
Max-Planck-Institut für Mathematik
Bonn

Universal R-matrix and functional relations

by

Herman Boos
Frank Göhmann
Andreas Klümper
Khazret S. Nirov

Alexander V. Razumov

Max-Planck-Institut für Mathematik
Preprint Series 2012 (27)





Universal R-matrix and functional relations

Herman Boos
Frank Göhmann
Andreas Klümper
Khazret S. Nirov

Alexander V. Razumov

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Fachbereich C - Physik
Bergische Universität Wuppertal
42097 Wuppertal
Germany

Institute for Nuclear Research of the
Russian Academy of Sciences
60th October Anniversary pr. 7a
117312 Moscow
Russia

Institute for High Energy Physics
142281 Protvino
Moscow Region
Russia

MPIM 12-27





UNIVERSAL R-MATRIX AND FUNCTIONAL RELATIONS

HERMAN BOOS, FRANK GÖHMANN, ANDREAS KLÜMPER,
KHAZRET S. NIROV, AND ALEXANDER V. RAZUMOV

ABSTRACT. We collect and systematize general definitions and facts on the application
of quantum groups to the construction of functional relations in the theory of integrable
systems. As an example, we reconsider the case of the quantum group Uq(L(sl2))
related to the six-vertex model. We prove the full set of the functional relations in the
form independent of the representation of the quantum group in the quantum space
and specialize them to the case of the six-vertex model.
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2 H. BOOS, F. GÖHMANN, A. KLÜMPER, KH. S. NIROV, AND A. V. RAZUMOV

1. INTRODUCTION

The famous Onsager’s solution [56] of the square lattice Ising model was the first
essential result in the field of two-dimensional quantum integrable statistical lattice
models. The next step was made by Lieb [52–55] who used the Bethe ansatz [18] to
solve different partial cases of the six-vertex model. His results were generalized to
the general case of the six-vertex model by Sutherland [60]. Later, Baxter proposed
the method of functional relations [3–8, 10] to solve statistical models which cannot
be treated with the help of the Bethe ansatz. The method works for the cases where
the Bethe ansatz can be applied as well. It appears that its main ingredients, transfer
matrices and Q-operators, are essential not only for the integration of the correspond-
ing quantum statistical models in the sense of calculating the partition function in the
thermodynamic limit. One of the remarkable recent applications is their usage in the
construction of the fermionic basis [21, 25, 26, 42] for the observables of the XXZ spin
chain closely related to the six-vertex model.

It seems that the most productive, although not comprehensive, modern approach
to the theory of quantum integrable systems is the approach based on the concept of
quantum group invented by Drinfeld and Jimbo [34, 39]. In this approach, all the ob-
jects describing the model and related to its integrability originate from the universal
R-matrix, and the functional relations are consequences of the properties of the ap-
propriate representations of the quantum group. It was clearly realized by Bazhanov,
Lukyanov and Zamolodchikov [14–16]. The present paper can be considered as an
introduction to the application of the theory of quantum groups to formulation of in-
tegrable systems and derivation of the corresponding functional relations. We were
prompted to write it by the absence of a detailed and exhaustive consideration of the
method in the literature. One more reason was a desire to fix the terminology and
notations for our future research.

In section 2, we discuss the original approach to formulation and investigation of
quantum square lattice vertex models. We introduce basic objects, and for the case
of the six-vertex model reproduce the Baxter’s reasonings for the appearance of the
functional relations. In section 3, all the objects describing an integrable lattice vertex
model and used to integrate it are constructed starting from a quantum group. Two
representations of the quantum group should be fixed to describe a model. Here, par-
ticularly by historical reasons, the corresponding representation spaces are called the
auxiliary space and the quantum space. In most cases there is an associated quantum
mechanical model defined in the quantum space or its tensor power. In fact, a lat-
tice model arises when we take finite-dimensional representations, and the associated
quantum mechanical model here is some spin chain. The basic example here is the
six-vertex model and XXZ spin chain, see, for example, the book by Baxter [8]. If the
quantum space is the representation space of certain infinite-dimensional vertex rep-
resentation of the quantum group, we have a two-dimensional field theory [11,14–16].
In section 4 we consider the case of the quantum group Uq(L(sl2)). The full set of
functional relation in the universal form independent of the choice of representation
of the quantum group in the quantum space is derived in section 5.

We assume that the reader is acquainted with the basic facts on quantum groups.
Beside the original papers [34, 39], we recommend for this purpose the book by Chari
and Pressley [29].

Below, a vector space is a vector space over the field C of complex numbers, and an
algebra is a complex associative unital algebra. In fact, all general definitions, given
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in section 3, can easily be extended to the case of algebras and vector spaces over a
general field or even a general commutative unital ring.

The symbol ‘⊗’ is used for the tensor product of vector spaces, for the tensor product
of homomorphisms and for the Kronecker product of matrices. Depending on the
context, the symbol ‘1’ means the number one, the unit of an algebra or the unit matrix.
We denote by L(g) the loop Lie algebra of a finite-dimensional simple Lie algebra g,
by L̃(g) its standard central extension, and by L̂(g) the Lie algebra obtained from L̃(g)
by adjoining the standard derivation, see, for example, the book by Kac [43].

2. SQUARE LATTICE VERTEX MODELS

2.1. Vertex models and transfer matrix. Here we recall the basic facts on integrable
two-dimensional square lattice vertex models and show how functional relations arise
in the case of the six-vertex model.

First of all, the models in question are quantum statistical models whose properties
in the state of thermodynamic equilibrium are described by the partition function. La-
bel by C the possible eigenstates of the Hamiltonian1 of the system under consideration
and denote by EC the corresponding energy. The partition function is2

Z = ∑
C

exp(−βEC),

where β = 1/kBT with kB the Boltzmann constant and T the temperature. The quan-
tity exp(−βEC) is called the Boltzmann weight of the configuration C.

Consider now a two-dimensional square lattice, see Figure 1, and assume that some
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FIGURE 1. Two-dimensional square lattice.

particles are located at its vertices. Any horizontal bond of the lattice can be in one
of ` states, and a vertical bond in one of k states. This defines a configuration of the
system. Usually one also imposes boundary conditions. The simplest case here is the
periodic boundary condition, where for each horizontal and vertical row the state of
the first bond coincides with the state of the last bond.

1For lattice models we usually call an eigenstate of the Hamiltonian a configuration of the system.
2We restrict ourselves to consideration of the canonical ensemble, see, for example, the book [38].



4 H. BOOS, F. GÖHMANN, A. KLÜMPER, KH. S. NIROV, AND A. V. RAZUMOV

The energy of a configuration is the sum of the energies associated with the vertices.
The energy EC,V associated with a vertex V depends on the vertex itself and on the
configuration C. Therefore, we have

Z = ∑
C

exp
(
−β ∑

V
EC,V

)
= ∑
C

∏
V

exp
(
−βEC,V

)
.

Assume that EC,V depends only on the states of the bonds connecting V with the neigh-
boring vertices. We label the states of the horizontal and vertical bonds by the integers
from 1 to ` and from 1 to k respectively, and denote the energy associated with a ver-
tex by Eai|bj, where the indices correspond to the states of the bonds as is shown in
Figure 2.

a

b

i

j

= Mai|bj

FIGURE 2. The association of the indices with the bonds.

It is convenient to introduce the Boltzmann weight of a vertex

Mai|bj = exp(−β Eai|bj).

It is clear that the Boltzmann weight of a configuration is the product of the Boltzmann
weights of the vertices, and the summation over the configurations is the summation
over the indices associated with the bonds. One can start with the summation over the
indices associated with the horizontal bonds of a row excluding the first and the last
bonds. This gives the quantities

Mai1i2...in|bj1 j2...jn = ∑
c1,c2,...,cn−1

Mai1|c1 j1 Mc1i2|c2 j2 . . . Mcn−1in|bjn , (2.1)

where n is the number of the vertices in a horizontal row. Now we sum over the
states of the remaining bonds of a horizontal row. If we assume the periodic boundary
conditions, we should put in equation (2.1) b = a and sum over a. More generally, one
can multiply (2.1) by some quantities Fba and sum over a and b independently. This
can be considered as a generalization of boundary conditions called quasi-periodic or
twisted. As the result we obtain the quantities

Ti1i2...in|j1 j2...jn = ∑
c1,c2,...,cn−1,a,b

Mai1|c1 j1 Mc1i2|c2 j2 . . . Mcn−1in|bjn Fba,

which can be graphically interpreted by Figure 3, where

b

b

a
= Fba,

and the summation over the indices associated with the internal lines is implied.
Define a kn × kn matrix

T = (Ti1i2...in|j1 j2...jn)

called the transfer matrix. It is clear that the summation over the states of the hori-
zontal bonds of two adjacent horizontal rows and over the states of the vertical bonds
between them gives the entries of the matrix T2. Summing over the states of the hor-
izontal bonds of all horizontal rows and over the states of the vertical bonds between
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FIGURE 3. Graphical interpretation of the quantities Ti1i2...in|j1 j2...jn .

them we obtain the entries of the matrix Tm, where m is the number of the horizon-
tal rows. Assuming the purely periodic boundary conditions for the vertical rows we
see that the summation over the states of the remaining bonds gives the trace of this
matrix. Thus, we come to the equation

Z = tr(Tm).

Recall that the statistical physics describes systems of large numbers of particles. Hence,
we are primarily interested in the case of large n and m. If λmax is the maximal eigen-
value of the transfer matrix T and it is nondegenerate, then for large m we have the
estimation

Z ∼ λm
max.

Therefore, the problem of calculating the partition function is reduced to the problem
of finding the maximal eigenvalue of the transfer matrix for large n. In some cases it
can be done using the Bethe ansatz or some its modification. In fact, the applicability of
the Bethe ansatz is a manifestation of a rich algebraic structure behind the model under
consideration. To reveal this structure, it is useful to introduce spectral parameters
associated with the rows and columns of the lattice, see Figure 4, and assume that
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FIGURE 4. Spectral parameters.

the Boltzmann weight of a vertex depends on the corresponding row and column
spectral parameters. So we write T(ζ|η1, . . . , ηn) for the transfer operator. The case
η1 = η2 = . . . = ηn = 1 is called homogeneous.
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2.2. Integrable models. The vertex model under consideration is said to be integrable
if we have

[T(ζ1|η1, . . . , ηn),T(ζ2|η1, . . . , ηn)] = 0 (2.2)
for any ζ1 and ζ2. It follows from this equation that the transfer matrix T(ζ|η1, . . . , ηn)
can be put into Jordan normal form by a similarity transformation which does not
depend on ζ. One can show that equation (2.2) is valid, in particular, if there exist
`2 × `2 quantities Ra1a2|b1b2

(ζ1|ζ2) such that

∑
c1,c2,k

Ra1a2|c1c2
(ζ1|ζ2)Mc1i|b1k(ζ1|η)Mc2k|b2 j(ζ2|η)

= ∑
c1,c2,k

Ma2i|c2k(ζ2|η)Ma1k|c1 j(ζ1|η)Rc1c2|b1b2
(ζ1|ζ2), (2.3)

and

∑
c1,c2

Ra1a2|c1c2
(ζ1|ζ2)Fc1b1(ζ1)Fc2b2(ζ2) = ∑

c1,c2

Fa1c1(ζ1)Fa2c2(ζ2)Rc1c2|b1b2
(ζ1|ζ2). (2.4)

The model possesses the richest algebraic structure if additionally

∑
c1,c2,c3

Ra1a2|c1c2
(ζ1|ζ2)Rc1a3|b1c3

(ζ1|ζ3)Rc2c3|b2b3
(ζ2|ζ3)

= ∑
c1,c2,c3

Ra2a3|c2c3
(ζ2|ζ3)Ra1c3|c1b3

(ζ1|ζ3)Rc1c2|b1b2
(ζ1|ζ2). (2.5)

This is the famous Yang-Baxter equation.

2.3. Functional relations for the six-vertex model. The standard example of a quan-
tum statistical vertex model is the six-vertex model. Here any horizontal and vertical
bond can be in one of two states labelled by 1 and 2, and the Boltzmann weights
Mai|bj(ζ|η) can be arranged into the matrix

(Mai|bj(ζ|η)) =


a(ζη−1) 0 0 0

0 b(ζη−1) c(ζη−1) 0
0 c(ζη−1) b(ζη−1) 0
0 0 0 a(ζη−1)

 , (2.6)

where
a(ζ) = q ζ − q−1ζ−1, b(ζ) = ζ − ζ−1, c(ζ) = q− q−1, (2.7)

and we order the pairs of indices as 11, 12, 21, 22. The parameter q is a fixed nonzero
complex number. We see that the Boltzmann weights are different from zero only for
six vertex configurations, hence the name of the model. Equation (2.3) is satisfied with

Ra1a2|b1b2
(ζ1|ζ2) = Ma1a2|b1b2

(ζ1|ζ2). (2.8)

The usual choice for Fab(ζ) is

F11(ζ) = qφ, F12(ζ) = 0, F21(ζ) = 0, F22(ζ) = q−φ,

where φ is an arbitrary complex number. One can verify that (2.4) is satisfied.
To find eigenvectors and eigenvalues of the transfer matrix it is convenient to use

the algebraic Bethe ansatz [59,61]. This approach shows that there are the eigenvectors
of the transfer matrix with the eigenvalues

λ(ζ|η1, . . . , ηn) = qφ
n

∏
i=1

a(ζη−1
i )

p

∏
`=1

a(ζ`ζ−1)

b(ζ`ζ−1)
+ q−φ

n

∏
i=1

b(ζη−1
i )

p

∏
`=1

a(ζζ−1
` )

b(ζζ−1
` )

, (2.9)
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where 0 ≤ p ≤ n, and ζ1, . . . , ζp satisfy the Bethe equations

q2φ
n

∏
i=1

a(ζmη−1
i )

b(ζmη−1
i )

= (−1)p+1
p

∏
`=1

a(ζmζ−1
` )

a(ζ`ζ
−1
m )

, m = 1, . . . , p.

It can be shown that all eigenvalues can be obtained by the Bethe ansatz, and that the
corresponding eigenvectors form a basis of C2n

, see, for example, [9] and references
therein. It is important that these eigenvectors do not depend on ζ, that is in fact a
consequence of equation (2.2). Now it is clear that there is a matrix O(η1, . . . , ηn) such
that

O(η1, . . . , ηn)Td(ζ|η1, . . . , ηn)O−1(η1, . . . , ηn) = T(ζ|η1, . . . , ηn), (2.10)
where Td(ζ|η1, . . . , ηn) is a diagonal matrix.

For a given solution of the Bethe equations we define the function

θ(ζ|η1, . . . , ηn) =
p

∏
`=1

b(ζ`(η1, . . . , ηn)ζ
−1), (2.11)

where the dependence of the Bethe roots ζ1, . . . , ζp on the spectral parameters η1, . . . ,
ηn is shown explicitly. Now we can rewrite relation (2.9) as

λ(ζ|η1, . . . , ηn)θ(ζ|η1, . . . , ηn)

= qφ
n

∏
i=1

a(ζη−1
i ) θ(q−1ζ|η1, . . . , ηn) + q−φ

n

∏
i=1

b(ζη−1
i ) θ(qζ|η1, . . . , ηn). (2.12)

The matrix Td(ζ|η1, . . . , ηn) in (2.10) is a diagonal matrix with entries being the
eigenvalues of T(ζ|η1, . . . , ηn) of the form (2.9). Denote by Qd(ζ|η1, . . . , ηn) the di-
agonal matrix whose entries are the corresponding functions θ(ζ|η1, . . . , ηn) given
by (2.11). It follows from (2.12) that

Td(ζ|η1, . . . , ηn)Qd(ζ|η1, . . . , ηn)

= qφ
n

∏
i=1

a(ζη−1
i )Qd(q−1ζ|η1, . . . , ηn) + q−φ

n

∏
i=1

b(ζη−1
i )Qd(qζ|η1, . . . , ηn). (2.13)

Define the matrix

Q(ζ|η1, . . . , ηn) = O(η1, . . . , ηn)Qd(ζ|η1, . . . , ηn)O−1(η1, . . . , ηn).

Since the matrix Qd(ζ|η1, . . . , ηn) does not depend on ζ, it follows from (2.13) that

T(ζ|η1, . . . , ηn)Q(ζ|η1, . . . , ηn)

= qφ
n

∏
i=1

a(ζη−1
i )Q(q−1ζ|η1, . . . , ηn) + q−φ

n

∏
i=1

b(ζη−1
i )Q(qζ|η1, . . . , ηn). (2.14)

This functional equation is called the Baxter’s TQ-equation. By construction, we also
have

[Q(ζ1|η1, . . . , ηn),T(ζ2|η1, . . . , ηn)] = 0, (2.15)

[Q(ζ1|η1, . . . , ηn),Q(ζ2|η1, . . . , ηn)] = 0 (2.16)

for any ζ1 and ζ2. We call (2.2), (2.15), (2.16) and (2.14) functional relations. They are
equivalent to the Bethe ansatz in the sense that they can be used to find the eigenvalues
of the transfer matrix, see, for example, the book [8].

In the next section we explain how the objects necessary for the integration of an
integrable model are related to its background algebraic structure.
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3. OBJECTS DEFINED BY THE UNIVERSAL R-MATRIX

In this section A is a Z-graded quasitriangular Hopf algebra over the field C with
the comultiplication ∆ and the universal R-matrix R. Some relevant definitions are
reproduced in appendices C and D.

3.1. R-operators. Let ϕ be a representation of the algebra A in the vector space V.3

Given ν ∈ C×, we denote
ϕν = ϕ ◦Φν, (3.1)

where the mapping Φν is defined by relation (D.1). For any ζ1, ζ2 ∈ C× we define

Rϕ(ζ1|ζ2) = (ϕζ1 ⊗ ϕζ2)(R), (3.2)

where R is the universal R-matrix of A. Having in mind the relation to integrable
systems, we call ζ1 and ζ2 spectral parameters. It is clear that Rϕ(ζ1|ζ2) is an element of
End(V)⊗ End(V) ∼= End(V ⊗V). We call it an R-operator.

