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THREE .NOTES ON THE ORDER OF
IDEALS DEFINING HYPERSURFACES-

Manfred Herrmann, Shin Ikeda

Let (R,M) be a regular local ring and I a proper
ideal in R . Let e(R/I) be the Samuel multiplicity of
R/I and ord{I) the order of I with respect to M
We describe three essential situations, where e(R/I) = ord(I)
implies that I is principal. The results underscore a
natural conjecture,

1. Introduction

Let (R,M) be a regular local ring and let I be a proper
ideal in R . Let A = R/I and #= M/I . For any ideal
I in R we define the order of I to be ord(I) =
max{n | I < M*} . It is well known that for £ € M® ~ M**!
the Samuel multiplicity is e(R/fR) = n . In these notes
we give sufficient conditions on A and I respectively
for the converse implication; more precise: we describe
three situations where e(R/I) = ord(I) = n implies

I = fR for some f € M ~ Nln{'1 . The first situation is
based on the equimultiplicity of I , the second one (due
to Ikeda) on the Buchsbaum-property of A where

depth A2 > 0 . 1In the third situation we discuss the case
of a homogeneous graded polynomial ring R = k[x1,...,xr]
over an algebraically closed field, where I is a homo-
geneous ideal. Here the methods of the proof were outlined

by S. Ikeda and influenced in some parts by J. L. Vicente.

In the light of these results we ask if the following

statement is true for R and I as above:
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" Let dim(R/I) > 2 and ord(I) > 2 . Assume that R/I
satisfies Serre's condition S, . Then I = f.-R if and
only if e(R/I) = ord(r) . "

If dim A = ord(I) = 2 , then A is Cohen-Macaulay,

and in that case the statement is correct, s. prop. 2.1.
But the question seems to be open if A is any domain
satisfying 82 with dim{(a) > 2 and e(A) = ord(I) = 2 .
Recall that if A is not a domain or if A contains

a field then the conditions e(A) = 2 and S imply

-2
that A 1is Cohen-Macaulay, in which case the statement
is true by prop. 2.1.

The above statement is not true, if we omit the condition

82 . This can be demonstrated by the following examples:

Example 1.1:
Let A = k[[s2,53,st,t]] , where k is a field and s,t

are indeterminates over k . Writing A is a quotient

R/I of the power series ring R = k[[X1 2, X 11 , we

see that e(A) = 2 = ord(I) . Moreover A satlsfles S1

but not 82 . Clearly A is not Cohen-Macaulay.

Example 1.2:

Let A = R/I Dbe the followihg rational surface-germ

C < Ak4
= k[[X,,X Xy 11/ (X, X=X X2+ 2-x2+x3—x X X, XX xzx
1'2X3 %3 21'2X31x3'411'13 X4
Let V c A be the complete intersection defined by the
- equations x4x3 XX = 0, X X =X X, - xfx3 = 0

in R = k[{X,,X,,X3,%X,]] . Finally let L E.Ak4 be
defined in k[[X;,X,,X4,X,]1] by the ideal

(X1,X4) n (xz,x3) . Then V=CUL , i.e. C and L
are linked by the complete intersection V . Since L

is Buchsbaum but not Cohen-Macaulay, A is a non-Cohen-
Macaulay Buchsbaum ring, satisfying S. . It is easy to

. 1
check that again e(A) = ord(I) = 2 .

Example 1.3:
Let A = R/I

k[[X1,--..in]]/(x1'X2)ﬂ(X3,X4)n...n(XZn_1;X2n)
k[[x1,...,x2n}] '

where the Xi are indeterminates over a field k and

-2-

!
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n > 3 . Then:

e{(A) = ord(I) = n and dim{(A) = 2n-2 > 3
Moreover depth A > 2 , but A doesn't satisfy Sy
since g==(x1,x2,x3,x4) < A has height(g) = 2 , but

A 1is of depth one. Therefore A 1is not even Buchsbaum.
This example also shows that for any n > 2 , there is

always an unmixed homogeneous ideal I in a power series

ring over %k such that n = ord(I) = e(R/I} , but R/I
doesn't satisfy S, - (The same is true for a homogeneous
graded polynomial ring k[X1,...,X2n] )

