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INTRODUCTION

In this paper we introduce a somewhat surprising extension of the category of class two nilpo-
tent groups. It has the same objects but, unlike the latter, its morphisms are closed under point-
wise addition of maps. At the same time the class of its morphisms is much smaller than the
class of all maps between groups. In fact, the morphisms are quadratic maps of very special kind
which we call q-maps. By definition a map f : G → H is called a q-map, if the expression
(x | y)f = −(f(x) + f(y)) + f(x + y) lies in the commutator subgroup of H and is linear in x
and y. Any homomorphism is a q-map, but as we said, the sum and composite of two q-maps is
still a q-map and therefore one obtains the category Niq, with the objects all nilpotent groups of
class two and morphisms all q-maps between them. The advantage of Niq is the fact that hom’s
in Niq are still nil2-groups. Composition in Niq is left distributive, but not right distributive. Ac-
tually Niq is an example of a right quadratic category in the sense of [1]. Since the category Niq

contains more morphisms than Nil, two nonisomorphic groups might be isomorphic as objects
of Niq. Thus the classification problems (say of finite groups) in Niq are easier (but still highly
nontrivial) than the corresponding problems in Nil.

We also indicate an approach to such classification questions using the notion of linear ex-
tension of categories from [3]. Namely, we construct several linear extensions connecting the
category Niq to some simpler categories, among them some additive ones which might be sus-
ceptible to representation-theoretic classification methods. The point is that a linear extension
induces bijection on isomorphism classes of objects.

Here is a short description of the contents of the paper. We begin by reproducing in a max-
imally elementary way some known facts about the category of class two nilpotent groups in
section 1. In section 2 we present two variants of the notion of quadratic map for non-abelian
groups and investigate some basic properties of such maps. Then in section 3 we introduce the
new class of q-maps, lying strictly between homomorphisms and quadratic maps and obtain var-
ious key properties of this class. Then in the central section 4 using the q-maps we introduce the
category Niq and give some of its features.

We then continue the study of Niq using linear extensions of categories. In the next section
5 we recall this notion and exhibit the category Nil of class two nilpotent groups and homomor-
phism as a linear extension of a simpler category Nil∼ that up to equivalence can be described
in terms of 2-cohomology classes of abelian groups. Then in section 6 we do a similar thing
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with Niq in place of Nil; this time the simpler category Niq∼ is even additive, unlike Nil∼, and
moreover is itself a linear extension of an even smaller additive category Niq≈.

In the next section 7 we introduce a particular class of nil2-groups which we call q-split. This
class seems to be a simplest nontrivial one admitting classification modulo isomorphism in Niq

in terms of abelian groups. At the same time, it is quite rich, and smallest examples of non-q-split
groups are not quite trivial.

In section 8 we exhibit an analog of the notion of q-map and the category Niq for Lie algebras
and prove that in the uniquely 2-divisible situation the classical Maltsev correspondence between
nil2 groups and Lie algebras extends to q-maps. This fact has some consequences for the clas-
sification questions in view of further linear extensions on the Lie algebra side. Finally in the
last section 9 we, using methods of nonabelian cohomology, construct an obstruction to lifting
homomorphisms to q-maps and in particular find an obstruction for a nil2-group to be q-split.

1. THE CATEGORY Nil

The material in this section is well known and included for convenience of the reader and to
compare with what follows next.

We fix some notation. Groups will be written additively. For a group G and elements a, b ∈ G
we let [a, b] = −a − b + a + b be the commutator of a and b. If G1 and G2 are subgroups of G,
then [G1, G2] denotes the subgroup generated by elements [a, b], where a ∈ G1 and b ∈ G2. An
element a ∈ G is called central if [a, x] = 0 for all x ∈ G. We denote by Z(G) the center of G,
which is the subgroup consisting of all central elements of G.

For any group G we denote by Gab the abelianization of G, that is, the quotient

Gab := G/[G, G].

For an element x ∈ G we let x̂ denote the class of x in Gab. For any abelian group A one denotes
by Λ2(A) the second exterior power of A, which is the quotient of A ⊗ A by the subgroup
generated by elements of the form a ⊗ a, a ∈ A.

A subgroup A of a group G is called central if [G, A] = 0, in other words A ⊂ Z(G). A short
exact sequence of groups

E =
(
0 → A

i
−→ G

p
−→ Q → 0

)

is called a central extension of Q by A if i(A) is a central subgroup of G. We refer to, e. g., [5]
for details on the relationship between central extensions and the second cohomology.

A group G is of nilpotence class two, or is a nil2-group, if all triple commutators of G vanish,
[[G, G], G] = 0, i. e. one has [G, G] ⊆ Z(G).

The smallest nonabelian groups of nilpotence class two are the quaternion group Q8 and the
dihedral group D4 = Z/4Z n Z/2Z, both of order 8. We denote by Nil the category of groups
of nilpotence class two.

1.1. Lemma. For any G ∈ Nil one has:

i) There is a well-defined homomorphism Λ2(Gab) → G given by â ∧ b̂ 7→ [a, b].
ii) For any a, b ∈ G one has [a, b] = a + b − a − b.

iii) One has the inclusion [G, G] ⊂ Z(G).
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iv) For any a, b ∈ G and any n ∈ Z one has

na + nb = n(a + b) +
n(n − 1)

2
[a, b].

�

The inclusion functor Nil ⊂ Groups has a left adjoint, given by

G 7→ Gnil := G/[[G, G], G].

Since left adjoints preserve all existing colimits, one can obtain coproducts in Nil as (−)nil of
coproducts in Groups. But in fact coproducts in Nil are much easier to construct directly than
those in Groups. Namely one has

1.2. Proposition. For two nil2-groups G, H let G ∨ H be the set Gab⊗Hab × G × H . The
equalities

(ξ, g, h) + (ξ′, g′, h′) = (ξ + ξ′ − ĝ′ ⊗ ĥ, g + g′, h + h′),

− (ξ, g, h) = (−ξ − ĝ ⊗ ĥ,−g,−h),

0 = (0, 0, 0)

equip this set with a nil2-group structure such that there is a central extension

0 → Gab ⊗ Hab → G ∨ H → G × H → 0.

Moreover the maps iG : G → G ∨ H , iH : H → G ∨ H given by iG(g) = (0, g, 0) and
iH(h) = (0, 0, h) form a coproduct diagram in Nil.

Proof. The map (G × H) × (G × H) → Gab ⊗ Hab given by ((g, h), (g′, h′)) 7→ −ĝ′ ⊗ ĥ is
easily seen to be a 2-cocycle, so it indeed defines a central extension as above, and the indicated
maps are clearly homomorphisms. One calculates

[(ξ, g, h), (ξ′, g′, h′)] = (ĝ ⊗ ĥ′ − ĝ′ ⊗ ĥ, [g, g′], [h, h′]);

in particular, it follows that the elements (0, [g, g ′], 0) and (0, 0, [h, h′]), along with (ξ, 0, 0), are
central in G ∨ H , so that the latter is a nil2-group.

Moreover in G ∨ H one obviously has the identities

(ξ, g, h) = (ξ, 0, 0) + (0, g, 0) + (0, 0, h)

and
(ĝ ⊗ ĥ, 0, 0) = [(0, g, 0), (0, 0, h)].

Hence if we want to extend some homomorphisms u : G → X , v : H → X with X ∈ Nil to a
homomorphism (u, v) : G ∨ H → X along iG and iH , by the above identities we have a unique
choice, namely to put

(ξ, g, h) 7→ [u, v](ξ) + u(g) + v(h),

where [u, v] : Gab ⊗ Hab → X is determined by [u, v](ĝ ⊗ ĥ) = [u(g), v(h)]. Since X is in
Nil, the expression [u(g), v(h)] factors through Gab × Hab and is bilinear, so we indeed have a
correctly defined map G ∨ H → X . Then using the fact that the elements [u(g), v(h)] are also
central in X , it is easy to see that this map is in fact a homomorphism. �
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The forgetful functor Nil → Sets has a left adjoint, whose value on a set S is known as the
free nilpotent group of class two generated by S and is denoted by ZNil[S]. If FS is the free group
spanned by S, then ZNil[S] = (FS)nil. Moreover since left adjoints preserve coproducts, and S is
the coproduct of S copies of a singleton in Sets, one has

ZNil[S] =
∨

S

Z

in Nil. Using Proposition 1.2, we obtain the following particular case of the famous result of
Witt, which asserts that the graded Lie ring obtained by the lower central series of a free group
is a free Lie ring.

1.3. Corollary. For a free nil2-group G one has the following central extension

0 → Λ2(Gab) → G → Gab → 0

Proof. It suffices to prove the lemma for G = ZNil[S] with S finite. Indeed every S is a directed
colimit of its finite subsets, all functors under consideration preserve colimits, and a directed
colimit of short exact sequences is short exact.