It appears often that the universal R-matrixR of A satisfies the equation

(Φν ⊗Φν)(R) = R (3.3)

for any ν ∈ C×. From the point of view of the natural Z-gradation of A⊗ A, induced
by the Z-gradation of A, this means that the universal R-matrix R belongs to the zero
grade subalgebra (A⊗ A)0, see appendix D. In this case, using the equation,

ϕζν =
(3.1)

ϕ ◦Φζν =
(D.2)

ϕζ ◦Φν, (3.4)

we obtain

Rϕ(ζ1ν|ζ2ν) =
(3.2)

(ϕζ1ν ⊗ ϕζ2ν)(R)

=
(3.4)

((ϕζ1 ⊗ ϕζ2) ◦ (Φν ⊗Φν))(R) =
(3.3)

(ϕζ1 ⊗ ϕζ2)(R) =
(3.2)

Rϕ(ζ1|ζ2). (3.5)

Thus, Rϕ(ζ1|ζ2) depends only on the combination ζ1ζ−1
2 , and one can introduce the

R-operator
Rϕ(ζ) = Rϕ(ζ|1)

which depends on only one spectral parameter and determines the R-operator de-
pending on two spectral parameters, via the equation

Rϕ(ζ1|ζ2) = Rϕ(ζ1ζ−1
2 ).

Return to a general situation and apply the mapping ϕζ1 ⊗ ϕζ2 ⊗ ϕζ3 to both sides of
the Yang-Baxter equation (C.5) for the universal R-matrix. We obtain the Yang–Baxter
equation for the R-operator,

R12
ϕ (ζ1|ζ2) R13

ϕ (ζ1|ζ3) R23
ϕ (ζ2|ζ3) = R23

ϕ (ζ2|ζ3) R13
ϕ (ζ1|ζ3) R12

ϕ (ζ1|ζ2). (3.6)

In the case where equation (3.3) is valid, for the R-operator depending on one spectral
parameter we have

R12
ϕ (ζ12) R13

ϕ (ζ13) R23
ϕ (ζ23) = R23

ϕ (ζ23) R13
ϕ (ζ13) R12

ϕ (ζ12).

Here and below we denote ζij = ζiζ
−1
j .

One often uses two operators directly related to the R-operator defined by equation
(3.2). One of them is defined as

Řϕ(ζ1|ζ2) = PRϕ(ζ1|ζ2),

3For the case of square lattice models the vector space V is the auxilary space.
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where P is the permutation operator in V ⊗ V, see appendix B. Using this definition,
we can rewrite the left hand side of the Yang–Baxter equation in the following way:

R12
ϕ (ζ1|ζ2)R13

ϕ (ζ1|ζ3)R23
ϕ (ζ2|ζ3)

= P12Ř12
ϕ (ζ1|ζ2)P13Ř13

ϕ (ζ1|ζ3)P23Ř23
ϕ (ζ2|ζ3)

=
(B.3)

P12P13P23Ř23
ϕ (ζ1|ζ2)Ř12

ϕ (ζ1|ζ3)Ř23
ϕ (ζ2|ζ3).

Similarly, we rewrite the right hand side as

R23
ϕ (ζ2|ζ3)R13

ϕ (ζ1|ζ3)R12
ϕ (ζ1|ζ2) = P23P13P12Ř12

ϕ (ζ2|ζ3)Ř23
ϕ (ζ1|ζ3)Ř12

ϕ (ζ1|ζ2).

It is not difficult to verify that

P12P13P23 = P23P13P12,

therefore, the Yang–Baxter equation (3.6) is equivalent to the equation

Ř23
ϕ (ζ1|ζ2)Ř12

ϕ (ζ1|ζ3)Ř23
ϕ (ζ2|ζ3) = Ř12

ϕ (ζ2|ζ3)Ř23
ϕ (ζ1|ζ3)Ř12

ϕ (ζ1|ζ2).

This equation can also be written as

(id⊗ Řϕ(ζ1|ζ2))(Řϕ(ζ1|ζ3)⊗ id)(id⊗ Řϕ(ζ2|ζ3))

= (Řϕ(ζ2|ζ3)⊗ id)(id⊗ Řϕ(ζ1|ζ3))(Řϕ(ζ1|ζ2)⊗ id).

Another companion for the R-operator is defined as

R̂ϕ(ζ1|ζ2) = Rϕ(ζ1|ζ2)P,

Here the Yang–Baxter equation takes the form

R̂12
ϕ (ζ1|ζ2)R̂23

ϕ (ζ1|ζ3)R̂12
ϕ (ζ2|ζ3) = R̂23

ϕ (ζ2|ζ3)R̂12
ϕ (ζ1|ζ3)R̂23

ϕ (ζ1|ζ2),

or, equivalently,

(R̂ϕ(ζ1|ζ2)⊗ id)(id⊗ R̂ϕ(ζ1|ζ3))(R̂ϕ(ζ2|ζ3)⊗ id))

= (id⊗ R̂ϕ(ζ2|ζ3))(R̂ϕ(ζ1|ζ3)⊗ id)(id⊗ R̂ϕ(ζ1|ζ2)).

Assume now that the vector space V is finite-dimensional of dimension `. Let {ea}
be a basis of V, and {Eab} the corresponding basis of End(V), see appendix A. We
have

Rϕ(ζ1|ζ2) = ∑
a,b,c,d

Eab|cd Rab|cd(ζ1|ζ2) =
(A.2)

∑
a,b,c,d

Eac ⊗ Ebd Rab|cd(ζ1|ζ2),

where Rab|cd(ζ1|ζ2) are some unique complex numbers. One can verify that the Yang–
Baxter equation (3.6) in terms of the quantities Rab|cd(ζ1|ζ2) has the form (2.5). The `2×
`2 matrix with the entries Rab|cd(ζ1|ζ2) is called an R-matrix. We denote it Rϕ(ζ1|ζ2).

It is not difficult to convince oneself that

P = ∑
a,b

Eab ⊗ Eba.

Now, defining the quantities Řab|cd(ζ1|ζ2) by

Řϕ(ζ1|ζ2) = ∑
a,b,c,d

Eac ⊗ Ebd Řab|cd(ζ1|ζ2),

we see that
Řab|cd(ζ1|ζ2) = Rba|cd(ζ1|ζ2). (3.7)
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Similarly, defining the quantities R̂ab|cd(ζ1|ζ2) by

R̂ϕ(ζ1|ζ2) = ∑
a,b,c,d

Eac ⊗ Ebd R̂ab|cd(ζ1|ζ2),

we see that
R̂ab|cd(ζ1|ζ2) = Rab|dc(ζ1|ζ2).

We denote the matrices with the entries Řab|cd(ζ1|ζ2) and R̂ab|cd(ζ1|ζ2) by Řϕ(ζ1|ζ2)

and R̂ϕ(ζ1|ζ2) respectively.
One can also define an R-operator using two different representations, say ϕ1 and

ϕ2. In this case we use the notation

Rϕ1,ϕ2(ζ1|ζ2) = (ϕ1ζ1 ⊗ ϕ2ζ2)(R).
In the case when ϕ1 and ϕ2 are representations of A in vector spaces V1 and V2, respec-
tively, the R-operator Řϕ1,ϕ2(ζ1|ζ2) serves as the intertwiner for the representations
ϕ1ζ1 ⊗∆ ϕ2ζ2 and ϕ2ζ2 ⊗∆ ϕ1ζ1 of A in the vector spaces V1 ⊗ V2 and V2 ⊗ V1 respec-
tively.4 To prove the intertwiner property of Řϕ1,ϕ2(ζ) we note that

ϕ2ζ2 ⊗∆ ϕ1ζ1 = (ϕ2ζ2 ⊗ ϕ1ζ1) ◦∆

=
(B.4)

Π ◦ (ϕ1ζ1 ⊗ ϕ2ζ2) ◦Π ◦∆ =
(C.1)

Π ◦ (ϕ1ζ1 ⊗ ϕ2ζ2) ◦∆op.

Hence, one can write

(ϕ2ζ2 ⊗∆ ϕ1ζ1)(a) =
(C.2)

(Π ◦ (ϕ1ζ1 ⊗ ϕ2ζ2))(R∆(a)R−1)

= Π((ϕ1ζ1 ⊗ ϕ2ζ2)(R)(ϕ1ζ1 ⊗∆ ϕ2ζ2)(a)(ϕ1ζ1 ⊗ ϕ2ζ2)(R
−1))

=
(B.2)

PRϕ1,ϕ2(ζ1|ζ2)((ϕ1ζ1 ⊗∆ ϕ2ζ2)(a))(Rϕ1,ϕ2(ζ1|ζ2))
−1P−1.

Finally we come to the declared result,

Řϕ1,ϕ2(ζ1|ζ2)(ϕ1ζ1 ⊗∆ ϕ2ζ2)(a) = (ϕ2ζ2 ⊗∆ ϕ1ζ1)(a)Řϕ1,ϕ2(ζ1|ζ2). (3.8)

An explicit form of R-matrices was obtained from the corresponding universal R-
matrices for certain representations of the quantum groups Uq(L(sl2)) [19, 27, 28, 44,
51, 65], Uq(L(sl3)) [19, 27, 28, 65] and Uq(L(sl3, µ)) [20, 44], where µ is the standard di-
agram automorphism of sl3 of order 2. In fact, up to a scalar factor they coincide with
the R-matrices obtained by other methods. Nevertheless, it is very useful to under-
stand that they can be obtained from the universal R-matrices because this allows one
to relate them to other objects involved into the integration process.

3.2. Monodromy operators.

3.2.1. Universal monodromy operator. Let again ϕ be a representation of A in the vector
space V. Given ζ ∈ C×, we define the universal monodromy operator Mϕ(ζ) by the
equation

Mϕ(ζ) = (ϕζ ⊗ id)(R),
where the mapping ϕζ is defined by equation (3.1). It is clear thatMϕ(ζ) is an element
of the algebra End(V)⊗ A.

4We use the notation ⊗∆ to distinguish between the tensor product of representations and the usual
tensor product of mappings, so that ϕ⊗∆ ψ = (ϕ⊗ ψ) ◦∆.
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Applying the mapping ϕζ1 ⊗ ϕζ2 ⊗ id to both sides of the Yang–Baxter equation
(C.5), we obtain the equation

R12
ϕ (ζ1|ζ2)M13

ϕ (ζ1)M23
ϕ (ζ2) =M23

ϕ (ζ2)M13
ϕ (ζ1)R12

ϕ (ζ1|ζ2).

Multiply both sides of the above equation by P12⊗ 1 and use equation (B.3). This gives

Ř12
ϕ (ζ1|ζ2)M13

ϕ (ζ1)M23
ϕ (ζ2) =M13

ϕ (ζ2)M23
ϕ (ζ1)Ř12

ϕ (ζ1|ζ2). (3.9)

There is a matrix equivalent of this equation.
Assume that the vector space V is finite-dimensional of dimension `. Let {ea} be

a basis of V and {Eab} the corresponding basis of End(V), see appendix A. One can
write

Mϕ(ζ) = ∑
a,b

Eab ⊗Mab(ζ),

where Mab(ζ) are some unique elements of the algebra A. Denote by Mϕ(ζ) the
matrix with the entriesMab(ζ). The matrix Mϕ(ζ) is an element of Mat`(A). We call
it a universal monodromy matrix. Now, it follows from (3.9) that

Řϕ(ζ1|ζ2)(Mϕ(ζ1)�Mϕ(ζ2)) = (Mϕ(ζ2)�Mϕ(ζ1))Řϕ(ζ1|ζ2). (3.10)

Here the operation � is defined by equation (A.4), and, using the canonical embedding
of the field C into A, we treat Řϕ(ζ) as an element of Mat`2(A). It is worth to remind
here that � is a natural generalization of the Kronecker product to the case of matrices
with noncommuting entries.

3.2.2. Monodromy operator. Let ϕ and ψ be representations of A in the vector spaces V
and U respectively.5 Given ζ, η ∈ C×, we define the monodromy operator Mϕ,ψ(ζ|η) by
the equation

Mϕ,ψ(ζ|η) = (ϕζ ⊗ ψη)(R),
where the mapping ϕζ is defined by equation (3.1) and the mapping ψη is defined in
the similar way. It is clear that Mϕ,ψ(ζ|η) is an element of End(V)⊗ End(U).

One should note that the monodromy operator Mϕ,ψ(ζ|η) coincides with the R-
operator Rϕ,ψ(ζ|η). Nevertheless, we use different names due to different roles these
objects play in the integration process.

Since A is a bialgebra, one can also define the monodromy operator6

Mϕ,ψ(ζ|η1, . . . , ηn) = (ϕζ ⊗ (ψη1 ⊗∆op . . .⊗∆op ψηn))(R),
where η1, . . . , ηn are some nonzero complex numbers. Note that this monodromy
operator is an element of End(V) ⊗ End(U)⊗n ∼= End(V) ⊗ End(U⊗n). In fact, one
can use different representations, say ψ1, . . . , ψn, for different factors of the tensor
product. This is the case for the construction of the quantum transfer matrix [50] and
for the description of integrable defects [2, 30, 31, 64].

For the opposite comultiplication we have

(id⊗∆op)(R) =
(C.1)

(id⊗Π23)((id⊗∆)(R)) =
(C.4)

(id⊗Π23)(R13R12) =
(B.1)
R12R13.

Therefore, we can see that

Mϕ,ψ(ζ|η1, η2) = (ϕζ ⊗ (ψη1 ⊗∆op ψη2))(R)

5For the case of square lattice models the vector space U is the quantum space.
6We use the comultiplication ∆op instead of ∆ to have relations similar to those which usually arise

for integrable systems.
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= ((ϕζ ⊗ ψη1 ⊗ ψη2) ◦ (id⊗∆op))(R) = M12
ϕ,ψ(ζ|η1)M13

ϕ,ψ(ζ|η2).

In general, we have

Mϕ,ψ(ζ|η1 . . . , ηn) = M12
ϕ,ψ(ζ|η1) . . . M1,n+1

ϕ,ψ (ζ|ηn). (3.11)

One often labels the first factor of the tensor product V ⊗U⊗n by 0 and the rest by 1,
. . . , n. In this case the above relation takes the form

Mϕ,ψ(ζ|η1 . . . , ηn) = M01
ϕ,ψ(ζ|η1) . . . M0n

ϕ,ψ(ζ|ηn).

If equation (3.3) is satisfied, in the same way as for the case of R-operators, see (3.5),
we obtain

Mϕ,ψ(ζν|ην) = Mϕ,ψ(ζ|η). (3.12)
Therefore, we can write

Mϕ,ψ(ζ|η) = Mϕ,ψ(ζη−1),
where Mϕ,ψ(ζ) = Mϕ,ψ(ζ|1). Furthermore, in this case equation (3.11) gives

Mϕ,ψ(ζν|η1ν, . . . , ηnν) = Mϕ,ψ(ζ|η1, . . . , ηn)

for any ν ∈ C×.
Assume now that the vector space V is finite-dimensional, {ea} is a basis of V, and
{Eab} the corresponding basis of End(V). Represent the monodromy operator as

Mϕ,ψ(ζ|η1, . . . , ηn) = ∑
a,b

Eab ⊗Mab(ζ|η1, . . . , ηn), (3.13)

where Mab(ζ|η1, . . . , ηn) are elements of End(U)⊗n ∼= End(U⊗n). It is clear that

Mab(ζ|η1, . . . , ηn) = (ψη1 ⊗∆op . . .⊗∆op ψηn)(Mab(ζ)), (3.14)

where Mab(ζ) are the entries of the universal monodromy matrix defined in sec-
tion 3.2.1. Denote by Mϕ,ψ(ζ|η1, . . . , ηn) the matrix with the entries Mab(ζ|η1, . . . , ηn).
It is an element of Mat`(End(U)⊗n) ∼= Mat`(End(U⊗n)). Using (3.11), one can show
that

Mϕ,ψ(ζ|η1, . . . , ηn) = Mϕ,ψ(ζ|η1)� . . . � Mϕ,ψ(ζ|ηn), (3.15)
where the operation � is defined by (A.3). Applying the mapping ψη1 ⊗∆op . . . ⊗∆op

ψηn to the entries of matrices in both sides of equation (3.10) and taking into account
relation (3.14), we see that

Řϕ(ζ1|ζ2)(Mϕ,ψ(ζ1|η1, . . . , ηn)� Mϕ,ψ(ζ2|η1, . . . , ηn))

= (Mϕ,ψ(ζ2|η1, . . . , ηn)� Mϕ,ψ(ζ1|η1, . . . , ηn))Řϕ(ζ1|ζ2).

Relations of this type are the basis of the algebraic Bethe ansatz [59, 61].
Now assume that the vector space U is finite-dimensional. Let {ei} be a basis of U,

and {Eij} the corresponding basis of End(U). Represent the monodromy operator as

Mϕ,ψ(ζ|η1, . . . , ηn) = ∑
i1,...,in
j1,...,jn

Mi1...in|j1...jn(ζ|η1, . . . , ηn)⊗ Ei1 j1 ⊗ . . .⊗ Ein jn , (3.16)

where Mi1...in|j1...jn(ζ|η1, . . . , ηn) are elements of End(V). Introducing the matrix

Mϕ,ψ(ζ|η1, . . . , ηn) = (Mi1...in|j1...jn(ζ|η1, . . . , ηn))

and using (3.11), we obtain the equation

Mϕ,ψ(ζ|η1, . . . , ηn) = Mϕ,ψ(ζ|η1)� . . . �Mϕ,ψ(ζ|ηn). (3.17)
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If both vector spaces V and U are finite-dimensional, we can write

Mϕ,ψ(ζ|η1, . . . , ηn) = ∑
a,i1,...,in
b,j1,...,jn

Mai1...in|bj1...jn(ζ|η1, . . . , ηn) Eab ⊗ Ei1 j1 ⊗ . . .⊗ Ein jn ,

where Mai1...in|bj1...jn(ζ|η1, . . . , ηn) are elements of the field C. Here relation (3.11) gives

Mai1i2...in|bj1 j2...jn(ζ|η1, . . . , ηn)

= ∑
c1,c2,...,cn−1

Mai1|c1 j1(ζ|η1)Mc1i2|c2 j2(ζ|η2) . . . Mcn−1in|bjn(ζ|ηn).