Finally we remark that the corresponding statement for the -
dimension 1 case, which we will not consider in the sequel,
is the following well known fact (which also follows from
our prop. 2.1}):

Proposition 1.4:

Let A = R/I be a one-dimensional domain. Then A is

a "plane curve" if and only if e(A) = ord(I)

This gives immediately the following corollary:

Corollary 1.5:

If A =R/I is not a "plane curve" with ord(I}) > 2 ,
then e(A) > 3

2. Preliminaries

Throughout this paper (R,M) denotes a regular local
ring with infinite residue field R/M

Proposition 2.1:

Let I be an ideal‘of R with e(R/I) = ord(I) > 2 .
If R/I is Cohen-Macaulay then I = f£-R for some

£e M ~ut!
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Proof:

et A=R/I, #=M/I , d=dimA , r = dim R and’
n = ord(I) . Since A 1s Cohen-Macaulay we find tO]

a minimal reduction ays---s8y of . , such that
e(hA) = e(A/a1,...,ad) . Let XqreeorXg inverse images
of a.‘,...,ad forming a part of a reqular system of
parameters in R . Let R = R/XR and I = I+XR/xXR .
Since I ¢ M" we get:

_ n-1 -4 -
e(A) = e(R/I+xXR} = (R/I) =1 + X M. /M
i>1

o aawyn

hence (since R is regular)

n-1+r-d n -
req ) Y IEY/I)

(*) e(a)

i.e. e(A) > n-l+r-d
Therefore e(A) = n if and only if r-4 =1 (and

= Syl . : . . .
I =M ) , i.e. I 1is principal in our case.

Question:

Do we get any additional information from the fact that
I=M2

The following example shows that e(A) = ord(I) is

essential.

Example 2.2:

Let A ='kt[x2,xy,y2,xz,yz,Z]] < k[({x,y,2]] , where

X , vy , 2 are indeterminates over a field k . A <can
be written as R/I with R ='kt[U,V,W,X,Y,Z]] and

a suitable ideal I . A is a Cohen-Macaulay ring with

e(A) =4 > ord(I) = 2 . And A is not a hypersurface.

Proposition 2.3:

Let R/I be a non-Cohen-Macaulay Buchsbaum ring of
d = dim R/I > 3 satisfying S, - If e(a) =4 then
ord(I) =2

Proof:
Let ht ='dim(H;JA)) be the dimension of the local
cohomeology for i =0,...,d-1 . Let
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J =z (y1,...,yi,...,yd) T Y. '

: i
i
where (y1,...,yd) is a minimal reduction of .m
Then [G1]
d-1 .
e(A) = 1 + X /§:1)- ht o+ Lw/3)
=1\
By assumption h° ='h1 =0 and eld) = d . Therefore
we get:
(1) h' =0 for i+ 2,d4-1,d .
(2) either %1 =21 or n®-=1 ,

(3) 1(#/J) =0 .

The last property implies that the reduction exponent of
. . 2 .
a1 is two (i.e. 4 = y# for suitable y1,...,yd) ,

hence ord(I) = 2 , since y M .
Remark:
In the case of proposition 2.3 the invariant
d=1 r4-1 i
I(a) = X ( 5 )- h of the Buchsbaum ring is 1
i=0
Since am'= ya , we obtain [G1]:
emb(A) = e(pd) +d -1+ I=2d, i.e. r -d=4d
Moreover e(A) = e(yA) =‘l(R/I+§R) -1 , Where
y = (§1""’§d) are inverse images of y,,...,y; in R

Therefore we have

d = e(n) = (n_;+d) LY -1,
which also implies n = ord(I) =2 , and ﬁz = I

Corollary 2.4:

Let R/I be a Buchsbaum ring satisfying §, - Assume
that e(R/I) = dim(R/I) i 3 . Then we have:

a) If ord(I) > 3 , then R/I is Cohen-Macaulay.
b) If ord(I) = e(R/I}) , then R/I is a hypersurface.
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Remark:

Statement b) of corollary 2.4 follows from a) and prop. 2.1.
It is a special case of the following theorem 4.1; see also
corollary 4.3. Note that in statement a) the multiplicity
e{R/1I) can be strictly bigger than ord(I) . Therefore

R/I need not be a hypersurface in this case.

