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1 Introduction

In [10] (1879) Markoff proved a celebrated theorem about Diophantine ap-
proximation. For a real number # and (rational) integers p, ¢ let

v(9) = inf{c: |0 — p/q| < ¢/¢* for infinitely many ¢}.

Then there exists a discrete set of values v, the so-called Markoff spectrum,
decreasing to 1/3, with 1/3 as unique cluster point, such that if »(8) > 1/3
then v(8) equals one of the v;.

The Markoff spectrum is related to the positive infimum of indefinite
quadra-tic forms. Namely, let

S(X,Y) = aX? 4 bXY +cV? D(f) = b — 4ac > 0,

and let
u(f) = inf{|f(m, )| (m,m) € Z x Z\ (0,0)}.

If u(f)//D(f) > 1/3, then u(f)/+/ D(f) is in the Markoff spectrum. In this

case f is equivalent to a form with integer coefficients and such a form is
called a Markoff form.

In [11] (1880) Markoff also showed that the numbers v; can be calculated
by the integer solutions of the Diophantine equation

2 +y? + 2* = 3zyz.
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A positive integer z appearing in a solution is called a Markoff number and
2/v92% — 4 is in the Markoff spectrum.

Markoff proved these results using the theory of continued fractions, see
also Dickson [6] (1930). Frobenius (7] (1913) opened the way for a proof in
the context of indefinite quadratic forms which was completed later, see in
particular Cassels [2] (1959).

The theory of the Markoff spectrum got a new impetus with its interpre-
tation in the context of hyperbolic geometry, see Cohn [3] (1955), (4] (1971),
Lehner/Sheingorn [9] (1984), Haas [8] (1986) and in particular the surveys
[13] (1993) and Cusick/Flahive [5) (1989). See also Schmidt/Sheingorn [14]
for a recent contribution.

In this context, Riemann surfaces of constant negative curvature —1 and
their closed geodesics are considered. To be more precise I introduce some
notation. Let H be the hyperbolic plane (the upper half plane). Let ['(N) be
the principal congruence subgroup of the modular group of level N. Then
we have the following theorem of Lehner/Sheingorn [9]. Let u be a simple
(without self intersection) closed geodesic of the Riemann surface H/T'(3).
Then there exists a Markofl number z such that

3z = 2cosh(L(u)/4)

where L(u) denotes the length of u. Conversely, if z is a Markofl number
then there exists a simple closed geodesic w on H/'(3) such that

3z = 2cosh(L(u)/4).

One proof of this result uses the fact that simple closed geodesics in H/T'(3)
are in a large distance from the cusps where the distance has to be defined
in an appropriate way.

In this paper I give some new geometric interpretations in the theory of
the Markoff spectrum. A measure for the distance of a closed geodesic of a
Riemann surface M to the nearest cusp of M is introduced which corresponds
exactly to the Markoff forms giving thus a geometric interpretation of these
forms. This measure can be used for all closed geodesics. But of particular
interest is its application to the systoles (the shortest closed geodesic) of the
surfaces H/T'(N). In [15] I gave a method for calculating the number of sys-
toles of H/['(N). Thereby, systoles are classified with respect to the measure
introduced above. In [15] this measure was called the degree of a systole. 1t
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turns out that the systoles in H/I'(N) with a high degree with respect to
N (which means that they are far away from all cusps) correspond exactly
to (integer) multiples of the simple closed geodesics of H/T'(3). So, instead
of simple closed geodesics of H/['(3) in the theorem above, one can consider
systoles of H/T'(N), N = 3,4,5,.... This shows that the Markoff spectrum
is not only related to ['(3), but to all principal congruence subgroups I'(N).
Actually, there is a relation to even more subgroups of the modular group
since the definition of the degree of a systole can be extended to them.

Conversely, the theory of the Markoff spectrum gives new results concern-
ing the number of systoles of H/I'(N). I shall classify all systoles of degree
A in H/T(N),N =3,4,..., with A/N > 1/3.

The paper is organized as follows. In section 2 the measure for the systoles
in H/T(N) is explained. In section 3 the results in the context of the theory
of the Markoff spectrum are given. I also notice the relation to the so-called
uniqueness conjecture and give some new results in this context. In section
4 some generalizations are treated.

2 Systoles on H/T'(N)

Definition (i) A surface M is a Riemann surface of constant negative curva-
ture —1. If M has non-empty boundary, then this should consist of a finite
number of disjoint components which are simple closed geodesics. They are
called boundary geodesics.

