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SINGULARITIES OF ALGEBRAIC SURFACES 

AND CHARACTERISTIC NUMBERS 

F. Hirzebruch 

2 ABSTRACT. The Chern numbers c 1 and c 2 of an algebraic 
surface of general type satisfy the Miyaoka-Yau inequality 
c~ $ 3c2 . If the ~urface contains rational or elliptic cur­
ves, tnen 3c 2 - c 1 is posi:tive and one can give an esti­
mate from below using the rational and elliptic curves. 
This has many geometric applications. I report on work of 
R. Kobayashi and Y. Miyaoka and use the Bonn dissertation 
of Th. Hofer and the Bonn Diplomarbeit of K. Ivinskis. 

1. For every compact smooth algebraic surface X the Chern numbers 

c 2 and c~ are defined. The Chern number c 2 equals the Euler 
2 number e of X, whereas c
1 

is the selfintersection number of a 

canonical divisor of X. If X is a surface of general type, then 

c
2 

> 0 and 

The famous inequality c~ ~ 3c 2 has a long history. It was proved 

by Y. Miyaoka [15] using ideas due to F.A. Bogomolov (compare A. Van 

de Ven [20J). It was proved independently by differential-geometric 

methods for the case that the canonical bundle of X is ample: 

According to T. Aubin and S.T. Yau there exists a unique Einstein­

Kahler metric on X and by a result of H. Guggenheimer (1952) the 
2 difference 3c2 - c
1 

is then given in terms of this metric by an in-

tegral over X with non-negative integrand which measures the de­

viation 
2 < 3 c 1 - c 2 

implies 

from constant holomorphic sectional curvature. Therefore 

(Yau [22]). Furthermore (Yau [22]) the equation 

that the universal cover of X is the ball 

1 

2 
c 1 = 3c2 
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B ; {Z E 0:
2 

: I Z1 12 + 1 Z2 12 < 1} . This important conclusion was 

proved by Yau and Miyaoka also in the case that the canonical 

bundle is not necessarily ample (see [16]). 

We refer to the Bourbaki lecture of J.-P. Bourguignon [1] for 

further references to the literature. 

2. As explained above I c~:;; 3c
2 

for a surface X of general 

type, and c~ = 3c2 if and only if the universal cover of X is 

the ball B. (The "if" part is the "proportionality" of [7].) If 

X contains rational or elliptic curves, then, clearly, the univer-
2 sal cover of X cannot be the ball and hence c
1 

< 3c
2 

• Therefore, 

to a configuration E of rational or elliptic curves a positive 

number m{E) should be assigned such that 

( 1 ) 

If E is a disjoint union of finitely many smooth elliptic curves 

C. on X, then according to F. Sakai (19] 
) 

(2 ) 

The selfintersection numbers C~ are negative, since X is a sur-
) 

face of general type. Y. Miyaoka [17] has studied numbers m{E) 

for configurations of rational curves. I discussed such questions 

with him during one of his visits in Bonn. 

Let us consider an example. Suppose S1""'Sr 

smooth-rational curves, where S. intersects S. 1 
) J+ 

in exactly one pOint (j=1, •.. ,r-1) and S.S. = 0 
1 J 

We assume - S . S. = b. ;;: 2 • The dual graph of this 
) J J 

(3) •• --__ ----00·' . 

- b 1 
-b 2 

For the continued fractions 

• 
-b r 

n 
qt 

is a chain of 

transversally 

for I j-i I > 1 

chain is 
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we have 

O<q<n O<q'<n qq' == 1 (mod n) 

In fact, this chain of rational curves is the resolution of the 

quotient singularity ~2/~n where the group 

~n ::; {a. E (c 
n a. ::; 1} 

3 

acts by a.(z1,z2) ::; (a.z 1 ,a.q z 2 ) . Compare [6]. For the chain (3) of 

rational curves we can define the local Euler number e loc which 

equals r + 1 • It is the Euler number of r twodimensional spheres 

S"""Sr where a point on Sj is identified with a point of 

S. 1 for j::; 1, ••• , r - 1 . We also have a local canonical divisor 
J+ r 

Kloc ::; r c.S. where the rational numbers cJ.' are defined by the 
i=1 J. J. 

linear equations 

r 
Ic.S.s. =b.-2 

i=1 J. J. J ) 

corresponding to the adjunction formula. 

