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ON L:-COHOMOLOGY AND PROPERTY (T)
FOR AUTOMORPHISM GROUPS OF
POLYHEDRAL CELL COMPLEXES

WERNER BALLMANN! AND JACEK SWIATKOWSKIZ

ABRSTRACT. We present an update of Garland’s work on the cohomology of certain
groups, construct a class of groups many of which satisfy Kazhdan’s Property (T)
and show that properly discontinuous and cocompact groups of automorphisms of
(4,4) or (6, 3)-complexes do not satisfy Property (T).

For a simplicial complex X, the link X, of X at a vertex v of X is defined to
be the subcomplex consisting of all simplices 7 of X which do not contain v, but
whose union with v is a simplex of X. If dim X = 2, then X, is a graph for any
vertex v of X.

For a finite graph L with set of vertices Vp, consider the Laplacian A on the
space of real valued functions on V defined by

Af(v) = f(v) — Af(v),

where Af(v) is the mean value of f on the vertices adjacent to v. Clearly, A is a
self adjoint operator. We denote by k = «(L) its smallest positive eigenvalue.

Theorem 1. Let X be a locally finite 2-dimensional simplicial complex such that

(1) for any vertex v of X the link X, ts connected;
(2) there is an € > 0 such that k(X,) > 3 + ¢ for each vertex v of X.

Let T be a properly discontinuous group of automorphisms of X and p be a unitary
representation of T. Then L2HY(X, p) = 0, where L?H(X, p) denotes the cohomol-
ogy of the complex of mod I' square integrable cochains on X which are twisted by

p.
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Here the square integrability of a cochain refers to a natural norm, see (1.4} in
Section 1.

Theorem 1 is a special case of Theorem 2.5 in the text, where we also consider
higher dimensional complexes and higher cohomology. However, the formulation of
Theorem 2.5 needs more preparation and we refer the reader to Section 2 below for
the exact statement. The proof of Theorem 1 and its extension to higher dimension
is based on arguments from Garland’s paper [Ga] (see also [Bo]) and a recent paper
by P. Pansu [Pa].

The class of spaces satisfying the assumptions of Theorem 1 is extremely rich
as can be seen from the construction in Section 1 of [BB] (see also Proposition 4.1
below). Tt is more difficult to obtain such spaces admitting properly discontinuous
and cocompact groups of automorphisms. We adress this problem in Theorem 2.
Note however that Theorem 1 applies also in the particular case where the group
T is trivial, hence L2H'(X,R) = 0 for all such spaces X.

For the convenience of the reader we recall below the definition of Property (T).
Before we do this, a word about the language: groups will always be assumed to be
topological groups. Representations will always be assumed to be continuous in the
strong topology. The most interesting groups occuring in this paper are countable
with the discrete topology and these two conventions will be of no relevance.

Definitions. Let I" be a locally compact group. Then we say that

(1) a unitary representation p of I' on a Hilbert space H has almost invariant
vectors if for any compact set K C I' and any € > 0 there is a unit vector
v € H such that |p(g)v —v| < e forall g € K.

(2) T satisfies Property (T) if any unitary representation which has almost
invariant vectors has an invariant unit vector.

The most prominent class of groups satisfying Property (T) are the isometry
groups of symmetric spaces of noncompact type and rank > 2, of the quaternionic
hyperbolic spaces and of the Cayley hyperbolic plane. The isometry groups of the
real and complex hyperbolic spaces do not satisfy Property (T). Note also that a
lattice in a group satisfies Property (T) iff the group itself satisfies Property (T).

It is known that a locally compact group I' with a countable base for the topology
satisfies Property (T) iff H(T',p) = 0 for any unitary representation p of I, see
Theorem 4.7 in [HV]. On the other hand, if " is a properly discontinuous group of
automorphisms of a contractible simplicial complex X, then H(T, p) = H}(X, p),
where H!(X, p) is the cohomology of the complex of cochains on X twisted by p.
If the action is also cocompact, then H(X, p) = L2H*(X, p). Therefore Theorem
1 has the following consequence.

Corollary 1. Let X be a contractible 2-dimensional simplicial complex and T be a
properly discontinuous and cocompact group of automorphisms of X. Assume that
for any vertex v of X (1) the link X, is connected and (2) w(X,) > 1/2. Then
I’ satisfies Property (T).

The class of graphs satisfying & > 1/2 includes all thick spherical buildings of
type A; x A; and Ay and those of type By and G5 if their valence is sufficiently
large, see [FH] (see also Subsection 3.1 below). Hence locally finite thick Euclidean
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buildings of type A, satisfy the assumptions of the above results and those of type
Bsy or G do if they are sufficiently thick. Recall that cocompact lattices in simple
algebraic groups of rank at least two over non-Archimedean fields satisfy Property
(T). Such lattices act properly discontinuously and cocompactly on locally finite
thick Euclidean buildings of the corresponding type. If the group has rank two, the
building has dimension two and Property (T) also follows from Corollary 1 above,
at least when the building is sufficiently thick.

In dimension two, there are numerous examples of Euclidean buildings and non-
arithmetic groups acting on them. D. Cartwright, W. Mlotkowski and T. Steger
proved Property (T) for a certain class of such groups which act on Euclidean
buildings of type Aj, see [CMS] (the examples were constructed earlier in [CMSZ]).
Property (T) in these examples also follows from Corollary 1 above.

Theorem 1 and Corollary 1 in the special case where X is a Euclidean building of
type A, with constant thickness > 2 have been proved by P. Pansu, sce [Pa]. The
results of Pansu apply in particular to examples of non-arithmetic groups acting
on Ag-buildings constructed by J. Tits (see [Ti], Section 3.1) and M. Ronan (see
[Ro]). Another version of Theorem 1 and a somewhat refined version of Corollary
1 was proved independently by Zuk [Zu].

It seems to us that the examples mentioned above are the only ones known so far
where Corollary 1 applies. It is possible that there is some kind of rigidity regarding
Property (T). However, such a rigidity phenomenon, if it exists, does not involve
Tits buildings only: we will construct some new examples where the underlying
space X is not a Tits building. We make use of specific Ramanujan graphs. In
Chapter 3 of {Sa], P. Sarnak describes some explicit examples of such graphs. They
are Cayley graphs of finite groups and most of them satisfy the assumptions of
Theorem 2 and Corollary 2 below.

Theorem 2. Let H be a finite group, S C H \ {e} a set of generators of H and
(S, R) a presentation of H. Assume that the girth of the Cayley graph L = C(H, S)
s at least 6. Then the group I' given by the presentation

(%) (Su{r} | Ru{r*}u{(s7)®| s € S})

acts properly discontinuously and cocompactly on a contractible simplicial 2-complex
X such that the hinks of all vertices of X are tsomorphic to L.

Here we recall that the girth g = g(L) of a finite graph L is the minimal number
of edges in closed circuits of L.

Corollary 2. Let H be a finite group, S C H \ {e} a set of generators of H and
(S, R) a presentation of H. Assume that the Cayley graph L = C(H,S) satisfies
(1) g(L) > 6 and (2) w(L) > 1/2. Then the group I given by the presentation
(x) satisfies Property (T).

