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Abstract. This paper studies some aspects of a particular class of bifurcation varieties
which are provided by simple and unimodal boundary singularities. Their correspon-
dence to a diffraction theory is established. The generic caustics by diffraction on
apertures are derived and their generating families for the corresponding Lagrangian
varieties are calculated. It is proved that the quasicaustics associated to simple singu-
larities are smooth hypersurfaces or Whitney's cross-caps. The procedure for calculating
the modules of logarithmic vector fields is given, and the minimal sets of the corre-
sponding gencrators are explicitely calculated. The construction is conducted for the
general boundary singularities and the structure of quasicaustics defined by parabolic
singularities is investigated.
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1. INTRODUCTION

Let F : (C™*! x CP,0) — (C,0) be a germ of a holomorphic function. By (S,0) C
(C"*1,0) we denote a germ of a some hypersurface in (C"*!,0). The quasicaustic Q(F")
of F is defined as

Q(F) = {a € CP; F(e,a)has a critical point on 5}.

Let F represent the distance function from the general wavefront in the presence of an
obstacle formed by an aperture (cf. [18-9]) with boundary S. The corresponding quasi-
caustic Q(F") is build up from the rays orthogonal to the given wavefront and touching
the boundary of the aperture (see the example of the quasicaustic illustrated in Figure 4).

The quasicaustic is a subvariety of the usual caustic (also called the bifurcation set [6-31])
{a € C?;F(e,a) or F |sxcr (e, a)have a critical point},

and represents the structure of shadows formed by the common, pecular positions of
aperture and incident wavefront.

In this paper we investigate the structure of generic caustics and quasicaustics by diffrac-
tion on smooth obstacle curves and apertures (optical instruments). We use for this the
classical phase space for general optical instruments, i.e. the space of pairs of rays (I, f),
where [ is an incident ray and [ is transformed ray (produced by ! and the optical instru-
ment), endowed with the canonical symplectic structure. This space was first introduced by
R. K. Luneburg [21] in his mathematical theory of optics and then revived by V. Guillemin
and S. Sternberg [13] in their symplectic approach to various physical theories. To each op-
tical instrument, in the mentioned phase space, there corresponds a Lagrangian subvariety,
say A, defining all physical properties (from the point of view of the geometrical theory of
optics [19] ) of the system. So when A is fixed we can obtain all ransformed wavefronts
by taking the symplectic images A(L) of all Lagrangian subvarieties L of incident rays
(i.e. optical sources) . See also [14].

The plan of the paper is as follows. In Section 2 we give preliminary results about the
basic phase spaces and construct representative examples in the symplectic approach to
general optical systems. The geometrical structure of caustics by diffraction on apertures,

as well as their generic classification in the case of half line aperture on the plane and
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half plane aperture in Euclidean three-space, is investigated in Section 3. We compute
the normal forms for generating families of the generic canonical varieties in the case of
diffraction on smooth curves in Section 4. When considering the caustics by diffraction
on apertures, the quasicaustic component becomes important. In Section 5 we generalize
the methods for ordinary caustics initiated by J. W. Bruce [7-8] to investigate the structure
of logarithmic vector fields on quasicaustics. In Section 6 we derive the generators for
the modules of tangent vector fields to the quasicaustics corresponding to simple boundary
singularities and prove that they are not free. Finally in Section 7 we analyse the structure
of quasicaustics and the reduction of functional moduli in normal forms of Lagrangian

pairs.



2. SINGULARITIES IN ACTION OF OPTICAL INSTRUMENTS

Let (M,w) be the symplectic manifold of all oriented lines in V = R3. We look onV as
the configurational space of geometrical optics with refraction index n : V - R, n = 1.
(M,w) is given by the standard symplectic reduction

ma HT1(0) » M = T*5?,
where the hypersurface H~!(0) is defined by the Hamiltonian
. 1
H:T'V-R, Hpg:=5(lp 1 -1),

and mas is the projection along characteristics of the associated hamiltonian system.

Let (p, q) be coordinates on (T*V,wy ), where wy is an associated Liouville 2-form. By
(U,w) we denote the local chart on (M, w) described as an image 7 (H ~'(0)N{p; > 0})
with restricted symplectic form w. (p,¢) form Darboux coordinates on (T*V,wy). In

corresponding Darboux coordinates (r,s) on (U,w) we can write

(r,8) = 7p(p2,pP3; 91,42, 93)
q1P2 q1ps )

= (Pz,P3;92— yq3 —
V1 —=p2 —p? l—p;—p3

where the unique reduced symplectic structure w is given by the formula

2
Wy |H*1(0)= Tyw, w|u= Zdr; A ds;.
=1

In the introduced coordinates on M, to each point (r, 3) € U we can uniquely associate

the corresponding ray (in parametric form),

(q1,92,93) = (0,81,82) +u (1, —Tﬁ, ﬁ) , u€R.
By the above formula one can translate the concrete optical problems into the language of
the phase space (M,w) and vice versa (cf. [21-13-26]).

