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Abstract. Some analysis on the Lorentzian distance to a fixed point in a space-
time with controlled sectional (or Ricci) curvatures is done. In particular, we are
focused in the study of the restriction of such distance to a spacelike hypersurface
having Ricci curvature with strong quadratic decay. As a consequence, and under
appropriate hypothesis on the (sectional or Ricci) curvatures of the ambient space-
time, we obtain sharp estimates for the mean curvature of those hypersurfaces.
Moreover, we also give a suficient condition for its hyperbolicity.

1. Introduction

Let Mn+1 be a (n + 1)-dimensional spacetime, and consider dp, the Lorentzian
distance to a fixed point p ∈M . Under suitable conditions the Lorentzian distance
dp is differentiable at least in a “sufficiently near chronological future” of the point
p, so that some classical analysis can be done on this function.

In this setting, in the paper [8], the authors obtained Hessian and Laplacian
comparison theorems for the Lorentzian distance function dp from comparisons of
the sectional curvatures of the Lorentzian manifold, following the lines of Greene
and Wu in their classical book [9], where it were obtained the same comparison for
the Hessian and the Laplacian of the Riemannian distance function from estimates
of sectional curvatures.

In this paper we shall study the Lorentzian distance function restricted to a space-
like hypersurface Σn immersed into Mn+1. In particular, we shall consider spacelike
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hypersufaces whose image under the immersion is bounded in the ambient space-
time, in the sense that the Lorentzian distance from a fixed point to the hypersurface
is bounded from above.

Inspired in the works [1], [2] and [16], we derive sharp estimates for the mean
curvature of such hypersurfaces, provided that either (i) the Ricci curvature of the
ambient spacetime Mn+1 is bounded from below on timelike directions (Theorem
4.2), which obviously includes the case where the sectional curvatures of all time-
like planes of Mn+1 are bounded from above, or (ii) the sectional curvatures of
all timelike planes of Mn+1 are bounded from below (Theorem 4.3), or (iii) the
sectional curvature of Mn+1 is constant (Theorem 4.6), widely extending previous
results in the previous papers. In particular, we establish a Bernstein-type result for
the Lorentzian distance, (see Corollary 4.7), which improves Theorem 1 in [1] (see
Remark 1 and Corollary 4.8) and extends it to arbitrary Lorentzian space forms.

On the other hand, we also study some function theoretic properties on mean-
curvature-controlled spacelike hypersurfaces, via the control of the Hessian of the
Lorentzian distance, following the lines in [12] and [13]. In particular, we show that
spacelike hypersurfaces with mean curvature bounded from above are hyperbolic,
in the sense that they admit a non constant positive superharmonic function, when
the ambient spacetime has timelike sectional curvatures bounded from below (see
Theorem 5.2).

1.1. Outline of the paper. We devote Section 2 and Section 3 to present the
basic concepts involved and establish our comparison analysis of the Hessian of
the Lorentzian distance function, respectively, together with the basic comparison
inequalities for the Laplacian. In Section 4 we state and prove the sharp estimates
for the mean curvature of spacelike hypersurfaces. Finally the proof of hyperbolicity
is presented in Section 5.

1.2. Acknowledgements. This work has been partially done during the stay of the
third named author at the Department of Mathematics of Universidad de Murcia
and the Max Planck Institut fur Mathematik in Bonn, where he enjoyed part of
a sabbatical permit. He would like to thank the staff at these institutions for the
cordial hospitality during this period.

2. Preliminaries

Consider Mn+1 an (n + 1)-dimensional spacetime, that is, a time-oriented Lo-
rentzian manifold of dimension n + 1 ≥ 2. Let p, q be points in M . Using the
standard terminology and notation from Lorentzian geometry, one says that q is in
the chronological future of p, written p� q, if there exists a future-directed timelike
curve from p to q. Similarly, q is in the causal future of p, written p < q, if there
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exists a future-directed causal (i.e., nonspacelike) curve from p to q. Obviously,
p� q implies p < q. As usual, p ≤ q means that either p < q or p = q.

For a subset S ⊂M , one defines the chronological future of S as

I+(S) = {q ∈M : p� q for some p ∈ S},

and the causal future of S as

J+(S) = {q ∈M : p ≤ q for some p ∈ S}.

Thus S ∪ I+(S) ⊂ J+(S).
In particular, the chronological future I+(p) and the causal future J+(p) of a point

p ∈M are

I+(p) = {q ∈M : p� q}, and J+(p) = {q ∈M : p ≤ q}.

As is well-known, I+(p) is always open, but J+(p) is neither open nor closed in
general.

If q ∈ J+(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian
lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).
If q /∈ J+(p), then the Lorentzian distance d(p, q) = 0 by definition. Specially,
d(p, q) > 0 if and only if q ∈ I+(p).

The Lorentzian distance function d : M×M → [0,+∞] for an arbitrary spacetime
may fail to be continuous in general, and may also fail to be finite valued. As a matter
of fact, globally hyperbolic spacetimes turn out to be the natural class of spacetimes
for which the Lorentzian distance function is finite-valued and continuous.

Given a point p ∈ M , one can define the Lorentzian distance function dp : M →
[0,+∞] with respect to p by

dp(q) = d(p, q).

In order to guarantee the smoothness of dp, we need to restrict this function on
certain special subsets of M . Let T−1M |p be the fiber of the unit future observer
bundle of M at p, that is,

T−1M |p = {v ∈ TpM : v is a future-directed timelike unit vector}.