The intersection matrix 

minant (-1)rn . 

S.S. 
J. J 

is negative-definite of deter-

Let E be the chain (3) • We define 

2 m (E) = 3 e loc - Kloc 
3 - -n 

and expect an inequality (1). Why? Let XI be the surface obtained 

by collapsing E to a paint. It has one singular point. 

Suppose (as a "Gedankenexperiment") that there is a smooth sur­

face Y with an action of ~n which is free outside one point p 

such that Y/~ = XI • Then n 

2 2 
3c

2 
(Y) - c

1 
(Y) = n (3c

2 
(X) - c

1 
(X) - m(E}) 

and (1) follows for X because Y is smooth of general type and 

satisfies the Miyaoka-Yau inequality. This is no proof at all, but 

motivates the definition of m(E) and indicate~ how to look for a 

proof. 
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In his recent Bonn Diplomarbeit K. Ivinskis [11] has given a 

nice formula for m(E) for a chain (3) • We have 

( 4) 
r , 1 

m{E) ::: 1 + r (b.+1) + q+q -
. 1 3. n 
J.= 

Similar formulas can be written down for all quotient singularities, 

i.e. for all configurations of rational curves arising from the re­

solution of quotient singularities {compare (2]). This becomes 

especially simple for the rational double points (see 8. below), 

i.e. for the configurations Ar,Dr,E6,E7,ES . Here all curves have 

selfintersection number -2 which implies K
loc 

= 0 and 

m(E) = 3 e loc - ~ where G is the finite group acting on {£2 

(and freely on 0:: 2 - {a}} such that 0.:
2 /G gives the quotient singu­

larity. For example, A is the configuration (3) with b. = 2 
r 3. 

and 

(5 ) 

which agrees with (4) since n = r+1, q = q' = r . For ES we 

have e· ::: 9 
loc and 

3 1 
::: 27 - 120 ;;; 27 - 40 

3. THEOREM. Let X be a smooth surface of general type and 

E1 , ... ,Ek configurations (disjoint to each other) of rational cur­

ves (arising from quotient singularities) and c
1

, ••. ,Cp smooth 

elliptic curves (disjoint to each other and disjoint to the E. ). 
2 3. 

Let c 1 ,c2 be the Chern numbers of X. Then 

(6) 

This is a part of a theorem of Miyaoka [171. It includes the older 

result of F. Sakai on elliptic curves. The inequality (6) is 

already true if the Kodaira dimension of X is non-negative • 

4. R. Kobayashi ([13],[14]) has developped a tbeory of Einstein­

Kahler metrics for V-manifolds (surfaces with quotient singula­

lities) which are not necessarily cOlU./?lete (they are surfaces with 

elliptic curves removed). S.T. Yau told met:.hat he also studied 
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these problems. R. Kobayashi was able to prove the inequality (6) 

and to prove a theorem for the case that equality holds in (6). He 

had to introduce some additional assumptions concerning (-1)-curves 

and (-2)-curves, i.e., smooth rational curves with selfintersection 

number -1 or -2 respectively. We simplify by making these 

assumptions unnecessarily strong. 

