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Admissible boundary values of bounded

holomorphic functions in wedges

*Franc Forstneric

Abstract

H 'M ((N is a generic Cauchy-Riemann manifold and ".. ((N is a wedge domain with

edge M, then every bounded holomorphic function on Y has an admissible limit at

almost every point of M. Moreover, if a holomorphic function f in 11' has a distribution

boundary value (bv f) on M that is a bounded measurable function, then f is bounded

on every finer wedge near M, and its admissible limit equals (bv f)(p) at almost every

point p E M.

§1. Introduction

In this article we prove the existence of pointwise boundary values of bounded holomorphic

functions in wedge domains with generic edges (Theorem 1). We also prove a more

technical result concerning the boundary values of non holomorphic functions in a standard

wedge with edge IRN )( IR l ( !RN )( (l (Theorem 4). Our work is motivated by a result of

Rosay [9] concerning the reguIarity at the edge of a holomorphic function in a wedge whose

distribution boundary value is a continuous function on the edge. Another specific reason

* Research supported by the Max-Planck-Institut für Mathematik in Bonn.
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for this arlicle is that we want to apply the main resu1t, Theorem 1, in a forthcoming paper

"Mappings of strongly pseudoconvex Cauchy-Riemann manifolds", and there does not

seem to exist a precise reference, in spite of the fact that the question of boundary values of

holomorphic functions has been one of the central subjects of complex analysis for some

time. Most of the existing resu1ts concern the boundary behavioUI of holomorphic functions

on domains with smooth boundaries (see [5], [8], [12] and the references therein). Another

type of domains on which this question has been investigated to some extent are the

wedges W = IR l + ir c(l with the linear totally real edge IR l ( (l, where r CIR( ia an

open cone with vertex at the origin. See Vladimirov [14], Rudin [10], Koranyj [6,7], and

Carmichael and Mitrovic [3]. We wish to point out that our methods are very similar to

those used by Rosay in [9].

Let n,l E 11.+. In the space (n x (l we denote the coordinates by (z,w), where z E (D,

W = S + it E(l, and t = (tl' ... ,t l)' Let M C(n+l be a smooth real manifold, defined in

a neighborhood cf the origin by

w = s + i~Z,Z,8), (1.1)

where rp is a smooth mapping with values in IR l , ~O) =0, d~O) = O. Then M ia a

generic Cauchy-Riemann (CR) manifold cf CR dimension n and of real codimension

l.

If r (lRl ia an open, connected, convex cone with vertex 0 E IR l , we define the

corresponding wedge Y = Y(f) ((D+l with~ M by
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= {(z,w) E (n+i:1mw - ~z,z,Re w) E r}

= {(z,s+i~z,z,s)+it):z E (fi,S E lR i , t Er}. (1.2)

Throughout this paper we shall understand M and Y as germs of sets at the origin in

(n+l.

Fix a point P = (PI,P2) EM, PI E (n, P2 E(l. A p=:curve in Y is a continuoU8 curve

A(t) E Y (0 ~ t < 1) with li m A(t) = p. Denote by ~(t) the projection of A{t) anto
t-+ 1

the plane L = {z = PI} )( (l in the direction of T(M, i.e., A{t) - ~(t) ia parallel to
PI P

T(M for all 0 <t < 1. Here, T(M = T M niT M is the maximal complex tangent
p - p p P

space of M at p, of complex dimension n.

Let 'Ir = L n Yj this ia a wedge in L with the totally real generic edge M nL .
PI PI PI PI

Definition. A p-curve A(t) in 'Ir ia called admissible if there is a to < I so that

a) A{t) E Y (to~t<I), and A{t) is nontangential in Yp in the sense that
PI I

for some A < 00, and

(b) 1i m I A{t) - A(t) 1
2/diSt(A{t),8 Yp ) = O.

t-+ 1 1

A continuous function f on ". ia aaid to have the admissible limit B at p EM if
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1im {(A(t)) = B
t-+l

tor every admissible ~rve A(t) in Y.

