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Introduction

This paper is concerned with a certain Rankin-Selberg convolution of two
variables for a cusp form F on an orthogonal group of signature (m — 1, 2). The main
object is to show that the convolution splits into a product of two standard L-functions
attached to F.

To be more precise, let H = O(m -1, 2) be an orthogonal group suitably
embedded in Gy = O(m, 2) (cf. §2.1). Let B; be a Q-minimal parabolic subgroup of

G- Then its Levi component is isomorphic to GLy x GL; x G, where G, = O(m - 2)
is a definite orthogonal group. For an automorphic form @ on G, we can attach an
Eisenstein series BE(*, @; s, s,) of two variables s and s, on Gy with respect to Bj.
Let F be acusp formon H and suppose that F and ¢ are Hecke eigenforms. The
convolution we study in this paper is defined by

EF’q)(s, 8o) = f F(h) E(h, @; s, 5,) dh.
Ho\H

The main result (Theorem 3.1) asserts that, under certain assumptions on orthogonal

groups, the integral Zp (s, s,) decomposes into a product of an Euler product
L(F; s) L(F; s,)

1 1
L(p; s+ 5) L(®; s+ 3)

and a local factor at infinity. Here L(F;s) and L(g;s)



denote the standard L-functions associated with F and ¢. The local factor at infinity
can be explicitly calculated if F is holomorphic (Theorem 3.2).

To prove the results, we employ two main ingredients; Shintani functions (§4.3)
and generalized Whittaker functions (§5.1). They have been introduced and studied in
[MS1] and [Su] respectively, where we proved certain formulas relating certain integrals
of these functions to some Euler factors (see Proposition 4.1 and Proposition 5.1).
These formulas are essential in the calculation of the local integrals.

We now explain a'brief account of the paper. In §1, we review the definition of
the standard L-functions for orthogonal groups. We introduce various orthogonal groups
and their embeddings in §2. The main results of this paper is stated in §3 (Theorem 3.1
and Theorem 3.2). The next two sections are devoted to the proof of Theorem 3.1. In

§4, we first recall the definition of Shintani functions. Using the basic identity proved in
[MS1], we show that EF,cp(s, 8,) is a product of the quotient L(F; s)/L{g; s-%) of L-

functions and a certain integral A, (F, @;s,s,) at the infinite place. In §5, we prove that

the integral A, (F, @;s,s;) is expressed as a certain integral of generalized Whittaker

function. By virtue of the result of [Su], we see that the integral is a product of
L(F; s, )/L(; s°+%) and a local factor d,(F, ;s,s_) that depends only on the data at

the infinite place. Theorem 3.1 is proved by combining these results. In the final

section, we calculate d(F, @; s, s;) in an explicit form in the case where F is

holomorphic.

In the forthcoming paper ([MS2)), applying the above results to the case m =3,
we study the pullback of Eisenstein series on PGSp, (isogeneous to O(3, 2)) to a Hilbert

modular group (isogeneous to O(2, 2)).

The first named author would like to express a deep gratitude to Max-Planck-

Institut fiir Mathematik for its generous support and hospitality.

Notation

Let Q, be the completion of Q at aprime v of Q and A be the adele ring of



Q. For a linear algebraic group X defined over Q, we denote by X, (resp. X,) the
group of Q,, (resp. A) -rational points of X. For each prime v of Q,{|, stands for the
normalized valuation of Q, given by d(ax) = |a], dx (a € Q}), where dx is a Haar

measure on Q,, . Let x|, = H Ix,), be the norm of an idele x = (x,) € A™. The finite
\4

part of A is denoted by A; We fix the additive character ¢ of A trivial on Q so that
PY(X,) = €[X,] := exp(2mix,) for x, €R.
For a symmetric matrix A € M, we put A(x,y) = 'xAy and A[x] = 'xAx for

r-column vectors x and y. We write 0, for the zero column vector of size r.