In combination with the Ramanujan graphs of Sarnak mentioned above, this
gives rise to an infinite class of new groups satisfying Property (T). In most of the
examples of Sarnak, the girth is > 6 and therefore the corresponding groups I" are
hyperbolic in the sense of Gromov.

A polygonal complez is a 2-dimensional polyhedral cell complex. The class of
infinite and contractible polygonal complexes is very rich and is studied from various
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points of view. If X is a polygonal complex and v € X is a vertex, the link of X at
v is the graph X, whose vertices represent the edges of X adjacent to v, where two
vertices are connetced by an edge if the correspoding two edges in X are adjacent to
a common face. This generalizes the corresponding notion for simplicial complexes.
Say that a polygonal complex is a (k,!)-complez if each face of X has at least k
sides and if the links at the vertices of X have girth > . Simplicial complexes are
special (3, 3)-complexes since each face has exactly 3 sides.

Under our assumptions we always have (k, 1) > (3,3). The condition kl > 2(k+1),
which has its origins in small cancellation theory, is very natural from the point of
view of geometry and crucial in the construction of polygonal complexes in [BB].
If X is a (k,l)-complex with kI > 2(k + ), then the length metric on X, which
turns every edge of X into a geodesic segment of length 1 and each face of X
into a regular Euclidean polygon, is a complete metric of nonpositive curvature
(in the triangle comparison sense of Alexandrov). The minimal solutions of the
inequality kl > 2(k + 1) are (k,l) = (6,3), (4,4) or (3,6). They correspond to the
tesselations of the Euclidean plane into regular hexagons, squares and equilateral
triangles respectively.

It is natural to ask which groups of automorphisms of polygonal complexes satisfy
Property (T). To state our results in that respect we need a further definition.

Definition. Let I' be a group and f : I' = C a continuous function. We say that
f is of negative type if forallm > 1,all g1,...,9m € ['and all Ay,..., A, € C with
A1+ -+ A = 0 we have

> XX flo7es) < 0.

%)

It is known that a locally compact group I' with a countable base for the topology
satisfies Property (T) iff any continuous function of negative type on I' is bounded,
see Theorem 5.20 in [HV].

Theorem 3. Let X be a simply connected (4,4)- or (6,3)-complez and let T' be a
group of automorphisms of X. If ' does not have a fized point, then I' admits an
unbounded function of negative type.

Note that we do not assume any kind of regularity conditions on X. We do not
need that X is locally finite or that all edges of X bound a face or two faces. In
fact, our proof of Theorem 3 also applies in the case when X is a tree.

Corollary 3. Let X be a locally finite simply connected (4,4)- or (6,3)-complez
and let T be a properly discontinuous group of automorphisms of X. If ' is infinite,
then I" does not satisfy Property (T).

A group does not satisfy Property (T) if it acts without fixed points on a tree.
Hence the following result is a refinement of Theorem 3 in the case where the
stronger assumptions on X are satisfied.



Theorem 4. Let X be a simply connected polygonal complex. Assume that the links
of vertices of X are connected and bipartite and that at least one of the following
conditions is satisfied:

(1) for some k > 4 each face of X is a k-gon;
(2) each face of X has an even number of sides.

" LetT be a group of automorphisms of X. If ' does not have a fized point, then I’
has a subgroup of finite index which admits a fized point free action on a tree.

Let X be a noncompact simply connected (k, I)-complex with kI > 2(k--1) and let
[ be a properly discontinuous and cocompact group of automorphisms of X. So far
it remains unclear what the precise conditions on X for I' to have Property (T) are
and whether there are such. Corollary 3 gives a necessary condition, namely (k,!) =
(3,6). Corollary 1 gives a sufficient condition. Of course one needs regularity
assumptions on X — such as (1) in Corollary 1 — if one wants to tie Property (T)
to the structure of X.

Structure of the paper. In the first two sections we develop the ideas of Garland
from [Ga]. There are several technical improvements, and we also include Pansu’s
improvements to L?-cohomolgy and infinite dimensional unitary representations in
our more general framework. Thus Sections 1 and 2 can be viewed as an update
of the main part of Garland’s work. In Section 3 we discuss applications to groups
acting on Tits buildings and to groups constructed in Section 4. In Section 4 we
prove Theorem 2 and in Section 5 Theorems 3 and 4. Sections 4 and 5 can be read
independently of the rest of the paper each.

Acknowledgments. We would like to thank T. Januszkiewicz and P. Pansu for
helpful discussions and comments. The second author would like to thank the Max-
Planck-Institut flir Mathematik in Bonn for its hospitality during the academic year
95/96.

1. LOCALIZATION

Let X be a locally finite simplicial complex of dimension n. For a simplex ¢ in
X, denote by m(c) the number of n-simplices containing ¢. Throughout we assume
m(c) > 1, that is, every simplex of X is contained in an n-simplex.

Denote by 2(k) the set of ordered k-simplices of X. For o = (vo, ..., ux) € L(k)
define

(1.1) m(o) = m{{vo, ..., vx}),

where {vg,...,vx} is the k-simplex (without ordering) underlying o. Clearly, for
T € B(k),

(1.2) > m(o) = (n— k)k +2)lm(r),
o EE(k+1)
eldTr
where the factor (k + 2)! corresponds to the number of possible reorderings of an
ordered (k + 1)-simplex and where 7 C o means that the vertices of 7 are vertices
of 0.



Let I' be a group acting properly discontinuously and by automorphisms on X.
For an ordered simplex o of X, denote by I', the stabilizer of . We choose a set
2(k,T) C Z(k) of representatives of I'-orbits.

1.3 Lemma. For 0 <!l <k <, let f = f(1,0) be a I'-invariant function on the
set of pairs (1,0), where T is an ordered l-simplex and o an ordered k-simplex with
T C o, that s, the vertices of 7 are vertices of o. Then

> yhiw. v oy A

ocet(k,I') 1'62(1) TEL(,T) UEL(A

whenever one of the sums on the left hand side or right hand side is absolutely
convergent.

Proof. Since f is I'-invariant,

DRI Y Zwum

o€E(k,[) TEZH sEB(k,I) €D
T€ex(l,) *7Co

- > Ay v I

TELW, T} €D TEZ(L,D) aEE{A)
c€X(k, I} TCre

Let p be a representation of I' on a complex, possibly infinite dimensional Hilbert
space H. Let C*(X, p) be the space of simplicial k-cochains of X, which are twisted
by p, that is, ¢ € C*(X, p) is an alternating map on the ordered k-simplices of X
with values in H such that

¢y o) =ply) o) forallyel, o€ X(k).
We say that ¢ € C*¥(X, p) is square integrable mod T" if
— m(o)
(1.4) lll* = UEZZ(;,P) T ) e(e) < oo

We denote by L*(X, p) the space of mod I square integrable cochains in C*(X, p).
If X is finite or, more generally, if I acts cocompactly on X, we have LF(X, p) =
C*(X,p). On L*(X, p), we have the Hermitian form

_ m(o)
(#9):= > T @) v, 6,9 € L*(X, p).
g€T(k,T)

For o = (vg, ..., vx) € £(k} and 0 < i < k let oy := (v, ..., s, ...vx ). The differential
d: C*(X,p) — C**t1(X, p) is given by



1.5 Proposition. For ¢ € L*(X,p) we have ||dd||* < (n — k)(k + 2)||¢||%.
particular, d : L*(X, p) = L*¥*1(X, p) is a bounded operator.

