Shintani Function and Its application to Automorphic L-Functions for Classical Groups

II. Rankin-Selberg Convolution of Two Variables for O(m,2)

Atsushi Murase and Takashi Sugano

Atsushi Murase

Takashi Sugano

MaxPlanck Institut für Mathematik Gottfried-Claren-Straße 26 5300 Bonn 3 Federal Republic of Germany

and

Department of Mathematics Faculty of Science Kyoto Sangyo University Motoyama, Kamigamo Kyoto 603 Japan Department of Mathematics Faculty of Science, Hiroshima University 1-3-1 Kagamiyama Higashi-hiroshima 724, Japan

.

Shintani Function and Its Application to Automorphic L-functions

II. Rankin-Selberg Convolution of Two Variables for O(m,2)

by Atsushi Murase and Takashi Sugano

Introduction

This paper is concerned with a certain Rankin-Selberg convolution of *two* variables for a cusp form F on an orthogonal group of signature (m - 1, 2). The main object is to show that the convolution splits into a product of two standard L-functions attached to F.

To be more precise, let H = O(m - 1, 2) be an orthogonal group suitably embedded in $G_1 = O(m, 2)$ (cf. §2.1). Let B_1 be a Q-minimal parabolic subgroup of G_1 . Then its Levi component is isomorphic to $GL_1 \times GL_1 \times G_0$, where $G_0 = O(m - 2)$ is a definite orthogonal group. For an automorphic form φ on G_0 , we can attach an Eisenstein series $E(*, \varphi; s, s_0)$ of two variables s and s_0 on G_1 with respect to B_1 . Let F be a cusp form on H and suppose that F and φ are Hecke eigenforms. The convolution we study in this paper is defined by

$$\Xi_{F,\varphi}(s, s_o) = \int_{H_Q \setminus H_A} F(h) \mathbb{E}(h, \varphi; s, s_o) dh.$$

The main result (Theorem 3.1) asserts that, under certain assumptions on orthogonal groups, the integral $\Xi_{F,\phi}(s, s_o)$ decomposes into a product of an Euler product $\frac{L(F; s) L(F; s_o)}{L(\phi; s + \frac{1}{2}) L(\phi; s_o + \frac{1}{2})}$ and a local factor at infinity. Here L(F; s) and L(ϕ ; s)

denote the standard L-functions associated with F and φ . The local factor at infinity can be explicitly calculated if F is holomorphic (Theorem 3.2).

To prove the results, we employ two main ingredients; Shintani functions (§4.3) and generalized Whittaker functions (§5.1). They have been introduced and studied in [MS1] and [Su] respectively, where we proved certain formulas relating certain integrals of these functions to some Euler factors (see Proposition 4.1 and Proposition 5.1). These formulas are essential in the calculation of the local integrals.

We now explain a brief account of the paper. In §1, we review the definition of the standard L-functions for orthogonal groups. We introduce various orthogonal groups and their embeddings in §2. The main results of this paper is stated in §3 (Theorem 3.1 and Theorem 3.2). The next two sections are devoted to the proof of Theorem 3.1. In §4, we first recall the definition of Shintani functions. Using the basic identity proved in [MS1], we show that $\Xi_{F,\phi}(s, s_0)$ is a product of the quotient $L(F; s)/L(\phi; s+\frac{1}{2})$ of Lfunctions and a certain integral $\Lambda_{\infty}(F, \phi; s, s_0)$ at the infinite place. In §5, we prove that the integral $\Lambda_{\infty}(F, \phi; s, s_0)$ is expressed as a certain integral of generalized Whittaker function. By virtue of the result of [Su], we see that the integral is a product of $L(F; s_0)/L(\phi; s_0 + \frac{1}{2})$ and a local factor $d_{\infty}(F, \phi; s, s_0)$ that depends only on the data at the infinite place. Theorem 3.1 is proved by combining these results. In the final section, we calculate $d_{\infty}(F, \phi; s, s_0)$ in an explicit form in the case where F is holomorphic.

In the forthcoming paper ([MS2]), applying the above results to the case m = 3, we study the pullback of Eisenstein series on $PGSp_2$ (isogeneous to O(3, 2)) to a Hilbert modular group (isogeneous to O(2, 2)).

The first named author would like to express a deep gratitude to Max-Planck-Institut für Mathematik for its generous support and hospitality.

Notation

Let Q_v be the completion of Q at a prime v of Q and A be the adele ring of

Q. For a linear algebraic group X defined over Q, we denote by X_v (resp. X_A) the group of Q_v (resp. A) -rational points of X. For each prime v of Q, $||_v$ stands for the normalized valuation of Q_v given by $d(ax) = |a|_v dx$ ($a \in Q_v^x$), where dx is a Haar measure on Q_v . Let $|x|_A = \prod_v |x_v|_v$ be the norm of an idele $x = (x_v) \in A^x$. The finite part of A is denoted by A_f . We fix the additive character ψ of A trivial on Q so that $\psi(x_{\infty}) = e[x_{\infty}] := exp(2\pi i x_{\infty})$ for $x_{\infty} \in \mathbf{R}$.

For a symmetric matrix $A \in M_r$, we put $A(x, y) = {}^t xAy$ and $A[x] = {}^t xAx$ for r-column vectors x and y. We write 0_r for the zero column vector of size r.

§1. Review of the standard L-functions for orthogonal groups

Let $S \in M_m(\mathbb{Z})$ be a non-degenerate even integral symmetric matrix. Assume that S is maximal; namely, $L = \mathbb{Z}^m$ is a maximal \mathbb{Z} -lattice with respect to S. Let G = O(S) be the orthogonal group of S. By maximality of S, $K_p = G(\mathbb{Z}_p)$ is a maximal open compact subgroup of $G_p = G(\mathbb{Q}_p)$ for every p. Let $H(G_p, K_p)$ be the algebra of compactly supported bi- K_p invariant functions on G_p . Then the Hecke algebra $H(G_p, K_p)$ is isomorphic to the affine algebra $\mathbb{C}[X_1^{\pm 1}, \dots, X_{v_p}^{\pm 1}]^{W_{v_p}}$ via the Satake homomorphism, where v_p is the Witt index of S at p and W_{v_p} is the subgroup of the automorphism group of $\mathbb{C}[X_1^{\pm 1}, \dots, X_{v_p}^{\pm 1}]$ generated by the involutions $X_i \rightarrow X_i^{-1}$ and the permutations of the indeterminates X_1, \dots, X_{v_p} (see [Sa]). It follows that each C-algebra homomorphism λ_p of $H(G_p, K_p)$ to C determines the Satake parameter $(\alpha_1, \dots, \alpha_{v_p}) \in (\mathbb{C}^{\times})^{v_p}/W_{v_p}$.

To define an L-factor attached to λ_p , we introduce certain invariants of S at p. Let $L_p^* = S^{-1}L_p$ be the dual lattice of $L_p = Z_p^m$ with respect to S. Put $L_p' = \{x \in L_p^* | S[x] \in p^{-1}Z_p\}$. By maximality of S, L_p' is a Z_p -lattice containing L_p . We set $\partial_p(S) = \dim_{Z_p/p} Z_p L_p'/L_p$. It is known that $0 \le \partial_p(S) \le 2$ and that $\partial_p(S) = 0$ for almost all p(cf. [Su]). Let $n_{o,p} = m - 2v_p(S)$ be the dimension of the maximal anisotropic subspace of Q_p^m ($0 \le n_{o,p} \le 4$). We define the standard L-factor $L_p(\lambda_p; s)$ as follows:

(1.1)
$$L_{p}(\lambda_{p}; s) = A_{S,p}(s) \cdot \prod_{i=1}^{\nu_{p}} (1 - \alpha_{i}p^{-s})^{-1} (1 - \alpha_{i}^{-1}p^{-s})^{-1},$$

if $(n_{o,p}(S), \partial_p(S)) = (0, 0)$ or (1, 0)

$$1 + p^{1/2-s}$$
 (1, 1)

$$\begin{pmatrix} 1 & & & & \\ (1 + p^{1/2 - s}) & & & \\ (1 - p^{-2s})^{-1} & & & \\ (1 - p^{-2s})^{-1} & & & \\ (2 - 1) & & & \\ (2 - 1) & & \\ ($$

$$(1 - p^{-s})^{-1}$$
 (2, 1)

$$A_{S,p}(s) = \begin{cases} (1 - p^{-s})^{-1}(1 + p^{1-s}) \\ (2, 2) \end{cases}$$

$$(1 - p^{-1/2 - s})^{-1}$$
 (3, 1)

$$(1 - p^{-1/2-s})^{-1}(1 + p^{1/2-s})$$
 (3, 2)

$$(1 - p^{-s})^{-1}(1 - p^{-1-s})^{-1}$$
 (4, 2).

We denote by $M(K_f)$ the space of automorphic forms on G_A that are invariant under right $K_f = \prod_{p < \infty} K_p$ -translations (see [BJ]). By definition, $f \in M(K_f)$ is a smooth function on $G_Q \setminus G_A / K_f$ which satisfies the following conditions:

(1.2) The function f is $Z(\text{Lie}(G_{\infty})_{\mathbb{C}})$ -finite, where $Z(\text{Lie}(G_{\infty})_{\mathbb{C}})$ is the center of the universal enveloping algebra of the complexified Lie algebra $\operatorname{Lie}(G_{\infty})_{\mathbb{C}}$ of G_{∞} .