(1.3)

THEOREM 1.

Let M ((n+l be a Cauchy-Riemann manifold (1.1) of dass ~2, and let Y be a

wedge (1.2) with edge M. Then every bounded holomorphic {unction f on 11'" has an

*admissible limit {(p) at almost every point p EM with respect to the surface measure

on M.

*O{ course, the {unction { E Lm(M) is also the distribution boundary value of { on M is

ibis C&Be (see definition below).

Remark 1. This theorem is well-known in the case l = 1 when M is a hypersurface in

(n+l (see [8] or [12]) . Our terminology differs somewhat !rom the standard one in tbis

case. Our notion o{ an admissible limit coincides with Rudin's restricted K-lirnit (K for

Koranyi), see [12, p. 170]. On the other hand, Koranyi [7] used the term admissible limit

{or what is now usually called a K-limit (see [12, p. 76]). In tbis case one requires (1.3)

along every p--eurve A(t) in 11'" satis{ying the wea.ker condition

I..\(t) - pi< a · dist(A(t),81f) (0 ~ t < 1)

for some a < m. We da not know whether our Theorem 1 holdB with admissible limits

replaced by K-limits.
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Remark 2. One can obtain better results concerning the convergence of f in directions

parallel to T~M if one imposes suitable conditions on the geometry of M. As we shallsee

in the proof, the crucial property is the existenee of sufficiently large complex diacs in 'Ir

in directions parallel to T~M on which one can apply the Lindelöf-eirka. principle.

Remark 3. Although Fatou-type theorems are most interesting in the ease of holomorphic

functions, they can often be proved also for non-holomorphie functions whose 7J--derivative

does not grow too fast near the boundary. In the situation of Theorem 1 we auppose that

M ia of class ~k+2 for same k ~ 0, and f E '61( Y) is a bounded funetion satisfyjng

the estimates

17Jf(z,w) I = t'(dist((z,w),M)-1/2),

(1.4)

IOf{z,w) I = O(dist((z,w),M)-k-l).

Then the conclusion of Theorem 1 holds for f. Here, as UBual,

7Jf = E Ofl 8Zj . dZj + E Ofl IfWj . dWj" We shall indieate the proof of Theorem 1 under these

weaker hypotheses at the end of section 2 below.

For each p EM and a > 1 we can define a nontangential approach region fi'; C 1f" by

fi' ~ = {(z,w) E Y: I(z,w)-p I < a • dist((z,w),8 'Y)}.

Of course fi'; may be empty if a is too small, depending on the size of the cone r

determining Y. However, as a ---+ 00, the regions fi'; increase to the entire wedge Y.
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A continuous function f on Y has the nontangentiaIlimit B at p E M if

I im f(z,w) = B
9J :3( z ,w)-+p

for all (sufficiently large) a.

A simple caIculation shows that we can choose a sufficiently smaIl neighborhood

U = U(p,a) of p in (n+l such that every p-curve A(t) in 9J; nU is admissible.

Thus we have

COROLLARY 2. Under the hypotheses of Theorem 1, f admits a nontangential limit

*f (p) at almost every point p E M.

Theorem 1 still holds if we only &Baume that the holomorphic function f on Y is

bounded on every finer wedge Y' < Y in a neighborhood of M. (Recall that a cone

r' (lRl is finer than r if r' nS ia a relatively compact subset of r ns, where S ia

the unit aphere in IR l . Similarly, a wedge Y' = Y(r / ) of the form (1.2) is finer than

'Ir = y(r) if r ' is finer than r. We shall denote this by Y' < Y.) Dur proof will

show that the last condition is satisfied if f admits a distribution boundary value (bv f)

that ia a bounded function on M.