The point of this proposition is that we do not assume that X is uniformly locally
finite.

Proof of Proposition 1.5. We have

e = S D g

geX(k+1,I) (k + 2)!|Pa|
m(o) .
= __mlo) » i
ﬁggu»“+mmxﬂgx )9 (o)l
< E %(’G_{_Q)ZM’(U:‘)F
ceB(k+1,T") ‘e -
= m(o)(k + 2)
) 062%‘;1,1“) (k + 2T |(k + 1)! ;k) l8(7

(1.3) m(o)(k +2) 9
=22 G o)

€D (kL) w€EG+1)

1) (R D)+
= X Taramruy 20

TeZ({k,T)

o m(r)
= ( k)(k+2)rezz(;,r)—(k+l)!|FT|

= (n—k)(k+2)|¢l?
and hence ||do||? < (n — k)(k + 2)||4]|*>. O
Denote by § : L**1(X, p) = L*(X, p) the adjoint operator of d,
(dp, ) = (#,6¢) for allg € LF(X, p), ¥ € L*"(X, p).

Recall that 4 is a bounded operator with the same norm as d.

1.6 Proposition. For ¢ € L¥(X,p) and 7 € £(k - 1),

sy = 5 e gton),
)

|6 ()|*

where vT is the ordered k-simplex obtained by juztaposition of the vertex v. Fur-
thermore, ||0¢]|> < (n— k + 1)(k + 1)||8||2-

Proof. The straightforward computation of {¢,dy) = (d¢,9) — to avoid summa-
bility problems restricted to those 1 € L¥~1(X, p) which are nonzero on finitely
many [-orbits in £(k — 1) only — shows that d¢(7) is as claimed. Since § has the
same norm as d, we have ||§¢]2 < (n—k+ 1)(k+1)||¢||2. O



1.7 Corollary. For ¢ € L*¥(X,p) and o € X(k),

m(vo

)qiu(vai). O

§dp(o) = (n—E)p(a)— > > (-1

vex(o) 0<i<k
vo EX(k+1)

m(o)

Let 7 = (vo,...,v;) be an ordered j-simplex of X. Denote by X, the link of
7 in X, that is, the subcomplex of dimension n — 7 — 1 consisting of all simplices
{wo, ..., w;} of X which are disjoint from {wvp, ..., v;} such that the union {vy, ..., v;}U
{wg, ...,w;} is a simplex of X. For an ordered simplex = (wy, ..., w;) of X, let
™ = (vo,...,vj,wo, ..., ws) € L(j + !+ 1) and denote by m,(n) the number of
(n — 7 — 1)-simplices in X, containing . Then

(1.8) m (1) = m(7n).

The set of ordered I-simplices of X, is denoted X, (!). The isotropy group I'; acts
by automorphisms on X... Since I' acts properly discontinuously, I'; is finite. Note
that [';,, = I';, NI, is the stabilizer in ['; of the ordered simplex 7 of X,. We let
p+ be the restriction of p to I'; and C!(X,, p,) be the space of simplicial l-cochains
of X, which are twisted by p,. Thus X, the action of I'; on X, and p, is a triple
as X, the action of " on X and p, except that we are in the special case that X, is
finite. Our notational guideline is to use the same symbols as in the general case,
but to indicate by a subscript 7 that we are considering X,. For example, the
differential on C'(X,, p,) is denoted d,.

Let £.(1,T,) ¢ E,(I) be a set of representatives of I',-orbits. For ¥ € CY(X,, pr)
we have

Y I ) YA

|
n€S, (L) (L4 Dt

1
= ——— > m(r)ln)*
(F+ DHE| nex, (1)

(1.9)

Juxtaposition of T to an ordered simplex 7 of X, denoted 79 as above, defines a
localization map

CHX,p) = C* "N Xr,pr), &= b,

where ¢, is given by

¢-(n) := ¢(n).

1.10 Lemma. Let ¢ € L*(X,p) and 0 < j < k. Then

E+1)0- 1912 = (k=5 > liel*

TeX(j,I')



Proof. We compute

m(Tn)
Z ||¢5~r||2 Z Z WWT(U)‘Z
TEL(5,T) TEE(H,T) 7€ (k—j— 1) A

= 2 2 _J,,F||¢<)|

T€T(4,I") UEL(k)

DY kff",lr ol

TEX(F,IN ﬂEE(*)

DR k+1 .|F 40

c€B(k,T) 7EEL)
_(k+1)!
(k=)
The relation between localization and ¢ is straightforward, at least if 7 < £ — 1.
1.11 Lemma. Let 0 < j <k <n, T € X(j) and ¢ € L¥(X, p).
(1) If j < k—1, then 5,¢, = (—=1)7+(64),.

(2) Ifj = k—1 and ¢° denotes the component of ¢, in the subspace of constant
maps in C%(X,, p;), then (=1)¥(n — k + 1)¢? = §¢(7). In particular,

02 m(7)
19917 = e 99

I

llgll®.

Proof. The proof of (1) is straightforward. As for (2) we have by (1.9) that ¢? is
the constant function with value equal to

-1
(20 me)™ D me(0)er(v).
vEL,(0) vEL,(0)

On the other hand,

In particular,

o= 3 x5|)"’50( )2

vEL, (0)
= ) g m(r)
_vezzf(o)( Tk 1] = Ry i o

In the special case of Tits buildings, a formula similar to the one below is con-
tained in the proof of Lemma 8.1 of [Gal].
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1.12 Theorem. Let 0 < j <k <n and ¢ € L*¥(X,p). Then
kU (gl — (= BBI?) = (k=5 = 1)V Y (et |* = (n = K)lIg112).

r€L(,)
Proof. By Lemma 1.7
ldg]* ~ (n = K)l¢l1* = (6dé ~ (n — k)¢, §)

2 E Z ﬁ%(ﬂvﬂi)ad)(a))

oEL(k,L) | v€E(O) O0<i<k
vo

- Y X T ot (bl 6(0))

dEE(k [‘) EE(" 1) vEX(0)
Co vo EE(k+1)

where [0 : 7} denotes the incidence coeeficient of  with respect to o,

- Y Y bl (. o)

B(k—1,I') ¢ €E(k) vEX(0)
7€ ( ) cdn  wvo€E({k+1)

- ¥y e, sn),

neL(k—1,I'} v;:eezﬂ(w_l)

where wn takes over the role of o, more precisely, of v;0; for o = (vg,...,vg). If
j = k — 1, the asserted equality follows immediately. If 7 < k — 1, we apply the
above formula to ¢,, 7 € L(4,T), and get

(k=g=1! Y (ldetrl* = (n = B)ér])

T€X(7,I)
me (VW
xilD DRED DR DI S AR
T€D(§,I) pEL, (k—j—2,0;) vwES,(1) TP

vwpEEy (k—j)
=k (ldgll® = (n = R)lI811%),

where we use that the set of Tp, for 7 € £(5,T') and p€ Z,(k—3j —2,T,), is a set
L(k —1,T) of representatives of I'-orbits. [

For 7 € £(j), define a quadratic form Q, on C*~7=1(X, p,) by

Jj+1 :
Q- (9) = Idrtll® = 5= (= B},

As an application of Lemma 1.10 and Theorem 1.12 we obtain:
1.13 Corollary. Let 0 < j < k <n and ¢ € L¥(X, p). Then
Rl = (k=5 —1)! D Qe(¢r). O
T€LI(5,I)

In [Pa], Pansu discusses a related formula for 1-forms in the case where X is a
building of type A,.
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2. VANISHING OF L2-COHOMOLOGY

Let X, I’ and p be as in the previous section. The L2?-cohomology of X with
respect to p is defined as

L?*H*(X, p) = ker(d|L*(X, p))/ im{d|L*~1(X, p)).