(1.3) For any
$$g_f \in G_{A_f}$$
, the function $g_{\infty} \to f(g_{\infty}g_f)$ is of moderate growth on G_{∞} .

The subspace of cusp forms in $M(K_f)$ is denoted by $S(K_f)$. The Hecke algebra $\bigotimes_{p<\infty}^{\prime} H(G_p, K_p)$ acts on $M(K_f)$ by convolution on the right:

$$f * \varphi(h) = \int_{G_{\mathbf{A}_{f}}} f(gx^{-1})\varphi(x)dx \quad (f \in M(K_{f}), \varphi \in \bigotimes_{p < \infty}' H(G_{p}, K_{p}), g \in G_{\mathbf{A}}).$$

We say that $f \in M(K_f)$ is a *Hecke eigenform* if, for each rational prime p, we have $f * \varphi_p = \lambda_{f,p}(\varphi_p) \cdot f$ for any $\varphi_p \in H(G_p, K_p)$ with $\lambda_{f,p} \in Hom_{\mathbb{C}}(H(G_p, K_p), \mathbb{C})$. The global standard L-function L(f; s) for a Hecke eigenform f is defined by the Euler product

(1.4)
$$L(f; s) = \prod_{p < \infty} L_p(\lambda_{f,p}; s).$$

§2. Embedding of orthogonal groups

2.1 Let Q be a non-degenerate even symmetric matrix of rank
$$m - 2 \ge 1$$
. Let $R = \begin{bmatrix} Q & -Q\lambda_0 \\ -t\lambda_0Q & -2a \end{bmatrix}$ with $\lambda_0 \in Q^{-1}Z^{m-2}$ and $a \in Z$, and put $\Delta = Q[\lambda_0] + 2a$. Let
 $S = \begin{bmatrix} Q & 1 \\ 1 & 0 \end{bmatrix}$, $T = \begin{bmatrix} R & 1 \\ 1 & 0 \end{bmatrix}$, $S_1 = \begin{bmatrix} S & 1 \\ 1 & 0 \end{bmatrix}$.

In what follows, we assume Q > 0 and $\Delta > 0$. Then the signatures of Q, R, S, T and S₁ are given by (m - 2, 0), (m - 2, 1), (m - 1, 1), (m - 1, 2) and (m, 2) respectively. We consider the orthogonal groups

$$\begin{split} &G_{o} = O(Q, V_{o}), V_{o} = \mathbf{Q}^{m-2}; H_{o} = O(R, W_{o}), W_{o} = \mathbf{Q}^{m-1}; \\ &G = O(S, V), V = \mathbf{Q}^{m}; \ H = O(T, W), W = \mathbf{Q}^{m+1}; \\ &G_{1} = O(S_{1}, V_{1}), V_{1} = \mathbf{Q}^{m+2}. \end{split}$$

Define embeddings $V \xrightarrow{j_0} W \xrightarrow{j} V_1$ of vector spaces by

$$j_{0} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ 0 \\ v_{3} \end{bmatrix}$$
 $(v_{1}, v_{3} \in \mathbf{Q}, v_{2} \in \mathbf{Q}^{m-2}),$ $j \begin{pmatrix} w_{1} \\ w_{2} \\ w_{3} \\ w_{4} \end{pmatrix} = \begin{bmatrix} -aw_{3} - \mathbf{Q}(\lambda_{0}, w_{2}) \\ w_{1} \\ w_{2} \\ w_{4} \\ w_{3} \end{bmatrix}$ $(w_{1}, w_{3}, w_{4} \in \mathbf{Q}, w_{2} \in \mathbf{Q}^{m-2})$

Then we have $T[j_0(v)] = S[v], S_1[j(w)] = T[w]$ for $v \in V, w \in W$. Moreover we see $j_0(V) \perp Q\xi$ and $j(W) \perp Q\eta$ with respect to T and S_1 respectively, where we put

$$\xi = \begin{bmatrix} 0 \\ \lambda_{0} \\ 1 \\ 0 \end{bmatrix} \Delta^{-1} \in W, \quad \eta = \begin{bmatrix} a \\ 0 \\ \lambda_{0} \\ 0 \\ 1 \end{bmatrix} \in V_{1}$$

We define the embeddings $G \xrightarrow{\iota_0} H \xrightarrow{\iota} G_1$ of orthogonal groups to be

$$\iota_{o}(g)(t\xi + j_{o}(v)) = t\xi + j_{o}(gv),$$
$$\iota(h)(t\eta + j(w)) = t\eta + j(hw)$$

for $t \in \mathbf{Q}$, $v \in V$, $w \in W$, $g \in G$ and $h \in H$. Then $\iota_0(G)$ (resp. $\iota(H)$) is the isotropy subgroup of ξ (resp. η) in H (resp. G_1). For $x \in \mathbf{Q}^{m-2}$ and $y \in \mathbf{Q}^{m-1}$, put $n_G(x) = \begin{bmatrix} 1 - t^* x \mathbf{Q} - 2^{-1} \mathbf{Q}[x] \\ 0 \mathbf{1}_{m-2} & x \\ 0 & 0 & 1 \end{bmatrix} \in G_{\mathbf{Q}}$ and $n_H(y) = \begin{bmatrix} 1 - t^* y \mathbf{R} - 2^{-1} \mathbf{R}[y] \\ 0 \mathbf{1}_{m-1} & y \\ 0 & 0 & 1 \end{bmatrix} \in H_{\mathbf{Q}}$. Then $P_{\mathbf{Q}} = \{n_G(x) \begin{bmatrix} t & 0 & 0 \\ 0 & g_0 & 0 \\ 0 & 0 & t^{-1} \end{bmatrix} | x \in \mathbf{Q}^{m-2}, t \in \mathbf{Q}^{\times}, g_0 \in G_{0,\mathbf{Q}}\}$ and $P_{H,\mathbf{Q}} = \{n_H(y) \begin{bmatrix} t & 0 & 0 \\ 0 & h_0 & 0 \\ 0 & 0 & t^{-1} \end{bmatrix} | y \in \mathbf{Q}^{m-1}, t \in \mathbf{Q}^{\times}, h_0 \in H_{0,\mathbf{Q}}\}$ are maximal **Q**-parabolic subgroups of G and H

respectively. The following is easily verified (cf. [MS1, §2]).

Lemma 2.1

(i) For
$$p = n_G(x) \begin{bmatrix} t & 0 & 0 \\ 0 & g_0 & 0 \\ 0 & 0 & t^{-1} \end{bmatrix} \in P$$
, we have

$$\iota_0(p) = n_H(\begin{bmatrix} x \\ 0 \end{bmatrix}) \times \begin{bmatrix} t & 0 & 0 & 0 \\ 0 & g_0 & (1-g_0)\lambda_0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & t^{-1} \end{bmatrix}.$$
(ii) $\iota(\iota_0(g)) = \begin{bmatrix} 1 & t_\lambda S(1-g) & t_\lambda S(g-1)\lambda \\ 0 & g & (1-g)\lambda \\ 0 & 0 & 1 \end{bmatrix}$, where $g \in G$ and $\lambda = \begin{bmatrix} 0 \\ \lambda_0 \\ 0 \end{bmatrix} \in V$

In what follows, we often regard G (resp. H) as a subgroup of H (resp. G_1) via ι_0 (resp. ι) and simply write g (resp. h) for $\iota_0(g)$ (resp. $\iota(h)$) if there is no fear of confusion.

2.2 We define symmetric domains D and D_1 of type (IV) as follows:

D = {z
$$\in \mathbb{C}^{m-1}$$
 | R[Im z] < 0}, D₁ = {Z $\in \mathbb{C}^m$ | S[Im Z] < 0}.

Note that both D and D_1 have two connected components. For $z \in D$ and $Z \in D_1$, put

$$z^{\sim} = \begin{bmatrix} -2^{-1}R[z] \\ z \\ 1 \end{bmatrix} \in W_{C}, \quad Z^{\sim} = \begin{bmatrix} -2^{-1}S[Z] \\ Z \\ 1 \end{bmatrix} \in V_{1,C}.$$

The action of H_{∞} (resp. $G_{1,\infty}$) on D (resp. D_1) and the automorphic factor J_H : $H_{\infty} \times D \rightarrow C^{\times}$ (resp. $J_{G_1} : G_{1,\infty} \times D_1 \rightarrow C^{\times}$) are defined to be

$$h \cdot z^{\sim} = (h < z >)^{\sim} J_{H}(h, z), g_{1} \cdot Z^{\sim} = (g_{1} < Z >)^{\sim} J_{G_{1}}(g_{1}, Z)$$

 $(h \in H_{\infty}, g_{1} \in G_{1,\infty}, z \in D, Z \in D_{1}). \text{ These actions are transitive and holomorphic.}$ Put $U_{\infty} = \{h \in H_{\infty} \mid h < z_{0} > = z_{0}\}$ and $K_{1,\infty} = \{g_{1} \in G_{1,\infty} \mid g_{1} < Z_{0} > = Z_{0}\}$ where $z_{0} = \begin{bmatrix} \lambda_{0} \\ \lambda_{0} \\ -i \end{bmatrix} \in D$ and $Z_{0} = \begin{bmatrix} 2^{-1}\Delta i \\ \lambda_{0} \\ -i \end{bmatrix} \in D_{1}$. We note that U_{∞} and $K_{1,\infty}$ are compact and

isomorphic to $O(m-1) \times SO(2)$ and $O(m) \times SO(2)$ respectively. Put $v_0 = \begin{bmatrix} -2^{-1}\Delta \\ 0_{m-2} \\ 1 \end{bmatrix} \in$

 $V_{\mathbf{R}}$. Since $S[v_0] = -\Delta < 0$, the subgroup $K_{\infty} = \{g \in G_{\infty} \mid gv_0 = v_0\}$ of G_{∞} is compact and isomorphic to O(m-1).