Denote by d = d(z,w) the distance from a point (z,w) E Y to the edge M. (Clearly d

ia proportional to IIm w - ~Z,Z,ReW) 1). Suppose that M is of class ~k+2 for some

k E 7l.+. H f is a holomorphic function on 11' satisfying the growth condition
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-kIf(z,w) I = O(d(z,w) ), (1.5)

then f admits a distribution boundary value (bv f) on M (Straube [13] and Rosay [9]),

in the sense that for each test function X E ~~+l(n+l) supported in a smaIl

neighborhood of 0 we have

(bv f,X) = 1im r X·f(z,s+i~z,z,s)+it)dv(z,s),
r'3t---+O in)([Rl

(1.6)

where dv(z,s) ia the Lebesque measure on (n)(lR l and r' is any cone finer than r. The

same holds if we replace t Er', t --+ 0 by a sequence of mappings tlz,s) Er' that tend

to zero in the ~k+2 sense when j --+ m.

PROPOSITION 3.

Suppose that fE O( y) satisfies the growth condition (1.5). If (bv f) ia (the integration

against) a bounded measurable function on M, then f is bounded on every finer wedge

y' < Y near M, and it has the admissible limit (bv f)(p) at almost every point

pE M.

Remark. Another sufficient condition for a holomorphic function fE O( y) to be bounded

near the edge was found by Zav'yalov and Drozhzhinov [15], Khurumov [16], and Pincuk

and Hasanov [17]: H f is bounded on a manifold ~ ( Y of class 'if2 with boundary M

(so dim Et = dim M + 1), then f ia bounded on every wedge '11" < 'Ir near M.

When the function f ia bounded (k = 0), it follows immediately !rom the

Banach-Alaoglu's theorem that bv f ia a bounded measurable function on M. Namely,

given any sequence t j E r' , t j = 0, the family of functions
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(z,s) ---+ {(Z,8 + i ~Z,i,8) + itj )

CD 1 * * CDia bounded in L = (L ) , so there is a 8ubsequence converging to { E L in the weak--*

*topology. Hence (1.6) holds {or thiB Bequence, with bv { replaced by { . ThiB proveB that

*bv { = { E L(I) as distributions on M.

A natural question iB whether Theorem 1 holds in the case when (bv f) exists and is an

integrable function on M, Le., (bv f) E Ll(M). It seems that a positive answer ia known

only for the case when M ia hypersurface [8].

In this context we recall a result of Rosay [9]:

H (bv f) ia (the integration against) a continuous function on M, then f extends

continuously from every finer wedge Y' < Y to M, asauming the values (bv f) on M.

See also the papers by Baouendi and Treves [1,2].

To prove the announced results we use a standard method: we straighten the edge M

along the totally real submanifolds Mz = {z = const} nM and study the boundary

behavior of non-holomorphic functions whose 7Jw-derivatives satisfy good growth

estimates near the linear edge (n)( lR i . ThiB will be explained in the following sections.

1t is my pleasure to thank the Max-Planck-Institut für Mathematik in Bonn for its

h08pitality and support.
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§2. Boundary raines of functions with bounded 7J

We use the same notation as Rosay in [9]. Let N,l E 11+. In the space IRN )( (l we

denote the coordinates by (x,w), w = s + it. Let rObe the cone

and let Y 0 be the corresponding wedge

The results announced in section 1 will follow {rom

THEOREM 4. Let g(x,w) be a continuously differentiable function on 7'"0 satisfying

Ig I = t1 (tlk) ,
I8g/ OWj I = t1 (t"11+ E), 1 ~ j ~ l (2.1)

for some k E 71+ and f > O. If the distribution boundary value (bv g) on IRN )( IR l

(that exists according to Rosay [9]) ia a bounded measurable function, then g is bounded

on Vo near IRN
x IR l , and there ia a set F ( IRN )( 1R1 of full measure so that at each

point (x,a) EF, the restriction g(x,·) to the wedge {x})( (1R1 + ir0) has the non­

tangential limit (bv g)(x,s).

Remark. Contrary to the first appearance tbis reault ia completely ioeal since the growth

condition on 7J g ia preserved if we multiply g by a sIDooth cut-off functionw
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I/J E ~~(IRN x (l) whose derivatives 8# IfWj vanish to infinite order on IRN x IR l

(1 ~ j ~ l).