§1. Review of the standard L-functions for orthogonal groups

Let S&M_,(Z) be a non-degenerate even integral symmetric matrix. Assume
that S is maximal; namely, L = Z™ is a maximal Z-lattice with respectto S. Let G =
O(S) be the orthogonal group of S. By maximality of S, K, = G(ZP) is a maximal
open compact subgroup of Gy = G(Qp) for every p. Let H(Gp, Kp) be the algebra of
compactly supported bi-Kp invariant functions on Gp. Then the Hecke algebra
H(Gp, Kp) is isomorphic to the affine algebra C[thl, ., )Qt;]va via the Satake

homomorphism, where Vp

automorphism group of C[X*; L., X.::l] generated by the involutions X, — X_il
P

is the Witt index of S at p and W,, is the subgroup of the
P

and the permutations of the indeterminates X, -, X,, (see [Sa]). It follows that each
P

C-algebra homomorphism J&) of H(Gp, I%) to C determines the Satake parameter
(ap, e, )E (C)PIW,, .
p P

To define an L-factor attached to ?\.p, we introduce certain invariants of S at p.
Let Ly =S™'L,, be the dual lattice of L, =Z] withrespectto S. Put L = {x € Ly |
S[x] € p'lzp}. By maximality of S, LI; isa Zp-lattice containing L,. We set ap(S) =
dlmzp/pZPLP/LP' It is known that 0 < ap(S) <2 and that ap(S) =0 for almost all p(cf.
[Su]). Let Do p =M= 2vp(S) be the dimension of the maximal anisotropic subspace of
Q'; 0= Nop S 4). We define the standard L-factor Lp()\.p; s) as follows:

Vp
(1.1) L0 8) = Ag (5 H1 (-ap™" 1o,



1 if (0, 5(8),8,(8)) = (0, 0) or (1, 0)

1 +p' (1, 1)

(1-p 2! (2, 0)

N (1-p%" 2, 1)
P 1-p 71 +p'™) 2, 2)
a-p (3, 1)

1 -p 2+ ') (3, 2)
La-pH'a-p! (4, 2).

We denote by M(K;) the space of automorphic forms on G, that are invariant

under right K;= H K, -translations (see [BJ]). By definition, f € M(K}) is a smooth

p<

function on GQ\G /K¢ which satisfies the following conditions:

(1.2) The function f is Z(Lie(G,))-finite, where Z(Lie(G,)c) is the center of the

universal enveloping algebra of the complexified Lie algebra Lie(G,)c of G,

(1.3) Forany g€ Gy ¢ the function g, — f(g.g¢) is of moderate growth on G,

The subspace of cusp forms in M(K) is denoted by S(K;). The Hecke algebra
®' H (Gp, K.} actson M(K;) by convolution on the right:

p<=

fxgp(h) = f f(gx'_l)tp(x)dx feEMKy, 0 E p@();H (Gp, Kp), g€ Gy).
Ga,

We say that f € M(Ky) is a Hecke eigenform if, for each rational prime p, we have
frp, = kf,p(q}p)'f forany ¢, € H(Gp, Kp) with A € HomC(H(Gp, Kp) , C). The
global standard L-function L(f; s) for a Hecke eigenform f is defined by the Euler

product

(1.4) L(f; s) = ;:L Ly(Aeps 9.



§2. Embedding of orthogonal groups

2.1 Let Q be anon-degenerate even symmetric matrix of rank m-2=1. Let R=

Q -Qx, : —1m-2
with A, €Q 'Z and aE€ Z, and put A=Q[A,] +2a. Let

1
,Sl= S .
1

In what follows, we assume Q>0 and A > 0. Then the signatures of Q, R, S, T and

t
“2,Q -2a

1 1

s=| @ |T=| R

S{ aregivenby (m-2,0),(m-2,1),(m-1,1),(m-1,2) and (m, 2) respectively.

We consider the orthogonal groups

G, =0(Q, V), V, = Q™% H_ = OR, W), W, = Q™ ;

G =0(S, V), V=Q™; H=O(T, W), W = Q™

G, = O(S;, Vo), V, = Q™2

i J
Define embeddings V > W - V, of vector spaces by

vy .
. 2 -2
]o( va )= 0 (Vp vy € Q, v, € Qm ),
v
3
| V3
Wy [ —aw3—Q(A, W) 7
Wi
A W2 m-2
w
Wy 4
L W3 i

Then we have T[j (v)] = S[v], S$;[i(w)] = T[w] for vEV,w E W. Moreover we see
JoV) L Q& and j(W) L Qn withrespectto T and S; respectively, where we put



& o
1
fuy

QO =

a
0
E= ° A EW, TI= ;\.0 EVI.
0
1

L L

We define the embeddings G > H - G, of orthogonal groups to be
bo(B)(IE + jo(V)) = 1§ + jo(8Y),

Uh)(tn +j(w)) = tn + j(hw)

forteQ,veEV,wEW,g&€G and h&H. Then 1,(G) (resp. «(H)) is the isotropy
subgroup of § (resp.m) in H (resp. G;). For x &€ Qm_2 and y € Qm_l, put ng(x) =

1-%Q -27'Q[x] 1-YyR -27IR[y]
01p, X €Gq and ny(y)=|01_ , vy € Hg. Then Pg =
0 0 1 0 0 1
t0 0 t0 0
{ng®) |08 0 ||x€Q™%t€ Q" g, EG,q} and Py o= {ny() | Ot 0 ||
00 ! 00

y€Q™ ", t€ QX h,EH, } arc maximal Q-parabolic subgroups of G and H

respectively. The following is easily verified (cf. [MS1, §2]).