Let (U,w), (Tj ,@) be two exemples of the symplectic space of optical rays or its open
subsets. Usually these manifolds denote the spaces of incident and transformed rays of an

optical instrument (see Figure 1,a,b).
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D efinition 2.1. The phase space of optical instruments is the following product

symplectic manifold:

0= UxU;n0 - njw),

where, T2 : U X U— U, U are canonical projections (this was first introduced by R.
K. Luneburg [21]).



The process of optical transformation, say reflection, refraction or diffraction, etc. (see '
Figure 2.) of the incident rays is governed by the subvariety of II, which is Lagrangian,

i.e. it is stratified onto isotropic submanifolds of II where maximal strata are Lagrangian
(cf. [1-14-16]).

D efinition 2.2. We define the general optical instrument to be a Lagrangian sub-
variety of Il(generalized symplectic relation, [14-32]).

REMARK 2.3. It is easily secen that reflecting or refracting optical instruments (cf.
[10)) correspond to graphs of symplectomorphisms between (U;w) and (U,&). But, for
example, the diffraction process is described by quite general Lagrangian subvariety of II
(see Figure 2, below, cf. also [18]).

aperfure

I I,

(U,5)

diffracted rays

Figure 2.

In fact let (a,b, z,y,u,v,w) — F(a,b,z,y,u,v,w) be the optical distance function (cf.

[9-28]) from the wavefront
{z = o(z,y) = \iz? + dazy + \3y® + Os(z,y))
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in the presence of the aperture {a > 0, z = mb -1}, where m > 0. If the incident ray
goes from (z,y) = (0,0) to (a,b) = (0,0) then the transformed rays from (a, ) = (0,0)

to (u,v,w) are given by equation

Q—F-(O,u,v,w) =0,

Ob
F(bi x’ y’“) v’ w) = F(OJ b7m? y)u7 v? w)?

(see Figure 3.), which for the distance function

F=((z—a) +(y = b + (¢(z,y) — mb+ 12)'/
+((u=a) + (0= 8+ (w—mb+ 1))

reads
miu? + 1)2('.'712 —1)-2mv(l1+w)=0,

and

v+m(l4+w)<0.

These conditions define the half-cone of diffracted rays (see [18-19]).

EXAMPLE 2.4. Reflection from the curve (see Figure 1.b):
Let the mirror be defined by equation {q; = 0}. Let (U,w) -the space of incident rays
be defined as mpr(H~1(0) N {p: > 0}) and the corresponding space of reflected rays
U = mp(H~1(0) N {p1 < 0}). Then this reflecting optical instrument is equivalent to the
following Lagrangian subvariety of II,

HD{((T,S),(F,.‘S'))GUxﬁ;r F,s=§} = A
and its corresponding generating family (cf. [34-15-33]),
G(A, 8,8) = A(s — ),

where A € R, is a Morse parameter.
In our approach the sources of radiation produce rays in the space denoted by (U,w).

Thus we have
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Definition 23. We define the general source of light as a Lagrangian subvariety
L C (U,w) of the space of incident rays. If A C Il is an optical instrument , then the
transformed system of rays (or equivalently the transformed wavefront , cf. [15] ) is

a symplectic image L' of L by means of A, i.e.
L':=AL)={pe U; there existsp € L such that (p,p) € A},

which is usually a Lagrangian subvariety of (U,uf’),(cf. [14]).

EXAMPLE 2.6. Reﬂeclia;n of a parallel beam of rays:
The beam of parallel rays is given in (U,w) by L = {r = 0} (a point source of light at
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infinity). By reflection in the mirror,  — (¢(z),z) € R2, ©(0) = ¢'(0) = 0, ¢"(0) # 0,
the canonical variety A C II (defining the reflection process) brings into L some focusing
property and produces the well known caustic (see Figure 1.b) . The reflected beam of
rays A(L) has the form:

s (2@ e @)+ ()
&= (T T )

REMARK 2.7. Local genericity of the wavefront produced by L C (U,w) is preserved
during the process of reflection or refraction (cf. [10]) because the corresponding canonical
variety is a graph of symplectomorphism. Thus the caustics, produced by reflection or
refraction are classified by the simple singularities of type Ay, D, Ex, (see [3]). It may not
be so in a diffraction process, where A C II is no longer the graph of symplectomorphism.
In this case the differentiable structure of L is drastically changed by A and A(L) is no
longer smooth. Its singular locus brings a completely new type of caustic responsible for

the structure of shadows and halfshadows of an obstacle as well.