This is equation (2.1) with the dependence on the spectral parameters included.
For usual square lattice models, such as the six-vertex model, the representation

ψ coincides with the representation ϕ. Here the monodromy operator Mϕ,ψ(ζ|η) =
Mϕ,ϕ(ζ|η) coincides with the corresponding R-operator Rϕ(ζ|η).

3.3. Transfer operators. The transfer operators are obtained via taking the trace over
the representation space V of the representation ϕ used to define the monodromy
operators. Some necessary information on traces can be found in appendix E.

3.3.1. Universal transfer operator. Let ϕ be a representation of the algebra A in the vec-
tor space V, and t a group-like element of A,

∆(t) = t⊗ t. (3.18)

We define the universal transfer operator as

Tϕ(ζ) = (trV ⊗ id)(Mϕ(ζ)(ϕζ(t)⊗ 1)) = ((trV ◦ ϕζ)⊗ id)(R(t⊗ 1)),

where the mapping ϕζ is defined by relation (3.1). We call t a twist element.
It is easy to see that

∆op(t) =
(C.1)

Π(∆(t)) =
(3.18)

t⊗ t.

From the other hand

∆op(t) =
(C.2)
R∆(t)R−1 =

(3.18)
R(t⊗ t)R−1.

Therefore, we have the equation

R(t⊗ t) = (t⊗ t)R. (3.19)

The above equation can be written as

R12t1t2 = t1t2R12.

Multiplying the Yang–Baxter equation (C.5) from the right by t1t2 and using the above
equation, we obtain

(R13t1)(R23t2) = (R12)−1(R23t2)(R13t1)R12. (3.20)

Applying to both sides of this equation the mapping (tr ◦ ϕζ1) ⊗ (tr ◦ ϕζ2) ⊗ id, we
come to the equation

Tϕ(ζ1)Tϕ(ζ2) = Tϕ(ζ2)Tϕ(ζ1). (3.21)
Here we use equation (E.5). More generally, if ϕ1 and ϕ2 are arbitrary representations
of the algebra A, then

Tϕ1(ζ1)Tϕ2(ζ2) = Tϕ2(ζ2)Tϕ1(ζ1) (3.22)

for all ζ1, ζ2 ∈ C×.
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Let a be an invertible group-like element of A which commutes with t. Using the
equation

R12a1a2 = a1a2R12,
we obtain

R12t1a1a2 = a1a2R12t1.
Rewriting this relation as

(a1)−1((R12t1) a2) a1 = a2(R12t1), (3.23)

and applying to both the sides the mapping (tr ◦ ϕζ)⊗ id, we see that

Tϕ(ζ)a = aTϕ(ζ).

for any invertible group-like element a ∈ A commuting with the twist element t.
Assume that the vector space V is finite-dimensional of dimension `, and {ea} is a

basis of V. Denote by Fϕ(ζ) ∈ Mat`(C) the matrix of ϕζ(t) with respect to the basis
{ea}. It is clear that

Tϕ(ζ) = tr(Mϕ(ζ)Fϕ(ζ)), (3.24)
where the matrix Mϕ(ζ) ∈ Mat`(A) is defined in section 3.2.1, and, using the canon-
ical embedding of the field C into A, we treat the matrix Fϕ(ζ) as an element of
Mat`(A). Applying to both sides of equation (3.19) the mapping ϕζ1 ⊗ ϕζ2 , we ob-
tain in terms of the corresponding matrices

Rϕ(ζ1|ζ2)(Fϕ(ζ1)⊗ Fϕ(ζ2)) = (Fϕ(ζ1)⊗ Fϕ(ζ2))Rϕ(ζ1|ζ2).

In terms of matrix entries this equation coincides with equation (2.4).

3.3.2. Transfer operator. Let ψ be a representation of the algebra A in the vector space U.
We define the transfer operator Tϕ,ψ(ζ|η1, . . . , ηn) by the relation

Tϕ,ψ(ζ|η1, . . . , ηn) = (ψη1 ⊗∆op . . .⊗∆op ψηn)(Tϕ(ζ))

= ((trV ◦ ϕζ)⊗ (ψη1 ⊗∆op . . .⊗∆op ψηn))(R(t⊗ 1)),

where η1, . . . , ηn are nonzero complex numbers, and the mapping ψη is defined in the
same way as ϕζ . Equation (3.21) immediately gives

Tϕ,ψ(ζ1|η1, . . . , ηn)Tϕ,ψ(ζ2|η1, . . . , ηn) = Tϕ,ψ(ζ2|η1, . . . , ηn)Tϕ,ψ(ζ1|η1, . . . , ηn) (3.25)

for all ζ1, ζ2 ∈ C×.
In the case when ϕ is a finite-dimensional representation, we see that

Tϕ,ψ(ζ|η1, . . . , ηn) =
(3.24)

tr(Mϕ,ψ(ζ|η1, . . . , ηn)Fϕ(ζ))

=
(3.15)

tr((Mϕ,ψ(ζ|η1)� . . . � Mϕ,ψ(ζ|ηn))Fϕ(ζ)).

Here the matrix Mϕ,ψ(ζ|η1, . . . , ηn) is defined in section 3.2.2 and the matrix Fϕ(ζ) in
section 3.3.1. In the case where equation (3.3) is satisfied, from the above relation it
follows, in particular, that

Tϕ,ψ(ζν|η1ν, . . . , ηnν) = Tϕ,ψ(ζ|η1, . . . , ηn)

for any ν ∈ C×.
Assume now that ψ is a finite-dimensional representation, {ei} is a basis of U, and
{Eij} the corresponding basis of End(U). We can write

Tϕ,ψ(ζ|η1, . . . , ηn) = ∑
i1,...,in
j1,...,jn

Ti1...in|j1...jn(ζ|η1, . . . , ηn)⊗ Ei1 j1 ⊗ . . .⊗ Ein jn
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for some Ti1...in|j1...jn(ζ|η1, . . . , ηn) ∈ End(V), and define the matrix

Tϕ,ψ(ζ|η1, . . . , ηn) = (Ti1...in|j1...jn(ζ|η1, . . . , ηn)).

Now we have

Tϕ,ψ(ζ|η1, . . . , ηn) = trV(Mϕ,ψ(ζ|η1, . . . , ηn)ϕζ(t))
=

(3.17)
trV(Mϕ,ψ(ζ|η1)� . . . �Mϕ,ψ(ζ|ηn)ϕζ(t)), (3.26)

where the matrix Mϕ,ψ(ζ|η1, . . . , ηn) is defined in section 3.2.2, and the mapping trV is
applied to the matrix entries. As follows from (3.25) the matrices Tϕ,ψ(ζ|η1, . . . , ηn) for
different values of the spectral parameter ζ commute,

[Tϕ,ψ(ζ|η1, . . . , ηn),Tϕ,ψ(ζ|η1, . . . , ηn)] = 0,

see relation (2.2).

3.4. L-operators. To formulate and prove functional relations we additionally need
Q-operators. We start with L-operators which play in the construction of Q-operators
the same role as monodromy operators in the construction of transfer operators.

3.4.1. Universal L-operator. First of all, we assume that the universal R-matrixR of the
algebra A is an element of the tensor product A+ ⊗ A−, where A+ and A− are proper
subalgebras of A. In particular, it is so when A is the quantum group associated with
an affine Lie algebra, see, for example, [32, 44, 51, 63]. Certainly, any representation of
A can be restricted to representations of A+ and A−. However, this does not give new
interesting objects. To construct L-operators one uses representations of A+ which
cannot be extended to representations of A. Let ρ be such a representation of A+ in a
vector space W. We define the universal L-operator by the equation

Lρ(ζ) = (ρζ ⊗ id)(R),
where the mapping ρζ is defined by the relation similar to (3.1). It is clear that Lρ(ζ) is
an element of End(W)⊗ A−.

In spite of the fact that the definition of the universal L-operator is very similar to the
definition of the universal monodromy matrix, we could not obtain for the universal
L-matrix all relations satisfied by the universal monodromy matrix. This is due to the
fact that, to obtain such relations, we should have a representation of the whole algebra
A. Moreover, in all known interesting cases ρ is an infinite-dimensional representation,
so we cannot introduce the corresponding matrices.

In fact, to come to functional relations, one should choose representations ρ, defin-
ing Q-operators, to be related to representations ϕ, used to define the monodromy
operators and the corresponding transfer operators. Presently, we do not have full
understanding of how to do it. It seems that representations ρ should be obtained
from representations ϕ via some limiting procedure, see [11, 37] and the discussion in
section 4.6.

3.4.2. L-operator. Let ψ be a representation of the subalgebra A− in the vector space
U. To come to objects satisfying functional relations one uses as ψ the restriction to
A− of the representation used to define the corresponding monodromy and transfer
operators. The L-operator Lρ,ψ(ζ|η1, . . . , ηn) is defined as

Lρ,ψ(ζ|η1, . . . , ηn) = (ψη1 ⊗∆op . . .⊗∆op ψηn)(Lρ(ζ))

= (ρζ ⊗ (ψη1 ⊗∆op . . .⊗∆op ψηn))(R),
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where η1, . . . , ηn are some nonzero complex numbers and the mapping ψη is defined
by the relation similar to (3.1). It is evident that Lρ,ψ(ζ|η1, . . . , ηn) is an element of
End(W)⊗ End(U)⊗n ∼= End(W)⊗ End(U⊗n). As well as for the monodromy matrix,
see (3.11), one can see that

Lρ,ψ(ζ|η1 . . . , ηn) = L1,2
ρ,ψ(ζ|η1) . . . L1,n+1

ρ,ψ (ζ|ηn). (3.27)

If equation (3.3) is satisfied, in the same way as for the case of R-operators, see (3.5),
we obtain

Lρ,ψ(ζν|ην) = Lρ,ψ(ζ|η),

and, therefore,

Lρ,ψ(ζ|η) = Lρ,ψ(ζη−1),

where Lρ,ψ(ζ) = Lρ,ψ(ζ|1). Equation (3.27) in this case gives

Lρ,ψ(ζν|η1ν, . . . , ηnν) = Lρ,ψ(ζ|η1, . . . , ηn).

Assume now that the representation ψ is finite-dimensional. Let {ei} be a basis of U
and {Eij} the corresponding basis of End(U). We can write

Lρ,ψ(ζ|η1, . . . , ηn) = ∑
i1,...,in
j1,...,jn

Li1...in|j1...jn(ζ|η1, . . . , ηn)⊗ Ei1 j1 ⊗ . . .⊗ Ein jn ,

where Li1...in|j1...jn(ζ|η1, . . . , ηn) are elements of End(W). Now we can introduce the
matrix

Lρ,ψ(ζ|η1, . . . , ηn) = (Li1...in|j1...jn(ζ|η1, . . . , ηn)),

and be convinced that

Lρ,ψ(ζ|η1, . . . , ηn) = Lρ,ψ(ζ|η1)� . . . �Lρ,ψ(ζ|ηn). (3.28)

Detailed calculations giving the explicit forms of L-operators for the case of the
quantum groups Uq(L(sl2)) and Uq(L(sl3)) can be found in the paper [19], and for
the case of the quantum group Uq(L(sl3, µ)), where again µ is the standard diagram
automorphism of sl3 of order 2, in the paper [20].
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3.5. Q-operators.

3.5.1. Universal Q-operator. Given ζ ∈ C×, we define the universal Q-operator by the
relation

Qρ(ζ) = trW(Lρ(ζ)(ρζ(t)⊗ 1)).

One can easily see that

Qρ(ζ) = ((trW ◦ ρζ)⊗ id)(R(t⊗ 1)) = ((trW ◦ ρζ)⊗ id)(R12t1).

It is clear that Qρ(ζ) is an element of the algebra A−.
Applying the mapping (tr ◦ ρζ1)⊗ (tr ◦ ϕζ2)⊗ id to both sides of equation (3.20), we

obtain
Qρ(ζ1)Tϕ(ζ2) = Tϕ(ζ2)Qρ(ζ1). (3.29)

Here and below we assume that the same twist element is used to define both the
universal Q-operator and the universal transfer matrix. Note also that, using equation
(3.23), one can show that

Qρ(ζ)a = aQρ(ζ)

for any invertible group-like element a which commutes with the twist element t.
However, using only equation (3.20), one cannot prove the commutativity of Qρ(ζ)
for different values of the spectral parameter, because ρ cannot be extended to a rep-
resentation of the whole algebra A. Here the following fact appears to be useful [58].

Let ρ1 and ρ2 be two representations of the algebra A+ in vector spaces W1 and W2,
respectively, and ρ1ζ1 and ρ2ζ2 the mappings constructed by the relations similar to
(3.1). We have

Qρ1(ζ1)Qρ2(ζ2) =
[
((trW1 ◦ ρ1ζ1)⊗ id)(R13t1))

] [
((trW2 ◦ ρ2ζ2)⊗ id)(R23t2)

]
=

(E.4)
((trW1⊗W2 ◦ (ρ1ζ1 ⊗ ρ2ζ2))⊗ id)

(
R13t1R23t2

)
.

Using equations (C.3) and (3.18), we obtain

R13t1R23t2 = [(∆⊗ id)(R)] [(∆⊗ id)(t⊗ 1)] = (∆⊗ id)(R(t⊗ 1)).

Hence, one can write

Qρ1(ζ1)Qρ2(ζ2) = (((trW1⊗W2 ◦ (ρ1ζ1 ⊗ ρ2ζ2))⊗ id) ◦ (∆⊗ id))(R(t⊗ 1)),

and, finally,

Qρ1(ζ1)Qρ2(ζ2) = ((trW1⊗W2 ◦ (ρ1ζ1 ⊗∆ ρ2ζ2))⊗ id)(R(t⊗ 1)). (3.30)

In a similar way one can obtain expressions for other products. For example,

Tϕ(ζ1)Qρ(ζ2) = ((trV⊗W ◦ (ϕζ1 ⊗∆ ρζ2))⊗ id)(R(t⊗ 1)). (3.31)

3.5.2. Q-operator. We define the Q-operator Qρ,ψ(ζ|η1, . . . , ηn) by the relation

Qρ,ψ(ζ|η1, . . . , ηn) = trW(Lρ,ψ(ζ|η1, . . . , ηn)).

It is evident that

Qρ,ψ(ζ|η1, . . . , ηn) = (ψη1 ⊗∆op . . .⊗∆op ψηn)(Qρ(ζ))

= ((trW ◦ ρζ)⊗ (ψη1 ⊗∆op . . .⊗∆op ψηn))(R(t⊗ 1)).
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Assume now that ψ is a finite-dimensional representation, {ei} is a basis of the rep-
resentation space U, and {Eij} the corresponding basis of End(U). We can write

Qρ,ψ(ζ|η1, . . . , ηn) = ∑
i1,...,in
j1,...,jn

Qi1...in|j1...jn(ζ|η1, . . . , ηn)⊗ Ei1 j1 ⊗ . . .⊗ Ein jn

where Qi1...in|j1...jn(ζ|η1, . . . , ηn) are the appropriate elements of End(W), and define
the matrix

Qρ,ψ(ζ|η1, . . . , ηn) = (Qi1...in|j1...jn(ζ|η1, . . . , ηn)).
Now we have

Qρ,ψ(ζ|η1, . . . , ηn) = trW(Lρ,ψ(ζ|η1, . . . , ηn)ρζ(t))
=

(3.28)
trW(Lρ,ψ(ζ|η1)� . . . �Lρ,ψ(ζ|ηn)ρζ(t)), (3.32)

where the matrix Lρ,ψ(ζ|η1, . . . , ηn) is defined in section 3.4, and trW is applied to the
matrix entries.

From equation (3.29) we obtain

[Qρ,ψ(ζ1|η1, . . . , ηn), Tϕ,ψ(ζ2|η1, . . . , ηn)] = 0,

or, in terms of the corresponding matrices,

[Qρ,ψ(ζ1|η1, . . . , ηn),Tϕ,ψ(ζ2|η1, . . . , ηn)] = 0,

see relation (2.15).
Further progress in obtaining functional relations can be achieved only by using

the properties of the specific representations of concrete quasitriangular Hopf alge-
bras. The corresponding calculations were given for the case of the quantum group
Uq(L(sl2)) in the papers [15,16,26], for the case of the quantum group Uq(L(sl3)) [11],
for the case of the quantum group Uq(L(sl2|1)) in the paper [17], see also [1,47–49,58].
In the next section we reconsider the case of Uq(L(sl2)), having in mind to fill certain
gaps of [1, 15, 16, 26] and to derive the full set of functional relations in the model-
independent form.

4. EXAMPLE RELATED TO THE SIX-VERTEX MODEL

As an example we consider the case of the quantum group Uq(L(sl2)). To obtain
objects related to integrable systems, we need representations of this quasitriangular
Hopf algebra. The standard method here is to use the Jimbo’s homomorphism [40]
from Uq(L(sl2)) to the quantum group Uq(sl2), and then construct representations of
Uq(L(sl2)) from representations of Uq(sl2).

Depending on the sense of q, there are at least three definitions of a quantum group.
According to the first definition, q = exp h̄, where h̄ is an indeterminate, according to
the second one, q is indeterminate, and according to the third one, q = exp h̄, where h̄
is a complex number such that q 6= 0,±1. In the first case a quantum group is a C[[h̄]]-
algebra, in the second case a C(q)-algebra, and in the third case it is just a complex
algebra. It seems that to define traces appropriately, it is convenient to use the third
definition. Therefore, we define the quantum group as a C-algebra, see, for example,
the books [36, 41].
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4.1. Quantum group Uq(sl2).

