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Two point homogeneoUB spaces are symmetrie

Short topological proof

by Z.I. Szab6

Two point homogeneous spaces were studied by H. Busemann [2], G. Birkhoff [1],

H.C. Wang [9] and J. Tits [8]. The last two authors have given a classifieation for these

spaees and it turned out (just from this list) that these spaces are symmetrie. They started

with a conneeted loeally eompaet metrie spaee whieh could be also our starting point be

cause the transformation groups aeting transitivelyon such spaees are Lie groups further

more the isotropy group describes a aphere as an indieatrix at any tangent space, Le. the

space is a Riemannian space.

For the direet prooI (not using claBsifieation) oI symmetricity see the works: J. Wolf

[10] 1 S. He1gason [4], T. Nagano [6] and H. Matsumoto [7]. All oI these authors use

group theoretie methods.

Dur proof is simple topological. The main tool ia the following

Lemma Let X(m) be a eontinuous tangent vector field on the euelidean umt sphere

S~ C IR
n+1

. Then an antipodal point-paar illo' --mo on S~ exists such that

X(mo) = -X(-mO) .

We have to prove that the symmetrie part

Xsym(m) = ~X(m) + X(-m))
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of X vanishes at least at one antipodal point-paar IDo' -mo. Assume the contrary, the

normalized vector field f = Xsym/IIXsymll defines a fixpoint free map f: Sn ------+ Sn .

Therefore deg f = (_1)n+1 follows ([5] p. 219). On the other hand f(rn) = f(-m) for

any m E Sn ,so deg f is an even number ([3] p. 127). This contradiction proves the

Lemma completely.

We turn to the proof of the statement indicated in the title.

We consider at a fixed point p of a two point homogeneous space Mn the field cf

the se1f-adjoint operators Am(.):= VmR(.,m)m a.cting in the tangent spaces of the unit

sphere S~-l (Tp(Mn) at the points mE ~~-1 . Here R(.,m)m means the curvature

tensor and VmR(.,m)m is H's covariant derivative w.r.t. m.

The eigenvalues cf Am are constant along S~-l because Am ia invariant under

the action of the isotropy group (which group is transitive on S~-l in this case con

sidered). The A is skew in the sense: A = -A . So if ..\ is an eigenvalue then alsom -m m

-..\ is an eigenvalue with the same multiplicity. Let us asaume that we have a non-zero

eigenvalue ..\ . We show that this leads to a contradiction and therefore Am = 0, VR = 0

follows by a well known argument, which proves the statement completely.
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Pick up a "south" point ~ on S~-l and let Es be the equator-sphere w.r.t. ~'

We take also a smaller aphere S+ above Es which ia parallel to Es furthermore S is

the reßected aphere: S_ = -S+ under Es'

Notice, that the eigensubspaces of Am decompose the tangent space T(S~-1) into

continuous distributions. Furthermore the part of S~-1 under S+ is contractible,

therefore any eigenvector Xs at a with the eigenvalue A can be extended into a

continuous vector field X of S~-1 such that:

(1) Xm is an eigenvector with the eigenvalue .-\ at any point,

(2) It doea not vanish under S+ and it vanish above S+ .

Now we apply the Lemma to this vectorfield X. The points IDo' -mo could lay

only between S+ and S_ because X ia non-vanishing under S_ and it ia vanishing

above S+ everywhere. At the point mn the non-zero vectors X and X =-X
v !!!o -!!!o!!!o

are eigenvectors of A with the eigenvalue A J therefore X is an eigenvector of
!!!o -!!!o

A = -A with the eigenvalue -.-\ . Thia ia a contradiction, and so any eigenvalue of
-!!!o !!!o

Am ia zero.

Remark The odd dimensional case can be proved easier. In this case the eigenvalues of

R(.,m)m are constant on S~-1 . These eigenvalues must be equal because in the opposite

case the eigensubspaces split the tangent space T(S~-1) into non-trivial continuous di

stributions: T(S~-l) = !1 fB !2 fB •.. Ei ~k . This is impossible because the Euler classes

X(!j) are zeros, furthermore the Euler class X(T(Sn-l)) = X(~l) V X(!2) V... VX(!k) of

an even dimensional sphere is non-zero. Therefore the space is of constant sectional curva-

ture.
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