TWO POINT HOMOGENEOUS SPACES ARE SYMMETRIC

by 👘

Z.I. Szabó

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

.

Elte University Department of Analysis Budapest Ungarn Two point homogeneous spaces are symmetric

Short topological proof

by Z.I. Szabó

£

Two point homogeneous spaces were studied by H. Busemann [2], G. Birkhoff [1], H.C. Wang [9] and J. Tits [8]. The last two authors have given a classification for these spaces and it turned out (just from this list) that these spaces are symmetric. They started with a connected locally compact metric space which could be also our starting point because the transformation groups acting transitively on such spaces are Lie groups furthermore the isotropy group describes a sphere as an indicatrix at any tangent space, i.e. the space is a Riemannian space.

For the direct proof (not using classification) of symmetricity see the works: J. Wolf [10], S. Helgason [4], T. Nagano [6] and H. Matsumoto [7]. All of these authors use group theoretic methods.

Our proof is simple topological. The main tool is the following

<u>Lemma</u> Let $X(\underline{m})$ be a continuous tangent vector field on the euclidean unit sphere $S_0^n \in \mathbb{R}^{n+1}$. Then an antipodal point-paar \underline{m}_0 , $-\underline{m}_0$ on S_0^n exists such that $X(\underline{m}_0) = -X(-\underline{m}_0)$.

We have to prove that the symmetric part

$$X_{sym}(\underline{m}) = \frac{1}{2}(X(\underline{m}) + X(-\underline{m}))$$

of X vanishes at least at one antipodal point—paar \underline{m}_0 , $-\underline{m}_0$. Assume the contrary, the normalized vector field $f = X_{sym} / ||X_{sym}||$ defines a fixpoint free map $f: S^n \longrightarrow S^n$. Therefore deg $f = (-1)^{n+1}$ follows ([5] p. 219). On the other hand $f(\underline{m}) = f(-\underline{m})$ for any $\underline{m} \in S^n$, so deg f is an even number ([3] p. 127). This contradiction proves the Lemma completely.

We <u>turn to the proof of the statement</u> indicated in the title.

6

We consider at a fixed point p of a two point homogeneous space M^n the field of the self-adjoint operators $A_{\underline{m}}(.) := \nabla_m R(.,\underline{m})\underline{m}$ acting in the tangent spaces of the unit sphere $S_p^{n-1} \in T_p(M^n)$ at the points $\underline{m} \in S_p^{n-1}$. Here $R(.,\underline{m})\underline{m}$ means the curvature tensor and $\nabla_m R(.,\underline{m})\underline{m}$ is it's covariant derivative w.r.t. \underline{m} .

The eigenvalues of $A_{\underline{m}}$ are constant along S_p^{n-1} because $A_{\underline{m}}$ is invariant under the action of the isotropy group (which group is transitive on S_p^{n-1} in this case considered). The $A_{\underline{m}}$ is skew in the sense: $A_{\underline{-m}} = -A_{\underline{m}}$. So if λ is an eigenvalue then also $-\lambda$ is an eigenvalue with the same multiplicity. Let us assume that we have a non-zero eigenvalue λ . We show that this leads to a contradiction and therefore $A_{\underline{m}} = 0$, $\nabla R = 0$ follows by a well known argument, which proves the statement completely.

Pick up a "south" point \underline{s} on S_p^{n-1} and let $\underline{E}_{\underline{s}}$ be the equator-sphere w.r.t. \underline{s} . We take also a smaller sphere S_+ above $\underline{E}_{\underline{s}}$ which is parallel to $\underline{E}_{\underline{s}}$ furthermore S_- is the reflected sphere: $S_- = -S_+$ under $\underline{E}_{\underline{s}}$.

Notice, that the eigensubspaces of $A_{\underline{m}}$ decompose the tangent space $T(S_p^{n-1})$ into continuous distributions. Furthermore the part of S_p^{n-1} under S_+ is contractible, therefore any eigenvector $X_{\underline{s}}$ at \underline{s} with the eigenvalue λ can be extended into a continuous vector field X of S_p^{n-1} such that:

(1) X_m is an eigenvector with the eigenvalue λ at any point,

(2) It does not vanish under S_+ and it vanish above S_+ .

Now we apply the Lemma to this vectorfield X. The points \underline{m}_0 , $-\underline{m}_0$ could lay only between S₊ and S_{_} because X is non-vanishing under S_{_} and it is vanishing above S₊ everywhere. At the point \underline{m}_0 the non-zero vectors $X_{\underline{m}_0}$ and $X_{-\underline{m}_0} = -X_{\underline{m}_0}$ are eigenvectors of $A_{\underline{m}_0}$ with the eigenvalue λ , therefore $X_{-\underline{m}_0}$ is an eigenvector of $A_{-\underline{m}_0} = -A_{\underline{m}_0}$ with the eigenvalue $-\lambda$. This is a contradiction, and so any eigenvalue of $A_{\underline{m}}$ is zero.

<u>Remark</u> The odd dimensional case can be proved easier. In this case the eigenvalues of $R(.,\underline{m})\underline{m}$ are constant on S_p^{n-1} . These eigenvalues must be equal because in the opposite case the eigensubspaces split the tangent space $T(S_p^{n-1})$ into non-trivial continuous distributions: $T(S_p^{n-1}) = \xi_1 \oplus \xi_2 \oplus ... \oplus \xi_k$. This is impossible because the Euler classes $\chi(\xi_i)$ are zeros, furthermore the Euler class $\chi(T(S^{n-1})) = \chi(\xi_1) \vee \chi(\xi_2) \vee ... \vee \chi(\xi_k)$ of an even dimensional sphere is non-zero. Therefore the space is of constant sectional curvature.

The author would like to express many thanks to Professor Andras Szücs for the valuable discussions.

References

- G. Birkhoff, Metric foundation of geometry I, Trans. of th. Am. Math. Soc.
 vol 55 (1944), 465-492
- [2] H. Busemann, Metric Mathods in Finsler spaces and in the Foundations of Geometry
- [3] M.J. Greenberg, J.R. Harper, Algebraic Topology, The Benjamin/Cummings Publ. Comp. 1981
- [4] S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299

[5] P.J. Hilton, S. Wylie, Homology theory, Univ. Press Cambridge 1960

[6] T. Nagano, Homogeneous sphere bundles, Nagoya Math. J. (1959), 29-55

[7] H. Matsumoto, Quelques remarques sur les espaces riemanniens isotropes.
 C.R. Acad. Sci. Paris 272 (1971) 316-319

 [8] J. Tits, Sur certaines classes d'espaces homogènes de groupes de Lie, Mem., Belg. Acad. of Sci. 1955

٣

[9] H.C. Wang, Two point homogeneous spaces, Ann. of Math. 55 (1952), 177-191

[10] J.A. Wolf, Spaces of constant curvature, McGraw-Hill, 1961

المريد من الم