Define the function sp : T−1M |p → [0,+∞] by

sp(v) = sup{t ≥ 0 : dp(γv(t)) = t},

where γv : [0, a) → M is the future inextendible geodesic starting at p with initial
velocity v. Then, one can define

Ĩ+(p) = {tv : for all v ∈ T−1M |p and 0 < t < sp(v)}

and consider the subset I+(p) ⊂M given by

I+(p) = expp(int(Ĩ+(p))) ⊂ I+(p).
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Observe that

expp : int(Ĩ+(p))→ I+(p)

is a diffeomorphism and I+(p) is an open subset (possible empty).
For instance, when c ≥ 0, the Lorentzian space form Mn+1

c is globally hyperbolic
and geodesically complete, and every future directed timelike unit geodesic γc in
Mn+1

c realizes the Lorentzian distance between its points. In particular, if c ≥ 0
then I+(p) = I+(p) for every point p ∈Mn+1

c (see [8, Remark 3.2]). However, when
c < 0 it can be easily seen that I+(p) = ∅ for every point p ∈ Hn+1

1 , where Hn+1
1 is the

anti-de-Sitter space, that is, the standard model of a simply connected Lorentzian
space form with negative curvature. In fact, at each point p ∈ Hn+1

1 , it holds that
every future directed timelike geodesic in Hn+1

1 starting at p is closed, which implies
that d(p, γ(t)) = +∞ for every t ∈ R. The following result summarizes the main
properties about the Lorentzian distance function (see [8, Section 3.1]).

Lemma 2.1. Let M be a spacetime and p ∈M .

(1) If M is strongly causal at p, then sp(v) > 0 for all v ∈ T−1M |p and I+(p) 6= ∅.
(2) If I+(p) 6= ∅, then the Lorentzian distance function dp is smooth on I+(p)

and its gradient ∇dp is a past-directed timelike (geodesic) unit vector field on
I+(p).

3. Analysis of the Lorentzian distance function

This section has two parts: in the first one, we are going to present estimates
for the Hessian of the Lorentzian distance to a point in a Lorentzian manifold in
terms of bounds for its timelike sectional curvatures. In the second part, we obtain
estimates for the Hessian and the Laplacian of the Lorentzian distance to a point
restricted to a spacelike hypersurface, based in the previous comparisons.

For every c ∈ R, let us define

fc(s) =


√
c coth(

√
c s) if c > 0 and s > 0

1/s if c = 0 and s > 0√
−c cot(

√
−c s) if c < 0 and 0 < s < π/

√
−c.

It is worth pointing out that fc(s) is the future mean curvature of the Lorentzian
sphere of radius s in the Lorentzian space form Mn+1

c (when I+(p) 6= ∅), that is,
the level set

Σc(s) = {q ∈ I+(p) : dp(q) = s} ⊂Mn+1
c .

To see this note that the future-directed timelike unit normal field globally defined
on Σ(s) is the gradient −∇dp

Our first result assumes that the sectional curvatures of the timelike planes of M
are bounded from above by a constant c.
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Lemma 3.1. Let Mn+1 be an (n+ 1)-dimensional spacetime such that KM(Π) ≤ c,
c ∈ R, for all timelike planes in M . Assume that there exists a point p ∈ M such
that I+(p) 6= ∅, and let q ∈ I+(p), (with dp(q) < π/

√
−c when c < 0). Then for

every spacelike vector x ∈ TqM orthogonal to ∇dp(q) it holds that

(3.1) ∇2
dp(x, x) ≥ −fc(dp(q))〈x, x〉,

where ∇2
stands for the Hessian operator on M . When c < 0 but dp(q) ≥ π/

√
−c,

then it still holds that

(3.2) ∇2
dp(x, x) ≥ − 1

dp(q)
〈x, x〉 ≥ −

√
−c
π
〈x, x〉.

On the other hand, under the assumption that the sectional curvatures of the
timelike planes of M are bounded from below by a constant c, we get the following
result.

Lemma 3.2. Let Mn+1 be an (n+ 1)-dimensional spacetime such that KM(Π) ≥ c,
c ∈ R, for all timelike planes in M . Assume that there exists a point p ∈ M such
that I+(p) 6= ∅, and let q ∈ I+(p) (with dp(q) < π/

√
−c when c < 0). Then, for

every spacelike vector x ∈ TqM orthogonal to ∇dp(q) it holds that

∇2
dp(x, x) ≤ −fc(dp(q))〈x, x〉,

where ∇2
stands for the Hessian operator on M .

Proof of Lemma 3.1. The proof follows the ideas of the proof of [8, Theorem 3.1].
Let v = exp−1

p (q) ∈ int(Ĩ+(p)) and let γ(t) = expp(tv), 0 ≤ t < sp(v), the radial
future directed unit timelike geodesic with γ(0) = p and γ(s) = q, where s = dp(q).
Recall that γ′(s) = −∇dp(q), (see [8, Proposition 3.2]). From [8, Proposition 3.3],
we know that

∇2
dp(x, x) = −

∫ s

0

(〈J ′(t), J ′(t)〉 − 〈R(J(t), γ′(t))γ′(t), J(t)〉)dt = Iγ(J, J)

where J is the (unique) Jacobi field along γ such that J(0) = 0 and J(s) = x. Since
γ : [0, s]→ I+(p) and expp : int(Ĩ+(p))→ I+(p) is a diffeomorphism, then there is
no conjugate point of γ(0) along the geodesic γ. Therefore, by the maximality of
the index of Jacobi fields [4, Theorem 10.23] we get that