THEOREM. Let X,Ei,C j be as in the above theorem. Suppose that 

X is minimal, i.e. does not contain (-1)-curves and that each 

(-2)-curve is contained in one configuration Ei . If equality 

holds in (6), then there exists a discrete subgroup r of the 

group of automorphisms of the ball, such that X, -UC j = f\B . Here 

Xl is the singular surface obtained from X by blowing down the 

Ei . The group r has only isolated points in B with non-trivial 

isotropy group. They give the quotient singularities of XI • The 

9roup r has p "cuspslJ • If one compactifies r\B to f\B £¥. 
addin9 p pOints at infinity for the p cusps, one gets p singu­

lar points which are resolved by the p elliptic curves C .• Thus 
_J 

X is the smooth model (minimal desin9ularization) of f\B. 

J.C. Hemperly [5] was the first to study the singularities at 

the cusps of surfaces r\B. An extensive study of the surfaces 

r\B if r is a Picard modular group was carried out in many 

papers by R.-P. Holzapfel. 

5. AN EXAMPLE. Consider the following surface Y in P4(~) with 

homogeneous coordinates xO,x1 , ••• ,x4 • 

4 5 r x. = 0 
i=O ~ 

4 15 
L xi = 0 

i=O 

It covers the cubic surface S 

4 
1: u. = 0 

. 0 ~ 
~= 

I 

4 3 L u. = 0 
i=O .l 

which is the Clebsch diagonal surface (Clebsch 1871). It was stud.led 

in [8] in relation to Hilbert modular surfaces. The covering map 
5 4 Y -> S is given by U i = Xi and has degree 5 • The cubic sur-

face S is smooth. The hyperplane section Ui = 0 is a cubiC curve 

consisting of 3 lines intersecting each other in 3 points. This 

determines 15 distinguished pOints of S (the pOint 0:1:-1:1:-1 
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3 and all permutations) over which we have 15· 5 = 1875 pOints of 

Y which are singular, in fact they are A
4
-singularities . The 

three hyperplane sections u
1 

::: 0, u
2 

::: 0, u
3 

= 0 intersect in 

exactly one point. We get 10 distinguished paints «0:0:0:1:-1) 

and permutations). They are the 10 Eckardt paints (points of inter­

section of three lines on the surface). Over each Eckardt point we 

have 5 pOints of Y. They are singular. Each of these 50 singula­

rities is a cone over a Fermat curve of degree 5 (genus 6). We now 

pass to the smooth model X of Y by resolving all singularities 

in the minimal way and want to calculate the Chern numbers of X. 

For a complete intersection Xo of two hypersurfaces of degrees 5 

and 15 in P4(~) in general position the total Chern class is 

given by 

2 -1 -1 1 + c
1 

(X
O

) + c
2

(X
O

) ::: (1+5g+10g ) (1+5g) (1+15g) 

where is the cohomology class of a hyperplane section. 

This gives 

2 -1 1 + c
1 

(X
O

) + c
2

(X
O

) ::: (1+10g ) (1+15g) 

::: -15g , c 2 (X O) ::: 235g 2 

::: 75 • 225 , c
2 

(X
O

) ::: 75 • 235 

The A4-singularities when resolved do not influence these values 

(cf. Brieskorn's theory on rational double points). Each of the 

remaining 50 singularities is resolved in a Fermat curve C of 

degree 5 with Euler number -10 and selfintersection number -5 . 

The Milnor fibre of such a singularity has Euler number 

1 + 4 • 4 • 4 ::: 65. Therefore, each singularity reduces the Euler num­

ber by 65 + 10 = 75 • Each singularity reduces c~ (X
O

) by _a2 
C

2 

where a is determined by the adjunction formula 

aCe + c2 = -e (C) ::: 10 

Thus a = -3 and 
2 2 

-a C = 45 • Hence, 

C~(X) ::: 16875 - 50· 45 ::: 14625 

c
2 

(X) = 17625 - 50 • 75 ::: 13875 
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There are 1875 A4-configurations of (-2)-curves on X . We 

have (5) 

and 

3 
::: 15 -"5 

3c2 (X) - c~ (X) = 27000 ::: 1875 • 14~ 5 

7 

Hence, the equality sign holds in (6). It follows from Kobaya­

shi's theorem in 4. that Y with the 50 Fermat curve singularities 

resolved equals riB where r acts on the ball with isolated 

fixed points with isotropy groups of order 5. 