If X is finite or, more generally, if I' acts cocompactly on X, then L2H*(X, p) =
H*(X, p). Let
At =6d, A~ =ds, A=AT4+A".

Define the space L2H*(X, p) of mod T square integrable harmonic k-forms twisted
by p by

L*H*(X, p) = ker(A|L*(X, p)) = ker(AT|LF(X, p)) Nker (A~ |L*(X, p)).

If X is finite or, more generally, if ' acts cocompactly on X, then L2H*(X,p) =
H¥(X, p), the space of harmonic forms on X twisted by p. We have

(ker(AH|LE(X, p)))" = im(A+|LF(X, p)) = im (6] LF+1(X, p))

(2.1) N
(ker (A~ |L*(X, p)))” = im(A-|L*(X, p)) = im(d|L*—1(X, p))

and the orthogonal decompositions

ker(A*|LK(X, p)) = L*H*(X, p) @ im(B-|LF(X, )

2.2
22) ker(A~|LF(X, p)) = L*H*(X, p) ® im{A+|LF(X, p)).

In particular,

L*M*(X, p) = ker(d|L*(X, p))/im(d|LF~1(X, p)).

2.3 Lemma. If X (and T') are finite, then im(A*|C*(X, p)) is closed. Further-
more, if oF is the minimal positive eigenvalue of AT on C*(X,R), the space of
(untwisted) k-chains on X with values in R, then ||[A%|| > o ||@|| for all ¢ in
Ck(X, p) perpendicular to ker A%,

Proof. We let Af = AT|C*(X,R). Since C*(X,R) is a finite dimensional Eu-
clidean space and Ai{ is a self adjoint operator on C*(X; R), we have an orthogonal
decomposition

C*(X,R) = ker Af @ im Af.

Denote by C*(X, H) the space of (untwisted) k-cochains on X with values in
the Hilbert space H. Then

CHX,H)=C*X,R) @ H
as a Hilbert space. For A, = A¥|C*(X, H) we have
AL(¢®v) = (Agg) ®v

11



for ¢ € C*(X,R) and v € H. In other words, A}, = Af ®id. Hence
ker A} = (ker Af) @ H, imA}, = (imAf) ® H.
In particular, ker AE and im A; are closed and
CH(X,H) =ker A}, @im A}
is an orthogonal decomposition. This proves the first assertion in the case of A%
on Ck(X, H).
Concerning the second assertion, we let Py be the orthogonal projection in

C*(X,R) onto ker Af and P; be the orthogonal projection onto im Ag. Then
Py+ Py =1d and Py Py = PPy = 0. We have

IAR (Pio)]| 2 oF || P

for all ¢ € C*¥(X,R). Now Py ® id is the orthogonal projection of C*¥(X, H) onto
ker A}'_, and P; ® id the orthogonal projection onto im Aj;. Hence the asserted
inequality follows in the case of A}, on C*(X, H), and the proof of the corresponding
statements for Ay on C*(X, H) is similar.

Now the space C*¥(X, p) of twisted k-cochains is a closed subspace of C*(X, H),
invariant under A}; and Af. D

Let 0 < k < n and consider the case j = k—1 in Corollary 1.13. Let 7 € £(k—1)
and ¢ € C°(X,, pr). Then

k
k+1

where we note that A, = AT on 0-cochains. Let %° be the component of 3 in
ker A, and set ! =1 — %, Then

[~

k41
Denote by x, the smallest positive eigenvalue of A, on C°(X,,R).

k
k-+1

Q- (%) = |ld-9||* - (n = K)IYII* = (Aryp — (n — k)i, ),

Q-(¥) = (n = E)I°I* + (Arypt — (n= k)’ 9.

kE+1

k!n—k!
k+1

917 < CallgPl? + Q- (9).

kin-k
for all 4 € C%(X, p;), where Cc =14 2 ) O

2.5 Theorem. Let 0 < k < n =dimX. Assume that X, is connected and that
there is an € > 0 such that K, > ﬂ,?_},;lkl +¢€ for all (k —1)-simplices T of X, where
Ky is the smallest positive eigenvalue of A, on C%(X,,R). Then L2H*(X,p) =0

for any unitary representation p of I.

Proof. Let 7 be a (k— 1)-simplex of X. Now X, is connected and ker A, = kerd,.
Therefore the kernel of A, on C%(X,, p,) consists of the constant maps. Hence by
Lemma 1.11(2),

2.4 Lemma. In the above notation, assume K, > +¢€ for somee > 0. Then

m(7)

1I° = T

154
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Let ¢ € ker(A*|L*(X, p)). Then d¢ = 0 and we have

VR 7 R N P

T€S(k-1,T)
@0 m(r) "
< 8 -
SIS DR ey o (LD DRI
TE€L(k—1,T) r€L(k~1,I")
(1.13) k! -

e p o 1ol + % 0=CL-[|6¢]> = CL - (A~ ¢, 9).

This shows that L*H*(X,p) = 0 and that the image of A~|L*¥(X,p) is closed
in ker(A*|L¥(X, p)). Hence ker(A*|L*(X, p)) = im(A~|L¥(X, p)) and therefore
L?H*(X,p)=0. O

Note that Theorem 1 of Introduction corresponds to the case n = 2 and £ =1
in Theorem 2.5.

3. APPLICATIONS

Our main applications of Theorem 2.5 concern the case kK = 1 and dimX =
n = 2. More generally, if dimX = n > 2 and if £ = n — 1, then the link of
7 € X(k—1) = Z(n — 2) is a graph. Therefore we are interested in estimates for
the smallest positive eigenvalue & = k, of the Laplacian Ap, acting on the space
C®(L,R) of real-valued functions on the vertices of a finite graph L. In order to
apply Theorem 2.5, we actually need £ > 1/2 if n = 2 and k = 1 respectively
k>(n-1)/nifn>2and k=n-1.

For ¢ € C°(L,R) and v a vertex of L, we have

ML) = (o) - —— 3 (w),
el

mi,(v) w

where my (v) denotes the valence of v, that is, the number of edges adjacent to v,
and L, is the link of v in L, consisting of all vertices adjacent to v. Defining the
averaging operator A : C°(L,R) — C°(L,R) by

1
Adlo) = o wg,, d(w),

we get
ALp=¢— Ap.

Obviously, the spectrum of A is in {—1,1] and hence the spectrum of A is in [0, 2].

If all the vertices of L have the same valence m, then the adjacency operator
considered in graph theory is m times the averaging operator A considered above.
The complete spectrum of the adjacency operator, including the multiplicities of
the eigenvalues, has been computed in many cases, see e.g. [BCN], [CDS].