Lemma 2.2

(i) We have
$$\iota_0(K_{\infty}) \subset U_{\infty}^1 = \{u \in U_{\infty} \mid J_H(u, z_0) = 1\}.$$

(ii) For
$$h \in H_{\infty}$$
, we have $J_{G_1}(\iota(h), Z_0) = (-iz'') \cdot J_H(h, z_0)$ where $h < z_0 > = \begin{bmatrix} z' \\ z'' \end{bmatrix} \in D$ $(z' \in \mathbb{C}^{m-2}, z'' \in \mathbb{C}).$

(iii) We have $\iota(U_{\infty}) \subset K_{1,\infty}$ and $J_{G_1}(\iota(u), Z_0) = J_H(u, z_0)$ for $u \in U_{\infty}$.

Proof. Observe
$$z_{0}^{\sim} = \begin{bmatrix} -2^{-1}\Delta \\ \lambda_{0}i \\ i \\ 1 \end{bmatrix} = j_{0}(v_{0}) + \xi \cdot \Delta i$$
. Then, for $k \in K_{\infty}$, we have $\iota_{0}(k)z_{0}^{\sim}$

= $j_0(kv_0) + \xi \cdot \Delta i = j_0(v_0) + \xi \cdot \Delta i = z_0^{\sim}$, which implies (i). The remaining parts follow

from the observation that
$$Z_{\tilde{o}} = \begin{bmatrix} -a - Q[\lambda_{o}] \\ 2^{-1}\Delta i \\ \lambda_{o} \\ -i \\ 1 \end{bmatrix} = j(z_{\tilde{o}}) \cdot (-i). \quad q.e.d.$$

2.3 We define a holomorphic embedding $\rho: D \rightarrow D_1$ by

$$\rho(z) = \begin{bmatrix} -\frac{1}{2} z''^{-1} Q[z'] + Q(\lambda_0, z') + az'' \\ z''^{-1} z' \\ z''^{-1} \end{bmatrix} = z''^{-1} \begin{bmatrix} -2^{-1} R[z] \\ z' \\ 1 \end{bmatrix}$$

for $z = \begin{bmatrix} z' \\ z'' \end{bmatrix} \in D$ ($z' \in C^{m-2}$, $z'' \in C$). Note that $S[Im \rho(z)] = \frac{1}{|z''|^2} R[Im z]$ for $z \in C$

D and that $\rho(z_0) = Z_0$. The following is easily verified.

Lemma 2.3 Let
$$z = \begin{bmatrix} z' \\ z'' \end{bmatrix} \in D (z' \in C^{m-2}, z'' \in C).$$

(i) We have
$$j(z^{\sim}) = \rho(z)^{\sim} \cdot z''$$
.

(ii) For
$$h \in H_{\infty}$$
, let $h < z > = \begin{bmatrix} z'_1 \\ z''_1 \end{bmatrix}$. Then we have
 $\iota(h) < \rho(z) > = \rho(h < z >)$, $J_{G_1}(\iota(h), \rho(z)) = z'^{-1} z''_1 \cdot J_H(h, z)$.

§3. Main results

3.1 From now on we assume that Q and R are maximal. Let $K_{o,p}$, K_p , U_p and $K_{1,p}$ be the groups of Z_p -rational points of G_o , G, H and G_1 , which are maximal open compact subgroups of $G_{o,p}$, G_p , H_p and $G_{1,p}$ respectively. Put $K_{o,f} = \prod_{p < \infty} K_{o,p}$. Define K_f , U_f and $G_{1,f}$ similarly. Throughout this paper, we assume that the condition

the condition

(3.1)
$$\partial_{\mathbf{p}}(\mathbf{Q}) = \partial_{\mathbf{p}}(\mathbf{R})$$

holds for every p. Under this assumption, we have

(3.2)
$$\iota_{o}(G_{p}) \cap U_{p} = \iota_{o}(K_{p}), \ \iota(H_{p}) \cap K_{1,p} = \iota(U_{p})$$

for every p (cf. [MS1, Proposition 3.7]).

3.2 Let $S(U_f)$ be the space of cusp forms on H_A invariant under right U_f translations (see §1). We fix an even positive integer l and denote by $S_l(U_f)$ the space of $F \in S(U_f)$ satisfying $F(hu_{\infty}) = F(h) J_H(u_{\infty}, z_0)^{-l}$ for $h \in H_A$ and $u_{\infty} \in U_{\infty}$. Put $K_o = G_{o,\infty}K_{o,f}$. Note that $G_{o,\infty}$ is compact and that $G_{o,Q} \setminus G_{o,A}/K_o$ is a finite set since Q is positive definite. Let $M(K_o)$ be the space of automorphic forms on $G_{o,A}$ invariant under right K_o -translations.

3.3 Let

$$B_{1,Q} = \left\{ \begin{bmatrix} t & * & * & * & * \\ 0 & t_o & * & * & * \\ 0 & 0 & g_o & * & * \\ 0 & 0 & 0 & t_o^{-1} & * \\ 0 & 0 & 0 & 0 & t^{-1} \end{bmatrix} \in G_{1,Q} \mid t, t_o \in Q^{\times}, g_o \in G_{o,Q} \right\}$$

be a Q-minimal parabolic subgroup of G_1 . Then each $g_1 \in G_{1,A}$ is decomposed into $b_1(g_1) k_1(g_1)$ with

$$\mathbf{b}_{1}(\mathbf{g}_{1}) = \begin{bmatrix} \alpha(\mathbf{g}_{1}) & * & * & * & * & * \\ 0 & \alpha_{0}(\mathbf{g}_{1}) & * & * & * & * \\ 0 & 0 & \beta_{0}(\mathbf{g}_{1}) & * & * & * \\ 0 & 0 & 0 & \alpha_{0}(\mathbf{g}_{1})^{-1} & * \\ 0 & 0 & 0 & 0 & \alpha(\mathbf{g}_{1})^{-1} \end{bmatrix} \in \mathbf{B}_{1,\mathbf{A}} ,$$

 $\alpha(g_1), \alpha_0(g_1) \in A^{\times}, \beta_0(g_1) \in G_{0,A}$ and $k_1(g_1) = \prod_{v \leq \infty} k_1(g_1)_v \in K_1 = K_{1,\infty}K_{1,f}$. We can choose $\alpha(g_1)$ and $\alpha_0(g_1)$ so that $\alpha(g_1)_{\infty}, \alpha_0(g_1)_{\infty} > 0$. The Eisenstein series $\mathbb{E}(g_1, \varphi, l; s, s_0)$ attached to $\varphi \in M(K_0)$ with respect to B_1 is defined as follows:

(3.3)
$$\mathbb{E}(g_{1}, \varphi, l; s, s_{o}) = \sum_{\gamma_{1} \in B_{1,Q} \setminus G_{1,Q}} \varphi(\beta_{o}(\gamma_{1}g_{1})) |\alpha(\gamma_{1}g_{1})|_{A}^{s+m/2} |\alpha_{o}(\gamma_{1}g_{1})|_{A}^{s_{o}+(m-2)/2} \times J_{G_{1}}(k_{1}(\gamma_{1}g_{1})_{\infty}, Z_{o})^{l}$$

 $(g_1 \in G_{1,A}, (s, s_0) \in \mathbb{C}^2)$. Thanks to Langlands ([La]), the series (3.3) converges absolutely in the region $\{(s, s_0) \in \mathbb{C}^2 \mid \text{Re s} - \text{Re s}_0 > 1, \text{Re s} > \frac{m-2}{2}\}$ and can be continued to a meromorphic function of (s, s_0) on \mathbb{C}^2 .

3.4 Let $F \in S_l(U_f)$ and $\varphi \in M(K_o)$ be Hecke eigenforms and L(F; s) and $L(\varphi; s)$ be the corresponding standard L-functions (see §1). The object of this paper is to study the following Rankin-Selberg convolution of two variables:

(3.4)
$$\Xi_{F,\phi}(s, s_o) = \int_{H_Q \setminus H_A} F(h) E(\iota(h), \phi; s - \frac{1}{2}, s_o - \frac{1}{2}) dh.$$

The integral (3.4) can be continued to a meromorphic function of (s, s_0) on \mathbb{C}^2 . The main result of this paper is stated as follows.

