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Abstract

If MC N isa generic Cauchy—Riemann manifold and ¥ C N isa wedge domain with
edge M, then every bounded holomorphic function on % has an admissible limit at
almost every point of M. Moreover, if a holomorphic function f in ¥ has a distribution
boundary value (bvf) on M that is a bounded measurable function, then f is bounded
on every finer wedge near M, and its admissible limit equals (bv f)(p) at almost every
point p € M.

§1. Intr ion

In this article we prove the existence of pointwise boundary values of bounded holomorphic
functions in wedge domains with generic edges (Theorem 1). We also prove a more
technical result concerning the boundary values of non holomorphic functions in a standard
wedge with edge RN x R C RN x ¢£ (Theorem 4). Our work is motivated by a result of
Rosay [9] concerning the regularity at the edge of a holomorphic function in a wedge whose

distribution boundary value i8 a continuous function on the edge. Another specific reason

¥ Research supported by the Max—Planck—Institut fiir Mathematik in Bonn.
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for this article is that we want to apply the main regult, Theorem 1, in a forthcoming paper
"Mappings of strongly pseudoconvex Cauchy—Riemann manifolds", and there does not
seem to exist a precise }eference, in spite of the fact that the question of boundary values of
holomorphic functions has been one of the central subjects of complex analysis for some
time. Most of the existing results concern the boundary behaviour of holomorphic functions
on domains with smooth boundaries (see [5], [8], [12] and the references therein). Another
type of domains on which this question has been investigated to some extent are the
wedges W = R¢ +il' C Cz with the linear totally real edge R¢ C Ct, where T" C Rr? is an
open cone with vertex at the origin. See Vladimirov [14], Rudin [10], Koranyi [6,7], and
Carmichael and Mitrovic [3]. We wish to point out that our methods are very similar to

those used by Rosay in [9).

Let n,{ € ﬂ+. In the space €% x Cl we denote the coordinates by (z,w), where z € C°,
w=s+it € €4 and t = (t},..,t ). Let M C € be a smooth real manifold, defined in
a neighborhood of the origin by

w =8 + ip(2,2,8), (1.1)
where ¢ is a smooth mapping with values in IRl, 9(0) =0, dy{0)=0. Then M isa
generic Cauchy—Riemann (CR) manifold of CR dimension n and of real codimension

L

If I‘C[Rt is an open, connected, convex cone with vertex 0 € [Rt, we define the

corresponding wedge ¥ = ¥(I') C ot with edge M by



.

¥I) = {(zw) € @ Inw — p(z7,Re w) €T}
= {(z,5+ip(z,7,8)+it)z € €5 €RE, t €T (1.2)

Throughout this paper we shall understand M and ¥ as germs of sets at the origin in
ot £.

Fix a point p = (pl,pz) EM, p, € ", P, € C‘e. A p—curve in ¥ is a continuous curve
A(t) € ¥ (0<t < 1) with lim A(t) = p. Denote by A(t) the projection of A(t) onto
t=1
the plane Lp ={z=p;} x ¢¢ in the direction of TgM, i.e., A(t)— A(t) is parallel to
1

C
P

space of M at p, of complex dimension n.

TIM for all 0<t < 1. Here, T%M =T MNiT M is the maximal complex tangent

Let Yp = Lp N % this is a wedge in Lp with the totally real generic edge M N Lp .

1 1 1 1

Definition. A p—curve A(t) in ¥ is called admisgible if there is a ty <1 so that

a) A(t) € Tp (ty<t<1), and A(t) is nontangential in ‘H’p in the sense that
1 1

[A(t)—p| €A - dist (A(L),0%_ ) (t0$t<1)
P

for some A < o, and

(b) lim |A(t) = A(t)| %/dist(A(t),d ¥,)=0.
t-1 1

A continuous function f on # is said to have the admissible limit B at p € M if
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lim f(A(t)) = B (1.3)
t=1

for every admissible p—curve A(t) in #.

THEOREM 1.