The surface Y was originally constructed in a different 

way - in relation to the icosahedral line arrangement - by Th. 

Hofer in his Bonn dissertation [10]. 

6. LINE ARRANGEMENTS. We consider the complex projective plane 

P2(~) with homogeneous coordinates ZO,Z1,2 2 . An arrangement of 

k lines is a set of k distinct lines in P2(~) . They can be 

given by linear forms 5(,1' ... , tk in zo' z1' z2 • Let tr (r ~ 2) be 

the number of r-fold pOints, i.e., the number of points lying on 

exactly r lines of the arrangement. Then we have 

k(k-1) ::: 
2 

t 
r 

r (r-1 ) 
2 

For an arrangement 5(,1 ::: 0, ••• , 5(,k ::: 0 (k ~ 3, tk = 0) of lines we 

consider the function field 

which is an abelian extension (Kumwer extension) of the function 

field ~(z1/z0,Z2/z0) 
k-1 of P2(~) of degree 2 and Galois group 

k-1 (Z/2Z) • It determines an algebraic surface X with normal sin-

gularities which ramifies over the plane with the arrangement as 

locus of ramification. If the point p E P2 (~) lies on r lines of 

the arrangement (r ~ 0) t then there are 2
k - 1

- r points of X over 

p which are an orbit of the Galois group. For r ~ 3 these points 

are singular. The minimal resolution of such a point replaces the 
r-2 point by a smooth curve C of Euler number 2 (4-r) and 
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self intersection number r-2 
- 2 • We obtain a smooth surface Y 

associated to the arrangement. 

Line arrangements and related algebraic surfaces were studied 

in [9]. Many more investigations were carried out in Th. Hofer's 

thesis [10] where he emphasized the relation to the work of P. 

Deligne and G.D. Mostow [3J. In this lecture we consider only some 

examples whose discussion we continue now. 

As shown in (9) p. 132 we have 

(7) 3c2 (Y) - c~ (Y) = 2k - 3 (t2+3t3+t
4
-k- ~5 (2r-9) t r ) 

r~ 

The surface Y contains t3· 2k - 4 rational curves Ei of self­

intersection number -2 . They lie over the 3-fold points of the 

arrangement. The surface Y contains t . 2k - 5 elliptic curves 
4 

C .. They 
J 9 

m(E i ) = 2" 
lie over the 4-fold pOints of the arrangement. We have 

(see (5)) and C~ = -4 . Therefore, 
J 

(8 ) ~ m (E.) - r (-C~) 
]. J 

= 2k - 3 (t + 1. t - k -
2 4 3 I (2r-9)t) 

~5 r r_ 

It was shown in [9] that Y is of general type if k ~ 7 and 

tk = t k - 1 = t k - 2 = t k - 3 = 0 , it is of non-negative Kodaira dimen­

sion if k;;: 6 and tk = t k - 1 = t k - 2 = 0 . In this talk, for sim­

plicity, we always assumed general type. However~.Miyaoka's inequa­

lity (6) is true if the surface has non-negative Kodaira dimension. 

From (6) and (8) we get 

THEOREM. For an arransement of k lines in the comE lex Erojective 

Elane we have 

(9) t2 
3 ;;: k+ r (2r-9)t + 4" t3 

>5 r r_ 

12rovided tk = t k - 1 = t k - 2 = 0 . 

The inequality (9) is an improvement of an inequality mentioned in 

[91 p. 140. It does not seem to be known to experts in the theory 

of arrangements (see the literature quoted in (9]). There is an 

arrangement of 8 lines with t2 = 10, t3 = 1, t6 = 1 for which (9 

is wrong. 