3. CAUSTICS AND QUASICAUSTICS BY DIFFRACTION

Let L be a source of light or transformed wavefront in (M,w). Now we recall the
geometric construction which allows us to define caustic or wavefront evolution in V,

corresponding to L, (cf. [1-16]). Let = be the product symplectic manifold
E=(MxT"V,njwy — miw),

where 712 : M x T*V — M, T*V are the canonical projections. One can check that

—

K := graphwy C E is a Lagrangian submanifold of =. Thus there exists its local

generating Morse family (cf. [34]), say
K:R¥x X xV =R, (pi,q) — K(u,%,q),

where T* X is an appropriate local cotangent bundle structure (special symplectic structure
[1-16-32]) on (M,w). The transformed system of rays forms a Lagrangian subvariety of

(T*V,wy) given as an image
L=(KoA)L)C(T*V,wy),
where K 0 A C Z is a composition of symplectic relations (cf. [1-34]). If
G:RIxXxX— R,(v,z,%) — G(v,z, %), X, X=R"

is a generating family for A CIIand F: R™ x X — R, (A, z) = F(A,z) is a generating
family for L, then the transformed Lagrangian subvariety L C (T*V,wy) is generated by

(not necessary a Morse family),
F: Rk+l+m+2n xV — R,

F(\v,u,2,%9) = G(v,2,%) + K(u, &,9) + F(\, 2),

where R¥+1+m+27 ig 3 parameter space.
In optical arrangements the source of light is usually a smooth Lagrangian submanifold
of (U,w). Only after the transformation process through an optical instrument does it

become singular.
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B efinition 3.1. Let L C (U,w) be an initial source variety. We define the caustic by

Figure 4.

an optical instrument A C I, to be a hypersurface of V formed by two components :

(1) Singular values of 7y | _g;,05
() my(SingL),

where L = (K o A)(L) and SingL denotes the singular locus of L.

REMARK 3.2, In reflection or refraction we do not go beyond smooth category of
L (at least in this paper) so the associate caustics, in transformed wavefronts L, are
those realisable by smooth generic sources (cf. [5-10}). Thus in what follows we will

be interested in caustics caused by diffraction which will enrich substantially the list of

11



optical events (cf. [4]) and complete the correspondence between singularities of functions
and groups generated by reflections (see [28-29]).

Diffracted rays are produced, for example, when an incident ray hits an edge of an
impenetrable screen (i.e. an edge of a boundary or interface, cf. [18]). In this case the
incident ray produces infinitely many diffracted rays, which have the same angle with the
edge as does the incident ray (see Remark 2.3.) This is so if both, incident and diffracted,
rays li'c in the same medium. Otherwise, the angles between the two rays and the plane
normal to the edge are related by Snells law (see [19]). Furthermore, the diffracted ray
lies on the opposite side of the normal plane from the incident ray. The edge diffraction
is illustrated in Figure 3. That is exactly that all rules and laws of geometrical optics
correspond exactly to the lagrangian properties of the corresponding varieties A C II.

Let I be the diagonal in II. By  we denote the set of oriented lines in (U,w) which

do not intersect the screen. Thus we have

Proposition 3.3. In the edge diffraction in an arbitrary Euclidean space, the canon-

ical variety A C II has two components
A= ATUAPD,

where AT = Q x Q C I and AP is a pure diffraction of rays passing through the edge

of an aperture, defined in Remark 2.3.

COROLLARY 34. Let L C (U,w) be an incident system of rays. Then the edge
diffracted system of rays '

L= (Ko A)L)

is a regular intersection (cf. [25]) of two smooth components: I, = (I‘{’ o AT)(L) and
Ly = (Ko AP)L),ie. L =L,UL,, dimIlynLy =dimLl; —1and T,(I1 N Ly) =
T,Li N T, L,.

Thus we see that the caustic caused by the edge diffraction has a three components:

(1) The caustic of L,, which is a part of the caustic in incident wavefront L.
(2) The caustic, purely by diffraction on the edge, i.e. the caustic of L,.
(3) The image 71'V(f11 N ]32), of the rays passing exactly through an edge.

12
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Definition 3.5. The set Trv(fq N Ez) C V is called the quasicaustic by diffraction
on aperture. The rays belonging to quasicaustic which are contained in aperture

b]a.ne we will call the rays at infinity.

Usually the quasicaustics describe the structure of shadows and half-shadows in config-

urational space V (see Figure 4).
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Proposition 3.6.

1. Generic caustics by diffraction on the half line aperture on the plane are diffeo-
morphic to the 112, fia, By = (3, By boundary caustics. Normal forms for their
generating families as images A(L) (or pairs (A, L) in general position) are the

following:

Ay =X+ Mgz —a)— 30:X%, a>0, and A= {q =0,¢; < 0}, (see Figure 5.a),
As: —IM+ Mg —a)—3@:1A%, a>0,and A:={q =0,¢, <0}, (see Figure 5.b),
By: —3A2 4+ @A —zq1A%, {A >0}, and A:= {¢q; = 0,92 < 0}, (see Figure 5.c),
By: —iX = 1q1A% + Mgz — q1a), {A >0}, and A := {q1 =2a,¢; < 2a%}, a>0,
(see Figure 5.d),
where )\ is a Morse parameter and a is the moduli of common position.