Theorem 3.1 Let $F \in S_{f}(U_{f})$ and $\varphi \in M(K_{o})$ be Hecke eigenforms. Assume that Q and R are maximal and that the condition (3.1) is satisfied. Then we have

$$\Xi_{F,\phi}(s, s_0) = \frac{L(F; s) L(F; s_0)}{L(\phi; s + \frac{1}{2}) L(\phi; s_0 + \frac{1}{2})} \times \zeta(s + s_0)^{-1} \zeta(s - s_0 + 1)^{-1} \times \begin{cases} 1 & \text{if m is even} \\ \zeta(2s)^{-1} \zeta(2s_0)^{-1} & \text{if m is odd} \end{cases}$$

 $\times d_{\infty}(F, \varphi; s, s_{o}).$

Here the local factor at infinity $d_{\infty}(F,\phi;s,s_{0})$ is given by the integral

$$\int_{t_{0}(P_{\infty})\setminus H_{\infty}} dh \int_{\mathbf{R}^{\star}} dt^{\star} W_{F,\varphi} \left(\begin{bmatrix} t & 1 \\ & 1_{m-1} \\ & t^{-1} \end{bmatrix} h \right) |t|^{s_{0} - \frac{m-1}{2}} |\alpha_{0}(h)|^{s_{0} + \frac{m-3}{2}} |\alpha(h)|^{s + \frac{m-1}{2}} J_{G_{1}}(k_{1}(h)_{\infty}, Z_{0})^{l},$$

where $W_{F,\phi}$ is a generalized Whittaker function associated with F, ϕ (for the precise definition, see §5.1).

Remark. The local factor $d_{\infty}(F, \varphi; s, s_0)$ depends only on l and $W_{F,\varphi}|_{H_{\infty}}$.

3.5 Let $S_l^{hol}(U_f)$ be the space of holomorphic cusp forms on H of weight *l*. By definition, $F \in S_l^{hol}(U_f)$ is an element of $S_l(U_f)$ such that, for every $h_f \in H(A_f)$, the function $F(z; h_f) := F(h_{\infty}h_f) J_H(h_{\infty}, z_0)^l$ is holomorphic in $z = h_{\infty} < z_0 > \in D$. We can calculate $d_{\infty}(F, \varphi; s, s_0)$ explicitly in the case where $F \in S_l^{hol}(U_f)$.

Theorem 3.2 Assume $F \in S_l^{hol}(U_f)$. Then we have

$$d_{\infty}(F, \varphi; s, s_{0}) = c \cdot W_{F,\varphi}(1) \cdot 2^{-(s+s_{0})} \pi^{-s_{0}} \times \frac{\Gamma(s+l-\frac{m-1}{2}) \Gamma(s_{0}+l-\frac{m-1}{2})}{\Gamma(\frac{s+s_{0}+l}{2}) \Gamma(\frac{s-s_{0}+l+1}{2})}$$

where $c = e^{2\pi} \Delta^{\frac{m-2}{2}} (\det Q)^{-\frac{1}{2}} 2^{-(2l-m)} \pi^{-(l-m+\frac{1}{2})}$

§4. Shintani functions and the basic identity

4.1 Let M(K) be the space of automorphic forms on G_A invariant under right K = $K_{\infty}K_f$ -translations (see §1). The Shintani function associated with $F \in S_f(U_f)$ and $f \in M(K)$ is given by

(4.1)
$$\omega_{\mathbf{F},\mathbf{f}}(\mathbf{h}) = \int_{\mathbf{G}_{\mathbf{Q}}\backslash\mathbf{G}_{\mathbf{A}}} \mathbf{F}(\mathbf{g}\mathbf{h}) \, \mathbf{f}(\mathbf{g}) \, d\mathbf{g} \qquad (\mathbf{h} \in \mathbf{H}_{\mathbf{A}}).$$

(cf. [MS1, §1]). Observe that $\omega_{F,f}$ is an eigen function under the action of $\bigotimes_{p<\infty}' H(H_p, U_p)$ on the right and that of $\bigotimes_{p<\infty}' H(G_p, K_p)$ on the left, if F and f are Hecke eigenforms. In [MS1, Theorem 1.6], we have proved

Proposition 4.1 Assume (3.1). Let $F \in S_{l}(U_{f})$ and $f \in M(K)$ be Hecke eigenforms. Then

$$\int_{\mathbf{G}_{\mathbf{A}_{f}} \setminus \mathbf{H}_{\mathbf{A}_{f}}} \omega_{\mathbf{F},\mathbf{f}}(\beta(\mathbf{h})^{-1}\mathbf{h}) |\alpha(\mathbf{h})|_{\mathbf{A}_{f}}^{\mathbf{s}+\frac{\mathbf{m}-1}{2}} d\mathbf{h} = \frac{\mathbf{L}(\mathbf{F}; \mathbf{s})}{\mathbf{L}(\mathbf{f}; \mathbf{s}+\frac{1}{2})} \times \begin{cases} 1 & \text{if } \mathbf{m} \text{ is even} \\ \zeta(2\mathbf{s})^{-1} & \text{if } \mathbf{m} \text{ is odd.} \end{cases}$$

4.2 Let $P_1 = \{ \begin{bmatrix} t & * & * \\ 0 & g & * \\ 0 & 0 & t^{-1} \end{bmatrix} \in G_1 \mid t \neq 0, g \in G \}$ be a maximal parabolic subgroup

of G_1 . Then each $g_1 \in G_{1,A}$ is decomposed into

$$\begin{bmatrix} \alpha(g_1) & * & * \\ 0 & \beta(g_1) & * \\ 0 & 0 & \alpha(g_1)^{-1} \end{bmatrix} k_1(g_1), \text{ where } \alpha(g_1) \in \mathbf{A}^{\times}, \beta(g_1) \in \mathbf{G}_{\mathbf{A}} \text{ and } k_1(g_1) \in \mathbf{K}_1 =$$

 $K_{1,\infty}K_{1,f}$. For $f \in M(K)$ and $l \in \mathbb{Z}_{\geq 0}$, we define the Eisenstein series on $G_{1,A}$ with respect to P_1 by

(4.2)
$$E(g_1, f, l; s) = \sum_{\gamma_1 \in P_{1,Q} \setminus G_{1,Q}} f(\beta(\gamma_1 g_1)) |\alpha(\gamma_1 g_1)|_A^{s+m/2} J_{G_1}(k_1(\gamma_1 g_1)_{\infty}, Z_0)^l.$$

The series (4.2) can be continued to a meromorphic function of s on C.

4.3 Let us consider the convolution

(4.3)
$$Z_{F,f}(s) = \int_{H_Q \setminus H_A} F(h) E(\iota(h), f, l; s - \frac{1}{2}) dh.$$

Proposition 4.2 (The basic identity) For $F \in S_{l}(U_{f})$ and $f \in M(K)$, we have

(4.4)
$$Z_{F,f}(s) = \int_{G_A \setminus H_A} \omega_{F,f}(\beta(h)^{-1}h) |\alpha(h)|_A^{s+\frac{m-1}{2}} J_{G_1}(k_1(h)_{\infty}, Z_0)^l dh.$$

Proof. While this result has been already mentioned in [MS1, §1.8, Remark], we give a sketch of proof for completeness. First observe the following facts (cf. [MS1, §2]):

(a) $G_1 = P_1 \cdot \iota(H) \cup P_1 \cdot \Upsilon_o \cdot \iota(H)$ (disjoint union),

where
$$\Upsilon_{o} = \begin{bmatrix} 1 \\ 1_{m} \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -{}^{t}X_{o}S & -2^{-1}S[X_{o}] \\ 0 & 1_{m} & X_{o} \\ 0 & 0 & 1 \end{bmatrix} \in G_{1,Q}, X_{o} = \begin{bmatrix} a \\ 0_{m-2} \\ 1 \end{bmatrix} \in Q^{m}.$$

(b)
$$P_1 \cap \iota(H) = \iota(\iota_0(G)).$$

(c) $\Upsilon_0^{-1} P_1 \Upsilon_0 \cap \iota(H) = \iota(P'), \text{ where } P'_Q = \{h \in H_Q \mid h \cdot \begin{bmatrix} -a \\ 0_{m-2} \\ 1 \\ -1 \end{bmatrix} = t \cdot \begin{bmatrix} -a \\ 0_{m-2} \\ 1 \\ -1 \end{bmatrix}, t \in \mathbb{C}$

- Q^{\times} } is a maximal Q-parabolic subgroup of H.
- (d) $\Upsilon_{o} \cdot \iota(N') \cdot \Upsilon_{o}^{-1} \subset N_{1}$, where N' (resp. N₁) is the unipotent radical of P' (resp. P₁).