Let MCCH¢ bea Cauchy—Riemann manifold (1.1) of class %’2, and let ¥ bea
wedge (1.2) with edge M. Then every bounded holomorphic function f on ¥ has an
admissible limit f*(p) at almost every point p € M with respect to the surface measure
on M.

*
Of course, the function f € L®(M) is also the distribution boundary value of f on M is
this case (see definition below).

Remark 1. This theorem is well-known in the case £ =1 when M is a hypersurface in
¢it! (see [8] or [12]) . Our terminology differs somewhat from the standard one in this
case. Our notion of an admissible limit coincides with Rudin’s restricted K-limit (K for
Koranyi), see [12, p. 170]. On the other hand, Koranyi [7] used the term admissible limit
for what is now usually called a K-limit (see [12, p. 76]). In this case one requires (1.3)

along every p—curve A(t) in ¥ satisfying the weaker condition
| A(t) —p| < a - dist(A(t),0¥) (0St < 1)

for some a < o. We do not know whether our Theorem 1 holds with admissible limits

replaced by K-limits.



—5—

Remark 2. One can obtain better results concerning the convergence of f in directions
parallel to TgM if one imposes suitable conditions on the geometry of M. As we shall see
in the proof, the crucial property is the existence of sufficiently large complex discs in ¥

in directions parallel to Tg

M on which one can apply the Lindel6f—Cirka principle.

Remark 3. Although Fatou—type theorems are most interesting in the case of holomorphic
functions, they can often be proved also for non—holomorphic functions whose d—derivative
does not grow too fast near the boundary. In the situation of Theorem 1 we suppose that
M is of class 572 for some k 20,and f€E ¥ 1( ¥) is a bounded function satisfying

the estimates

| B(zw)| = o(dist((z,w),M)"1/?),
(14)
| Bi(z,w)| = o(dist((z,w),M) <),

Then the conclusion of Theorem 1 holds for f. Here, as usual,

=X o/ fﬁj-dij + ¥ 8/ ﬁj-dﬁj. We shall indicate the proof of Theorem 1 under these
weaker hypotheses at the end of section 2 below.

Foreach p€ M and a > 1 we can define a nontangential approach region & g C ¥ by

.cag = {(z,w) € ¥:|(z,w)-p| < a - dist((z,w),d ¥)}.

Of course .@g may be empty if a is too small, depending on the size of the cone I

determining ¥. However, a8 a -— m, the regions 2 g increase to the entire wedge ¥.
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A continuous function f on ¥ has the nontangential limit B at p€ M if

lim f(z,w) = B
.9;3( zZ ,W)=p

for all (sufficiently large) a.

A simple calculation shows that we can choose a sufficiently small neighborhood
U="U(p,e) of p in Cn'” such that every p—curve A(t) in .anU is admissible.

Thus we have

COROQOLLARY 2. Under the hypotheses of Theorem 1, f admits a nontangential limit
*
f (p) at almost every point p € M.

Theorem 1 still holds if we only assume that the holomorphic function f on ¥ is
bounded on every finer wedge ¥’ < ¥ in a neighborhood of M. (Recall that a cone
| IRl is finer than I" if [/ NS is a relatively compact subset of ' N S, where S is
the unit sphere in RY. Similarly, a wedge ¥’ = ¥(I'’) of the form (1.2) is finer than
¥ = ¥(I') if T/ is finer than T. We shall denote this by ¥’ < ¥.) Our proof will
show that the last condition is satisfied if f admits a distribution boundary value (bv f)

that is a bounded function on M.

Denote by d = d(z,w) the distance from a point (z,w) € ¥ to the edge M. (Clearly d
is proportional to |Im w — ¢(z,z,Rew)|). Suppose that M is of class #5t2 for some
kel 4 If f is a holomorphic function on ¥ satisfying the growth condition



.

|f(z,w)| = 0(d(z,w)™5), (1.5)

then f admits a distribution boundary value (bv{) on M (Straube [13] and Rosay [9]),
in the sense that for each test function y¢€ 3’15+1(Cn+l) supported in a small
neighborhood of 0 we have
(bvfx)= lim x - 1(z,8+ip(z,2,8) +it)d(z,8), (1.6)
PI 31’-—'0 nlel
where di(z,8) is the Lebesque measure on ¢®xR¢ and T’ is any cone finer than I'. The
same holds if we replace t €'/, t — 0 by a sequence of mappings t j(z,s) €T’ that tend

k+2

to zero in the & sense when j— m.