For finite S we use induction on the number of elements, the case of one element, i. e. G = Z,
being trivially true. In other words, we have to show that if the above sequence is short exact for
G and H , then it also is for G∨H . Now this is clear from the following diagram with exact rows
and columns

0

��

0

��

Gab ⊕ Hab

��

=
// Gab ⊕ Hab

��

Λ2((G ∨ H)ab) //

��

G ∨ H //

��

(G ∨ H)ab

∼=

��

// 0

0 // Λ2(Gab) × Λ2(Hab) //

��

G × H //

��

Gab × Hab // 0

0 0

taking into account that for any G, H the canonical homomorphism Gab ⊕Hab → (G ∨H)ab is
an isomorphism since (−)ab is a left adjoint and thus preserves all colimits. �

2. QUADRATIC MAPS BETWEEN NONABELIAN GROUPS

Let G and H be arbitrary groups. Call a map f : G → H weakly quadratic if for any a, b ∈ G
the cross-effect

(a | b)f := −(f(a) + f(b)) + f(a + b)
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commutes with f(c) for all c ∈ G and is linear in a and b. Thus we have

f(a + b) = f(a) + f(b) + (a | b)f ,

and the equalities
(a1 + a2 | b)f = (a1 | b)f + (a2 | b)f ,
(a | b1 + b2)f = (a | b1)f + (a | b2)f ,
(a | b)f + f(c) = f(c) + (a | b)f

hold for any a, a1, a2, b1, b2, b, c ∈ G.
A weakly quadratic map f : G → H is quadratic [1] if in fact (a | b)f ∈ Z(H) for all a, b ∈ G.
Obviously every weakly quadratic map to an abelian group is quadratic. We denote the set

of all weakly quadratic maps from G to H by wQuad(G, H) and that of quadratic maps by
Quad(G, H). It is clear that a map f : G → H is a homomorphism iff (− | −)f = 0. Thus

Hom(G, H) ⊆ Quad(G, H) ⊆ wQuad(G, H).

2.1. Lemma. For f ∈ wQuad(G, H) the following assertions are true:

i) The cross-effect yields a well-defined homomorphism (− | −)f : Gab ⊗ Gab → H .
ii) f(0) = 0.

iii) f(−a) = −f(a) + (a | a)f .
iv) If c ∈ [G, G], then for any a ∈ G one has f(a + c) = f(a) + f(c). In particular the

restriction of f to the commutator subgroup is a homomorphism.
v) For any a, b ∈ G one has

f([a, b]) = −f(b + a) + f(a + b) = [f(a), f(b)] + (a | b)f − (b | a)f .

vi) For any a, b, c ∈ G one has f([a, [b, c]]) = [f(a), [f(b), f(c)]].

Proof. i) Since the elements (a | b)f commute with everything in the image of f , they centralize
the subgroup generated by this image. But they belong to this subgroup themselves, so commute
with each other. Thus for each a ∈ G the map (a | −)f : G → H is a homomorphism with
abelian image, hence it factors trough Gab. Similarly for (− | b)f .

ii) 0 = (0 | 0)f = −f(0) − f(0) + f(0) = f(0).
iii) By ii),

0 = f(0) = f(a − a) = f(a) + f(−a) + (a | −a)f

and the statement follows.
iv) By i), (a | c)f = 0.
v) We have

f([a, b]) = f(−(b + a) + a + b)

= f(−(b + a)) + f(a + b) + (−(b + a) | a + b)f

= −f(b + a) + (b + a | b + a)f + f(a + b) + (−(b + a) | a + b)f (by iii))

= −f(b + a) + f(a + b) (by i))

= −(f(b) + f(a) + (b | a)f ) + f(a) + f(b) + (a | b)f

= [f(a), f(b)] + (a | b)f − (b | a)f .
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vi) We have

f([a, [b, c]]) = [f(a), f([b, c])] + (a | [b, c])f − ([b, c] | a)f (by v))

= [f(a), f([b, c])] (by i))

= [f(a), [f(b), f(c)] + (b | c)f − (c | b)f ] (by v))

= [f(a), [f(b), f(c)]] (by i)).

�

2.2. Corollary. Let f : G → H be a weakly quadratic map. If H is a nilpotent group of class
two, then f factors through Gnil = G/[G, [G, G]]. Thus

wQuad(G, H) ∼= wQuad(Gnil, H)

Quad(G, H) ∼= Quad(Gnil, H).

Proof. Indeed, if c ∈ [G, [G, G]] then f(c) = 0 thanks to vi) of Lemma 2.1. Thus f(a+c) = f(a)
by iv) of Lemma 2.1. �

The set of quadratic maps for nilpotent groups of class two has some remarkable properties.
First of all unlike Hom(G, H) or wQuad(G, H) the set Quad(G, H) is a group with respect to
the pointwise addition of maps. This is the subject of the following Lemma.

2.3. Lemma. Let G be a group and let H be a nilpotent group of class two. If the maps
f, g : G → H are quadratic, then f + g and −f are also quadratic and

(a | b)f+g = (a | b)f + (a | b)g + [f(b), g(a)],

(a | b)−f = [f(b), f(a)] − (a | b)f .

Proof. The above formulæ for (− | −)f+g and (− | −)−f can be easily checked. Since the
commutators are central, it remains to show that [f(b), g(a)] is linear in a and b for any quadratic
f and g. But this is clear, because [−,−] is central, bilinear and vanishes on central elements. �

2.4. Example ([2]). For any group G there exists a universal weakly quadratic map p2 : G →
P2G such that for any other weakly quadratic map q : G → H there is a unique homomorphism
fq : P2G → H with q = fqp2. Thus

wQuad(G, H) ∼= Hom(P2G, H).

One defines P2G by the pullback square

P2G // //

��

��

y
G
��

diagonal

��

G ∨ G // // G × G.

Thus by Proposition 1.2 there is a central extension

(1) 0 → Gab ⊗ Gab ι
−→ P2G

π
−→ G → 0.
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and P2G is isomorphic to the set Gab⊗Gab × G with the group structure given by

(ξ, g) + (ξ′, g′) = (ξ + ξ′ − ĝ ⊗ ĝ′, g + g′).

The universal weakly quadratic map p2 : G → P2G is given by p2(g) = (0, g). Indeed in P2G
one then has

(x̂ ⊗ ŷ, 0) = −((0, x) + (0, y)) + (0, x + y) = (x | y)p2

and
(ξ, g) = (ξ, 0) + p2(g),

so to factor a weakly quadratic map q : G → H through p2 via a homomorphism fq : P2G → H
one is forced to put

fq (ξ, g) = (− | −)q(ξ) + q(g).

One then checks easily that this indeed gives the required factorization.
Note that the universal weakly quadratic map p2 : G → P2G is not only weakly quadratic but

actually also quadratic.

2.5. Lemma. For any G ∈ Niq and A ∈ Ab one has an exact sequence:

0 → Hom(G, A) → Quad(G, A) → Hom(Gab ⊗ Gab, A) → H2(G, A)

where the last homomorphism is given by f 7→ f∗([G]). Here f : Gab ⊗ Gab → A is a ho-
momorphism and [G] ∈ H2(G, Gab ⊗ Gab) is the class represented by the central extension
(1).

Proof. The result is an immediate consequence of the 5-term exact sequence in group cohomol-
ogy (see for example [5], page 15) applied to the central extension (1) and from the fact that for
abelian A one has Hom(P2G, A) ∼= Quad(G, A). �

2.6. Lemma. For any groups (Gi)i∈I and H one has natural bijections

Quad(H,
∏

i

Gi) ≈
∏

i

Quad(H, Gi).

If moreover H ∈ Nil then there is a central extension

0 → Hom(Gab
1 ⊗ Gab

2 , Z(H))
α
−→ Quad(G1 × G2, H) → Quad(G1, H) × Quad(G2, H) → 0

where (α(ξ))(g1, g2) = ξ(ĝ1, ĝ2) for ξ ∈ Hom(Gab
1 ⊗ Gab

2 , Z(H)) and gk ∈ Gk, k = 1, 2.

Proof. The first assertion is clear. For the second, take any elements fk ∈ Quad(Gk, H), k =
1, 2. Then the composite maps fkpk are again quadratic, where pk : G1 × G2 → Gk are the
projections. Thus f = f1p1 + f2p2 : G1 × G2 → H is a quadratic map. It is clear that
fik = fk, where ik : Gk → G1 × G2 are the standard inclusions. This shows that the map
Quad(G1 ×G2, H) → Quad(G1, H)×Quad(G2, H) is surjective. Let us compute the kernel of
the latter homomorphism. Take an f from the kernel. Then f : G1 × G2 → H is a quadratic
map such that f(g1, 0) = 0 = f(0, g2) for all gk ∈ Gk. Define ξ : Gab

1 × Gab
2 → Z(H) by

ξ(ĝ1, ĝ2) := ((g1, 0) | (0, g2))f . Then one has

f(g1, g2) = f((g1, 0) + (0, g2)) = ((g1, 0) | (0, g2))f = ξ(ĝ1, ĝ2)

and the lemma follows. �



8 M. JIBLADZE AND T. PIRASHVILI

In the rest of the paper we will assume that all groups under consideration are nilpotent of
class two.

2.7. Lemma. Let f : G → H be a weakly quadratic map. For any homomorphism h : G1 → G
the composite fh : G1 → H is also weakly quadratic and

(a | b)fh = (h(a) | h(b))f , a, b ∈ G1;

moreover if f is quadratic then so is fh.
For any homomorphism g : H → H1 the composite gf : G → H1 is also weakly quadratic

and
(a | b)gf = g((a | b)f ).

If moreover f is quadratic then gf will be quadratic provided g carries central elements to
central elements.

�

Thus for any N ∈ Nil, one obtains functors

wQuad(−, N) : Nilop → Sets,

Quad(−, N) : Nilop → Nil,

wQuad(N,−) : Nil → Sets.

In fact by Example 2.4 the last functor is representable, i. e. one has

wQuad(N,−) ≈ HomNil(P2N,−).

However the mapping Quad(N,−) is NOT functorial.

2.8. Examples. i) For a fixed n ∈ Z, consider the map n : G → G given by a 7→ na. Then

(a | b)n = −
n(n − 1)

2
[a, b].

Thus n ∈ Quad(G, G).
ii) Let + : G × G → G be the map given by (a, b) 7→ a + b. Then

((a, b) | (c, d))+ = [c, b].