Lemma 2.1
t0 0
(i) For p=ng(x) 08, 0 | P, we have
00 ¢!
t 0 0 0

0 g, (1—g0))\0 0
Lo(p)=nH<[§])x IO

0 0 R

1 "AS(1-g) "AS(g-1)A 0
i L@ =] o g (1-g)» | > where gE€EG and A=A, [EV.
0 0 1 0



In what follows, we often regard G (resp. H) as a subgroup of H (resp. G;) via
(resp. 1) and simply write g (resp. h) for 1(g) (resp. u(h)) if there is no fear of

confusion.

2.2 We define symmetric domains D and D, of type (IV) as follows:
D={z€C™|R[Imz] <0}, D,={Z€EC™|S[ImZ]<0}.

Note that both D and D; have two connected components. For z&€D and Z€D,,

put
~2'R[z] ~27Is[z]
27 = Z c Wc, 7z = Z = VI,C'
1 1

The action of H, (resp. G; .,) on D (resp. D;) and the automorphic factor Jy:
H_x D — C* (resp. Jg,: G1e %Dy = C) are defined to be

h-z™ = (h<z>)"Iy(h, 2), gZ7 = (g1<z>)~'JGl(gl’ Z)

(h€eH,, g € G1,m, z€ D, Z € D). These actions are transitive and holomorphic.
Put U, ={h€H, |h<z,>=2,} and K;,, ={g) €Gy o |8 <Z>=Z,} where z,=
. 27
[ °l] €D and Z = €D,. Wenote that U, and K, ., are compact and
0 ’

l

271

isomorphic to O(m-~1) x SO(2) and O(m) x SO(2) respectively. Put v, =| 0 S

m-2

1
Vg Since S[v,] =-A <0, the subgroup K, ={gE G, | gv,=V,} of G is

compact and isomorphic to O(m-1).
Lemma 2.2

(i) We have 1 (K,)C UL = {u€ U, | Iy, z,) = 1}.
o H



!

(ify For h€&€H,, we have JGl(L(h), Z)=(-iz"yIy(h, z,) where h<z > = S

11

D(z' € c™? e O).

(iii) We have y(Uy,)CK, , and JGl(L(u), Z)=Jy(u,z,) for uey,,

271
Aoi
i
1

Proof. Observe zj = = jo(vy) + &Ai. Then, for k € K, we have  (k)z

= jolkvy) + &AL =] (v,) + E-Ai =z, which implies (i). The remaining parts follow
- —a-Q[A] 7

-1,.
2 A
from the observation that Z7 = A =j(z3) (). gq.ed

2.3 We define a holomorphic embedding p: D — D, by

1_ 1 ' ' "
-3z Q[z'}+Q(A,,z')+az —2_1R[z]
’1-1
p(Z) = zu—lzr =2 7'
ff_l ) 1
Z

zl
for z= ,

€D (2 €C™2 2" € C). Note that S[Im p(2)] = Iz_lli R[Imz] for zE€

D and that p(z,) = Z, The following is easily verified.

!

Lemma 2.3 Let z= ED(Z €C™? 2" €C).

H

(i) We have j(z7) =p(z)~2".

!

1
. Then we have
z’l’

z
(i) For h&€ H,, let h<z>= [

\(h)<p@)> = ph<z>), Ig (), p@)=2"" 2{ Ty(h, 2).



§3. Main results

3.1 From now on we assume that Q and R are maximal. Let I(o’p, Kp, Up and
Kl,p be the groups of Zp-rational points of G, G, H and G;, which are maximal
open compact subgroups of Go,p, Gp, Hp and Gl’p respectively. Put Kof=

[]x,

p<®

p Define Ky, Ug and G, ¢ similarly. Throughout this paper, we assume that

the condition

3.1 0(Q) = 3,®)

holds for every p. Under this assumption, we have

(3.2) LO(GP) a Up = LO(KP), L(HP) N Kl,p =yU p)

for every p (cf. [MS1, Proposition 3.7]).