PROPOSITION 3.

Suppose that f € 0( #) satisfies the growth condition (1.5). If (bv f) is (the integration
against) a bounded measurable function on M, then f is bounded on every finer wedge
¥’ < ¥ near M, and it has the admissible limit (bv f)(p) at almost every point
pEM.

Remark. Another sufficient condition for a holomorphic function f € J( #) to be bounded
near the edge was found by Zav’yalov and Drozhzhinov [15], Khurumov [16], and Pinfuk
and Hasanov [17]: If { is bounded on a manifold M C ¥ of class ¢ 2 with boundary M
(s0 dim M = dim M + 1), then f is bounded on every wedge ¥’ < ¥ near M.

When the function f is bounded (k=0), it follows immediately from the
Banach—Alaoglu’s theorem that bv{ is a bounded measurable function on M. Namely,

given any sequence t.i eEr’, tj = 0, the family of functions
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(z,8) — 1(z,8 + ip(z,2,8) + itj)
* *
is bounded in L® = (Ll) , 80 there is a subsequence converging to f € L in the weak—x
*
topology. Hence (1.6) holds for this sequence, with bv{ replaced by f . This proves that
*
bvf=1 €L® asdistributions on M.

A natural question is whether Theorem 1 holds in the case when (bv{) exists and is an
integrable function on M, i.e., (bvf) € Ll(M). It seems that a positive answer is known

only for the case when M is hypersurface [8].

In this context we recall a result of Rosay [9):
If (bvf) is (the integration against) a continugus function on M, then f extends
continuously from every finer wedge ¥’ < ¥ to M, assuming the values (bvf) on M.

See also the papers by Baouendi and Treves [1,2].

To prove the announced results we use a standard method: we straighten the edge M
along the totally real submanifolds M, = {z =const} MM and study the boundary
behavior of non—holomorphic functions whose ?w—derivatives satisfy good growth

estimates near the linear edge " x RY. This will be explained in the following sections.

It is my pleasure to thank the Max—Planck—Institut fir Mathematik in Bonn for its

hospitality and support.
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§2. Boundary values of functions with bounded @

We use the same notation as Rosay in [9]. Let N,L€ X + In the space RN x ¢¢ we

denote the coordinates by (x,w), w =8 + it. Let 1"0 be the cone
z .
r'y= {t=(t1,...,t£) ER": |tj| <ty, 2£j< ¢},
and let ¥ be the corresponding wedge

¥, =RY x (RY +i0p) = {(xs+it) : x RN, s €RE, 1 €T ).

The results announced in section 1 will follow from
THEOREM 4. Let g(x,w) be a continuously differentiable function on ¥/, satisfying

gl = o(67%),
| 0g/6w;| = 017+, 1<i< ¢ (21)

for some k €7, and > 0. If the distribution boundary value (bvg) on RY x R
(that exists according to Rosay [9]) is a bounded measurable function, then g is bounded
on 7/’0 near RN x IRZ, and there is a set F C RN [Rt of full measure so that at each
point (x,8) € F, the restriction g(x,-) to the wedge {x} x ([Rt +il'y) has the non-

tangential limit (bv g)(x,8).

Remark. Contrary to the first appearance this result is completely local since the growth

condition on 'ng is preserved if we multiply g by a smooth cut—off function
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¥ € KS(IRN x d:l) whose derivatives @¥/ Wj vanish to infinite order on RN x R¢
(1<jg ).

N

If g is bounded on ¥, the boundary value (bv g) exists and is in LORN x RY).