In particular + ∈ Quad(G × G, G).
iii) For any elements a ∈ G and b ∈ Z(G) we put

fa,b(n) = na +
n(n − 1)

2
b.

The map fa,b : Z → G is a quadratic map with (n | m)fa,b
= nmb for any n, m ∈ Z. We claim

that any quadratic map f : Z → G is of this form. Indeed, one puts a = f(1), b = (1 | 1)f and
considers g = f − fa,b. Then one has g(1) = 0 = (1 | 1)g. Since (− | −)g is bilinear it follows
that (n | m)g = nm(1 | 1)g = 0. Hence g is a homomorphism and the condition g(1) = 0 shows
that g = 0 and the claim is proved. One easily computes that

fa,b + fa′,b′ = fa+a′,b+b′+[a,a′].
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Thus pointwise sum of quadratic maps Z → G is quadratic, so that Quad(Z, G) has a group
structure and one has the following central extension:

0 → Z(G) → Quad(Z, G)
ev(1)
−−→ G → 0

where ev(1)(f) = f(1). A 2-cocycle G × G → Z(G) corresponding to this central extension is
given by the commutator map.

Let us next investigate quadratic maps of the form f : G1 ∨ G2 → H . For such a map, denote

fi = f |Gi
: Gi → H,

i = 1, 2 and
f⊗ = f |Gab

1
⊗Gab

2

: Gab
1 ⊗ Gab

2 → H,

where the inclusion Gab
1 ⊗Gab

2 ⊂ G1 ∨G2 is as in Proposition 1.2. Since Gab
1 ⊗Gab

2 is contained
in the commutator subgroup of G1 ⊗ G2, the map f⊗ is a homomorphism, and its image lies in
the center of H (by v) of Lemma 2.1). As for fi, they are quadratic maps. Since every element
of G ∨ H has the form (ξ, g1, g2) = (ξ, 0, 0) + (0, g1, 0) + (0, 0, g2) with ξ ∈ Gab

1 ⊗ Gab
2 and

f(ξ, g1, g2) = f⊗(ξ) + f1(g1) + f2(g2) + (ĝ1 | ĝ2)f ,

it follows that f is uniquely reconstructed from the maps f⊗, f1, f2 and the homomorphism

(− | −)f |Gab
1

⊗Gab
2

: Gab
1 ⊗ Gab

2 → Z(H),

which we will denote by f̂ .
Conversely, for any given maps

fi ∈ Quad(Gi, H), i = 1, 2, f⊗, f̂ ∈ Hom(Gab
1 ⊗ Gab

2 , Z(H))

define the map f : G1 ∨ G2 → H by

f(ξ, g1, g2) = f⊗(ξ) + f1(g1) + f2(g2) + f̂(ĝ1 ⊗ ĝ2).

Then

f((ξ, x1, x2) + (η, y1, y2)) = f(ξ + η − ŷ1 ⊗ x̂2, x1 + y1, x2 + y2)

= f⊗(ξ + η − ŷ1 ⊗ x̂2) + f1(x1 + y1) + f2(x2 + y2) + f̂((x̂1 + ŷ1) ⊗ (x̂2 + ŷ2))

= f⊗(ξ) + f⊗(η) − f⊗(ŷ1 ⊗ x̂2)

+ f1(x1) + f1(y1) + (x1 | y1)f1
+ f2(x2) + f2(y2) + (x2 | y2)f2

+ f̂(x̂1 ⊗ x̂2) + f̂(x̂1 ⊗ ŷ2) + f̂(ŷ1 ⊗ x̂2) + f̂(ŷ1 ⊗ ŷ2)

= f(ξ, x1, x2) + f(η, y1, y2)

− f⊗(ŷ1 ⊗ x̂2) + [f1(y1), f2(x2)] + (x1 | y1)f1
+ (x2 | y2)f2

+ f̂(x̂1 ⊗ ŷ2) + f̂(ŷ1 ⊗ x̂2).

It follows that f is a quadratic map, so that indeed any choice of f⊗, f1, f2 and f̂ as above is
valid.
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Now suppose given two quadratic maps f, f ′ : G1 ∨ G2 → H . Then for their sum clearly one
has (f + f ′)i = fi + f ′

i, i = 1, 2, and (f + f ′)⊗ = f⊗ + f ′
⊗. Moreover one calculates

f̂ + f ′(ĝ1 ⊗ ĝ2) = ((0, g1, 0) | (0, 0, g2))f+f ′

= ((0, g1, 0) | (0, 0, g2))f + ((0, g1, 0) | (0, 0, g2))f ′ + [f(0, 0, g2), f
′(0, g1, 0)]

= f̂(ĝ1 ⊗ ĝ2) + f̂ ′(ĝ1 ⊗ ĝ2) + [f2(g2), f
′
1(g1)].

Thus identifying f with the quadruple (f1, f2, f⊗, f̂) as above one has

(f1, f2, f⊗, f̂) + (f ′
1, f

′
2, f

′
⊗, f̂ ′) = (f1 + f ′

1, f2 + f ′
2, f⊗ + f ′

⊗, f̂ + f̂ ′ − [f ′
1, f2]),

where
[f ′

1, f2](ĝ1 ⊗ ĝ2) = [f ′
1(g1), f2(g2)].

We thus have proved

2.9. Lemma. For any nil2-groups G1, G2, H there is a central extension

0 → Hom(Gab
1 ⊗ Gab

2 , Z(H)) → Quad(G1 ∨ G2, H) → Hom(Gab
1 ⊗ Gab

2 , Z(H))

× Quad(G1, H) × Quad(G2, H) → 0.

A cocycle defining this extension is given by

((f⊗, f1, f2), (f
′
⊗, f ′

1, f
′
2)) 7→ α((f⊗, f1, f2), (f

′
⊗, f ′

1, f
′
2)) : Gab

1 ⊗ Gab
2 → Z(H),

ĝ1 ⊗ ĝ2 7→ [f2(g2), f
′
1(g1)].

�

2.10. Corollary. Let G be a free nil2-group on x1, ..., xn. Then for any nil2-group H and any
elements a1, ..., an ∈ H , aij, bij ∈ Z(H), i < j there exists a unique quadratic map f : G → H
such that

f(xi) = ai, 1 6 i 6 n,
f([xi, xj]) = aij, i < j,
(xi | xj)f = bij, i < j.

�

3. q-MAPS

The last identity of Lemma 1.1 suggests the following definition:

3.1. Definition. A weakly quadratic map f : G → H between nil2-groups is a q-map if one has
(a | b)f ∈ [H, H] for all a, b ∈ G.

We denote by Q(G, H) the collection of all q-maps from G to H , so that

Hom(G, H) ⊆ Q(G, H) ⊆ Quad(G, H).

3.2. Lemma. The set Q(G, H) is a normal subgroup of Quad(G, H). In particular any linear
combination of homomorphisms is a q-map.
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Proof. The first identity of Lemma 2.3 shows that Q(G, H) is a subgroup of Quad(G, H). By
the same Lemma for any f ∈ Quad(G, H) and g ∈ Q(G, H) we have

(a | b)f+g−f = (a | b)g + [fb, ga] − [gb, fa]

and the result follows. �

3.3. Lemma. A weakly quadratic map is in Q(G, H) iff its composite with H � H ab is a
homomorphism. In particular any q-map f : G → H yields a well-defined homomorphism
f ab : Gab → Hab such that the diagram

G

��
��

f
// H

��
��

Gab
fab

// Hab

commutes.

Proof. Indeed (a | b)f ∈ [H, H] iff the image of (a | b)f vanishes in Hab. �

Obviously one has an embedding

Quad(G, [H, H]) ⊂ Q(G, H)

as a central subgroup.

3.4. Lemma. For an abelian group H one has

Q(G, H) = Hom(G, H)

for any G ∈ Nil.

Proof. Since [H, H] = 0, a map f : G → H is a q-map iff (− | −)f = 0. �

3.5. Examples. The first two quadratic maps considered in Examples 2.8 are actually q-maps.
Also the map

δ = i1 + i2 : G → G ∨ G

is a q-map, with (x | y)δ = [i1(y), i2(x)].
On the other hand, the quadratic map fa,b : Z → G associated to elements a ∈ G and b ∈ Z(G)

as in iii) of Examples 2.8 is a q-map iff b ∈ [G, G]. Thus for any G ∈ Nil one has the following
central extension:

0 → [G, G] → Q(Z, G)
ev(1)
−−→ G → 0.

A 2-cocycle G×G → [G, G] corresponding to this central extension is given by the commutator
map.

Exactly as for Lemma 2.6 one has

3.6. Lemma. For any groups (Gi)i∈I , H one has natural bijections

Q(H,
∏

i

Gi) ∼=
∏

i

Q(H, Gi).
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If moreover H ∈ Nil then there is a central extension

0 → Q(Gab
1 ⊗ Gab

2 , [H, H]) → Q(G1 × G2, H) → Q(G1, H) × Q(G2, H) → 0.

�

Moreover one has exactly as in Lemma 2.9

3.7. Lemma. For any nil2-groups G1, G2, H there is a central extension

0 → Hom(Gab
1 ⊗ Gab

2 , [H, H]) → Q(G1 ∨ G2, H) → Hom(Gab
1 ⊗ Gab

2 , [H, H])

× Q(G1, H) × Q(G2, H) → 0.

A cocycle defining this extension is given by

((f⊗, f1, f2), (f
′
⊗, f ′

1, f
′
2)) 7→ α((f⊗, f1, f2), (f

′
⊗, f ′

1, f
′
2)) : Gab

1 ⊗ Gab
2 → [H, H],

ĝ1 ⊗ ĝ2 7→ [f2(g2), f
′
1(g1)].