3.2 Let S(Uy) be the space of cusp forms on H, invariant under right U
translations (see §1). We fix an even positive integer / and denote by S{Uy) the space
of F& S(Uy) satisfying F(hu,) = F(h) J(u,, zo)_' for h€H, and u,EU,. Put
K, =G, oK, ¢ Note that G, ., is compact and that G, \G,, o/K,, is a finite set since
Q is positive definite. Let M(K,) be the space of automorphic forms on G 5

invariant under right K _-translations.

3.3 Let

'ta«tam"

Oto** »

Big={[00 g » * | €G4ltt,EQ" g EG,yq}
00 0 €' =
000 0 ¢

be a Q-minimal parabolic subgroup of G;. Then each g, € G, A is decomposed into
by(gy) ky(gy) with

10



- ag) e * * * T
0 a,g) * » *
bi(gy) = 0 0 Boley) * b €By,
0 0 0 oy g)
| 0 0 0 0 ag)™ |

a(gy), a.(g)) € A", B(g) € G, a and ky(gy) = \;EL ki(gy)y EK; =K K We

can choose a(g;) and a,(g;) so that a(g;), ,» @,(81) > 0. The Eisenstein series

E(g1, @, I; s, 5,) attached to @ € M(K)) with respectto By is defined as follows:

m/2 -2)12
(3) Bapobss)= 2 oBne) ey lognefy ™
¥1€B1,0\C1,0

!
x Jg, (k1 (1181)e0 Zo)
(81EG1a (589 E C2). Thanks to Langlands ([La]), the series (3.3) converges

absolutely in the region {(s,s,) € c? |Res—Res,>1,Res> mT—Z } and can be

continued to a meromorphic function of (s, s;) on 2

34 Let FES/(U;) and @ € M(K,) be Hecke eigenforms and L(F;s) and L(g; s)

be the corresponding standard L-functions (see §1). The object of this paper is to study

the following Rankin-Selberg convolution of two variables:

(3.4) e 5= | F)EGM), 95—, 5,-5) dh
HQ\H,

The integral (3.4) can be continued to a meromorphic function of (s, s;) on C2. The

main result of this paper is stated as follows.

Theorem 3.1 Let F € S{Uy) and ¢ € M(K,,) be Hecke eigenforms. Assume that

Q and R are maximal and that the condition (3.1) is satisfied. Then we have

11



L(F; s) L(F; s,)

ZF,0(S So) = 1 1
L(g; s + 3) L(@; s, + 3)

1 if mis even

-1 -1
R M {C(2s)_1 €(2sy)”" if m is odd

x do(F, @5 5, 5,).
Here the local factor at infinity d_(F, ¢; S, 8,) is given by the integral

‘ _m=l
dh f d*We | lmm h) [ 2
"o(Poo)\Hoo R* t_l

m~1
s+ ——

m-3
S+ !
log(h) " 2 ath)] 2 Jo,(ki(ha, Zo)'
where W}-,-,Cp is a generalized Whittaker function associated with F, @ (for the precise

definition, see §5.1).

Remark.  The local factor d(F, ¢;s,s,) depends only on / and WF@]H .

3.5 Let S?Ol(Uf) be the space of holomorphic cusp forms on H of weight /. By
definition, F € S],m](Uf) is an element of S{Uy) such that, for every he € H(Ay), the
function F(z; hy) := F(hyohy) Jiy(hy,» 2,)' is holomorphic in z = h,,<z,> € D. We can

calculate d(F, @; s, s,) explicitly in the case where F € S;°(Uy).

Theorem 3.2 Assume F € SIIIOI(Uf). Then we have
m-1 m-1
I‘(s+l— T) F(SO+1— T)

s+so+l s—so+l+1 ’
I—) I(—2%

deo(F, 3 8, 5) = W ((1)270)n ™o

m2 1 1
where c=¢X' A2 (det Q) 22 GM ()

12



§4. Shintani functions and the basic identity

4.1 Let M(K) be the space of automorphic forms on G, invariant under right K =
K K¢ -translations (see §1). The Shintani function associated with FE S{(Uy) and €
M(K) is given by

(4.1) mF’f(h) = f F(gh) f(g) dg (h€EHy).
GQ\Ga

(cf. [MS1, §1]). Observe that wg is an eigen function under the action of @;H(Hp,
’ P

Up) on the right and that of SS“’H(GP’ Kp) on the left, if F and f are Hecke

eigenforms. In [MS1, Theorem 1.6], we have proved

Proposition 4.1 Assume (3.1). Let F& S{U;) and f€ M(K) be Hecke

eigenforms. Then

m-1 . 1 if m is even
ﬂ h _lh | )|s+ 2 dh= M _
GA‘!}'{A mF’f( () 7h) i Ag L(f; s+ %) g C(2s) ! if mis odd.