By (a), (b) and (c), we have

$$\begin{split} \mathsf{E}(\mathfrak{u}(\mathsf{h}),\,\mathsf{f},\,l;\,\mathsf{s}-\frac{1}{2}) &= \sum_{\gamma \in G_{\mathbf{Q}} \setminus \mathbf{H}_{\mathbf{Q}}} \mathsf{f}(\beta(\gamma\mathsf{h})) \left| \alpha(\gamma\mathsf{h}) \right|_{\mathbf{A}}^{\mathsf{s}+\frac{\mathsf{m}-1}{2}} \mathsf{J}_{\mathbf{G}_{1}}(\mathsf{k}_{1}(\gamma\mathsf{h})_{\infty},\,\mathsf{Z}_{0})^{l} \\ &+ \sum_{\gamma \in \mathbf{P}_{\mathbf{Q}}' \setminus \mathbf{H}_{\mathbf{Q}}} \mathsf{f}(\beta(\Upsilon_{0}\gamma\mathsf{h})) \left| \alpha(\Upsilon_{0}\gamma\mathsf{h}) \right|_{\mathbf{A}}^{\mathsf{s}+\frac{\mathsf{m}-1}{2}} \mathsf{J}_{\mathbf{G}_{1}}(\mathsf{k}_{1}(\Upsilon_{0}\gamma\mathsf{h})_{\infty},\,\mathsf{Z}_{0})^{l}. \end{split}$$

Then $Z_{F,f}(s)$ equals

$$\int_{G_{\mathbf{Q}}\setminus\mathbf{H}_{\mathbf{A}}} F(\mathbf{h}) f(\beta(\mathbf{h})) |\alpha(\mathbf{h})|_{\mathbf{A}}^{\mathbf{s}+\frac{\mathbf{m}-1}{2}} J_{G_{1}}(\mathbf{k}_{1}(\mathbf{h})_{\infty}, \mathbf{Z}_{0})^{l} d\mathbf{h}$$

+
$$\int_{\mathbf{P}_{\mathbf{Q}}'\setminus\mathbf{H}_{\mathbf{A}}} F(\mathbf{h}) f(\beta(\Upsilon_{0}\mathbf{h})) |\alpha(\Upsilon_{0}\mathbf{h})|_{\mathbf{A}}^{\mathbf{s}+\frac{\mathbf{m}-1}{2}} J_{G_{1}}(\mathbf{k}_{1}(\Upsilon_{0}\mathbf{h})_{\infty}, \mathbf{Z}_{0})^{l} d\mathbf{h}$$

The first term of the above sum is equal to the right hand side of (4.4), since $\beta(gh) = g \cdot \beta(h)$ and $|\alpha(gh)|_A = |\alpha(h)|_A$ for $g \in G_A$ and $h \in H_A$. By Lemma 2.2 and the decomposition $H_A = P'_A U$, the second term is equal to

(4.5)
$$\int_{\mathbf{P}_{\mathbf{Q}}^{\prime}\backslash\mathbf{P}_{\mathbf{A}}^{\prime}} \mathbf{F}(\mathbf{p}^{\prime}) f(\beta(\Upsilon_{\mathbf{0}}\mathbf{p}^{\prime})) \left| \alpha(\Upsilon_{\mathbf{0}}\mathbf{p}^{\prime}) \right|_{\mathbf{A}}^{\mathbf{s}+\frac{\mathbf{m}-1}{2}} \mathbf{J}_{\mathbf{G}_{1}}(\mathbf{k}_{1}(\Upsilon_{\mathbf{0}}\mathbf{p}^{\prime})_{\infty}, \mathbf{Z}_{\mathbf{0}})^{l} d_{l}\mathbf{p}^{\prime}$$

Let P' = M'N' be a Levi decomposition of P' and dm' (resp. dn') be a Haar measure on M'_A (resp. N'_A). Then $d_l p' = \mu(m') dm' dn'$ with the module $\mu(m') = \frac{d(m'n'm'^{-1})}{dn'}$ of

M'. In view of (d), (4.5) is equal to

$$\int_{M'_{\mathbf{Q}}\backslash M'_{\mathbf{A}}} f(\beta(\Upsilon_{0}m')) \left| \alpha(\Upsilon_{0}m') \right|_{\mathbf{A}}^{s+\frac{m-1}{2}} J_{\mathbf{G}_{1}}(k_{1}(\Upsilon_{0}m')_{\infty}, \mathbf{Z}_{0})^{l} \left\{ \int_{N'_{\mathbf{Q}}\backslash N'_{\mathbf{A}}} F(n'm')dn' \right\} \mu(m')dm'.$$

Since F is cuspidal, the integral over $N'_Q \setminus N'_A$ vanishes and hence the proposition is proved. *q.e.d.*

4.4 Combining Proposition 4.1 and Proposition 4.2, we get the following result.

Corollary 4.3 Under the same assumptions and notation of Proposition 3.1, we have

$$Z_{F,f}(s) = \frac{L(F; s)}{L(f; s+\frac{1}{2})} \times \begin{cases} 1 & \text{if m is even} \\ \zeta(2s)^{-1} & \text{if m is odd} \end{cases} \times Z_{F,f}^{(\infty)}(s),$$

where

(4.6)
$$Z_{F,f}^{(\infty)}(s) = \int_{G_{\infty} \setminus H_{\infty}} \omega_{F,f}(\beta(h)^{-1}h) |\alpha(h)|^{s + \frac{m-1}{2}} J_{G_1}(k_1(h), Z_0)^l dh.$$

4.5 To proceed further, we consider the Eisenstein series $E_G(g, \varphi; s_o)$ on G_A attached to $\varphi \in M(K_o)$ with respect to P defined as follows. Decompose $g \in G_A$ into

$$\begin{bmatrix} \alpha_{0}(g) & * & * \\ 0 & \beta_{0}(g) & * \\ 0 & 0 & \alpha_{0}(g)^{-1} \end{bmatrix} k(g)$$

where $\alpha_0(g) \in \mathbf{A}^{\times}$, $\beta_0(g) \in \mathbf{G}_{0,\mathbf{A}}$, $k(g) \in \mathbf{K} = K_{\infty}K_{\mathbf{f}}$. We set

(4.7)
$$E_{G}(g, \varphi; s_{o}) = \sum_{\gamma \in P_{Q} \setminus G_{Q}} \varphi(\beta_{o}(\gamma g)) |\alpha_{o}(\gamma g)|_{A}^{s_{o} + \frac{m-2}{2}}.$$

It is known that the series (4.7) can be continued to a meromorphic function of s_0 on C and that $E_G(*, \varphi; s_0) \in M(K)$. The following facts are easily verified.

Lemma 4.4 In the region $\{(s, s_0) \in \mathbb{C}^2 \mid \text{Re s} - \text{Re s}_0 > 1, \text{Re s}_0 > \frac{m-2}{2}\}$, we have

$$E(g_1, E_G(*, \phi; s_0), l; s) = \mathbb{E}(g_1, \phi, l; s, s_0).$$

Lemma 4.5 If $\varphi \in M(K_o)$ is a Hecke eigenform, then $E_G(*, \varphi; s_o)$ is also a Hecke eigenform and $L(E_G(*, \varphi; s_o); s) = L(\varphi; s) \cdot \zeta(s + s_o) \zeta(s - s_o)$.

4.6 Applying Corollary 4.3 to $f = E_G(*, \varphi; s_0)$ and using Lemma 4.4 and Lemma 4.5, we obtain the following result.

Proposition 4.6 Under the same assumptions of Theorem 3.1, we have

$$\Xi_{\mathrm{F},\varphi}(\mathrm{s},\,\mathrm{s}_{\mathrm{o}}) = \frac{\mathrm{L}(\mathrm{F};\,\mathrm{s})}{\mathrm{L}(\varphi;\,\mathrm{s}+\frac{1}{2})} \cdot \zeta(\mathrm{s}+\mathrm{s}_{\mathrm{o}})^{-1} \,\zeta(\mathrm{s}-\mathrm{s}_{\mathrm{o}}+1)^{-1} \cdot \begin{cases} 1 & \text{if m is even} \\ \zeta(2\mathrm{s})^{-1} & \text{if m is odd} \end{cases}$$
$$\times \Lambda_{\infty}(\mathrm{F},\,\varphi;\,\mathrm{s},\,\mathrm{s}_{\mathrm{o}}),$$

where we put $\Lambda_{\infty}(F, \varphi; s, s_0) = Z_{F, E_G(*, \varphi; s_0)}^{(\infty)}(s)$.

§5. Generalized Whittaker functions and the calculation of $\Lambda_{\infty}(\mathbf{F}, \phi; s, s_0)$

5.1 We first recall the definition of the generalized Whittaker function $W_{F,\phi}$ attached to $F \in S_l(U_f)$ and $\phi \in M(K_o)$ (for detail, see [Su, §1]). The Fourier coefficient F_{μ} of F at $\mu \in Q^{m-1}$ is given by

$$F_{\mu}(h) = \int_{Q^{m-1} \setminus A^{m-1}} F(n_{H}(y)h) \psi(-R(\mu, y)) dy \qquad (h \in H_{A})$$

(for the definition of ψ , see Notation). Then we have

(5.1)
$$F(n_{H}(y)h) = \sum_{\mu \in Q^{m-1}} F_{\mu}(h) \psi(R(\mu, y)) \qquad (h \in H_{A}, y \in A^{m-1}).$$

Note that, for $F \in S_l^{hol}(U_f)$, we have $F_{\mu} = 0$ unless $R[\mu] < 0$. The generalized Whittaker function $W_{F,\phi}$ is defined by

(5.2)
$$W_{F,\varphi}(h) = \int_{G_{o,Q} \setminus G_{o,A}} F_{-\xi_0} \begin{pmatrix} 1 & & \\ & g_0 & \\ & & 1 \end{pmatrix} h \phi(g_0) dg_0,$$

where $\xi_0 = \begin{bmatrix} \lambda_0 \\ 1 \end{bmatrix} \Delta^{-1} \in \mathbb{Q}^{m-1}$ and G_0 is embedded into H_0 via $g_0 \rightarrow \begin{bmatrix} g_0 (1-g_0)\lambda_0 \\ 0 & 1 \end{bmatrix}$. Under this embedding, G_0 is the isotropy subgroup of ξ_0 in H_0 . The function W_0 has the following properties:

The function $W_{F,\omega}$ has the following properties:

(a)
$$W_{F,\phi}(n_H(y) h) = \psi(-R(\xi_0, y)) W_{F,\phi}(h)$$
 $(h \in H_A, y \in A^{m-1})$

(b) If both F and φ are Hecke eigenforms, $W_{F,\varphi}$ is an eigen function under the action of $\bigotimes_{p<\infty}' H(H_p, U_p)$ on the right and that of $\bigotimes_{p<\infty}' H(G_{o,p}, K_{o,p})$ on the left.