In particular, if G is a free nil2-group on x1, · · · , xn then for any nil2-group H and any elements
a1, · · · , an ∈ H , aij, bij ∈ [H, H], i < j there exists the unique q-map f : G → H such that

f(xi) = ai, 1 6 i 6 n,
f([xi, xj]) = aij, i < j,
(xi | xj)f = bij, i < j.

�

By Lemma 3.3 any q-map f : G → H yields a homomorphism f ab : Gab → Hab. We now
associate two more homomorphisms to any q-map.

3.8. Proposition. Let f : G → H be a q-map. Then f([G, G]) ⊂ [H, H] and the restriction
of f to [G, G] yields a homomorphism [f, f ] : [G, G] → [H, H], which fits in the following
commutative diagram

0 // [G, G] //

[f,f ]
��

G //

f

��

Gab //

fab

��

0

0 // [H, H] // H // Hab // 0

Moreover, there exists a unique homomorphism

β(f) : Ker(f ab) → Coker([f, f ])

such that
β(f)(â) = f(a) mod f([G, G])

for any a ∈ f−1([H, H]). Furthermore if f is injective then [f, f ] and β(f) are monomorphisms
and if f is surjective then β(f) and f ab are epimorpisms.

Proof. If f is a q-map then it follows from v) of Lemma 2.1 that f [G, G] ⊆ [H, H]. Hence
by iv) of Lemma 2.1, [f, f ] : [G, G] → [H, H] is a homomorphism and obviosly the diagram
commutes. We claim that β(f) is well-defined. One observes that if â1 = â then a1 = a+ b with
b ∈ [G, G]. It follows by iv) of Lemma 2.1 that f(a1) = f(a) mod f([G, G]) and the claim is
proved. The rest is just diagram chase. �
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4. THE CATEGORY Niq

In this section, our main character enters. This is the category Niq. The definition is based on
the following result.

4.1. Proposition. Any composite of q-maps is a q-map. More precisely, for q-maps f : G → H
and g : G1 → G the cross-effect of their composite is given by

(a | b)fg = f((a | b)g) + (g(a) | g(b))f , a, b ∈ G1.

Proof. One has

fg(a + b) = f(g(a) + g(b) + (a | b)g)

= f(g(a) + g(b)) + f((a | b)g) (by iv) of Lemma 2.1)

= f(g(a)) + f(g(b)) + (g(a) | g(b))f + f((a | b)g),

which proves the equality above. �

Hence there is a well-defined category Niq whose objects are nil2-groups and morphisms are
all q-maps between them. The hom-sets

HomNiq(G, H) = Q(G, H)

are equipped with structures of nilpotent groups of class two. Nil is a subcategory of Niq, with
the same objects. The hom-functor of Niq (with values in sets) gives rise to a well-defined
bifunctor

Q(−,−) : Nilop × Nil → Nil.

Moreover there are well-defined functors Niq → Ab given respectively by G 7→ Gab and G 7→
[G, G].

Composition in Niq is left distributive,

(f + f ′)g = fg + f ′g,

but not right distributive; rather it is right quadratic, in the following sense. First of all one has

(2) f(g + g′) = fg + fg′ + (g | g′)f , f ∈ Q(G, H), g, g′ ∈ Q(G1, G),

where (g | g′)f : G1 → H is given by

(3) (g | g′)f(x) = (g(x) | g′(x))f .

Secondly (g | g′)f lies in the center of Q(G1, H) and it is bilinear in g, g′ and quadratic in f —
more precisely, one has

(g | g′)f+f ′(x) = (g | g′)f(x) + (g | g′)f ′(x) + [fg′(x), f ′g(x)].

The category Niq possesses all products and both the inclusion Nil ↪→ Niq and the forgetful
functor Niq → Sets respect products.

Every object in Niq has a canonical internal group structure. However a morphism in Niq is
compatible with the corresponding internal group structures iff it lies in Nil, i. e. is a homomor-
phism.
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If pk : G1 × G2 → Gk are the standard projections and ik : Gk → G1 × G2 are the standard
inclusions then one has pkik = IdGk

, i1p1 + i2p2 = IdG1×G2
and p2i1 = 0, p1i2 = 0. Therefore

Niq is a right quadratic category in the terminology of [1]. Trivial groups are zero objects in
Niq.

Note also that it follows from Lemma 3.4 that

4.2. Proposition. Any group isomorphic in Niq to an abelian group is itself abelian.

�

4.3. Example. Let f : Z
3 → Z ∨ Z be the map given by

f(l, m, n) = l[x, y] + mx + ny,

where x and y are the generators of Z ∨ Z. One then has

((l, m, n) | (l′, m′, n′))f = m′n[x, y],

so that f is a q-map. It is obviously a bijection. However it cannot be an isomorphism in Niq

because of Proposition 4.2.
In fact,

(l[x, y] + mx + ny | l′[x, y] + m′x + n′y)f−1 = (−m′n, 0, 0),

so that f−1 is quadratic, but not a q-map.

Let us point out that there exist nil2-groups isomorphic in Niq but not in Nil. We will see such
examples below (see Example 7.4).

Let us recall that a weak coproduct of objects X1 and X2 of some category is an object W
together with morphisms ik : Xk → W such that for any morphisms fk : Xk → Z there exists a
morphism (not necessarily unique) f : W → Z with fk = fik, k = 1, 2.

4.4. Lemma. The category Niq possesses weak coproducts.

Proof. We claim that W = X1 × X2 does the job. Indeed, for any fk : Xk → Z put f =
f1p1 + f2p2. Then one has

fik = (f1p1 + f2p2)ik = f1p1ik + f2p2ik = fk.

�

5. THE CATEGORY Nil AS A LINEAR EXTENSION

We start with recalling the definition of a linear extension of a small category by a bifunctor
[3]

5.1. Definition. A linear extension of a small category C by a bifunctor D : C
op × C → Ab

0 → D → E
P
−→ C → 0

is a functor P with the following properties: C and E have the same objects and P is a full
functor which is the identity on objects. For each pair of objects i and j the abelian group
D(i, j) acts transitively and effectively on the set HomE(i, j). We write α + a for the action of
a ∈ D(i, j) on α ∈ HomE(i, j). The action satisfies the linear distributivity law :
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(α + a)(β + b) = αβ + P (α)∗b + P (β)∗a.

It is known and easy to prove that in any linear extension the functor q reflects isomorphisms
and yields a bijection on isomorphism classes of objects.

Our aim is to obtain the category Nil as a linear extension. To do so we first recall some
classical results on group (co)homology.

5.2. Proposition.
i) For a central extension

(4) E =
(
0 → A

i
−→ G

p
−→ Q → 0

)

there is a well-defined class 〈E〉 ∈ H2(Q; A) and in this way one obtains a one-to-one
correspondence between the equivalence classes of central extensions of Q by A and
elements of the group H2(Q; A). If E

′ is also a central extension of a group Q′ by A′

and f : Q → Q′, g : A → A′ are group homomorphisms then g∗ 〈E〉 and f ∗ 〈E′〉 are the
same elements in H2(Q; A′) iff there is a group homomorphism h : G → G′ such that
the diagram

0 // A //

g

��

G //

h

��

Q

f

��

// 0

0 // A′ // G′ // Q′ // 0

commutes.
ii) Let Q be a group and A be an abelian group, considered as a Q-module via the trivial

action of Q on A. Then one has the universal coefficient exact sequence

0 → Ext(Qab, A) → H2(Q; A)
µ
−→ Hom(H2Q, A) → 0.

iii) For the central extension (4) one has the following Ganea exact sequence

Gab ⊗ A → H2G → H2Q
ν
−→ A → Gab → Qab → 0,

where ν = µ 〈E〉, with 〈E〉 as in i) above.
iv) If B is an abelian group then H2(B) ∼= Λ2B and the homomorphism µ 〈E〉 : Λ2B → A

corresponding to a central extension

E =
(
0 → A

i
−→ G

p
−→ B → 0

)

is determined by

i (µ 〈E〉 (p(x) ∧ p(y))) = [x, y], x, y ∈ G.

Proof. These results are well known, see for example [5]. �

The class of the central extension

(5) 0 → [G, G] → G → Gab → 0

in H2(Gab; [G, G]) is denoted by e(G).
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5.3. Lemma. The homomorphism µ(e(G)) : Λ2(Gab) → [G, G] is surjective.

Proof. This follows from iv) of Proposition 5.2 applied to the central extension (5). �

The exact sequence (5) is functorial on G, meaning that if f : G → H is a homomorphism,
then one has the following commutative diagram

0 // [G, G]
i

//

[f,f ]
��

G
p

//

f

��

Gab

fab

��

// 0

0 // [H, H]
j

// H
q

// Hab // 0

If g : G → H is another homomorphisms, then we write f ∼ g provided f ab = gab and
[f, f ] = [g, g]. It is clear that f ∼ g iff there exists a homomorphism k : Gab → [H, H] such that
f −g = jkp. We can consider the corresponding quotient category Nil∼. Objects are the same as
of Nil. Two homomorphisms f, g : G → H defines the same morphism in Nil∼ provided f ∼ g.
Comparing with the notion of linear extension of categories (see Definition 5.1) we obtain the
following result.

5.4. Theorem. One has the following linear extension of categories

0 → D → Nil → Nil∼ → 0

where the bifunctor

D : (Nil∼)op × Nil∼ → Ab

is given by

D(G, H) = Hom(Gab, [H, H]).