(See the remark following Proposition 3 above.) Thus we have

COROLLARY 5. If g is a bounded ¢ 1 function in YO satisfying (2.1), then at almost

every point (x,8) € RN x [Rl, g(x,-) has a nontangential limit at (x,8) within the wedge
{, .
{x} x (R” +ily).

In these resuits the variable x is merely a parameter, as we have no assumptions and

conclusions on the nontangential behavior of g in the x—direction.

Remark. Our condition (2.1) concerning the growth of 0.8 near the edge is not the best
one possible, but it is easy to verify and convenient to use. For functions of one complex
variable there is a sharper result, due to Nagel and Rudin [12, p. 235): If g is a bounded
¢! function in a rectangle Q = (a,b) x (0,c) C R? =€ such that g/ w € LP(Q) for

some p > 1,then lim g (x+iy) exists for almost all x € (a,b).
y-0

However, in most applications the condition (2.1) is sufficient. In the proof of Theorem 1
we ghall only need that @ _g is bounded. In the proof of the result by Nagel, Rudin, and
Wainger [12, p. 238] on nontangential boundary values of a function f € H®(. &) along a
¢! curve in the boundary of & that is everywhere transverse to the complex tangent

C

space T #9 one obtains a function g on Q as above such that

| 8g/ &% | = o((im w)~/?)
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We will first show how the results of section 1 follow from Theorem 4. The proof of

Theorem 4 will be given in section 3 below.

Let N = 2n, R%" = €™ Suppose that the manifold M (1.1)is of class #*12. We extend

k+2

the mapping ¢ toa ¢ map in a neighborhood of the origin in €™ x Cl so that

8y and its derivatives of order <k+1 vanishon " x RY. The extended map

¥(z,w) = (z,w+ip(z,w)) = (2,{(z,w))
) k+2 .. . .. 0, mné
isalocal ¢ diffeomorphism near the origin that maps ¢ x R™ onto M.

Let f be a holomorphic function on ¥ satisfying the hypothesis of Proposition 3. We
must show that the restriction of f to any finer wedge ¥’ < ¥ is bounded near M
and has the admissible limit (bv {)(p) at almost every point p € M.

Choose a wedge ¥ " sothat ¥’ < ¥" < ¥. The inverse images

6"1( ¥')C 6_1( ¥") C 6_1( ¥) are wedgelike domains near the origin, with the edge
" x [Rl. We can find a finite number of cones I‘1,I‘2,...,I‘V C IRl isomorphic to the cone
Iy so that the corresponding wedges 7l’j =¢"x (IR‘ + iI‘j) satisfy the following inclu-
sions in a sufficiently small neighborhood of the origin:

-1 ’ ¥ -1
] (V)CUI ijQ (¥").
j=

Let g=fod€ #5T2@& (¥)). Then |g| = 2(d™ ) on each wedge ¥, where d
denotes the distance from the wedge. The chain rule gives
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14

og/ O ; = Y o/ac, - 8¢/ O
s=1

Since |f| = d(d_k) on ¥, the Cauchy estimates imply |of/d¢ | = d(d_k_l) on ¥
for 1<s< £. We also have |0(s/ ﬁj| = 0(dk+1) by the construction of @, so it
follows that dg/ ﬁj is bounded on ¥ for 1 < j< £ Since the distribution boundary
value (bvg) (that exsts by [9]) is the pull-back of (bvf) by &, we conclude that
(bv g) € Lo(C" x IR‘). Theorem 4 now implies that g is bounded on each ¥ near
C” x IR‘, so f is bounded on ¥’ near M.

The second part of Theorem 4 implies that for almost every point p, = (zo,so) €ctx IR‘,
the restriction g(zj,*) has the nontangential limit (bv g)(zy8y) within the wedge
{z} x (IRl +il) at (z(,8;). Going back to f, this says that f(z,,) has the nontangen-
tial limit (bv f)(zy,{;) at (zp,{y) = #(z,8y) within the wedge {z =2zy} N ¥’. This
holds for every #’ < ¥, so the same is true for ¥.