(ii) In order to simplify to notation I shall sometimes say that the cusps
of a surface M are closed geodesics of length zero. Consequently, they are
also treated as components of the boundary of M and they are also called
boundary geodesics.

(iii) H denotes the upper half plane.

(iv) A Fuchsian group is a discrete subgroup of

SL(z,R);{l‘; fl]

(v) Let v € SL(2,R). Then tr(y) is the trace of ~.

a,b,c,d € Rad — be = 1}.

The following result is well known.



Theorem 1 (i) A surface M can be written as M = H/[' for a Fuchsian
group T

(ii) Let y € I', |ir(y)| > 2. Then M contains a corresponding closed geodesic
u such that for an integer n

[tr(¥)] = 2 cosh(nLl(u)/2)
where L(u) is the length of u. O

Definition (i) A closed geodesic u of a surface M = H/I is in this paper
considered as having no orientation and as primitive (we only go around it
once; equivalently, the corresponding v € [ is not a power of another element
in ).

(i1) T denote by tr(u) the quantity 2cosh(L(u)/2).

(i11) To w corresponds the union of the conjugacy classes of an element y € T
and of its inverse (since our closed geodesics have no orientation). I shall say
that an element of this extended conjugacy class corresponds to u.

(iv) A systole of a surface M is a shortest closed inner geodesic of M where
"inner” means that it is not a boundary geodesic.

Remark 1 Let u be a closed inner geodesic in a surlace M. Assume that u
is not simple. In this case, if we take u as a point set, then u has a subset v’
which is homotopic to a closed geodesic v # . v is shorter than v’ and hence
shorter than u. If M is not a pair of pants (see the following definition),
then v’ can be chosen such that v is an inner geodesic of M. It follows that
a systole of M is always simple if M is not a pair of pants.

Definition A pair of pants is a surface M of genus 0 with three boundary
components which are simple closed geodesics or cusps (a sphere with three
holes, or two holes and one puncture, or one hole and two puntures, or three
puncures; hereby the holes are simple closed geodesics in the hyperbolic
metric).

For a proof of the following two results see for example Buser [1].

Proposition 1 Let M be a pair of pants with boundary geodesics a,b,c.
Then the fundamental group of M is a free group of two generators. The
generators A and B can be chosen such thal they correspond to a and b,
respectively, and such that AB correspond to ¢. O



Lemma 1 Let M be a pair of pants with boundary geodesics a,b,c. Then
there ezists a unique common orthogonal t between a and b. [f the length of
a and b are fized and the length of ¢ varies (and is finite), then L(c) grows if
and only if L(t) grows. O

Remark 2 Let M be a pair of pants with boundary geodesics a, b, ¢ and let
{ be the common orthogonal between a and b. If L{a) and L(b) are fixed
and L(c) varies (and is finite), then Lemma 1 indicates that the distance
between a and b can qualitatively be measured by the length of ¢. This is
of particular interest if a is a cusp since then the length of ¢ is infinite and
gives no information while the length of ¢ remains a free parameter.

Definition Let N > 2 be an integer. Let

1l4+aN bN
cN 1+ dN

55(2,2):{[‘; 3]

I remark that I'(/NV) has no elliptic elements and that H/'(N) is a surface
with cusps. If v € [(N), then tr(y) = £2 mod (N?) as it is easy to see. The
following result is an immediate consequence.

[(N) = { ] € SL(2,2)

a,b,c,d € Z}

where

a,bc,d € Z,ad—-bczl}.

Lemma 2 The systoles of H/T(N) have trace N* — 2. Every non-trivial
element v € ['(N) with tr(y) = 2 corresponds to a cusp and every v € ['(N),
with |tr(y)] = N? — 2 to a systole. O

Lemma 3 Let u be a systole in H/T'(N) and let U € T'(N) correspond to u.
Let V € T(N) correspond to a cusp v in H/U(N). Let

¢ /
U - 1+aN bN ] o V:[l-{—aN bN

cN 1 +dN N 1l—aN |’

Then
tr(UV) =2+ N*(2a+ N)a' + cb' + b’ —1].