We need the following formula later.

Proposition 5.1 ([Su], Theorem 1) Let the assumptions be the same as in Theorem 3.1. For $h \in H_{\infty}$, we have

$$\int_{A_{f}^{\star}} W_{F,\varphi}\left(\begin{bmatrix} t & 1 & \\ & 1 & \\ & t^{-1} \end{bmatrix} h\right) |t|_{A_{f}}^{s_{0}-\frac{m-1}{2}} d^{\star}t$$
$$= \frac{L(F; s_{0})}{L(\varphi; s_{0}+\frac{1}{2})} \times \begin{cases} 1 & \text{if m is even} \\ \zeta(2s_{0})^{-1} & \text{if m is odd.} \end{cases} \times W_{F,\varphi}(h)$$

5.2 We now go back to the calculation of the integral

$$\Lambda_{\infty}(F, \phi; s, s_{o}) = \int_{G_{\infty} \setminus H_{\infty}} \omega_{F, E_{G}}(*, \phi; s_{o} - \frac{1}{2}) (\beta(h)^{-1}h) |\alpha(h)|^{s + \frac{m-1}{2}} J_{G_{1}}(k_{1}(h), Z_{o})^{l} dh$$

First note that, for $g \in G_A$, we can choose $\alpha(\iota_0(g)) = 1$, $\alpha_0(\iota_0(g)) = \alpha_0(g)$ and $\beta_0(\iota_0(g)) = \beta_0(g)$ in view of Lemma 2.1 (ii). Unwinding the Eisenstein series $E_G(*, \varphi; s_0 - \frac{1}{2})$ in the integral $\Lambda_{\infty}(F, \varphi; s, s_0)$ and using the decomposition $G_A = P_A K_{\infty} K_f$, we get

(5.3)
$$\Lambda_{\infty}(\mathbf{F}, \varphi; \mathbf{s}, \mathbf{s}_{0}) = \int_{\mathbf{G}_{\infty} \setminus \mathbf{H}_{\infty}} d\mathbf{h} \int_{\mathbf{P}_{\mathbf{Q}} \setminus \mathbf{P}_{\mathbf{A}}} d_{l} \mathbf{p} \int_{\mathbf{K}_{\infty}} d\mathbf{k} \, \mathbf{F}(\mathbf{p} \mathbf{k} \beta(\mathbf{h})^{-1} \mathbf{h}) \, \varphi(\beta_{0}(\mathbf{p}))$$
$$|\alpha_{0}(\mathbf{p})|_{\mathbf{A}}^{\mathbf{s}_{0}^{+} \frac{\mathbf{m} - 3}{2}} |\alpha(\mathbf{h})|_{\infty}^{\mathbf{s}_{+} \frac{\mathbf{m} - 1}{2}} \mathbf{J}_{\mathbf{G}_{1}}(\mathbf{k}_{1}(\mathbf{h})_{\infty}, \mathbf{Z}_{0})^{l}.$$

Here $d_i p$ is a left invariant measure on P_A given by $d_i p = |t|_A^{(m-2)} dx d^* t dg_0$, where

$$p = n(x) \begin{bmatrix} t \\ g_0 \\ t^{-1} \end{bmatrix} (x \in A^{m-2}, t \in A^{\times}, g_0 \in G_{0,A}). We may suppose that \beta(h) \in$$

$$P_{\infty}$$
. For $h \in H_{\infty}$, we see $|\alpha_0(p\beta(h))|_A = |\alpha_0(p)|_A |\alpha_0(\beta(h))|_{\infty}$ and $\varphi(\beta_0(p \cdot \beta(h))) = \varphi(\beta_0(p)\beta_0(h)) = \varphi(\beta_0(p))$, since φ is right $G_{0,\infty}$ -invariant. Thus, changing the variable p into $p \cdot \beta(h)$ in (5.3), we obtain

$$\Lambda_{\infty}(F, \varphi; s, s_{0}) = \int_{G_{\infty} \setminus H_{\infty}} dh \int_{K_{\infty}'} dk' \int_{P_{Q} \setminus P_{A}} d_{i}p \ F(pk'h) \ \varphi(\beta_{0}(p))$$

$$|\alpha_{0}(p)|_{A}^{s_{0} + \frac{m-3}{2}} |\alpha_{0}(\beta(h))|_{\infty}^{s_{0} + \frac{m-3}{2}} |\alpha(h)|_{\infty}^{s + \frac{m-1}{2}} J_{G_{1}}(k_{1}(h)_{\infty}, Z_{0})^{l_{A}}$$

where dk' is the normalized Haar measure on $K'_{\infty} = \beta(h)K_{\infty}\beta(h)^{-1}$. For a while, we fix $h \in H_{\infty}$ and let $k' \in K'_{\infty}$. Since $k' \in G_{\infty}$, we have $|\alpha(k'h)|_{\infty} = |\alpha(h)|_{\infty}$ and $k_1(k'h)_{\infty} = k_1(h)_{\infty}$. Next observe that $\beta(k'h) \in k'\beta(h)K_{\infty} = \beta(h)K_{\infty}$, which implies $|\alpha_0(\beta(k'h)|_{\infty} = |\alpha_0(\beta(h))|_{\infty} = |\alpha_0(h)|_{\infty}$. Since $G_{\infty} = P_{\infty}K'_{\infty}$, we have proved the following:

Lemma 5.2 We have

$$\Lambda_{\infty}(\mathbf{F}, \boldsymbol{\varphi}; \mathbf{s}, \mathbf{s}_{0}) = \int_{\iota_{0}(\mathbf{P}_{\infty})\backslash \mathbf{H}_{\infty}} \left\{ \int_{\mathbf{P}_{Q}\backslash \mathbf{P}_{A}} \mathbf{F}(\mathbf{p}\mathbf{h}) \, \boldsymbol{\varphi}(\boldsymbol{\beta}_{0}(\mathbf{p})) \, |\boldsymbol{\alpha}_{0}(\mathbf{p})|_{A}^{\mathbf{s}_{0} + \frac{\mathbf{m} - 3}{2}} \mathbf{d}_{l} \mathbf{p} \right\}$$
$$|\boldsymbol{\alpha}_{0}(\mathbf{h})|_{\infty}^{\mathbf{s}_{0} + \frac{\mathbf{m} - 3}{2}} \, |\boldsymbol{\alpha}(\mathbf{h})|_{\infty}^{\mathbf{s} + \frac{\mathbf{m} - 1}{2}} \, \mathbf{J}_{G_{1}}(\mathbf{k}_{1}(\mathbf{h})_{\infty}, \mathbf{Z}_{0})^{l} \, \mathbf{d}\mathbf{h}.$$

5.3 In view of Proposition 4.6 and Lemma 5.2, the proof of Theorem 3.1 is now reduced to the following.

Proposition 5.3 Let the assumptions be the same as in Theorem 3.1. For $h \in H_{\infty}$, we have

$$(5.4) \int_{P_{Q} \setminus P_{A}} F(ph) \varphi(\beta_{0}(p)) |\alpha_{0}(p)|_{A}^{s_{0} + \frac{m-3}{2}} d_{l}p = \int_{A^{\times}} W_{F,\varphi}\left(\begin{bmatrix} t & 1_{m-1} \\ & t^{-1} \end{bmatrix} h\right) |t|_{A}^{s_{0} - \frac{m-1}{2}} d^{\times}t$$
$$= \frac{L(F; s_{0})}{L(f; s_{0} + \frac{1}{2})} \times \left\{ \begin{array}{c} 1 & if \text{ m is even} \\ \zeta(2s_{0})^{-1} & if \text{ m is odd} \end{array} \right\} \times \int_{R^{\times}} W_{F,\varphi}\left(\begin{bmatrix} t & 1_{m-1} \\ & t^{-1} \end{bmatrix} h\right) |t|_{\infty}^{s_{0} - \frac{m-1}{2}} d^{\times}t.$$

Proof. The left hand side of (5.4) is equal to

$$\int_{G_{0,\mathbf{Q}}\setminus G_{0,\mathbf{A}}} dg_{0} \int_{\mathbf{Q}^{\times}\setminus\mathbf{A}^{\times}} d^{\times}t \int_{\mathbf{Q}^{m-2}\setminus\mathbf{A}^{m-2}} dx \ F(\iota_{0}(n_{G}(x) \begin{bmatrix} t & g_{0} & \\ & t^{-1} \end{bmatrix}) \cdot h) \ \varphi(g_{0}) \ |t|_{\mathbf{A}}^{s_{0}-\frac{m-1}{2}}.$$

