}
\mathrm{g} & \left(1-g_{0}\right) \lambda_{0} \\
0 & 1 & \\
& & t^{-1}
\end{array}\right] h\right) \varphi\left(g_{0}\right) d g_{0}\right\} \right\rvert\, t t_{A}^{s_{0}} \begin{aligned}
& \frac{m-1}{2} \\
& d^{\times} t .
\end{aligned}
$$

This proves the first equality of the proposition. The second one follows from Proposition 5.1. q.e.d.

## §6. Proof of Theorem 3.2

6.1 In this section we always assume that $\mathrm{F} \in \mathrm{S}_{l}^{\text {hol }}$. For $\mathrm{h}_{\mathrm{f}} \in \mathrm{H}_{\mathrm{A}_{\mathrm{f}}}$, the function $\mathrm{F}\left(\mathrm{z} ; \mathrm{h}_{\mathrm{f}}\right)=\mathrm{F}\left(\mathrm{h}_{\infty} \mathrm{h}_{\mathrm{f}}\right) \mathrm{J}_{\mathrm{H}}\left(\mathrm{h}_{\infty}, \mathrm{z}_{\mathrm{o}}\right)^{l}\left(\mathrm{~h}_{\infty} \in \mathrm{H}_{\infty}, \mathrm{z}=\mathrm{h}_{\infty}<\mathrm{z}_{\mathrm{o}}>\in \mathrm{D}\right)$ admits a Fourier expansion: $\mathrm{F}\left(z ; \mathrm{h}_{\mathrm{f}}\right)=\sum_{\mu} \mathrm{a}_{\mathrm{F}}\left(\mu ; \mathrm{h}_{\mathrm{f}}\right) \mathrm{e}[\mathrm{R}(\mu, z)]$ where $\mu$ runs over the set $\left\{\mu \in \mathrm{Q}^{\mathrm{m}-1} \mid \mathrm{R}[\mu]<0,-\mu i\right.$ and $z$ are in the same connected component of $D\}$. Then $F_{\mu}\left(h_{\infty} h_{f}\right)$ is equal to $\left.\mathrm{a}_{\mathrm{F}}\left(\mu ; \mathrm{h}_{\mathrm{f}}\right) \mathrm{e}\left[\mathrm{R}\left(\mu, \mathrm{h}_{\infty}<\mathrm{z}_{\mathrm{o}}>\right)\right]\right) \mathrm{J}_{\mathrm{H}}\left(\mathrm{h}_{\infty}, \mathrm{z}_{\mathrm{o}}\right)^{-l}$ if $-\mu i$ and $\mathrm{h}_{\infty}<\mathrm{z}_{\mathrm{o}}>$ are in the same connected component of $D$ and equal to zero otherwise. Let $D_{ \pm}=\left\{\left.z=\left[\begin{array}{l}z^{\prime} \\ z^{\prime \prime}\end{array}\right] \in D \right\rvert\, \pm \operatorname{Im}\left(z^{\prime \prime}\right)>0\right\}$. We note that $z_{0} \in D_{+}$.

Lemma 6.1 Let $\mathrm{h} \in \mathrm{H}_{\infty}$ and assume that $\mathrm{h}<\mathrm{z}_{\mathrm{o}}>=\left[\begin{array}{c}\mathrm{z}^{\prime} \\ \mathrm{z}^{\prime \prime}\end{array}\right] \in \mathrm{D}_{+}$. Then we have