(3.3) ∇2
dp(x, x) = Iγ(J, J) ≥ Iγ(X,X).
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for every vector field X along γ such that X(0) = J(0) = 0, X(s) = J(s) = x and
X(t) ⊥ γ′(t) for every t. Observe that, for all these vector fields X,

Iγ(X,X) = −
∫ s

0

(〈X ′(t), X ′(t)〉 − 〈R(X(t), γ′(t))γ′(t), X(t)〉)dt

= −
∫ s

0

(〈X ′(t), X ′(t)〉+K(t)〈X(t), X(t)〉)dt,

where K(t) stands for the sectional curvature of the timelike plane spanned by X(t)
and γ′(t). Thus, K(t) ≤ c, and from (3.3) we obtain that

(3.4) ∇2
dp(x, x) ≥ −

∫ s

0

(〈X ′(t), X ′(t)〉+ c〈X(t), X(t)〉)dt,

Assume now that s = dp(q) < π/
√
−c if c < 0, and let Y (t) be the (unique)

parallel vector field along γ such that Y (s) = x. Then, we may define X(t) =
sc(t)Y (t), where

(3.5) sc(t) =


sinh(

√
c t)

sinh(
√
c s)

if c > 0 and 0 ≤ t ≤ s

t/s if c = 0 and 0 ≤ t ≤ s
sin(
√
−c t)

sin(
√
−c s) if c < 0 and 0 ≤ t ≤ s < π/

√
−c.

Observe that X is orthogonal to γ and X(0) = 0 and X(s) = x. Moreover,

〈X(t), X(t)〉 = sc(t)
2〈x, x〉 and 〈X ′(t), X ′(t)〉 = s′c(t)

2〈x, x〉.
Therefore, using X in (3.4) we get that

∇2
dp(x, x) ≥ −

∫ s

0

(
s′c(t)

2 + csc(t)
2
)
dt 〈x, x〉 = −fc(s)〈x, x〉.

This finishes the proof of 3.1. Finally, when c < 0 but dp(q) ≥ π/
√
−c, then

KM(Π) ≤ c < 0 and we may apply our estimate (3.1) for the constant c = 0, so that

∇2
dp(x, x) ≥ −f0(dp(q))〈x, x〉 = − 1

dp(q)
〈x, x〉 ≥ −

√
−c
π
〈x, x〉.

�

Proof of Lemma 3.2. Similarly, the proof follows the ideas of the proof of [8, Theo-
rem 3.1] (see also [16, Lemma 8]). As in the previous proof, let γ : [0, s]→ I+(p) be
the radial future directed unit timelike geodesic with γ(0) = p and γ(s) = q, where
s = dp(q). From [8, Proposition 3.3], we know that

∇2
dp(x, x) = −

∫ s

0

(〈J ′(t), J ′(t)〉 − 〈R(J(t), γ′(t))γ′(t), J(t)〉)dt

= −
∫ s

0

(〈J ′(t), J ′(t)〉+K(t)〈J(t), J(t)〉)dt,
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where J is the (unique) Jacobi field along γ such that J(0) = 0 and J(s) = x, and
K(t) stands for the sectional curvature of the timelike plane spanned by J(t) and
γ′(t). Thus, K(t) ≥ c and hence

(3.6) ∇2
dp(x, x) ≤ −

∫ s

0

(〈J ′(t), J ′(t)〉+ c〈J(t), J(t)〉)dt.

Let {E1(t), . . . , En+1(t)} be an orthonormal frame of parallel vector fields along γ
such that En+1 = γ′. Write J(t) =

∑n
i=1 λi(t)Ei(t), so that J ′(t) =

∑n
i=1 λ

′
i(t)Ei(t).

Consider γc : [0, s]→Mn+1
c a future directed timelike unit geodesic in the Lorentzian

space form of constant curvature c, and let {Ec
1(t), . . . , Ec

n+1(t)} be an orthonor-
mal frame of parallel vector fields along γc such that Ec

n+1 = γ′c. Define Xc(t) =∑n
i=1 λi(t)E

c
i (t), and observe that

〈J ′(t), J ′(t)〉+ c〈J(t), J(t)〉 =
n∑
i=1

(
λ′i(t)

2 + cλi(t)
2
)

= 〈X ′c, X ′c〉c + c〈Xc, Xc〉c
= 〈X ′c, X ′c〉c − 〈Rc(Xc, γ

′
c)γ
′
c, Xc〉c,

where 〈, 〉c and Rc stand for the metric and Riemannian tensors of Mn+1
c . Then,

(3.6) becomes

(3.7) ∇2
dp(x, x) ≤ Iγc(Xc, Xc),

where Iγc is the index form of γc in the Lorentzian space form Mn+1
c .

Since there are no conjugate points of γc(0) along γc (recall that s < π/
√
−c when

c < 0), by the maximality of the index of Jacobi fields we know that

(3.8) Iγc(Xc, Xc) ≤ Iγc(Jc, Jc),

where Jc stands for the Jacobi field along γc such that Jc(0) = Xc(0) = 0 and
Jc(s) = Xc(s) ⊥ γ′c(s). Using the Jacobi equation along γc, it is straightforward to
see that Jc(t) is given by Jc(t) = sc(t)Yc(t), where sc(t) is the function given by (3.5)
and Yc(t) is the parallel vector field along γc such that Yc(s) = Xc(s) (and hence,
〈Yc(t), Yc(t)〉c = 〈Xc(s), Xc(s)〉c = 〈x, x〉 for every t). Thus,

〈Jc(t), Jc(t)〉c = sc(t)
2〈x, x〉 and 〈J ′c(t), J ′c(t)〉c = s′c(t)