13



3.1 Tits buildings. We say that a graph L is bipartite if the set V of vertices of
L is a disjoint union V = Vo U Vy, where v € V) is adjacent to vertices from V; only
and vice versa. If L is bipartite, then we have an orthogonal decomposition

C*(L,R) = Fo & Fi,

where Fy denotes the space of real valued functions on Vy and F; the space of real
valued functions on Vi, and a corresponding decomposition of A,

{0 A
(3 4)
Since the decomposition Fo @ F; is orthogonal and A is self adjoint, we have A} =

A,. Clearly,
ker A = ker Ay @ ker A;.

Nonzero eigenvalues of A;Ag are positive. If ¢ € Fy is an eigenfunction of A;A4p
with eigenvalue A > 0, then (v/A¢, Aps) and (\/Xé, —Ag¢) are eigenfunctions of A
for the eigenvalues VA and —v/A. In this way, we obtain all nonzero cigenvalues
of A and the corresponding eigenfunctions. Observe that the spectrum of A is
symmetric about 0.

Assume now that L is a Tits building (also called generalized polygon). Then
L is bipartite. Assume that there are numbers mg, m; such that the valence of
each vertex v € Vy is mg and the valence of each vertex v € V; is my. This holds
automatically when L is thick. By what we said above, x and the biggest eigenvalue
i of M = mympA,Ag on the space of functions in Fy perpendicular to the constant
functions are related by
m

Kk=1- .
NI

Now the spectrum of M was determined by Feit and Higman [FH, Lemmas 4.1,
5.1, 6.1] (see also [Gal, [Pa]). Their results imply:

(1) if L is of type Ay x Ay, i.e., if L is a complete bipartite graph, then « = 1.
(2) if L is of type Ag, i.e., if L is the flag complex of a projective plane, then
m—1

mo =my =:m and K =1 — ———. Hence x > 1/2 for m > 3.
m

-2
(3) if L is of type By, then k =1 — 1/ML—
mongy

-2 -1 .y
(4) if L is of type G2, then k=1 — \/ mo + 1y — 2+ /(mo — 1) (my )
MopTny

mo+my — 2+ \/27(?71() - l)(ml - 1)
o1 '

(5) if L has diameter 8, then K =1 — \/

The main theorem of Feit and Higman in [FH] says that there are no finite thick
Tits buildings of dimension 1 other then of the types mentioned above. In each
case, K > 1/2 when mg,m; > 13 and k — 1 as mg, m; — oo

Theorem 2.5 together with the above formulas for £ implies: if X is a locally finite
2-dimensional Tits building such that each edge of X is adjacent to at least 13 faces,

14



then L2H'(X, p) = 0 for any properly discontinuous group I' of automorphisms of
X and any unitary representation p of T'.

In some cases the assumption on the thickness can be relaxed. For example, if
X is a Euclidean building (of dimension 2), then the links of vertices of X are of
type Ay X Ay, Az, By or G2, and hence we need to assume only that each edge of
X is adjacent to at least 11 faces. If X is of type A, then all links of X are of type
A, and it suffices to assume that X is thick.

Lemma 6.3 in [Gal implies that for any n > 3 and any constant « > 0 there is a
constant 8 > 0 with the following property: if X is a locally finite n-dimensional
Tits building such that x, > 1 — § for all 7 € £(n — 2), then &, > n — k — « for all
n € L(k-1), 0 < k < n. Now the formulas for x show that kK — 1 as mg, m; — 0.
In particular, there is a constant C,, such that L2H*(X, p) = 0 for any properly
discontinuous group I’ of automorphisms of X, any unitary representation p of I'
and any k € {1,...,n — 1}, provided any simplex of X of codimension 1 bounds at
least C,, simplices of dimension n.

3.2 Ramanujan graphs. Let L be a finite and connected graph with constant
valence m. We say that L is Ramanujan if the spectrum of the averaging operator
A of L, except for the eigenvalue 1, is contained in [—-2@,23—’7‘?]. If L is
bipartite, we say that L is bipartite Ramanujan if the spectrum of A, except for the
eigenvalues +1, is contained in [—2@, 2@] If L is Ramanujan or bipartite
Ramanujan, then x > % ifm > 15. In [Sa], Sarnak constructs families of Ramanujan
and bipartite Ramanujan graphs with arbitrarily large valence m and girth g. The
graphs constructed in [Sa] are Cayley graphs for groups PGL(2,Z/qZ) with respect
to certain sets of generators.

Given a Cayley graph L of girth > 6 we construct in the section below an infinite
and contractible simplicial 2-complex X such that the link of any vertex of X is
isomorphic to L and such that X admits a properly discontinuous and cocompact
group ' of automorphisms. Applying this construction to the examples of Sarnak
mentioned above, we obtain an infinite family of groups satisfying the assumptions
of Theorem 2.5. Since the spaces X are contractible, the first cohomology of these
groups [' with coefficients in any unitary representation vanishes. Hence these
groups satisfy Property (T).

4. A FAMILY OF GROUPS

In this section we prove Theorem 2 of the Introduction. We first explain a gen-
eral method of constructing contractible 2-complexes. Then we apply this method
carefully to obtain a group of automorphisms as asserted in Theorem 2.

Let L be a connected finite graph, and assume that it is univalent, i.e. there is a
number m > 2 such that each vertex of L is adjacent to m edges. An L-compleris a
simplicial 2-complex X such that for each vertex v of X the link at v is isomorphic
to L.

4.1 Proposition. Let L be a finite, connected and univalent graph. If the girth of
L is at least 6, then there are contractible L-complezes.
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Proof. Proposition 4.1 follows from the more general result of [BB]. We briefly
sketch the construction in [BB], emphasizing the features that are important for
our purposes.

For a simplicial 2-complex B, the boundary 0B of B is the subcomplex consisting
of the (closed) edges that are adjacent to exactly one face of B. Consider the
following conditions on B:

(a) all the non-boundary edges of B are contained in exactly m triangles, where
m is the valence of L;

(b) the links of B at non-boundary vertices are isomorphic to L;

(c) the links of B at boundary vertices are isomorphic to finite connected trees
with diameter 2 or 3 and with valences of vertices equal to 1 or m.

Step 1. Let B be the simplicial cone over L. Clearly B = B; satisfies conditions
(a)=(c).

Step 2. Assume inductively that B = B, is constructed and that it satisfies
conditions (a)-(c). To construct By.i, first glue m — 1 new triangles to each
boundary edge of B,,, thus getting a complex B,,. Note that by property (c) above,
the links of E,, at all boundary vertices of B, are isomorphic to finite connected
trees with diameter 4 or 5 and with valences of vertices equal to 1 or m. This means
that we can embed each such a link (in many different ways) into the graph L since
the latter has constant valence m and girth g(L)} > 6. We then use a collection of
such embeddings, one for each vertex, as a pattern for extending B, by glueing to
it new triangles around boundary vertices of B,. This we do independently (and
disjointly) for all boundary vertices of B,,, and the result is B,4;. Observe that
B = B,, satisfies conditions (a)~(c) and that

(d) the boundary vertices of B,, are no longer on the boundary of By, 11;
(e} Bny1 can be contracted to B,,.