H g is bounded on 7'"0' the boundary value (bv g) exists and is in LCD (IRN
x 1R1).

(See the remark following Proposition 3 above.) Thus we have

COROLLARY 5. If g is a bounded ~1 function in Va satisfying (2.1), ihen at almost

every point (x,s) E IRN
x 1R1, g(x,·) has a nontangentiallimit at (x,s) within the wedge

{x} x (1R1 + ir0)'

In these results the variable x is merely a parameter, as we have no assumptions and

conclusions on the nontangential behavior of g in the x~rection.

Remark. Our condition (2.1) concerning the growth of 7J g near the edge is not the' best
w

one possible, but it ia easy to verify and convenient to use. For functions of one eomplex

variable there is a sharper result, due to Nagel and Rudin [12, p. 235]: If g is a bounded

~1 function in a reetangle Q =(a,b) x (O,c) ( 1R2 = ( such that Og/ üW E LP(Q) for

same p > 1, then 1im g (x+iy) exists for almost all x E (a,b).
y-+O

However, in most applications the eondition (2.1) is sufficient. In the proof of Theorem 1

we shall only need that ~wg is bounded. In the proof of the resu1t by Nagel, Rudin, and

Wainger [12, p. 238] on nontangential boundary values of a function ,f EHCD(.0) along a

~1 curve in the boundary of .0 that is everywhere transverse to the eomplex tangent

space T~8.0 one obtains a function g on Q as above such that

IOg/HWI = O((Im w)-1/2).
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We will first show how the results of section 1 follow from Theorem 4. The proof of

Theorem 4 will be given in section 3 below.

Let N = 2n, 1R2n = (n. Suppose that the manifold M (1.1) is of class tfk+2. We extend

the mapping f{J to a ~k+2 map in a neighborhood of the origin in (n)( (i so that

7J
w

f{J and its derivatives of order ~k+l vanish on (n)( lR i . The extended map

t(z,w) = (z,w+if{J(z,w» = (Z,((Z,W»

is a Ioca! t6k+ 2 diffeomorphism near the origin that maps (n)( IR l onto M.

Let { be a holomorphic function on Y satisfying the hypothesis of Proposi tion 3. We

must show that the restrietion of ,f to any finer wedge ".' < Y is bounded near M

and has the admissible limit (bv f)(p) at almost every point p E M.

Choose a wedge Y" so that Y' < ,..." < Y. The inverse images

1-1( Y') Ct-1( ""') CI-I ( Y) are wedge-like domains near the origin, with the edge

(n )( lR i . We can find a finite number of cones r I,r21 ...,rv C lR i isomorphie to the cone

I'0 so that the corteaponding wedgea Yj = (n x (IR l + iI'j) satisfy the following inclu­

sions in a sufficientIy small neighborhood of the origin:

v
1-1( Y') C U y. ( I-I ( Y") .

j=l J

Let g = fot E ~k+2(t-l( Y). Then Ig I = O(d-k) on each wedge Yj , where d

denotes the distanee !rom the wedge. The ehain rule gives
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l

Hgl IJWj = l OfIO's· o'sl l1Wj .
8=1

Since Ifl = ()(d-k) on Y, the Cauchy estimates imply IOfIO'sl = ()(d-k- 1) on 7'"

for 1 ~ 8 ~ l. We also have 10(slHWj I = ()(dk+1) by the construction of t, 80 it

follows that Ogl IfWj is bounded on 7'"s for 1 ~ j ~ l. Since the distribution boundary

value (bv g) (that exists by [9)) is the pull-back of (bv f) by t, we conclude that

(bv g) ELoo«(n x 1R1). Theorem 4 now implies that g is bounded on each Y s near

(n x 1R1, so f is bounded on Y' near M.

The second part of Theorem 4 impliea that for almost every point Po = (zO,sO) E (n x IR l ,

the restriction g(zO'· ) has the nontangential limit (bv g)(zO'sO) within the wedge

{zO} x (lR l + irs) at (zO,sO)· Going back to f, ibis says that f(zO'·) has the nontangen­

tial limit (bv f)(zO' (0) at (zO' (0) = t(zO'sO) within the wedge {z = zO} n 1f". This

holdB for every Y' < Y, so the same is true for Y.