It remains to show that f has the same admissible limit within the entire wedge ¥ at
Py = (zo,(o). This follows by applying the Lindel6f—Cirka principle [12, p. 168]. We shall
explain briefly the idea.

Let A(t)€ ¥ be an admissible pj—curve, and let A(t) be its projection onto

C

2=z} x €¢ 5o that A(t)— A(t) is paralldl to TC M. Denote by R(t) the radius of
0 Py

the largest discin € that is mapped into ¥ by the mapping

€3 ¢ — (1= ¢)-A(t) + ¢-A(t) € T, (2.2)
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Since A is admissible, a simple calculation shows that R(t) — o as t — 1.

The function g(¢) = {((1-¢)A(t) + ¢A(t)) is bounded holomorphic on | ¢| < R(t), with
||g||m < ”f”m. The Schwarz lemma implies

A1) — (M) | = |(1) - g(0)] < 2l|f]|/R(2).

When t— 1, f(A(t)) — (bv f)(p,) since the curve A(t) approaches p; nontangentially
within the wedge {z =24} N ¥ Since the right hand side goes to zero, we have
f(A(t)) — (bv f)(p,) as well.

Thus Theorem 1 and Proposition 3 are proved, provided that Theorem 4 holds.

We shall now indicate the proof of Theorem 1 under the weaker assumptions (1.4) on f.

Let g =1f-® be as above. By the chain rule,

L 4

Og| & = 521 0/ 6¢y- B¢/ Fw; + le ot/ 8, 0T,/ T

= o(d ¥y . pdtY) 4 0(d-1/2) . 0(1) = a(d‘1/2),

so g still satisfies Theorem 4. The only other place where we used the fact that f was
bounded holomorphic was in the Lindeléf—Cirka principle. In the non—holomorphic case we

shall require the following Lemma.
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LEMMA 6. Denote by A = {| (| < 1} the unit discin €. For each compact subset
K CA and for each a € (0,1) there is a constant C = C(K,a) so that every function
f€ 5’1('5) satisfies the estimate

|8(z;) — 1(25)| < Ol + 1|60/ Gl )" |2, — 25| %, 2y 2 E K. (2.3)

Here, [|f|| = sup{|(z)|):z € &}.

Proof. By the Cauchy’s formula we have

1(2) = o ][ -ffi_éldc-g-lﬁj I Lif(_%a?l)-(ﬁdZA a¢

| ¢{}=1 1¢]<1

= 8(f)(z) + T(8/57)(z), 2 €A.

The operator T maps L®(A) boundedly into the Holder space % %(A) (18, p. 34], so
T(0f/J() satisfies the estimate (2.3) with a constant C; < ® depending only on a. Also,
since 3(f) is holomorphic, ||8(f)[|_ < [|f]| , and the Cauchy estimates imply

|8(0)(z,) — 8(0(ay) | < Cy- [l - 12, - 2],

where C, depends on K CC A. Combining the two estimates we obtain (2.3). Lemma 6 is
proved.

Consider now the complex line Lt C ¢n+£

given by (2.2). Fixa t <1 andlet e be the
distance of A(t) to M. Within L, thereis a disc A, C ¥, centered at A(t), of radius

comparable to 61/2, go that dist(p,M) 2 c-¢ forsome ¢> 0 andforall p € At' By our
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assumption on f we have || g ok

on A,. If werescale A, tothe unit

discA={n€C: |n| <1} so that 7(t) corresponds to 7 =0 and denote by h ()
the restriction of { to A, in the n—coordjna.te,‘then Il-aht"m {C < o, where C is
independent of {. Also, "ht”m < ||f||m. The condition that the curve A(t) is admissible
implies that the point n(t) € A corresponding to A(t) € A, tends to zero as t — 1, s0

Lemma 6 implies

|(A(t)) — £(A(t)) | = |By(n(t)) — b (0)] — O

as t-— 1. This completes the proof of Theorem 1 in this case, provided that Theorem 4

holds.