t ®x %

42 LetPy={| 0 g * | €EG,|t=0,gE G} bea maximal parabolic subgroup
002

of G;. Theneach g, € G, A is decomposed into

a(g)) * *
0 B(gl) * k1(gq), where Ct(gl) € Ax’ B(gl) € GA and kl(gl) €K, =

-1
0 0 a(g)
K; oKy 5 For fEM(K) and I € Z,, we define the Eisenstein series on Gy 4 with

respect to P; by

42) B@uthe) = 3 fBe) letrig)f™ Ig (q(ige 20"
ylePLQ\GLQ

The series (4.2) can be continued to a meromorphic function of s on C.

13



4.3 Let us consider the convolution

(4.3) Zg s) = f F(b) EQ(b), £, I s - ) dh.
HQ\H,

Proposition 4.2 (The basic identity) For F € S{Uy) and f € M(K), we have
m-1

(4.4) Ze = | opBO D 2 Jg, (kg (W), Z)' .
GaVHa

Proof. While this result has been already mentioned in {MS1, §1.8, Remark], we give

a sketch of proof for completeness. First observe the following facts (cf. [MS1, §2]):

(a) | G; = P;'uH) U P;Y \(H) (disjoint union),

1701 %8 -27's[X,) a
where Y, = 1, 0 1, X, € Gy q:X, = 02 1€Q™.
1 0 0 1 1
(b) Py N uH) = (,(G)).
-a -a
1 , , m-2 Om—2
© Y, PlY.oﬂL(H)=L(P),whcrc PQ={hEHQ|h' ) =t ) ,tE
-1 -1

Q*} is a maximal Q-parabolic subgroup of H.
(d) Y'O-L(N')-Y;1 C N;, where N'(resp. N;) is the unipotent radical of P’ (resp. P¢).

By (a), (b) and (c), we have

m-

1
B((h), £ s —7) = _2, TBOM oG F g, (i), 20
=YoYQ

m-1
£ 0 B0 Yoy 2 Jg ((Yorh)e, Z0)"

Then Zg (s) equals

14



m-1
RGO N O AT™

Go\Ha
s+l !
b [ EO) B0 Yl 2 T (kYo Z) d.
Pé\HA

The first term of the above sum is equal to the right hand side of (4.4), since f(gh) =
g:B(h) and |a(gh)|s = |a(h)|5 for g E G, and h € H,. By Lemma 2.2 and the

decomposition H, = P, U, the second term is equal to

m-1
I 1’ ) L !
“5) [ F@) (B @) 7 Tg, Gy (Yop)r Z)' 4
Po\PA
Let P’ = M'N’ be a Levi decomposition of P’ and dm'’ (resp. dn’) be a Haar measure

g 1t :—1!
on M} (resp. N,). Then d;p’ = u(m’)dm’dn’ with the module p(m’) = d m;ln['n of

M'. In view of (d), (4.5) is equal to

m-1
J 0 largmfy 2 3 ey 0Cgm) 2 { [ EGnm)an'} w(mam

Mg\M3 NQ\Ny
Since F is cuspidal, the integral over Ng\N, vanishes and hence the proposition is
proved. g.e.d.

4.4 Combining Proposition 4.1 and Proposition 4.2, we get the following result.

Corollary 4.3 Under the same assumptions and notation of Proposition 3.1, we have

. 1 if m is even
L!F2 S) (o
4 = Z ’

RS L(f; s+%) s {E(ZS)_1 if m is odd } g F’P(S)

where

m-1
(4.6) 2= [ opB® ) @) 2

!
Jg, (ky(h), Zo)' dh.
GoH,,

15



4.5 To proceed further, we consider the Eisenstein series Eg(g, ¢;5,) on Gy

attached to @ € M(K,) with respectto P defined as follows. Decompose g &€ G,
into
o8 *  x

0 Bo(g) * k(g)
0 0 Oto(g)'1

where ,(g) € A%, By(8) € G, 4, k(®) € K= K K;. We set

m-2
@.7) Bole ®s)= D #B.0e) e’ 2 .
yEPQ\GQ

It is known that the series (4.7) can be continued to a meromorphic function of s, on C

and that Eg(*, @; s,) € M(K). The following facts are easily verified.