�

Our next aim is to describe the quotient category Nil∼ in cohomological terms. Define the
category Nilab as follows. The objects of Nilab are triples (A, B, e), where A and B are abelian
groups and e ∈ H2(A, B) is such an elements that µ(e) : Λ2(A) → B is an epimorphism. A
morphism from (A, B, e) to (A′, B′, e′) is a pair (f, g), where f : A → A′ and g : B → B′ are
homomorphisms such that the equation

f ∗(e′) = g∗(e)

holds in H2(A, B′). Thus for any G ∈ Nil the triple

ch(G) = (Gab, [G, G], e(G))

is an object of Nilab. Moreover, if f : G → H is homomorphism of groups, then (f ab, [f, f ]) :
ch(G) → ch(H) is a morphism. In this way one obtains the functor

ch : Nil∼ → Nilab.

5.5. Theorem. The functor ch : Nil∼ → Nilab is an equivalence of categories.
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Proof. We claim that for any object (A, B, e) ∈ Nilab there exist an object G ∈ Nil and an
isomorphism ch(G) → (A, B, e) in Nilab. Indeed, consider a central extension

0 → B → G → A → 0

corresponding to the element e. The exact sequence iii) of Proposition 5.2 in our case has the
following form

H2G → H2A → B → Gab → A → 0

Since H2A → B is an epimorphism, it follows that Gab ∼= A. Therefore [G, G] ∼= B and the
claim is proved.

Now, we show that for any morphism (f, g) : ch(G) → ch(G1) in Nilab, there is a unique ho-
momorphism h : G ∼= G1 in Nil∼, such that ch(h) = (f, g). Indeed, by definition of morphisms
in Nilab and by part i) of Proposition 5.2 there exist h : G → G1 in Nil, such that the following
diagram commutes:

0 // [G, G]
i

//

g

��

G
p

//

h

��

Gab

f

��

// 0

0 // [G1, G1]
i1

// G1

p1
// Gab

1
// 0

If h′ : G → G′ is another such homomorphism, then clearly hab = (h′)ab as well as [h, h] =
[h′, h′] and result is proved. �

6. THE CATEGORY Niq AS A LINEAR EXTENSION

For α ∈ Hom(Gab ⊗ Gab, [H, H]) and f ∈ Q(G, H) define f + α ∈ Q(G, H) to be the map
given by

(f + α)(g) = f(g) + α(ĝ, ĝ).

It is clear that for any α, β ∈ Hom(Gab ⊗ Gab, [H, H]) and f ∈ Q(G, H) one has

f + (α + β) = (f + α) + β

and therefore the group Hom(Gab ⊗ Gab, [H, H]) acts on the set Q(G, H). In particular, this
gives the following equivalence relation: for q-maps f, g ∈ Q(G, H) we put f ∼ g provided
g = f + α, for some homomorphism α : Gab ⊗ Gab → [H, H].

6.1. Lemma.

i) Let f1, f2, g1, g2 : G → H be q-maps. If f1 ∼ g1 and f2 ∼ g2, then

f1 + f2 ∼ g1 + g2.

ii) Let f, g : G → H be q-maps. Then

f + g ∼ g + f.

iii) Let f : G → H and g1, g2 : G1 → G be q-maps. Then

f(g1 + g2) ∼ fg1 + fg2.
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iv) Let f : G → H and g : G1 → G be q-maps. Then for any homomorphisms α :
Gab ⊗ Gab → [H, H] and β : Gab

1 ⊗ Gab
1 → [G, G] one has

(f + α)(g + β) = fg + f∗β + g∗α

where f∗β and g∗α are homomorphisms Gab
1 ⊗ Gab

1 → [H, H] given by f∗β(x, y) =

f(β(x, y)) and g∗α(x̂, ŷ) = α(ĝ(x), ĝ(y)).
v) Let f1, f2 : G → H and g1, g2 : G1 → G be q-maps. If f1 ∼ f2 and g1 ∼ g2, then

f1g1 ∼ f2g2.

vi) Let f, g : G → H be q-maps. If f ∼ g then they induce the same homomorphisms
Gab → Hab and [G, G] → [H, H].

Proof. i) We have gi = fi + αi, where αi : Gab ⊗ Gab → [H, H] is a homomorphism i = 1, 2.
Since the values of αi are in the center, we obtain g1 + g2 = f1 + f2 + (α1 + α2).

ii) It suffices to observe that f + g = g + f + α, where α(x̂, ŷ) = [f(x), g(y)].
iii) Thanks to equation (3) one has f(g1 + g2) = fg1 + fg2 + α, where α(x̂1, x̂2) = (g1(x1) |

g2(x2))f .

iv) We have (f + α)(g + β)(x) = f(g(x) + β(x̂, x̂)) + α( ̂g(x) + β(x̂, x̂), ̂g(x) + β(x̂, x̂)).
Since the values of β lie in the commutator subgroup of H and α is defined on the abelization,

we get α( ̂g(x) + β(x̂, x̂), ̂g(x) + β(x̂, x̂)) = α(ĝ(x)). Thus the result follows from iv) of Lemma
2.1.

v) This property is an immediate consequence of iv).
vi) By assumption g = f + α, for some homomorphism Gab ⊗ Gab → [H, H]. If c ∈ [G, G],

then ĉ = 0 in Gab, thus α(ĉ, ĉ) = 0 and hence g(c) = f(c). On the other hand, for any x ∈ G the
class of α(x̂, x̂) in Hab vanishes, hence f ab = gab. �

6.2. Corollary. There is a well-defined category Niq∼, with objects nil2-groups, and morphisms
∼-equivalence classes of q-maps. The category Niq∼ is an additive category.

Proof. By v) Niq∼ is a well-defined category. By i) and ii) hom’s in Niq∼ are abelian groups.
Since Niq was left distributive, it follows from iii) that the composition in Niq∼ is distributive.
One easily sees that the product in Niq remains also a product in Niq∼ and therefore Niq is an
additive category with products. �

For q-maps f, g ∈ Q(G, H) we put f ≈ g provided both of them yield the same homomor-
phisms Gab → Hab and [G, G] → [H, H]. The corresponding quotient category is denoted by
Niq≈. By iv) in Lemma 6.1 the quotient functor Niq → Niq≈ factors trough Niq∼.

For nil2-groups G and H we let D∼(G, H) be the quotient of Hom(Gab ⊗Gab, [H, H]) by the
subgroup spanned by such α ∈ Hom(Gab ⊗ Gab, [H, H]) that α(x̂, x̂) = 0 for all x ∈ G. In
this way one obtains a bifunctor D∼ : (Niq≈)

op
× Niq≈ → Ab. We also need another bifunctor

D≈ : (Niq≈)
op

× Niq≈ → Ab given by D≈(G, H) = Quad(Gab, [H, H]). There is a natural
transformation ρ : D∼ → D≈, which takes α : Gab ⊗ Gab → [H, H] to the quadratic map
ρ(α) : Gab → [H, H] given by ρ(α)(x̂) = α(x̂, x̂). It follows from the definition of D∼, that ρ is
a monomorphism. We define D̃ := Coker(ρ). Using the quotient functors Niq � Niq∼

� Niq≈

one considers D∼, D≈ also as bifunctors on Niq∼, or Niq.
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6.3. Proposition. One has the following commutative diagram of linear extensions:

0

��

0

��

0 // D∼
ρ

// D≈ //

��

D̃ //

��

0

0 // D∼ // Niq //

��

Niq∼ //

��

0

Niq≈

��

Niq≈

��

0 0

In particular Niq≈ is also an additive category and the quotient functors Niq → Niq∼ → Niq≈

reflect isomorphisms and yield bijections on isomorphism classes of objects.

Proof. The operation Q(G, H)×Hom(Gab⊗Gab, [H, H]) → Q(G, H) given by (f, α) 7→ f +α
yields the action of D∼ on the category Niq and by the property iv) one obtains a linear extension
of categories

0 → D∼ → Niq → Niq∼ → 0.

By Proposition 3.8 for q-maps f, g : G → H one has f ≈ g iff there is a quadratic map
h : Gab → [H, H] such that f − g factors trough h. This shows that

0 → D≈ → Niq → Niq≈ → 0

is a linear extension of categories. The rest follows from the properties of linear extensions. �

6.4. Remark. For an abelian group A the group A⊗A has a canonical involution (a⊗b)σ = b⊗a.
We put Γ̃2(A) := {x ∈ A ⊗ A | xσ = x}. Then one has an exact sequence

0 → Γ̃2(A) → A ⊗ A → Λ2(A) → 0

One easily sees that the class of abelian groups for which this sequence splits is closed under
direct sums and contains all cyclic groups (and all uniquely 2-divisible groups). In particular
the sequence splits, provided A is a direct sum of cyclic groups. The exact sequence yields the
following exact sequence

0 → Hom(Λ2(A), B) → Hom(A ⊗ A, B)
ξA,B

−−→ Hom(Γ̃2(A), B)

for all abelian group B. It follows from the definition that D∼(G, H) ∼= Im(ξGab,[H,H]). In
particular, if Gab is a direct sum of cyclic groups, then D∼(G, H) = Hom(Γ̃2(Gab), [H, H]).

6.5. Definition. For abelian groups A and B we denote by H 2
b (A, B) be the subgroup of

H2(A, B) generated by bilinear 2-cocycles. Thus by definition one has the following exact
sequence

Quad(A, B)
(−|−)?
−−−−→ Hom(A ⊗ A, B) → H2

b (A, B) → 0
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where the first map assigns to a quadratic map f its cross-effect (− | −)f .
We now define the category Niqab, which has the same objects as the category Nilab. Thus

objects are triples (A, B, e) where A and B are abelian groups, and e ∈ H 2(A, B) is such an
element that µ(e) : Λ2(A) → B is an epimorphism. A morphism from (A, B, e) to (A′, B′, e′)
in Niqab is a pair (f, g), where f : A → A′ and g : B → B′ are homomorphisms such that

f ∗(e′) − g∗(e) ∈ H2
b (A, B′).