2〈x, x〉,

and we can compute explicitly

Iγc(Jc, Jc) = −
∫ s

0

(〈J ′c(t), J ′c(t)〉c + c〈Jc(t), Jc(t)〉c) dt(3.9)

= −
∫ s

0

(
s′c(t)

2 + csc(t)
2
)
dt 〈x, x〉 = −fc(s)〈x, x〉.
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Therefore, (3.8) becomes

Iγc(Xc, Xc) ≤ −fc(s)〈x, x〉.

and the results directly follows from here and (3.7). �

Observe that if KM(Π) ≤ c for all timelike planes in M (curvature hypothesis in
Lemma 3.1), then for every unit timelike vector Z ∈ TM

RicM(Z,Z) = −
n∑
i=1

KM(Ei ∧ Z) ≥ −nc,

where {E1, . . . , En, En+1 = Z} is a local orthonormal frame. Our next result holds
under this weaker hypothesis on the Ricci curvature of M . When c = 0 this is
nothing but the so called timelike convergence condition.

Lemma 3.3. Let Mn+1 be an (n+ 1)-dimensional spacetime such that

RicM(Z,Z) ≥ −nc, c ∈ R,

for every unit timelike vector Z. Assume that there exists a point p ∈ M such that
I+(p) 6= ∅, and let q ∈ I+(p), (with dp(q) < π/

√
−c when c < 0). Then

(3.10) ∆̄dp(q) ≥ −nfc(dp(q)),

where ∆̄ stands for the (Lorentzian) Laplacian operator on M . When c < 0 but
dp(q) ≥ π/

√
−c, then it still holds that

(3.11) ∆̄dp(q) ≥ −
n

dp(q)
≥ −n

√
−c
π

.

Proof. The proof follows the ideas of the proof of [8, Lemma 3.1]. Observe that
our criterion here for the definition of the Laplacian operator is the one in [14] and

[4], that is, ∆̄ = tr(∇2
). Let v = exp−1

p (q) ∈ int(Ĩ+(p)) and let γ(t) = expp(tv),
0 ≤ t < sp(v), the radial future directed unit timelike geodesic with γ(0) = p
and γ(s) = q, where s = dp(q). Let {e1, . . . , en} be orthonormal vectors in TqM
orthogonal to γ′(s) = −∇dp(q), so that

(3.12) ∆̄dp(q) =
n∑
j=1

∇2
dp(ej, ej).

As in the proof of Lemma 3.1, we have that, for every j = 0, . . . , n,

∇2
dp(ej, ej) ≥ Iγ(Xj, Xj)
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for every vector field Xj along γ such that Xj(0) = 0, Xj(s) = ej and Xj(t) ⊥ γ′(t)
for every t, which by (3.12) implies that

(3.13) ∆̄dp(q) ≥
n∑
j=1

Iγ(Xj, Xj).

Assume now that s = dp(q) < π/
√
−c when c < 0, and let {E1(t), . . . , En+1(t)}

be an orthonormal frame of parallel vector fields along γ such that Ej(s) = ej for
every j = 0, . . . , n, and En+1 = γ′.

Define

Xj(t) = sc(t)Ej(t), j = 1, . . . , n,

where sc(t) is the function given by (3.5). Since Xj is orthogonal to γ and Xj(0) = 0
and Xj(s) = ej, we may use Xj in (3.13). Observe that {X1, . . . , Xn} are orthogonal
along γ, and

〈Xj(t), Xj(t)〉 = sc(t)
2 and 〈X ′j(t), X ′j(t)〉 = s′c(t)

2,

for every j = 0, . . . , n. Therefore, for every j we get

Iγ(Xj, Xj) = −
∫ s

0

(s′c(t)
2 − sc(t)

2〈R(Ej(t), γ
′(t))γ′(t), Ej(t)〉)dt,

and then
n∑
i=1

Iγ(Xj, Xj) = −n
∫ s

0

(
s′c(t)

2 − sc(t)
2

n
RicM(γ′(t), γ′(t))

)
dt

≥ −n
∫ s

0

(
s′c(t)

2 + csc(t)
2
)
dt = −nfc(s).

Thus, by (3.13) we get (3.10). Finally, when c < 0 but dp(q) ≥ π/
√
−c, then

RicM(Z,Z) ≥ −nc > 0 and we may apply (3.10) for the constant c = 0, which
yields

∆̄dp(q) ≥ −nf0(dp(q)) = − n

dp(q)
≥ −n

√
−c
π

.

�

Now we are ready to start our analysis of the Lorentzian distance function with
respect to a point on a spacelike hypersurface in M . Let ψ : Σn → Mn+1 be a
spacelike hypersurface immersed into the spacetime M . Since M is time-oriented,
there exists a unique future-directed timelike unit normal field N globally defined
on Σ. We will refer to N as the future-directed Gauss map of Σ. Let A stands for
the shape operator of Σ with respect to N . The H = −(1/n)tr(A) defines the future
mean curvature of Σ. The choice of the sign − in our definition of H is motivated
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by the fact that in that case the mean curvature vector is given by
−→
H = HN .

Therefore, H(p) > 0 at a point p ∈ Σ if and only if
−→
H (p) is future-directed.

Let us assume that there exists a point p ∈ M such that I+(p) 6= ∅ and that
ψ(Σ) ⊂ I+(p). Let r = dp denote the Lorentzian distance function with respect to
p, and let u = r ◦ψ : Σ→ (0,∞) be the function r along the hypersurface, which is
a smooth function on Σ.

