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Abstract

We address the question of when cluster-tilted algebras of Dynkin type E are derived equivalent
and as main result obtain a complete derived equivalence classification. It turns out that two cluster-
tilted algebras of type E are derived equivalent if and only if their Cartan matrices represent equivalent
bilinear forms over the integers which in turn happens if and only if the two algebras are connected
by a sequence of “good” mutations. For type Es all details are given in the paper, for types E7 and
FEs we present the results in a concise form from which our findings should easily be verifiable.

1 Introduction

Cluster algebras have been introduced by Fomin and Zelevinsky around 2000 and have enjoyed a remark-
able success story in recent years. They attractively link various areas of mathematics, like combinatorics,
algebraic Lie theory, representation theory, algebraic geometry and integrable systems and have applica-
tions to mathematical physics. In an attempt to ’categorify’ cluster algebras (without coefficients), cluster
categories have been introduced by Buan, Marsh, Reiten, Reineke, Todorov [5]. More precisely, these are
orbit categories of the form Co = DY(KQ)/7~1[1] where Q is a quiver without oriented cycles, D*(K Q)
is the bounded derived category of the path algebra K@ (over an algebraically closed field K) and 7 and
[1] are the Auslander-Reiten translation and shift functor on D®(KQ), respectively. Remarkably, these
cluster categories are again triangulated categories by a result of Keller [12].

Quivers of Dynkin types ADFE play a special role in the theory of cluster algebras since they parametrize
cluster-finite cluster algebras, by a seminal result of Fomin and Zelevinsky [9]. The corresponding cluster
categories Cg where @ is a Dynkin quiver are triangulated categories with finitely many indecomposable
objects and their structure is well understood by work of Amiot [1].

Important objects in cluster categories are the cluster-tilting objects. A cluster-tilted algebra of type
Q is by definition the endomorphism algebra of a cluster-tilting object in the cluster category Cq. The
corresponding cluster-tilted algebras of Dynkin types A, D and E are of finite representation type and
they can be constructed explicitly by quivers and relations. Namely, the quivers of the cluster-tilted
algebras of Dynkin type @) are precisely the ones obtained from ) by performing finitely many quiver
mutations. Moreover, in this case the quiver of a cluster-tilted algebra uniquely determines the relations
[7]; we shall review the corresponding algorithm in Section 2 below.

In this paper we address the question of when two cluster-tilted algebras of Dynkin type Eg, E7 or
Es have equivalent derived categories. The analogous question has been settled for cluster-tilted algebras
of type A,, by Buan and Vatne [8] (see also work of Murphy on the more general case of m-cluster tilted
algebras of type A, [17]) and by the first author [3] for type A. Note that the cluster-tilted algebras in
these cases are gentle algebras [2]. It turns out that two cluster-tilted algebras of type A,, are derived
equivalent if and only if their quivers have the same number of 3-cycles. For distinguishing such algebras
up to derived equivalence one uses the determinants of the Cartan matrices; these have been determined
explicitly for arbitrary gentle algebras by the second author in [11].

1This work has been carried out in the framework of the priority program SPP 1388 Darstellungstheorie of the Deutsche
Forschungsgemeinschaft (DFG). We gratefully acknowledge financial support through the grant HO 1880/4-1.



A derived equivalence classification of cluster-tilted algebras of other Dynkin types D and E has been
open. In this paper we settle this question for type F, i.e. we obtain a complete derived equivalence
classification for cluster-tilted algebras of types Fg, E7 and Fs.

There are two natural approaches to address derived equivalence classification problems of a given
collection of algebras arising from some combinatorial data. The top-to-bottom approach is to divide
these algebras into equivalence classes according to some invariants of derived equivalence, so that algebras
belonging to different classes are not derived equivalent. The bottom-to-top approach is to systematically
construct, based on the combinatorial data, tilting complexes yielding derived equivalences between pairs
of these algebras and then to arrange these algebras into groups where any two algebras are related by a
sequence of such derived equivalences. To obtain a complete derived equivalence classification one has to
combine these approaches and hope that the two resulting partitions of the entire collection of algebras
coincide.

The invariant of derived equivalence we use in this paper is the integer equivalence class of the bilinear
form represented by the Cartan matrix of an algebra A. As this invariant is sometimes arithmetically
subtle to compute directly, we instead compute the determinant of the Cartan matrix C 4 and the char-
acteristic polynomial of its asymmetry matrix S4 = C ACZT, defined whenever C'4 is invertible over Q,
and encode them conveniently in a single polynomial that we call the polynomial associated with C 4.
This quantity is generally a weaker invariant of derived equivalence, but in our case it will turn out to
be enough for the classification. Note that unlike as in type A, the determinant itself is not sufficient for
distinguishing the algebras up to derived equivalence.

We stress that the asymmetry matrix and its characteristic polynomial are well defined whenever the
Cartan matrix is invertible over @, even without having any categorical meaning, as follows from [16,
Section 3.3]. In the special case when A has finite global dimension, the asymmetry matrix S, or better
minus its transpose —C;lcz, is related to the Coxeter transformation which does carry categorical
meaning, and its characteristic polynomial is known as the Coxeter polynomial of the algebra.

The tilting complexes we use are inspired by quiver mutations in the following sense. For a vertex,
we consider all the incoming arrows and build, based on this combinatorial data, a two-term complex of
projective modules, see also similar constructions in [15], [19]. We call a mutation at a vertex “good” if
the corresponding complex is a tilting complex and moreover its endomorphism algebra is the cluster-
tilted algebra of the mutated quiver. In other words, a “good” mutation produces a derived equivalence
between the corresponding cluster-tilted algebras. Of course, there are also “bad” mutations, for two
reasons: the complex might not be a tilting complex or even if it is, its endomorphism algebra might not
be a cluster-tilted algebra.

It turns out that for cluster-tilted algebras of type E the two approaches can be successfully combined
to give a complete derived equivalence classification. More precisely, our main result is the following.

Theorem 1.1. The following conditions are equivalent for two cluster-tilted algebras A and A’ of Dynkin
type E:

(a) A and A’ have the same associated polynomial;

(b) The Cartan matrices of A and A’ represent equivalent bilinear forms over Z;
(c) A and A’ are derived equivalent;

(d) A and A" are connected via a sequence of “good” mutations.

In addition to the above general statement we make the derived equivalence classification explicit by
providing complete lists of the algebras contained in each derived equivalence class (up to sink/source
equivalence).

Note that the implication (c¢) = (b) holds in general for any two (finite-dimensional) algebras A and
A’, and that the implication (b) = (a) holds whenever the associated polynomials are defined, i.e. when
the Cartan matrices are invertible over Q. Moreover, for cluster-tilted algebras the implication (d) = (c)
is evident from the definition.

We also note that since the cluster-tilted algebras we consider involve only zero- and commutativity-
relations, they can in fact be defined over any commutative ring K. The combinatorial nature of our
construction of tilting complexes via “good” mutations will then imply that such algebras corresponding



to quivers in the same class will be derived equivalent for any K. Therefore one may view the derived
equivalences arising from “good” mutations as “universal”, being independent on the auxiliary algebraic
data (specified by K).

Let us briefly describe the above main result in some more detail. For precise definitions of the cluster-
tilted algebras involved we refer to Sections 3 (type Eg), A/B (type E7), and C/D (type Es) below. In
the following tables we list the associated polynomials of the cluster-tilted algebras, and also the total
number of algebras in each derived equivalence class.

For type Eg the mutation class consists of 67 quivers. The corresponding cluster-tilted algebras turn
out to fall into six derived equivalence classes as follows.

Derived equivalence classes for type Fg

Associated polynomial # Associated polynomial #
26—+ -z +1 20 || 3(28 + 23 +1) 19
2(x® — 2t + 223 — 2% + 1) 16 || 4(2® + 2t + 2% +1) 7
2(x8 —22* + 423 — 222 +1) | 3| 4(@8+2° —2* +223 -2+ +1) | 2

For type E; the mutation class consists of 416 quivers. The derived equivalence classes of the cor-
responding cluster-tilted algebras are again characterized by the associated polynomials; there are 14
classes in total, given as follows.

Derived equivalence classes for type E7
Associated polynomial # Associated polynomial #
o' -2+t -3 41 64 || 4(x7 + a5 — 225 +22* — 223 + 222 —2 1) | 2
2(z" — 2® + 221 — 223 + 22 — 1) 32 || 42" +2° —at + 23 -2 - 1) 56
2007 — 2% + 2t — a3 + 2% - 1) 72 || 427 +2° — 22t + 223 — 22 — 1) 8
2(x" — 22° + 4a* — 423 + 222 — 1) 8 || 5(x7 + a2 —at +2° — 22 - 1) 17
3(x7 — 1) 124 || 6(z7 4+ 2% — a2t + 2% —z — 1) 11
4"+ a2 -2+t — ¥+ —x—1) | 16 || 6(2" + 25 — 2% —1)
42"+ 28 —2® -t + ¥+ a2 -2 1) 4| 82" +ab+a® —at +2% -2 -2 1) 1

For type Eg the mutation class consists of 1574 quivers. The corresponding cluster-tilted algebras
turn out to fall into 15 different derived equivalence classes which are characterized as follows.

Derived equivalence classes for type Eg

Associated polynomial # Associated polynomial #
8 —aT+ad -ttt -+ 1 128 || 4(2® 4+ 25 — 2® + 221 — 2% + 2% + 1) 221
2(x® — 28 + 225 — 221 4 223 — 22 + 1) 64 || 4(28 +2° —22° + 42t — 223 + 22+ 1) | 22
2(x® — 28 +2° + 23 — 2% + 1) 256 || 5(z® + 28 + 2t + 22 +1) 167
2(x® — 225 4+ 425 — 42t + 42% — 222 + 1) 16 || 6(2® + 2% +2° + 2% + 2% +1) 38
328 + 2t +1) 384 || 6(z® + 27 + 22t + 2+ 1) 118
42+ 27 — 2 +m5+z3—z2+m+1) 72 || 8(z8 + 227 +22* + 22+ 1) 4
428+ 2" — 2 + 22 — 22 + 2+ 1) 48 || 8(a® + 2" + 28 +22f + 22 + 2 + 1) 24
428 + 2" — 220 + 225 4+ 223 — 222 2+ 1) | 12

The paper is organized as follows. In Section 2 we collect some background material; in particular
we recall the notion of quiver mutation, describe the results of Buan, Marsh and Reiten on cluster-tilted
algebras of finite representation type, review the fundamental results on derived equivalences and then
discuss invariants of derived equivalence such as the equivalence class of the Euler form, in particular
leading to the determinant of the Cartan matrix and the characteristic polynomial of its asymmetry
matrix as derived invariants.

In Section 3 we discuss derived equivalences for cluster-tilted algebras of Dynkin type Eg in detail.
The quivers of these algebras are given by those in the mutation class of type Ejg; this mutation class
can easily be reproduced by the reader using Keller’s software [13]. We first give in Section 3 a list of



the derived equivalence classes, sorted by the associated polynomial which is the crucial invariant for our
purposes. We also give the Cartan matrix of one representative in each class which we shall need later
in our computations.

As main result of this section we prove the main Theorem 1.1 for type Fg. To this end we have to
find explicit tilting complexes for the cluster-tilted algebras of type Eg and we have to determine their
endomorphism rings. The necessary calculations are carried out in detail in Sections 3.2 - 3.4. The
tilting complexes we use are closely related to quiver mutations at a single vertex, and we explain this
construction in Section 3.1.

For types E7 and Eg we have followed a different strategy of presentation since the number of algebras
involved becomes very large. We first list the algebras but without drawing the quivers; again, the quivers
can be found using Keller’s software. We then present the results on derived equivalences for cluster-
tilted algebras of types E7 and Eg in a very concise form which is explained at the beginning of the
respective sections. For each group of algebras with the same associated polynomial we then provide
tilting complexes and list their endomorphism rings, but without giving any details on the calculations.
However, we hope that we have provided enough information so that interested readers should easily be
able to check our findings.
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2 Preliminaries

2.1 Quiver mutations

A quiver is a finite directed graph @, consisting of a finite set of vertices Qo and a finite set of arrows
(1 between them. A fundamental concept in the theory of Fomin and Zelevinsky’s cluster algebras is
mutation; for quivers this takes the following shape.

Definition 2.1. Let @) be a quiver without loops and oriented 2-cycles. For vertices 4, j, let a;; denote
the number of arrows from 4 to j, where a;; < 0 means that there are —a;; arrows from j to i.

The mutation of @ at the vertex k yields a new quiver u(Q) obtained from @ by the following
procedure:

1. Add a new vertex k*.

2. For all vertices i # j, different from k, such that a;; > 0, set the number of arrows a;j from ¢ to j
in pk(Q) as follows:
if a; > 0 and ax; > 0, then a’ij = ij + GikGkj;
if a;;, <0 and ag; <0, then agj = Qi — QikOkyj-

3. For any vertex i, replace all arrows from 4 to k with arrows from k* to ¢, and replace all arrows
from k to ¢ with arrows from 7 to k*.

4. Remove the vertex k.

Two quivers are called mutation equivalent if one can be obtained from the other by a finite sequence
of mutations. The mutation class of a quiver @ is the class of all quivers mutation equivalent to Q). It is
known from the seminal results of Fomin and Zelevinsky [9] that the mutation class of a Dynkin quiver
Q is finite.



2.2 Cluster-tilted algebras of finite representation type

Cluster-tilted algebras arise as endomorphism algebras of cluster-tilting objects in a cluster category,
see [6]. For the special case of Dynkin quivers the cluster-tilted algebras are known to be of finite
representation type. Moreover, by a result of Buan, Marsh and Reiten [7] they can be described as
quivers with relations by a simple combinatorial recipe to be recalled below. As a consequence, a cluster-
tilted algebra of Dynkin type is uniquely determined by its quiver.

Let @ be a quiver and throughout this paper let K be an algebraically closed field. We can form the
path algebra K@, where the basis of K@ is given by all paths in @, including trivial paths e; of length
zero at each vertex i of (). Multiplication in K is defined by concatenation of paths. Our convention is
to compose paths from right to left. For any path « in @ let s(a) denote its start vertex and ¢(«) its end
vertex. Then the product of two paths « and § is defined to be the concatenated path of if s(a) = t(5).
The unit element of K@ is the sum of all trivial paths, i.e., Ixg = > e;.

1€Qo

We recall some background from [7]. An oriented cycle in a quiver is called full if it does not contain
any repeated vertices and if the subquiver generated by the cycle contains no other arrows. If there is
an arrow ¢ — j in a quiver @ then a path from j to i is called shortest path if the induced subquiver is a
full cycle.