6.6. Theorem. The functor ch : Nil∼ → Nilab has a canonical extension

ch : Niq≈ → Niqab

which is an equivalence of categories.

Proof. On objects one puts
ch(G) = (Gab, [G, G], e(G)).

If f : G → H is a q-map, then one puts

ch(G
f
−→ H) = (f ab, [f, f ]).

We claim that one has (
f ab

)∗
(e(H)) − [f, f ]∗(e(G)) ∈ H2

b (Gab, [H, H]).

Let α (resp. β) be a 2-cocycle representing the class e(G) (resp. e(H)). Thus G = Gab × [G, G]
(resp. H = Hab × [H, H]) as a set, with the following group structure (a, u) + (b, v) =
(a + b, α(a, b) + u + v), where a, b ∈ Gab and u, v ∈ [G, G] (resp. (c, x) + (d, y) = (c +
d, β(c, d) + x + y), c, d ∈ Hab, x, y ∈ [H, H]). Any q-map f : G → H has the form
f(a, u) = (f ab(a), [f, f ] (u) + γ(a)), where f ab : Gab → Hab and [f, f ] : [G, G] → [H, H]
are homomorphisms, while γ : Gab → [H, H] is a map. One has

f((a, u) + (b, v)) =f(a + b, α(a, b) + u + v)

=(f ab(a) + f ab(b), γ(a + b) + [f, f ] (α(a, b)) + [f, f ] (u) + [f, f ] (v)).

On the other hand we have f((a, u) + (b, v)) = f((a, u)) + f((b, v)) + ((a, u), (b, v))f . Since
the cross-effect of f factors through δ : Gab ⊗ Gab → [H, H] we obtain

f((a, u) + (b, v))

= (f ab(a), [f, f ] (u) + γ(a)) + (f ab(b), [f, f ] (v) + γ(b)) + (0, δ(a, b))

= (f ab(a) + f ab(b), β(f ab(a), f ab(b)) + γ(a) + γ(b) + δ(a, b) + [f, f ] (u) + [f, f ] (v)).

Comparing these expressions we obtain

γ(a + b) + [f, f ] (α(a, b)) = β(f ab(a), f ab(b)) + γ(a) + γ(b) + δ(a, b).

Thus the class
(
f ab

)∗
(e(H)) − [f, f ]∗(e(G)) in the group H2

b (Gab, [H, H]) coincides with the
class of −δ and the claim is proved. It follows that ch is a well-defined functor Niq → Niqab,
which obviously factors trough the category Niq≈. By our construction and by definition of
Niq≈ the induced map

HomNiq≈(G, H) → HomNiqab(ch(G), ch(H))
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is an injection. Let us show that this map is surjective as well. Take any morphism (g, h) :
ch(G) → ch(H) in Niqab. Then g : Gab → Hab and h : [H, H] → [G, G] are homomorphisms
such that

h(α(a, b)) − β(g(a), g(b)) = −γ(a + b) + γ(a) + γ(b) + δ(a, b)

where δ : Gab ⊗ Gab → [H, H] is a homomorphism, γ : Gab → [H, H] is a map, while α and β
are as above. Define the map f : G → H via f(a, u) = (g(a), γ(a) + h(u)). Then one has

((a, u), (b, v))f = δ(a, b).

Thus f is a q-map with f ab = g and [f, f ] = h. Therefore ch is full and faithful. By Theorem
5.5 the functor ch is surjective on isomorphism classes of objects and the result follows. �

7. q-SPLIT GROUPS

We start with the following definitions.

7.1. Definition. Call nil2-groups similar if they have isomorphic abelianizations and isomorphic
commutator subgroups.

7.2. Definition. Call a nil2-group G q-split if the quotient map G � Gab has a quadratic section.
It is easy to see that this section is then a q-map.

7.3. Lemma. The class of q-split groups contains all abelian groups and is closed under products
and coproducts.

Proof. For products and abelian groups this is obvious. For coproducts, note that the central
extension

0 → Gab
1 ⊗ Gab

2 → G1 ∨ G2 → G1 × G2 → 0

has a quadratic section s given by s(g1, g2) = (0, g1, g2). One easily checks that

((x1, x2) | (y1, y2))s = (y1 ⊗ x2, 0, 0) = [(0, y1, 0), (0, 0, x2)].

Thus s is a q-map. Since (G1 ∨ G2)
ab = (G1 × G2)

ab = Gab
1 × Gab

2 we see that for any
quadratic sections si : Gab

i → Gi of the natural projections Gi � Gab
i , i = 1, 2, the composite

s ◦ (s1 × s2) : (G1 ∨ G2)
ab → G1 ∨ G2 is a section. Since s, s1, s2 are q-maps, s ◦ (s1 × s2) is

also a q-map and the result follows. �

7.4. Example. It follows that the dihedral group D4
∼= Z/2Z ∨ Z/2Z of order 8 is q-split. Let

us show that the quaternion group Q8 = 〈τ, ω | 2τ = 2ω, ω + τ − ω = −τ〉 of order 8 is also
q-split. Observe that τ and ω are of order 4 and [ω, τ ] = 2τ . So one has Qab

8
∼= Z/2Z×Z/2Z ∼=

Dab
4 and [Q8, Q8] ∼= Z/2Z ∼= [D4, D4]. One easily checks that the map s : Qab

8 → Q8 given by
s(0) = 0, s(ω̂) = ω, s(τ̂ ) = τ , s(ω̂ + τ̂ ) = ω + τ is a quadratic section of Q8 → Qab

8 . It follows
from Corollary 7.6 below that Q8 and D4 are isomorphic in Niq.

7.5. Lemma. A nil2-group G is q-split iff the class e(G) ∈ H2(Gab, [G, G]) belongs to the
subgroup H2

b (Gab, [G, G]).
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Proof. Let u : Gab → G be a quadratic section. Then the class e(G) can be represented by
the cocycle (a1, a2) 7→ u(a1) + u(a2) − u(a1 + a2) which is bilinear and therefore lies in
H2

b (Gab, [G, G]). Conversely, if the class e(G) ∈ H2(Gab, [G, G]) is represented by a bilin-
ear map f : Gab × Gab → [G, G], then G is isomorphic to the set Gab × [G, G] with group
structure defined by (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2 + f(a1, a2)), and the projection of the
latter to Gab has a quadratic section given by a 7→ (a, 0). �

We denote by Spl(Niq) and Spl(Niq≈) the full subcategories of, respectively, Niq and Niq≈

with objects all q-split groups. They are related via the following linear extension:

0 → D≈ → Spl(Niq) → Spl(Niq≈) → 0

and in particular they have the same isoclasses of objects. According to Theorem 6.6 and Lemma
7.5 the category Spl(Niq≈) is equivalent to the category Splab, which is the full subcategory of
the category Nilab on those objects (A, B, e) of Nilab satisfying e ∈ H2

b (A, B). Let us observe
that

HomNilab((A, B, e), (A′, B′, e′)) = Hom(A, A′) × Hom(B, B′)

because the compatibility condition required in the definition of morphisms in Nilab holds au-
thomatically in Splab.

We now consider another category Spl, which is a full subcategory of the product category
Ab × Ab. Objects of the category Spl are pairs of abelian groups (A, B) for which there exists
a homomorphism f : A ⊗ A → B such that f a : Λ2(A) → B is an epimorphism, where
fa(x, y) := f(x, y) − f(y, x).

7.6. Theorem. The categories Spl and Nilab are equivalent. Thus, two q-split groups are iso-
morphic in Niq iff they are similar.

Proof. Take any object (A, B) of Spl and choose f : A⊗A → B for which f a is an epimorphism.
Let ef ∈ H2

b (A, B) be the class correspobding to f . Then (A, B, ef) ∈ Nilab. Then (A, B, f) 7→
(A, B, ef) yields expected equivalence of categories. �

7.7. Remark. One easily sees that the class S of abelian groups for which the natural short
exact sequence 0 → Λ2(A) → A ⊗ A → S2(A) → 0 splits contains all cyclic groups, all
uniquely 2-divisible groups and is closed under direct sums. In particular any finitely generated
abelian group lies in S. If A ∈ S then for any homomorphism g : Λ2(A) → B there exists a
homomorphism f : A⊗A → B such that f a = g. It follows that a pair of abelian groups (A, B)
with A ∈ S belongs to Spl iff there exists an epimorphism Λ2(A) → B.

7.8. Proposition. For abelian groups A, B there is a commutative diagram with exact rows

(6)

0 // Hom(S2 A, B) //

��
�

�

�

Hom(A ⊗ A, B) //

α

��

Hom(Λ2A, B)

0 // Ext(A, B) // H2(A; B)
c

// Hom(Λ2A, B) // 0

where the image of the homomorphism α is equal to the subgroup H 2
b (A, B) from 6.5.
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Proof. For any abelian group A one has a short exact sequence

0 → Λ2A → A ⊗ A → S2 A → 0,

We place in the upper row of (6) the sequence induced by this short exact sequence. The lower
row is the universal coefficient exact sequence, and the map α is given by considering a bilinear
map as a 2-cocycle. The rest is obvious. �

7.9. Remark. The arrow on the upper right of (6) is surjective if A is either uniquely 2-divisible
or is a direct sum of cyclic groups. Indeed in these cases the aforementioned short exact sequence
splits.