83 Proof of Theorem 4.

Multiplying g by a suitable cut—off function y such that 'wa is flat on R x [Rl we
may assume that the support of g is contained in ¥, N {|x| 24 [w] 2< 1}. Let

(bv g) € L°®RY x RY) be the distribution boundary value of g.

We treat first the one-variable situation. Let I L= {w=s+it €C:t >0}, and let
he & 1(1'[ +) have support contained in {|w| < 1}. The formula of Stokes gives the
following Cauchy’s formula with weight:

. 1, A
Jm;&:i-dr——I dh/d¢ EQE d¢ s d¢.

Replacing h(¢) by h(s + t{) for a fixed pair s €ER, t > 0, §2 + 2 < 1, we obtain
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oy _ 1 [ his+tr)dr _t 1 A
h(s+it) = "I[R_(_TQEL_ "IH+ 6h/c9'((a+t()-(:-2-;-;dz dc. (3.1)

Suppose now that h isa e’l function in II + with bounded support, but it is not ¢ 1
up to the boundary &I, =R. If we assume that | oh/d¢| = o((Im C)_l+f) for some
€>0 and that h has a distribution boundary value (bv h) € L®(R), then the formula
(3.1) still holds, provided that we replace h by (bv h) in the first integral. This can be
seen by applying our formula to the translates hﬂ( ¢) =h({+in) for >0 and letting
n — 0. The first integral converges by definition since ;Qi is a test function (recall that

h has bounded support!). In the second integral we have
| (8, /80)(s+t¢)| < C-(tIm ¢+,
and we integrate over the set
{C€H+: |8 + t¢| <1}C{C€II+: | €| < 2/t}.

Thus the second term in (3.1) is bounded up to a constant factor by

€ . y Tt —l_dxdy, (=x+iy,
1¢] <2/t [+

y>0

that can be estimated from above by

t€(log(2/t) + 0(1)) = tClog 1/t + o(t€) .
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The dominated convergence theorem applies, and we have (3.1).

As t, 0, the above estimate shows that the second integral converges to zero, uniformly
for 8 €R. Thus h is bounded on II + and has a nontangential limit at s € R precisely
when the first integral in (3.1) has these properties. Replacing s + t7 by 7 we get the
integral

R(s+it) = %n[ h(7) m -dr.

This is just the Poisson integral P(h] of h in II 4 - From the classical theory [5] we know
that for all h € L _(R), P[h] is bounded and has nontangential limit h(s) at almost every
s € R ; certainly this is true at every Lebesgue point s of h. This proves Theorem 4 in the
case N=0,¢=1

Recall that a point Xy €R™ is a Lebesgue point of a locally integrable function
1 .
h € L, (R™) if

lim }1(0,1 : ]L |B(x) — h(x,) | dfx) = 0,
(xo,r)

where v is the Lebesgue measure on R™ and B(x,r) = {|x—xq| < r}. The classical
Lebesgue's differentiation theorem asserts that the set of Lebesgue points of every
h € L%Oc(lRm) has full measure [4, p. 93).

We now proceed to the proof of Theorem 4 in the general situation. For each vector

t€ 1‘0\{0} and for each point (x,8) € RY x RY we have the complex half-plane
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M (x) = {(xs+t() €RN x €4 :m ¢ > 0} C ¥,

with boundary £,(x,s) CR" x R,

A priori we do not know that the restriction of g to HT(x,s) has the distribution
boundary value on £,(x,5) equal to (bv g), restricted to £,(x,s). To avoid this difficulty
we use regularization as in [11]. Choose a function y € G"S(ERN XIRl), x 2 0, with
J xdxds =1, and let x s = x( -/6)/6N+£ for 6> 0. Let gg=g*xs be the convolution
of g with x in the variables (x,8):

g s(x8+it) = Ig(x’ 8’ +it);(6(x—x’ ,5—8")dx"ds’.