We now describe cluster-tilted algebras of Dynkin type by a quiver with relations, i.e. in the form
KQ/I where @ is a finite quiver and I is some admissible ideal in the path algebra K@. Recall that the
quivers associated with cluster-tilted algebras of Dynkin type are precisely the quivers in the mutation
class of the corresponding Dynkin quiver.

Relations are linear combinations kjwy + - - - + kpwyy, of paths w; in @, all starting in the same vertex
and ending in the same vertex, and with each k; non-zero in K. If m = 1, we call the relation a zero-
relation. If m = 2 and k1 = 1, ko = —1, and we call it a commutativity-relation (and say that the
paths w; and we commute). It will turn out that for cluster-tilted algebras of Dynkin type the ideal I
can be generated by only using zero-relations and commutativity-relations. Finally, a relation p is called
manimal if whenever p = %" 3; o p; o ;, where p; is a relation for every 4, then there is an index j such
that both 3; and +; are scalars.

Proposition 2.2 (Buan, Marsh and Reiten [7]). A cluster-tilted algebra A of finite representation type
is of the form A = KQ/I, where Q) is mutation equivalent to a Dynkin quiver and where the ideal I can
be described as follows. Let i and j be vertices in Q).

1. The ideal I is generated by minimal zero-relations and minimal commutativity-relations.
2. Assume there is an arrow i — j. Then there are at most two shortest paths from j to i.

i) If there is exactly one, then this is a minimal zero-relation.

ii) If there are two, w and u, then w and p are not zero in A and there is a minimal relation
w — .

3. Up to multiplication by non-zero elements of K there are no other minimal zero-relations or
commutativity-relations than the ones coming from 2.

Example 2.3. We consider the following quiver @ of type Ejg
6

If we mutate at vertex 2, we get the following quiver Q' := u2(Q)
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The corresponding cluster-tilted algebra is of the form A = KQ'/I where I is generated by the zero-
relations ajas3, asay and asas (and there are no commutativity-relations).
Mutating the latter quiver at the vertex 3 leads to the quiver Q" := u3(Q’)

6 s 2
g 1,
Q2 Qg
aq Qs ar
1 3 4 5

Here, the ideal of relations of the corresponding cluster-tilted algebra is generated by the zero-relations
o0y, a0y, agas and agag and the commutativity-relation agas = agas.

2.3 Tilting complexes and derived equivalences

In this section we briefly review the fundamental results on derived equivalences. All algebras are assumed
to be finite-dimensional K-algebras.

For a K-algebra A the bounded derived category of A-modules is denoted by D?(A). Recall that two
algebras A, B are called derived equivalent if D’(A) and D°(B) are equivalent as triangulated categories.
By a famous theorem of Rickard [18] derived equivalences can be found using the concept of tilting
complexes.

Definition 2.4. A tilting complex T over A is a bounded complex of finitely generated projective A-
modules satisfying the following conditions:

i) Hompu(4)(T,T[i]) = 0 for all i # 0, where [1] denotes the shift functor in D?(A);

ii) the category add(T") (i.e. the full subcategory consisting of direct summands of direct sums of T')
generates the homotopy category K®(P4) of projective A-modules as a triangulated category.

We can now formulate Rickard’s seminal result.

Theorem 2.5 (Rickard [18]). Two algebras A and B are derived equivalent if and only if there exists a
tilting complex T for A such that the endomorphism algebra EndDb(A)(T) =~ B.

2.4 The equivalence class of the Euler form as derived invariant

Let A be a finite-dimensional algebra over a field K and let Py, ..., P, be a complete collection of non-
isomorphic indecomposable projective A-modules (finite-dimensional over K). The Cartan matriz of A
is then the n x n matrix C4 defined by (Ca);; = dimx Hom(P;, P;).

Denote by per A the triangulated category of perfect complexes of A-modules inside the derived
category of A, that is, complexes (quasi-isomorphic) to finite complexes of finitely generated projective
A-modules. The Grothendieck group Ky(per A) is a free abelian group on the generators [P1], ..., [P,],
and the expression

(X,Y) = (~1)" dimg Homper 4 (X, Y [r])
reZ
is well defined for any X,Y € per A and induces a bilinear form on Ko(per A), known as the Fuler form,
whose matrix with respect to the basis of projectives is C%.

The following proposition is well known. For the convenience of the reader, we give the short proof,

see also the proof of Proposition 1.5 in [4].



Proposition 2.6. Let A and B be two finite-dimensional, derived equivalent algebras. Let n denote by
number of their non-isomorphic indecomposable projectives. Then the matrices C4 and Cp represent
equivalent bilinear forms over Z, that is, there exists P € GL,,(Z) such that PC,PT =Cp.

Proof. Indeed, by [18], if A and B are derived equivalent, then per A and per B are equivalent as triangu-
lated categories. Now any triangulated functor F': per A — per B induces a linear map from Ko (per A)
to Ko(per B). When F is also an equivalence, this map is an isomorphism of the Grothendieck groups
preserving the Euler forms. Thus, if [F] denotes the matrix of this map with respect to the bases of
indecomposable projectives, then [F|TCg[F] = C4. O

In general, to decide whether two integral bilinear forms are equivalent is a very subtle arithmetical
problem. Therefore, it is useful to introduce somewhat weaker invariants that are computationally easier
to handle. In order to do this, assume further that C 4 is invertible over Q. In this case one can consider
the rational matrix Sy = CACZT (here CZT denotes the inverse of the transpose of C4), known in the
theory of non-symmetric bilinear forms as the asymmetry of C4.

Proposition 2.7. Let A and B be two finite-dimensional, derived equivalent algebras with invertible
(over Q) Cartan matrices. Then we have the following assertions, each implied by the preceding one:

1. There exists P € GL,(Z) such that PCsPT = Cp.
There exists P € GL,,(Z) such that PSAP~1 = Sp.
There exists P € GL,(Q) such that PSAP~! = Sp.

The matrices S4 and Sp have the same characteristic polynomial.

For proofs and discussion, see for example [16, Section 3.3]. Since the determinant of an integral
bilinear form is invariant under equivalence, we can combine it with the characteristic polynomial pg , ()
of the asymmetry matrix S4 to obtain a discrete invariant of derived equivalence, namely (det C'4)-ps,, ().
We call this invariant the polynomial associated with C4.

Remark 2.8. The matrix S4 = CACZT (or better, minus its transpose —C;lcf) is related to the
Cozeter transformation which has been widely studied in the case when A has finite global dimension
(so that C4 is invertible over Z). It is the K-theoretic shadow of the Serre functor and the related
Auslander-Reiten translation in the derived category. The characteristic polynomial is then known as the
Cozeter polynomial of the algebra.

Remark 2.9. In general, S4 might have non-integral entries. However, when the algebra A is Gorenstein,
the matrix S, is integral, which is an incarnation of the fact that the injective modules have finite
projective resolutions. By a result of Keller and Reiten [14], this is the case for the cluster-tilted algebras
in question.

2.5 Computations of Cartan matrices

Let A = KQ/I be an algebra given by a quiver ) = (Qo, Q1) with relations. Since >, e; is the unit
element in A we get a decomposition A = A -1 = P, Ae;, hence the (left) A-modules P; := Ae; are
the indecomposable projective A-modules, and the Cartan matrix C'4 = (¢;;) of A is the n-by-n matrix
whose entries are ¢;; = dimg Hom 4 (Pj, P;), where n = |Qo|. Any homomorphism ¢ : Ae; — Ae; of left
A-modules is uniquely determined by ¢(e;) € e;Ae;, the K-vector space generated by all paths in @ from
vertex i to vertex j that are non-zero in A. In particular, we have ¢;; = dimg e;Ae;, i.e., computing
entries of the Cartan matrix for A reduces to counting paths in Q.

For cluster-tilted algebras of Dynkin type the entries of the Cartan matrix can only be 0 or 1, as the
following result shows.

Proposition 2.10 (Buan, Marsh, Reiten [7]). Let A be a cluster-tilted algebra of finite representation
type. Then dimg Homa(Pj, P;) <1 for any two indecomposable projective A-modules P; and P;.



Example 2.11. We have a look at the quivers in Example 2.3 again, and compute the Cartan matrices
of the corresponding cluster-tilted algebras.
For the Dynkin quiver @ of type Eg with the above orientation we get the following Cartan matrix

1 1 1 0 0 0

01 1 0 0 0

00 1 0 0 0 : h s lati

0 0 1 1 o o |sincethereareno zero-or commutativity-relations.
00 1 1 1 0

00 1 0 0 1

For the quiver Q' obtained by mutation from @ at vertex 2, the corresponding Cartan matrix C’ has

1 0 1 0 0 0
1 1.0 0 0 0

the form C’ = 8 1 1 (1) 8 8 for KQ/I since the paths from vertex 1 to 2, from 2 to 3 and from
001 1 1 1 0
01 1 0 0 1

3 to 1 are zero.
Finally, for the quiver

/

I

btained from @’ by mutating at vertex 3, the cluster-tilted algebra has
0 0 0

Cartan matrix C” =

Q" o
0 0
11
1 (1) . Note that the two paths from vertex 3 to vertex 2 (over 4
1 0
1

OO O
O FHRFHO
OO~ Oo

0
or 6) are the same since we have the

I =E=E=)

ommutativity-relation asas = agas.

For calculating the endomorphism ring Endps( A)(T) of a tilting complex T over the algebra A, we
can use the following statement which explicitly gives the Cartan matrix of the endomorphism ring in
terms of the tilting complex and the Cartan matrix of A.

Proposition 2.12. Let T be a tilting complex over A with endomorphism algebra B = Endpp(4) (T), and
let Ty, ..., T, be the indecomposable direct summands of T'. Then the Cartan matriz Cp of B is given by
Cp = PCAPT, where P = (pij)itj=1 is the matriz defined by

(T3] = sz'j (7]

(that is, its i-th row is the class of the summand T; in Ko(per A) written in the basis [P1],...,[Pn]).

Example 2.13. Continuing Example 2.11, let T =T & --- & T be the complex over the cluster-tilted
algebra corresponding to Q' defined by

T P, ifi+#3
PP oP,®Ps ifi=3,

where the P; are in degree 0 for i # 3 and Ps is in degree —1.
Then T is a tilting complex and the corresponding matrix P is given by

i

P =

cooror
coocoro
cocol oo
OO =OO
o~ococoo
OO~ OO

so that C"" = PC'PT. In fact, End T is isomorphic to the cluster-tilted algebra corresponding to Q”, see
Section 3.2.1.

It is sometimes convenient to use the following alternating sum formula, arising from the fact that for
a bounded complex X = (X") of projective modules, we have [X] = >"(—1)"[X"] in Ko(per A).

Proposition 2.14 (Happel [10]). For an algebra A let X = (X")rez and Y = (Y®)sez be bounded
complexes of projective A-modules. Then

> (=1 dim Homp 4y (X, Y[i]) = > (—1)""* dim Hom (X", Y*).

7 T,8



In particular, if X and'Y are direct summands of the same tilting complex, then

dim Hompy (4)(X,Y) =Y "(=1)"* dim Hom (X", Y").

TS

3 Derived equivalences of cluster-tilted algebras of type Ej

For the mutation class of Eg we start with the following quiver

6

1 2 3 4 5

and determine all quivers which can be obtained from it by a finite number of mutations. For this, one
can use the software of B. Keller [13]. The mutation class of Eg consists of 67 quivers. For the purpose of
derived equivalence classifications of the corresponding cluster-tilted algebras it suffices to consider the
quivers up to sink/source equivalence, and there are 21 quivers up to sink/source equivalence. We can
divide the corresponding cluster-tilted algebras into six groups by computing the polynomials associated
with their Cartan matrices. Recall from the introduction that these associated polynomials are obtained
by multiplying the determinant of the Cartan matrix by the characteristic polynomial of its asymmetry
matrix. It will turn out that these six groups form the six derived equivalence classes of the cluster-tilted
algebras of type Ej.

We list in the table below all quivers in the mutation class of type Fg. For each group of sink/source
equivalent quivers we give only one picture where certain arrows are replaced by undirected lines; this
has to be read that these lines can take any orientation. We also give the Cartan matrix of the corre-
sponding cluster-tilted algebra of one particular representative in each group of sink/source equivalent
quivers. From this Cartan matrices one can easily read off to which orientation of the undirected lines it
corresponds; in fact, for a line between vertices ¢ and j the arrow is going from ¢ to j if the (¢, j) entry in
the Cartan matrix is non-zero, and from j to 7 otherwise. We sort the 21 classes of cluster-tilted algebras
of type Eg (up to sink/source equivalence) according to their associated polynomials, and number them
according to the output of B. Keller’s software [13], i.e. the cluster-tilted algebras are denoted by Apumber-

2 — 2P 4+ 23—z 41

no. quiver Q Cartan matrix
6 1 1 1 1 1 1
o 1 1 1 1 1
1 o o0 1 1 1 1
0O 0 0 1 1 0
0O 0 0 0 1 O

2(x® — 22* 4 42® — 222 + 1)

no. quiver Q Cartan matrix
3 5 11 1 0 0 0
< A 0O 1 1 0 0 O
6 0O 0 1 1 0 O
1 o 1 1 1 1 1
. - o 0o 1 0 1 1
9 4 0 0 0 0 0 1
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no. quiver Q Cartan matrix
1 2 3
- 1 1 0 0 1 1
o 01 0 1 1 1
0 1 1 1 1 0
13 1 1.0 1 0 0
-< > 11 1 1 1 1
o 1 1 0 0 1
4 5 6
6 5 1 1 1 1 1 0
1 0 1 1 1 1 0
0o 0 1 1 1 1
15 v 4 o 1 0 1 1 1
-6 0 1 1 0 1 1
1 9 3 0o 1 1 1 0 1
2 3 5 1 0 1 0 1 0
¢ 1 1 0 0 0 O
1 1 1 1 1 1
17 v v 1 0 1 1 0 1
- 0O 0 o0 o0 1 1
1 4 6 o 1 1 0 0 1
1 2 3 1 1 1 0 1 1
0o 1 1 1 1 1
0O 0 1 0 o0 1
18 v 1 1 11 0 0
¢ 1 1 0 1 1 1
4 5 6 0O 1 0 0 o0 1
4(x® +2® —x* +22% — 22+ 24+ 1)

no. quiver Q Cartan matrix
4 1 6 1 11 0 1 0
o 1 1 0 1 O
3 o 0 1 1 0 O
o 1 0 1 1 O
0O 0 o0 o0 1 1
3 2 5 o 1 1 0 0 1

The rest of this section is devoted to proving Theorem 1.1 for type Eg. To this end we shall explicitly
construct suitable tilting complexes and determine their endomorphism algebras. Note that the class of
cluster-tilted algebras is not closed under derived equivalences, so one carefully has to choose suitable
tilting complexes in order to get another cluster-tilted algebra as endomorphism algebra.