4.1.1. Definition. Let h̄ be a complex number such that q = exp h̄ 6= 0,±1. We assume
that qν, ν ∈ C, means the complex number exp(h̄ν). The quantum group Uq(sl2) is a
C-algebra generated by the elements E, F, and qνH, ν ∈ C, with the following defining
relations:

q0 = 1, qν1Hqν2H = q(ν1+ν2)H,

qνHEq−νH = q2νE, qνHFq−νH = q−2νF,

[E, F] = κ−1
q (qH − q−H).

Here and below κq = q− q−1. Note that qνH is just a notation, there is no an element
H ∈ Uq(sl2). In fact, it is constructive to identify H with the standard Cartan element
of the Lie algebra sl2, and νH with a general element of the Cartan subalgebra h = CH.
Using such interpretation, one can say that qνH is a set of generators parameterized by
the elements of the Cartan subalgebra h.

The quantum group Uq(sl2) is also a Hopf algebra with the comultiplication

∆(qνH) = qνH ⊗ qνH,

∆(E) = E⊗ 1 + q−H ⊗ E, ∆(F) = F⊗ qH + 1⊗ F,

and the correspondingly defined counit and antipode.7

The monomials ErFsqνH for r, s ∈ Z≥0 and ν ∈ C form a basis of Uq(sl2). There is
one more basis defined with the help of the quantum Casimir element C which has the
form8

C = qH−1 + q−H+1 + κ2
qEF = qH+1 + q−H−1 + κ2

q FE.

Here and below we use the notation qνH+µ = qµqνH, ν, µ ∈ C. One can verify that C
belongs to the center of Uq(sl2). It is clear that the monomials Er+1CsqνH, Fr+1CsqνH

and CsqνH for r, s ∈ Z≥0 and ν ∈ C also form a basis of Uq(sl2). This basis is convenient
to define traces on Uq(sl2).

4.1.2. Verma representation. Given µ ∈ C, let Ṽµ be a free vector space generated by the
set {v0, v1, . . .}. Introduce the notation

[ν]q =
qν − q−ν

q− q−1 , ν ∈ C.

One can show that the relations

qνHvn = qν(µ−2n)vn, Evn = [n]q[µ− n + 1]qvn−1, Fvn = vn+1 (4.1)

endow Ṽµ with the structure of a left Uq(sl2)-module. The module Ṽµ is isomorphic
to the Verma module with the highest weight whose action on H gives µ.

We denote the representation of Uq(sl2) corresponding to the module Ṽµ by π̃µ. If
µ equals a non-negative integer m, the linear hull of the vectors vn with n > m is a
submodule of Ṽm isomorphic to the module Ṽ−m−2. We denote the corresponding
finite-dimensional quotient module by Vm and the corresponding representation by
πm.

7There are a few different equivalent choices for comultiplication, counit and antipode in Uq(sl2).
Since we are going to use the Khoroshkin–Tolstoy expression for the universal R-matrix, we follow the
convention of the paper [63].

8We use a nonstandard, but convenient for our purposes, normalization of C.
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It is easy to see that for the quantum Casimir element we have

π̃µ(C) = qµ+1 + q−µ−1, πm(C) = qm+1 + q−m−1 (4.2)

for any µ ∈ C and m ∈ Z≥0.

4.2. Quantum group Uq(L(sl2)).

4.2.1. Definition. We start with the quantum group Uq(L̂(sl2)). The reason is that the
expression for the universal R-matrix given by Khoroshkin and Tolstoy [63] is valid
for the case of Uq(L̂(sl2)).

First, let us describe the root system of L̂(sl2). The Cartan subalgebra of L̂(sl2) is

ĥ = h⊕Cc⊕Cd,

where h = CH is the standard Cartan subalgebra of sl2, c is the central element, and d
is the derivation [43]. Define the Cartan elements

h0 = c− H, h1 = H, (4.3)

so that one has
ĥ = Ch0 ⊕Ch1 ⊕Cd.

The simple positive roots α0, α1 ∈ ĥ∗ are given by the equations

αj(hi) = aij,

α0(d) = 1, α1(d) = 0,

where

(aij) =

(
2 −2
−2 2

)
is the Cartan matrix of the Lie algebra L̂(sl2). The full root system 4 of L̂(sl2) is the
disjoint union of the system of positive roots

4+ = {α0 + k(α0 + α1) | k ∈ Z≥0} ∪ {α1 + k(α0 + α1) | k ∈ Z≥0}
∪ {k(α0 + α1) | k ∈ Z>0}

and the system of negative roots4− = −4+ [43].
Let again h̄ be a complex number, such that q = exp h̄ 6= 0,±1. The quantum group

Uq(L̂(sl2)) is a C-algebra generated by the elements ei, fi, i = 0, 1, and qx, x ∈ ĥ, with
the relations

q0 = 1, qx1qx2 = qx1+x2 , (4.4)

qxeiq−x = qαi(x)ei, qx fiq−x = q−αi(x) fi, (4.5)

[ei, f j] = κ−1
q δij (qhi − q−hi) (4.6)

satisfied for all i and j, and the Serre relations

e3
i ej − [3]qe2

i ejei + [3]qeieje
2
i − eje

3
i = 0, (4.7)

f 3
i f j − [3]q f 2

i f j fi + [3]q fi f j f 2
i − f j f 3

i = 0 (4.8)

satisfied for all distinct i and j.
The quantum group Uq(L̂(sl2)) is a Hopf algebra with the comultiplication ∆ de-

fined by the relations

∆(qx) = qx ⊗ qx, (4.9)
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∆(ei) = ei ⊗ 1 + q−hi ⊗ ei, ∆( fi) = fi ⊗ qhi + 1⊗ fi, (4.10)

and with the correspondingly defined counit and antipode.
To give the definition of the quantum group Uq(L(sl2)), we first introduce the Hopf

subalgebra Uq(L̃(sl2)) of Uq(L̂(sl2)) generated by ei, fi, i = 0, 1, and qx, x ∈ h̃, where

h̃ = Ch0 ⊕Ch1 = CH ⊕Cc.

The quantum qroup Uq(L(sl2)) can be defined as the quotient algebra of Uq(L̃(sl2))
by the two-sided ideal generated by the elements of the form qνc− 1, ν ∈ C×. In terms
of generators and relations the quantum group Uq(L(sl2)) is a C-algebra generated by
the elements ei, fi, i = 0, 1, and qx, x ∈ h̃, with relations (4.4)–(4.8) and

qν(h0+h1) = qνc = 1, (4.11)

where ν ∈ C×. It is a Hopf algebra with the comultiplication defined by (4.9), (4.10)
and with the correspondingly defined counit and antipode. One of the reasons to use
the quantum group Uq(L(sl2)) instead of Uq(L̂(sl2)) is that Uq(L̂(sl2)) has no finite-
dimensional representations with a nontrivial action of qν(h0+h1) = qνc.

4.2.2. Useful basis. We call a nonzero element a ∈ Uq(L̂(sl2)) a root element correspond-
ing to the root γ ∈ ĥ∗ if

qxa q−x = qγ(x)a
for any x ∈ ĥ. It can be shown that for any γ ∈ 4 there is a nonzero root element, and
this element is unique up to multiplication by a nonzero scalar factor. It is clear that
the generators ei and fi correspond to the roots αi and −αi respectively. Choose for
each root of4 a root element, and denote the root element corresponding to a positive
root γ by eγ and the root element corresponding to a negative root −γ by fγ. Assume
that some total order ≺ of positive roots is fixed. It appears that the monomials of the
form

ek1
γ1 . . . ekr

γr f `1
δ1

. . . f `s
δs

qx,

where γ1 ≺ . . . ≺ γr and δ1 ≺ . . . ≺ δs, form a basis of Uq(L̂(sl2)).
Let us describe the method to construct the root elements corresponding to the roots

of 4 used by Khoroshkin and Tolstoy [63]. It can be shown [45] that the appear-
ing root elements are closely related to the quantum group generators introduced by
Drinfeld [35].

It is customary to denote α = α1 and δ = α0 + α1, so that the simple positive roots
are now δ− α and α. Then the system of positive roots is

4+ = {α + kδ | k ∈ Z≥0} ∪ {kδ | k ∈ Z>0} ∪ {δ− α + kδ | k ∈ Z≥0}.
For the simple roots we choose

eα = eα1 , eδ−α = eα0 , fα = fα1 , fδ−α = fα0 . (4.12)

Now we define the root element corresponding to the root δ putting

e′δ = eα eδ−α − q−2eδ−α eα. (4.13)

Here we use the prime because to construct the universal R-matrix we redefine the
root elements corresponding to the roots kδ and −kδ and denote by ekδ and fkδ the
result of the redefinition. The remaining root elements corresponding to the positive
roots are defined recursively by the relations

eα+kδ = [2]−1
q
(
eα+(k−1)δ e′δ − e′δ eα+(k−1)δ

)
, (4.14)
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e(δ−α)+kδ = [2]−1
q
(
e′δ e(δ−α)+(k−1)δ − e(δ−α)+(k−1)δ e′δ

)
, (4.15)

e′kδ = eα+(k−1)δ eδ−α − q−2eδ−α eα+(k−1)δ. (4.16)

The root elements corresponding to the negative roots are defined with the help of the
relations

f ′δ = fδ−α fα − q2 fα fδ−α, (4.17)

fα+kδ = [2]−1
q
(

f ′δ fα+(k−1)δ − fα+(k−1)δ f ′δ
)
, (4.18)

f(δ−α)+kδ = [2]−1
q
(

f(δ−α)+(k−1)δ f ′δ − f ′δ f(δ−α)+(k−1)δ
)
, (4.19)

f ′kδ = fδ−α fα+(k−1)δ − q2 fα+(k−1)δ fδ−α. (4.20)

The coefficients in (4.14), (4.15), (4.18) and (4.19) are chosen in such a way that for
γ = α and γ = δ− α we have

[eγ+kδ, fγ+kδ] = κ−1
q (qhγ − q−hγ),

where hα = h1 and hδ−α = h0.
The root elements ekδ needed for the construction of the universal R-matrix are re-

lated to the root elements e′kδ by the equation

κq eδ(x) = log(1 + κq e′δ(x)), (4.21)

where

e′δ(x) =
∞

∑
k=1

e′kδx−k, eδ(x) =
∞

∑
k=1

ekδx−k.

The root elements fkδ are defined with the help of the equation

− κq fδ(x) = log(1− κq f ′δ(x)), (4.22)

where

f ′δ(x) =
∞

∑
k=1

f ′kδx−k, fδ(x) =
∞

∑
k=1

fkδx−k.

4.2.3. Universal R-matrix. We follow here the approach developed by Khoroshkin and
Tolstoy [63]. Although this is not clearly stated in the paper [63], Khoroshkin and Tol-
stoy define a quantum group as a C[[h̄]]-algebra. In fact, one can use the expression
for the universal R-matrix from the paper [63] also for the case of a quantum group
defined as a C-algebra having in mind that in this case a quantum group is quasitrian-
gular only in some restricted sense. Namely, all the relations involving the universal
R-marix should be considered as valid only for the weight Uq(L̂(sl2))-modules, see in
this respect the paper [62] and the discussion below. Remind that a Uq(L̂(sl2))-module
V is a weight module if

V =
⊕

λ∈ĥ∗
Vλ,

where
Vλ = {v ∈ V | qxv = qλ(x)v for any x ∈ ĥ}.

The same terminology is used for the corresponding representations.
According to the paper [63], one starts with choosing some normal order ≺ of the

positive roots of L̂(sl2). In general, one says that a system of positive roots is supplied
with a normal order if its roots are totally ordered in such a way that
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(i) all multiple roots follow each other in an arbitrary order;
(ii) each non-simple root α + β, where α is not proportional to β, is placed between

α and β.
In our case a normal order is fixed uniquely if we require

α + kδ ≺ `δ ≺ (δ− α) + mδ,

and in accordance with it the roots go as

α, α + δ, . . . , α + kδ, . . . , δ, 2δ, . . . , `δ, . . . , . . . , (δ− α) + mδ, . . . , (δ− α) + δ, δ− α.

The expression for the universal R-matrix, obtained by Khoroshkin and Tolstoy, has
the form

R = R≺δR∼δR�δK. (4.23)
The first factor is the product over k ∈ Z≥0 of the q-exponentials

Rα, k = expq−2

(
κq eα+kδ ⊗ fα+kδ

)
in the order coinciding with the chosen normal order of the roots α + kδ. Here the
q-exponential is defined as

expq(x) =
∞

∑
n=1

xn

(n)q
,

where

(n)q! = (1)q(2)q . . . (n)q, (n)q =
qn − 1
q− 1

.

The factorR∼δ is given by the expression

R∼δ = exp

(
κq

∞

∑
k=1

k
[2k]q

ekδ ⊗ fkδ

)
. (4.24)

The factorR�δ is the product over k ∈ Z≥0 of the q-exponentials

Rδ−α, k = expq−2

(
κq e(δ−α)+kδ ⊗ f(δ−α)+kδ

)
in the order coinciding with the chosen normal order of the roots (δ− α) + kδ.

The last factor K is not defined as an element of Uq(L̂(sl2))⊗Uq(L̂(sl2)). However,
one can define its action on the tensor product of any two weight Uq(L̂(sl2))-modules.
Let V and U be weight Uq(L̂(sl2))-modules with the weight decompositions

V =
⊕

λ∈ĥ∗
Vλ, U =

⊕
µ∈ĥ∗

Uµ.

The action of K on V ⊗U is defined by the relation

K v⊗ u = qλ(hα)µ(hα)/2+λ(c)µ(d)+λ(d)µ(c) v⊗ u, (4.25)

where v ∈ Vλ and u ∈ Uµ. Slightly abusing the notation, we denote the corresponding
operator by (ϕ⊗ ψ)(K), where ϕ and ψ are the representations corresponding to the
modules V and U respectively. If the module U is finite-dimensional, {er} is a basis of
U formed by weight vectors, and {Ers} is the corresponding basis of End(U), we have

(ϕ⊗ ψ)(K) = ∑
r

ϕ(qµr(hα)hα/2+µr(c)d+µr(d)c)⊗ Err, (4.26)

where µr is the weight of er.
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Note that in the case when we define a quantum group as a C[[h̄]]-algebra, K is an
element of its tensor square of the form

K = qhα⊗hα/2+c⊗d+d⊗c,

and the notation (ϕ⊗ ψ)(K) has a straightforward sense.
In the case of the quantum group Uq(L(sl2)) we again define the elements eγ and

fγ, γ ∈ 4+, by relations (4.12)–(4.22). The universal R-matrix is again defined by
equation (4.23), where the factors R≺δ, R∼δ and R�δ are defined in the same way as
in the case of the quantum group Uq(L̂(sl2)), while for the factor K we have

K v⊗ u = qλ(hα)µ(hα)/2 v⊗ u (4.27)

instead of equation (4.25), and

(ϕ⊗ ψ)(K) = ∑
r

ϕ(qµr(hα)hα/2)⊗ Err (4.28)

instead of equation (4.26).

4.3. R-operators. First of all, we assume that actual spectral parameters are complex
numbers u and vi such that

ζ = qu = eh̄u, ηi = qvi = eh̄vi . (4.29)

This convention allows us to uniquely define arbitrary complex powers of ζ and ηi.
To construct R-operators we need representations of the quantum group Uq(L(sl2)).

We start with the Jimbo’s homomorphism [40]

ϕ : Uq(L(sl2))→ Uq(sl2)

defined by the equations

ϕ(qνhα) = qνH, ϕ(eα) = E, ϕ( fα) = F, (4.30)

ϕ(qνhδ−α) = q−νH, ϕ(eδ−α) = F, ϕ( fδ−α) = E. (4.31)

Let π̃µ be the highest weight infinite-dimensional representation of Uq(sl2) with the
highest weight µ described above. We define a representation ϕ̃µ of Uq(L(sl2)) as

ϕ̃µ = π̃µ ◦ ϕ.

One more necessary ingredient is a Z-gradation of Uq(L(sl2)). We define it assuming
that the generators qx belong to the zero grade subspace, the generators ei belong to
the graded subspaces with the grading indices si, and the generators fi belong to the
graded subspaces with the grading indices−si. For the mapping Φν, defined by (D.1),
we have

Φν(qx) = qx, Φν(ei) = νsi ei, Φν( fi) = ν−si fi. (4.32)

Note that with this definition of a Z-gradation of Uq(L(sl2)) the universal R-matrix
(4.23) satisfies equation (3.3). Below we denote s = s0 + s1. Now, given ζ ∈ C×, we
define the representation ϕ̃

µ
ζ as

ϕ̃
µ
ζ = π̃µ ◦ ϕ ◦Φζ .

Slightly abusing the notation, we denote the corresponding Uq(L(sl2))-modules by Ṽµ

and Ṽµ
ζ . Taking into account (4.1), (4.30), (4.31), and (4.32), we see that for the module



UNIVERSAL R-MATRIX AND FUNCTIONAL RELATIONS 25

Ṽµ
ζ one has

qνhα vn = qν(µ−2n) vn, qνhδ−α vn = q−ν(µ−2n) vn, (4.33)

eα vn = ζs1 [n]q[µ− n + 1]q vn−1, eδ−α vn = ζs0 vn+1, (4.34)

fα vn = ζ−s1 vn+1, fδ−α vn = ζ−s0 [n]q[µ− n + 1]q vn−1. (4.35)

In the case when µ equals a non-negative integer m we denote the corresponding
finite-dimensional representations by ϕm and ϕm

ζ , and the modules by Vm and Vm
ζ .

Now we denote
Rm(ζ12) = (ϕm

ζ1
⊗ ϕm

ζ2
)(R)

and shortly describe how to find an explicit expression for R(ζ) = R1(ζ). We refer the
reader to the paper [19] for more details.