It remains to show that f has the same admissible limit within the entire wedge Y at

Po = (zO' (0). This follows by applying the Lindelöf-eirka principle [12, p. 168]. We shall

explain briefly the idea.

Let A(t) E Y be an admissible pO-curve, and let A(t) be its projection onto

{z = zO} x (l so that A(t) - A( t) is parallel to T( M. Denote by R(t) the radius of
Po

the largest diac in a: that is mapped into Y by the mapping

( 3 ,--+ (1 - ,). A(t) + ,. A(t) E (n+l . (2.2)
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Since A is admissible, a simple calculation shows that R(t) --t m aB t --t 1.

The function g( () = f((l-()~(t) + (A(t)) is bounded holomorphic on I' I < R(t), with

Ilglim~ Ilfllm. The Schwarz lemma implies

If(A(t)) - f(~(t)) I = Ig(l) - g(O) I ~ 2I1f l!m/R(t).

When t --t 1, f(~(t)) --+ (bv f)(PO) since the curve ~(t) approaches Po nontangentially

within the wedge {z = zo} n Y. Since the right hand side goes to zero, we have

f(A(t)) --+ (bv f)(PO) as weil.

Thus Theorem 1 and Proposition 3 are proved, provided that Theorem 4 holds.

We shall now indicate the proof of Theorem 1 nnder the weaker assumptions (1.4) on f.

Let g = f· t be aB above. By the chain rule,

l l

8g1 IJWj = 1: Ofl a(8· a(sl fJWj + 1: Ofl~s· ur,sl lfWj .
8=1 s=l

so g still satisfies Theorem 4. The only other place where we used the fact that f was

bounded holamorphie was in the Lindelöf-eirka principle. In the non-holomorphic case we

shall require the following Lemma.
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LEMMA 6. Denote by A= {I 'I < I} the unit disc in (. For each compact subset

K ( A and for each a E (0,1) there is a constant C = C(K,a) so that every function

f E '61(d) satisfies the estimate

Here, IIf lloo = sup{ If(z) I) : z EXl,

Proof. By the Cauchy's formula we have

f(z) = 1 f f (() d' - 1 JJ(Of/aTI({l d-c A d'2111 I=Z hl (-z

1'1=1 1'1~1

= t(f)(z) + T{ Of/~(z), z E A .

The operator T maps L00(A) boundedly into the Hölder space ~ Q (A) [18, p. 34], so

T{ Of/~ satisfies the estimate (2.3) with a constant Cl < 00 depending only on Q. Also,

since t{f) is holomorphic, IIt{f) 11
00
~ Ilflloo, and the Cauchy estimates imply

where C2 depends on K ce A. Combining the two estimates we obtain (2.3). Lemma 6 is

proved.

Consider now the complex line Lt ((n+l given by (2.2). Fix a t < 1 and let f be the

distance of ~(t) to M. Within Lt there is a disc &t ( 1f", centered at ~(t), of radius

comparable to f1/2, so that dist{p,M) ~ c· f for some c > 0 and for all p E Ar By our
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assumption on f we have 17Jf1 ~ E-1/2 on &1' If we rescale &t to the unit

disc &= {1] E (:: 11]1 < 1} 80 that nt ) corresponds to 1] = 0 and denote by ht (1])

the restriction of f to &t in the q-coordinate, then l17Jhtlloo ~ C < 00, where C is

independent of t. Also, IIhtlloo ~ IIflloo. The condition that the curve A(t) is admissible

implies that the point 1](t) E ä corresponding to A(t) E &t tends to zero as t -+ 1, 80

Lemma 6 implies

as t -+ 1. This completes the proof of Theorem 1 in this case, provided that Theorem 4

holds. -

§3 Proof of Theorem 4.