We mention some arrangements for which (9) is sharp and for 
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which the surface Y is related to the ball by the theorem in 4. 

a) the nine inflection pOints of a smooth cubic surface deter­

mine the 12 lines of the Hesse arrangement with k = 12, t2 = 12, 

t4 = 9, tr = 0 otherwise 

b) the nine inflection points define 9 lines in the dual projec­

tive plane. This gives an arrangement with k = 9, t3 = 12, tr = 0 

otherwi.se. 

c) the simple group of order 168 operates on the complex projec­

tive plane (F. Klein [12)p. 101). It has 21 involutions. Each invo­

lution leaves a line pointwise fixed. We get an arrangement with 

k = 21, t3 = 24, t4 = 21 and tr = 0 otherwise. 

m m m m m m 
d) (zo - z1) (z1 - z2) (z2 - zO) = 0 m ~ 4 , defines 3 m lines 

with t2 = 0, t3 = m2, tm = 3 and tr = 0 otherwise. We have the 

equality sign in (9) if and only if m = 4 or m = 6 . 

7. DOUBLE POINTS ON HYPERSURFACES. Let Fd be a smooth hypersur­

face of degree d in P3(~) . It is easy to calculate 

( 1 0) 

Now we admit that Fd has ordinary nodes (double points) and is 

otherwise smooth. These nodes are points in whose neighborhood Fd 
222 can be given by u + v + w = 0 with respect to a local analytic 

coordinate system of P3(~) • If we pass to the minimal resolution 

Fd of Fd , then each node is replaced by a smooth rational curve 

of selfintersection number -2. By Brieskorn's theory Fd belongs 

to the same "family" as Fd and (10) holds for Ed . The surface 

F d is of general type for d ~ 5 (it is a K3-surface, Kodaira di­

mension 0, for d = 4). Let ~(d) be the maximum number of nodes 

on a hypersurface of degree d. For d ~ 4 we get by (5), (6) and 

(10) 

( 11 ) 4 2 
~ (d) ~ 9' d (d - 1) 

Miyqoka [17] discusses this inequality in relation to many classi­

cal and more recent results. (For example ~(5) = 31 by A. 

Beauville.) 

V.I. Arnold drew my attention to other results which are not 
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v 
mentioned by Miyaoka. See A. Varchenko (211. S.V. Cmutov (cf.(21]) 

used the Ceby~ev polynomials to define surfaces Fd with many 

nodes: The Ceby~ev polynomial Td(X) is defined by 

Td (cos 0.) = cos (do.) 

We have 

The derivative Td(X) 

maxima and minima of 

has only simple zeros, they give the d - 1 

Td(X) . The maxima all have the value 1, the 

minima the value -1 . We use affine coordinates for 
v 

and consider the Cmutov surface 

which has no singularities on the infinite plane of P3(~) . A node 
v 

of the Cmutov surface has coordinates x 1 ,x2 ,x
3 

with Td(x i ) = 0 , 

where among x 1 ,x2 ,x3 we must have two numbers for which Td has 

a minimum. If c(d) is the number of nodes, then 

c (d) = 3 • (d;1)3 for dodd 

( 12) 

c (d) = 3 • (~) 
2 
(~- 1) for d even 

( 13) 

By (11) and ( 1 2 ) 

~ ~ 1 im J.t (d) / d 
3 

d+co 

4 
~ 9" 

This seems to be all what is know about lim l1(d)/d3 . 

8. SINGULARITIES ON 

even degree 2k in 

plane branched along 

(14) 

PLANAR CURVES. 

P2(~) . Let Xc 
C . Then 

d+co 

Let C be a smooth curve of 

be the 2-fold cover of the 

Now we admit that C has simole sinaulari'l-iP!'L 2). ~inrr111;:tr 'nl"'dnt- ol", 
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simple if, with respect to a local analytic coordinate system, the 

curve can be given as follows 

Ak (k i;: 1) 

Dk (k '= 4) 

E6 

E7 

Ea 

2 k+1 
x + y = 0 

y(x2 + yk-2) = 0 

3 4 x + Y = 0 

x (x2 + y3) = 0 

3 5 
x + y = 0 

Then Xc has singularities (rational double points) which blow 

up to configurations of (-2) -curves, namely to the configurations 

Ak,Dk,E6,E7,Ea ' on the smooth model XC. For each simple singu­

larity we define m(p) = m(E) if p is blown up to the configu­

ration E. We can apply (6) using that Xc belongs to the same 

family as Xc by Brieskorn's theory and also satisfies (14). 