Lemma 4.4 In the region {(s,s,) € c? | Res-Res,>1,Res, > mz— 2 }, we

have
E(gl’ EG(*’ ®; So)’ l’ S) = ]E(g]: P, 1) S, So)'

Lemma 4.5 If 9 € M(K,) is a Hecke eigenform, then Eg(*, @;s.) is also a Hecke
eigenform and L(Eg(*, @; s,); 8) = L(g; s)T(s + 5,) &(s —s,)-

4.6 Applying Corollary 4.3to f=Eg(», @;s,) and using Lemma 4.4 and Lemma

4.5, we obtain the following result.

Proposition 4.6 Under the same assumptions of Theorem 3.1, we have

. 1 if m is even
= __L(E;s) £ L - I
Rt S0 T el o TR g i s o

x A, (F, 9;s,5s)),

where we put Aw(F, @; S, 50) = Z(FO:%G(ﬁ,Q);SO)(S)°

16



85. Generalized Whittaker functions and the calculation of
A, (F, @58, 5y)

5.1 We first recall the definition of the generalized Whittaker function W, attached
to FE S (Uy) and @ € M(K,) (for detail, see [Su, §1]). The Fourier coefficient Fu of

Fatpe Qm_1 is given by

F ) = j Fu)h) wRG, y) dy (b€ Hy)
Qm— \Am-—l

(for the definition of 1, see Notation). Then we have

(5.1) Fogh = 2 FOWREY) (HEH,yeA™.
HEQ

Note that, for F & S?Ol(Uf), we have Fu =0 unless R{pn] < 0. The generalized
Whittaker function Weo is defined by

1
6 W= [ F_go([ £

] h) o(g,) dg.,
Go,Q\Go,A

1
where &, = [)10} A e Q™! and G, is embedded into H, via g, —

[g()o (1_g1°)k°] . Under this embedding, G, is the isotropy subgroup of E, in H.

The function W ., has the following properties:

(@) Wg oy h) =9 RE, V) W) (hEH, yEA™)

(b) Ifboth F and g are Hecke eigenforms, wF,cp is an eigen function under the
action of IE?mH(Hp, Up) on the right and that of p®<onH(G0«’p’ Kop) on the left.

We need the following formula later.

Proposition 5.1 ([Su], Theorem 1) Let the assumptions be the same as in Theorem
3.1. For heH,_, we have

17



L
S W tmr W @

1
L(F; s,) 1 if m is even
- 1, -1 ; X WF,q)(h)
L(@; 5o+ ) %(2s,)”" if m is odd.

5.2 'We now go back to the calculation of the integral

m-1
AulF 03559 = | O B (o s, BT W G2 T (1), Z) di.
G,

First note that, for g € G,, we can choose a(1,(g)) = 1, a,(1,(g)) = a,(g) and

Bo(to(8)) = B,(g) inview of Lemma 2.1 (ii). Unwinding the Eisenstein series Eg(*, ¢;
So— %) in the integral A (F, ¢;s,s;) and using the decomposition G, = P,K K, we

get

(53) AsF@ssg= | dn [ dp [ dkEeRBm™h) 9B
: GH, PPy K,

m-l

S T Jo, (1 (Br Zo)

Here dpp is a left invariant measure on P, givenby dp = M;(m—z) dx d*t dg,, where
t

p=n(x)| & xeE A" e AX, 8o € G, 4)- We may suppose that f(h) €

t—l

P, For hE H,, wesee |ay@B()ls = [og(®la [aoBEN, and o(Bo(pB(H) =
P(Bo(PIBo()) = @(Bo(p)), since @ is right G, ,-invariant. Thus, changing the variable
p into p-f(h) in (5.3), we obtain

AsE@issy= [ [ae [ dapFern) ob.m)
GaH, K, PGP,

S+_

m-3 s+
@)™ 2l (BAE : @l 2 Ig (o Z)',

18



where dk’ is the normalized Haar measure on K, = {S(h)KmB(h)"l. For a while, we fix
hEH, and let k' €EK,,. Since k' € G, we have |a(k'h)|, = |a(h)|, and
k,(k'h),, = k,(h),,. Nextobserve that f(k'h) € k'B(h)K,, = f(h)K,, which implies
o, (B D)y = |t (B = lotg(h)]- Since G, =P K, we have proved the

following:

Lemma 5.2 We have
m=3
AEwss)= [ 1 [ Foh e@e) @i 2 dp
"o(Pcn)\Hoo PQ\P A

m-3 s+m-1

S .+ I
loto®™ 2 Ja®il 2 16 (k@) Z) dh.

5.3 Inview of Proposition 4.6 and Lemma 5.2, the proof of Theorem 3.1 is now

reduced to the following.