Multiplying g by a suitable cut-off function X such that 7J X is flat on !RN x IR l we
w

may assume that the support of g is contained in 7'"0 n{ 1x 1
2 + Iw 12 < 1}. Let

(bv g) E' LOO(IRN
x IR l ) be the distribution boundary value of g.

We treat first the one-variable situation. Let ß+ = {w = s+it E (: : t > O}, and let

h E 'if1(U+) have support contained in { Iw I < 1}. The formula of Stokes gives the

following Cauchy's formula with weight:

Replacing h( () by h(s + t () for a fixed pair s E IR, t > 0, s2 + t2 < 1, we obtain
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h(s+it) =!J h(s+t T)dT _1J 8h/~(s+t() 1 d~ A d(. (3.1)
'X' IR T2+1 wo ß+ (2+1

Suppose now that h is a ~1 function in TI+ with bounded support, but it is not ~1

up to the boundary 8II+ = IR. H we assume that 1 8h/~ 1 = t?( (Im ()-1+ E) for some

E > 0 and that h has a distribution boundary value (bv h) ELlD(lR) , then the formula

(3.1) still holds, provided that we replace h by (bv h) in the first integral. This can be

seen by applying our fonnula to the translates h1]( () = h('+i1]) for 1] > 0 and letting

1] ---i O. The first integral convergea by definition since + is a test function (recall that
T +1

h has bounded support!). In the second integral we have

and we integrate over the set

{, Eß+ : Is + t'1< I} ( {( ETI+: 1(I < 2/t} .

Thus the second term in (3.1) is bounded up to a constant factor by

t E • r y-1+ E 21 dx dy, (= x + iy,

1,1 <2ft 1, +11
y>O

that can be estimated from above by
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The dominated convergence theorem applies, and we have (3.1).

As t ~ 0, the above estimate shows that the second integral converges to zero, uniformly

for s E IR. Thus h is bounded on TI+ and has a nontangentiallimit at s E IR precisely

when the first integral in (3.1) has these properties. Replacing 8 + tT by T we get the

integral

t(8+it) = ~ rh(T) t 2 2 -dT .
~. (T-B) +t

This is just the Poisson integral P[h] of h in TI+ . From the classical theory [5] we know

that for all hEL (IR), P[h] is bounded and has nontangentiallimit h(s) at almost every
(I)

s E IR ; certainly this ia true at every Lebesgue point s of h. This provea Theorem 4 in the

case N = 0, l = 1.

Recall that a JX>int XoE IRm is a Lebesgue point of a locally integrable function

h E Ltoc(lR
m

) if

where l/ is the Lebesgue measure on IRm and B(xO,r) = {I x-xa I < r}. The classical

Lebesgue's differentiation theorem aBserts that the set of Lebesgue JX>ints of every

h E Ltoc(lRm) has full measure [4, p. 93].

We now proceed to the proof of Theorem 4 in the general situation. For each vector

t E r0\ {O} and for each point (x,s) E IRN
x lR l we have the complex half-plane
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rrt(x,s) = {(x,s+t') E!RN )( (l : Im , > O} C 7'"0

with boundary lt(x,s) C[RN )( [Ri.

Apriori we do not know that the restriction of g to rrt(x,s) has the distribution

boundary value on it(x,s) equal to (bv g), restricted to lt(x,s). To avoid this difficulty

we use regularization as in [11]. Choose a function X E ~~(lRN )( [Rl), X ~ 0, with

JXdxds = 1, and let XÖ = X( • / ö)/ öN+l
for Ö > O. Let gö = g* Xö be the convolution

of g with X0 in the variables (x,s):

g.s<x,s+it) = Jg(x' ,s' +it)X.s<x-x' ,s-s')dx' ds'.

·Clearly 80 satisfies the same growth conditions as 8, uniformly with respect to 6. Also,

g6 is continuous up to the edge !RN )( lR i and equals (bv g)* X«5 there. As 0 goes to 0,

(bv g)*XO<x,s) converges boundedly to (bv g)(x,s) at every Lebesgue point (x,s) of

(bv g).