Our first objective is to compute the Hessian of u on Σ. To do that, observe that

∇r = ∇u− 〈∇r,N〉N

along Σ, where ∇u stands for the gradient of u on Σ. Using that 〈∇r,∇r〉 = −1
and 〈∇r,N〉 > 0, we have that

〈∇r,N〉 =
√

1 + |∇u|2 ≥ 1,

so that

∇r = ∇u−
√

1 + |∇u|2N.
Moreover, from Gauss and Weingarten formulae, we get

∇X∇r = ∇X∇u+
√

1 + |∇u|2AX + 〈AX,∇u〉N −X(
√

1 + |∇u|2)N

for every tangent vector field X ∈ TΣ. Thus,

(3.14) ∇2u(X,X) = ∇2
r(X,X)−

√
1 + |∇u|2〈AX,X〉

for every X ∈ TΣ, where ∇2
r and ∇2u stand for the Hessian of r and u in M and

Σ, respectively. Tracing this expression, one gets that the Laplacian of u is given by

(3.15) ∆u = ∆̄r +∇2
r(N,N) + nH

√
1 + |∇u|2,

where ∆̄r is the (Lorentzian) Laplacian of r and H = −(1/n)tr(A) is the mean
curvature of Σ.

On the other hand, we have the following decomposition for X:

X = X∗ − 〈X,∇r〉∇r

with X∗ orthogonal to ∇r. In particular

(3.16) 〈X∗, X∗〉 = 〈X,X〉+ 〈X,∇r〉2.

Taking into account that

∇∇r∇r = 0

one easily gets that

∇2
r(X,X) = ∇2

r(X∗, X∗)

for every X ∈ TΣ.



GEOMETRIC ANALYSIS OF LORENTZIAN DISTANCE 11

Assume now that KM(Π) ≤ c for all timelike planes in M , and that u < π/
√
−c

on Σ when c < 0. Then by Lemma 3.1 and (3.16) we get that

∇2
r(X,X) = ∇2

r(X∗, X∗) ≥ −fc(u)〈X∗, X∗〉 = −fc(u)(1 + 〈X,∇r〉2).

for every unit tangent vector field X ∈ TΣ. Therefore, by (3.14) we have that

∇2u(X,X) ≥ −fc(u)(1 + 〈X,∇u〉2)−
√

1 + |∇u|2〈AX,X〉

for every unit X ∈ TΣ. Tracing this inequality, one gets the following inequality for
the Laplacian of u

∆u ≥ −fc(u)(n+ |∇u|2) + nH
√

1 + |∇u|2.

We summarize this in the following result.

Proposition 3.4. Let Mn+1 be a spacetime such that KM(Π) ≤ c for all timelike
planes in M . Assume that there exists a point p ∈ M such that I+(p) 6= ∅, and let
ψ : Σn → Mn+1 be a spacelike hypersurface such that ψ(Σ) ⊂ I+(p). Let r = dp
stand for the Lorentzian distance function with respect to p, and let u denote the
function r along the hypersurface Σ, (with u < π/

√
−c on Σ when c < 0). Then

(3.17) ∇2u(X,X) ≥ −fc(u)(1 + 〈X,∇u〉2)−
√

1 + |∇u|2〈AX,X〉

for every unit tangent vector X ∈ TΣ, and

(3.18) ∆u ≥ −fc(u)(n+ |∇u|2) + nH
√

1 + |∇u|2,

where H is the future mean curvature of Σ.

On the other hand, if we assume that KM(Π) ≥ c for all timelike planes in M ,
the same analysis using now Lemma 3.2 instead of Lemma 3.1 yields the following

Proposition 3.5. Let Mn+1 be a spacetime such that KM(Π) ≥ c for all timelike
planes in M . Assume that there exists a point p ∈ M such that I+(p) 6= ∅, and let
ψ : Σn → Mn+1 be a spacelike hypersurface such that ψ(Σ) ⊂ I+(p). Let r = dp
stand for the Lorentzian distance function with respect to p, and let u denote the
function r along the hypersurface Σ, (with u < π/

√
−c on Σ when c < 0). Then

(3.19) ∇2u(X,X) ≤ −fc(u)(1 + 〈X,∇u〉2)−
√

1 + |∇u|2〈AX,X〉

for every unit tangent vector X ∈ TΣ, and

(3.20) ∆u ≤ −fc(u)(n+ |∇u|2) + nH
√

1 + |∇u|2,

where H is the future mean curvature of Σ.

Finally, under the assumption RicM(Z,Z) ≥ −nc, c ∈ R, for every unit timelike
vector Z, Lemma 3.3 and (3.15) lead us to the following result.
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Proposition 3.6. Let Mn+1 be an (n+ 1)-dimensional spacetime such that

RicM(Z,Z) ≥ −nc, c ∈ R,
for every unit timelike vector Z. Assume that there exists a point p ∈ M such
that I+(p) 6= ∅, and let ψ : Σn → Mn+1 be a spacelike hypersurface such that
ψ(Σ) ⊂ I+(p). Let r = dp stand for the Lorentzian distance function with respect to
p, and let u denote the function r along the hypersurface Σ, (with u < π/

√
−c on Σ

when c < 0). Then

∆̄u ≥ −nfc(u) +∇2
r(N,N) + nH

√
1 + |∇u|2,

where N and H are the future-directed Gauss map and the future mean curvature of
Σ, respectively.