The representation π1 of Uq(sl2) is two-dimensional and we have

π1(qνH) = qνE11 + q−νE22, π1(E) = E12, π1(F) = E21. (4.36)

Here and below Eab are elements of the basis of End(C2) corresponding to the standard
basis {ea} of C2. Using (4.30), (4.31) and (4.32), we come to the relations

ϕ1
ζ(q

νhα) = qνE11 + q−νE22, ϕ1
ζ(q

νhδ−α) = q−νE11 + qνE22, (4.37)

ϕ1
ζ(eα) = ζs1 E12, ϕ1

ζ(eδ−α) = ζs−s1 E21, (4.38)

ϕ1
ζ( fα) = ζ−s1 E21, ϕ1

ζ( fδ−α) = ζ−s+s1 E12. (4.39)

It follows from (4.13) and (4.17) that

ϕ1
ζ(e
′
δ) = ζs(E11 − q−2E22), ϕ1

ζ( f ′δ) = ζ−s(E11 − q2E22),

and the recursive definitions (4.14), (4.15), (4.18) and (4.19) give

ϕ1
ζ(eα+kδ) = (−1)kq−kζs1+ksE12, ϕ1

ζ(e(δ−α)+kδ) = (−1)kq−kζ(s−s1)+ksE21, (4.40)

ϕ1
ζ( fα+kδ) = (−1)kqkζ−s1−ksE21, ϕ1

ζ( f(δ−α)+kδ) = (−1)kqkζ−(s−s1)−ksE12. (4.41)

Starting from (4.16) and (4.40), we come to the equation

ϕ1
ζ(e
′
kδ) = (−1)k−1q−k+1ζks(E11 − q−2E22).

Taking into account (4.21), we obtain

ϕ1
ζ(ekδ) = (−1)k−1[k]q

ζks

k
(E11 − q−2kE22). (4.42)

In a similar way, starting from (4.20) and (4.41) and taking into account (4.22), we
determine that

ϕ1
ζ( fkδ) = (−1)k−1[k]q

ζ−ks

k
(E11 − q2kE22). (4.43)

Now we can obtain expressions for the images of the factors entering the Khorosh-
kin–Tolstoy formula (4.23) for the universal R-matrix. To find expressions for the im-
ages of the factorsR≺δ andR�δ, we use the identities

(E12)
n = 0, (E21)

n = 0 (4.44)

valid for any integer n > 1. Using (4.40) and (4.41) and summing up the arising
geometric series, we find

(ϕ1
ζ1
⊗ ϕ1

ζ2
)(R≺δ) = 1⊗ 1 + κq

ζs1
12

1− ζs
12

E12 ⊗ E21, (4.45)
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(ϕ1
ζ1
⊗ ϕ1

ζ2
)(R�δ) = 1⊗ 1 + κq

ζs−s1
12

1− ζs
12

E21 ⊗ E12. (4.46)

Using (4.42) and (4.43), we obtain for the image of the factorR∼δ the expression

(ϕ1
ζ1
⊗ ϕ1

ζ2
)(R∼δ) = eλ2(qζs

12)−λ2(q−1ζs
12)

[
E11 ⊗ E11

+
1− q2ζs

12
1− ζs

12
E11 ⊗ E22 +

1− ζs
12

1− q−2ζs
12

E22 ⊗ E11 + E22 ⊗ E22

]
, (4.47)

where

λ2(ζ) = ∑
m∈Z+

1
qk + q−k

ζk

k
=

∞

∑
k=1

1
[2]qk

ζk

k
. (4.48)

The simplest part of the calculations is to obtain an expression for the action of the
factor K on the space C2 ⊗C2. As before, slightly abusing the notation, we denote the
corresponding operator by ϕ1

ζ1
⊗ ϕ1

ζ2
(K). Let µ1 and µ2 be the weights of the vectors

e1 and e2 forming the standard basis of C2. It follows from (4.37) that

µ1(hα) = 1, µ2(hα) = −1, (4.49)

and equation (4.28) gives

(ϕ1
ζ1
⊗ ϕ1

ζ2
)(K) = q1/2E11 ⊗ E11 + q−1/2E11 ⊗ E22

+ q−1/2E22 ⊗ E11 + q1/2E22 ⊗ E22. (4.50)

Now we have the expressions for all factors necessary to obtain the expression for
R(ζ) = R1(ζ). After simple calculations we determine that

R(ζ) = q1/2eλ2(qζs)−λ2(q−1ζs)

[
E11 ⊗ E11 + E22 ⊗ E22

+
q−1(1− ζs)

1− q−2ζs (E11 ⊗ E22 + E22 ⊗ E11)

+
1− q−2

1− q−2ζs (ζ
s1 E12 ⊗ E21 + ζs0 E21 ⊗ E12)

]
. (4.51)

It is instructive, using the identity

λ2(qζ) + λ2(q−1ζ) = − log(1− ζ), (4.52)

to rewrite the expression for R(ζ) as

R(ζ) = q−1/2ζs/2eλ2(qζs)+λ2(q−3ζs)

[
(q ζ−s/2 − q−1ζs/2)(E11 ⊗ E11 + E22 ⊗ E22)

+ (ζ−s/2 − ζs/2)(E11 ⊗ E22 + E22 ⊗ E11)

+ κq(ζ
−(s0−s1)/2E12 ⊗ E21 + ζ(s0−s1)/2E21 ⊗ E12)

]
. (4.53)

Note that we come to the most frequently used symmetric R-operator putting s0 = −1
and s1 = −1 and omitting the factor before the square bracket, compare with relations
(2.8), (2.6) and (2.7).
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4.4. Monodromy operators. Now we find an expression for the monodromy operator

Mϕ,ψ(ζ) = Mϕ,ψ(ζ|1) = (ϕζ ⊗ ψ)(R)
choosing as ϕ the Jimbo’s homomorphism and as ψ the representation ϕ1. In fact, we
extend the notion of the monodromy operator allowing for using general homomor-
phisms instead of representations. To simplify notation, we write instead of Mϕ,ϕ1(ζ)

just M(ζ).
Using relations (4.13), (4.30) and (4.31), we obtain

ϕζ(e′δ) = κ−1
q q−1

[
C− (q + q−1) q−H

]
ζs.

Now, using definition (4.14), we come to the expression

ϕζ(eα+kδ) = (−1)kq−kHE ζs1+ks, (4.54)

while definition (4.15) gives

ϕζ(e(δ−α)+kδ) = (−1)kF q−kHζ(s−s1)+ks. (4.55)

Relation (4.16) together with (4.31) and (4.54) lead to the equation

ϕζ(e′kδ) = κ−2
q (−1)k−1q−k

[
(qk − q−k)C q−(k−1)H

− (qk−1 − q−k+1) q−(k−2)H − (qk+1 − q−k−1) q−kH
]

ζks,

and we have

ϕζ(1 + κqe′(x))

= (1 + q−1C ζsx−1 + q−2ζ2sx−2)(1 + q−Hζsx−1)−1(1 + q−H−2ζsx−1)−1.

Using relation (4.21) and the equation

log(1 + x) =
∞

∑
k=1

(−1)k−1 xk

k
,

we obtain

ϕζ(ekδ) = κ−1
q (−1)k−1q−k

[
Ck − (qk + q−k) q−kH

] ζks

k
. (4.56)

Here the elements Ck ∈ Uq(sl2) are defined by the generating function

C(x) =
∞

∑
k=1

(−1)k−1Ck
x−k

k
= log(1 + Cx−1 + x−2). (4.57)

In particular, we have

C1 = C, C2 = −C2 + 2, C3 = C3 − 3C, C4 = −C4 + 4C2 − 2.

Note that all Ck belong to the center of Uq(sl2).
Below we need expressions for π̃µ(Ck) and πm(Ck). To obtain them we apply π̃µ to

both sides of (4.57). Taking into account the first relation of (4.2), we see that

πµ(C(x)) = log(1 + (qµ+1 + q−(µ+1))x−1 + x−2)

= log(1 + qµ+1x−1) + log(1 + q−(µ+1)x−1)

=
∞

∑
k=1

(−1)k−1[qk(µ+1) + q−k(µ+1)]x−k

k
.
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Hence, we have
π̃µ(Ck) = qk(µ+1) + q−k(µ+1). (4.58)

In the same way we come to the equation

πm(Ck) = qk(m+1) + q−k(m+1). (4.59)

To find the expressions for the images of R≺δ and R�δ, we again use identities
(4.44). Taking into account relation (4.54) and the first equation of (4.41), we obtain

(ϕζ ⊗ ϕ1)(R≺δ) = 1⊗ 1 + κqE(1− q−H−1ζs)−1ζs1 ⊗ E21.

In a similar way, relation (4.55) and the second equation of (4.41) give

(ϕζ ⊗ ϕ1)(R�δ) = 1⊗ 1 + κq(1− q−H−1ζs)−1F ζs−s1 ⊗ E12.

Using relations (4.43) and (4.56), we come to the equation

(ϕζ ⊗ ϕ1)

(
κq

∞

∑
k=1

k
[2k]q

ekδ ⊗ fkδ

)
=
(

Λ(q−1ζs) + log(1− q−H−1ζs)
)
⊗ E11

−
(

Λ(q ζs) + log(1− q−H+1ζs)
)
⊗ E22,

where

Λ(ζ) =
∞

∑
k=1

1
qk + q−k Ck

ζk

k
.

It is easy to see that

Λ(q ζ) + Λ(q−1ζ) = − log(1− Cζ + ζ2). (4.60)

Hence, we have

(ϕζ ⊗ ϕ1)(R∼δ) = (eΛ(q−1ζs) ⊗ 1)
(
(1− q−H−1ζs)⊗ E11

+ (1− Cζs + ζ2s)(1− q−H+1ζs)−1 ⊗ E22
)
.

Finally, for the action of K we have

(ϕζ ⊗ ϕ1)(K) =
(4.28)

∑
i

ϕζ(qµi(hα)/2)⊗ Eii

=
(4.49)

ϕζ(qhα/2)⊗ E11 + ϕζ(q−hα/2)⊗ E22 =
(4.30)

qH/2 ⊗ E11 + q−H/2 ⊗ E22.

Collecting all necessary factors, we come to the expression

M(ζ) = (eΛ(q−1ζs) ⊗ 1)
[
(qH/2 − q−1q−H/2 ζs)⊗ E11

+ κqF q−H/2 ζs0 ⊗ E12 + κqE qH/2 ζs1 ⊗ E21

+ (q−H/2 − q−1qH/2 ζs)⊗ E22
]
. (4.61)

The corresponding matrix M(ζ) has the form

M(ζ) = eΛ(q−1ζs)

(
qH/2 − q−1q−H/2 ζs κqF q−H/2 ζs0

κqE qH/2 ζs1 q−H/2 − q−1qH/2 ζs

)
. (4.62)
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For any non-negative m we can define the monodromy operator

Mm(ζ) = (ϕm
ζ ⊗ ϕ1)(R) = (πm ⊗ id)(M(ζ)),

where the (m + 1)-dimensional representation πm of the quantum group Uq(sl2) is
defined in section 4.1. Note that here we should have

M1(ζ) = (π1 ⊗ id)(M(ζ)) = R(ζ), (4.63)

where the R-operator R(ζ) is given by (4.51) or (4.53). To show this we first of all
need the expression for π1(Λ(q−1ζs)). In fact, for an arbitrary non-negative integer m
equation (4.59) gives

Λm(ζ) = πm(Λ(ζ)) =
∞

∑
k=1

qk(m+1) + q−k(m+1)

qk + q−k
ζk

k
. (4.64)

Hence, we have
Λm(ζ) = λ2(qm+1ζ) + λ2(q−m−1ζ),

and, in particular,
Λ1(q−1ζ) = λ2(qζ) + λ2(q−3ζ).

Using (4.36), we obtain

π1(q±H/2) = q±1/2E11 + q∓1/2E22,

π1(F q−H/2) = q−1/2E21, π1(E qH/2) = q−1/2E12.

Now, applying π1 to both sides of (4.61) and comparing the obtained result with (4.53),
we see that equation (4.63) is valid.

More generally, for any µ ∈ C we denote

M̃µ(ζ) = (ϕ̃
µ
ζ ⊗ ϕ1)(R) = (π̃µ ⊗ id)(M(ζ)),

where the infinite-dimensional representation π̃µ of the quantum group Uq(sl2) is de-
fined in section 4.1.

4.5. Transfer operators. To construct transfer operators we should first choose a twist
element t. We assume that

t = qφhα ,
where φ is a complex number. It is clear that t is a group-like element as is required.
Denoting Tm(ζ) = Tϕm, ϕ1(ζ), and having in mind that

ϕζ(t) = qφH,

we obtain

Tm(ζ) = (trVm ⊗ id)(Mm(ζ)(ϕm
ζ (t)⊗ 1)) = (trm ⊗ id)(M(ζ)(qφH ⊗ 1)),

where
trm = trVm ◦ πm.

The mapping trm is a trace on the algebra Uq(sl2). It is clear that in terms of the corre-
sponding matrices Tm(ζ) = Tϕm, ϕ1(ζ) and M(ζ) we have

Tm(ζ) = trm(M(ζ) qφH),

where trm is applied to the matrix entries. For the higher transfer matrices one obtains

Tm(ζ|η1, . . . , ηn) = trm((M(ζη−1
1 )� . . . �M(ζη−1

n )) qφH),
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see relation (3.26). To find an explicit form of the transfer matrices Tm(ζ|η1, . . . , ηn) we
have to know the traces for the elements of some basis of Uq(sl2). An easy calculation
gives

trm(Er+1CsqνH) = 0, trm(Fr+1CsqνH) = 0, (4.65)

trm(CsqνH) = (qm+1 + q−m−1)sqmν 1− q−2ν(m+1)

1− q−2ν
= (qm+1 + q−m−1)s[m + 1]qν , (4.66)

where ν ∈ C and r, s ∈ Z≥0. For the simplest case n = 1 we determine that

Tm(ζ) = eΛm(q−1ζs)

(
[m + 1]q1/2+φ − [m + 1]q−1/2+φ q−1ζs 0

0 [m + 1]q−1/2+φ − [m + 1]q1/2+φ q−1ζs

)
.

This transfer matrix is finite in the limit where the twist parameter φ tends to zero.
This is evidently true also for the higher transfer matrices Tm(ζ|η1, . . . , ηn).

The case of the infinite-dimensional representations π̃µ is more subtle. Here we
denote

t̃rµ = trṼµ ◦ π̃µ,

and for |q−2ν| < 1 obtain

t̃rµ(Er+1CsqνH) = 0, t̃rµ(Fr+1CsqνH) = 0,

t̃rµ(CsqνH) = (qµ+1 + q−µ−1)s qµν

1− q−2ν
.

For |q−2ν| > 1 the trace t̃rµ is defined with the help of analytic continuation.
Again, for the simplest case we have

T̃µ(ζ) = t̃rµ(M(ζ) qφH)

= eΛµ(q−1ζs)


q(1/2+φ)µ

1− q−1−2φ
− q−(1/2−φ)µ

1− q1−2φ
q−1ζs 0

0
q−(1/2−φ)µ

1− q1−2φ
− q(1/2+φ)µ

1− q−1−2φ
q−1ζs

 ,

where

Λµ(ζ) = π̃µ(Λ(ζ)) =
∞

∑
k=1

qk(µ+1) + q−k(µ+1)

qk + q−k
ζk

k
.

The above transfer matrix is finite in the limit where the twist parameter tends to zero.
This is not the case for all the higher transfer matrices

T̃µ(ζ|η1, . . . , ηn) = t̃rµ((M(ζη−1
1 )� . . . �M(ζη−1

n )) qtH).

It is clear that the nonzero contributions to T̃µ(ζ|η1, . . . , ηn) are given by the trace of
the elements

Crq(n−2r)H/2, Crq(n−2r−2)H/2, . . . , Crq−(n−2r)H/2,

where r = 0, 1, . . . , [n/2]. For an even n we have to take the trace of Cr, r = 0, . . . , n/2,
and the result is evidently singular in the zero-twist limit. For an odd n there are no
singularities.

It is worth to note that

Tm(ζ|η1, . . . , ηn) = T̃m(ζ|η1, . . . , ηn)− T̃−m−2(ζ|η1, . . . , ηn)
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and the zero-twist limit is nonsingular for the right hand side for all n. This equation
suggests that we should define

Tµ(ζ|η1, . . . , ηn) = T̃µ(ζ|η1, . . . , ηn)− T̃−µ−2(ζ|η1, . . . , ηn)

for an arbitrary µ ∈ C. It is not difficult to prove that Tµ(ζ|η1, . . . , ηn) is finite in
the zero-twist limit for any n. One can say that Tµ(ζ|η1, . . . , ηn) is the transfer matrix
defined by the trace

trµ = t̃rµ − t̃r−µ−2 (4.67)

on the algebra Uq(sl2). It is instructive to compare the definition of trµ with the def-
inition of trace given in the papers [22, 24], see also [13, 23, 57] for the limiting case
q = 1.

4.6. L-operators. Remind that with the definition of a quantum group used by us, the
quasitriangularity is understood in some restricted sense, see section 4.2. We can only
define the action of the universal R-matrix in the tensor product of weight represen-
tations. It is easy to see that to determine the action of the universal R-matrix (4.23)
on the tensor product of two representation spaces, it suffices to use for the first factor
representations of the subalgebra Uq(b+) and for the second one representations of
the subalgebra Uq(b−). Here the Borel subalgebra Uq(b+) is generated by e0, e1 and
qx, x ∈ h̃, and the Borel subalgebra Uq(b−) is generated by f0, f1 and qx, x ∈ h̃.

It is clear that any representation of the algebra Uq(L(sl2)) generates representa-
tions of the subalgebras Uq(b+) and Uq(b−). However, this does not give new objects.
There are other methods to construct representations of Uq(b+) and Uq(b−) from rep-
resentations of Uq(L(sl2)). We restrict ourselves by the case of the Borel subalgebra
Uq(b+).