3.1 From vertices to complexes

Since we deal with left modules and read paths from right to left, a non-zero path from vertex i to j gives
a homomorphism P; — P; by right multiplication. Thus, two arrows o : ¢ — j and 3 : j — k give a path
Ba from i to k and a homomorphism af : P, — P;.

Let A be a cluster-tilted algebra corresponding to a quiver @, and let k be a vertex of ). Consider
all the arrows j — k ending at k, and define a complex T®) of projective A-modules by T'%) = P, Tl-(k)
(the sum runs over all the vertices i), with

oo _ P if i #k
Yo\ B @l b ifi=k

where the P; are in degree 0 for ¢ # k, while Py is in degree —1.
We call the mutation at the vertex k good if T®) is a tilting complex and moreover, EndDb(A)(T(k)) is
the cluster-tilted algebra corresponding to the quiver u(Q) obtained from @ by mutating at the vertex
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k. Thus, a good mutation yields a derived equivalence between the corresponding cluster-tilted algebras.
Note that “bad” mutations can occur for two reasons: the complex T®) might not be a tilting complex
or even if it is, its endomorphism algebra might not be a cluster-tilted algebra.

Since Py[1] is isomorphic in the homotopy category K?(P4) to the cone of D,k Tj(k) — Ti(k), we see
that all the indecomposable projectives lie in the triangulated subcategory generated by the summands
of T Thus, condition ii) of Definition 2.4 of a tilting complex is satisfied for the complex T®) . For
checking condition i) of Definition 2.4 it is sufficient to prove that Hompu ) (7™, T®[1]) = 0 and
Hompyp (4 (7™ T®)[~1]) = 0 since the complex T is concentrated in only two consecutive degrees.

3.2 Derived equivalences for polynomial 2(z° — 2 + 223 — 22 + 1)

In this section we prove that all cluster-tilted algebras of type Eg with associated polynomial as given
in the title are indeed connected by a sequence of good mutations, and hence in particular are derived
equivalent. The proof is divided into several subsections where in each subsection for two cluster-tilted
algebras a suitable tilting complex for a good mutation is constructed, and the endomorphism algebra is
determined.

For the convenience of the reader we provide the following figure which displays what is proven in
each subsection and from which it should be convenient to check that indeed all cluster-tilted algebras
with the relevant associated polynomials are covered.

3.2.1 Ay is derived equivalent to A;
Let A7 be the cluster-tilted algebra corresponding to the quiver

6 5
0y
Qg o
——Ppo—Pp¢
(8] (8] (0]
1 2 73 ’ 4

Let T = @le T; be the complex of projective A7-modules corresponding to the vertex 3, as defined
in Section 3.1. Explicitly, 73 : 0 — P; — 0 for 7 € {1,2,4,5,6} are complexes concentrated in degree zero

and T3 : 0 — P3 (QZ’Q—%&G) P>, ® Ps ® Ps — 0 in degrees —1 and 0.
Now we want to show that T is a tilting complex and we begin with possible maps T3 — T3[1] and
T3 — Tg[*l],

0 — Ps (020000 p P @aP — 0
1
0 — P (062&;16) P& P P — 0
10
0 I (020000 p o p @ — 0

where ¢ € Hom(Ps, P, ® Ps ® Ps) and (a2,0,0), (0,as5,0), (0,0, a) is a basis of this three-dimensional
space of homomorphisms. The homomorphism % is homotopic to zero and in the second case there is no
non-zero homomorphism P> & Ps & Pg — Ps.

13



Now consider possible maps T5 — T;[—1], j # 3. These maps are given by a map of complexes as
follows

0 — P3 (azﬂae) PQ@PE)@PG — 0
4
0 - Q — 0

where @ could be either Py, Py, Ps, Ps or direct sums of these. Note that there is no non-zero homomor-
phism Ps — Py since this is a zero-relation in the quiver of A7. There exist non-zero homomorphisms
of complexes, but they are all homotopic to zero since every homomorphism from P3 to Py, P, Ps or Py
starts with ag, as or ag, up to scalars. Thus, every homomorphism P; — @ can be factored through the
map (a2, as5,a6) : P3 — P> @ Ps & Ps. Directly from the definition we see that Hom(T, T;[—1]) = 0 for
j€{1,2,4,5,6} and thus we have shown that Hom(7,T[—1]) = 0.

Finally, we have to consider maps T; — T3[1] for j # 3. But these are given as follows

0 —- P — 0
{as
0 = Py %) papap - 0

since Hom(P;, P;) = 0 for j = 1,2,5 and j = 6. But the concatenation of (e, as, ag) and ag is not zero
since asarz # 0 and agag # 0. So the only homomorphism of complexes T; — T3[1], j # 3, is the zero
map.

It follows that T is a tilting complex for A7, and by Rickard’s theorem, E := Endps 4,y (1) is derived
equivalent to A7. We want to show that F is isomorphic to one possible orientation of the class of algebras

As. Using the alternating sum formula of Proposition 2.14 we can compute the Cartan matrix of F to
0

be

[oNeNoNoNel
QOO
oo ~=OO
RO FHR R~
oORrR R RO

—OoO o+~ OO

Now we define homomorphisms of complexes between the summands of 7" which correspond to the
arrows of the following quiver

QgCr3

Y ) Qo203

o< ¢
B o (65}

) 3 2 1
Note that this is a quiver from the class denoted Ay (up to renumbering of vertices). First we have
the embeddings o := (id,0,0) : 7o — T3, B := (0,id,0) : T5 — T3 and v := (0,0,id) : T4 — T3 (in
degree zero). Then we define § : T3 — Ty by the map (0,4,0) : P, ® Ps & Ps — P4 in degree 0.
This is a homomorphism of complexes since agas = 0 in A7. Moreover, we have the homomorphisms
asas Ty — Ty and agas : Ty — Tg. Finally, we also have the homomorphism «; as before. Note that
the homomorphisms correspond to the reversed arrows.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms (0, agaszas,0) and

(0, aga30u4, 0) are zero since they were zero in A7. As we can see, the paths from vertex 4 to vertex 2
and to vertex 6 are zero. There is one commutativity-relation between vertex 3 and vertex 4 left. This
is given by the two homomorphisms from T}y to the first and third summand of T5. These are indeed the
same paths since (0,0, agas) is homotopic to (asas, 0,0).

—_——» P
/203 / \aoas

0 —» P35 ———— » P ®OPsOFP—» 0
(a2, as,ag)

0
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From this we can conclude that F = Ay and thus, A7 and As are derived equivalent.

3.2.2 A, is derived equivalent to A

Now we consider a cluster-tilted algebra As with the following quiver

6 ar )

Qg (671

aq Q2 a3
1 2 3 4
Let T = @?:1 T; be the complex from Section 3.1 corresponding to the vertex 2. Explicitly, the
complexes T; : 0 — P, — 0 for i € {1,3,4,5,6} are concentrated in degree zero and the complex

(a1,a5)

T5:0— P, — P; ® P; — 0 in degrees —1 and 0.
To show that 7" is a tilting complex we begin with possible maps 7o — T3[1] and Tp — To[—1]

0 - P () pgp o 0
1
0 5 P, % pop o 0
Ly
0 - P %) pap o0

Here ¢ € Hom(P», Py @ Ps) and (a3,0), (0, as5) is a basis of this two-dimensional space. But then
is homotopic to zero (as we can easily see). In the second case (0, asa7) = (0, a20x) is a basis of the
space of homomorphisms between P; @ Ps and P,. Hence, ¢ is not a homomorphism of complexes since
10y = (N1 a0y 75 0.
Now consider possible maps To — T;[—1], j # 2. These are given by maps of complexes as follows
0 —» B (a1—7a>5) PP, — 0

N
0o - Q@ — 0

where ) could be either Py, Ps or direct sums of these. Note that there are no non-zero homomorphisms
Py, — P3, P, — Py and P, — P since these are zero-relations in the quiver of As. There exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P, to
Py or P; starts with a scalar multiple of oy or as. Thus, every homomorphism P> — @ can be factored
through the map (a1,a5) : Po — P @ Ps. Hence, Hom(T,T;[—1]) = 0 for j € {1,3,4,5,6} and thus
Hom(T,T[-1]) = 0.

Finally, we have to consider maps T; — T>[1] for j # 2. These are given as follows

0o - Q@ — 0

+
0 —- P (a1—7a>5) PP, — 0
where @ can be either Ps, Py, P5, Ps or direct sums of these since Hom(P;, P») = 0. But no non-zero map
can be zero when composed with both a; and as since the paths asaq and aga; are not zero. So the
only homomorphism of complexes T; — T3[1], j # 2, is the zero map.
It follows that T' is a tilting complex for A, and by Rickard’s theorem, E := Endpsa,)(T) is
derived equivalent to As. We show that F is isomorphic to Aj5. Using the alternating sum formula

11 1 1 1 1
1 1.0 0 1 0

of Proposition 2.14 we compute the Cartan matrix of F to be 8 (1) (1) } (1) 8 which coincides
00 0 0 1L O
01 0 0 1 1

with the Cartan matrix of 412 (up to permutation).
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Now we have to define homomorphisms of complexes between the summands of T" which correspond
to the arrows of the quiver in the class A1s of the form

Q106

a2 (0} (0,067)

«Oé
g 3 ) o O g

First we have the embeddings « := (id,0) : Ty — T3 and § := (0,id) : T5 — T» (in degree zero).
Moreover, we have the homomorphisms ajay : T35 — T1, arag @ Tg — T1, (0,a4) : To — T3 and
(0, a7) : To — Tg. Finally, we also have the homomorphism a3 as before. Note that the homomorphisms
correspond to the reversed arrows.

Now we have to show that these homomorphisms satisfy the defining relations of A2, up to homotopy.
Clearly, the concatenation of (0, a4) and « and the concatenation of (0, a7) and « are zero-relations. It
is easy to see, that the two paths from vertex 1 to vertex 2 are the same since ajagar = ajasay. The
two paths from vertex 2 to vertex 3 and from vertex 2 to vertex 6 are zero since (ajas,0) and (a1a6,0)
are homotopic to zero. Thus, we defined homomorphisms between the summands of T corresponding to
the reversed arrows of the quiver of A15. From this we can conclude that F = A;5 and thus, As and Ajs
are derived equivalent.

Hence, we get derived equivalences between Ay, A7 and Ajs.

3.3 Derived equivalences for polynomial 3(z% + 23 + 1)

We again provide the following figure which displays what is proven in each subsection.

3.3.5 3.3.4 3.3.1 3.3.1 3.3.4 3.3.5
A Asg As Ao Aqo Aoy Arg

3.3.2 3.3.3

A4 A14

3.3.1 As and Ay are derived equivalent to Ay

Now we consider the cluster-tilted algebra Az with the following quiver

Let T = @?:1 T; be the complex corresponding to the vertex 5. Namely, 7; : 0 — P; — 0 for
i €{1,2,3,4,6} are complexes concentrated in degree zero and T5 : 0 — P; 25 P, — 0 is a complex
concentrated in degrees —1 and 0.
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Now we want to show that T is a tilting complex. We begin with possible maps T5 — T5[1] and
15 — T5[-1],
0 — P == P — 0
las
0 — P % P — 0
10
0 —- P = P = 0

where a5 is a basis of the space of homomorphisms between P; and P»,. The homomorphism s is
homotopic to zero and in the second case there is no non-zero homomorphism P, — P5 (as we can see in
the Cartan matrix of As).

Now consider possible maps T5 — T;[—1], j # 5. These are given by maps of complexes as follows

0 - P 2 P = 0

i
0 - Q@ — 0

where () could be either Py, P, P, or direct sums of these. Note that there are no non-zero homomor-
phisms P; — P3; and P; — Pg since these are zero-relations in the quiver of As. There exist non-zero
homomorphisms of complexes. But they are all homotopic to zero since every homomorphism from Ps
to Pi, Py or Py starts with a scalar multiple of a5. Thus, every homomorphism P; — @ can be fac-
tored through the map as : Ps — P,. Directly from the definition we see that Hom(7', T;[—1]) = 0 for
j €41,2,3,4,6} and thus we have shown that Hom(7, T[-1]) = 0.

Finally, we have to consider maps T; — T5[1] for j # 5. These are given as follows

0o - Q@ — 0
1

0 > P 2 P = 0

where @ can be either Py, Ps or direct sums of these since Hom(P;, Ps) = 0 for j = 1,2 and j = 3. But
no non-zero map can be zero when composed with as since the path aragas = azas # 0. So the only
homomorphism of complexes T; — T5[1], j # 5, is the zero map.

It follows that 7' is a tilting complex for A3, and by Rickard’s theorem, E := Endps(a,)(T) is
derived equivalent to As. We show that F is isomorphic to Agg. Using the alternating sum formula

of Proposition 2.14 we can compute the Cartan matrix of £ to be

cocoococor
== O

— O KRR~
— O KRR~
_H=OOOOo
—oOoOr M

0
Now we have to define homomorphisms of complexes between the summands of 7" which correspond

to the arrows of the quiver in the class of Ayy and show that these homomorphisms satisfy the defining
relations of Asg, up to homotopy.

a7y

First we have the embedding id : T5 — T (in degree zero). Moreover, we have the homomorphisms
asag : Tg — To and aray : Ty — Tg. Finally, we also have homomorphisms a1, as, a3, aq and oz as
before.

17



Now we have to check the relations, up to homotopy. Clearly, the homomorphisms agay, asas, asasag
and asagaray are zero since they were zero in Az. As we can see, the two paths from vertex 6 to vertex
2 are the same, i.e., we here have the right commutativity-relation. There is also another commutativity-
relation asaz = asagar between vertex 2 and 4 since these are the same paths in A3. The concatenation
of id and asag yields to a zero-relation since the homomorphism asag is homotopic to zero.

Thus, we defined homomorphisms between the summands of T" corresponding to the reversed arrows
of the quiver of Asg. We have shown that they satisfy the defining relations of Asg and that the Cartan
matrices of E and Asg coincide. From this we can conclude that F = Ayq and thus, Az and Asg are derived
equivalent. Since Asg is sink/source equivalent to its opposite algebra, Agg is also derived equivalent to
AP = Ajp. Hence, we get derived equivalences between Az, Ao and As.