7.10. Proposition. If 2 is invertible in B then the above homomorphism Hom(S2 A, B) →
Ext(A, B) is zero.

Proof. For a homomorphism f : S2 A → B the class α(f) is represented by the cocycle (x, y) 7→
f(xy). This cocycle is the coboundary of the cochain g : A → B given by a 7→ 1

2
f(a2). �

7.11. Lemma. Let A be any abelian group and let B be a uniquely 2-divisible group. Then for
any x ∈ H2

b (A; B) and any 0 6= a ∈ Ext(A, B) one has x + a /∈ H2
b (A, B).

Proof. Otherwise one would have a ∈ Imα, which contradicts the previous lemma. �

7.12. Remark. It follows that for any object (A, B, x) of Niqab and any a ∈ Ext(A, B), also
(A, B, x + a) gives an object of Niqab, since in the universal coefficient exact sequence in (6)
one has c(x + a) = c(x). In particular, if (A, B, x) with uniquely 2-divisible B lies in the
subcategory Splab and a 6= 0, then (A, B, x + a) ∈ Niqab cannot belong to Splab, since by
Lemma 7.11, x + a /∈ H2

b (A; B). Thus not all nil2-groups are q-split. Some explicit examples of
non-q-split groups follow.

7.13. Example. For each prime p consider the semidirect product Z/p2
Z n Z/pZ, where the

generator of Z/pZ acts on Z/p2
Z via multiplication by p + 1. This group is similar in the

sense of Definition 7.1 to Z/pZ ∨ Z/pZ (both have abelianizations isomorphic to (Z/pZ)2 and
commutator subgroups isomorphic to Z/pZ). For p = 2 these groups are in fact isomorphic;
however for odd p they are not, since the former has exponent p2 and the latter has exponent p.
Thus in the diagram (6) for A = (Z/pZ)2 and B = Z/pZ, classes of Z/pZ∨Z/pZ and Z/p2

Zn

Z/pZ in H2((Z/pZ)2;Z/pZ) are not equal. On the other hand one can choose isomorphisms of
their commutator subgroups with Z/pZ in a way which makes obvious that these classes have
the same image under the homomorphism c defined in (6) above, hence they differ by a nonzero
element of Ext(Z/pZ,Z/pZ). But Z/pZ∨Z/pZ is q-split by Lemma 7.3, hence its class is in the
image of the homomorphism α from (6). Then by Lemma 7.11 we conclude that Z/p2

ZnZ/pZ
is not q-split. In particular, the above similar groups are also not isomorphic in Niq.

8. q-MAPS FOR UNIQUELY 2-DIVISIBLE GROUPS

Let us recall the relevant part of the classical Maltsev correspondence between nilpotent groups
and Lie algebras. In the nil2 case it amounts to an isomorphism of categories from the category
of nil2 Lie algebras over Z[ 1

2
], i. e. Lie algebras with [L, [L, L]] = 0 to the category of uniquely
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2-divisible nil2-groups. In what follows, all Lie algebras are understood to be of the above kind,
i. e. class two nilpotent Lie Z[ 1

2
]-algebras. Let us denote by Nil(Z[ 1

2
]) the category of these

algebras and their homomorphisms. Moreover we will denote by Nil
1

2 the category of uniquely
2-divisible nil2-groups.

One defines an isomorphism of categories

exp : Nil(Z[ 1

2
]) → Nil

1

2

by declaring, for an algebra L ∈ Nil(Z[ 1

2
]), exp(L) to be the set L equipped with the operation

a ⊕ b = a + b + 1

2
[a, b].

This is a group, with zero element 0 and inverse of an element a given by −a. Moreover the com-
mutator with respect to this group structure coincides with the Lie bracket, so that for any L one
has [exp(L), exp(L)] = [L, L] and exp(L)ab = Lab, where Lab = L/[L, L] is the abelianization
of the Lie algebra L.

Now clearly any Lie algebra homomorphism is also a homomorphism with respect to ⊕.
Moreover we have a ⊕ c = a + c for c ∈ [L, L], so that for any a, b ∈ L

a + b = a ⊕ b ⊕ 1

2
[b, a].

It follows that also conversely, a map which is a homomorphism with respect to ⊕ is a Lie algebra
homomorphism, so that exp is an isomorphism of categories, with the inverse isomorphism log
defined as follows: for a uniquely 2-divisible nil2-group G the Lie algebra log(G) is the set G
equipped with the addition as above and with the bracket equal to the commutator map.

Our aim in this section is to prove

8.1. Theorem. Two uniquely 2-divisible nil2 groups G, G′ are isomorphic as objects of Niq

if and only if there exists an isomorphism of abelian groups g : log(G) → log(G′) such that
g[G, G] = [G′, G′].

For the proof we must define an analog of the category Niq from Section 4 for Lie algebras.
For this, we first define

8.2. Definition. A map f : L → L′ between Lie algebras is called a q-map if it is a quadratic
map between the underlying abelian groups and moreover for any a, b ∈ L and any c ∈ [L, L]
one has (a | b)f ∈ [L′, L′], f(a + c) = f(a) + f(c) and f(c) ∈ [L′, L′].

Moreover we consider the following category Niq(Z[ 1

2
]) ⊃ Nil(Z[ 1

2
]) with the same objects

as Nil(Z[ 1

2
]). A morphism L → L′ in Niq(Z[ 1

2
]) is a q-map in the sense just defined.

The key observation is then

8.3. Theorem. The functor exp extends to an isomorphism of categories

Niq
1

2 ' Niq(Z[ 1

2
]).

This theorem follows immediately from the following

8.4. Proposition. Let f : L → L′ be a map between Lie algebras. Then the following assertions
are equivalent:
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i) f is a q-map in the sense of 8.2;
ii) f is a q-map when considered as a map exp(L) → exp(L′);

iii) there exists a linear map g : L → L′ with g[L, L] ⊆ [L′, L′] and a symmetric bilinear
map h : Lab × Lab → [L′, L′] such that one has

f(a) = g(a) + 1

2
h(â, â)

for all a ∈ L.

Proof. ii) ⇐⇒ iii):
Let (a | b)+

f , (a | b)⊕f denote the cross-effect of f with respect to the corresponding operations.
Thus f is a q-map when considered as a map exp(L) → exp(L′) iff (a | b)⊕f is bilinear and lands
in [L′, L′]. In that case we have

f(a + b) = f(a ⊕ b ⊕ 1

2
[b, a]) = f(a ⊕ b) ⊕ f( 1

2
[b, a]) = fa ⊕ fb ⊕ (a | b)⊕f ⊕ 1

2
f [b, a]

and

fa + fb = fa ⊕ fb ⊕ 1

2
[fb, fa],

hence

(a | b)+
f = −(fa + fb) + f(a + b) = −(fa + fb) ⊕ f(a + b) ⊕ 1

2
[f(a + b),−(fa + fb)]

= 1

2
[fa, fb] ⊕ (a | b)⊕f ⊕ 1

2
f [b, a] ⊕ 1

2
[fa ⊕ fb ⊕ (a | b)⊕f ⊕ 1

2
f [b, a],−(fa ⊕ fb ⊕ 1

2
[fb, fa])]

= 1

2
[fa, fb] ⊕ (a | b)⊕f ⊕ 1

2
f [b, a].

The latter expression is then symmetric since it is the cross-effect of some map with respect to
the commutative operation +. It is bilinear with respect to ⊕ and satisfies

(a ⊕ c | b)+
f = (a | b ⊕ c)+

f = (a | b)+
f

for any c ∈ [L, L] and any a, b ∈ L. Hence it is also bilinear with respect to + and defining

h(â, b̂) = (a | b)+
f

gives a well-defined symmetric bilinear map h : Lab ×Lab → [L′, L′]. Then the map g : L → L′

given by

g(a) = f(a) − 1

2
h(â, â) = f(a) − 1

2
(a | a)⊕f

carries [L, L] to [L′, L′]. Moreover this map is linear since (a | a)⊕f = (a | a)+
f for any a ∈ L, so

that

g(a + b) =f(a + b) − 1

2
(a + b | a + b)+

f

=fa + fb + (a | b)f − 1

2
(a | a)+

f − 1

2
(b | b)+

f − 1

2
(a | b)+

f − 1

2
(b | a)+

f

=g(a) + g(b).
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Conversely, given g and h as in iii), we compute

(a | b)⊕f = −(fa ⊕ fb) ⊕ f(a ⊕ b)

= − (fa + fb + 1

2
[fa, fb]) + f(a + b + 1

2
[a, b]) + 1

2
[fa + fb + 1

2
[fa, fb], f(a + b + 1

2
[a, b])]

= − (ga + 1

2
h(â, â) + gb + 1

2
h(b̂, b̂) + 1

2
[ga, gb])

+ ga + gb + 1

2
g[a, b] + 1

2
h(â + b̂, â + b̂) + 1

2
[−(ga + gb), ga + gb]

= − 1

2
[ga, gb] + 1

2
g[a, b] + h(â, b̂)

which lies in [L′, L′] and is bilinear, so indeed f is a q-map.
i) ⇐⇒ iii):
Obviously any f satisfying iii) is quadratic. Moreover, a map f between Z[ 1

2
]-modules is

quadratic if and only if it has the form

f(a) = g(a) + 1

2
h(a, a)

for unique linear map g and bilinear symmetric map h. One just takes g(a) = 2f(a) − 1

2
f(2a)

and h(a, b) = f(a + b) − f(a) − f(b). Then it is easy to check that a quadratic map is a q-map
of Lie algebras if and only if the corresponding g and h satisfy conditions in iii). �

This enables us to obtain an extension to the q-world of the above classical Maltsev equiva-
lence, by identifying the full subcategory Niq

1

2 ⊂ Niq on the uniquely 2-divisible nil2-groups
with the following category defined in terms of Lie Z[ 1

2
]-algebras.