First note that if ϕ is a representation of Uq(L(sl2)) and ξ ∈ h̃∗, then the mapping
ϕ[ξ] defined by the equations

ϕ[ξ](ei) = ϕ(ei), ϕ[ξ](qx) = qξ(x)ϕ(qx)

is a representation of Uq(b+) called a shifted representation. It follows from (4.11) that
we have to assume that

ξ(hδ−α) = −ξ(hα).
Taking into account relation (4.27), we see that for any weight representations ϕ and ψ
one has

(ϕ[ξ]⊗ ψ)(K) = (ϕ⊗ ψ)(K)(1⊗ ψ(qξ(hα)hα/2)).
Therefore, for the universal R-matrix we can write

(ϕ[ξ]⊗ ψ)(R) = (ϕ⊗ ψ)(R)(1⊗ ψ(qξ(hα)hα/2)).

In fact, we can even write

(ϕ[ξ]⊗ id)(R) = (ϕ⊗ id)(R)(1⊗ qξ(hα)hα/2),

having in mind that this equation is true only for weight representations. Under the
same assumption, we have for the universal monodromy matrix the equation

Mϕ[ξ](ζ) =Mϕ(ζ)(1⊗ qξ(hα)hα/2),

and for the universal transfer matrix the equation

Tϕ[ξ](ζ) = Tϕ(ζ) qξ(hα)(hα+2φ)/2. (4.68)
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Thus, the use of shifted representations does not give anything really new. Never-
theless, we meet universal transfer matrices corresponding to shifted representations
when proving the functional relations.

Now let us describe how to obtain the representation necessary for the construction
of L-operators. Starting with the representation ϕ̃

µ
ζ of Uq(L(sl2)) defined by equa-

tions (4.33)–(4.35), we obtain the shifted representation ϕ̃
µ
ζ [ξ] of Uq(b+) defined by the

relations

qνhα vn = qν(µ−2n+ξ(hα))vn, qνhδ−α vn = q−ν(µ−2n−ξ(hδ−α))vn, (4.69)

eαvn = ζs1 [n]q[µ− n + 1]qvn−1, eδ−αvn = ζs0vn+1, (4.70)

We denote the corresponding Uq(b+)-module by Ṽµ
ζ [ξ]. Assume that

ξ(hα) = −ξ(hδ−α) = −µ.

Relations (4.69) take the form

qνhα vn = q−2νnvn, qνhδ−α vn = q2νnvn. (4.71)

Note that we can multiply the operators corresponding to the generators e0 and e1
by arbitrary nonzero complex numbers. This again gives a representation of Uq(b+).
Represent the first relation of (4.70) as

q−µ−1eα vn = ζs1κ−1
q (q−n − q−2µ+n−2)[n]qvn−1.

Now we rescale the operator corresponding to eα as eα → qµ+1eα and consider the limit
µ→ ∞ along the real axis. This gives instead of (4.70) the relations

eα vn = ζs1κ−1
q q−n[n]qvn−1, eδ−α vn = ζs0vn+1. (4.72)

Relations (4.71) and (4.72) define a representation of Uq(b+). Note that this represen-
tation cannot be extended to a representation of the full quantum group Uq(L(sl2)). It
is useful to give an interpretation of (4.71) and (4.72) in terms of q-oscillators. Let us
remind the necessary definitions, see, for example the book [46].

Let h̄ be a complex number such that q = exp h̄ 6= 0,±1. The q-oscillator algebra
Oscq is a unital associative C-algebra with generators b†, b, qνN, ν ∈ C, and relations

q0 = 1, qν1Nqν2N = q(ν1+ν2)N,

qνNb†q−νN = qνb†, qνNbq−νN = q−νb,

b†b = κ−1
q (qN − q−N), bb† = κ−1

q (qN+1 − q−N−1).

There are two interesting for us representations of Oscq. First, let W+ be a free vector
space generated by the set {v0, v1, . . .}. One can show that the relations

qνNvn = qνnvn, (4.73)

b†vn = vn+1, b vn = [n]qvn−1, (4.74)

where we assume that v−1 = 0, endow W+ with the structure of an Oscq-module. We
denote the corresponding representation of the algebra Oscq by χ+. Further, let W−

be a free vector space generated by the set {u0, u1, . . .}. The relations

qνNun = q−ν(n+1)un, (4.75)

b un = un+1, b†un = −[n]qun−1, (4.76)
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where we assume that u−1 = 0, endow W− with the structure of an Oscq-module. We
denote the corresponding representation of Oscq by χ−.

Return again to relations (4.71) and (4.72). Assume that the operators N, b† and b act
in the representation space in accordance with (4.73) and (4.74). This allows to write
(4.71) and (4.72) as

qνhα vn = q−2νNvn, qνhδ−α vn = q2νNvn,

eα vn = ζs1κ−1
q b q−N vn, eδ−α vn = ζs0b† vn.

These equations suggest to us a homomorphism ρ : Uq(b+)→ Oscq defined by

ρ(qνhα) = q−2νN, ρ(qνhδ−α) = q2νN, (4.77)

ρ(eα) = κ−1
q b q−N, ρ(eδ−α) = b†, (4.78)

and the homomorphisms ρζ : Uq(b+) → Oscq, ζ ∈ C×, as ρζ = ρ ◦ Φζ . We can now
define the representations

ρ± = χ± ◦ ρ, ρ±ζ = χ± ◦ ρζ (4.79)

of the Borel subalgebra Uq(b+). For the representations ρ±ζ we have explicitly

ρ±ζ (q
νhα) = χ±(q−2νN), ρ±ζ (q

νhδ−α) = χ±(q2νN), (4.80)

ρ±ζ (eα) = ζs1κ−1
q χ±(bq−N), ρ±ζ (eδ−α) = ζs0χ±(b†). (4.81)

We denote the Uq(b+)-modules corresponding to the representations ρ±ζ by W±ζ .
Let us construct the L-operator

Lρ,ψ(ζ) = Lρ,ψ(ζ|1) = (ρζ ⊗ ψ)(R)
choosing as ρ the homomorphism defined by (4.77) and (4.78), and as ψ the representa-
tion ϕ1. As for the case of monodromy operators, we extend the notion of L-operators
allowing for using general homomorphisms instead of representations. To simplify
notation we write instead of Lρ,ψ(ζ) just L(ζ).

Having in mind (4.28), (4.37) and (4.77), we observe that

(ρζ ⊗ ϕ1)(K) = q−N ⊗ E11 + qN ⊗ E22. (4.82)

Further, one can easily determine that definition (4.13) together with (4.78) gives

ρζ(e′δ) = κ−1
q q−1ζs, (4.83)

and, using (4.14) and (4.15), we immediately obtain

ρζ(eα+kδ) = 0, ρζ(e(δ−α)+kδ) = 0, k ≥ 1. (4.84)

Taking into account (4.39) and (4.44), we come to

(ρζ ⊗ ϕ1)(R≺δ) = 1⊗ 1 + b q−Nζs1 ⊗ E21, (4.85)

(ρζ ⊗ ϕ1)(R�δ) = 1⊗ 1 + κq b† ζs−s1 ⊗ E12. (4.86)

Definition (4.16) and equations (4.84) give

ρζ(e′kδ) = 0, k > 1,

and one easily finds that

ρζ(ekδ) = (−1)k−1κ−1
q q−k ζks

k
.
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Now, using relations (4.24) and (4.43), we obtain

(ρζ ⊗ ϕ1)(R∼δ) = eλ2(q−1ζs)[1⊗ E11 + (1− ζs)⊗ E22], (4.87)

where the function λ2(ζ) is defined by (4.48).
Multiplying expressions (4.82), (4.85), (4.86) and (4.87) in the prescribed order, we

come to the following L-operator:

L(ζ) = eλ2(q−1ζs)[q−N ⊗ E11

+ κq b† qNζs−s1 ⊗ E12 + b q−2Nζs1 ⊗ E21 + (qN − q−2q−Nζs)⊗ E22].

In the matrix form it looks as

L(ζ) = eλ2(q−1ζs)

(
q−N κq b† qNζs−s1

b q−2Nζs1 qN − q−2q−Nζs

)
.

It is evident that the relations

σ(h0) = h1, σ(h1) = h0,

σ(e0) = e1, σ(e1) = e0, σ( f0) = f1, σ( f1) = f0

define an automorphism of Uq(L(sl2)) and, via the restriction, an automorphism of
Uq(b+). Therefore, the mappings

ρ = ρ ◦ σ, ρζ = ρ ◦Φζ

are homomorphisms from Uq(b+) to Oscq, and the mappings

ρ± = χ± ◦ ρ, ρ±ζ = χ± ◦ ρζ (4.88)

are representations of Uq(b+). We denote the Uq(b+)-modules corresponding to the
representations ρ±ζ by W±ζ .

Let us find the expression for the L-operator

L(ζ) = Lρ,ϕ1(ζ).

Calculations give

ρζ(eα+kδ) = (−1)kq−kq−2kNb†ζs1+ks,

ρζ(e(δ−α)+kδ) = κ−1
q (−1)kq−kbq−(2k+1)Nζs0+ks,

ρζ(ekδ) = κ−1
q (−1)kq−k[(1 + q−2k)q−2kN − 1]

ζks

k
.

Using these equations, we obtain

(ρζ ⊗ ϕ1)(R≺δ) = 1⊗ 1 + κqb†(1− q−2q−2Nζs)−1ζs1 ⊗ E21,

(ρζ ⊗ ϕ1)(R∼δ) = eλ2(q−1ζs)[(1− q−2q−2Nζs)⊗ E11 + (1− ζs)(1− q−2Nζs)−1 ⊗ E22],

(ρζ ⊗ ϕ1)(R�δ) = 1⊗ 1 + bq−N(1− q−2Nζs)−1ζs−s1 ⊗ E12,

(ρζ ⊗ ϕ1)(K) = qN ⊗ E11 + q−N ⊗ E22

Multiplying these expressions in the order prescibed by (4.23), we determine that

L(ζ) = eλ2(q−1ζs)[(qN − q−2q−Nζs)⊗ E11

+ b q−2Nζs−s1 ⊗ E12 + κq b† qNζs1 ⊗ E21 + q−N ⊗ E22],
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or in the matrix form

L(ζ) = eλ2(q−1ζs)

(
qN − q−2q−Nζs b q−2Nζs−s1

κq b† qNζs1 q−N

)
.

4.7. Q-operators. We again use the twist element

t = qφhα ,

where φ is a complex number. Using the representations χ+ and χ−, we can define
two traces

tr+ = trW+ ◦ χ+, tr− = trW− ◦ χ−

on the algebra Oscq. In fact, these traces differ only by an overall sign. We introduce
two Q-operators,

Q′(ζ) = Qρ+,ϕ1(ζ), Q′(ζ) = Qρ−,ϕ1(ζ).

We use the prime here because we slightly redefine the Q-operators below. Taking into
account that

ρ(t) = q−2φN, ρ(t) = q2φN,
we obtain

Q′(ζ) = (tr+ ⊗ id)(L(ζ)(q−2φN ⊗ 1)), Q′(ζ) = (tr− ⊗ id)(L(ζ)(q2φN ⊗ 1)).

In terms of the corresponding matrices we have

Q′(ζ) = tr+(L(ζ) q−2φN), Q′(ζ) = tr−(L(ζ) q2φN),

where tr+ is applied to the matrix entries, and, in general,

Q′(ζ|η1, . . . , ηn) = tr+((L(ζη−1
1 )� . . . �L(ζη−1

n ))q−2φN),

Q′(ζ|η1, . . . , ηn) = tr−((L(ζη−1
1 )� . . . �L(ζη−1

n ))q2φN).

Using (4.73) and (4.74), we see that for |q| < 1 one has

tr+(qνN) =
1

1− qν
,

tr+((b†)r+1qνN) = 0, tr+(br+1qνN) = 0

for any ν ∈ C and r ∈ Z≥0. For |q| > 1 we define the trace tr+ by analytic continuation.
Using the above relations, for n = 1 we obtain

Q′(ζ) = eλ2(q−1ζs)


1

1− q−1−2φ
0

0
1

1− q1−2φ
− 1

1− q−1−2φ
q−2ζs


and

Q′(ζ) = −eλ2(q−1ζs)


1

1− q1+2φ
− 1

1− q−1+2φ
q−2ζs 0

0
1

1− q−1+2φ

 .

As well as for the higher transfer matrices T̃µ(ζ|η1, . . . , ηn), one sees that the matrices
Q′(ζ|η1, . . . , ηn) and Q′(ζ|η1, . . . , ηn) are finite in the zero-twist limit for an odd n, and
singular for an even n.
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5. FUNCTIONAL RELATIONS FOR Uq(L(sl2))
In this section we derive certain relations satisfied by the universal transfer opera-

tors
T̃µ(ζ) = Tϕ̃µ(ζ), Tm(ζ) = Tϕm(ζ),

and the universal Q-operators

Q′(ζ) = Qρ+(ζ), Q′(ζ) = Qρ−(ζ),

where the representations ϕ̃µ, ϕm of Uq(L(sl2)) are defined in section 4.3, and the
representations ρ+, ρ− of Uq(b+) in section 4.6. These relations, known as functional
relations, appear to be very useful for investigation of the corresponding integrable
systems.

There are relations which are due only to the fact that the universal transfer oper-
ators and universal Q-operators are constructed from the universal R-matrices. An-
other set of relations depends on the structure of the representations used for their
construction. Here, to analyze the products of the operators, we should analyze the
tensor products of the corresponding representations, see, for example, relations (3.30)
and (3.31).

5.1. Tensor product of representations.

5.1.1. Tensor product of representations ρ+ζ1
and ρ+ζ2

. To analyze the product of the uni-
versal Q-operators Q′(ζ1) and Q′(ζ2) we consider the tensor product of the repre-
sentations ρ+ζ1

and ρ+ζ2
. Here the representation space is W+ ⊗W+, which is also the

representation space of the representation χ+ ⊗ χ+ of the algebra Oscq ⊗Oscq.
It is not difficult to see that9

(ρ+ζ1
⊗∆ ρ+ζ2

)(qνh0) = (ρ+ζ1
⊗ ρ+ζ2

)(∆(qνh0)) =
(4.9)

(ρ+ζ1
⊗ ρ+ζ2

)(qνh0 ⊗ qνh0)

=
(4.77)

χ+(q2νN)⊗ χ+(q2νN) = (χ+ ⊗ χ+)(q2νN ⊗ q2νN).

Similarly, we obtain

(ρ+ζ1
⊗∆ ρ+ζ2

)(qνh1) = (χ+ ⊗ χ+)(q−2νN ⊗ q−2νN).

Below we denote

qµNA+νNB = qµN ⊗ qνN, µ, ν ∈ C,

bA = b⊗ 1, bB = 1⊗ b, b†
A = b† ⊗ 1, b†

B = 1⊗ b†.

Now, using module notation, we can write

qνh0 w = q2ν(NA+NB) w, qνh1 w = q−2ν(NA+NB) w

for any w ∈W+ ⊗W+. Further, we obtain

e0 w = (b†
A ζs0

1 + b†
B q−2NA ζs0

2 )w, (5.1)

e1 w = κ−1
q (bA q−NA ζs1

1 + bB q2NA−NB ζs1
2 )w. (5.2)

9Remind that h0 = hδ−α, h1 = hα, e0 = eδ−α and e1 = eα.
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Remind that W+ is the free vector space generated by the set {vn}n∈Z≥0 . The vectors
vn ⊗ vk, n, k ∈ Z≥0, form a basis of W+ ⊗W+. Consider another basis {wn,k}n,k∈Z≥0 ,
where

wn,k = (e0)
n (ζs1

2 b†
A)

k (v0 ⊗ v0).
Let us show that

qνh0 wn,k = q2ν(n+k) wn,k, (5.3)

qνh1 wn,k = q−2ν(n+k) wn,k, (5.4)

e0 wn,k = wn+1,k, (5.5)

e1 wn,k = κ−1
q q−2n−k[k]q (ζ1ζ2)

s1 wn,k−1

+ κ−1
q q−n[n]q (ζs

1 + ζs
2)wn−1,k + q−1[n]q[n− 1]q (ζ1ζ2)

s0 wn−2,k+1. (5.6)

In fact, the first three equations are evident, and one should prove only the last one.
To this end, we move e1 through e0 and introduce some operators arising during this
process. Then we move these operators through the remaining factors e0, and so on.
The process terminates when we arrive at an operator which can be moved through
e0 without introducing new operators. To finish, we determine the action of e1 and all
new operators on the vectors of the form w0,k.

We start with defining an operator x by the equation

x w = (e1 e0 − q−2e0 e1)w (5.7)

for any w ∈W+ ⊗W+. Explicitly, we have

x w =
[
κ−1

q q−1(ζs
1 + ζs

2) + (q + q−1) ζs0
1 ζs1

2 b†
AbB q2NA−NB

]
w. (5.8)

Now we move x and introduce the operator y as

y w = (x e0 − e0 x)w, (5.9)

or, explicitly,

y w =
[
q−1(q + q−1) ζs0

1 ζs
2 b†

A + κq q(q + q−1) ζ2s0
1 ζs1

2 (b†
A)

2bB q2NA−NB
]

w. (5.10)

One can verify that
(y e0 − q2e0 y)w = 0. (5.11)

In fact, this equation is a consequence of the Serre relations (4.7) and its validity does
not depend on the used representation of the quantum group Uq(b+). Equations (5.7),
(5.9) and (5.11) give

e1(e0)
n w =

[
q−2n(e0)

ne1 + q−n+1[n]q(e0)
n−1x + (q + q−1)−1[n]q[n− 1]q(e0)

n−2y
]

w,

and we obtain

e1 wn,k = e1(e0)
n w0,k =

[
q−2n(e0)

ne1 + q−n+1[n]q(e0)
n−1x

+ (q + q−1)−1[n]q[n− 1]q(e0)
n−2y

]
w0,k. (5.12)

Using the explicit relations (5.2), (5.8) and (5.10), we see that

e1 w0,k = κ−1
q q−k[k]q (ζ1ζ2)

s1 w0,k−1,

x w0,k = κ−1
q q−1(ζs

1 + ζs
2)w0,k,
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y w0,k = q−1(q + q−1) (ζ1ζ2)
s0 w0,k+1.