Proof. By Lemma 2 we have d = —a— N. The lemma follows by a calculation.
|

Definition (i) Let U correspond to a systole and V to a cusp in H/I'(N).
Let

g [1+aeN bN | yo|1+aN ¥N
T eN 1—aN-N2| ™ = ¢N 1-dN |

Then I shall write U = U(a,b,¢) and V = V(a', ¥, ).
(i1} For U and V as above define

AU, V) = |(2a + N)a' + cb’ + b
(iii) For a systole u in H/['(N) define
A(u) = min{A(U, V) : U corresponds to u, V' corresponds to a cusp}.

A(u) is called the degree of u.

Lemma 4 For the calculation of the degree of a systole u in H/T(N) il is
sufficient to consider elements V = V(d', V', ') corresponding to a cusp such
that @', b, ¢’ have no common factor bigger than 1.

Proof. If v is a common factor of &', V', ¢/, then W = W(d'/v,b' [V, ' [v) also
corresponds to a cusp in H/[(N). The lemma now follows by the definition
of A(u). O

Proposition 2 Let u be a systole in H/T(N) and let U = U{a,b,c) corre-
spond to u. Then

A(u) = min{|em? — (2a + NYymn — bn?*|: (m,n) € Z x Z\ (0,0)}.

Proof. Let S correspond to u and T correspond to a cusp in H/T'(N) such
that A(S,T) = A(u). Then there exists an element W € SL(2,Z) such that
U=WSW'or U = WS™'W~L. Since by definition A(S,T) = A(S™',T)
we can assume that U = WSW=. Let V = WTW~'. Then V corresponds
to a cusp in H/I'(N) (by Lemma 2) and A(U,V) = A(S,T) = A(u) which
shows that for the calculation of the degree of w it is sufficient to consider U.
By Lemma 4 it is sufficient to consider V = V(¢',¥,¢') corresponding to a
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cusp such that a,¥', ¢’ have no common factor. Since the determinant of V
is 1, we have
alz — _blcf

which implies that |§'| and |¢/| are squares. Therefore, we can set
b’ = )62) C’ = —721 (L’ = _ﬁ’y
where # and ~ are integers. 1 notice that the signs can be choosen in this
way since A(S,T) = A(S,T71).
Conversely, take integers s and ¢, not both zero. V' = V'(—st,s?, —t?)

then corresponds to a cusp in H/T(N) by Lemma 2. The proposition follows.
a

Remark 3 The degree of a systole corresponds to the distance to the nearest
cusp if this distance is measured as indicated in Remark 2. This is so since by
Proposition 1 the element U corresponding to a systole « and the element V
corresponding to a cusp in H/'(N) generate the fundamental group of a pair
of pants where the third boundary geodesic has trace 2 + N*(A(U, V) —1).

3 Markoff forms and systoles

Definition (i) A Markoff number is a positive integer z which appears in an
integer solution of the Diophantine equation

2t 4yt + 2% = 3ayez. (1)
A solution of (1) in integers (z,y,2) with 0 < z <y < 2 is called a Markoff
triple.
(iii) Let f(X,Y) = aX? + bXY + cY? be a quadratic form with discrimant
D(f) =b* —4ac> 0. Let
k() = inf {1 (m,m)| : (m,m) € Z x Z\ (0,0)}.

I u(f)//D(f) > 1/3 and if the coefficients a, b, c of f are integers with no
non-trivial common factor, then f is called a Markoff form.

(iv) Two quatratic forms f(X,Y) = ¢X?4+bXY +cY?and g(X,Y) = a'X?+
VXY + c'Y? are equivalent if there exists a matrix

Z=[S t],sv—tu:ﬂ:l
v

7



such that g(sX +tY,uX +vY) = f(X,Y).

Remark 4 Let (z,y,2) be a Markofl triple. Then z, y, z are mutually
co-prime, therefore there exists an integer ¢, 0 < ¢ < z/2 such that gz =
y mod (2} or —gz = y mod (z). Moreover, by (1) there exists an integer r
such that ¢ +1 = rz.

Theorem 2 Let f(X,Y) = aX? + bXY + cY? be a quadratic form with

discrimant D(f) > 0 and pu(f)//D(f) > 1/3. Then [ is equivalent to a
multiple of a Markoff form. Moreover, there exists a Markoff triple (z,y, z)

with q,r defined as in Remark 4 such that f(X,Y) is a mulliple of the form
g(X,Y)=2zX?— (32 —2¢) XY — (3¢ —r)Y?

and p(g) = z.