3. Equimultiple ideals I
By e(x,I,R) we denote the generalized multiplicity in the

sense of [H-0-1], where X is a system of pérameters mod I .
1(I) is the analytic spread of the ideal I .

Theorem 3.1:

Let I be an ideal of R with ht(I) > 0 and
ord(Il) > 2 such that:

(i) ht(I) = 1(I)

(ii) l(RP/IRP) =‘e(IRP) for all P € Assh(R/I) .
Then we have:

a) If e(R/I) = ord(I) = n = ht(I) =1 .

b) If I in a) is unmixed = I = £:R for some feM " .

Proof:

We put again d = dim R/I with R/I = A and r = dim R
We fix a system Yqr--«1¥gq of parameters mod I which
generates a minimal reduction of the maximal ideal

M < A . S0 we have e(A) = e(y,R/I)}) , where

e(y,R/I) =‘eR(x,R/I) in the sense of Northcott-Wright.
For that given y we can construct by [H-0-1], lemma 1
a sequence X = (x1,...,xd) of superficial elements
such that

1) . I + yR =1 + XR
(*) 2) e(XlIIR) = e(ElIlR)

3)  e(I+xR) = e(1TXR
— . -&R

Then using assumption (ii) and the associativity

law for multiplicities we have:
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e(X:IrR) = z e(X,R/P) . E(IRP)
PEAssh(R/I)
= X ely ,R/P) - l!RP/IRP)
P
(**)
- = e(x:R/I)
= e(A) '

and in the same way :

e(x,I,R) = e(x,R/I) .

Assumption (i) implies e(y,I,R) = e{I+yR) by [H-0-2],
theorem 0 . Using the properties 1) and 3) ‘in (*} we get:

_ I+XR)
e(A) = e(I+yR) = e(I+xR) = el %R
Now we choose a system ZqrecrZy of parameters in I
mod xR , where t = ht(I) , such that:
I+xR ZR+XR
e xR ) = el xR

[Note that ZyreeerZy generate a minimal reduction of
I , s. [H-0-1], Korollar, p. 655 .]

We put R = R/xR , M = M/xR and T = I+XR/XR .

Since e(A) = e(x,R/I) by (**) and property 2), we
know that x mod I is a minimal reduction of . ,
hence R is regular.

We denote by 31,...,5 the images of =z in R
Then e(a) = e(zR,R) = 1(R/2R)

Since zﬁ c " and ﬁ/zﬁ is. Cohen~-Macaulay, we obtain

£ R

by (*) in section 2:

e(d) > ((“'1Lﬁg’d) > n-1+r-d .

Hence e(A) ='n if and only if r-d = ht(I) = 1 , which

proves a) and b) of theorem 3.1.

Corollary 3.2:

Let P *+ M be an equimultiple prime ideal in R
of height P > 0 . If e(R/P) = oxrd(P) , then P ='ffR

for some f € Mn ~ Mn+1 .

Remark:

Since R is regular, one can show by {H—I], prop. 1.2,
that this equimultiple prime ideal P is already generated
by a regular sequence. Using this fact,

-7-
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proposition 2.1 yields the claim of the corollary too.

4. Buchsbaum ideals

A key strategy here will be to study the possible orders
of I , if R/I is a non-Cohen-Macaulay Buchsbaum ring
of depth > 0 and dim R/I > 2 . This will tell us what
we need to know about I in case that e(R/I}) = ord(I) > 3 .