Clearly g 5 satisfies the same growth conditions as g, uniformly with respect to 4. Also,
85 18 continuous up to the edge RN x R and equals (bv g)*xa there. As & goes to 0,
(bv g)*x 6(x,s) converges boundedly to (bv g)(x,s) at every Lebesgue point (x,8) of
(bv g).

Let ECRN xRY denote the set of Lebesgue points of (bv g). Fubini’s theorem implies
that for each t € I‘O\{O} there is a set E, CE of full Lebesgue measure such that for
every (x,6) € E,, the intersection E N £,(x,5) is a set of full one—dimensional Lebesgue
measure in £ (x,s). For any such point (x,8) € E, we apply the formula (3.1) to the
function g & Testricted to H':'(x,s):

galxstit) =1 | " - dr -
R T°+1
V4
dg
1 é 1
=1 H+ J
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Now let &6+, 0. By the dominated convergence the second integral converges to the same
expression with g, replaced by g. In the first integral, g 5 bv g boundedly almost
everywhere on the line £,(x,8) (i.e., at each Lebesgue point of bv g), s0 the dominated

convergence applies again. Thus
(x,8+it) = 2 [ (bv g)(x,8+t7) —2—1 dr —
g ? T g b 1

L

13

[ 9B (xs+t¢) L —dT7 4 dc.
Fljjrﬁﬁ(xs 00 de

J

Since |tj| <t; on I'j, we can estimate the second integral by C -tf-(log 1/t,+0(1))
as in the one—variable case (C only depends on g). Since bv g € L®, this formula shows
that g is bounded on II':(x,s) and the bound is independent of (t,x,8), provided that
£,(x8) NE has full measure in £,(x,5). The union of the corresponding half—planes
l'[':;'(x,s) is everywhere dense in ¥, so g is bounded on ¥{;. This proves the first

assertion of Theorem 4.

To prove the second assertion concerning the nontangential boundary values we choose a

countable dense set of vectors {t j}?=1 in I‘O\{O} and let E, = Ej be the correspond-
J

ing sets of full measure in E. For each j we let F.i be the set of all points (x,s) € Ej

with the property that (x,s) is a Lebesgue point of the restriction of (bvg) to ¢, (x5).
J
o
This also is a set of full measure in RN x IRe. Finally let F = Fj‘ Theorem 4 follows
=1
from
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LEMMA. At each point (x,8) € F, the function g(x,) has the nontangential limit

(bv g)(x,8) within the wedge {x} x (IR£+iI"0) C {x} x ct.

Proof. Fix (x,8) € F. By the construction of F and the corresponding one—variable result

we know that

lim g(x,s+iet.) = (bv g)(x,8) (3.2)
6\,0 J

forall jE€Z + Our goal is to shows that for every conical approach region A C ([Rt + iFO)

with vertex at (x,8) we have

A;\ivl-lils g(x,w) = (bv g)(x,s) .

Without loss of generality we may take (x,8) to be the origin in RN x ¢ and

(bv g)(0,0) = 0. For every sequence ¢ i> 0, € i 0, we consider the family of functions

The sequence is uniformly bounded on A. Moreover, the growth condition

|98 = a(tIH'e) shows that on every compact subset K C A we have
ahJ/aZk(O = €jﬁslﬁk(ﬂfj0 = ejﬁ((ejImC)_1+e) = 0(65) —0 as j—o.

Lemma 6 implies that {hj} is uniformly Holder continuous on every K CC A, s0 there is

a subsequence converging to a continuous function h € #(A). The above estimate of
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|'¢9hj| implies ‘#h = 0 (this is verified immediately in the sense of distributions), so the

limit function h is holomorphic in A.

Now (3.2) shows that h equals (bvg)(0,0) =0 on each ray {i,\tj: A > 0}. Since the
union of these rays is dense in the cone iI‘O, it follows by continuity that h =0 on the
totally real submanifold il NA of AC ¢ of maximal dimension £. Since h is holo-
morphic, we conclude that h =0 in A. This holds for every sequence {e j} converging to

zero, 80 the usual argument by contradiction concludes the proof of our Lemma.
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