Proof. See for example Cassels [2]. O

Theorem 3 Let u be a simple closed geodesic of H/T'(3). Then there ezists
a Markoff number z such that

3z = 2cosh(L(u)/4)

where L(u) denoles the length of u. Conversely, if z is a Markoff number
then there ezists a simple closed geodesic'u in H/T'(3) such that

3z = 2cosh(L(u)/4).

Moreover, if

v=[5 5]

is a matriz corresponding to a closed geodesic u in H/T'(3), then u is simple
if and only if ‘
v X? — (o = 8)XY — BY?

is a multiple of a Markoff form.
Proof. See Lehner/Sheingorn [9]. O

Now we can formulate the corresponding results in the context of systoles.
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Theorem 4 Let (z,y,2) be a Markoff triple. Lel q and v be defined as in
Remark 4. Let N =3z, a= —q,b=3¢—7r, c= 2. Then
1+aN bN ] _ [ 1 =3qz  32(3¢—r7)

U=U(a,b,c)= cN 1—aN - N? 322 1+ 3qz—97°

corresponds to a systole in H/T(32) of degree .
Proof. The determinant of U(a, b, ¢) is
1—N¥a*+aN+bc+1)=1~N*(¢* —3gz+@Bk—r)z+1)=1

since ¢° + 1 = rz. It follows by Lemma 2 that U corresponds to a systole u
in H/T'(3z). By Proposition 2 the degree of u is

A(u) = min{|ecm® — (2a + N)mn — bn?|: (m,n) € Z x Z\ (0,0)}.
This is the same as
A(u) = min{|zm? = (32 = 2¢)mn — (3¢ — r)n*| : (m,n) € Z x Z )\ (0,0)}.
By Theorem 2 this is a multiple of a Markoff form and A(u) =2. O

Corollary 1 Let w be one of the systoles described in Theorem 4. Then
there ezists a simple closed geodesic v’ in H/T(3) of the same length as u.
Moreover, u' 1s the image of u under a covering map and the same matrices
correspond to both u and '

Proof. By Theorem 4, u lies in H/T(N) with N = 3z for a Markoff number
z. Since ['(3z) is a normal subgroup of I'(3), it follows that H/T'(N) is a
cover of H/T'(3). By Theorem 3 the image v of © under this covering map is
simple. O

Remark 5 Let u' be a simple closed geodesic in H/['(3). As remarked in
the introduction, u’ is characterized by the fact that it is far away from the
cusps, a property which is of course shared by its cover, the systole u of the
same length in some H/I'(3z). We said that in this paper closed geodesics are
always primitive. But let as drop this restriction for a moment and consider
multiples of the closed geodesic u'. They share of course the same property
as u’ since they are as far away from the cusps as u’. They also have local
covers of the same length which are systoles in some H/I'(N) as we shall see
in the next theorem. In fact, all systoles in H/['(N) of a high degree with
respect to N are obtained in this way.
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Theorem 5 Let Syst(I'(N), N > 3) be the set of all lengths of systoles u in
a H/D(N) with A(u)/N > 1/3. Let S(I'(3)) x Z+ be the set of all lengths of
the simple closed geodesics of H/T'(3) multiplied by a positive integer. Then
Syst(T'(N),N 2 3) and S(T'(3)) x Z,. are isomorphic and the isomorphism

is given by identification of corresponding matrices.

Proof. (i) Remark that
A(u) S Alu)

VNZ2 -4 N

n

and that
< 1 nel
3 +
Jen+1z—a ¥ ’
so it is no restriction if we replace the condition A(u)/v/N? —4 > 1/3 by
the condition A(u)/N > 1/3, and vice versa.
(i1) For every Markoff triple (z,y, z) define ¢ and » as in Remark 4 and
let u, be the simple closed geodesic in H/T'(3) with 32 = 2 cosh(L(u,)/4) as
it is possible by Theorem 3. Let

U. = 1-3¢z 3z(33¢g—7) | _ | a b,
= 322 14+3gz—=92 | | ¢, d,

be a corresponding matrix as in Theorem 4. Then an n-fold multiple of the
closed geodesic u, (compare Remark 5) corresponds to U?. We have to show
that U? corresponds to a systole u(n) in an appropriate H/['(N) and that
Au(n))/N > 1/3.