Theorem 4.1:

Let I be an ideal of (R,M) with e(R/I) = ord(I) = n > 3 .
Assume that depth(R/I) > 0 . If R/I is Buchsbaum, then

I = fR for some f € M" ~ Mn+1

Remark:

The assumption n > 3 1is necessary in the above statement:

Example 4.2:

Let R = k[[X1,X2,X3,X4]] , where X1,X2,X3,X4 are
indeterminates over a field k . Let I = (X1,X2) n (XB’X4) '
hence ord(I) = 2 . It is well known that R/I is a
Buchsbaum ring with e(R/I) =2

Proof of theorem 4.1:

Let d = dim(R/I) = dim{(A) . Fix a minimal reduction
.,ad_1)A) = e(a) ,
since A is Cohen-Macaulay for all g?e Assh(A/ (a

Ayre--ry of /uté A , then e(A/(a1,..

17

ad_1)A) in our case. It is known that the 1-dimensional -

ring A/(a1,...,ad_1) :ay is Cohen-Macaulay.[For the

proof of this fact the main point being the exact sequence
(a1,...,ad_1):ad : A

0o - - - A/(a,,..
. (a1,...,ad?1) . .(a1,...,ad_1) A 1

Y:ta, = O

"r8a-1' 1%

and as a consequence

(a1,...,ad_1):ad 0 A
0 - — a. ) T BiE a.
17700183 Al8qree-i8g g

0 .
- H (&/((ay,...,a3 4):ag)) > 0 .

-g-
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Since

(a1,...,ad_1):ad)

0 -
LE B/ @z A = 1, ( @re-wrag_y)

which comes again from the Buchsbaum-property of A [G2],
we compute l(gﬁjA/(a1,...,ad_1):ad)) = 0 , which gives
the claim,] Hence '

e (a) e(A/(a.ll-o-lad_.l)A)
e(ad;A/(a1,...,ad_1)A)
e(ad;A/(a1,...,ad_1):ad)

l(A/(a1l"'1ad_1):ad+(ad)A) H

i.e. in our case
n = 1(a/((aj,...a3_4):a4+(aj)h)) .

Assuming that A is not Cohen-Macaulay, we have
dim(R} = emb(A) > d+2 . Then we can extend CRRRRRNL

d
to a system of gengrators a1,...,ad,ad+1,ad+2,...,ar of
1%, such that the inverse images XqreeorX form a
minimal system of generators of M . We put:
y = xd+1 and z = xd+2 Let J = (I,x1,...,xd_1):xd+de .
Then ng/J(R/J) =nng{R;i?rMéi%R) , where
ng(J,M) = I (JNM) + M /M . From this we can
quickly compute l(ng/J(R/J)) = l(A/(a1,...,ad_1):ad+adA)

To f£ind some lower bound of 1(A/(a1,...,ad_1):ad+adA) ’
we take the initialforms of y,z in ng(R) and
consider their images v,z in ng/J(R/J) . We claim
that under the hypothesis made before, the elements

(3423 | 143 < n-2}
are linearly independent over R/M = k : Suppose that for

some 1 with 0 < 1 ﬁ n-2 there is a non-trivial relation

in ng/J(R/J) ; say

T @ .yizd = i
i+j=lcn-2 *J ]

This gives a non-trivial relation
1 1+1

2 ai.ylzJ EJ A M + M
i+j=1 J '
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where at least one of the aij is a unit in R and
moreover n = ord(I} > 1l+2 . Since
J = (I,x1,...,xd_1):xd+de we have
d-1

i3, _ 2
xd(z aijy z°) = t + 151 bixi + xdﬂc

for some t € I and c¢,bj € R . Then
d-1

w = xd(z a,.ylzj'— cx,) - £ b.,x, €I + Ml+2 c Ml+2 .
ij d j=q 11
The elements XyseeerXg form a part of a régular system
of parameters in R , hence
1+2 1+1

w € (x1,...,xd) nM = (x1,...,xd)M

This implies
i3 _ -

p2 aijy z CXgq f e (x1,...,xd_1)R

for some f € Ml+1 , which is impossible since one of the

aij is a unit. This proves the claim.