4. Hypersurfaces bounded by a level set of the Lorentzian distance

Under suitable bounds for the sectional curvatures of the ambient spacetime and
the Ricci curvature of the immersed hypersurface, we compare in this section the
mean curvature of this hypersurface with the mean curvature of the level sets of the
Lorentzian distance in the Lorentzian space forms. First of all, and following the
terminology introduced by Bessa and Costa in [5], a complete Riemannian manifold
Σ is said to have Ricci curvature RicΣ with strong quadratic decay if

RicΣ ≥ −c2(1 + %2 log2(%+ 2)),

where % is the distance function on Σ to a fixed point and c is a positive constant.
Obviously, every complete Riemannian manifold with Ricci curvature bounded from
below has Ricci curvature with strong quadratic decay. Our results here will be an
application of the generalized Omori-Yau maximum principle [15, 17] in the following
version given by Chen and Xin [6].

Lemma 4.1 (Generalized Omori-Yau maximum principle). Let Σ be a complete
Riemannian manifold having Ricci curvature with strong quadratic decay, and let
u : Σ→ R be a smooth function.

a) If u is bounded from above on Σ, then for each ε > 0 there exists a point pε ∈ Σ
such that

|∇u(pε)| < ε, ∆u(pε) < ε, sup
Σ
u− ε < u(pε) ≤ sup

Σ
u;

b) If u is bounded from below on Σ, then for each ε > 0 there exists a point pε ∈ Σ
such that

|∇u(pε)| < ε, ∆u(pε) > −ε, inf
Σ
u ≤ u(pε) < inf

Σ
u+ ε.

Here ∇u and ∆u denote, respectively, the gradient and the Laplacian of u.

Now we are ready to give our first result.
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Theorem 4.2. Let Mn+1 be an (n+ 1)-dimensional spacetime such that

RicM(Z,Z) ≥ −nc, c ∈ R,
for every unit timelike vector Z. Let p ∈ M be such that I+(p) 6= ∅, and let ψ :
Σ→Mn+1 be a complete spacelike hypersurface such that ψ(Σ) ⊂ I+(p) ∩B+(p, δ)
for some δ > 0 (with δ ≤ π/

√
−c when c < 0), where B+(p, δ) denotes the future

inner ball of radius δ,

B+(p, δ) = {q ∈ I+(p) : dp(q) < δ}.
If Σ has Ricci curvature with strong quadratic decay, then its future mean curvature
H satisfies

inf
Σ
H ≤ fc(sup

Σ
u),

where u denotes the Lorentzian distance dp along the hypersurface.

Proof. As RicM(Z,Z) ≥ −nc, by Proposition 3.6 we have that

∆u ≥ −nfc(u) +∇2
r(N,N) + nH

√
1 + |∇u|2.

Now, by applying Lemma 4.1, given ε > 0, there exists a point pε ∈ Σ such that

|∇u(pε)| < ε, ∆u(pε) < ε, sup
Σ
u− ε < u(pε) ≤ sup

Σ
u ≤ δ.

Therefore

ε > ∆u(pε) ≥ −nfc(u(pε)) +∇2
r(N(pε), N(pε)) + nH(pε)

√
1 + |∇u(pε)|2,

and

(4.1) inf
Σ
H ≤ H(pε) ≤

ε+ n fc(u(pε))−∇
2
r(N(pε), N(pε))

n
√

1 + |∇u(pε)|2
.

On the other hand, we have the following decomposition for N(pε):

N(pε) = N∗(pε)− 〈N(pε),∇r(pε)〉∇r(pε),
with N∗(pε) orthogonal to ∇r(pε). Since,

〈∇r(pε),∇r(pε)〉 = 〈N(pε), N(pε)〉 = −1, and

∇r(pε) = ∇u(pε)− 〈∇r(pε), N(pε)〉N(pε),

we have that |N∗(pε)|2 = |∇u(pε)|2 and hence limε→0 |N∗(pε)|2 = 0. That is,
limε→0N

∗(pε) = 0.

Now, taking into account that ∇2
r(N(pε), N(pε)) = ∇2

r(N∗(pε), N
∗(pε)) and

making ε→ 0 in (4.1), we conclude that

inf
Σ
H ≤ lim

ε→0
H(pε) ≤ fc(sup

Σ
u).

�
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On the other hand, under the assumption that the sectional curvatures of timelike
planes in M are bounded from below we derive the following.

Theorem 4.3. Let Mn+1 be an (n+1)-dimensional spacetime such that KM(Π) ≥ c,
c ∈ R, for all timelike planes in M . Let p ∈ M be such that I+(p) 6= ∅, and let
ψ : Σ → Mn+1 be a complete spacelike hypersurface such that ψ(Σ) ⊂ I+(p). If Σ
has Ricci curvature with strong quadratic decay (and infΣ u < π/

√
−c when c < 0),

then its future mean curvature H satisfies

sup
Σ
H ≥ fc(inf

Σ
u),

where u denotes the Lorentzian distance dp along the hypersurface. In particular, if
infΣ u = 0 then supΣ H = +∞.

Proof. We start by applying part b) of Lemma 4.1 to the positive function u. There-
fore, given ε > 0, there exists a point pε ∈ Σ such that

|∇u(pε)| < ε, ∆u(pε) > −ε, 0 ≤ inf
Σ
u ≤ u(pε) < inf

Σ
u+ ε.