Let E C[RN )( [Rl denote the set of Lebesgue points of (bv g). Fubini's theorem implies

that for each t Er0\ {O} there is a set Et CE of full Lebesgue measure such that for

every (x,s) E Et , the intersection E n it(x,s) is a set of full one-dimensional Lebesgue

measure in lt(x,s). For any such point (x,s) E Et we apply the formula (3.1) to the

function 80, restricted to rrt(x,s):

1 J go(x, s+tr)
g Jx,s+it) = - · dr-

fJ \ 7r IR r 2+1

l
1 J 8g 6 1-i 1: t j -(X,8+t() ·~. d-r Ad'.

. 1 rr lfW. ( +1
J= + J
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Now let 6 \f o. Hy the dominated convergence the second integral converges to the same

expression with g6 replaced by g. In the first integral, g6 -+ bv g boundedly almost

everywhere on the line lt(x,s) (Le., at each Lebesgue point of bv g), so the dominated

convergence applies again. ThuB

g(x,s+it) = .!. r(bv g)(x,s+tr) + dr-
~ ~ r +1

Since It j I < t 1 on r 0' we can estimate the second integral by C· t ~ · (log I/tl+ 0(1))

as in the one-variable tase (C oo1y depends on g). Since bv gELm, this formuIa shows

that g is bounded on nt(x,s) and the bound is independent of (t,xJs), provided that

lt(x,s) nE has full measure in lt(x,s). The union of the corresponding half-planes

nt(x,s) is everywhere dense in 7"0' so g is bounded on Y O. Trus proves the first

assertion of Theorem 4.

To prove the second assertion concerning the nontangential boundary values we choose a

countable dense set of vectors {tj } j =1 in r 0\ {O} and let Et . = Ej be the correspond­
J

ing sets of full measure in E. For ea.ch j we let Fj be the set of all points (x,s) E Ej

with the property that (x,s) is a Lebesgue point of the restriction of (bv g) to lt.(x,s).
J

This also is a set of full measure in IRN )( IR l. Finally let F = nF.. Theorem 4 follows
j=1 J

from
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LEMMA. At each point (x)s) EF, the function g(x)·) has the nontangential limit

(bv g)(x)s) within the wedge {x} )( (lR l +ir0) ( {x} )( (l.

Proof. Fix (x)s) E F. By the construction of F and the corresponding one-variab1e result

we know that

1 im g(X,S+ift.) = (bv g)(x)s)
E~O J

(3.2)

for all j E 7l+. Dur goal is to shows that for every conical approach region A C([Ri + ir0)

with vertex at (x)s) we have

1 im g(x)w) = (bv g)(x)s) .
A3w-Js

Without 10ss of generality we may take (x,s) to be the origin in IRN )( (l and

(bv g)(O,O) = 0. For every sequence f j > 0) Ej ~ 0, we consider the family of functions

h.( () = g(O,E .()) (E A.
J J

The sequence ia uniformly bounded on A. Moreover) the growth condition

17J~1 = O(t11+f ) shows that on every compact subset K (A we have

Ob./ !ff,k( () = E .8g/ 8Wk(0 f. () = f. O((f.Im ()-1+ f) = O( f~) ---+ °as j ---+ (JJ.

J J J J J J

Lemma 6 impliea that {hj } ia uniformly Hölder continuous on every K ce A) so there is

a subsequence converging to a continuous function h E 'if(A). The above estimate of
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ll9hj I implies 19h = 0 (this is verified immediately in the sense of distributions), so the

limit function h is holomorphic in A.

Now (3.2) shows that h equals (bv g)(O,O) = 0 on each ray {L\tj : A > O}. Since the

union of these rays is dense in the cone ir0' it follows by continuity that h:: 0 on the

totally real submanifold ir0 nA of AC(l of maximal dimension l. Since h is holo­

morphic, we conclude that h:: 0 in A. This holds for every sequence {fj} converging to

zero, so the usual argument by contradiction concludes the proof of Dur Lemma.
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