$$
\begin{aligned}
& \left.\int_{\mathbf{R}^{\times}} W_{F, \varphi}\left[\begin{array}{lll}
\mathrm{t} & & \\
& 1_{\mathrm{m}-1} & \\
& & \mathrm{t}^{-1}
\end{array}\right] \mathrm{h}\right) \left\lvert\, \mathrm{t}_{\infty}^{\mathrm{s}_{\infty} \mathrm{o}^{-\frac{\mathrm{m}-1}{2}} \mathrm{~d}^{\times} \mathrm{t}}\right. \\
& =\mathrm{e}^{2 \pi} \mathrm{~W}_{\mathrm{F}, \varphi}(1) \cdot \Gamma\left(\mathrm{s}_{\mathrm{o}}+l-\frac{\mathrm{m}-1}{2}\right)\left(-2 \pi i z^{\prime \prime}\right)^{-\left(\mathrm{s}_{0}+l-\frac{\mathrm{m}-1}{2}\right)} \cdot \mathrm{J}_{\mathrm{H}}\left(\mathrm{~h}, \mathrm{z}_{\mathrm{o}}\right)^{-l}
\end{aligned}
$$

Proof. Let $t \in \mathbf{R}^{\times}$. By definition (5.2) of $W_{F, \varphi}$ and the above remark, we have
(6.1)

$$
\begin{aligned}
& W_{F, \varphi}\left(\left[\begin{array}{llll}
\mathrm{t} & & & \\
& 1_{\mathrm{m}-1} & \\
& & \mathrm{t}^{-1}
\end{array}\right] \mathrm{h}\right) \\
& =\delta(t>0) \quad \int_{G_{o, Q} \backslash G_{0, A}} a_{F}\left(-\xi_{0} ;\left[\begin{array}{lll}
1 & & \\
& g_{o, f} & \\
& & 1
\end{array}\right]\right) e\left[R\left(-\xi_{0},\left[\begin{array}{lll}
t & & \\
& g_{0, \infty} & \\
& & t^{-1}
\end{array}\right] h<z_{0}>\right)\right] \\
& \left.\times J_{\mathbf{H}}\left(\begin{array}{lll}
\mathrm{t} & & \\
& \mathrm{~g}_{0, \infty} & \\
& & \mathrm{t}^{-1}
\end{array}\right] \mathrm{h}, \mathrm{z}_{\mathrm{o}}\right)^{-l} \varphi\left(\mathrm{~g}_{\mathrm{o}}\right) \mathrm{dg}_{\mathrm{o}} \\
& =\delta(t>0) t^{l} J_{H}\left(h, z_{0}\right)^{-l} e\left[t z^{\prime \prime}\right] \int_{G_{0,0} \backslash G_{0, A}} a_{F}\left(-\xi_{0} ;\left[\begin{array}{lll}
1 & & \\
& g_{0, f} & \\
& & 1
\end{array}\right]\right) \varphi\left(g_{0}\right) d g_{0},
\end{aligned}
$$

where $\delta(\mathrm{t}>0)$ is equal to one if $\mathrm{t}>0$ and equal to zero otherwise. Note that $\left[\begin{array}{llll}t & & \\ & g_{0, \infty} & \\ & & t^{-1}\end{array}\right] h<z_{0}>\in D_{+}$if and only if $t>0$. Setting $t=1$ and $h=1$ in (6.1), we
get

$$
\int_{G_{0, Q} \backslash G_{o, A}} a_{F}\left(-\xi_{0} ;\left[\begin{array}{lll}
1 & & \\
& g_{0, f} & \\
& & 1
\end{array}\right]\right) \varphi\left(g_{0}\right) \mathrm{dg}_{0}=\mathrm{e}^{2 \pi} \mathrm{~W}_{\mathrm{F}, \varphi}(1)
$$

and hence

$$
\mathrm{W}_{\mathrm{F}, \varphi}\left(\left[\begin{array}{cccc}
\mathrm{t} & & & \\
& 1_{\mathrm{m}-1} & \\
& & \mathrm{t}^{-1}
\end{array}\right] \mathrm{h}\right)=\delta(\mathrm{t}>0) \cdot \mathrm{e}^{2 \pi} \mathrm{~W}_{\mathrm{F}, \varphi}(1) \cdot \mathrm{t}^{l} \mathrm{~J}_{\mathrm{H}}\left(\mathrm{~h}, \mathrm{z}_{\mathrm{o}}\right)^{-l} \mathrm{e}\left[\mathrm{t} \mathrm{z}^{\prime \prime}\right]
$$