2. In ge;leric one-parameter families of caustics by diffraction on the halfline aper-
ture, which do not pass through infinity, the only possible configurations are those
ones described in metamorphoses of optical caustics (see [11] ,[5],p.113) and the
additional cases illustrated in Figure 6.a,b,c,d.

Proof. It is easily seen that K = graphmas C = (see (3.1)) is generated locally by
1 2
K(r,q1,92) = @27 = gu7"

The only stable systems of rays K (L) C (T*V,wy) are generated in (M,w) by L :=
oF
{(r,8);8 = —a—(r)} where

A] : Fl(‘i‘) = —5 ,
As Fy(r)= % 3,
As:  Fy(r) = —3irt (cf. [5-15]).

Let the aperture (so A C II) be defined in its normal form by equations: ¢; =0, ¢ <O0.
Thus we have the boundary singularities (cf. [24]) A(L) defined in (M, &) by the following

generating functions:

A B(F) == {720},
Ayi B(f)=-37,FeR,
zi;; : F3(7‘) = l {1‘ > 0}

Taking A; in general position with respect to A we obtain part “1.” of Proposition 3.6. Part

“2.” follows by checking all the possible one-parameter evolutions (where the quasicaustic

14
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is not passing through infinity) of the stable caustic on the plane and in the presence of
the half-line aperture. Two possible directions of intersection of A;-caustic by an edge
of aperture give us the cases “a” and “b” in Figure 6. The evolution of an edge of the
aperture passing through the ray tangent to the cusp caustic As is illustrated in Figure 6,c.
Finally an evolution through the intersection point of A, 4+ A,-caustic gives us the case of
Figure 6, d. This completes the proof of Proposition 3.6.
O
Looking at the position of quasicaustic in the diffraction problem with a half-plane

aperture in R® we can eliminate the C;-boundary caustic. Thus we have

Proposition 3.7. Generic caustics by diffraction on the half-plane aperture in R®
are diffeomorphic to the A3, A, Ay, B,, By, By, F, boundary caustics.

REMARK 3.8.
1. For the general linear hyperbolic system of first order (cf. [19]),

Ju
Jz,

3
£u=u1+ZA” + Bu =0,

v=1
where u represents, say in the case of crystal optics, the pair of vectors (E, H) and
Lu = 0 corresponds to Maxwells equations. In the geometrical optics approximation

we obtain an another characteristic equation (eikonal equation),
3
0
det | @ v =
e ( + ; A az,,) 0

for the phase function ®(zx,t); u ~ e“*(2:9a%(z,¢). In this case the conical refraction

in crystal optics is an example of a Lagrangian variety quite generally situated in the
associated phase space (cf. [13-19]).

2. In the edge diffraction on system of apertures (mentioned in [18]) the singularities of the
distance function are classified by the singularities on many dimensional corners (see
[30]). In very constrained systems of apertures the classification is obtained using the
methods of the theory of singularities of functions on singular varieties (cf. [7-28]).

3. The generic quasicaustic in the edge diffraction in R?, corresponding to the F singu-
larity of the distance function (cf. [11]), is realized geometrically (see Figure 4) when
the curve of rays passing through the edge on the incident wavefront is tangent to a

constant curvature line on the wavefront. This situation is generic (cf. [5]).
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4. DIFFRACTION ON SMOOTH OBSTACLES

Now we can apply an introduced symplectic framework to describe the diffraction on
smooth closed surfaces in R®. The problem is connected to the Riemannian obstacle
problem (cf. [2]), i.e. determination of geodesics on a Riemannian manifold with smooth
boundary. Any geodesic on such manifold is C* and consists generically finitely many so-
called switchpoints, where geodesic has an initial or end point according to lie in interior
part of the manifold or on the boundary. Cauchy uniqueness for manifolds with boundary
states that every boundary point (point of an obstacle) has a neighbourhood in which: if
two geodesic segments with the same initial point, initial tangent vector and length do not
coincide, then one of them has its right endpoint in the interior part of the manifold and
is an involutive of the other (in the planar case it lies on an appropriate involute of the
obstacle curve). By an involutive of a geodesic « is meant a beodesic 4/ which has the
same initial point, initial tangent vector and length as . The reformulation of the above
obstacle problem in terms of geometrical optics of diffraction needs to define a surface
diffracted ray. A surface diffracted ray is produced when a ray is incident tangentially on
a smooth boundary or interface. It is a geodesic on the surface in the metric nds, where n
is the refractive index of the medium on the side of the surface containing the incident ray.
At every point it sheds a diffracted ray along its tangent (cf. [18-4]). A surface diffracted
ray is also produced on the second side of an interface by a ray incident from the first side
at the critical angle (arcsin(1)). In this case at every point it sheds rays back toward
the first side at the critical angle . However in what follows we will neglect these rays.