Step 3. By repeating Step 2 we obtain an infinite sequence By C By C ... of
complexes, and we define X := U2, B,. Using properties (a)—(e), it is easy to
check that X is a contractible L-complex. 0O

4.2 Remark. There is the following addition to Proposition 4.1. Let X be a con-
tractible L-complex, where L is as in Proposition 4.1, and let v be a vertex in X.
Let By be the star of v and B, 1 be the star of B,, n > 1. Then the sequence
(By,) is obtained by the construction in the proof of Proposition 4.1.

As we have seen, the construction of L-complexes depends on many choices. This
is the reason why for some graphs L uncountably many non-isomorphic L-complexes
can be constructed (see [BB] or [Sw]), only few of them admitting nontrivial auto-
morphisms. To construct L-complexes with a large group of automorphisms, one
has to perform the construction more carefully, for example by using specific graphs
L and some additional structure given by a system of labels as described below. In
this section we deal with the case when L is a Cayley graph of a finite group.

Let H be a group and S a generating sct of H with e ¢ §. The Cayley graph
C(H, S) of H with respect to S is the graph with vertex set H, where two vertices
hi, ho are joined by an edge (not oriented) iff h1s = hg or hos = hy for some s € S.
Note that C(H,S) is a connected graph and that H acts (on the left) on it by
automorphisms. Under our assumptions, C(H, S) is a simplicial graph.
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Let H be a finite group with a generating set §. Assume that H and S satisfy
the assumption of Theorem 2 and consider L = C(H, S). Equip the set of oriented
edges of L with labels from the set S U S~ according to the following rule: label
(h1, ha) by s if hys = hy. This rule determines labels uniquely and the label of an
oppositely oriented edge is the inverse of the original one. Moreover, the group of
label preserving automorphisms of L coincides with H.

Let X be an L-complex. Consider the set F of all flags in X, i.e. incident triples
(vertex, edge, triangle) in X. Given a vertex v of X, the flags containing v are in
1-1 correspondence with the oriented edges in the link X, of X at v. Let A be a
labelling of F by the clements of S U S~!. We say that A is modelled on L, if for
any vertex v there is an isomorphism of X, and L such that the labels of the flags
containing v coincide with the labels of the oriented edges in L via this isomorphism
and the above 1-1 correspondence. A labelled L-comples is a pair (X, A), where X
is an L-complex and A is a labelling of the flags in X modelled on L.

Consider the following conditions on labellings of F by elements of S U S~
(C1) the labels of any two flags containing the same edge and triangle, but different

vertices, are inverse to each other;
(C2) the labels of any two flags containing the same vertex and triangle, but dif-
ferent edges, are inverse to each other;
(C3) the labels of all flags containing the same vertex and edge are pairwise differ-
ent.
Note that conditions (C2) and (C3) are satisfied automatically for labellings mod-
elled on L. We will use these conditions in the construction of labelled L-complexes
below.

4.3 Proposition. Let H be a finite group and S a generating set of H. Suppose
H and S satisfy the assumption of Theorem 2 and let L = C(H,S). Then there
exists a unique (up to label preserving isomorphism) contractible labelled L-complex
(X, A), where A satisfies Condition (C1). Moreover, the group Aut(X, A) of all label
preserving automorphisms of X acts transitively on vertices of X with stabilizers

isomorphic to H. In particular, Aut(X, A) is simply transitive on oriented edges of
X.

Proof. We repeat the inductive construction of the proof of Proposition 4.1, taking
labels into account.

Step 1. Identify the link at the center of By with L. This induces a labelling of
the flags of By with vertex at the center. Extend this labelling to all flags in By
using Condition (C1). Observe that such an extension exists, is unique and satisfies
(C2) and (C3).

Step 2. Suppose inductively that the flags in By, are labelled such that Conditions
(C1)-(C3) are satisfied. Consider the complex B, as in the proof of Proposition 4.1
and extend the labelling of the flags of By, to all flags of B, so that (C1)-(C3) are
satisfied. Note that such an extension exists, and it is unique up to permutations
inside the sets of m — 1 new triangles glued to the boundary edges of B,, when
constructing B

Now consider the second part of Step 2. For each boundary vertex v of By, the
labelling of the flags in B, containing v induces a labelling of the oriented cdges of
the link of Bn at v. These labelled links can be embedded into L so that the labels
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are preserved. Such embeddings are unique up to translations of L by elements of
H. These embeddings determine uniquely the extension from En to Bn41 and the
extension of the labelling of the flags in B, to all flags in B, so that Conditions
(C1)-(C3) are satisfied. Moreover, a label preserving automorphism of B, 41 is
uniquely determined by its restriction to B, and, by induction, by its restriction
to the link of the center of B;.

Step 3. Let X = USL, B,. Note that the labelling A of the flags in X constructed
inductively in Steps 1 and 2 is modelled on L and satisfies Condition (C1).

It is clear that any labelled L-complex satisfying the assertions of Proposition
4.3 is the result of a construction as above, cf. Remark 4.2. Since the extensions
from B,, to B, are unique up to label preserving isomorphism, it follows that the
resulting labelled complex (X, A) is unique.

Finally observe that the only label preserving automorphism of X which extends
idp, is idx. Moreover, by the uniqueness of the construction up to a label preserving
isomorphism, any label preserving automorphism of 1-balls in X extends uniquely
to a label preserving automorphism of all of X. This implies the assertion about
Aut(X,A). O

Proof of Theorem 2 of Introduction. Consider the group Aut(X,A) of label pre-
serving automorphisms of the complex X in Proposition 4.3. Since Aut(X, A) acts
transitively on vertices of X with stabilizers isomorphic to the finite group H, the
action is properly discontinuous and cocompact. It remains to prove that Aut(X, A)
has a presentation as claimed in Theorem 2.

Fix a vertex v € X and identify the isotropy group Stab,(Aut(X,A)) with H,
see Proposition 4.3. Choose an edge ¢ having v as one of its vertices and denote
by 7 the unique automorphism of Aut(X, A) reversing v with the other vertex w of
e; the uniqueness of 7 follows from the fact that Aut(X, A) is simply transitive on
oriented edges of X. By the same reason 7 is an involution, i.e. 72 = idx. Since the
group H (identified with Stab,(Aut(X,A))) acts transitively on vertices adjacent
to v, it follows that H and 7 generate Aut(X,A).

According to Proposition 2.1 of [BB], to get a presentation of Aut(X,A) one
needs to choose representatives of orbits of the action of H on triangles adjacent to
v and consider relations corresponding to those triangles. Let T = {t : (v, e,t) € F},
where e is the edge corresponding to T as above. Label each triangle ¢ € T' by the
corresponding label of the flag (v, e,t). This gives a 1-1 correspondence of T" with
SUS~!. Let Ts be the subset of T consisting of triangles with label in S. Then
Ts contains a set of representatives of triangles as required.