The lemma is an immediate consequence of the above equality. q.e.d.
6.2 Let $H_{\infty}^{+}=\left\{h \in H_{\infty} \mid h<z_{0}>\in D_{+}\right\}$and $P_{\infty}^{+}=\left\{\left.n_{G}(x)\left[\begin{array}{ll}t & \\ & g_{0} \\ & t^{-1}\end{array}\right] \in P_{\infty} \right\rvert\, t>0\right\}$. Then $\mathrm{t}_{\mathbf{0}}\left(\mathrm{P}_{\infty}^{+}\right) \subset \mathrm{H}_{\infty}^{+}$. Lemma 6.1 implies that $\mathrm{d}_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{s}_{\mathrm{o}}\right)$ is equal to

$$
\begin{aligned}
& \left.\mathrm{e}^{2 \pi} \mathrm{~W}_{\mathrm{F}, \varphi}(1) \Gamma\left(\mathrm{s}_{\mathrm{o}}+l-\frac{\mathrm{m}-1}{2}\right) \cdot \int_{l\left(\mathrm{P}_{\infty}^{+}\right)}\right) \mathrm{H}_{\infty}^{+} \\
& \quad\left(-2 \pi i z^{\prime \prime}\right)^{-\left(\mathrm{s}_{0}+l-\frac{\mathrm{m}-1}{2}\right)} \\
& \quad \times \mathrm{J}_{\left.\mathrm{H}^{(h}, \mathrm{z}_{0}\right)^{-l} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h})_{\infty}, \mathrm{Z}_{0}\right)^{l}\left|\alpha_{0}(\mathrm{~h})\right|^{\mathrm{s}^{+}+\frac{\mathrm{m}-3}{2}}|\alpha(\mathrm{~h})|^{\mathrm{s}+\frac{\mathrm{m}-1}{2}} \mathrm{dh},} .
\end{aligned}
$$

where $h<z_{0}>=\left[\begin{array}{l}z^{\prime} \\ z^{\prime \prime}\end{array}\right]$. By Lemma 2.2 (ii), we see that $J_{G_{1}}\left(k_{1}(h)_{\infty}, Z_{o}\right)=$ $\alpha(\mathrm{h}) \cdot \mathrm{J}_{\mathrm{G}_{1}}\left(\mathrm{l}(\mathrm{h}), \mathrm{Z}_{\mathrm{o}}\right)=\left(-i \mathrm{z}^{\prime \prime}\right) \alpha(\mathrm{h}) \mathrm{J}_{\mathrm{H}}\left(\mathrm{h}, \mathrm{z}_{\mathrm{o}}\right)$. Thus we get

$$
\begin{equation*}
\mathrm{d}_{\infty}\left(\mathrm{F}, \varphi ; \mathrm{s}, \mathrm{~s}_{\mathrm{o}}\right)=\mathrm{e}^{2 \pi} \mathrm{~W}_{\mathrm{F}, \varphi}(1) \Gamma\left(\mathrm{s}_{\mathrm{o}}+l-\frac{\mathrm{m}-1}{2}\right)(2 \pi)^{-\left(\mathrm{s}_{\mathrm{o}}+l-\frac{\mathrm{m}-1}{2}\right)} \cdot \mathrm{I}\left(\mathrm{~s}, \mathrm{~s}_{\mathrm{o}}\right) \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{I}\left(\mathrm{~s}, \mathrm{~s}_{\mathrm{o}}\right)=\int_{\mathrm{t}_{0}\left(\mathrm{P}_{\infty}^{+}\right) \mathrm{H}_{\infty}^{+}}\left(-i z^{\prime \prime}\right)^{-\left(\mathrm{s}_{0}-\frac{\mathrm{m}-1}{2}\right)}\left|\alpha_{0}(\mathrm{~h})\right|^{\mathrm{s}_{0}+\frac{\mathrm{m}-3}{2}}|\alpha(\mathrm{~h})|^{s+l+\frac{\mathrm{m}-1}{2}} \mathrm{dh} . \tag{6.3}
\end{equation*}
$$