Let us consider an open subset S of an obstacle surface in R®. By !; we denote the
initial tangent line to the geodesic segment v on S. Let I, be a tangent line to 5. We
say that [ is subordinate to /; with respect to an obstacle S if I3 (or its piece in (R?,S))
belongs to the geodesic segment with the same initial point and the same tangent vector

as v has. By simple checking we have the following (cf. [15]).

Proposition 4.1. Let v be a geodesic flow on S. Then the set
A= {(, f) € II; 1 is subordinate tol with respect toS and geodesic flow~}

is a Lagrangian subvariety of Il defining the diffraction process on an obstacle S.
Now we look for the generic pairs (A, L). At first we consider the planar case.

17



(a) (b)

(c)

Figure 7.

Proposition 4.2 For the generic obstacle curve on the plane the only possible

canonical varieties A C II have the following normal forms of generating families (or

functions):

Ay G 7)== +7),

(obstacle curve gz = —¢3% ), see Figure 7,a ,

Hy: GOy, g, 7) = F(AF+A3) —rAd — #1234 1r20q + 1722,
(obstacle curve gz = ¢} ), s-ee Figure 7,b,

Asa: G(rR)=3(r v | +7 |7 ),

(double tangent), see Figure 7,c.

18



Proof. Let us take the noninflection point of the generic curve. Parametrically the curve
is given as (¢1,92) = (v, —v?), v € R, and the corresponding family of tangent lines
corresponding to the given incident ray has a form (g1, ¢2) = (0,v?) +u(1,-2v), v € R.
By identification s = v, r = 115, § = 9%, ¥ = 13!/, where (v,7) € R? parametrize
the variety A, we obtain the case A, which corresponds to the cartesian product of two
ordinary folds. Taking the inflection point for an obstacle curve, we obtain, in the same

way, the following parametrization for A C II, namely

s = —20v%, rz—i, §= 2%, F=i2'-—-.
V14 9v? V14 904

After straightforward calculations we obtain the generating family for it, denoted by H.

Analogously we 6btain the 112,2 case (see Figure 8).

O

[ 7

=
vyl

”

Figure 8.

Corollary 4.3. For (A, L) in general position we have the following possible stable
images A(L) C (M,),

Ay F\(F) = -3

127 :
Hay: Fy(\7) = A5 — 7% 4 472A
Ag’z . Fa(i') = % | 7

| 7

]
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and the generating families for their corresponding configurational images
K(A2): Fi(\q1,q2) = —£2 + @A — 1A%,

K(Hs):  F(A1, ) 2,01,02) = A5 — 223 + 200 + 222 — Ja A3,
K(Azz2): Fs(A\ q1,¢2) = %)\ | A ] +gq2) — %ql)\z,

(see Figures 9, a. b. ¢. and also Figures in [4]).

Proof. In general position of A and L, only one point of L is tangent to an obstacle
curve in the neighbourhood of the considered point of this curve. Hence in calculation of
(R’ o A)(L) in all cases (Aq ,Hj, and 1‘12’2) it is necessary to put » = const. in generating
families of Proposition 4.2.

[l

REMARK 44.

A. The first, most important, results in obstacle geometry and its correspondence to the
structure of singular orbits of H; and H, group actions, were discovered by Scherbak
[28]. The aim of the present paper is to show how singular wavefront evolutions appear
in general setting of mathematical theory of optics (cf. [13-15-21]) and to complete
investigations of the caustics and quasicaustics which appear there. As we see the planar
obstacle problem is connected to the studies of tangent developables. More degenerated
singularities there can be described using the blowing-up construction (cf. {22]).

B. The K (A, ) singularity appeared as an adjaicent to the higher singular one (see Figure
10.) in generic one-parameter family of obstacles g = —34¢1 + 3ag? — 1a?, a € R,
ie.

r = —2av, — 3e\/av? + (4a® — 1) + O(v}),
3
s = 2ea®/%v, + 4av? + 3e\/av? + ng,

e=+1,vy >0, v <0.
C. We can see that choosing the special symplectic structure fibered over (pq,p2) in the

Hj case, we can investigate only a cuspidal edge of A(L). In fact its generating family

Fy(A, u,p) = Fo(A 1) — paip1 — pape,

after reduction of y,, p2, and A, parameters we obtain the generating family for the H;
singularity,
9 1
Fy(Ap)= =A% —p2 A3 + =p2A
2(Ap) 10/\ p2A” + 5P2