U, is conjugate in SL(2,R) to a matrix

[ ezp(s;) 0 ]

0 exp(—s;)
and 2cosh s, = tr(U,) = 9z° — 2. Therefore 2 cosh(s,/2) = 3z. Then
tr(Ul) = 2cosh(ns,) = (2cosh(ns, /2))? — 2.

It follows that N.(n) = 2cosh(ns,/2) is an integer and U corresponds to a
systole u(n) in H/T'(N,(n)).

bet (n) be(n)
Ur = l c:(n) dj,(n) } '

10



Then it is easy to see that there exists an integer t(n) such that {(n)b, = b,(n),
t(n)e, = c;(n), and t(n)(a; — d;) = a.(n) — d,(n) which implies that the
quadratic form

F(X,Y) = c;(n)X? = (a:(n) — d,(n))XY = b,(n)Y?
is a multiple of the form
c: X% = (a, —d, )XY = b,Y?

which implies by Theorem 4 that it is a multiple of a Markofl form and hence
A(u(n))/Ne(n) 2 1/3.

(iii) Conversely, let u be a systole in H/[(N) with A(w)/N > 1/3. Let
U = Ul(a,b,c) correspond to u. Then

f(X,Y) =cX® = (20 + N)XY — bY?
is a multiple of a form g(X,Y’) by Theorem 4 where
g(X,Y)=2zX?— (32 —2¢)XY — (3¢ — r)Y2

Here z is a Markoff number and ¢ and r are defined as in Remark 4. We
therefore have

c? c?

D(fy=N'—-4= Z—ZD(g) = ;(932 — 4).
Hence (¥, ¢) is a solution of Pell’s equation
, 9z2—4
- 2

2 _
p S =4 (2)

The smallest solution in positive integers of (2) is (3z, z) as it is easy to see.
Instead of 3z we can write 2cosh(s,/2) as we have seen in (ii). All other
positive integer solutions of (2) have the form (P, @), n a positive integer,
with

P, = 2cosh(ns,/2)

and
_ 2z sinh(ns,/2)

V9z2 —4

11
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see for example [12], pg. 93, for this fact. This implies that N equals one
of the N,(n) in (ii) and u is the corresponding u(n) in (ii). This proves the
theorem. D

Remark 6 Let (z,y,2) be a Markoff triple. The so-called uniqueness con-
jecture says that a Markoff triple is already determined by z. 1 shall give an
equivalent formulation in the context of systoles.

Definition Let u be a closed geodesic in H/'(V). The eztended isometry
class of u contains a closed geodesic v of H/T'(NV) if this surface has a (possibly
orientation reversing) automorphism ¢ with ¢(u) = v.

Remark that systoles in the same extended isometry class have the same
degree since the degree is a geometric measure, compare Remark 3.

Theorem 6 The uniqueness conjecture is equivalent to the conjecture that
for no N, the surface H/T'(N) has more than one extended isometry class of
Markoff systoles where a Markoff systole u is characterized by A(u)/N >
1/3.

Proof. By Theorem 5, we already have a complete list of NV such that H/T'(N)
contains a Markoff systole. Moreover, we can restrict to the Markoff systoles
of "minimal” length, appearing in Theorem 4, which have the same length as
the simple closed geodesics in H/I'(3). | further remark that it follows by an
appropriate proof of Theorem 3 that the uniqueness conjecture is equivalent
to the conjecture that if two simple closed geodesics in H/[(3) have the same
length, then they are in the same extended isometry class. Since the surfaces
H/T'(3z), z a Markoff number, are covers of H/T'(3) (compare Corollary 1),
the theorem follows. O

I also notice the following results which I did not find in the literature.

Lemma 5 Let (z,y,2) and (2',y, ") be two Markoff triples and let ¢ and ¢'
be defined as in Remark 4. If z =2 andq=¢', thenz =2’ and y = ¢'.

Proof. By Theorem 4, (z,y,z) and ¢ define a matrix U = U(a,b,¢) cor-
responding to a systole in H/['(3z) with @ = —q and ¢ = z. So, for both
triples, this matrix is the same which implies that the corresponding systoles
are (trivialy) in the same extended isometry class. Hence Theorem 6 implies
the lemma. 0O
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Theorem 7 Lel (z,y,2) be a Markoff triple. Lel

‘= 3z — /b2t —4
N 9

F4

and let
RQ(z)={n€eZ:{<n<2/2,n*=—1mod (2)}.

If Q(z) has only one element, then (z,y,z) is delermined by z.