Lemma 6.2 For $\mathrm{h} \in \mathrm{H}_{\infty}^{+}$, we have

$$
\alpha(h)=\left|z^{\prime \prime}\right|^{-1}\left|J_{H}\left(h, z_{\mathrm{o}}\right)\right|^{-1}, \quad \alpha_{0}(h)=\left|z^{\prime \prime}\right| \cdot\left|J_{H}\left(h, z_{0}\right)\right|^{-1} \cdot\left(\operatorname{lm} z^{\prime \prime}\right)^{-1}
$$

where $\mathrm{z}=\left[\begin{array}{l}\mathrm{z}^{\prime} \\ \mathrm{z}^{\prime \prime}\end{array}\right]=\mathrm{h}<\mathrm{z}_{\mathrm{o}}>\in \mathrm{D}_{+}$.
Proof. The first formula follows from $\left|\mathrm{J}_{\mathrm{G}_{1}}\left(\mathrm{~L}(\mathrm{~h}), \mathrm{Z}_{\mathrm{o}}\right)\right|=\alpha(\mathrm{h})^{-1}$ and Lemma 2.2 (ii).
By Lemma 2.3, we have $\left(\mathrm{l}(\mathrm{h})<\mathrm{Z}_{0}>\right)^{\sim}=(\rho(\mathrm{z}))^{\sim}=\left[\begin{array}{c}* \\ z^{\prime \prime-1} \\ 1\end{array}\right]$. On the other hand, we have

$$
\left(\mathrm{l}(\mathrm{~h})<\mathrm{Z}_{\mathrm{o}}>\right)^{\sim}=\mathrm{J}_{\mathrm{G}_{1}}\left(\mathrm{l}(\mathrm{~h}), \mathrm{Z}_{\mathrm{o}}\right)^{-1} \mathrm{l}(\mathrm{~h}) \mathrm{Z}_{\mathrm{o}}^{\sim}
$$

$$
\begin{aligned}
& =J_{G_{1}}\left(\mathrm{l}(\mathrm{~h}), \mathrm{Z}_{0}\right)^{-1} \mathrm{~J}_{\mathrm{G}_{1}}\left(\mathrm{k}_{1}(\mathrm{~h}), \mathrm{Z}_{\mathrm{o}}\right)\left[\begin{array}{ccccc}
\alpha(\mathrm{h}) & * & * & * & * \\
0 & \alpha_{0}(\mathrm{~h}) & * & * & * \\
0 & 0 & \beta_{0}(\mathrm{~h}) & * & * \\
0 & 0 & 0 & \alpha_{0}(\mathrm{~h})^{-1} & \gamma(\mathrm{~h}) \\
0 & 0 & 0 & 0 & \alpha(\mathrm{~h})^{-1}
\end{array}\right]\left[\begin{array}{c}
-\mathrm{a}-\mathrm{Q}\left[\lambda_{0}\right] \\
2^{-1} \Delta i \\
\lambda_{0} \\
-i \\
1
\end{array}\right] \\
& =\alpha(\mathrm{h}) \cdot\left[\begin{array}{c}
* \\
-i \alpha_{0}(\mathrm{~h})^{-1}+\gamma(\mathrm{h}) \\
\alpha(\mathrm{h})^{-1}
\end{array}\right]
\end{aligned}
$$

with some $\gamma(\mathrm{h}) \in \mathbf{R}$. This implies that $\mathrm{z}^{\prime \prime-1}=-i \alpha_{0}(\mathrm{~h})^{-1} \alpha(\mathrm{~h})+\alpha(\mathrm{h}) \gamma(\mathrm{h})$ and hence that $\frac{\operatorname{Im}\left(z^{\prime \prime}\right)}{\left|z^{\prime \prime}\right|^{2}}=\alpha_{0}(h)^{-1} \alpha(h)$. We are done. q.e.d.