Proposition 5.3 Let the assumptions be the same as in Theorem 3.1. For h€ H_,

we have
+m—3 t m-1
- x
64 | Fon o@,oN la@e 2 dp = [ Weg| m1 w2 a
PA\P A -1
QY A t
. . t
. 1 ifmis even -1
=—L(F’ Soi x -1 ‘f _ % f Wg q)( In1 h) |t|:r‘,’_1112 d™t.
L(£; 5y+7) t(2s)) if m is odd R: -

Proof. 'The left hand side of (5.4) is equal to

t y ma
f dg, f d*t 2{; i dx F(,(ng(x) | Bo yh) @(g,) It /{’ 2,
Qm- m-

Go.Q\Go,A Qx\Ax l—l

-t
By Lemma 2.1 (i) and (5.1), the integral i{; F(i,(ng(x)| 8o yh) dx
Qm— m-2

equals

19



Eo (1—go);\’o X
F.( h) PR, | o ) dx.
uegn—l wloo 1 R [0]

Since the integral in the above formula is equal to one if p = u-(-§,) for some u € Q"

u
and equal to zero otherwise, and since Fu“(h) = Fu( It h) for uE Q*, p €
-
Q™! and h € H,, the left hand side of (5.4) equals
t
g, (1-g) _m-1
JOJ e 77 [ meedg i 2 o

Ax Go.Q\‘Go,A

This proves the first equality of the proposition. The second one follows from

Proposition 5.1. g.e.d.

§6. Proof of Theorem 3.2

6.1 In this section we always assume that F € S?Ol. For he € HA(' the function

F(z; hy) = F(hghyg) Jgy(h, zo)’ (h, €H,, z = h<z > € D) admits a Fourier expansion:

F(z; hy) = 2 ag(w; hy) e[R(u, z)] where p runs over the set {p € Q™! | R[u] <0, —ui
m

and z are in the same connected component of D}. Then Fp,(hoo ) is equal to

ap(u; hy) e[R(y, hy,<z,>)]) Jyy(h,, zo)_‘r if =i and h,<z > are in the same connected

component of D and equal to zero otherwise. Let D, = {z = €D |z Im(z") > 0}.

'y

We note that z, € D L.

’

Lemma 6.1 Let h€H,, and assume that h<z > = € D,. Then we have

"

Z

20



m-1

t
fwm( Ina | 2 &%
R -

t
m-1
= & Wi, (1) T(s, + - 50 (2niz"y o? 3 Ty(h, z,)7

Proof. Let t ER”. By definition (5.2) of WF’m and the above remark, we have

t
61) Wgo(| Im1  |h)

Je[R(-E,, | Bow h<z_>)]

1
=550 [ aF(—go;[ 8o
t

G0,0'%0,A

1

t
xJu(| Bom [hz)” ole,) dg,

t

1
=8(t>0) ¢ Ju(h, zo)"' eftz”] f ap(-Eqs [ Bo,f

G o,Q\Go, A

] ) 9(8,) dgo,
1

where 8(t> 0) is equal to one if t> 0 and equal to zero otherwise. Note that
t

8o, h<z > €D, ifandonly if t>0. Setting t=1 and h=1 in(6.1), we

t—l

get

1
aF(—zgo;t 8ot |) 0l dg, = €2 W o(1)

Go,Q\Go,A 1

and hence

Wil Im1 h) = 8(t > 0)'62:rt WF,qJ(1)°t[ Tu(h, Zo)_l e[t z’].
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The lemma is an immediate consequence of the above equality. g.e.d.

t

6.2 Let H), = {h€H,|hez>ED,} and P}, = {ng(x) | 8o EP, |t>0}.

1—1

Then LO(P;) C H.. Lemma 6.1 implies that d_(F, @; s, S,) is equal to
2 m-1 . n—(s -
€ wF,cp(l) l‘(so +1- T) (— 2niz ) o 2
to(PaH,

- I g + M2 s+ o1
x Jyy(h, z,) JGl(kl(h)w' Z,) |a0(h)| o 2 |a(h)’T 2 dh,

’

. By Lemma 2.2 (ii), we see that JGl(kl(h)w Z)=

113

z
where h<zo> = [

G(h)'JGl(L(h), Z,) = (= iz") a(h) Jy(h, z,). Thus we get
(6.2) doF, @5, 5) = €2 Wg (1) T(s, +1~ "‘T‘l) (2r)y ot ml’__l)-l(s, 5,)»

where

m-—

m-1 3 m-1
(6.3) I(s, s,) = f (—iz"y G 2 ja (h)fo* 2 Ja(h)** 2 dh.
o(PH,,

Lemma 6.2 For h€ H, we have

a(h) = 2T Ph, 2™, o) = [/ [ h, 2 (m 277,

!