By Lemma 2.1 (i) and (5.1), the integral $\int_{Q^{m-2}\setminus A^{m-2}} F(\iota_0(n_G(x) \begin{bmatrix} t & g_0 \\ & t^{-1} \end{bmatrix}) \cdot h) dx$

equals

$$\sum_{\mu \in \mathbf{Q}^{m-1}} F_{\mu} \begin{pmatrix} t & & \\ g_0 & (1-g_0)\lambda_0 & \\ 0 & 1 & \\ & t^{-1} \end{pmatrix} h \int_{\mathbf{Q}^{m-2} \setminus \mathbf{A}^{m-2}} \psi(\mathbf{R}(\mu, \begin{bmatrix} x \\ 0 \end{bmatrix})) \, dx.$$

Since the integral in the above formula is equal to one if $\mu = u \cdot (-\xi_0)$ for some $u \in \mathbf{Q}^{\times}$ and equal to zero otherwise, and since $F_{u\mu}(h) = F_{\mu}(\begin{bmatrix} u & 1 \\ & 1 \\ & u^{-1} \end{bmatrix} h)$ for $u \in \mathbf{Q}^{\times}$, $\mu \in \mathbf{Q}^{\times}$

 Q^{m-1} and $h \in H_A$, the left hand side of (5.4) equals

$$\int_{\mathbf{A}^{\times}} \{ \int_{\mathbf{G}_{o,Q} \setminus \mathbf{G}_{o,A}} \mathbf{F}_{-\xi_{o}} (\begin{bmatrix} t & & \\ g_{o} & (1-g_{o})\lambda_{o} \\ 0 & 1 \\ & & t^{-1} \end{bmatrix} h) \varphi(g_{o}) dg_{o} \} |t|_{\mathbf{A}}^{s_{o}-\frac{m-1}{2}} d^{\times}t.$$

This proves the first equality of the proposition. The second one follows from Proposition 5.1. q.e.d.

§6. Proof of Theorem 3.2

6.1 In this section we always assume that $F \in S_l^{hol}$. For $h_f \in H_{A_f}$, the function $F(z; h_f) = F(h_{\infty}h_f) J_H(h_{\infty}, z_0)^l (h_{\infty} \in H_{\infty}, z = h_{\infty} < z_0 > \in D)$ admits a Fourier expansion: $F(z; h_f) = \sum_{\mu} a_F(\mu; h_f) e[R(\mu, z)]$ where μ runs over the set $\{\mu \in Q^{m-1} \mid R[\mu] < 0, -\mu i$ and z are in the same connected component of D}. Then $F_{\mu}(h_{\infty}h_f)$ is equal to $a_F(\mu; h_f) e[R(\mu, h_{\infty} < z_0 >)]) J_H(h_{\infty}, z_0)^{-l}$ if $-\mu i$ and $h_{\infty} < z_0 >$ are in the same connected component of D and equal to zero otherwise. Let $D_{\pm} = \{z = \begin{bmatrix} z' \\ z'' \end{bmatrix} \in D \mid \pm Im(z'') > 0\}$. We note that $z_0 \in D_+$.

Lemma 6.1 Let $h \in H_{\infty}$ and assume that $h < z_0 > = \begin{bmatrix} z' \\ z'' \end{bmatrix} \in D_+$. Then we have

$$\int_{\mathbf{R}^{\times}} W_{\mathrm{F},\varphi} \left(\begin{bmatrix} t & 1 & \\ & 1 & \\ & t^{-1} \end{bmatrix} h \right) |\mathbf{t}|_{\infty}^{\mathbf{s}_{0}^{-}} \frac{\mathbf{m}-1}{2} d^{\mathbf{x}} \mathbf{t}$$
$$= e^{2\pi} W_{\mathrm{F},\varphi}(1) \cdot \Gamma(\mathbf{s}_{0} + l - \frac{\mathbf{m}-1}{2}) (-2\pi i z'')^{-(\mathbf{s}_{0} + l - \frac{\mathbf{m}-1}{2})} \cdot J_{\mathrm{H}}(\mathbf{h}, \mathbf{z}_{0})^{-l}.$$

Proof. Let $t \in \mathbf{R}^{\times}$. By definition (5.2) of $W_{F,\phi}$ and the above remark, we have

$$(6.1) \quad W_{F,\varphi}\left(\begin{bmatrix} t & 1_{m-1} & \\ & t_{t-1} & \\ & t_{t-1} & \end{bmatrix} h\right)$$

$$= \delta(t > 0) \quad \int_{G_{0,Q} \setminus G_{0,A}} a_{F}(-\xi_{0}; \begin{bmatrix} 1 & g_{0,f} & \\ & 1 \end{bmatrix}) e[R(-\xi_{0}, \begin{bmatrix} t & g_{0,\infty} & \\ & t_{t-1} & \\ & t_{t-1} & \end{bmatrix} h < z_{0} >)]$$

$$\times J_{H}\left(\begin{bmatrix} t & g_{0,\infty} & \\ & t_{t-1} & \\ & & \end{bmatrix} h, z_{0}\right)^{-l} \varphi(g_{0}) dg_{0}$$

$$= \delta(t > 0) t^{l} J_{H}(h, z_{0})^{-l} e[t z''] \quad \int_{G_{0,Q} \setminus G_{0,A}} a_{F}(-\xi_{0}; \begin{bmatrix} 1 & g_{0,f} & \\ & 1 & \\ & & \end{bmatrix}) \varphi(g_{0}) dg_{0},$$

where $\delta(t > 0)$ is equal to one if t > 0 and equal to zero otherwise. Note that $\begin{bmatrix} t \\ g_{0,\infty} \\ t^{-1} \end{bmatrix} h < z_0 > \in D_+ \text{ if and only if } t > 0. \text{ Setting } t = 1 \text{ and } h = 1 \text{ in (6.1), we}$

get

$$\int_{G_{o,Q}\setminus G_{o,A}} a_{F}(-\xi_{o}; \begin{bmatrix} 1 & g_{o,f} \\ & 1 \end{bmatrix}) \varphi(g_{o}) dg_{o} = e^{2\pi} W_{F,\varphi}(1)$$

and hence

$$W_{F,\phi}\left(\begin{bmatrix} t & & \\ & 1_{m-1} \\ & & t^{-1} \end{bmatrix} h\right) = \delta(t > 0) \cdot e^{2\pi} W_{F,\phi}(1) \cdot t^{l} J_{H}(h, z_{o})^{-l} e[t z''].$$

The lemma is an immediate consequence of the above equality. q.e.d.

6.2 Let
$$H_{\infty}^{+} = \{h \in H_{\infty} \mid h < z_{0} > \in D_{+}\}$$
 and $P_{\infty}^{+} = \{n_{G}(x) \begin{bmatrix} t & g_{0} & f_{\infty} \mid t > 0\}.$

Then $\iota_o(P_{\infty}^+) \subset H_{\infty}^+$. Lemma 6.1 implies that $d_{\infty}(F, \phi; s, s_o)$ is equal to

$$e^{2\pi} W_{F,\phi}(1) \Gamma(s_{o} + l - \frac{m-1}{2}) \cdot \int_{\iota_{o}(P_{\infty}^{+}) \setminus H_{\infty}^{+}} (-2\pi i z'')^{-(s_{o} + l - \frac{m-1}{2})} \times J_{H}(h, z_{o})^{-l} J_{G_{1}}(k_{1}(h)_{\infty}, Z_{o})^{l} |\alpha_{o}(h)|^{s_{o} + \frac{m-3}{2}} |\alpha(h)|^{s + \frac{m-1}{2}} dh,$$

where $h < z_0 > = \begin{bmatrix} z' \\ z'' \end{bmatrix}$. By Lemma 2.2 (ii), we see that $J_{G_1}(k_1(h)_{\infty}, Z_0) = \alpha(h) \cdot J_{G_1}(\iota(h), Z_0) = (-iz'') \alpha(h) J_H(h, z_0)$. Thus we get

(6.2)
$$d_{\infty}(F, \phi; s, s_0) = e^{2\pi} W_{F,\phi}(1) \Gamma(s_0 + l - \frac{m-1}{2}) (2\pi)^{-(s_0 + l - \frac{m-1}{2})} I(s, s_0),$$

where

(6.3)
$$I(s, s_0) = \int_{\iota_0(P_{\infty}^+) \setminus H_{\infty}^+} (-iz'')^{-(s_0 - \frac{m-1}{2})} |\alpha_0(h)|^{s_0 + \frac{m-3}{2}} |\alpha(h)|^{s+l+\frac{m-1}{2}} dh.$$

Lemma 6.2 For $h \in H_{\infty}^+$, we have

$$\begin{aligned} \alpha(h) &= |z''|^{-1} |J_{H}(h, z_{o})|^{-1}, \ \alpha_{o}(h) = |z''| \cdot |J_{H}(h, z_{o})|^{-1} \cdot (\operatorname{Im} z'')^{-1}, \end{aligned}$$
where $z = \begin{bmatrix} z' \\ z'' \end{bmatrix} = h \langle z_{o} \rangle \in D_{+}.$

Proof. The first formula follows from $|J_{G_1}(\iota(h), Z_0)| = \alpha(h)^{-1}$ and Lemma 2.2 (ii).