Let $\mathrm{G}_{\mathrm{o}, \infty}^{+}$and $\mathrm{H}_{0, \infty}^{+}$be the identity components of $\mathrm{G}_{\mathrm{o}, \infty}$ and $\mathrm{H}_{0, \infty}$. Since $\mathrm{l}_{\mathrm{o}}\left(\mathrm{P}_{\infty}^{+}\right) \backslash \mathrm{H}_{\infty}^{+} / \mathrm{U}_{\infty}=\left\{\left.\mathrm{n}_{\mathrm{H}}\left(\left[\begin{array}{c}0 \\ \mathrm{~m}-2 \\ \mathrm{v}\end{array}\right]\right) \cdot\left[\begin{array}{lll}1 & & \\ & \mathrm{~h}_{0} & \\ & & 1\end{array}\right] \right\rvert\, \mathrm{v} \in \mathbf{R}, \mathrm{h}_{\mathrm{o}} \in \mathrm{G}_{\mathrm{o}, \infty}^{+} \backslash \mathrm{H}_{\mathrm{o}, \infty}^{+}\right\}$and $J_{H}\left(n_{H}\left(\left[\begin{array}{c}0_{m-2} \\ v\end{array}\right]\right) \cdot\left[\begin{array}{lll}1 & & \\ & h_{0} & \\ & & 1\end{array}\right], z_{0}\right)=1$, we get

$$
\mathrm{I}\left(\mathrm{~s}, \mathrm{~s}_{\mathrm{o}}\right)=\int_{\mathbf{R}} \mathrm{dv} \int_{\mathrm{H}_{\mathrm{o}, \infty}^{+}} \mathrm{dh}_{0}\left(-i \mathrm{z}^{\prime \prime}\right)^{-\left(\mathrm{s}_{0}-\frac{\mathrm{m}-1}{2}\right)}\left|\mathrm{z}^{\prime \prime}\right|^{-\left(\mathrm{s}-\mathrm{s}_{0}+l+1\right)}\left(\operatorname{Im~z} \mathrm{z}^{\prime \prime}\right)^{-\left(\mathrm{s}_{0}+\frac{\mathrm{m}-3}{2}\right)}
$$

Here $z=\left[\begin{array}{l}z^{\prime} \\ z^{\prime \prime}\end{array}\right]=n_{H}\left(\left[\begin{array}{c}0_{m-2} \\ v\end{array}\right]\right)\left[\begin{array}{cc}1 & \\ & h_{o} \\ & \\ & \\ & \end{array}\right]\left\langle z_{0}\right\rangle$ and $d h_{o}$ is the Haar measure on $H_{o, \infty}^{+}$ (its normalization will be given in $\S 6.3$ ). Note that $z^{\prime \prime}$ is, as a function of $h_{0}$, left $\mathrm{G}_{\mathrm{o}, \infty}^{+}$-invariant. It is easy to see that $\mathrm{z}^{\prime \prime}=i \cdot \mathrm{~A}\left(\mathrm{~h}_{\mathrm{o}}\right)+\mathrm{v}$, where $\mathrm{A}\left(\mathrm{h}_{\mathrm{o}}\right)>0$ is the $(\mathrm{m}-1)-$ th component of $h_{o}\left[\begin{array}{c}\lambda_{0} \\ 1\end{array}\right]$. By a straightforward calculation, we obtain
(6.4) $\mathrm{I}\left(\mathrm{s}, \mathrm{s}_{0}\right)=\pi \cdot 2^{-\left(\mathrm{s}+l-\frac{\mathrm{m}+1}{2}\right)} \frac{\Gamma\left(\mathrm{s}+l-\frac{\mathrm{m}-1}{2}\right)}{\Gamma\left(\frac{\mathrm{s}+\mathrm{s}_{0}+l-\mathrm{m}+2}{2}\right) \Gamma\left(\frac{\mathrm{s}-\mathrm{s}_{\mathrm{o}}+l+1}{2}\right)}$

$$
\times \int_{G_{0, \infty}^{+}\left(H_{0, \infty}^{+}\right.} A\left(h_{0}\right)^{-\left(s+s_{0}+l-1\right)} d h_{0} .
$$