Note that there are t+1 elements of degree t among
the §l§3 , where 0 < t 5fn—2 ; 1.e. we have

1+2+...+{n-1) indernendent elements §lEJ with

i+j < n-2 , hence

n{n-1)

n = La/(ay,...,a 5

):a A) >

a-1'*2a*%a

i.e. under the assumptions of the theorem and the
hypothesis, that A is not Cohen-Macaulay, we get n =3

Now let K = ¥% _ (a.,...,%.,...,a.):a, , then [G-1]
i= 1 i d i

1
d-1
(*) 3 =¢ef(A) =1+ % (@'1
L i-1
i=1 :

)ont - L)

Since ord(I) > 3 by assumption, we have

' 2
EARE a ~ (adf""gi""'ad) € 4 ’

j.e. K c (a1,...,ad) +.«4l’, hence:

(a1,..u,5 ray):a

s

lW/K) Zl(w(a1r---rad+4“’2) =.erﬂb(A/(a1'...,ad)) _>_2 -
Therefore we conclude from (*):

d-1 .
351+ 2+ % (@"1)-h1 ,
- X i-17/.
i=1

-10-
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ice. h'=n%=...=0%"<0.nalso h° =0, since
depth A > 0 . So A would be Cohen-Macaulay, which
contradicts the hypothesis that A is not.
This means that under the assumption of theorem 4.1, A
must be Cohen-Macaulay. Then proposition 2.1 implies the
claim of the theorem.

The following corollary to theorem 4.1 is closely related
to corollary 2.4.

Corollary 4.3:

Let I be an ideal of the regular ring (R,M) . Assume
that ord(R/I) > 2 . Then the following conditions are

equivalent:

(1) R/I is a hypersurface and e(R/I) i d

(2) Rim) = o Au.n is Cochen-Macaulay and e(R/I) = ord(I)
nzO

Proof:

(1) = (2): Assumption (1) implies that Ri#w ) 1is
Cohen-Macaulay by [GHO], Cor. 5.5.

(2) = (1): Since ®R(m) 1is Cohen-Macaulay, A is
Buchsbaum satisfying 52 by [I-1]. Now we consider two

cases:

Case 1: ord(I) > 3 . Then R/I is a hypersurface by
theorem 4.1, and e(R/I) < d by [GHO1, Cor. 5.5.

Case 2: ord(I) = 2 . Then by the multiplicity formula
for the Buchsbaum ring A = R/I and the fact that A

satisfies 52 , one knows that A must be Cohen-Macaulay.

Example 4.4:

R =‘k[{x1,X2,X3,Y1,Y2,Y3]] ' g a field,

I= (X1Y1+X2Y2+XBY3,(Y1,Y2,Y3) )

Then e(R/I) ='d =3 , ord(I) = 2 and ®M#m is
Cohen-Macaulay, ‘but R/I is not a hypersurface.

Remark 4.5:
"The condition " 2m) is Cohen-Macaulay" in Cor. 4.3 can-
not be replaced by "Proj(&® (#)) is Cohen-Macaulay" as

-11-
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we can see from the previous example 1.1, where
e(R/I} = 'd = ord{(I) =2 and Proj(® w)) is Cohen-
Macaulay.

5. Graded rings with (S,) .
Let R =‘k[x1,...,xr] be a homogeneous graded polynomial
ring over an algebraically closed field k . Let M be

the maximal homogeneous ideal of R . For an homogeneous

ideal I = e I of R we define
n>0
e(R/I) = e(Ry,/IR,) and ord(I) = min{n | I # 0}
Since ord(I) = ord(IRM) , the condition e(R/I) = ord(I)
is equivalent to the condition e(RM/IRM) = ord(IRM) for

the local ring RM .

Theorem 5.1:

Let I be an homogeneous ideal in R with
e(R/I) = ord(I) = n > 1 . Assume that R/I satisfies S
Then R/I 1is a hypersurface.