3.3.2 Aj is derived equivalent to A,
The second complex for Az is the one corresponding to the vertex 2. Namely, T = @le T; with

T,:0— P, — 0 fori€{1,3,4,5,6} (in degree zero) and 75 : 0 — P, () P, & Py — 0 in degrees —1
and 0.
For showing that T is a tilting complex, we begin with possible maps T — T>[1] and Ty — To[—1],

0 = P Cn) pap 0
R
0 - P % paop - 0
Ly
0 - P %) pap o0

Here ¢ € Hom(P2, Py ® Py) and (a1,0), (0,c4) is a basis of this two-dimensional space. But then ¢ is
homotopic to zero (as we can easily see). In the second case (0, aza3) = (0, asagar) is a basis of the
space of homomorphisms between P; & P4 and P,. Hence, ¢ is not a homomorphism of complexes since
10203 = (N1 5Qg Q7 75 0.

Now consider possible maps To — T;[—1], j # 2. These are given by maps of complexes as follows

0 —- P (a1—7a>4) PoP, — 0
i
0 —- Q — 0

where () could be either P;, Py, Ps or direct sums of these. Note that there are no non-zero homomor-
phisms P, — P3; and P, — P5 since these are zero-relations in the quiver of As. There exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P
to Pi, Py or Py starts with a scalar multiple of a1 or ay. Thus, every homomorphism P, — ) can be
factored through the map (a1, ) : P» — P1 & Py. Hence, Hom(T, T;[—1]) = 0 for j € {1,3,4,5,6} and
thus Hom(7T', T[-1]) = 0.

Finally, we have to consider maps T; — T5[1] for j # 2. These are given as follows

0 —- @ — 0
1
0 > P % pap o 0

where @ can be either Ps, Py, P5, Ps or direct sums of these since Hom(P;, P>) = 0. But no non-zero map
can be zero when composed with both a; and a4 since the paths asaq and asa; are not zero. So the
only homomorphism of complexes T; — T5[1], j # 2, is the zero map.

It follows that T is a tilting complex for Az, and by Rickard’s theorem, £ := Endpp(a,)(T') is derived
equivalent to A3. We want to show that FE is isomorphic to A4 and use the alternating sum formula

of Proposition 2.14 for computing the Cartan matrix of E. This Cartan matrix is given as follows
11 1 1 1

and it is the Cartan matrix of A4 up to permutation.

[=NeloNal
OO = =
[=NeNal el
e =
O = O
==OOO
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Now we have to define homomorphisms of complexes between the summands of T" which correspond
to the arrows of the quiver in the class of A4 of the form

2 4
S 8
109 4 (074
a1 [0
1&X5 5 6 6

First o := (id,0) : Th1 — T and B := (0,id) : Ty — T» are the embeddings, v : To — T5 is defined
by the map (0,asar) : PL & Py — Ps and § : Ty — T3 is defined by (0,a3) : PL @ Py — P (in degree
0). These are a homomorphisms of complexes since agaras = 0 and agay = 0 in Az. Moreover, we
have the homomorphisms ajag : T5 — T1, ajas : Ts — 11 and agas @ T — Ty. Finally, we also have
homomorphisms ag and ay as before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms asasag, arasas
and (O,a4a5a6a7) are zero since they were zero in As. As we can see, the two paths from vertex 5
to vertex 4 are the same, i.e., we here have the right commutativity-relation. There are also two other
commutativity-relations left. First (0, ajazas) = (0, ayasasar) between vertex 1 and 2 is one of them
since these are the same paths in As. Secondly, the two paths from vertex 2 to vertex 5 are the same
since (ayas,0) is homotopic to (0, auas). It is easy to see that the concatenation of v and « and the
concatenation of § and « are zero-relations. Finally, the path from vertex 2 to vertex 3 is zero since
(a1, 0) is homotopic to zero.

Thus, we can conclude that £ = A4 and thus, A3 and A4 are derived equivalent. Since A4 = AZP,
Ay is also derived equivalent to A3” = Ajo. Hence, we get derived equivalences between Ag, A4, Ajp and
AQO.

3.3.3 Ay is derived equivalent to Ay,

Consider Ay with the following quiver

[0
5 TG

Let T = @le T; be the complex corresponding to the vertex 4. Explicitly, T; : 0 — P; — 0 for

i €41,2,3,5,6} are concentrated in degree zero and Ty : 0 — Py (as—’afj) P; & Ps — 0 is concentrated in
degrees —1 and 0.
To show that T is a tilting complex we begin with possible maps Ty — Ty[1] and Ty — Ty[—1]:

0 = P %) pap & 0
L
0 - P, 2% paop - 0
10
0 A (23,90) PsdP; — 0

where ¢ € Hom(Py, Ps & Fs) and (ag3,0), (0,a) is a basis of this two-dimensional space. The first
homomorphism is homotopic to zero (as we can easily see). In the second case there is no non-zero
homomorphism P; & Ps — P4 (as we can see in the Cartan matrix of Asg).
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Now we consider possible maps Ty — Tj[—1] and T; — T4[1], j # 4. These are given by maps of
complexes as follows

(as,6)

0 — P4 — Pg@PG — 0
1
0 - @ — 0

where @ could be either Py, P», P3, Ps or direct sums of these and

0 - R — 0
1
0 —» P (aﬁf)) PP, — O

where R can be P since Hom(P;, Py) = 0 for j = 1,3,5 and j = 6. In the first case, there exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P,
to Pi, P», P3 or Ps starts with a scalar multiple of ag or ag. Thus, every homomorphism Py — @ can
be factored through the map (as,ag) : Py — P35 @ Ps. In the second case, the only homomorphism of
complexes Ty — Ty[1] is the zero map since agay # 0.

It follows that 7" is a tilting complex for A, and by Rickard’s theorem, E := Endpsa,,)(T) is
derived equivalent to Asy. We claim that E is isomorphic to A14. Using the alternating sum formula of

11 1 1 0 1
0 1 1 1 1
Proposition 2.14 we can compute the Cartan matrix of F to be 8 8 1 (1) (1) g
001 1 1 1 0
01 0 0 1 1

Now we define homomorphisms of complexes between the summands of 7" which correspond to the
arrows of the quiver of A14.

ar

ag ﬁ

] g (azas) g g

First we have the embeddings « := (id,0) : T3 — T4 and S := (0,id) : Ts — Ty (in degree zero).
Moreover, we have the homomorphism (asg,as5) : Ty — T». Finally, we also have the homomorphisms
a1, a7 and ag as before.

Now we have to show that these homomorphisms satisfy the defining relations of A4, up to homotopy.
Clearly, the homomorphisms (a7agas, arasas), (0, agas) and (0, asar) in the 4—cycle are zero since they
were zero in Asg. The concatenation of 5, a7 and ag yields to a zero-relation since the homomorphism
(0, azag) is homotopic to zero.

Thus, we defined homomorphisms between the summands of T" corresponding to the reversed arrows
of the quiver of A;4. From this we can conclude that £ = A;4 and thus, Ay and A4 are derived
equivalent. Hence, we get derived equivalences between A3, A4, A1g, A14 and Agg.

3.3.4 Ag is derived equivalent to Aj

Consider Ag with the following quiver

20



6 S

Let T = @?:1 T; be the complex corresponding to the vertex 5. That is, T; : 0 — P, — 0 for

i €{1,2,3,4,6} are complexes concentrated in degree zero and T5 : 0 — Ps 25 Py — 0 in degrees —1
and 0.
For showing that T is a tilting complex we begin with possible maps T5 — T5[1] and T5 — T5[—1],

0 —» P 2 P = 0

Las
0 — P & Py — 0
10

0 —» P 2 P = 0

Here a5 is a basis of the space of homomorphisms between P; and Py. Then as is homotopic to zero (as
we can easily see). In the second case there is no non-zero homomorphism Py — Ps.
Now consider possible maps T5 — T;[—1], j # 5. These are given by maps of complexes as follows

0—>P5£>P2—>0

i
0O - Q@ — 0

where @ could be either Ps3, P, or direct sums of these. Note that there are no non-zero homomorphisms
P; — P, Ps — P>, and P; — Py since these are zero-relations in the quiver of Ag. There exist non-zero
homomorphisms of complexes between P; and P53 or P4, but they are all homotopic to zero since every
homomorphism starts with a scalar multiple of as. Thus, every homomorphism Ps — () can be factored
through the map as : Ps — Py. We see that Hom(T, T;[—1]) = 0 for j € {1,2,3,4,6} and thus we have
shown that Hom(T,T[-1]) = 0.

Finally, we have to consider maps T; — T5[1] for j # 5. These are given as follows

0 —» P — 0
| ag

0 » P =2 P = 0

since Hom(P;, Ps) = 0 for j = 1,2,3 and j = 4. But the composition asas # 0. So the only homomor-
phism of complexes T; — T5[1], j # 5, is the zero map.

It follows that 7" is a tilting complex for Ag, and by Rickard’s theorem, £ := Endps(a,)(T') is derived
equivalent to Ag. We want to show that E is isomorphic to As. Using the alternating sum formula of

11 1 1 1 1
0 11 1 1

Proposition 2.14 we can compute the Cartan matrix of E to be 8 (1) (1) 1 8 g which coincides
01 0 1 1 0
00 0 1 1 1

with the Cartan matrix of A3 (up to permutation).
Now we have to define homomorphisms of complexes between the summands of 7" which correspond
to the arrows of the quiver of As.
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6 S

First we have the embedding id : Ty — T (in degree zero). Moreover, we have the homomorphisms
oy, o, a3, 04,7 and ag as before. Since all the relations are the same as in Ag we have shown that
they satisfy the defining relations of As. From this we can conclude that ' = Az and thus, As and
Ag are derived equivalent. Since Ag’ is sink/source equivalent to Aoy, Ag; is also derived equivalent to
Agp = Aj9. Hence, we get derived equivalences between Asz, A4, Ag, A10, A14, Aog and Ao;.

3.3.5 A is derived equivalent to Ag

Consider A;¢ with the following quiver

6
ar ag
3 4
ag
9 (%)
(8% (8%
19 > 5

Let T = @?:1Ti be the complex corresponding to the vertex 5, namely 7; : 0 — P; — 0 for
1€{1,2,3,4,6} are concentrated in degree zero and T5 : 0 — P 24, Py — 0 is concentrated in degrees
—1 and 0.

Now we want to show that T is a tilting complex and we begin with possible maps T5 — T5[1] and
T5 — T5[—1],

0 — P ﬂ} P, - 0
Loy
0 - P 2% P, - 0
+0

0 — P ﬂ>P4—)0

Here a4 is a basis of the space of homomorphisms between P; and P;. The homomorphism a4 is homotopic
to zero and in the second case there is no non-zero homomorphism P, — P5 (as we can see in the Cartan
matrix of Ajg).

Now consider possible maps T5 — T;[—1], j # 5. These are given by maps of complexes as follows

0 » P 2 P = 0

1
0o - Q@ — 0

where ) could be either Ps, Py or direct sums of these. Note that there are no non-zero homomorphisms
Ps — P, Ps — P, and P; — Pj since these are zero-relations in the quiver of A;4. There exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from P;
to P3 or Py starts with a scalar multiple of ay. Thus, every homomorphism Ps; — @ can be factored
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through the map a4 : P; — Ps. Hence, Hom(T, T;[—1]) = 0 for j € {1,2,3,4,6} and thus we have shown
that Hom(T, T[—1]) = 0.
Finally, we have to consider maps T; — T5[1] for j # 5. These are given as follows

0 - Q@ — 0
i

0—>P52>P2—>0

where @ can be either P5, P3 or direct sums of these since Hom(P;, Ps) = 0 for j = 1,4 and j = 6. But
no non-zero map can be zero when composed with ay4 since the path asasay = arag # 0. So the only
homomorphism of complexes T; — T5[1], j # 5, is the zero map.

It follows that T'is a tilting complex for A6, and by Rickard’s theorem, £ := Endps(4,,)(T') is derived
equivalent to A14. Since we want to show that E is isomorphic to Ag, we use the alternating sum formula

1 1 1 1 1 0
01 1 1 1 0

of Proposition 2.14 and compute the Cartan matrix of F to be 8 ? } } 8 (1) which is the Cartan
00 0 1 1 1
00 1 0 0 1

matrix of Ag up to permutation.
Now we have to define homomorphisms of complexes between the summands of T" which correspond
to the arrows of the quiver of Ag.

3 6

First we have the embedding id : Ty — T5 (in degree zero). Moreover, we have the homomorphisms
asag : Ts — To and agas @ To — T4. Finally, we also have homomorphisms a1, as, a3, as and a7 as
before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms aras, asas,
aszagas and agasaoas are zero since they were zero in A1g. As we can see, the two paths from vertex
2 to vertex 4 are the same, i.e., we here have the correct commutativity-relation. There is also another
commutativity-relation agar; = aqasas between vertex 4 and 3 since these are the same paths in Aqg.
The path from vertex 5 to vertex 2 is the last zero-relation since the homomorphism a4as is homotopic
to zero.

Thus, we defined homomorphisms between the summands of T" corresponding to the reversed arrows
of the quiver of Ag. From this we can conclude that F = Ag and thus, Ag and A are derived equiva-
lent. Since AJE is sink/source equivalent to Ajg, A1g is also derived equivalent to Ag” which in turn is
sink /source equivalent to Ag;.

Hence, we get derived equivalences between all cluster-tilted algebras with associated polynomial
3(x8 4+ 23 +1).