It is easy to see that the automorphism 7s preserves the triangle in T's labelled
by s € S and that its restriction to this triangle is a rotation. Therefore we have
(rs)® = idx, and this is a relation corresponding to our representative triangle, as
required by Proposition 2.1 of [BB|. Thus we get the presentation

<Su{r} | RU{r?}u{(rs)’®:5€ S} >

for Aut(X, A). This finishes the proof of Theorem 2. O
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5. FUNCTIONS OF NEGATIVE TYPE AND ACTIONS ON TREES

The aim of this section is to prove Theorems 3 and 4 of Introduction. In the
proof of Theorem 3, we restrict to the (4,4)-case and indicate the changes of the
argument in the (6, 3)-case.

Let X be a simply connected (4,4)-complex. Let X’ be the subdivision of X
obtained by adding the barycenters of the faces of X as new vertices and as new
edges the line segments in the faces connecting their barycenters with the vertices
on their boundary. Then X’ is a simplicial 2-complex. Let d be the length metric
on X which turns each edge of X into a geodesic segment of length 1, each new
edge of X’ into a geodesic segment of length 1/v/2 and the 2-simplices of X’ into
corresponding isosceles Euclidean triangles with interior angles 7/2,7/4,7/4. If a
face of X is a 4-gon, then it is a Buclidean unit square with respect to d, if it has
more then four sides, then d has a singularity at its barycenter. It is clear that d is
complete. By our assumptions on the links and faces, X has nonpositive curvature
with respect to d, see [Gr,B1). Since X is simply connected, X is a Hadamard
space, that is, (X, d) is a complete metric space such that
(5.1) for any two points z,y € X there is a unique geodesic connecting them and

this geodesic has length d(«, y);

(5.2) for any geodesic triangle with vertices z,y,2z € X the distance of = to the
midpoint m on the geodesic from y to z is at most the corresponding distance
in a Euclidean triangle with the same side lengths.

One of the important properties of Hadamard spaces is the existence of the
circumcenter of bounded subsets, see Proposition 5.10 in Chapter I of [B2]. More
precisely,

(5.3) if B ¢ X is a bounded subset, then there is a unique closed metric ball in X
of smallest possible radius containing B; the center of this ball is called the
circumcenter of B.

Let f be a face of X and e be an edge adjacent to f. Let = be the point on e of
distance 1/4 to one of the end points and let ¥ be the geodesic segment of length 1
in f which contains z and is perpendicular to e at . Then vy meets the boundary
in another point z’ which is similarly located on an edge e’ adjacent to f and is
perpendicular to e’ at z’, see Figure 1. Any geodesic extension of v in X consists
(of parts of) geodesic segments contained in faces of X and similarly located in
these faces. Any such geodesic extension misses the vertices of X’ and intersects
edges of X perpendicularly. It follows that the set 1" of all points in X which lie
on such cxtensions is a convex subset of X and a tree.

5.4 Lemma. For a tree T as above, X \ T has two connected components.

Proof. Note that the 1/4-neighborhood U of T does not contain vertices of X.
Since T is a tree, we conclude that U \ T consists of two connected components,
U, Ur. Hence X \ T has at most two connected components.

If X \ T is connected, then there is a continuous curve ¢ : [0,1] —» X\ T
connecting ¢(0) = yo € Up with ¢(1) = y; € Uy, where yg,y1 arc points in f on
different sides of v = T'N f. Now X is simply connected and hence there is a
homotopy H : [0,1] % [0,1] = X from c to the line segment in f connecting yo with
y1- This homotopy can be chosen to be generic. Then the number of intersections
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Figure 1. The geodesic segment « in f.

with 7" does not change mod 2. This is a contradiction. O

We let 7 be the set of trees in X obtained in the above way, for all choices of face
f, edge e adjacent to f and point = on e of distance 1/4 from one of the endpoints
of e. Each T € T defines two half spaces in X, namely the connected components
of X \ T. The set of half spaces obtained in this way is denoted H.

Now let e be an edge in X which is not adjacent to any face. Let = be the point
on e of distance 1/4 to one of the endpoints of e. Then X \ {z} has two connected
components since X is simply connected. We denote by & C X the set of such
points z, for all choices of edge e of X not adjacent to any face. Thus each x € §
also defines two half spaces in X, namely the connected components of X \ {z}.
The set of half spaces obtained in this way is denoted Hs. We set H := Hr U Hs.

Let B be the set of barycenters of faces of X and edges of X which are not
adjacent to faces. For p,q € B set

N{p,q)={HeMH:peHq¢ H}.

Since M is invariant under the natural action of automorphisms of X we have
N{gp, 9q) = N(p,q) for any automorphism g of X.

5.5 Lemma. There exist constants cg,cy; > 0 such that

co d(p,q) < N(p,q) <c1d(p,q) forall p,qe B.

Proof. Let p,q € B and 6 := d(p,q). Let o : [0,5] = X be the unit speed geodesic

from p to q. Now p and ¢ are not on any tree T € T and hence o is transversal

to any T € T. It follows that o intersects precisely those T € T for which one of
the corresponding half planes in H7 is counted by N. Similarly, ¢ meets precisely

those points z € S for which one of the corresponding half planes in Hg is counted

by N. Hence N(p,q) is equal to the number of intersections of these two types.

Now any subsegment of ¢ of length 1/v/2 meets at least one T € T or z € S and a

subsegment of length < 1/2 at most two. Hence the lemma. O
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5.6 Lemma. The function N : B x B — R has the following properties:
(i) N vanishes on the diagonal;
(i1) N is symmetric;
(i11) for allm > 1, all points py,...,pm € B and all numbers A\q,..., A, € C with
AL+ -+ Ay = 0 we have

Z:\:/\jN(PiaPJ’) <0.

i,J

Remarks. (1) Lemma 5.3 says that N is a kernel of negative type in the sense of
Definitions 5.12 and 5.17 in [HV]. Continuity of N is not an issue here since B is
discrete.

(2) The proof of (iii) below uses the argument in the proof of Proposition 6.14
in {HV], see also [BJS].

Proof of Lemma 5.6. Assertion (i) is clear. Assertion (ii) follows since for any
H € H containing p but not ¢, the opposite half space contains ¢ but not p. For
any half space H € H, denote by x g the characteristic function of H. Then

Np,g)= Y xu(p)(1 - xu(q)).

HeH
Therefore
Z,\ NN ps) =Y XA Y, xu(P)(1— xa(ps))
1,7 HeH
=Y O Xxulp) Z/\ (1 - xn(p;)))-
HeH i

Since >~ A; = 0 we have
Y daxu() ==Y A1 - xu(p;)
i J

for each H € H, hence (iii). O

Proof of Theorem 8 in the (4,4)-case. Choose pg € B and define f : ' - R by
f(g) = N{(po, gpo). By Lemma 5.6 and since N is invariant under automorphisms
of X, f is a continuous function of negative type on I'. By Lemma 5.5, f is bounded
if and only if the orbit I'(po) is bounded. If I'(py) is bounded, then its circumcenter
is a fixed point of I, see (5.3). Therefore f is not bounded if I' does not have a
fixed point. O

Sketch of changes in the (6, 3)-case. Let X’ be the same subdivision of X as above
and let d be the length metric on X which turns each edge of X’ into a geodesic
segment of length 1 and each 2-simplex of X’ into an equilateral Euclidean triangle.
Then d is complete and X is a Hadamard space with respect to d. The rest of the
proof is the same, except that the edges of the corresponding trees have length /3,
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FIGURE 2. The geodesic segment in a face in case (6,3).

see Figure 2, and that the explicit numbers appearing in the proof of Lemma 5.5
change slightly. [

This finishes the proof of Theorem 3 and we come to the proof of Theorem
4. From now on, let X be a simply connected polygonal complex satisfying the
assumptions of Theorem 4(1) in Introduction. Then X is a (4,4)-complex and we
may and will use the above constructions. Since the links of the vertices of X are
connected, any edge of X is adjacent to at least one face.