6.3 To normalize the Haar measure $\mathrm{dh}_{\mathrm{o}}$ on $\mathrm{H}_{\mathrm{o}, \infty}^{+}$, we consider a symmetric space on which $H_{o, \infty}^{+}$acts. For $x \in \mathbf{R}^{m-2}$, put $x^{\sim}=\left[\begin{array}{l}x \\ 1\end{array}\right] \in \mathbf{R}^{m-1}$. Let $D_{o}=\left\{x \in \mathbf{R}^{m-2} \mid\right.$ $\left.R\left[x^{\sim}\right]<0\right\}$. We see $\lambda_{0} \in D_{0}$. For $h_{0} \in H_{0, \infty}^{+}$, we define the action $x \rightarrow h_{0}<x>$ on $D_{0}$ and the automorphic factor $J_{0}\left(h_{0}, x\right) \in C^{x}$ by $h_{0} \cdot x^{\sim}=J_{0}\left(h_{0}, x\right)\left(h_{0}<x>\right)^{\sim}$. The action of $H_{0, \infty}^{+}$on $D_{0}$ is transitive and the isotropy subgroup of $\lambda_{0}$ in $H_{0, \infty}^{+}$is $G_{0, \infty}^{+}$. For $x \in D_{0}$, put

$$
\begin{equation*}
\mathrm{r}(\mathrm{x})=-\Delta^{-1} \mathrm{R}\left[\mathrm{x}^{\sim}\right]=\frac{\Delta-\mathrm{Q}\left[\mathrm{x}-\lambda_{0}\right]}{\Delta} \tag{6.5}
\end{equation*}
$$

(recall that $\Delta=\mathrm{Q}\left[\lambda_{\mathrm{o}}\right]+2 \mathrm{a}>0$ ). We see that $0<\mathrm{r}(\mathrm{x}) \leq 1$ and $\mathrm{r}\left(\lambda_{\mathrm{o}}\right)=1$. Moreover we have $r\left(h_{0}\langle x\rangle\right)=J_{0}\left(h_{0}, x\right)^{-2} r(x)$ for $h_{o} \in H_{o, \infty}^{+}$and $x \in D_{0}$. It follows that

$$
\begin{equation*}
A\left(h_{0}\right)=J_{0}\left(h_{0}, \lambda_{0}\right)=r\left(h_{0}<\lambda_{0}>\right)^{-1 / 2} \quad\left(h_{0} \in H_{0, \infty}^{+}\right) . \tag{6.6}
\end{equation*}
$$

Define the invariant measure on $D_{0}$ by $d \mu(x)=r(x)^{-\frac{m-1}{2}} d x_{1} \cdots d x_{m-2}$. We normalize the Haar measure $\mathrm{dh}_{\mathrm{o}}$ on $\mathrm{H}_{\mathrm{o}, \infty}^{+}$by

$$
\begin{equation*}
\int_{\mathrm{H}_{0, \infty}^{+}} \mathrm{f}\left(\mathrm{~h}_{0}\right) \mathrm{dh}_{0}=\int_{D_{0}}\left(\int_{G_{0, \infty}^{+}} f\left(h_{0} g_{0}\right) d g_{0}\right) d\left(h_{0}<\lambda_{0}>\right) \quad\left(f \in C_{c}^{\infty}\left(H_{0, \infty}^{+}\right)\right) \tag{6.7}
\end{equation*}
$$

where $\mathrm{dg}_{\mathrm{o}}$ is the Haar measure on $\mathrm{G}_{\mathrm{o}, \infty}^{+}$with total volume one.
6.4 We now complete the calculation of $I\left(s, s_{0}\right)$, from which Theorem 3.2 follows (see (6.2)).