3.4 Derived equivalences for polynomial 4(z° + 2% + 22 + 1)
We provide the following figure which displays what is proven in each subsection.
3.4.2

3.4.2 3.4.1

Ais Asg Arr
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3.4.1 A; is derived equivalent to Ag

We consider A5 with the following quiver

1 2 3
a1 [6%)

ar Qg | Q5 as

- e
Y S

Let T = @?:1Ti be the complex corresponding to the vertex 3, namely 7; : 0 — P, — 0 for

i€{1,2,4,5,6} are complexes concentrated in degree zero and T5 : 0 — P; 22, P, — 0 is a complex in
degrees —1 and 0.
Now we want to show that T is a tilting complex. We begin with possible maps T5 — T3[1] and
T3 — Tg[—l],
0 — P35 2 P — 0

1z
0 —- P & P — 0
10

0 — P ﬂ>P2—)0

Here as is a basis of the space of homomorphisms between P; and P,. But the homomorphism as is
homotopic to zero and in the second case there is no non-zero homomorphism P, — P; (as we can see in
the Cartan matrix of As).
Now consider possible maps T5 — T;[—1], j # 3. These maps are given by a map of complexes as

follows

0 — P & P = 0

i
0o - Q@ — 0

where @ could be either Py, Py, Py, Ps or direct sums of these. Note that there is no non-zero homomor-
phism P3 — P4 since this is a zero-relation in the quiver of As. There exist non-zero homomorphisms
of complexes, but they are all homotopic to zero since every path from vertex ¢ € {1,2,4,5} to vertex
3 ends with as. Hence, every homomorphism from P3 to Py, P», Py or Ps starts with as, up to scalars
and thus, every homomorphism P; — @) can be factored through the map as : P3 — P». Directly
from the definition we see that Hom(T,T;[—1]) = 0 for j € {1,2,4,5,6} and thus we have shown that
Hom(T,T[-1]) = 0.
Finally, we have to consider maps T; — T3[1] for j # 3. These are given as follows

0 - Q@ — 0
i

0—>P3£>P2—>0

where ) can be either Ps, Ps or direct sums of these. Note that Hom(P;, P3) =0 for j =1, 2 and j = 4.
But no non-zero map can be zero when composed with oy since the path ayasas = agag # 0. So the
only homomorphism of complexes T; — T3[1], j # 3 is the zero map.

It follows that 7" is a tilting complex for A5, and by Rickard’s theorem, E := Endps(a,)(T) is derived
equivalent to As. We want to show that E is isomorphic to Ag. Using the alternating sum formula of

1 1 0 0 0 1
0 1 0 1 1
Proposition 2.14 we can compute the Cartan matrix of F to be ? 1 (1) 1 (1) 8
01 0 0 1 0
001 1 0 1 1

Now we have to define homomorphisms of complexes between the summands of T" which correspond
to the reversed arrows of the quiver of Ag depicted below and show that these homomorphisms satisfy
the defining relations of Ag, up to homotopy.
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First we have the embedding id : T, — T35 (in degree zero). Moreover, we have the homomorphisms
asag : Tg — To and agas @ Ts — Tg. Finally, we also have homomorphisms a1, oy, as, ag, a7 and ag as
before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms o ag, agar, asas,
asasag and asazaas are zero since they were zero in As. As we can see, the two paths from vertex 4 to
vertex 2 and the two paths from vertex 2 to vertex 5 are the same, since we have the same commutativity-
relations in As. It is easy to see that the two paths from vertex 6 to vertex 2 are also the same. The last
zero-relation asaiz between vertex 6 and 3 is given by the homomorphism from T35 to 75 in degree zero.
This is indeed a zero-relation since the homomorphism asas is homotopic to zero.

Thus, we defined homomorphisms between the summands of T" corresponding to the reversed arrows
of the quiver of Ag. We have shown that they satisfy the defining relations of Ag and that the Cartan
matrices of £ and Ag coincide. From this we can conclude that F = Ag and thus, Ag and A5 are derived
equivalent. Since A;7 is the opposite algebra of Ag, A;7 is derived equivalent to As” = A;s.

3.4.2 A;; is derived equivalent to A5 and A;g
We consider A5 with the following quiver

6 s 5

Qy
Qg 4
a3
Q «Q
1 2 3

Let T = @?:1Ti be the complex corresponding to the vertex 2, that is 7; : 0 — P; — 0 for

i €{1,3,4,5,6} are complexes concentrated in degree zero and T : 0 — P (al—’af) P ® Ps — 0 in degrees
—1 and 0.

Now we want to show that T is a tilting complex. We begin with possible maps To — T3[1] and
TQ — TQ[*l],

0 = P Cno) pap 0
R
0 - P, ‘% paop - 0
10
0 - P %) pap o 0

where ¢ € Hom(P2, Py @ Fs) and (a1,0), (0,a6) is a basis of this two-dimensional space. The first
homomorphism is homotopic to zero (as we can easily see). In the second case there is no non-zero
homomorphism P; & Ps — P, (as we can see in the Cartan matrix of Ajs).

Now consider possible maps To — T;[—1], j # 2. These maps are given by a map of complexes as
follows

0 —- P (al_,a;,) PP — 0
i
0 —- Q — 0

where @ could be either Py, Py, Ps, Ps or direct sums of these. Note that there is no non-zero homomor-
phism P, — P5 since this is a zero-relation in the quiver of Ay5. There exist non-zero homomorphisms
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of complexes, but they are all homotopic to zero since every path from vertex i € {1,4,5,6} to vertex 2
ends with a; or ag. Thus, every homomorphism from P> to Pi, Py, Ps or Py starts with a; or ag, up to
scalars. Hence, every homomorphism P, — @ can be factored through the map (a1, a6) : Po — P1 @ Ps.
Directly from the definition we see that Hom(7', 7;[—1]) = 0 for j € {1, 3,4,5,6} and thus we have shown
that Hom(T, T[—1]) = 0.

Finally, we have to consider maps T; — T>[1] for j # 2. These are given as follows

0 — @ — 0
1
0 5 P, % papr - 0

where @) can be either P, Py, P5 or direct sums of these. Note that Hom(P;, P») =0 for j =1 and j = 6.
But no non-zero map can be zero when composed with both a7 and ag since the path asa; is not a
zero-relation. So the only homomorphism of complexes T; — T»[1], j # 2, is the zero map.

It follows that 7" is a tilting complex for A5, and by Rickard’s theorem, E := Endpya,,)(T) is
derived equivalent to Aj5. We want to show that E is isomorphic to As. Using the alternating sum

1 0 1 1 1 0
1 1 1 0 1

formula of Proposition 2.14 we can compute the Cartan matrix of E to be 8 (1) (1) } } } which
00 1 0 1 1
00 1 1 0 1

is the Cartan matrix of Ay up to permutation.

Now we have to define homomorphisms of complexes between the summands of 7" which correspond
to the arrows of the quiver of A5 depicted below and show that these homomorphisms satisfy the defining
relations of As, up to homotopy.

1002 3 as

« Qg2 (07

(@]
o B 5 P 5

First we have the embeddings « := (id,0) : Ty — T and S := (0,id) : T — T» (in degree zero). Then
we define v : To — T3 by the map (0, azayas) : P & Ps — P3 in degree 0. This is a homomorphism
of complexes since asagzaqas = 0 in Aj5. Moreover, we have the homomorphisms ajas : T3 — 17 and
agas : T3 — Tg. Finally, we also have homomorphisms as, oy and as as before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms agasasay,
aqasagas and asagasas in the 4-cycle are zero since they were zero in Aj5. As we can see, the two
paths from vertex 3 to vertex 6 are the same, i.e., we here have the right commutativity-relation. There
is also another commutativity-relation aa;as = Bagas between vertex 2 and 3 which is given by the two
homomorphisms from T3 to the first and second summand of 75. These are indeed the same paths since
the homomorphism (asaq,0) is homotopic to (0, aaag). Because asasagars = 0 the paths from vertex 6
to vertex 2 and from vertex 1 to 2 are zero in F. The last zero-relation is given by the concatenation of
o and 7.

Thus, we defined homomorphisms between the summands of T" corresponding to the reversed arrows
of the quiver of A;5. We have shown that they satisfy the defining relations of A; and that the Cartan
matrices of E' and As coincide. From this we can conclude that E = A5 and thus, A5 and As are derived
equivalent. Since Ajg is the opposite algebra of As, Ajs is derived equivalent to AP and since Ajp is
sink/source equivalent to AJY we get derived equivalences between Az, A;5 and A;s. With the above
result, we have derived equivalences between As, Ag, A15, A17 and A;s.

3.4.3 A3 is derived equivalent to As

Consider the algebra A;3 with the following quiver
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a1 [0%4
0641 (6D) Qg
o T«
4 0 5 0 6

Let T = @?:1 T; be the complex corresponding to the vertex 4. Explicitly, 7; : 0 — P; — 0 for

i €{1,2,3,5,6} are complexes concentrated in degree zero and Ty : 0 — Py 23, Ps — 0 in degrees —1
and 0.

Now we want to show that T is a tilting complex. We begin with possible maps Ty — Ty[1] and
T, — Ty[-1],

0 — P ﬁ>P5—)0
Las
0 - P = P - 0
10

0 —» P 2 P = 0

Here ag is a basis of the space of homomorphisms between Py and Ps. The first homomorphism is
homotopic to zero (as we can easily see). In the second case there is no non-zero homomorphism Ps — Py
(as we can see in Cartan matrix of Ai3).
Now consider possible maps Ty — T;[—1], j # 4. These maps are given by a map of complexes as
follows
0 - P = P = 0

b
0o - Q@ — 0

where @ could be either P, P3, Ps or direct sums of these. Note that there is no non-zero homomor-
phism Py — P; and P, — Py since these are zero-relation in the quiver of A;3. There exist non-zero
homomorphisms of complexes, but they are all homotopic to zero since every homomorphism from Py to
P,, P; or P;5 starts with as, up to scalars. Thus, every homomorphism Py — @ can be factored through
the map as : Py — Ps. Hence, Hom(T,T;[—1]) = 0 for j € {1,2,3,5,6} and thus we have shown that
Hom(7T,T[-1]) = 0.

Finally, we have to consider maps T; — T4[1] for j # 4. These are given as follows

0 - Q@ — 0
1

0 » P, = P = 0

where @ can be either Py, P, or direct sums of these since Hom(P;, Py) =0 for j =3, 5 and j = 6. But
no non-zero map can be zero when composed with ag since the path ajayas = aragas # 0. So the only
homomorphism of complexes T; — Ty[1], j # 4, is the zero map.

It follows that 7" is a tilting complex for A3, and by Rickard’s theorem, E := Endpsa,,)(T) is
derived equivalent to A13. We claim that E is isomorphic to As and we use the alternating sum formula

11 0 1 1 1
001 0 0 1 1
of Proposition 2.14 for computing the Cartan matrix of E which is given as follows é é } ? } ?
11 1 0 1 1
01 1 0 0 1

and which is the Cartan matrix of As up to permutation.
Now we define homomorphisms of complexes between the summands of 7" which correspond to the
arrows of the quiver of As, depicted below.
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First we have the embedding id : T5s — Ty (in degree zero). Moreover, we have the homomorphisms
a1 Ty — T1 and asay @ T1 — T5. Finally, we also have homomorphisms a1, as, a5, as and a7 as
before.

Now we have to check the relations, up to homotopy. Clearly, the homomorphisms agaras, arasas,
Qaas0g, Qoisay, asaga and thus agagagag are zero since they were zero in A13. As we can see, the two
paths asagar and agayaq from vertex 5 to vertex 2 are the same since we have the same commutativity-
relation in Aj3. It is easy to see that the two path from vertex 1 to vertex 5 are also the same. The last
zero-relation azay between vertex 4 and 1 is given by the homomorphism from 73 to Ty in degree zero.
This is indeed a zero-relation since the homomorphism asay is homotopic to zero.

Thus, we defined homomorphisms between the summands of T" corresponding to the reversed arrows
of the quiver of A;. We have shown that they satisfy the defining relations of A5 and that the Cartan
matrices of E and As coincide. From this we can conclude that E = A5 and thus, A13 and As are derived
equivalent. Hence, we get derived equivalences between Ay, Ag, A1s, A5, A17 and Ass.

Therefore, we have shown that all cluster-tilted algebras with associated polynomial 4(z®+z*+22+1)
are derived equivalent.

A Cluster-tilted algebras of type E>

First we list all quivers of the cluster-tilted algebras of type E7. Algebras with the same polynomial
associated with their Cartan matrix are grouped in one table. According to Theorem 1.1, these groups

turn out to be the derived equivalence classes.
Note that a tuple (a,b) stands for an arrow a — b and that the numbering of the algebras in the
tables results from the numbering of the whole list.