20



(a) (b)

I(Ay)

(c)

Figure 9.

and its level-sets (wave fronts) as has been written down in Table 2. of [28]. That

observation is connected with much more general feature of obstacle singular wavefront

evolutions. Namely all singularities in obstacle geometry as indicated in Table 2. of [28]

are generated by the generalized open swallowtails (in (1‘171,03) space) with generating
family (see [14] p. 106),
21



/iz(k-;-}) : '
2

A : k+1
/ (:Bk“ + Z FictMp—igr | dr.
0

=2
Z, (1 2 1), Ay, (I 2 2) (cf. [28])- singular wavefront evolutions are reconstructed from
.42(&.4_1) singularities by specifying an appropriate common generic positions of 4 C II

and 4‘12(&4_1) C (M,L:J)

Figure 10.

22



5. VECTOR FIELDS ON CAUSTICS AND QUASICAUSTICS

As we can see from the preceeding sections, caustics in the wavefront evolution, or
in diffracted wavefront on aperture, are defined as bifurcation sets for the corresponding
generating family (Morse family [9-34]) of functions or the family of functions on manifold
with boundary respectively (cf. [3-24]). To investigate the structure of these sets and
modules of tangent vector fields on them, in what follows, we shall consider the real
analytic or holomorphic functions (germs). For the ordinary caustics, defined as the critical
values of Lagrange projections (cf. [3]) from the Lagrangian submanifolds, which are not
necessary fibered by optical rays, the procedure is following (see [6-31]):

Let f : (C",0) — (C,0) be a holomorphic function of finite codimension , i.e. the
dimension of the quotient O(;)/J(f) as a complex vector space is finite, where O,
denotes the ring of holomorphic functions hazf (C",0) — (C,0) and J(f) is the ideal in

O() generated by the partial derivatives 3o " Dan Let M,y denote the maximal
1 n

ideal in O(,y. If ¢4, ..., g, is a basis for M,y /J(f), then
F:(C" x C”,0) — (C,0),

F(z,a) = f(z) + Z a;gi(z)

is a miniversal unfolding of f (cf. [23]).

The caustic of F' (or bifurcation set of F, see [31-7]) is the following set (germ),
B(F) = {a € C?; F, has a degenerate critical point}.

The set of critical values of = : (£F,0) — (CP,0) (= is a canonical projection on the

second factor), where ©F = {(z,a) € C" x C?; ol

It appeared to be important to know the modules of tangent vector fields to caustics (as

= 0}, is the caustic.

well as to wavefronts [35-3-7], which is easier). They are useful in reduction of functional
moduli in classification of generic symmetric and nonsymmetric Lagrangian submanifolds
(cf. [17],[3], p. 344). We recall after [27-6] some necessary definitions. The set of
germs of holomorphic vector fields on CP?, at 0, tangent to the nonsingular part of B(F') is
called the set of logarithmic vector fields of B(F) at 0. It is denoted also by Derlog B(F).
In [31-7-8] (see also [35-27]) it was given a general method for computing these vector

fields. It was shown there that A; singularities are the only ones whose module of tangent
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vector fields to B(F') is free (i.e. caustic is a free divisor [27]). Applying the method used
in these papers we investigate the modules of vector fields tangent to the quasicaustics in
diffraction on apertures (this is a first step in investigation of the structure of caustics by
diffraction).

Let O, ;) denote the ring of holomorphic functions A : (C x C",0) — (C,0). The
hypersurface S = {y = 0} corresponds to the boundary of an aperture. Following the
general scheme used in [3] for boundary singularities, we shall consider holomorphic
functions f : (C x C*,0) — (C,0) of finite codimension, i.e.

dimcO(y, )/ A(f) < oo,

where A(f) = (yg—i, g:ci-,..., -;Tf) denotes the ideal in O, ,) generated by the par-
1 n

. I of aof of
tial derivatives e Ban and ya_y

Oy, o)/ A(f) with go = 1 and g; € M, ). Then the miniversal deformation , in the

(cf. [3-20]). Let go,...,9,—1 form a basis for

category of deformations of functions on manifold with boundary, as a Morse family for

the corresponding diffracted Lagrangian variety (cf. [25-16]) is defined as follows

F:(CxC"*xC*10)— (C,0)

F(y,z,a) = f(y, @) + Y, aiei(y, z).

=1
Proposition 3.1. The caustic (or bifurcation set) by diffraction on aperture, having
the generating family F : (C x C™ x CP,0) — (C,0) (p is not necessary minimal) of
functions on manifold with boundary (extended edge) has a three components,
(1) B (F) = {a € CP; F(e,9, a) has a degenerate critical point},
(2) B2(F) = {a € CP; F(0,e,a) has a degenerate critical point},
(3) Q(F) = {a € CP; F(e,0,a) has a degenerate critical point onS = {y = 0}}.