Recall that, when c < 0, we are assuming that infΣ u < π/
√
−c. Thus, if ε is small

enough we have that u(pε) < π/
√
−c. Therefore, the inequality (3.20) in Proposition

3.5 holds at pε and we obtain that

−ε < ∆u(pε) ≤ −fc(u(pε))(n+ |∇u(pε)|2) + nH(pε)
√

1 + |∇u(pε)|2

for ε small enough. It follows from here that

(4.2) sup
Σ
H ≥ H(pε) ≥

−ε+ fc(u(pε))(n+ |∇u(pε)|2)

n
√

1 + |∇u(pε)|2
,

and making ε → 0 we conclude the result. The last assertion follows from the fact
that lims→0 fc(s) = +∞. �

As a direct application of Theorem 4.3 we get the following.

Corollary 4.4. Under the assumptions of Theorem 4.3, if Σ has Ricci curvature
with strong quadratic decay and its future mean curvature H is bounded from above
on Σ, then there exists some δ > 0 such that ψ(Σ) ⊂ O+(p, δ), where O+(p, δ)
denotes the future outer ball of radius δ,

O+(p, δ) = {q ∈ I+(p) : dp(q) > δ}.

For a proof, simply observe that supΣH < +∞ implies that infΣ u > 0. This
result, as well as the next ones, has a specially illustrative consequence when the
ambient is the Lorentz-Minkowski spacetime (see Remark 1 at the end of this sec-
tion).
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Corollary 4.5. Under the assumptions of Theorem 4.3, when c ≥ 0 there exists
no complete spacelike hypersurface Σ contained in I+(p) having Ricci curvature
with strong quadratic decay and H ≤

√
c on Σ. When c < 0, there exists no

complete spacelike hypersurface Σ contained in I+(p) having Ricci curvature with
strong quadratic decay, infΣ u < π/2

√
−c, and H ≤ 0 on Σ.

In fact, when c ≥ 0 our Theorem 4.3 implies that for every complete spacelike
hypersurface Σ contained in I+(p) and having Ricci curvature with strong quadratic
decay it holds that

sup
Σ
H ≥ fc(inf

Σ
u) > lim

s→+∞
fc(s) =

√
c.

Therefore, it cannot happen supΣH ≤
√
c. On the other hand, when c < 0 our

Theorem 4.3 also implies that every complete spacelike hypersurface Σ contained
in I+(p), with infΣ u < π/2

√
−c, and having Ricci curvature with strong quadratic

decay satisfies

sup
Σ
H ≥ fc(inf

Σ
u) > fc(π/2

√
−c) = 0.

Therefore, it cannot happen supΣH ≤ 0.
In particular, when the ambient spacetime is a Lorentzian space form, by putting

together Theorems 4.2 and 4.3, we derive the following consequence.

Theorem 4.6. Let Mn+1
c be a Lorentzian space form of constant sectional curvature

c and let p ∈Mn+1
c . Let us consider ψ : Σ→Mn+1

c a complete spacelike hypersurface
such that ψ(Σ) ⊂ I+(p)∩B+(p, δ) for some δ > 0 (with δ ≤ π/

√
−c if c < 0). If Σ

has Ricci curvature with strong quadratic decay, then its future mean curvature H
satisfies

inf
Σ
H ≤ fc(sup

Σ
u) ≤ fc(inf

Σ
u) ≤ sup

Σ
H,

where u denotes the Lorentzian distance dp along the hypersurface.

As is well known, the curvature tensor R of Σ can be described in terms of RM ,
the curvature tensor of the ambient spacetime, and the shape operator of Σ by the
so called Gauss equation, which can be written as

(4.3) R(X, Y )Z = (RM(X, Y )Z)> + 〈AX,Z〉AY − 〈AY,Z〉AX

for all tangent vector fields X, Y, Z ∈ TΣ, where (RM(X, Y )Z)> denotes the tan-
gential component of RM(X, Y )Z. Observe that our choice here for the curvature
tensor is the one in [4] (and the opposite to that in [14]). Therefore, the Ricci
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curvature of Σ is given by

Ric(X,X) = RicM(X,X)−KM(X ∧N)|X|2 + nH〈AX,X〉+ |AX|2

= RicM(X,X)−
(
KM(X ∧N) +

n2H2

4

)
|X|2 + |AX +

n

2
X|2(4.4)

≥ RicM(X,X)−
(
KM(X ∧N) +

n2H2

4

)
|X|2,

for X ∈ TΣ, where RicM stands for the Ricci curvature of the ambient spacetime
and KM(X ∧N) denotes the sectional curvature of the timelike plane spanned by X
and N . In particular, when Mn+1

c is a Lorentzian space form of constant sectional
curvature c, then RicM(X,X) = nc|X|2 for all spacelike vector X ∈ TΣ, and (4.4)
reduces to

Ric(X,X) ≥
(

(n− 1)c− n2H2

4

)
|X|2.

Therefore, if infΣH < −∞ and supΣ H < +∞ (that is, supΣ H
2 < +∞), then

the Ricci curvature of Σ is bounded from below. In particular, every spacelike
hypersurface with constant mean curvature in Mn+1

c has Ricci curvature bounded
from below. As a consequence.

Corollary 4.7. Let Mn+1
c be a Lorentzian space form of constant sectional curvature

c and let p ∈Mn+1
c . If Σ is a complete spacelike hypersurface in Mn+1

c with constant
mean curvature H which is contained in I+(p) and bounded from above by a level
set of the Lorentzian distance function dp (with dp < π/

√
−c if c < 0), then Σ is

necessarily a level set of dp.