Proof. Let
| 1=3qz  32(3¢—7)
- 322 14 3qz—92°

be defined as in Theorem 4. Then det(U) = 1 implies that

U

" —3qz+14+(3qg—r)z=0 (3)

Let
fX,Y)=2X* = (=2¢+32)XY — (3¢ — »)Y2

Then 3g—r > z since [f(0,1)] > z. It follows by (3) that ¢*—3¢qz+1+22 <0
which implies ¢ > ( and therefore ¢ € Q(z). The theorem now follows by
Lemma 5. 0O

Remark 7 However there exist integers m such that Q(m) has more than
one element, for example Q(1130) = {437,467}, ({ = 431.6), or Q(2005) =
{782,822}, ({ = 765.8).

Corollary 2 A Markoff triple (z,y, z) is determined by z if z s a power of
a prime.

Proof. For p = 2 the claim is obvious since no Markoff number is a multiple
of 4, so assume that z = p", p # 2 a prime, such that (J(z) has two different
elements a and b. Then a? — 4% = 0 mod (2) by definition and hence a +
b = 0 mod (p) and ¢« — b = 0 mod (p) which gives a = 0 mod (p) which is
impossible. O
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4 Generalizations

The definition of the degree of a systole can be easily generalized to other
closed geodesics of H/['(N) as follows. Let u be a closed geodesic and U a
corresponding matrix. Then

U= 1+alN bN
- cN 1~aN —-kN?

for a non-zero integer k. We can thus write U = Uy(a,b,c). Then the degree
of u is defined as (compare Proposition 2)

A(u) = min{em? — (2a + kN)mn —~ bn? : (m,n) € Z x Z\ (0,0)}.

So, instead of systoles we could work with closed geodesics with a fixed &
(which determines the length of the geodesic). In the case of systoles however,
the situation is particular nice.

The definition of the degree of a systole (and of other closed geodesics) can
be applied for other subgroups of SL(2,Z) than ['(N).

Definition For N a positive integer let I')(V) and [';(N) be the subgroups
of SL(2,Z) containing the matrices of the form

1+aN BN
c 1+ dN

and
14+ 2aN 26N
2¢ 14+ 2dN |’

respectively, where a, b, ¢, d are integers.
Remark that this notation is slightly different from the notation in [15].

Remark 8 We have seen in Theorem 3 that the Markoff numbers are closely
related to the simple closed geodesics of H/I'(3). There is another well known
surface with the same relation, namely the modular one punctured torus.
This surface M has genus 1 and one puncture and it has three different
systoles (this determines the surface). M can be written as H/I" where I" is
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a subgroup of SL(2,Z). The lengths of the simple closed geodesics of M are
just half of the lengths of the simple closed geodesics of H/T(3).

Concerning the systoles we have a similar situation. Instead of a systole
u of degree z in H/I'(3z), z a Markoff number, we can use a systole v which
has half of the length of u in another congruence subgroup of SL(2,Z), but
which has the same degree. Moreover, « has a corresponding matrix which
is the square of a (certain) corresponding matrix of v,

Theorem 8 Let z be a Markoff number. Let N = 3z + 2. Then there exists
a systole of degree z in H/T1(N) if z is odd and in H/T2(N/4) if z is even.
Moreover tr(u) = z.

Proof. Let (z,y,z) be a Markoff triple and let ¢ and r be defined as in
Remark 4. Assume that z is odd. Then z and 3z + 2 are coprime, so that
there exists an integer ¢ with

g+tz =0 mod (32 + 2).

Let b= —r — 2qt — 3q — t%2 — 3tz. Let

| —g—tz—3z b
V_[ z q—I—tz]'

Then V € ['1(3z + 2) and |tr(V)| = 3z. It is easy to see that the systoles in
H/T(N) have trace N — 2, so U corresponds to a systole v.

Let
a3t w2 8]
Then
X"WX™ = [Q’J;”" 5_*717}.
Let

[ 1-3¢g2  3z2(3¢-7)
U= [ 327 14 3¢z —9z2° € I(32)

as in Theorem 4. Then X*UX ™" also corresponds to a systole u of degree z
in H/['(32). Set n = —t — 3. Then a calculation gives

-Vi=X"UX™
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which proves that the degree of the systole v equals the degree of u and
2L{v) = L(u).

If z is even, then the proof is similar and is left to the reader (one has to
use the fact that z = 2 mod 8 which is easy to see.) D
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