THEOREM. Let C be a curve of degree 2k having only simple 

singularities (k:: 3) • Then 

( 15) 1 m(p) Sk(10k-6). 
P E sing (C) 

If d is the number of ordinary double pOints (A
1

) and s the 

number of ordinary cusps (A
2

) then by (15) and (5) 

( 1 6) ~ d + 8 s $ k ( 1 Ok - 6) 

The paper of Ivinski's [11] contains many examples and references 

to the literature, in particular one finds a result of Varchenko 

[21}p. 164, related to (16). If s(n) is the maximal number of 

cusps on a curve of degree n (with simple singularities only), 

then by (16) 

lim s (n) $ 5 
2 16 not-co n 

Varchenko (loc. cit.) obtains 

lim S(~) ~ 
not-co n 

23 
TI 

Examples show that this limes superior is not less than 1 
4· 
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The estimate 

seems to be all what is known about it. Since a cusp reduce.s the 

class n (n - 1) of a smooth curve of degree n by 3, it is known 

classically that 

lim s (n) ~ 1 --2- "3 
n+oo n 

9. ARRANGEMENTS OF CONICS. Let C
1
""'Ck be distinct smooth 

conics in the complex projective plane (k;;: 4) . We assume that the 

curve C = c
1
u ... U Ck of degree 2k has only singularities of type 

A1 or A3 ' which means that a point pEe lies on one or two 

conics, i'n the latter case p is a transversal intersection of the 

two conics or the two conics touch each other in p with intersec­

tion multiplicity 2 (tacnode). Let d be the number of transversal 

intersections and t the number of tacnodes. Then obviously, 

d + 2t = 2k (k - 1) 

whereas by (15) and (5) 

~ d +.i? t ~ k ( 10k - 6) 
2 4 

Eliminating d gives 

For k = 4,5,6 we get t ~ 12,17,24 . As U. Persson remarked there 

are 4 conics with t = 12 (and d = 0), there is a (projectively 

unique) arrangement of 5 conics with t = 17 given by I. Naruki 

[18] p. 1144, but the maximal t for k ~ 6 is not known. There is 

a beautiful .arrange.ment of 12 conics (Gerbaldi 1882; see Fricke­

Klein [4]p. 648-649). The alternating group A6 operates on the 

complex projective plane (Valentiner and Wiman). There are six 

canonical subgroups of A6 isomorphic to AS • They are icosahedral 

groups. Each leaves a conic fixed. Under an outer automorphism of 
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A6 we get another system of six groups isomorphic to A5 and 

again six conics. Each conic of the first system of six conics 

touches each conic of the second system in two pOints. We have 

k = 12 and t = 72 , the above estimate gives t::; 80 . 

A similar (classical) example with k = 14 and t = 98 can 

be obtained from the action of the simple group G168 on P2(~) , 

see F. Klein [12] p. 106. There are two systems of seven subgroups 
of G168 isomorphio to the octahedral group S4 • Each subgroup 
leaves a conic invariant. Eaoh conic of one system touches each 
concic of the other system in 2 pOints. Of the 98 tacnodes, 56 lie 

on the invariant curve f of degree 4, they are the 56 touching 

points of the 28 double tangents of f I and 42 lie on the invari­
ant curve of degree 6 . 

For k = 14 , the above estimate gives t::; 105 . I do not 
know whether lim t(k) is positive (t(k) = maximal number of 

k+oo k 2 

tacnodes for an arrangement of k conics}. 
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