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Two point homogeneous spaces are symmetric
Short topological proof

by Z.I. Szabé

Two point homogeneous spaces were studied by H. Busemann [2], G. Birkhoff [1},
H.C. Wang [9] and J. Tits [8]. The last two authors have given a classification for these
gpaces and it turned out (just from this list) that these spaces are symmetric. They started
with a connected locally compact metric space which could be also our starting point be-
cause the transformation groups acting transitively on such spaces are Lie groups further-
more the isotropy group describes a sphere as an indicatrix at any tangent space, i.e. the
space is a Riemannian space.

For the direct proof (not using classification) of symmetricity see the works: J. Wolf
[10], S. Helgason [4], T. Nagano [6] and H. Matsumoto [7]. All of these authors use
group theoretic methods.

Our proof is simple topological. The main tool is the following

Lemma Let X(m) be a continuous tangent vector field on the euclidean unit sphere
Sg C [Rn"'1 . Then an antipodal point—paar m,, —M, on SIO1 exists such that
X(mg) = —X(_Eo) .

We have to prove that the symmetric part

Xgym(m) = 5X(m) + X(-m))
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of X vanishes at least at one antipodal point—paar my, —m,. Assume the contrary, the
normalized vector field f= X_ Jrm/”xﬁ yml
Therefore degf = (—l)n'*'1 follows ([5] p. 219). On the other hand f(m) = f(~m) for

| defines a fixpoint free map {: st __,8h,

any m € S", 80 degf is an even number ([3] p. 127). This contradiction proves the
Lemma completely.

We turn to the proof of the statement indicated in the title.

We consider at a fixed point p of a two point homogeneous space M® the field of

the self—adjoint operators Am(.) = VmR(.,g)g acting in the tangent spaces of the unit

sphere Sg_l C Tp(Mn) at the points m € Sg_l . Here R(.,m)m means the curvature
tensor and V_R(,m)m is it’s covariant derivative w.r.t. m.

The eigenvalues of Am are constant along Sg_l because A isinvariant under

the action of the isotropy group (which group is transitive on Sg_l in this case con-

sidered). The A is skew inthesense: A_ =—A_.Soif A is an eigenvalue then also

—A is an eigenvalue with the same multiplicity. Let us assume that we have a non—zero

eigenvalue A . We show that this leads to a contradiction and therefore A_ =0, VR=0

follows by a well known argument, which proves the statement completely.
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Pick up a "south" point g on S;_l and let Es be the equator—sphere w.r.t. s.
We take also a smaller sphere S + above E_ which is parallel to E; furthermore S_ is

the reflected sphere: S_=—5, under E, .

Notice, that the eigensubspaces of Am decompose the tangent space T(Sg_l) into

continuous distributions. Furthermore the part of Sg_l under S + is contractible,

therefore any eigenvector X, at g with the eigenvalue A can be extended into a

continuous vector field X of Sg_l such that:

(1) Xm is an eigenvector with the eigenvalue A at any point,

(2) It does not vanish under S 4 and it vanish above 5 .

Now we apply the Lemma to this vectorfield X . The points m,, —m, could lay
only between S and S_ because X is non—vanishing under S_ and it is vanishing
above S, everywhere. At the point m, the non—zero vectors X_ and X ==X

+ = my T Tomp g

are eigenvectors of Am with the eigenvalue A, therefore X_ 18 an eigenvector of
—0 —0

=-A with the eigenvalue —A . This is a contradiction, and so any eigenvalue of
o B
Am is zero.

Remark The odd dimensional case can be proved easier. In this case the eigenvalues of
R(.,m)m are constant on S;"l . These eigenvalues must be equal because in the opposite
case the eigensubspaces split the tangent space T(S;_l) into non—trivial continuous di-
stributions: T(Sg_l) = §,9¢{,®...® ¢ . This is impossible because the Euler classes
x({i) are zeros, furthermore the Euler class x(_T(Sn_l)) = x(&)) V x( {2) V..V fk) of
an even dimensional sphere is non—zero. Therefore the space is of constant sectional curva-

ture.
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