Moreover in this situation 6.6 admits a strengthening. To formulate it we will need some more
categories.

8.5. Definition. Let Niq0(Z[ 1

2
]) ⊂ Niq(Z[ 1

2
]) be the subcategory with the same objects and

those morphisms which are actually linear. That is, a morphism from L to L′ in Niq0(Z[ 1

2
]) is an

abelian group homomorphism g : L → L′ with g[L, L] ⊆ [L′, L′].
Moreover let Ñiq0(k) be the quotient category of Niq0(k) obtained by identifying those g1, g2 :

L → L′ for which g1|[L,L] = g2|[L,L] and gab
1 = gab

2 : Lab → L′ab.

We then have

8.6. Proposition. There are linear extensions

0 → Φ → Niq(Z[ 1

2
])

q
−→ Niq0(Z[ 1

2
]) → 0

and

0 → Φ̃ → Niq0(Z[ 1

2
])

q̃
−→ Ñiq0(Z[ 1

2
]) → 0

defined as follows. The functor q : Niq(Z[ 1

2
]) → Niq0(Z[ 1

2
]) is identity on objects and given on

morphisms via
q(f)(a) = 2f(a) − 1

2
f(2a).

The bifunctor Φ : Niq0(Z[ 1

2
])op × Niq0(Z[ 1

2
]) → Ab is given by

Φ(L, L′) = Hom(S2(Lab), [L′, L′]).
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The functor q̃ is the canonical quotient functor, and Φ̃ is given by

Φ̃(L, L′) = Hom(Lab, [L′, L′]).

Moreover the categories Niq0(k) and Ñiq0(k) are both additive, and the functor q has a section
given by the embedding.

Proof. Additivity of Niq0(Z[ 1

2
]) follows from the obvious fact that for any morphisms g1, g2 :

L → L′ in Niq0(Z[ 1

2
]) the maps g1 ± g2 are morphisms of Niq0(Z[ 1

2
]) too.

The rest is clear in view of the above considerations. Indeed we can replace a morphism
f : L → L′ in Niq(Z[ 1

2
]) by a pair (g, h) as in iii) of Proposition 8.4. Under this identification

the functor q becomes the projection sending (g, h) to g and the first linear extension becomes
obvious. The second one is straightforward. �

8.7. Definition. Let Niqab(Z[ 1

2
]) denote the following category. Objects of Niqab(Z[ 1

2
]) are short

exact sequences
0 → B → E → A → 0

of Z[ 1

2
]-modules such that there exists a surjective homomorphism π : Λ2(A) � B. A morphism

from 0 → B → E → A → 0 to 0 → B ′ → E ′ → A′ → 0 is a pair (α : A → A′, β : B → B′)
of homomorphisms such that there exists ε : E → E ′ making the diagram

0 // B //

β

��

E //

ε

��
�

�

�

A //

α

��

// 0

0 // B′ // E ′ // A // 0

commute. We do not make π or ε part of the structure, in particular π is not required to be
compatible with α and β in any way.

Note that Niqab(Z[ 1

2
]) is an additive category, since for any A, A′ there are surjective homo-

morphisms Λ2(A⊕A′) � Λ2(A)⊕Λ2(A′) and moreover for any morphism (α, β) in Niqab(Z[ 1

2
])

the pair (−α,−β) is also a morphism.
There is a functor r : Ñiq0(Z[ 1

2
]) → Niqab(Z[ 1

2
]) sending a Lie algebra L to the short exact

sequence
0 → [L, L] → L → Lab → 0

and the morphism [g] : L → L′ to the pair (gab, g|[L,L]), where [g] denotes the equivalence class

of g and gab : Lab → L′ab is the homomorphism induced by g which exists since g[L, L] ⊆
[L′, L′].

8.8. Proposition. The above functor r yields an equivalence of categories

Ñiq0(Z[ 1

2
]) ' Niqab(Z[ 1

2
]).

Proof. First, r is surjective on objects, since for any object 0 → B → E → A → 0 of Niqab(k)
any surjective homomorphism Λ2(A) � B determines a bracket

[, ] : Λ2(E) � Λ2(A) � B � E

on E which turns it into a nil2 Lie algebra with [E, E] = B and Eab = A.
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Next, r is full since by definition a morphism from the object 0 → [L, L] → L → Lab → 0 to
the object 0 → [L′, L′] → L′ → L′ab → 0 in Niqab(Z[ 1

2
]) is by definition a pair of linear maps

β : [L, L] → [L′, L′], α : Lab → L′ab for which there exists a linear map g : L → L′ fitting in
the appropriate diagram, which means that β = g|[L,L] and α = gab.

Finally r is faithful since for g1, g2 : L → L′ one has r[g1] = r[g2] if and only if g1 and g2 are
equivalent in the sense of 8.5, i. e. if and only if [g1] = [g2]. �

We can now finish the proof of our theorem.

Proof of 8.1. There is a chain of functors

Niq
1

2
(8.3)
−−→ Niq(Z[ 1

2
])

(8.6)
−−→ Niq0(Z[ 1

2
])

(8.6)
−−→ Ñiq0(Z[ 1

2
])

(8.8)
−−→ Niqab(Z[ 1

2
])

each of which is either an equivalence or a linear extension. The statement of 8.1 is that objects
on the left are isomorphic if and only if their images under the composite functor are. This is
clear since any linear extension reflects isomorphy of objects. �

9. A COHOMOLOGICAL OBSTRUCTION TO q-SPLITTING

We start with recalling the definition of the nonabelian cohomology. Let G∗ be a cosimplicial
group. One denotes by π0(G∗) the subgroup of G0 consisting of elements x ∈ G0 such that
d0(x) = d1(x). Moreover, one defines the pointed set π1(G∗) as the quotient of the pointed set

Z1(G∗) =
{
y ∈ G1 | d1(y) = d0(y) + d2(y)

}

by the following equivalence relation: y ∼ z, y, z ∈ Z1(G∗) iff there exists x ∈ G0 such that
z = −d0x + y + d1x. If G∗ is abelian then one defines π∗(G∗) in all dimensions using the
homology of the associated cochain complex (G∗, d =

∑
(−1)idi). In particular πi(G∗) is an

abelian group, i ≥ 0, provided G∗ is abelian cosimplicial group. The following result is well
known.

9.1. Lemma. Let

0 → A∗ → G∗ → B∗ → 0

be a short exact sequence of cosimplicial groups. Then one has the exact sequence of pointed
sets:

0 → π0(A∗) → π0(G∗) → π0(B∗) → π1(A∗) → π1(G∗) → π1(B∗)

Moreover, if A∗ is abelian, then the connecting map π0(B∗) → π1(A∗) is a homomorphism.

We also need the following

9.2. Lemma. Let G and H be nil2-groups. Then one has the following exact sequence:

0 → Quad(G, [H, H]) → Q(G, H) → Hom(G, Hab).

If additionally G is free in Nil, then the last map is surjective.
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Proof. Assume f : G → H is a q-map. Then the composite of f with the quotient map H → H ab

is a homomorphism, which is zero provided the image of f lies in [H, H]. Then the resulting
map is quadratic. Conversely any quadratic map G → [H, H] considered as a map G → H is a
q-map. If G is free then any homomorphism G → Hab has a lifting to a homomorphism G → H
and the result follows. �

For any G ∈ Nil and any A ∈ Ab define the groups Quad
∗(G, A) as the simplicial derived

functors of the functor Quad(−, A). More precisely, let G∗ be a free simplicial resolution of
G. Thus G∗ is a simplicial object in Nil such that for each n > 0 the group Gn is free in Nil

and πi(G∗) = 0 for i > 0 and π0(G∗) = G. Then one can consider the cosimplicial abelian
group Quad(G∗, A). It is well known that the groups π∗(G∗, A) do not depend on the choice
of a free simplicial resolution and they are denoted by Quad

∗(G, A). Actually Quad
0(G, A) =

Quad(G, A).
For N ∈ Nil the sets πi(Q(G∗, N)) for i = 0, 1 also do not depend on the choice of a free

simplicial resolution of G. We will denote them by Qi(G, H), i = 0, 1. Actually Q0(G, H) =
Q(G, H).

9.3. Proposition. Let G and H be nil2-groups. Then one has the following exact sequence:

0 → Quad(G, [H, H]) → Q(G, H) → Hom(G, Hab)

→ Quad
1(G, [H, H]) → Q1(G, H) → H2

Nil(G, Hab),

where all terms are groups except for Q1(G, H) and all maps are homomorphisms except for the
last two maps.

Proof. By Lemma 9.2 we have a short exact sequence of cosimplicial groups

0 → Quad(G∗, [H, H]) → Q(G∗, H) → Hom(G∗, H
ab) → 0,

where G∗ is a free simplicial resolution of G. The rest follows from Lemma 9.1. �

9.4. Corollary. For nil2-groups G and H and a homomorphism f : G → Hab, there is a
well-defined element o(f) ∈ Quad

1(G, [H, H]) which vanishes if and only if f lifts to a q-map
G → H .

�

In particular, taking above H to be arbitrary, G = Hab and f the identity map, denote the
corresponding element o(f) by o(H); this is thus an element in Quad

1(Hab, [H, H]). Then we
have

9.5. Corollary. For a nil2-group G there is a well-defined element o(G) ∈ Quad
1(Gab, [G, G])

which vanishes if and only if G is q-split.

�
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