Now, it is easy to see that equation (5.6) is true.

5.1.2. Tensor product of representations ρ−ζ1
and ρ−ζ2

. To analyse the product of the univer-

sal Q-operators Q′(ζ1) and Q′(ζ2), we use the tensor product of the representations
ρ−ζ1

and ρ−ζ2
. Here we obtain that

qνh0 w = q−2ν(NA+NB) w, qνh1 w = q2ν(NA+NB) w,

and that

e0 w = κ−1
q (bA q−NA ζs0

1 + bB q2NA−NB ζs0
2 )w, (5.13)

e1 w = (b†
A ζs1

1 + b†
B q−2NA ζs1

2 )w (5.14)

for any w ∈W− ⊗W−. Introduce now a basis

wn,k = (e0)
n (ζs1

1 bB)
k (u0 ⊗ u0).

and show that

qνh0 wn,k = q2ν(n+k+2) wn,k, (5.15)

qνh1 wn,k = q−2ν(n+k+2) wn,k, (5.16)

e0 wn,k = wn+1,k, (5.17)

e1 wn,k = −q2n+2 [k]q (ζ1ζ2)
s1 wn,k−1

− κ−1
q qn [n]q (ζs

1 + ζs
2)wn−1,k + κ−1

q qk [n]q[n− 1]q (ζ1ζ2)
s0 wn−2,k+1. (5.18)

The first three equations are evident, and to prove the fourth one we introduce the
operators x and y by

x w = (e1 e0 − q2e0 e1)w (5.19)
and (5.9). Explicitly, we have

x w = −
[
κ−1

q q (ζs
1 + ζs

2) + q2(q + q−1) ζs1
1 ζs0

2 b†
AbB q2NA−NB

]
w

and

y w =
[
κ−1

q q (q + q−1) ζs
1ζs0

2 bB q2NA−NB + q4(q + q−1) ζs1
1 ζ2s0

2 b†
A(bB)

2 q4NA−2NB
]

w.

It follows from these relations and from (5.14) that

e1 w0,k = −q2[k]q (ζ1ζ2)
s1 w0,k−1,

x w0,k = −κ−1
q q(ζs

1 + ζs
2)w0,k,

y w0,k = κ−1
q qk(q + q−1) (ζ1ζ2)

s0 w0,k+1.

Now, instead of (5.12), we have

e1 wn,k = e1(e0)
n w0,k =

[
q2n(e0)

ne1 + qn−1[n]q(e0)
n−1x

+ (q + q−1)−1[n]q[n− 1]q(e0)
n−2y

]
w0,k. (5.20)

Using this equation, we conclude that equation (5.18) is true.
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5.1.3. Tensor product of representations ρ+ζ1
and ρ−ζ2

. Now we consider the tensor product
of the representations ρ+ζ1

and ρ−ζ2
which is necessary to analyse the product of the

universal Q-operators Q′(ζ1) and Q′(ζ2). For this tensor product we obtain that

qνh0 w = q2ν(NA−NB) w, qνh1 w = q−2ν(NA−NB) w,

and that

e0 w = (ζs0
1 b†

A + κ−1
q ζs0

2 bB q−2NA−NB)w, (5.21)

e1 w = (κ−1
q ζs1

1 bA q−NA + ζs1
2 b†

B q2NA)w. (5.22)

A convenient basis of W+ ⊗W− is formed by the vectors

wn,k = ((ζ1ζ2)
−s0/2e0)

n(ζ−s1
2 bB)

k (v0 ⊗ u0).

Here one obtains

qνh0 wn,k = q2ν(n+k+1) wn,k, (5.23)

qνh1 wn,k = q−2ν(n+k+1) wn,k, (5.24)

e0 wn,k = (ζ1ζ2)
s0/2 wn+1,k, (5.25)

e1 wn,k = −q2n [k]q wn,k−1 + κ−1
q [n]q (ζ1ζ2)

−s0/2q−n(ζs0+s1
1 − q2nζs0+s1

2 )wn−1,k. (5.26)

Let us prove the last equation. The operators x and y defined by relations (5.19) and
(5.9), act on a vector w of W+ ⊗W− as

x w =
[
κ−1

q (q + q−1) ζs
1 q−2NA

− κ−1
q q (ζs

1 + ζs
2)− κ−1

q (q + q−1) q2 ζs1
1 ζs0

2 bA bB q−3NA−NB
]
w

and

y w = −
[
q−1(q + q−1) ζs+s0

1 b†
A q−2NA

+ κ−1
q (q + q−1)2 ζs

1 ζs0
2 bB q−4NA−NB − κ−1

q q (q + q−1) ζs
1 ζs0

2 bB q−2NA−NB

− κ−1
q q4(q + q−1) ζs1

1 ζ2s0
2 bA(bB)

2 q−5NA−2NB
]
w.

It follows from these equations and from (5.22) that

e1 w0,k = −[k]q w0,k−1,

x w0,k = κ−1
q q−1(ζs

1 − q2ζs
2)w0,k,

y w0,k = −q−1(q + q−1) ζs
1 e0 w0,k.

Using relation (5.20), we see that equation (5.26) is true.
Introduce the parameters ζ and µ such that

ζ = (ζ1ζ2)
1/2, qµ+1 = (ζ1/ζ2)

(s0+s1)/2. (5.27)

The inverse transformation to the parameters ζ1 and ζ2 is

ζ1 = q(µ+1)/sζ, ζ2 = q−(µ+1)/sζ.
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In terms of the new parameters equations (5.25) and (5.26) take the form

e0 wn,k = ζs0 wn+1,k,

e1 wn,k = −q2n[k]q wn,k−1 + ζs1 [n]q[µ− n + 1]q wn−1,k.

Thus, we have an increasing filtration

{0} = (W+
ζ1
⊗W−ζ2

)−1 ⊂ (W+
ζ1
⊗W−ζ2

)0 ⊂ (W+
ζ1
⊗W−ζ2

)1 ⊂ . . .

formed by the submodules

(W+
ζ1
⊗W−ζ2

)k =
k⊕

`=0

∞⊕
n=0

Cwn,`

with the quotient modules

(W+
ζ1
⊗W−ζ2

)k/(W+
ζ1
⊗W−ζ2

)k−1
∼= Ṽµ

ζ [ξk]. (5.28)

Here ξk ∈ h̃∗ are determined by the relations

ξk(h0) = µ + 2k + 2, ξk(h1) = −µ− 2k− 2, (5.29)

compare (5.23) and (5.24) with (4.69).

5.1.4. Tensor product of representations ρ−ζ2
and ρ+ζ1

. Finally, we consider the tensor pro-
duct of the representations ρ−ζ2

and ρ+ζ1
. Here we see that

qνh0 w = q−2ν(NA−NB) w, qνh1 w = q2ν(NA−NB) w,

and that

e0 w = (κ−1
q ζs0

2 bA q−NA + ζs0
1 b†

B q2NA)w,

e1 w = (ζs1
2 b†

A + κ−1
q ζs1

1 bB q−2NA−NB)w

for any w ∈ W− ⊗W+. To construct a convenient basis, we introduce an operator f
acting on a vector w ∈W− ⊗W+ as

f w = (ζs1
1 bA q−NA−2NB + κq ζs1

2 b†
B)w.

One can verify that

(e0 f − f e0)w = 0, (e1 f − f e1)w = 0.

The basis in question is formed by the vectors

wn,k = ((ζ1ζ2)
−s0/2e0)

n f k (u0 ⊗ v0),

and one can show that

qνh0 wn,k = q2ν(n+k+1) wn,k, (5.30)

qνh1 wn,k = q−2ν(n+k+1) wn,k, (5.31)

e0 wn,k = (ζ1ζ2)
s0/2 wn+1,k, (5.32)

e1 wn,k = κ−1
q (ζ1ζ2)

−s0/2q−n(ζs
1 − q2nζs

2)[n]q wn−1,k

+ κ−1
q q−1[n]q[n− 1]q wn−2,k+1. (5.33)
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As before, the first three relations are evident, and to prove the last one we define the
operators x and y by (5.19) and (5.9). These operators act on a vector w ∈W−⊗W+ as

x w = (κ−1
q (q + q−1) ζs

1 q−2NB − κ−1
q q (ζs

1 + ζs
2)− κq (q + q−1) q2 ζs0

1 ζs1
2 b†

A b†
B q2NA)w

and

y w = ((q + q−1) q ζs0
1 ζs

2 b†
B q2NA

− (q + q−1) q−1 ζs+s0
1 b†

B q2NA−2NB + κ2
q(q + q−1) q3 ζ2s0

1 ζs1
2 b†

A(b
†
B)

2 q4NA)w.

One can verify that
[x, f ] = 0, [y, f ] = 0,

and, having in mind equation (5.20), we see that we only need to determine the action
of e1, x and y on the vector w0,0. The explicit form of the action of these operators on
an arbitrary vector W− ⊗W+ implies that

e1 w0,0 = 0,

x w0,0 = κ−1
q q−1(ζs

1 − q2ζs
2)w0,0,

y w0,0 = −(q + q−1)q−1ζs
1e0 w0,0 + κ−1

q (q + q−1)q−1(ζ1ζ2)
s0 f w0,0.

Now, using (5.20), one can be convinced in the validity of (5.33).
Introducing the parameters ζ and µ with the help of (5.27), we write equations (5.32)

and (5.33) as

e0 wn,k = ζs0 wn+1,k,

e1 wn,k = ζs1 [n]q[µ− n + 1]q wn−1,k + κ−1
q q−1[n]q[n− 1]q wn−2,k+1.

Thus, we have a decreasing filtration

W−ζ2
⊗W+

ζ1
= (W−ζ2

⊗W+
ζ1
)−1 ⊃ (W−ζ2

⊗W+
ζ1
)0 ⊃ (W−ζ2

⊗W+
ζ1
)1 ⊃ . . .

with the submodules

(W−ζ2
⊗W+

ζ1
)k =

∞⊕
`=k

∞⊕
n=0

Cwn,`

and the quotient modules

(W−ζ2
⊗W+

ζ1
)k/(W−ζ2

⊗W+
ζ1
)k+1

∼= Ṽµ
ζ [ξk], (5.34)

where ξk ∈ h̃∗ are determined by relations (5.29).

5.2. Commutativity relations. First, it is worth to note that since for any ν ∈ C the
element qνh1 is an invertible group-like element of Uq(L(sl2)) commuting with the
twist element qth1 , we have

[qνh1 , Tµ(ζ)] = 0, [qνh1 ,Q′(ζ)] = 0, [qνh1 ,Q′(ζ)] = 0,

see sections 3.3.1 and 3.5.1.
As we noted before, there are functional relations which are due only to the fact that

the universal transfer operators and universal Q-operators are constructed from the
universal R-matrices. These are the commutativity relations for the universal transfer
matrices

[T̃µ1(ζ1), T̃µ2(ζ2)] = 0, [Tm1(ζ1), Tm2(ζ2)] = 0, [T̃µ(ζ1), Tm(ζ2)] = 0,
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see relation (3.22), and the commutativity of the universal transfer operators and the
universal Q-operators

[T̃µ(ζ1),Q′(ζ2)] = 0, [T̃µ(ζ1),Q
′
(ζ2)] = 0,

[Tm(ζ1),Q′(ζ2)] = 0, [Tm(ζ1),Q
′
(ζ2)] = 0,

see relation (3.29).
Another set of commutativity relations follows from the properties of the represen-

tations used to define the universal transfer operators and universal Q-operators. Note
that relations (5.3)–(5.6) are symmetric with respect to ζ1 and ζ2. It is not difficult to
understand that this fact implies the equation

[Q′(ζ1),Q′(ζ2)] = 0.

Similarly, relations (5.15)–(5.14) are symmetric with respect to ζ1 and ζ2, therefore,

[Q′(ζ1),Q
′
(ζ2)] = 0.

Further, comparing (5.28) and (5.34) we conclude that

[Q′(ζ1),Q
′
(ζ2)] = 0.

5.3. Universal TQ-relations. It follows from relations (5.28) and (4.68) that

Q′(q(µ+1)/sζ)Q′(q−(µ+1)/sζ)

= T̃µ(ζ) q−(µ/2+1)(h1+2φ)
∞

∑
k=0

q−(h1+2φ)k = T̃µ(ζ)
q−(µ/2+1)(h1+2φ)

1− q−h1−2φ
,

where the parameters ζ and µ are defined by relations (5.27). We can write

T̃µ(ζ) = C q(µ+1)(h1/2+φ)Q′(q(µ+1)/sζ)Q′(q−(µ+1)/sζ), (5.35)

where
C = qh1/2+φ − q−h1/2−φ.

It is convenient to redefine the universal Q-operators as

Q(ζ) = ζsh1/4Q′(ζ), Q(ζ) = ζ−sh1/4Q′(ζ).
In accordance with our convention (4.29), we assume that

ζνh1 = qνuh1 .

The new universal Q-operators commute with the universal transfer operators:

[T̃µ(ζ1),Q(ζ2)] = 0, [T̃µ(ζ1),Q(ζ2)] = 0, (5.36)

[Tm(ζ1),Q(ζ2)] = 0, [Tm(ζ1),Q(ζ2)] = 0, (5.37)

and among themselves:

[Q(ζ1),Q(ζ2)] = 0, [Q(ζ1),Q(ζ2)] = 0, (5.38)

[Q(ζ1),Q(ζ2)] = 0. (5.39)

Equation (5.35) takes the form

T̃µ(ζ) = q(µ+1)φC Q(q(µ+1)/sζ)Q(q−(µ+1)/sζ), (5.40)

and we write

T̃µ(qν/sζ) = q(µ+1)φC Q(q(µ+ν+1)/sζ)Q(q−(µ−ν+1)/sζ). (5.41)
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Now, introducing new parameters

α = µ + 1 + ν, β = −(µ + 1) + ν, (5.42)

so that
µ = (α− β)/2− 1, ν = (α + β)/2,

we come to the equation

T̃(α−β)/2−1(q
(α+β)/2sζ) = q(α−β)φ/2C Q(qα/sζ)Q(qβ/sζ). (5.43)

Using (5.40), we easily obtain that

qγφ/2T̃(α−β)/2−1(q
(α+β)/2sζ)Q(qγ/sζ) = qαφ/2T̃(γ−β)/2−1(q

(γ+β)/2sζ)Q(qα/sζ) (5.44)

and that

q−γφ/2T̃(α−β)/2−1(q
(α+β)/2sζ)Q(qγ/sζ)

= q−βφ/2T̃(α−γ)/2−1(q
(α+γ)/2sζ)Q(qβ/sζ). (5.45)

Introduce the universal transfer operators Tµ(ζ) defined with the help of the trace
trµ given by equation (4.67). It is clear that

Tµ(ζ) = T̃µ(ζ)− T̃−µ−2(ζ). (5.46)

The universal transfer operators Tµ(ζ) possesses the evident property

T−µ−2(ζ) = −Tµ(ζ).

This gives, in particular, that T−1 = 0. It worth to note that, as follows from the explicit
expression for the universal R-matrix, T0 = 1.

Equations (5.46) and (5.40) give

Tµ(ζ) = C
[
q(µ+1)φQ(q(µ+1)/sζ)Q(q−(µ+1)/sζ)

− q−(µ+1)φQ(q−(µ+1)/sζ)Q(q(µ+1)/sζ)
]
. (5.47)

In particular, for µ = 0 we have the Wronskian-type relation

C
[
qφQ(q1/sζ)Q(q−1/sζ)− q−φQ(q−1/sζ)Q(q1/sζ)

]
= 1.

It is easy to obtain from (5.47) the equation

T(α−β)/2−1(q
(α+β)/2sζ) = C

[
q(α−β)φ/2Q(qα/sζ)Q(qβ/sζ)

− q(β−α)φ/2Q(qβ/sζ)Q(qα/sζ)
]
,

which implies that

qγφ/2T(α−β)/2−1(q
(α+β)/2sζ)Q(qγ/sζ) + qαφ/2T(β−γ)/2−1(q

(β+γ)/2sζ)Q(qα/sζ)

+ qβφ/2T(γ−α)/2−1(q
(γ+α)/2sζ)Q(qβ/sζ) = 0 (5.48)

and

q−γφ/2T(α−β)/2−1(q
(α+β)/2sζ)Q(qγ/sζ) + q−αφ/2T(β−γ)/2−1(q

(β+γ)/2sζ)Q(qα/sζ)

+ q−βφ/2T(γ−α)/2−1(q
(γ+α)/2sζ)Q(qβ/sζ) = 0. (5.49)
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We call equations (5.48) and (5.49) the universal TQ-relations. Putting

α = γ− 2, β = γ + 2,

we obtain the relations of more usual form,

T (ζ)Q(ζ) = qφQ(q2/sζ) + q−φQ(q−2/sζ), (5.50)

T (ζ)Q(ζ) = q−φQ(q2/sζ) + qφQ(q−2/sζ), (5.51)

where
T (ζ) = T1(ζ) = −T−3(ζ).

5.4. Universal TT-relations. Using relation (5.43), we obtain from (5.44), or from (5.45),
the equation

T̃(α−β)/2−1(q
(α+β)/2sζ)T̃(γ−δ)/2−1(q

(γ+δ)/2sζ)

= T̃(γ−β)/2−1(q
(γ+β)/2sζ)T̃(α−δ)/2−1(q

(α+δ)/2sζ).