m7—26+z4—m3+z—1

algebra KQ/I | quiver Q
Ay | (1,2),(2,3),(3,4),(4,5),(4,7),(5,6)
2(ac7 — 2% + 22% — 223 + 2% — 1)
algebra KQ/I quiver Q
Ay (1,2),(2,3),(3,4),(4,5),(4,7), (5,6), (6,4)
Aus (1,2),(2,3),(3,4),(4,5),(4,7),(5,3),(5,6), (6,4)
Aso (1,2),(2,3),(3,:4),(4,5),(5,3),(5,6), (5, 7), (6,4
2(x” —a® + a2t — 2% 22— 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
As (2,1),(3,2),(3,4), Ay (2,1), (3,2),(3,4),
(5,3),(5,6),(6,7),(7,5) (3,5),(5,6),(6,3),(7,6)
As (2,1),(3,2),(3,4), A1z (2,1),(2,3),(3,4), (4,2),
(3,7),(4,5),(5,3),(6,4) (4,5),(5,3),(6,4),(7,6)
Ais (1,2),(2,5), (3,2),(3,6), Aoss (1,2),(2,3), (3,5), (4, 3),
(4,2), (5,3),(5,4),(7,5) (5,4),(5,6),(6,3),(6,7)
2(x” — 22° 4 42* — 423 + 222 — 1)
algebra KQ/I | quiver Q
Ais [ (1,2),(2,3),(3,4),(4,5),(5,3),(5,6),(6,4), (6, 7)
3(z” — 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
As (1,2),(2,3), (3,4), A7 (1,2),(2,3), (3,4),
(4,5),(4,7),(5,6), (6,3) (4,5), (5,6), (6,3), (6,7)
As (1,2),(2,3), (3,4), Auq (1,2),(2,3),(3,4),(3,7)
(3,7),(4,5),(5,2),(6,4) (4,5), (5,6),(6,3), (7, 6)
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algebra KQ/I quiver Q algebra KQ/I quiver Q
Atos (1,2),(2,6),(3,2),(3,7), (4,3), Aiog (1,2),(1,4),(2,3),(2,5),(3,6),
(5,1), (6,3), (6, 5), (7,4), (7, 6) (4,5), (5,1), (5,6), (6, 2), (6, 7), (7,3)
Ao L1, (21),(2,3), (2,5), 3,6), T [1,2), (2,3), (2.4), (3,5), (4, 1),
(4,2), (5,4), (5,6), (6,2), (6, 7), (7,3) (4,5), (5.2), (5,6), (6, 3), (6, 7), (7,5)
4(ac7 + 2% — 22% 4+ 223 — 2% — 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Ass (2,1),(2,3),(3,4), (4,5), Aqr (2,1),(2,3),(3,4), (4,5),
(4,7),(5,6),(6,2),(7,3) (5,6),(6,2),(6,7),(7,5)
A7y (2,1),(2,3),(3,4),(4,5), Ags (1,6),(2,1),(3,2),(3,7), (4, 3),
(4,6),(5,3),(6,2),(6,7),(7,4) (5,1),(6,3),(6,5),(7,4), (7, 6)
Aogs (1,2),(2,3),(2,5), (3,7), (4, 3),
(5,1),(5,6),(6,7),(7,2), (7, 4)
5(ac7+ac5 —z* + 2% — 22 — 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
A1 (2,1),(2,3),(3,4), Ago (1,2),(2,3),(3,4),(4,1)
(4,5), (5,6), (6, 7), (7,2) (4,5), (5,6, (6,7), (7.3)
Ags (1,2),(1,7),(2,3),(3,1), Azg (1,2),(2,3),(3,4),(4,1)
(3,4), (4,5, (5,6), (6,7), (7, 3) (4,5), (5,6), (5, 7). (6, 3), (7,4)
Asgi (1,2),(2,3),(3,4),(3,7), Asgo (1,2),(2,3),(3,4),(3,7),
(4,1), (4,5), (5,3), (6,5), (7, 6) (4,1), (4,5), (5,6), (6, 3), (7, 6)
s 1,2), (2,3), (3, 1), (3,7, oo (1,2),(2,5), (3,2), (3,6), (4, 1),
(4,5), (4,6, (5, 1), (6,3), (7, 6) (4,7), (5,3)s (5, 4); (6, 5), (7, 5)
Tor 1), (29),(2,6), 3,1, 4 2), Tros (1.5, (21, (2 3), (3,6), (1,9),
(4,5), (5,6, (6,4), (6,7), (7, 2) (4,7), (5, 6), (6, 2), (6, 4), (7, 6)
A1os (1,3),(2,1),(2,4),(2,7),(3,2) Atoe (1,2),(2,3),(3,1),(3,4), (3,5),
(4,5), (5,2). (6,5), (7,3), (7, 6) (4,7), (5,2), (5,6); (6, 3), (7, 6)
Ator (1,3),(2,1),(2,6),(3,2),(3,7) A1os (1,7),(2,1),(2,3),(2,6), (3,4),
(4,3),(5,2),(6,3), (6,5), (7,4), (7, 6) (4,2), (4,5),(5,6),(6,4), (6, 7), (7,2)
pee 0,2), (1,0), 2. 3), (3, 1), (3, 1),
(3,5),(4,2),(5,6),(5,7), (6,3), (7, 3)
6(w7+w6—w4+w3—w—1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
Tor @10, (2,9), 64,45, v @10, (2,9), 3, 1), (3,0),
(5,2), (5,6), (6, 7), (7, 5) (4,5), (5,2), (6,7), (7,3
Auo (1,2),(2,3),(3,1), (3,4), Ass (1,2),(2,3),(3,1), (3,4),
(3,6), (4,5), (5,2), (6,7), (7, 3) (4,5), (5,6), (6, 3); (6, 7), (7, 5)
Ao 10,2),(2,3), G 1), (3, 1), e 10,2),(2,3), 2. 1), (3,1,
(4,5),(5,6),(5,7),(6,3), (7,4) (4,5), (4,6),(5,2),(6,7), (7,2)
Aot (1.2),(2.3), 3, 1), 3, 9), 3, 6), y 1.5, (1), (2,9),3.5), (4, 1);
(4,5),(5,3),(5,7),(6,5), (7, 6) (5,2), (5,4, (5, 7), (6,5), (7, 6)
Agg (172)7(273)7(371)7(374)7(475)a
(4,6),(5,3),(6,3),(6,7),(7,4)

6(x” 4+ x® —x% —1)
algebra KQ/I | quiver Q
Aioa [ (1,2),(2,3),(2,5),(3,6), (4, 1), (5,4, (5,6), (6,2), (6,7), (7, 5)

8(w7+w6+w5—w4+w3—w2—w—1)
algebra KQ/T | quiver Q
Aszs [ (1,2),(2,3),(3,1),(3,4),(4,5),(5,6),(6,7), (7, 3)

B Derived equivalences for cluster-tilted algebras of type E-7

First we list the opposite algebra for each cluster-tilted algebra. By a result of Rickard [18, Prop.9.1], if
A is derived equivalent to B, also A°P is derived equivalent to B°P.

After this, we list the cluster-tilted algebra, the corresponding tilting complex, the derived equivalent
cluster-tilted algebra with permutation of the vertices (up to sink/source equivalence) and the resulting
equivalence for the opposite algebras (if necessary).

The tilting complexes are all of the form introduced in Section 3.1, arising from vertices and resulting
in good mutations. If we have a tilting complex T = @1.7:1 T, with T; : 0 - P, —» 0, i € {1,3,4,5,6,7}
(in degree zero) and T : 0 — P> — Py @ P5; — 0 in degrees —1 and 0 we write (2;1,5) for 75 and know
that the other summands are just the stalk complexes.

We write the permutation as a product of disjoint cycles. If we have a permutation (135)(67) the
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labeling of the vertices changes as follows: 1 —+ 3,3 — 5,5 — 1,6 — 7, 7 — 6 and the labeling of the

other vertices is left unchanged.

B.1 Polynomial 2(z" — 2° + 22* — 223 + 22 — 1)
Agp s7s AQ; Aig S7s AQO
| Ais(x)  (43,6,7) qo Az (567) = Ao qor A2 |

(%) the direction of some arrow(s) is changed in a sink or source

B.2 Polynomial 2(z7 — 2° + *

)

AO s/s AB; A s/s A5; (1)3 s7s A25; A?g s7s A
As  (43,6)  dar A3
AlG (27 17 37 4) d:r A4
Ass (3;2,4,6) d&r As

(457)
(156)(23)
(16247)

= A4 dor A3
= A6 dor 45
= A2 dor A4

B.3 Polynomial 3(z" — 1)
6 s/s A?a

op op ~ op op ~ op op __ op

8 s/s Ag, A17 s/s A36, A19 s/s A23, A21 s/s Agg, A26 s/s Agg, A27 s/s Agg, A37 = A37, A44 s/s
~ op ~ op ~ op ~ op ~ op ~ op ~

Ase, A47 :a/s Az, A51 s/s Age, A52 s/s Asa, A54 s/s Asg, AGO s/s Azs, A67 s/s Azs, Agg s/s Agr, A87 s/s Agg

AG (37 2a 6) dAeJr
As(*)  (43,7)  dor
A8 (47 3a 6) dr\e/r
As  (21,5)  der
As(x)  (3:2,7)  der
Az (3;2,6)  der
A17 (47 3) dr\e/r
A19 (37 2a 6) dr\e/r
A23 (67 5) d:r
A44 (67 5) d:r
A51 (37 2) d:r
A54 (27 1a 4) dr\e/r
Age  (211,4)  dor
Agr (5:4)  dor
Ars (3:2)  dor
As7  (43,7)  dar

As1
Ase
Ayr
Age
Ars
Asge
Aso
Agr
Ay
Ay
A
Arz
Asgo
Aszr
Adg
Aoy

(17)(264)(35)
(46)
(17)(2354)
(16)(2435)
(167)(24)(35)
(3456)
(47)(56)
(345)
(467)
(47)(56)
(17)(236)(45)
(176425)
(16)(2534)
(17)(23564)
(3546)
(456)

A7 dor Ass
A7 dor Aaa
Ag der A2
Ag der As1
Ag dor Ae7
A36 der Aor
A36 der As2
A2z dor Agg
A1g dor Ase
As6 der Ase
Ap6 der A39
Asg der Aso
As1 der A73
Azs dor Asr
Ap7 dor A2
Agg der A2g

S R R A

(%) the direction of some arrow(s) is changed in a sink or source

B.4 Polynomial 4(z" +2° —2° + 2 — 23 + 22 — 2 — 1)
Acl)i s7s A317 15 :a/s A22; AZS s7s A57
A1s (6;5,7)  dor A2z (1735)(246)
Az (5:2,7)  dx  Ais (56) = A4 dor A2
Ag(¥)  (2,1,4,5) qor  As (134) = As7 dor A14

(x) the direction of some arrow(s) is changed in a sink or source
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B.5 Polynomial 4(z" +2° —2° — 2t + 2% + 2> — 2 — 1)

op __
Ays = Aso

[As0 (3:2,5,7) der Ass_ (3476) |

B.6 Polynomial 4(z" + 2% — 2% + 2% — 2% — 1)

op ~ op ~ op ~ op _ op ~ op ~ op ~ op ~

Ag s/s A9a A10 s/s AlO; Ago s/s A43; A33 = A34; A4o s/s A40; A48 s/s A807 A58 s/s A767 A61 s/s A69;
op ~ op ~ op ~ op __ op _ op ~ op __ op  __
63 s/s Aea, Ags s/s Aes, Agg sjs Ars, Aqp = Agr, Ags = Agg, Agg s/s Ao1, Agy = Aioo, Ajpr = Aios,
op _ op _

A109 - A109, A110 - Alll

Ag (3;2,7)  dor  Aso (34)(576) = Ag dor Ae1
Ay (2;1,6)  dqor  Ars (1724) = Ao dor A70
Ao (4;3,7)  dor Aes (456) = Ao dor Ass
Azo(*)  (21,3,7) & Ass (13) = A43 dor Aso
Aszo (5;4) der  Ass (34)(567) = Asz gor Ave
Asz(¥)  (2;1,5)  dqor Az (1724)(56) = Az dor Al
A3z (4;3,7)  dor  Ass (45)(67) = Az dor Ao1
A3z (6;5) der  Ars (35)(46) = A34 dor Ar0
A3zq (3;2,7)  der Ao (475) = A3z der Ass
Asa (5;4) der  Aug (3567) = As3 dor Aso
Ap(x)  (2,1,6)  dor Ao (1724) = A0 dor A100
Asgs (652) der  Aso (176543) = Aes der A3
Azr (2;1,3)  dar Anio (1743526) = A7r dor A1
Azg (2;1,3)  dor A (247635) = A7 der A110
Ags (7;4) dor  Ae1 (1) = Ao1 dor Aso
Avo3 (2;1,3) g Ao (15)(26)(37) = Aio1 dor Ao2
Avo9 (3:2,7)  dor  Aez  (17456)(23) = A9 dor Aea

(*) the direction of some arrow(s) is changed in a sink or source

B.7 Polynomial 4(z" + 2° — 22% + 223 — 22 — 1)
Agg s7s A41, A(7)I1) s7s A?l; Agg = A98

Asg (554) do An (57) =  Au dor An1
An(x)  (2;1,6) dor Ags  (15724) = Aszg dqor Ao

(x) the direction of some arrow(s) is changed in a sink or source

B.8 Polynomial 5(z7 + 2° — 2% + 23 — 2% — 1)

op ~ op _ op _ op _ op _ op _ op ~ op _
1 os/s A, Ay = Agg, Agy = Ags, Ay = Aga, Agy = Agi, Agy = Aios, Agy s/s Aoa, Alge = Aios,
op op _

A107 — A108; A112 - A112

Aun(x)  (2L7)  dn Aes (12) = A dor As3
Arg (3:2,6)  dor A2 (143) = Ag2 dor A112
Ag3s (7:3) dor  Au2 (16)(27) = Aes der Aa2

Aga(¥)  (21,4,7)  dq&r Auos (175)(23) = Aos dor Ar02
Aqo6 (1;3) der  Asi (12)(4567) = Ajo2 dor As1
Avos (4;3) dor  Air2 (1574) = A102 dor A112
Aqos (1;2) dor  Asa (123)(47)(56) = Aogo der A7o
Avos (4;2) der  As3 (1742365) = Ago dor Ass
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| Aios (5:4) Aqos (37654)

~
der

= Aior dor Aoo |

(x) the direction of some arrow(s) is changed in a sink or source

B.9 Polynomial 6(z" +2° —2* +2° — 2 — 1)

op ~ op __ op __ op __ op __
o4 s/s Asa, Agg = Ara, Ass = Aga, Agy = Aos, Agz = Aos

Ap(¥)  (Z%1,5) qor Ags  (1726)(345) =
Az2(x)  (21,5) dq& Aoz (135)(67) =
Ao (4;3)  dn Aoz (14352)(67) =
Ags  (554)  dor Ass (45) =

A32 der Asa
Aoy dor Ag3
A74 dor Ao3
Aga der As2

(%) the direction of some arrow(s) is changed in a sink or source

C Cluster-tilted algebras of type Ejy

m8—27—|—m5—z4+m3—z+1

algebra KQ/I | quiver Q

Ay | (1,2),(2,3),(4,3),(5,4),(6,5),(7,6), (8,3)
2(x® — 2 + 22 — 22 4 22° — 2% 4+ 1)
algebra KQ/I quiver Q
a; 1,2), (2,30, G54, (4, 5), 5, 60, (6,70, (7, 5, (5:5)
T (5,20, (2,3), (3,4), (4,5), (5, 6), (6, 4). (6, 7), (6,5, (7,5
Assg (1,2),(2,3),(3,4),(4,5),(5,6),(5,8), (6,4, (6,7), (7, 5)
2(x® —x® 4 2% 4 2% — 2% 41)
algebra KQ/I quiver Q algebra KQ/I quiver Q
3 (1,2),(2,3),(3,4), (4,5), Ay (1,2),(2,3), (4,3),(5,3),
(5,3),(6,4),(7,4),(8,7) (5,6),(6,7),(7,5), (8, 7)
As (1,2),(2,3), (4,3),(5,3), Ag (1,2),(2,3), (3,5), (4,3),
(6,5),(6,7),(7,8),(8,6) (5,6), (5,8), (6,3), (7, 6)
Az (1,2),(2,3), (4,3),(5,3), Ao (1,2),(2,3), (3,5), (4, 3),
(5,6),(6,7),(6,8),(7,5) (5,6),(5,7),(6,3), (7, 8)
Aos (1,2),(2,3), (4,3), (4,5), Az (1,2), (3,2), (3,4),(3,6),
(4,7),(5,6),(6,4),(7,6),(8,7) (4,5),(5,3),(5,8),(6,5), (7,4)
Ass (1,2),(2,3), (3,4), (4,5), Aus (2,1),(3,2), (3,4), (4,5),
(5,6),(5,7),(6,4),(7,4),(7,8) (4,6),(4,8),(5,3),(6,3),(7,5)