Lemma 6.3 We have

$$
\begin{equation*}
\int_{\mathrm{H}_{\mathrm{o}, \infty}^{+}} \mathrm{A}\left(\mathrm{~h}_{0}\right)^{-\mathrm{s}} \mathrm{dh}_{\mathrm{o}}=\Delta^{(\mathrm{m}-2) / 2}(\operatorname{det} \mathrm{Q})^{-1 / 2} \pi^{(\mathrm{m}-2) / 2} \frac{\Gamma\left(\frac{\mathrm{~s}-\mathrm{m}+3}{2}\right)}{\Gamma\left(\frac{\mathrm{s}+1}{2}\right)} . \tag{6.8}
\end{equation*}
$$

Proof. By (6.6), the left hand side of (6.8) equals

$$
\begin{aligned}
& \int_{D_{0}} r(x)^{s / 2} d \mu(x)= \\
&=\Delta_{Q\left[x-\lambda_{0}\right]<\Delta} r(x)^{(s-m+1) / 2} d x_{1} \cdots d x_{m-2} \\
&= \Delta^{(m-2) / 2}(\operatorname{det} Q)^{-1 / 2}(1-Q[x])^{(s-m+1) / 2} d x_{1} \cdots d x_{m-2} \\
& \int_{x_{1}^{2}+\cdots+x_{m-2}^{2}<1}\left(1-x_{1}^{2}-\cdots-x_{m-2}^{2}\right)^{(s-m+1) / 2} d x_{1} \cdots d x_{m-2}
\end{aligned}
$$

which is equal to the right hand side of (6.8) by a well-known formula. q.e.d.

The following result follows from (6.4) and the previous lemma.

Proposition 6.4 We have

$$
\mathrm{I}\left(\mathrm{~s}, \mathrm{~s}_{\mathrm{o}}\right)=(\operatorname{det} \mathrm{Q})^{-1 / 2} \Delta^{(\mathrm{m}-2) / 2} 2^{-(\mathrm{s}+l-(\mathrm{m}+1) / 2)} \pi^{\mathrm{m} / 2} \frac{\Gamma\left(\mathrm{~s}+l-\frac{\mathrm{m}-1}{2}\right)}{\Gamma\left(\frac{\mathrm{s}+\mathrm{s}_{0}+l}{2}\right) \Gamma\left(\frac{\mathrm{s}-\mathrm{s}_{0}+l+1}{2}\right)} .
$$

## Reference

[BJ] Borel, A. and H. Jacquet: Automorphic forms and automorphic representations, Proc. Symp. Pure Math. 33 (1979), part I, 189-202
[La] Langlands, R.: Functional equations satisfied by Eisenstein series, Springer Lecture Notes in Mathematics. 544 (1976)
[MS1] Murase, A. and T. Sugano: Shintani functions and its application to automorphic L-functions for classical groups: I. The case of orthogonal groups, MPI preprint series (1991)
[MS2] Murase, A. and T. Sugano: Shintani functions and its application to automorphic L-functions for classical groups: III. Pullback of Eisenstein series on $\mathrm{GSp}_{2}$ to Hilbert modular groups, preprint (1991)
[Sa] Satake, I.: Theory of spherical functions on reductive algebraic groups over padic fields, I.H.E.S. Publ. Math. 18 (1963), 5-69
[Su] Sugano, T.: On Dirichlet series attached to holomorphic cusp forms on $\operatorname{SO}(2, q)$, Advanced Studies in Pure Math. 7 (1985), 333-362

Atsushi Murase:
Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, D-5300 Bonn 3, Federal Republic of Germany
and
Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kyoto 606, Japan

Takashi Sugano:
Faculty of Science, Hiroshima University, 1-3-1 Kagamiyama
724 Higashi-hiroshima, Japan