Proof. Our hypothesis imply that Σ is contained in I+(p)∩B+(p, δ) for some δ > 0
(with δ ≤ π/

√
−c if c < 0), and that Σ has Ricci curvature bounded from below by

the constant (n− 1)c− n2H2/4. Therefore, by Theorem 4.6 we get that

H ≤ fc(sup
Σ
u) ≤ fc(inf

Σ
u) ≤ H,

which implies that supΣ u = infΣ u = f−1
c (H) and then Σ is necessarily the level set

dp = f−1
c (H). �

Remark 1. As observed after the proof of Corollary 4.4, our last results have
specially simple and illustrative consequences when the ambient is the Lorentz-
Minkowski spacetime. Consider Ln+1 the standard model of the Lorentz-Minkowski
space, that is, the real vector space Rn+1 with canonical coordinates (x1, . . . , xn+1),
endowed with the Lorentzian metric

〈, 〉 = dx2
1 + · · ·+ dx2

n − dx2
n+1
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and with the time orientation determined by en+1 = (0, . . . , 0, 1). For a given p ∈
Ln+1, it can be easily seen that

I+(p) = {q ∈ Ln+1 : 〈q − p, q − p〉 < 0, and 〈q − p, en+1〉 < 0}.

The Lorentzian distance is given by dp(q) =
√
−〈q − p, q − p〉 for every q ∈ I+(p),

and the level sets of dp are precisely the future components of the hyperbolic spaces
centered at p. Also, observe that the boundary of I+(p) is nothing but the future
component of the lightcone with vertex at p.

Then, Corollary 4.4 implies that every complete spacelike hypersurface contained
in I+(p) and having bounded mean curvature is bounded away from the lightcone,
in the sense that there exists some δ > 0 such that

〈q − p, q − p〉 ≤ −δ2 < 0

for every q ∈ Σ. Also, Corollary 4.5 implies that there exists no complete space-
like hypersurface contained in I+(p) and having non-positive bounded future mean
curvature. In particular, there exists no complete hypersurface with constant mean
curvature H ≤ 0 contained in I+(p). Finally, Corollary 4.7 allows to improve The-
orem 2 in [1] as follows.

Corollary 4.8. The only complete spacelike hypersurfaces with constant mean cur-
vature in the Lorentz-Minkowski space Ln+1 which are contained in I+(p) (for some
fixed p ∈ Ln+1) and bounded from above by a hyperbolic space centered at p are
precisely the hyperbolic spaces centered at p.

5. Hyperbolicity of spacelike hypersurfaces

The last of the main results of this paper concerns some function theoretic proper-
ties satisfied by spacelike hypersurfaces with controlled mean curvature in spacetimes
with timelike sectional curvatures bounded from below.

First of all, we are going to recall a standard characterization of hyperbolicity of
a Riemannian manifold.

Lemma 5.1 ([10]). A Riemannian manifold Σn is hyperbolic if and only if it holds
one of the two following equivalent conditions:

(a) There exists a non-constant bounded (from above and from below) subhar-
monic function globally defined on Σ.

(b) There exists a non-constant positive superharmonic function globally defined
on Σ.

For the equivalence between a) and b), observe that if f is a non-constant bounded
(from above and from below) subharmonic function on Σ, then choosing C > maxΣ f
we obtain C − f a non-constant positive superharmonic function. Conversely, if f
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is a non-constant positive superharmonic function on Σ, then f/
√

1 + f determines
a non-constant bounded (from above and from below) subharmonic function.

As a consequence of our previous results we have the following.

Theorem 5.2. Let Mn+1 be an (n + 1)-dimensional spacetime, n ≥ 2, such that
KM(Π) ≥ c for all timelike planes in M . Assume that there exists a point p ∈Mn+1

such that I+(p) 6= ∅, and let ψ : Σ → Mn+1 be a spacelike hypersurface with
ψ(Σ) ⊂ I+(p). Let us denote by u the function dp along the hypersurface, and
assume that u ≤ π/2

√
−c if c < 0. Then

(i) If the future mean curvature of Σ satisfies

(5.1) H ≤ 2
√
n− 1

n
fc(u) (with H < fc(u) at some point of Σ if n = 2)

then Σ is hyperbolic.
(ii) If c = 0 and H ≤ 0, then Σ is hyperbolic.

(iii) If c > 0 and H ≤ 2
√
n−1
n

√
c, then Σ is hyperbolic.

In particular, every maximal hypersurface contained in I+(p) (and satisfying u <
π/2
√
−c if c < 0) is hyperbolic.

Proof. In order to prove (i), first of all, observe that u is a non-constant positive
function defined on Σ. Otherwise, Σ would be an open piece of the level set given by
dp = u and its mean curvature would be H = fc(u), which cannot happen because
of (5.1). Now we apply Proposition 3.5 to get

∆u ≤ −fc(u)(n+ |∇u|2) + nH
√

1 + |∇u|2.
Observe that x =

√
n− 2 is a minimum of the function

φ(x) =
n+ x2

n
√

1 + x2
, with x ≥ 0,

with φ(
√
n− 2) = 2

√
n− 1/n. Therefore

2
√
n− 1

n
≤ n+ |∇u|2

n
√

1 + |∇u|2
.

Since fc(u) ≥ 0 (recall that we assume u ≤ π/2
√
−c if c < 0), then our hypothesis

on H implies that

H ≤ 2
√
n− 1

n
fc(u) ≤ fc(u)(n+ |∇u|2)

n
√

1 + |∇u|2
.

That is,

nH
√

1 + |∇u|2 ≤ fc(u)(n+ |∇u|2)

which yields ∆u ≤ 0. As a consequence, u is a non-constant positive superharmonic
function on Σ and hence it is hyperbolic.
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To prove (ii) and (iii), simply observe that f0(u) = 1/u > 0 and fc(u) =√
c coth(

√
cu) >

√
c on Σ. �
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