Proof:
Since R/I 1is catenarian and satisfies 82 , 1 is
unmixed by [Gr], 5.10.9. We may assume that X

e e e X
1! r
is a homogeneous system of parameters mod I . We put
S = k[X1,...,Xd] . Then A = R/I 1is a finite S-module
and e(R/I) = rankS(A) , S. [Hul. We want to show that

r = dim R = d+1

d

Case 1: R/I is not a domain. Assume that r > d+2
Put Y = Xd+1 and Z = X4+2 We consider the following
rings

B = k[Xy,...,Xg,¥1/1IN k'[x1,...,xd,y]

C = k[X1,...,Xd,Z] /IN k[X1,...,Xd,Z]

It is well known that any unmixed ideal J in a
polynomial ring over a field k with ord(J) = n > 0

has a quotient ring R/J with e(R/J) > n . Therefore
we have

5 e(B) 5 e{(hA) = n

<elc) <e(d =n ,

—12-
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i.e. e(B) = e(C) = n . Hence, regarding the multi-
plicities e(B), e(C) and e{(A) as the S-ranks of
k[x1,...,xd,y] ’ ktx1,...,xd,Z] and R respectively,
we see that

(*) A oy Q(S) = B &5 Q(S) =« C &g Q(S)

where Q(S) 1is the quotient field of S ='k[X1,...,Xd] .
Let P be a minimal prime of I < R . Since
111\= k[X1,...,Xd,Y] n I and 112 = k[X1,..r,Xd,Z] NI

are unmixed homogeneous ideals of height 1 ;, we get

n

P n k[X,I,...,Xd,Y] f(Y) .'k[X.‘,.-.,Xd,Y]

and
PN k[x1,...,xd,z] =‘g(Z)-k[x1,...,xd,z] ‘
where
£(Y) =YW + a Yol . ...+ a
1 v
g(z) = z™ + b1Zm_1 + + b

with m,v < n = ord(I) . [This -strict ineqguality comes
from the fact that I # P in case 1; in particular:

ord(421) = ¥ ord(fi(Y)) ; where the fi(Y) generate the
i )
associated primes of 421 » l.e. n < ord(421) < ord(fi(Y))

for each i .] Since g(Z) mod I is in C , we conclude
from (*) that there is a non-zero element s € S such that

1l 1-1
* % . =
(**) s-g(2) clY + cl—1Y + ... cO mod I

for some cy €S and i =0,...,1 . Taking the isomor-
phism

(k[X1,...,Xd,Z] / InN k[X1,...,Xd,Z]) ®. Q{(S) =~ R/I ® Q(S)

S

modulo P , we get via (**) (up to isomorphism):

R/P L Q(S) (k[x1,...,xd,z] / PN k[x1,...,xd,21) L Q(s)

I

Q(s)[z] / s-g(Z2)-Q(s)[z]
Q(8) [¥] / (e ¥ .. +c)Q(S)[¥]

i.e. 1l =m=v .
Then we have
m
.t = .
c ¥+ . c €PN S{y] £(y)-sly]
Hence for some homogeneous element t € S , t # 0 , we get

sjg(Z) = tff(Y) mod I '

-13-
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where deg s = deg t . Note that every non-zero

homogeneous element of S is a non—zéro divisor on R/I
Therefore we may assume that s and t have no common
divisor. If deg s = deg t = 0 , the element

s.g(2) - tff(Y) is of degree m <n in I , which contra-
dicts to ord(I}) = n . If deg s ‘deg t > 0 , then the
images of s and t mod I form a regular sequence in
R/I (since R/I satisfies 82 ), hence £(y) = th mod I

it

for some h € R . But this gives again an element of degree
m<n in I . Therefore we have r = dim R = d+1 in

case 1.

Case 2: R/P = k[x1,...,xr] is a domain. Since k is
algebraically closed, we may assume by [A] that
XqreeorX g generate a prime ideal € k[x1,...,xr]
with ht(g ) = r-1 . For D = k[x1,...,xr_1] c R/I we
get by [A], 12.3.4:

(1)  e(D) =e(®R/P) if dimD gd ,

{2) e(D) < e(R/P) if dim D = 4

Since D =;k{X1,...,Xr_1]/q with g < P prime and
ord(g) > ord(P) = n , we know that e(D) > n = e(R/P)

Therefore (2) cannot occur, So we have dim D < d . l.e.
X, is algebraically independent over D . Moreover we
have "ord(q) = ord(P) = n . Therefore we can use

induction on r since the assertion is clear for r = 3
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