5.7 Lemma. There exists a labelling of the edges of X by 1,...,k such that

(1) for any face f of X, the edges of X adjacent to f are consecutively labelled
by the numbers 1 to k;

(ii) for any edge e and faces f1, fo adjacent to e, the labels of the edges adjacent
to f1 and fo coincide with respect to the combinatorial isomorphism of f1 with
f2 which fizes e pointwise.

Furthermore, any automorphism of X induces a permutation of the labels. In par-
ticular, any group of automorphisms of X has a subgroup of finite index consisting
of label preserving automorphisms.

Figure 3 illustrates the above properties of the labelling in the case of pentagonal
faces.

FIGURE 3. Labelling of edges.
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Proof. A gallery in X is a sequence Q2 = (fo,..., fn) of faces in X such that any
two consecutive faces f;_3 and f; in it have a common edge and do not coincide.
Given such a gallery, consider the map

o = ¢n—1,n o ¢n—1,n—2 o0 @12 © Po1,

where ¢;_1; : fi_1 > fi is the combinatorial isomorphism of f;_; with f; fixing the
common edge f;_1Nf; pointwise, 1 < 7 < n. Then ¢gq is a well defined combinatorial
isomorphism between fy and f,.

We say that a gallery @ = (fo,..., fn) is closed if fo = f,.

Sublemma. For any closed gallery Q = (fo,..., fu = fo), the induced mapping
¢q : fo = fo is the identity.

Proof. Since the links of X are connected, generic closed curves in X miss vertices
and cross edges transversally. Hence a generic closed curve in X determines a
unique closed gallery and each closed gallery arises in this way. Consider a closed
gallery @ = (fo,..., fn = fo) and choose a generic closed curve v which induces 2
such that the base point p of v is inside fo. Since X is simply connected, there exists
a contraction «y; of v to the constant curve p. We may choose this contraction such
that the curves «y; are generic for all ¢ € [0, 1] except for a finite number ¢4, ..., ¢,, of
times at which -y, crosses a single vertex of X (but still is transversal to all the edges
whose interior it crosses). Passing through those ¢;’s results in modifications of the
galleries €2; determined by the curves 7, but any such modification is performed
inside the star of the vertex crossed by the corresponding «;,. Since the links of
the vertices of X are bipartite, the corresponding isomorphisms ¢gq, do not change
under such modifications. After the last modification we arc left with the trivial
gallery {fo), hence ¢pq =id. O

To conclude the proof of Lemma 5.7, choose a face fy of X and label the edges
adjacent to it consecutively by 1,..., k. Since the links of X are connected, there
is a gallery from f; to any other face of X. Given such a face f, choose a gallery 2
from fy to f and label the edges of f so that their labels coincide with the labels
of the edges adjacent to fo with respect to the isomorphism ¢g. By the above
sublemma, the labelling of f does not depend on the chosen gallery. The labelling
obtained in this way clearly satisfies properties (i) and (ii) of the lemma. The other
assertions follow easily. 0

Fix a labelling of the edges of X as in Lemma 5.7. For a tree T as defined
before Lemma 5.4 there is an ¢ € {1,...,k} such that T' only intersects faces of X’
adjacent to edges with labels ¢, i+ 1 and 7+ 2 (mod k). Thus we obtain a partition
T =TiU---UT; and a corresponding partition of half spaces H = Hy U --- U H.
Fix an ¢ € {1,...,k} and let |T;| C X be the union of all the trees in 7;.

5.8 Lemma. Let X; = X\|T;|. Then each T € T; intersects the closures of exactly
two connected components of X; and is contained in any of those two closures. The
closures of two different connected components of X; are either disjoint or intersect
in exactly one T € T;.

Proof. For T € T;, the 1/4-neighborhood U of T is disjoint from the 1/4-neighbor-
hood of any other 77 € 7;. Furthermore, U \ T has two connected components. O
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Now define the dual graph T;* of T; as follows: the vertices of T;* correspond to
the connected components of X; and two vertices are connected by an edge if the
closures of the corresponding components of X; intersect in a tree T € 7.

5.9 Lemma. T is a tree.
Proof. By Lemma 5.4, the removal of an edge disconnects 7;*. O

Proof of Theorem 4(1) of Introduction. Let T be a group of automorphisms of
X and suppose that I" does not have a fixed point. Let IV be the sugroup of T’
consisting of label preserving automorphisms. Then I is a normal subgroup of I"
of finite index and leaves X; invariant. Hence there is an induced action of IV on
T 1<i<k

Suppose xzg € X is a fixed point of [V. Then the I'-orbit ['(xg) of x¢ is finite
and hence bounded. In particular, the circumcenter of I'(zg) is a fixed point of T',
a contradiction. Hence I’ does not have fixed points.

The function N can be written as N = Ny + - -+ + N, where

Nilp,q)=|{HeH;:peHq¢ H}, 1<i<k.

Let po € B. Since IV does not have fixed points, the IV-orbit ['(pg) is unbounded.
Hence there is an i € {1,...,k} such that the function

fi:T' =R, filg) = Ni(po, gpo),

is unbounded.

Let vg € 7;* be the vertex corresponding to the component of X; containing pq.
Let d; be a length metric on 7;* such that all edges of 7;* have length 1. Then
di(vo, gvo) = fi(g) for all g € T'. In particular, the orbit I'V(vg)} is unbounded. Now
7. is a Hadamard space with respect to d;, hence the action of [V on 7;* does not
have a fixed point. [J

Proof of Theorem 4(2) of Introduction. Theorem 4(2) reduces to the case 4(1) in the
following way. Consider the subdivision X’ of X obtained by adding the barycenters
of the faces and edges of X as new vertices and as new edges the line segments in
the faces connecting the barycenters of them with the barycenters of the adjacent
edges, see Figure 4.

FIGURE 4. Subdivision of a hexagonal face.
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Observe that all faces of the subdivided complex X' are 4-gons. Note also that
the links at the vertices of X do not change after subdivision, while those at the new
vertices are connected and bipartite. Hence the subdivided complex X’ satisfies the
assumptions of Theorem 4(1) and hence Theorem 4(2) follows. O

5.7 Remarks. (1) By construction, the subgroup I is normal in T' and T'/T" is
isomorphic to a subgroup of the symmetric group Sy in Theorem 4(1) respectively
S4 in Theorem 4(2). In particular, the index of IV is at most k! respectively 24.
(2) After a slight modification of the above arguments one gets the conclusion

of Theorem 4(1) under the following more general conditions on X:

(i) all links of X are bipartite;

(ii) there is a natural number k& > 3 such that for each face f of X the number of

edges of f is km for some natural number m with km > 4.

Observe that Theorem 4(2) handles the case k£ = 2 in (ii).
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