By Lemma 2.3, we have $(\iota(h) < \mathbb{Z}_0 >)^{\sim} = (\rho(z))^{\sim} = \begin{bmatrix} * \\ z''^{-1} \\ 1 \end{bmatrix}$. On the other hand, we have

$$(\iota(h) < Z_0 >)^{\sim} = J_{G_1}(\iota(h), Z_0)^{-1} \iota(h) Z_0^{\sim}$$

$$= J_{G_{1}}(u(h), Z_{0})^{-1} J_{G_{1}}(k_{1}(h), Z_{0}) \begin{bmatrix} \alpha(h) & * & * & * & * \\ 0 & \alpha_{0}(h) & * & * & * \\ 0 & 0 & \beta_{0}(h) & * & * \\ 0 & 0 & 0 & \alpha_{0}(h)^{-1} \gamma(h) \\ 0 & 0 & 0 & 0 & \alpha(h)^{-1} \end{bmatrix} \begin{bmatrix} -a - Q[\lambda_{0}] \\ 2^{-1}\Delta i \\ \lambda_{0} \\ -i \\ 1 \end{bmatrix}$$
$$= \alpha(h) \cdot \begin{bmatrix} * \\ -i\alpha_{0}(h)^{-1} + \gamma(h) \\ \alpha(h)^{-1} \end{bmatrix}$$

with some $\gamma(h) \in \mathbf{R}$. This implies that $z''^{-1} = -i \alpha_0(h)^{-1} \alpha(h) + \alpha(h) \gamma(h)$ and hence that $\frac{\operatorname{Im}(z'')}{|z''|^2} = \alpha_0(h)^{-1} \alpha(h)$. We are done. *q.e.d.*

Let
$$G_{0,\infty}^{+}$$
 and $H_{0,\infty}^{+}$ be the identity components of $G_{0,\infty}$ and $H_{0,\infty}$. Since
 $\iota_{0}(P_{\infty}^{+}) \setminus H_{\infty}^{+} / U_{\infty} \approx \{n_{H}(\begin{bmatrix} 0_{m-2} \\ v \end{bmatrix}) \cdot \begin{bmatrix} 1 \\ h_{0} \\ 1 \end{bmatrix} | v \in \mathbf{R}, h_{0} \in G_{0,\infty}^{+} \setminus H_{0,\infty}^{+}\}$ and
 $J_{H}(n_{H}(\begin{bmatrix} 0_{m-2} \\ v \end{bmatrix}) \cdot \begin{bmatrix} 1 \\ h_{0} \\ 1 \end{bmatrix}, z_{0}) = 1$, we get
 $I(s, s_{0}) = \int_{\mathbf{R}} dv \int_{H_{0,\infty}^{+}} dh_{0} (-iz'')^{-(s_{0} - \frac{m-1}{2})} |z''|^{-(s-s_{0} + l+1)} (\operatorname{Im} z'')^{-(s_{0} + \frac{m-3}{2})}.$
Here $z = \begin{bmatrix} z' \\ z \end{bmatrix} = n_{v}(\begin{bmatrix} 0_{m-2} \\ 0 \end{bmatrix}) \begin{bmatrix} 1 \\ h_{0} \end{bmatrix} < z > \text{ and } dh_{0} \text{ is the Haar measure on } H^{+}$

Here $z = \begin{bmatrix} z' \\ z'' \end{bmatrix} = n_{H} \begin{pmatrix} 0_{m-2} \\ v \end{bmatrix} \begin{pmatrix} 1 \\ h_{o} \\ 1 \end{bmatrix} \langle z_{o} \rangle$ and dh_{o} is the Haar measure on $H_{o,\infty}^{+}$

(its normalization will be given in §6.3). Note that z'' is, as a function of h_0 , left $G_{0,\infty}^+$ -invariant. It is easy to see that $z'' = i \cdot A(h_0) + v$, where $A(h_0) > 0$ is the (m - 1)-th component of $h_0 \begin{bmatrix} \lambda_0 \\ 1 \end{bmatrix}$. By a straightforward calculation, we obtain

(6.4)
$$I(s, s_0) = \pi \cdot 2^{-(s+l-\frac{m+1}{2})} \frac{\Gamma(s+l-\frac{m-1}{2})}{\Gamma(\frac{s+s_0+l-m+2}{2}) \Gamma(\frac{s-s_0+l+1}{2})}$$

$$\times \int_{\mathbf{G}_{0,\infty}^+ \setminus \mathbf{H}_{0,\infty}^+} \mathbf{A}(\mathbf{h}_0)^{-(\mathbf{s}+\mathbf{s}_0+l-1)} \, \mathrm{d}\mathbf{h}_0$$

6.3 To normalize the Haar measure dh_o on $H_{0,\infty}^+$, we consider a symmetric space on which $H_{0,\infty}^+$ acts. For $x \in \mathbb{R}^{m-2}$, put $x^- = \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathbb{R}^{m-1}$. Let $D_o = \{x \in \mathbb{R}^{m-2} | R[x^-] < 0\}$. We see $\lambda_o \in D_o$. For $h_o \in H_{0,\infty}^+$, we define the action $x \rightarrow h_o < x>$ on D_o and the automorphic factor $J_o(h_o, x) \in \mathbb{C}^{\times}$ by $h_o \cdot x^- = J_o(h_o, x) (h_o < x>)^-$. The action of $H_{0,\infty}^+$ on D_o is transitive and the isotropy subgroup of λ_o in $H_{0,\infty}^+$ is $G_{0,\infty}^+$. For $x \in D_o$, put

(6.5)
$$r(x) = -\Delta^{-1}R[x^{-1}] = \frac{\Delta - Q[x - \lambda_0]}{\Delta}$$

(recall that $\Delta = Q[\lambda_0] + 2a > 0$). We see that $0 < r(x) \le 1$ and $r(\lambda_0) = 1$. Moreover we have $r(h_0 < x >) = J_0(h_0, x)^{-2} r(x)$ for $h_0 \in H_{0,\infty}^+$ and $x \in D_0$. It follows that

(6.6)
$$A(h_0) = J_0(h_0, \lambda_0) = r(h_0 < \lambda_0 >)^{-1/2} \quad (h_0 \in H_{0,\infty}^+).$$

Define the invariant measure on D_0 by $d\mu(x) = r(x)^{-\frac{m-1}{2}} dx_1 \cdots dx_{m-2}$. We normalize the Haar measure dh_0 on $H_{0,\infty}^+$ by

(6.7)
$$\int_{H_{0,\infty}^+} f(h_0) dh_0 = \int_{D_0} (\int_{G_{0,\infty}^+} f(h_0 g_0) dg_0) d(h_0 < \lambda_0 >) \qquad (f \in C_c^{\infty}(H_{0,\infty}^+)),$$

where dg_o is the Haar measure on $G_{o,\infty}^+$ with total volume one.

6.4 We now complete the calculation of $I(s, s_0)$, from which Theorem 3.2 follows (see (6.2)).

Lemma 6.3 We have

(6.8)
$$\int_{H_{0,\infty}^+} A(h_0)^{-s} dh_0 = \Delta^{(m-2)/2} (\det Q)^{-1/2} \pi^{(m-2)/2} \frac{\Gamma(\frac{s-m+3}{2})}{\Gamma(\frac{s+1}{2})}.$$

Proof. By (6.6), the left hand side of (6.8) equals

$$\int_{D_0} r(x)^{s/2} d\mu(x) = \int_{Q[x-\lambda_0] < \Delta} r(x)^{(s-m+1)/2} dx_1 \cdots dx_{m-2}$$
$$= \Delta^{(m-2)/2} \int_{Q[x] < 1} (1 - Q[x])^{(s-m+1)/2} dx_1 \cdots dx_{m-2}$$
$$= \Delta^{(m-2)/2} (\det Q)^{-1/2} \int_{x_1^2 + \cdots + x_{m-2}^2 < 1} (1 - x_1^2 - \cdots - x_{m-2}^2)^{(s-m+1)/2} dx_1 \cdots dx_{m-2},$$

which is equal to the right hand side of (6.8) by a well-known formula. *q.e.d.*

The following result follows from (6.4) and the previous lemma.

Proposition 6.4 We have

$$I(s, s_o) = (\det Q)^{-1/2} \Delta^{(m-2)/2} 2^{-(s+l-(m+1)/2)} \pi^{m/2} \frac{\Gamma(s+l-\frac{m-1}{2})}{\Gamma(\frac{s+s_o+l}{2}) \Gamma(\frac{s-s_o+l+1}{2})} .$$

Reference

[BJ] Borel, A. and H. Jacquet: Automorphic forms and automorphic representations,Proc. Symp. Pure Math. 33 (1979), part I, 189-202

[La] Langlands, R.: Functional equations satisfied by Eisenstein series, Springer Lecture Notes in Mathematics. 544 (1976)

[MS1] Murase, A. and T. Sugano: Shintani functions and its application to automorphic L-functions for classical groups: I. The case of orthogonal groups, MPI preprint series (1991)

[MS2] Murase, A. and T. Sugano: Shintani functions and its application to automorphic L-functions for classical groups: III. Pullback of Eisenstein series on GSp₂ to Hilbert modular groups, preprint (1991)

[Sa] Satake, I.: Theory of spherical functions on reductive algebraic groups over padic fields, I.H.E.S. Publ. Math. 18 (1963), 5-69

[Su] Sugano, T.: On Dirichlet series attached to holomorphic cusp forms on SO(2, q), Advanced Studies in Pure Math. 7 (1985), 333-362

Atsushi Murase:

Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, D-5300 Bonn 3, Federal Republic of Germany

and

Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kyoto 606, Japan

Takashi Sugano: Faculty of Science, Hiroshima University, 1-3-1 Kagamiyama 724 Higashi-hiroshima, Japan