Proof. By Corollary 3.4 .we have the three isothropic submanifolds defining the system
of diffracted rays f}l, Lyand Iy N L, Itis easily seen that in terms of generating family
- distance function F, the corresponding caustics can be written in forms (1), (2), (3) of
the proposition.

O
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The set-germ

oF _ OF _OF

(Z,F, 0) = ({(z,a) € C" x CP; —=— |s— |3 = 0},0)

we call the restricted critical set.

Using the splitting Lemma (see [23]) and the versality property of F' we have,

Proposition 5.2.
A. The restricted critical set (£, F, 0) is the germ of a smooth manifold of dimension
p—1.
B. The quasicaustic of F, (Q(F),0) is an image of (L,.F,0) by the natural projection
7 2.F,0 — CP,0 to the second factor.

The set of logarithmic vector fields of Q(F’) at 0 is defined (cf. [27-6]) to be the set of
germs of holomorphic vector fields on CP at 0, tangent to the nonsingular part of Q(F);

it is an O¢,)-module.
Proposition 3.3. Let £ € DerlogQ(F), then it is n-liftable, i.e. for some germ of
a vector field €, on C" x C?, tangent to L, F at 0 we have

fom=dro £.

Proof. ¢ lifts uniquely by = at every point a € C? — I'(m |g,r). Hence ¢ lifts to

a holomorphic vector field £ on C™ x CP, tangent to ¥, F and defined off a set of

codimension 2 in C™ x CP. By Hartogs theorem ¢; extends to a holomorphic vector field
E tangent to X, F.

O

Now using the w-lowerable vector fields f tangent to 2, F we will construct the module
DerlogQ(F). Let F be as above, we define the ideal

OF OF
I(F) = (¥(z,a), a—I](x,a), ey BT,,(:C’ a)}O¢z a),
where 3 and F' are given by decomposition

F(y,z,a) = F(O z,a)+ yyp(z,a) + yzg(y,m,a), F(z,a) := F(0,z,a).

. 0
Let £ =Y 1, ,B, -+ 30, Vg o Bi, vi € O(z,q), be the germ of a vector field at
0eC*xCr tangent to E.F. Thcn wc have

(5 (0,3,0)) € I(F)
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and oF
5(8—(0,m,a)) € I(F), i=1,..,n.

For our F(y,z,a) = f(y,z) + 5.0, ! a;9i(y, =) we have

$z,0) = 2 (0,2) Z 2 (0,2).
So we need »
Zﬂ. oy -+ “27.6-‘" loxcn € I(F)
and . - -
Zﬂsaa <l +Z%ag' €I(F), 1<j<nm,
where g(z) := g(0,z). Thus we obtam

Lemma 5.4. £ is a lifting of € € DerlogQ(F), ¢ = 3P| ai(a)
some B; € O(zq), (1 =1,...,n) we have

i, if and only if for
da;

p—1

y 0% dg;
;'B‘% + mzl 03‘5:; |0XC"€ I(F),

t, O RF ' o
(5.1) Zﬂ.--———_+z @15, € 1(F).

We have choosen the normal form for F in such a way that the variables a,,...,a

i=
P
(p 2 p — 1) do not appear in F'. Now following the general scheme used in [6-8] for
ordinary bifurcation sets, we can propose the procedure for constructing the tangent vector
fields to quasicaustics.

By Preparation Theorem (see [23-3]), the module

Oty ,z,)/ A(F),

- OF OF oF .
where A(F) = (ya_y’ EER a—%)o(y,z,a), is a free O(,)-module (see [3]) generated

by 1,91,...,9u—1. So for any h € O, ; ,) we can write

oOF & oF
h(y,m,a) ::B(ya:':: a’)ya_y(ya z, a) + ; ﬂi(y,x’a)a_ﬂ:,'(y, SD,G.)

p—1

(5.2) + Y aj(a)g;(y, z) + a(a),
=1

for some B8; € Oy 2.0y, @ € Ora), @ € O(y).
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Proposition 5.5. Let h € O, ;) satisfy

oh 6
5& loxon xcr € I(F), |o><cnxcp€ I(F),i=1,..,n
Then the vector field £ = 10:,33 , where a;, 1 = 1,...,p0 — 1, are defined in
a;

(5.2) and o, i = p,...,p are a.rb1tra.1y ho]omorphic functions from O,), is tangent
to quasicaustic Q(F) = =(E,F). Conversely; suppose £ = Y F_, a;— is tangent to

Oa;
Q(F), then there is some h € Oy, ; ) as above with

h = Zﬂ:ap +ﬂya—F+Za,g.+a

i=1

oh ah
and 0_ loxcn xcr € I(F), y loxcn xcr € I(F).