= h<zo> = D+.

where Z =
z

Proof. The first formula follows from IJGI(L(}I), Z)| = (1(h)—1 and Lemma 2.2 (ii).

*
By Lemma 2.3, we have (\(h)<Z >)" = (p(z))” =| ;1 [ . On the other hand, we have
1

(Uh)<Z>)™ = Ig (uh), Zo) ™" ) Z5
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Fa(h) * * * * 7. —2-Q[A ] ]
0 ao(h) * * » 2_1Ai
=36, (), 29 Ig (), Z) | O 0 Byh) o« h
0 0 0 a® vh y
L0 0 o0 0 omyl]b 1

= a(h):| —iagh) +y(h)
achy?

with some y(h) € R. This implies that 2" = ozo(h)_1 a(h) + a(h) y(h) and hence

that -hlzlz-l = c:zo(h)wl a(h). We are done. g.e.d.

Let G' _ and H;’w be the identity components of G, ,, and H .. Since

0, 1
Op-
\'

. 1
JH(nH([ n3}‘2])- [ hg ] 2.) = 1, we get
1

L(PEY\VHL /U, = {ny( | vER, b, EG; ,\H; )} and

1

m-1

I(S, SO) =fdv f dho (_ izn)_(so——i—) Izul

0,

m=J
—(s—so+l+1) (Im Z,,)—(so+ 23).

!

o | = 0,00

Here z = [

1
0
-2 ]) [ hy } <z> and dh, is the Haar measure on Hj,
v
1

(its normalization will be given in §6.3). Note that z"” is, as a function of h, left
G;,m-invariant. It is easy to see that z"” = i-A(h,) + v, where A(h ) >0 is the (m - 1)-
th component of h, [ 710] . By a straightforward calculation, we obtain

-1
o, mil I(s+l- )
6.4) IG5, 5,) =2 2 2

s+so+l-m+2 s—so+l+1
7 I3
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x f A(ho)-'(s+50+’—1) dho.
GZ,N\HZ,M

. + . .
6.3 To normalize the Haar measure dh, on H_ , we consider a symmetric space on

X
1

R[x™] <0}. Wesee A,ED,. For h, € H’g'w, we define the action x — h <x> on

which H ., acts. For x € R™Z put x~ =[ ]e R™ . Let D, = {x€R™ 2

D, and the automorphic factor J (h,, x) € C* by hy x™ =17 (h,, x) (hy<x>)~. The
action of H:,m on D, is transitive and the isotropy subgroup of A in H';m is G; o
For x€ D, put

A - Q[x~A,]

(6.5) r(x) = - A IR[x~] = 2

(recall that A = Q[A,] + 2a>0). Wesee that 0 <r(x)s 1 and r(A;) = 1. Moreover we
have r(h,<x>) =7 (h,, x)_2 1(x) for hy, € H! , and xE D,. It follows that

Q,®

(6.6) A(hg) = Jo(hg, ) = 1y <Ag>) % (hy EHY ).

m-1
Define the invariant measure on D, by du(x) =r(x)” 2 dx;- dx_,. We

normalize the Haar measure dh, on H’; w DY

67 [ tngan,= [ [ thoge) dep) dtho<re>) (f€ CCHL),

+
H D, Gy

0,

+

where dg,, is the Haar measure on G, with total volume one.

6.4 We now complete the calculation of I(s, s,), from which Theorem 3.2 follows

(see (6.2)).

Lemma 6.3 We have

I1(s—m+3)

(6.8) f Ahy) ™ dh, = ATD2 (get Q)R pmD2___ 2~
s+1
Ho o e

Proof. By (6.6), the left hand side of (6.8) equals
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f 1(x)*? du(x) = f e() D2 gy dx
D, Q[x-A }<A

= A@-272 . [j; 1 (1 - Qx)E™D2 gx wdx
X|<

= A2 (ger 12 J' (1-x2 - = x2_ )™ D2y gy

2 2
i+ +X, o<1
which is equal to the right hand side of (6.8) by a well-known formula. g.e.d.
The following result follows from (6.4) and the previous lemma.

Proposition 6.4 We have

r(s+-2
s+so+l s—s0+l+1
M) I(—5

I(s, s,) = (det Q)-U2 A@-2)12 2*(S+1-(m+1)f2) 2
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