2(x® — 22° + 42® — 42 + 42® — 222 + 1)

algebra KQ/I | quiver Q

Aszs [ (1,2),(2,3),(3,4),(4,5),(5,6),(6,4),(6,7),(7,5),(8,7)
3(x® + 2% + 1)
algebra KQ/I quiver Q algebra KQ/I quiver Q
s 1,2),(2,3), (3, 1), (4,5, yp 1,2),(2,3), (4, 3), (4,5,
(5,6), (6,7), (7,4), (7,8) (5,6), (6,7), (7,4), (8,5)
e (1,2), (3.2), (3,4), (4, 5), i 2,1),(3,2), (3,9), (4, 5),
(5,6),(5,8), (6,3), (7, 4) (5,6), (5,8), (6,3), (7, 6)
e 2,1),(2,3), (3, 1), (4, 5), e (1,2), (2,3), (3, 4), (1,5,
(5,2),(5,6),(7,3), (8,4) (5,3),(5,6),(6,7), (6,8), (7, 4)
Aso (1,2),(2,3), (4,3),(4,5), Ass (1,2),(2,3),(3,4), (4,5),
(5,6), (6,7),(7,4),(7,8), (8,6) (5,6),(6,7),(6,8),(7,4), (8,5)
Asg (1,2),(2,3),(3,4), (4,5), Az (1,2),(2,3), (3,4), (4,5),
(5,3),(5,6),(6,7),(7,4),(8,7) (4,7),(5,6),(6,4),(7,8), (8,6)
Agq (1,2),(2,3),(3,4), (4,5), Aur (1,2), (3,2), (3,4), (4,5),
(4,8),(5,3),(5,6),(6,7),(7,4) (5,6), (5,8),(6,3),(6,7),(7,5)
Ass (1,2),(2,3),(3,4),(3,7), Aso (1,2),(2,3), (4,3),(4,5),
(4,5), (5,6),(6,3),(7,6),(8,5) (5,6),(5,8),(6,7),(7,4), (8,4)
Ag1 (2,1),(3,2),(3,4), (4,5), Asge (1,2),(2,3), (3,4), (4,5),
(4,6),(5,3),(6,7),(6,8),(7,3) (5,3),(5,6),(5,8),(6,7),(7,4)
Agr (1,2),(2,3), (3,4), (4,5), Aze (2,1),(2,3),(3,4),(3,6),
(5,6),(5,7),(6,3),(7,4),(8,5) (4,5),(5,2),(6,2),(7,3),(8,7)
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Asro

quiver @

(1,2),(2,3),(3,4), (4,2),

[[ algebra KQ/I |

quiver @

(1,2),(2,3),(3,4), (4,5),

algebra KQ/I |

Azo

Auys
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uiver Q
(4,5), (5, 6)q, (5,8),(6,7),(7,3)

quiver Q

7,8),(8,4)
:7),(7,5),(8,7)

1), (3, 4),
(3) ()7, 5), (8,3)

:(3,1),(4,5),

4),(4,5),
(

; 2’) ), (7,4),(8,7)

:(2,5),(3,1),
,2),%)77(1), (7,8),(8,5)

»(3,4),(3,5),(3,8),

)
5,

:6),(6,1),(7,2)

27,
)

6
7
(6

3
(
),(6,7),(7,3),(8,7)

:(2,8),(3,4),
:3),(3,1),(4,5),
(
),(6,7),(7,8),(8,5)

)
)
6

3
(
»(3,1),(3,4),(4,2),

» (2,
)
6,

13)s
(2,
,6),
» (2,
 (

7

)
6
)
)
6

(172),(52),
7). (4,5),
(3’(2), 1), (2,3), (3,
(5,2),(5,6), (
(1,2), (L4
(5,6), (5,8), (
1,2), (2,3
(4,5), (5,2), (
1,2), (2,3
(5,6), (5,7), (
2.1),(2,3
(4,2),(5,2),(
1,2), (2,3
(4,5),(5,6), (

algebra KQ/I

Aieo

Aa7s

algebra KQ/I

A3a0

As1

Aso

Ara

Ars

Ase

A140
Aies
Ai7a
A181
A1gg
A201
A203
A212
A21a
A219
A2
Aza1
Az4g
A260
A262
A2es
Aze7
Aaro
Aoss
A293
A296
Asos
Asor
Asi2
Azis
As21
As26
As2s

uiver @
4,7), (5, G)q7 (6,2),(7,3),(8,7)

e
S 2E %

5(x® + 2% + 2 422+ 1)

algebra KQ/I

A11s

Aie1

A3o2

quiver Q

@0,
), ?7,(3), (8,6)

6
(
:5),(7,8),(8,6)

(4,1),(4,5),

algebra KQ/I

Asszs

Azig
Azaz
Asar

Az7a
Aazs1
Azss
Az9s
Az97
A3o6
As1o
Asz1a

Aze63
Az66

A252
A261

Ai66
Ai7s
Ais3
A200
Az02
A204
A213
A216
Aa20
A234
Az46

Ais
Aes
A7i
Arr
Ass
Ai2s
A1sg
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Aio1
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algebra KQ/I quiver Q algebra KQ/I quiver Q

Asgo (1,2),(1,6),(2,3),(3,1),(3,4 Ag71 (1,2),(2,3),(3,4),(3,6), (4,1),
(4,5),(4,7),(5,6),(6,3),(7,8),(8,4) (4,5),(5,3),(5,7),(6,5),(7,8),(8,5)

Aass (1,2),(2,3),(3,1),(3,4), (4,5 Aso1 (1,2),(2,3),(3,1),(3,4), (4,2),
(4,7),(5,3),(5,6),(6,4),(7,8),(8,6) (4,5), (5,6),(6,3),(6,7),(7,8),(8,6)

As2g (1,2),(2,3),(3,1),(3,4), (3,6), (4, 2), Aszo (1,2),(2,3),(3,1), (3,4), (3,6), (4,5),
(4,5),(5,3),(6,5),(6,7),(7,8),(8,6) (5,3),(5,7),(6,5),(7,6),(7,8),(8,5)

Aszzz (1,2),(2,3),(2,4),(2,8),(3,1), (4, 1), Asza (1,2),(2,3),(2,5),(3,1),(3,4), (4,2),
(4,5), (5,2),(5,6),(6,7),(7,5),(8,5) (5,1),(5,6),(6,2),(6,7),(7,8), (8, 6)

D Derived equivalences for cluster-tilted algebras of type FEjg

D.1 Polynomial 2(z% — 2% + 22° — 221 + 223 — 2% + 1)
Agp s7s AQ; ATS S7s A28

| Ay (54,7,8) & A (56)(78) = Aj oy Aos |

D.2 Polynomial 2(2% — 2%+ 2° + 2° — 22 + 1)
A3” sjs Aroy AL” s Avs A" 5js As, AG s)s Aoy Ay s/s Assy Ay fs Azs, A3 s)s Ass

A3 (3, 27 5) dr\e/r AG (17264358) = AIO dzr AG
Az (43,6,7) dqor Az (56) = Ao der A3s
Agp (67 57 7) d:r A4 (678) = A5 d:r A4
As  (3;2,4,6) g As (17)(246) = Ag der Aue
AY (5;3,6)  d& Az (18)(27)(3465) = A7 & Awo

D.3 Polynomial 3(z® + 2* 4+ 1)

Agp s7s AQ; A(fg S7S A14; AT? = Al?; Agg s7s A34; Agg s7s A33; Azg s7s A607 AZE s7s A667 AZI'; S7S AG?;
ALY = Agr, A% sJs Aso, AQY s)s Asa, Agh sJs Arogs Agh s)s A1oo, ATy = Aias, ATy = Ais1, ATY = Air,
A?Sg s7s A1237 A?gz = A149, AC{L s7s A1877 AT§4 575 A163a Acl)gg = A1967 A(f?g 575 A173, A%’G s7s AQlSa
ASS) = Aggn, ASYy &) Aoaz, ASh <Js Aorr, Adhy = Aars, AShs = Asos

Ag (4;3,7)  dor Aroo (45)(678) = A9 dor Aos
Ag (5;4,8)  dor  Aroo (576) = Ag dor Ao2
Aqp (4;3,7)  dor Aisa (465) = A4 dor Are3
Ay (6;5,7)  der Aros  (18)(275)(46) = A2 dor A1eo
Avr (3:2,7)  dor  Aois (185236) = A17 dor A206
Au(x)  (43,7,8) d&  Ag2 (567) = A6 der A109
Ago (7;6) dor  Au3 (578) = Ai09 dor Ao
Aqgo (8;4) der Az (78) = Ao dor A3a
Aro2(*)  (43,6,7) dqor  Aus (567) = A8 dor 460
Aqo2 (3:2,5)  dor Az (35674) = A48 dor A149
A1o9 (655) dor  Aso (56) = A9 dor A3z
Aq23 (4;3,6,8)  dor Aies (4587) = A123 dor A1s4
Azi(x)  (3;2,4,6) dqor  As3 (4756) = A110 der 461
Arza(x)  (3:2,4,7)  dor  Aoar (1) = A149 dor A277
Aisq (5;4) der  Aar (45) = A163 der Ae7
Arsa(x)  (3;2,5,6) dor  Asa (34)(576) = A163 dor Asa
Arzz(x)  (3;2,4,6) dqor  Aois (34657) = A173 dor A206
Argr(¥)  (5:4,6,8) dqor  Aisa (485) = A4 dor Ate3
Aqge (653) der A6l (18)(267) = A9 dor As3
Arge(x)  (2;1,5,7) dor Aso  (178)(243)(56) = Aigg der Ao
Anig(x)  (43,5,7) dor  Aige (37654) = A6 dor A169

39



Azzg (5:4,7)  dor  Au (48675) = A2 dor Ass
Agsr (6;5,8)  dor  As3 (47)(56) = A7 dor As1
Aoro (4;3,6)  dor  Ama (387564) = Azrs dor Asa
Aors(x)  (7:3,6,8) dor Ainn (183546)(27) = Asro dor Aimi
A3os (5:4,7,8)  dor A2 (1876423) = A305 der A221
A3os (6;2,5) dar Aso (18)(24635) =  As0s der A76

(%) the direction of some arrow(s) is changed in a sink or source

D.4 Polynomial 4(z® + 27 — 2% + 25 + 23 — 22 + 2 + 1)

op ~~ op __ op ~~ op _ op ~~ op __ op ~~ op
A20 s/s A41; A21 = A497 22 s/s A527 A27 s/s A277 A29 = A367 A37 s/s A377 Agg = A1227 Ago s/s A142a Agg
~ op "~
s/s A106; A105 s/s A124

Ao (3:2,5)  dor Aoy (18765)(23) =  Au1 dor A7
Ao (2; 1,4, 5) dor Ago (18)(2647) (35) = Ay or A142
Az (2;1,4,5) oo Aso (34) = As2 dor A122
Ase (3;2,5)  dor A2 (45) = Azg der As1
Ag}; (67 57 7) d:r A21 (23)(678) = A37 d:r A49
Ap (23,4,5) do Aiaa (143)(78) = As7 der Aros
A49 (5; 27 7) d,;r A27 (178)(24536) = A21 d’;r A27
Aso (2;1,4) dqor  Ase (34) = Az dor A2
A2 (655,8)  der Aios (67) = Asg der Aos

D.5 Polynomial 4(2® + 27 — 2% + 22 — 22 + 2 + 1)
ASY oJs Asa, Agh = Ava1, AThr s/s Aiss, ATz s/s A1s2, AThy = Aas, ATS; = Auiss

Aso

73, dor  Azq (5687)
Azx (3;2,4,6) 4o Az (18267)(345)

( )

3;2,4,6 = A4 dor Ais2
Ag3 (6;4,8)  dqor  Aior (67) = Ai121 der A153
Anz o (3;2,5,6)  dor  Aror (13478)(26) = Ais2 der A1s3
Aigo (2,1,4) & Aiss (18)(26547) = Aise der Aror
A1ss (653,8) dor A0 (18)(27456) = Aisr {or Alse

D.6 Polynomial 4(z® + 27 — 225 + 22° + 223 — 222 + 2 + 1)
Agg = A1197 Agg 575 A116

Ags  (21,4) do Auie (134)
A9 (655,8) qor  Ags  (18)(2746)(35) = Ags dor Ai16

D.7 Polynomial 4(z® + 2% — 2% 4+ 22* — 23 + 2% + 1)

11 b/S All; A‘fg s7s AlG; AZS s7s A407 AZS s7s A557 Agi = A54; 58 s/s A72; Ags = A877 99 :a/s A128a

103 s/s A1627 Ac1)84 s7s A1367 Acl)lfg s7s A129, AC{SG 575 A143, AC{S7 s7s A185a A133 - A150; A134 s/s A134; A135
s/s A182a A151 = A172; AC{% = A175, AC{?(} = A177, Acl)g(j s7s A193, A’fgg s7s A2O7a Aggg s7s A208a A224 b/S
Azz1, Adhs = Aazg, AShs = Aosy, ASSy s)s Aoss, A9 = Aoao, Agls s/s Asss, Agps = Aore, Asgy = Asou,
AV = Asoy, ASSs = Ases, ASSs s Asss, Agho /s Asas, Asby = Aszo, Age) = Ases, Aghg = Asss