For the universal transfer operators Tµ(ζ) defined by (5.46) we obtain

T(α−β)/2−1(q
(α+β)/2sζ)T(γ−δ)/2−1(q

(γ+δ)/2sζ)

= T(α−γ)/2−1(q
(α+γ)/2sζ)T(β−δ)/2−1(q

(β+δ)/2sζ)

− T(β−γ)/2−1(q
(β+γ)/2sζ)T(α−δ)/2−1(q

(α+δ)/2sζ).

We call these relations the universal TT-relations. There are two interesting special cases
of these relations. In the first case we put

α = γ + 2, β = δ + 2

and obtain
Tµ(q1/sζ)Tµ(q−1/sζ) = 1 + Tµ−1(ζ)Tµ+1(ζ), (5.52)

where µ = (γ− δ)/2− 1. In the second case we put

α = γ + 2, β = γ− 2

and obtain

T (ζ)Tµ(q−(µ+1)/sζ) = Tµ+1(q−µ/sζ) + Tµ−1(q−(µ+2)/sζ), (5.53)

where again µ = (γ− δ)/2− 1.

5.5. Six-vertex model. The six-vertex model arises when we use for the second factor
of the tensor product Uq(L(sl2))⊗Uq(L(sl2)) the representation ϕ1

η1
⊗∆op . . .⊗∆op ϕ1

ηn .
It is convenient to introduce in this case the transfer matrices

Tp
µ(ζ|η1, . . . , ηn) = qn/2

n

∏
i=1

[
(ζη−1

i )−s/2 e−λ2(qµ(ζη−1
i )s)−λ2(q−µ−2(ζη−1

i )s)
]
Tµ(ζ|η1, . . . , ηn),

being a Laurent polynomial in ζs/2. Similarly, we define the Q-operators

Qp(ζ|η1, . . . , ηn) = (1− q−n−2φ)

×
n

∏
i=1

[
(ζη−1

i )−s/4 e−λ2(q−1(ζη−1
i )s)

]( n

∏
i=1

ηi

)−s S/2n
Q(ζ|η1, . . . , ηn)
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and

Qp
(ζ|η1, . . . , ηn) = (1− q−n+2φ)

×
n

∏
i=1

[
(ζη−1

i )−s/4 e−λ2(q−1(ζη−1
i )s)

]( n

∏
i=1

ηi

)s S/2n
Q(ζ|η1, . . . , ηn)

also being Laurent polynomials in ζs/2. Here we assume that

qνS = (ϕ1
η1
⊗∆op . . .⊗∆op ϕ1

ηn)(q
νh1/2),

and introduce the third prefactor to restore the invariance

Qp(ζν|η1ν, . . . , ηnν) = Qp(ζ|η1, . . . , ηn), Qp
(ζν|η1ν, . . . , ηnν) = Qp

(ζ|η1, . . . , ηn).

It is clear that the introduced transfer matrices and Q-operators satisfy the commuta-
tivity relations which follow from (5.36)–(5.39). Now, starting from (5.50) and using
identity (4.52), we obtain

Tp(ζ|η1, . . . , ηn)Qp(ζ|η1, . . . , ηn)

= qφ
n

∏
i=1

a((ζη−1
i )−s/2)Qp(q2/sζ|η1, . . . , ηn)

+ q−φ
n

∏
i=1

b((ζη−1
i )−s/2)Qp(q−2/sζ|η1, . . . , ηn), (5.54)

while relation (5.51) gives

Tp(ζ|η1, . . . , ηn)Q
p
(ζ|η1, . . . , ηn)

= q−φ
n

∏
i=1

a((ζη−1
i )−s/2)Qp

(q2/sζ|η1, . . . , ηn)

+ qφ
n

∏
i=1

b((ζη−1
i )−s/2)Qp

(q−2/sζ|η1, . . . , ηn).

Here the functions a(ζ) and b(ζ) are defined by (2.7). For s = −2 equation (5.54)
coincides with the Baxter’s TQ-equation (2.14).

Similarly, we obtain from (5.52) the relation

Tp
µ(q1/sζ|η1, . . . , ηn)T

p
µ(q−1/sζ|η1, . . . , ηn)

=
n

∏
i=1

a(qµ/2(ζη−1
i )−s/2)b(q−µ/2(ζη−1

i )−s/2)

+Tp
µ−1(ζ|η1, . . . , ηn)T

p
µ+1(ζ|η1, . . . , ηn),

and from (5.53) the relation

Tp(ζ|η1, . . . , ηn)T
p
µ(q−(µ+1)/sζ|η1, . . . , ηn)

=
n

∏
i=1

a((ζη−1
i )−s/2)Tp

µ+1(q
−µ/sζ|η1, . . . , ηn)

+
n

∏
i=1

b((ζη−1
i )−s/2)Tp

µ−1(q
−(µ+2)/sζ|η1, . . . , ηn).

Thus, we obtain all known functional relations for the six-vertex model as a conse-
quence of the universal TQ- and TT-relations.
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As we noted before, in the case of an even n the limit φ → 0 is singular for the
matrices Q(ζ|η1, . . . , ηn) and Q(ζ|η1, . . . , ηn). However, some linear combinations of
these operators with matrix coefficients are finite. One can find such combinations
using the observation made by Pronko [57] on the relation of transfer matrices and
Q-operators, see the paper [13] for the limiting case q = 1.

6. CONCLUSIONS

We made an attempt to collect and organize general definitions and facts on the
application of quantum groups to the construction of functional relations in the the-
ory of integrable systems. As an example, we reconsidered the case of the quantum
group Uq(L(sl2)) related to the six-vertex model. We proved the full set of the func-
tional relations in the form independent of the representation of the quantum group
in the quantum space and specialized them to the case of the six-vertex model. There
are three sets of functional relations. The first set consists of commutativity relations
satisfied by the universal transfer matrices and universal Q-operators. The second
set is formed by the universal TQ-relations which are the origin of the Baxter’s TQ-
equations. The third set is formed by the universal TT-relations generating various
fusion relations. The specialization of the universal TQ-relations and universal TT-
relations to the case of the six-vertex model in the limiting case q = 1 was obtained by
other methods in the papers [13, 33]. In fact, the universal TQ-relations and universal
TT-relations have similar structures. It seems that they can be combined into one set
of relations, see the paper [12] for the case of integrable systems related to Yangians
Y(gln).
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APPENDIX A. ENDOMORPHISM ALGEBRA

Let V be a finite-dimensional vector space of dimension n, and {ea} a basis of V. For
any pair of indices a and b define an endomorphism Eab ∈ End(V) by the equation

Eabec = eaδbc.

The endomorphisms Eab satisfy the relation

EabEcd = δbcEad. (A.1)

One can verify that {Eab} is a basis of End(V), so that any endomorphism M ∈
End(V) has a unique representation of the form

M = ∑
a,b

EabMab

for some Mab ∈ C. It is not difficult to see that

Mea = ∑
b

ebMba.

One can consider Mab as the entries of an n × n matrix called the matrix of M with
respect to the basis {ea}. From the other hand, any n× n matrix (Mab), via the above
relation, defines an element of End(V). This correspondence between the elements of
End(V) and Matn(V) is a basis-dependent isomorphism of algebras.
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In the case when V = Cn the algebra End(V) is identified with the algebra Matn(C).
Here we assume that {ea} is the standard basis of Cn. Hence, Eab in this case are the
standard matrix units.

Let V and U be finite-dimensional vector spaces, {ea} and {ei} their bases. One
can show that {ea ⊗ ei} is a basis of the vector space V ⊗ U. Let {Eai|bj} be a basis
of End(V ⊗U) corresponding to the basis {ea ⊗ ei}, so that any endomorphism M ∈
End(V ⊗U) can be uniquely represented as

M = ∑
a,i,b,j

Eai|bjMai|bj.

It is easy to see that

Eai|bj = Eab ⊗ Eij. (A.2)

This equation is a reflection of the natural isomorphism

End(V ⊗U) ∼= End(V)⊗ End(U).

Now let V be a finite-dimensional vector space of dimension n, {ea} a basis of V,
{Eab} the corresponding basis of End(V), and A an algebra. It is clear that any element
M of End(V)⊗ A has a unique representation of the form

M = ∑
a,b

Eab ⊗Mab,

where Mab are elements of A. As before, one can consider Mab as the entries of n× n
matrix called the matrix of the endomorphism M with respect to the basis {ea}. Now
it is an element of Matn(A). Thus, we have a correspondence between the elements
of End(V)⊗ A and Matn(A) which is an isomorphism of algebras. If A is the algebra
End(U) for some vector space U we obtain the isomorphism of the algebras End(V ⊗
U) and Matn(End(U)). Here one can uniquely represent a general element w ∈ V⊗U
as

w = ∑
a

ea ⊗ wa,

where wa are elements of U. One can consider wa as the entries of n× 1 matrix. Hence
we can identify V ⊗ U with the module Matn,1(U). Here the action of an element
M ∈ End(V ⊗U) on an element w ∈ V ⊗U corresponds to matrix multiplication.

The similar consideration can be performed for the case A⊗ End(V).
Introduce two useful operations for matrices with entries in algebras. First, let M =

(Mab) ∈ Matn(A) and N = (Nab) ∈ Matn(B), were A and B are some algebras. We
denote

M � N =
(
∑

c
Mac ⊗ Ncb

)
. (A.3)

The matrix M � N is an element of Matn(A⊗ B).
Further, let A be an algebra, K = (Kij) ∈ Matm(A), and L = (Lrs) ∈ Mat`(A).

Denote

K � L = ((K � L)ir|js) = (KijLrs). (A.4)

The operation � is a natural generalization of the Kronecker product of matrices to
the case of matrices with entries in a noncommutative algebra. It is clear that K � L ∈
Matm`(A).
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APPENDIX B. SYMMETRIC GROUP AND TENSOR PRODUCTS

Let A1, . . . , An be algebras, and

A = A1 ⊗ . . .⊗ An.

Given an element s of the symmetric group Sn, we define

As = As−1(1) ⊗ . . .⊗ As−1(n).

For any t, s ∈ Sn we define Πt as an isomorphism from As to Ats by the equation

Πt(a1 ⊗ . . .⊗ an) = at−1(1) ⊗ . . .⊗ at−1(n).

It is not difficult to show that
Πt1 ◦Πt2 = Πt1t2 .

for all t1, t2 ∈ Sn.
Let j1, j2, . . . , jm be distinct integers in the range from 1 to n, and M be an element of

the tensor product Aj1 ⊗ . . .⊗ Ajm . Represent M as a sum

M = ∑
r

ar
1 ⊗ . . .⊗ ar

m,

where ar
` ∈ Aj` . Let i1, i2, . . . , im be another set of distinct integers in the range from 1

to n. We denote by Mi1...im the element of A = A1⊗ . . .⊗ An which is the sum over r of
monomials having for each ` = 1, . . . , m the element ar

` as the factor with the number
i`, and 1 as all remaining factors. Here for any s ∈ Sn we have

Πs(Mi1i2...im) = Ms(i1)s(i2)...s(im). (B.1)

We assume certainly that Aj` = Ai` .
Now let V1, . . . , Vn be vector spaces, and

V = V1 ⊗ . . .⊗Vn.

Given an element s of the symmetric group Sn, we define

Vs = Vs−1(1) ⊗ . . .⊗Vs−1(n).

For any t, s ∈ Sn, we define an isomorphism Pt from Vs to Vst by

Pt(v1 ⊗ . . .⊗ vn) = vt−1(1) ⊗ . . .⊗ vt−1(n).

In fact, the definitions of Πt and Pt coincide. We use the notation Πt when the tensor
products of algebras are considered and Pt for the tensor products of vector spaces.

When Ai = End(Vi), we have the relation

Πt(Mi1...ik) = PtMi1...ik(Pt)−1 (B.2)

which implies the equation

PtMi1...ik = Mt(i1)...t(ik)Pt. (B.3)

If t is a transposition (ij) we write Πij and Pij instead of Π(ij) and P(ij) respectively.
If n = 2 we denote Π = Π12 and P = P12.

Let ϕ1 : A1 → B1 and ϕ2 : A2 → B2 be homomorphisms of algebras. One can show
that

Π ◦ (ϕ1 ⊗ ϕ2) = (ϕ2 ⊗ ϕ1) ◦Π, (B.4)
where Π ∈ Hom(B1 ⊗ B2, B2 ⊗ B1) at the left hand side of the equation and Π ∈
Hom(A1 ⊗ A2, A2 ⊗ A1) at the right hand side.
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APPENDIX C. QUASITRIANGULAR HOPF ALGEBRAS

Let A be a Hopf algebra with comultiplication ∆. One can show that A is also a Hopf
algebra with comultiplication

∆op = Π ◦∆. (C.1)
The Hopf algebra A is said to be almost cocommutative if there exists an invertible ele-
mentR ∈ A⊗ A such that

∆op(a) = R∆(a)R−1 (C.2)
for all a ∈ A. An almost cocommutative Hopf algebra A is called quasitriangular if

(∆⊗ id)(R) = R13R23, (C.3)

(id⊗∆)(R) = R13R12. (C.4)

In this case the elementR is called the universal R-matrix.
Write R in the form R = ∑i ai ⊗ bi. Multiplying both sides of equation (C.3) from

the left byR12, we obtain

R12R13R23 = R12(∆⊗ id)(R) = ∑
i
R∆(ai)⊗ bi

=
(C.2)

∑
i

∆op(ai)R⊗ bi =
(
∑

i
∆op(ai)⊗ bi

)
(R⊗ 1) = (∆op ⊗ id)(R)R12.

Applying now the mapping Π12 to both sides of the same equation, we come to the
relation

(∆op ⊗ id)(R) = R23R13.
Hence, we see that the universal R-matrix satisfies the Yang-Baxter equation

R12R13R23 = R23R13R12. (C.5)

APPENDIX D. Z-GRADED HOPF ALGEBRAS

If a Hopf algebra A is represented as a direct sum of linear subspaces

A =
⊕
n∈Z

An,

where
An Am ⊂ An+m

and
∆(An) ⊂

⊕
m∈Z

An−m ⊗ Am,

one says that A is Z-graded. Note that A0 is a subalgebra of A.
Any element a of a Z-graded Hopf algebra A can be uniquely represented as a sum

a = ∑
n∈Z

an

with an ∈ An. Given ν ∈ C×, define a mapping Φν : A→ A by the equation

Φν(a) = ∑
n∈Z

νnan. (D.1)

It is clear that a ∈ An if and only if Φν(a) = νna. It is also not difficult to verify that

Φν1ν2 = Φν1 ◦Φν2 . (D.2)
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Any Z-gradation of a Hopf algebra A induces a Z-gradation of the Hopf algebra
A⊗ A, for which

(A⊗ A)n =
⊕
m∈Z

An−m ⊗ Am =
⊕
m∈Z

Am ⊗ An−m.

Here the role of the automorphism Φν is played by the automorphism Φν ⊗Φν.

APPENDIX E. TRACES ON ALGEBRAS

Recall that the usual trace of a matrix M = (Mab) ∈ Matn(C) is defined as

tr(M) = ∑
a

Maa.

The basic property of the trace is its cyclicity

tr(MN) = tr(NM)

for any two matrices M, N ∈ Matn(C). Note also that for any two matrices M ∈
Matn(C) and N ∈ Matm(C) we have

tr(M⊗ N) = tr(M) tr(N). (E.1)

Let V be a finite-dimensional vector space, {ea} a basis of V, and {Eab} the corre-
sponding basis of End(V). The trace of an element M = ∑a,b EabMab of End(V) can be
defined as

tr(M) = ∑
a

Maa. (E.2)

It can be easily shown that tr(M) does not depend on the choice of a basis. Hence, the
trace of M coincides with the standard trace of its matrix with respect to any basis of
V. We often denote this trace as trV Here, the basic property of the trace holds, namely,

trV(MN) = trV(NM)

for all M, N ∈ End(V). If U is another finite-dimensional vector space, then

trV⊗U(M⊗ N) = trV(M)trU(N)

for all M ∈ End(V) and N ∈ End(U).
More generally, a trace on an algebra A is a linear mapping tr from A to C, which

satisfies the equation
tr(ab) = tr(ba) (E.3)

for all a, b ∈ A.
Multiplying a trace by a complex number we again obtain a trace. Up to this free-

dom the trace on End(V), where V is a finite-dimensional vector space of dimension
n given by (E.2), is unique. Indeed, assume that tr is a trace on End(V). Relation (A.1)
gives

EacEcb = Eab,
therefore,

trV(EacEcb) =
(E.3)

trV(EcbEac) =
(A.1)

δabtrV(Ecc) = trV(Eab).

The last equation and the evident identity

idV = ∑
c

Ecc

give
n trV(Eab) = δab trV(idV),

and we obtain the trace defined by (E.2) if we assume that tr(idV) = n.
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Let trA and trB be traces on algebras A and B respectively. Then trA⊗B = trA ⊗ trB
is a trace on A⊗ B and we have

trA⊗B(a⊗ b) = trA(a)trB(b) (E.4)

for any a ∈ A and b ∈ B. One can also consider the partial traces trA ⊗ id and id⊗ trB.
The basic property of trace does not hold here, however,

(trA ⊗ id)((a⊗ 1)c) = (trA ⊗ id)(c(a⊗ 1)) (E.5)

for any a ∈ A and c ∈ A⊗ B, and

(id⊗ trB)((1⊗ b)c) = (id⊗ trB)(c(1⊗ b))

for any b ∈ B and c ∈ A⊗ B.
If ϕ is a homomorphism from an algebra A to an algebra B and trB is a trace on B,

then
trA = trB ◦ ϕ

is a trace on A. In particular, if ϕ is a representation of A in a finite-dimensional vector
space V, then the mapping trV ◦ ϕ is a trace on A. Note that there are traces on algebras
which cannot be obtained in this way.

In the case where V is an infinite-dimensional vector space, the trace is not defined
for all elements of End(V). It particular, it is not defined for the identity mapping.
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