Apy (4;3,8)  dor A2 (45)(678) = A dor Ar03
Az (3:2,7)  dor Ao (34)(567) = A der A2o7
Ais (5;4,8)  dor  Aui2 (576) = A6 der A129
AR (2:1,3)  dor Azss (18)(27)(35) = Auo dor A227
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Ay (3;2,6)  dqor A2az  (1827)(3645) = Ass der A2se
Ay (5:4,8)  dor  Aon (56)(78) = Ass dor A231
AL (6;3,7)  dor A2ag (48765) = A dor A22s
Asy (6:4,8)  dqor  Aore (587) = Ass4 dor A273
Asy (3;2,7)  der  A226 (354)(67) = As4 dor Aosr
Ass(x)  (3;2,7,8)  dar  Aros (4567) = A7 dor A13e
Asg (5;4) dor  A143 (458) = A7 dor Ai2s
Ags(x)  (5:4,7,8) dor  Aure (56)(78) = Ag7 dor A177
Agr (3;2) dor Aoz (18)(246375) = Ags dqor A20s
Agg (5; 6, 7, 8) d,\e/r A237 (17) (2635) = Agg d:r A226
Aqos (4;3,7)  dor Aro (468) = A136 der A112
A (6;5) der  A2zs (687) = A129 dor A239
Ao (3:2,6)  dqor Assz (34)(56) = A129 dor A363
Aqo7 (6;5,8) g Aizs  (15362478) = Aigs qor Aias
AT (2:1,3,8) 4o Asss (18)(46) = A127 dor A240
A13q (5:4,8)  dor Az (5876) = A134 dor A343
Aqzs (5;4,7)  dor Aros (56) = Aig2 dor A162
Aqzs (3,2,6)  qor Assgz (1845)(2736) =  Aise dor Asa2
Ase2 (7:4) dor  Aa231 (78) = A103 dor A224
Arro (3;2,7)  do Aser (34)(6867) = Airs dor Ases
At7o (6:4,8)  der  Aiso  (18)(274356) = Airs dor A133
Arra(x)  (2;1,4,7)  dor  Aszs2 (134) = Ais51 der A304
Aqze (4;3,6)  der  Aisz (45) = A7 dor A1s0
Args(*)  (3;2,6,8) qor Aszez  (1625)(34) = Ai93 dor Asas
Asog (4;3,7,8)  dor  Aszaz (4576) = A208 dor A343
Az (7:3,8)  dor  Aoao (1) = A237 dor A23s
Agsg (3;2,6)  dqor Aoz (456) = A7 dor A224
Azgy (7;2,6)  dor  Asir (38)(4657) = Aszoa dor As2a
Azoq(¥)  (2:1,4,6) dqor Aszes  (134)(687) = Azi1 dor 4361
Aszr (2;1,4) dor  Asso (23) = A338 dor A370
A3zso (2:1,5)  dqor  Assz (345) = A370 dor A363
Asss (2;1,5) dor Az (3465) = A3zgs der A311

(%) the direction of some arrow(s) is changed in a sink or source

D.8 Polynomial 4(z® + 2% — 225 + 42* — 223 + 22 + 1)
45 /s Az, AT sJs Ateo, ATl s/s Aie1, Agpg = Asoe

Aug (554)  der Ans (56) = Az dor Aieo
Azo(x)  (5:4,8) dor Azoz  (576) = Aug dor Aors
Agr (2;1,6) g0 Ao (3456) = Ajer dor Aiis

(x) the direction of some arrow(s) is changed in a sink or source

D.9 Polynomial 5(z® + 2% + z* + 2% + 1)

ATY = Aig, AZY oJs Ao, Age = An1, A%) Js Ars, A7p = Asg, 83 s/s Ass, AJDs = Aisg, AThy = Aira,
A?gg, s7s A166a A178 - A2O4; A?gl = A202; A(l)gz; s7s A2OO; A?gg s/s A2O3a A201 s7s A201; A(Q)Il)g s7s A220;
AN §Js Aotg, ASVy os Aoie, ASSs = Aoos, ASh )s Assa, ASN = Aora, Adlg = Asgs, AShy = Aseo,
Aggg s7s A266a A(Q)gl s7s A285; A(Q)gg s7s A295a Aggg s7s Aggg, Agg? = A281; A279 - A303; A283 s/s A296a
A3y = Asio, Azt = Asor, Agty ofs Az, Agly = Asis, Agh) = Asar, Aghy = Asas, Aghs = Asas, Agis o/
Asse, AShy = Asas, A3y = Asss, AShg = Asea, AShg = Aseo, AShy = Assr, Ashy o)s Asss, ASpy = Aszi,
Aty = Ases, ASg, = Asrs, AShy = Asre, A3y = Aszs, Ashy = Agrs, ASP, = Assi, AShy = Asso,
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op _ op  _ op  __
A382 - A383; A386 - A3907 Aggg - A389

A (2;1,7) g A21is (18)(274635) = Az dqur A240
As1(x)  (Z1L,7)  dor Aosi (12)(678) = Ap9 der A267
Asy (655) dor  Ai2s (687) = Ago dor A159
Azq(x) (3:2,8)  dor  Asis (1236)(78) = A7g dor A315
Azy (4;3) dor  A201 (1654)(2783) = Azs dor A201
Azr (654) der  A1s1 (67) = Ase der A202
Arr (5;4) dor  A140 (38765) = Ase dor A174
A78(*) (2, 1, 77 8) dr\e/r A140 (1834567) = A74 dr\e/r A174
Azg (4;3) dor  Aies (16548) = A7 dor Aies
Ag3 (2;1,6)  dor Aszz  (1827)(3654) =  As3 dor As2s
Ag3 (6;5) der  A212 (386)(475) = As3 der A220
Ag3 (7;5) der  A216 (78) = As3 dor A214
Ags (4;3,8)  dor  Aozos (48765) = As3 dor A263
Aq2s (7;5) dor A1 (567) = Ais9 dor A5
Aras(¥)  (2;1,6) dqor Asso (17)(264)(35) = Aisg der Azs7
Aqgo (82,7)  dor Aiss (5768) = A174 der A200
Aes(x)  (251,4) dg&r Asn (174385)(26) = Aies der Assa
Ases (7;2) dor Ages  (17)(38)(456) = Aies qor A6
Ases (7:3) der  Asi (34567) = Aies dor A6
Ae(*)  (2:1,6,7)  dor Aae  (187)(3456) = Aies dor A26s
Aqrg (2;1,6)  dor  Aigo (374856) = A04 der A203
Aqrg (5:4,8)  dor Ases  (182637)(45) = As04 der Ase2
Arrg (7;6) dor Ass1 (16358)(247) = Asos dor Aser
Az (3:2,7)  dor Az (346758) = A219 dor A3g0
Aoz (8;3) dor  Arr (1) = A9 dor Ass
Az (655) der  Asai (37546) = A21a dor Az27
Az (2;1,6)  dqor  Asse (23)(456) = A214 dor A3s3
Azo3 (3:2,6)  dgor Assi (34)(5876) = A223 dor A374
Asoz (1;4) dor  Aszo (1827)(35)(46) = A2a3 dor As2s
Agza(x)  (5:4,6,8) qor Aogs (4685) = Ao3s deor Aze3
Aggy (8;5) der  Aurs (132) = Aora dor A204
Azgg (4;3,6)  dqor  Aoss (13247568) = A0 der A261
Ageo(x)  (2;1,4,7)  dor  Asas (134)(687) = A249 dor A3s5
Ao (4;3) dor  Ai2s (34)(67) = A9 dor A1s9
Aozg (3;2,5)  dor  Aom (18274536) = A303 dor A274
Aogy (4;3,6)  dor  Aoso (17542861) = Aae7 dor A266
Aggs (3:2,5,7)  dor A2e1  (18)(267)(34) = A296 der A2ss
Azg3 (5:4) der  Assi (38765) = A3 deor A353
Asgz (6;4) dor  A200 (68) = A3 dor A183
Asgz (2:1,5)  dqor  Asso (18435726) = A263 dor A3s9
Asgr (1;4) der  Ase2 (18)(2736) = A310 der Aszes
A3o6 (7;4,8)  dor  Aes (15437268) = A307 der A1
A3z (4;3) der  A1s3 (34) = A314 dor A200
A3z (8:3,7)  dor Aszs  (172846)(35) = Aszze dor A322
Azgo(x)  (6;5,7)  dqor  Aseo (148)(25) = A348 dor A349
Asye (7:2,6)  dor  Ase2 (57) = A364 dor A365
Asso (2;1,5)  dor  Aszs (18536)(27) =  Ass7 der Asse
Aseo (1;3) der  Asos  (12)(48)(576) = Asa9 der Asor
Aser (4:3,5)  der Airs  (18)(25)(3746) = As7s dor A204
A3zes (8;3) dor  A2s3 (1827)(46) = A372 dor A206
A3sg (5;4) dor  Aszgs  (132)(46758) = Asrg der Asg0
A3pg (7:6,8)  dor  Asrs (17428536) = A37g der A373
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| Aseo (4:3,7)  dor Assa (16)(287)(35) = Asrs dor Asm |

(x) the direction of some arrow(s) is changed in a sink or source

D.10 Polynomial 6(z® + 2% + 2° + 2® + 2° + 1)

op ~ op _ op _ op _ op _ op _ op _ op ~
ATy sjs A1s, Agg = Ass, Alzg = Aisa, Aggs = Ao11, Aogg = A21s, Aggs = Aogg, Agzg = Asgo, Asgy s/s
op op  ~ op _ op _ op  ~ op _ op _
Aszig, Asqy = Asos, Aspg s/s Asir, Ashs = Asaes, Assy = Asog, Ashs s/s Azas, Agsy = Aszg, Agyp = Asss,
op __ op __ op __
Azze = Asrr, Azgy = Asss, Azgy = Aszon

ATE (2:1,3) g Aisa (28)(37)(46) = Ais dor A17o
Ags (2;1,8)  dor Ases (124)(5678) = Asg dor A313
Aggy (3;2) der  Aago (1238) = Ai79 deor A270
Aga (7:6,8)  qor Aoz (123658)(47) = Ai7g der A209
Azos  (43,7)  dor Asm (16542738) = A211 dor A3ss
Aoin (3:2,8) dor Aszrr (142536)(78) = A5 der Asts
Ao (7:1,6)  dqor  Ases (4657) = A270 dor A300
Asgo  (3;2,5)  dor Aszos  (18)(267)(34) = Asig der Aszir
Asgg  (5:4,8)  dqor  Asor (186)(243) = Ades der Assr
Azos  (5:4,7)  d&r Asis (1234)(67) = A300 der A323
AV, (552,6)  dfor Ases (386547) = A309 dor A32s
Az (7:6,8)  dor Az (14725836) = A320 dor A200
A3a3 (653) der  Asrr (1846)(273) = Asis der Asre
Azas (251,4,8)  gor Aszas (1468)(23)(57) = Aszs der As13
Azzg  (6;1,5)  gor  Asss (476) = A331 dor A3a1
Azgs (43,6,8)  dor  Asoo (34) = As3gs dor A308
Asgr (43,7,8) dqor  Asrr (1425786) = A301 dor A376

D.11 Polynomial 6(z® + 27 + 22% + x + 1)

ASE = Aus, ASY s Ars, AZh oJs Ast, ASh o)s Aes, Ay = Ars, Agy = Ai1s, Alhs = A4, ATV, = Aiss,
ATBs = Aigo, ATSg = Args, AThy s/s Area, Alhs = Aiss, ATy, = Aies, Al = Aser, ARy = Auoo,
A(l)go = Ay, A(1)51 = Ajga, Ag?o = A7, A§§8 = Aous, Aggg = Aseu, Aggo = Aass, AS§5 = Az, 14325 S7S
Acz)g4, APy = Aoss, ASPs = Aasr, ASEr o) Aoga, A9y sJs Aoga, Ashy = Asgs, ASh = Asie, Ashg = Asar,
A344 = Assg

Asg (4;3,7)  der  A2zz  (1728)(3645) = Aus dor A230
Asg () (7;6,8)  dor Aosy (1) = A73 dor A292
A45 (6; 5, 8) d,;r A57 (18)(2536)(47) = Agg dzr A50
Ag2 (2;1,5)  dor  Aozso (1524876) = A7 dor A2og
Asgs (6;3,8)  dor  Aso (18)(27456) =  Ase dor A3
Ass(x)  (21,5)  dor  Aosr (16347258) = Ase dor Aase
Azs (3;2,8)  dor  Aoss (1537246) = A2 der A251
Avos (2;1,4) g Ay (1845)(2736) = Aj1s qor Aiss
A (8;6) dor  Azg  (185)(26)(37) = Ai08 dor A2as
Aqis (6;5) dor  Azzo  (1728)(3546) = Ag7 dor A2ss
Ay (2;1,4)  dor Aiss (134) = Ai188 deor A145
Aqzg (5;3) der  Aos? (58)(67) = A195 dor A292
Aq3g (2:1,4) dor  Aiso (134) = A195 dor A1o7
A (2;1,3,6)  dor Aos3 (24)(35) = At64 der A255
A (5;4) dor  Aoszs  (17)(246358) = Aies dor Aosi
Avgr (1;4) dor  Aogr (1638257) = A198 dor A2s6
Awse(x)  (654,8) dor  Assg (123)(67) = A167 dor A344
Ays7 (4:2,7)  dor  Aszar (123)(45)(687) = Aigo der A336
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Aggg (3:2,4)  dor Aoy (1432)(687) = Aizg dor A1ro
Aqg (5:4,7,8)  dor A2z0  (1837)(25)(46) = Aigs dor A23s
Azog (1;3,4)  dqor  Ass (17)(2638) = Aoug dor Aus
Azzg (2:1,4)  dor  Aoss (134) = Aoes der A2s4
Azog (7;6) der  A139 (67) = Azes der A195
Azsy (6;5,7)  dor  Asy (5876) = A2 dor Aso
Aogy (4;3,5)  dar  Ars (387654) = Az dor As2
Asgq (2:1,5)  do  Ae2 (35)(46) = A316 dor A7s
Asgq (1;3) dor  A210 (164)(253) = A316 dor A217
Azo1(¥)  (3;2,4,6) qor Aosa (145632) = A316 dor A204
A336 (5:;4,7) g A1z (17436)(285) =  Aszsr dor Ales
Azaq (3;2,5)  der  A210 (146532) = Ass9 der A217
Assg (4:3,7) dor  Aigo (5687) = Asus dor Ai3s

(x) the direction of some arrow(s) is changed in a sink or source

D.12 Polynomial 8(2% + 227 + 2z + 27 + 1)

op ~
9? s/s AlOl

[Aor (6:5,8) o Aior  (5786) |

D.13 Polynomial 8(z® + 2" + 2% 4 22* + 2 + 2 + 1)

op _ op _ op _ op  _ op  _ op  _ op  _ op _

A59 = A63, A64 = AgQ, A79 = Agl, A130 = A168; A236 = Aggg, A244 = 142717 A250 = Agsg, A269 = A301,
op  _ op __

A329 = A334, A330 = A332

A59 (6; 3, 8) d,\e/r A64 (1745628) = A63 d,;r Agg
Az (4:2,8)  dqor Aogs  (123)(45)(678) = Asg dor A236
Ass  (251,4)  dor  Aso (134)

A79 (2;1,6) dor  Azso  (1827)(35)(46) = Asi der A2so
Agas (3;2,5) der Azs9  (18)(273645) = Aori dor A2s0
Azso (655)  dqor  Asso (46) = Azs9 dor A332
Azeg (651,5) dqor Aose (1735428) = A301 dor A2ss
Asgs  (T34) dor  Asza (1742836) = A236 dor A329
Azzo (6;3,7)  der Aiso (1) = A332 dor A16s
Azza (1;3,5)  der Aues (1423) = A329 der A130
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