Proof. For derivatives of h we have

oh T} OF
—ls ﬂ¢|s+z—ﬂls—,

p—1 dg;
+zﬂl Is Z iy ls€ 1(F),

n

oh I~ 0B, OF O F
aT,-'S. Ll ;ﬁ'|sa Ty

+ Z a. |se I(F), j=1,.

where S = {(y,z,a) € C x C" x CP;y = 0}, But, on the basis of assumptions, these

conditions are equivalent to (5.1.), so > F_, ai=— -, is tangent to Q(F'). The converse

Oa;
statement is straightforward .

oh Oh =
We see that the set of all such h with — |z € I(F) - |z€ I(F), 1 < i < n form
dy
an O,y -module. In fact it is the kernel of the O(a)-modulc homomorphism,

oh oh ok Otw,z.2) )n“
D®:0za h RN - o -
(y,z,0) 2h= (311 a-'El aIn) € (I(F)+ (y)M(.‘hx:“)

A(F) C I(F) + (y)M(y,z,0) and clearly the set of tangent vector fields to Q(F) is a
finitely generated O(,)-module.
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6. QUASICAUSTICS OF SIMPLE BOUNDARY SINGULARITIES

The simple singularities of functions on the boundary {y = 0} of a manifold with
boundary were classified in [3], (p.281). Their miniversal unfoldings are:

A, ty+zrt 4 50 ]aa:,u>1

B,: +y# + 2% 4 E‘_l iyt p > 2,

Cy: yr £ z* 4+ T4 a:c““, ©>2,

ﬁ”: ty+zizy £ af” T4 "lzaxz—i-a,, 121, p 24,

Eq : ty + 23+ 2§ + ayzy + azz + azzd + agTi T2 + a5z 73,

E,: +y + 23 + 2123 + a7y + apz2 + a3zl + agziT2 + a5z + szl

Eg - +y+ 23+ a:g 4+ aizy + azzq +a3:c% + aqz1T2 + asx% + ae:z:l:c% +a-,-a:la:%,
Fy: +y? + 2% + asy + a3z + ay zv.

Thus we have, after direct checking, the following

Proposition 6.1. The quasicaustics for simple boundary singularities are:

A, D, Ey: Q(F) =10,

B,:  Q(F)={a€Cria, =0},

Cy: Q(F) = {a€ Cta,_; =0},

Fy: Q(F) = {a € C%a} + }ala; =0}, (i.e. Whitneys cross-cap, see Figure 4).

Thus we need to calculate only the module of vector fields tangent to Q(Fy). Let us
define the germ, at zero, of the variety X := Q(Fy) U {a; = 0}. We see that the vector
fields tangent to (X, 0) lie in DerlogQ(Fy).

Proposition 6.2. The vector fields

1,0 3
V‘__EGIBEZ“Laza_ag’
a
Vz—ala—+aa;
V3=—-1a a 290

3% T 304’
form a free basis for the O,)-module DerlogX.
Before we prove this theorem we need the following
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Proposition 6.3. For corank two boundary singularities F : (C x C x C?,0) —
(C,0), the space of functions h € Oy ; «) reconstructing the O,)- module of vector
fields tangent to quasicaustic Q(F) has a following form

h(y,z,a) =/: (06—5(0,3, a)i(s,a) + %—g(ﬂ,s,a)gbg(s,a)) ds

+y%¢(y, z,a),

where ¥; € Oz .0y, (1 = 1,2), £ € Oy 5,0)-

Proof. Every function 2 € O(, ; 4) can be written in the form

h(y,z,a) = n2(z,a) + ym(z,a) + y*n(y, z, a),

and thus 5
h _ 6h N 6172
a—y(O,:c,a) = (z,a), a(o,m,a) = a—m(:c,a).

By Proposition 5.5, we can take

(z,0) € I(F),and m(z,) = [ “gs,a)b, g€ I(F),

obtaining all functions

7?2(-’5, a) + Yh (:Ba a) + yzn(ya x, a) (mOdA(F))’

defining the O(,)-module of vector fields tangent to Q(F). Now we see that,

OF OF
772(3"3 a) +ym (I? a) + yzn(y’ Ty a) = 772(31 a) + yze(ya L, a) (m0d<y6_y, y%)o(y,zaﬂ))a

where ¢ € O, ; q). Adding an element of (y)J(F), (J(F) is an ideal of O, ) gener-
JOF OF oF

ated by: —, =—, ..., =—) does preserve the space of functions and does not affect the
dy’ 0z, Oz,

resulting vector field.
[
Proof of Proposition 6.2. I(F,) = (ayz + a2,3z* + a3)O(; ). By Proposition 6.3,
taking ¥,,¥2,£ = 1, we have ,

1 1 _
hi(z,a) =§a1a:2 + azz = —aafy + azz — %ala;; (mod A(Fy)),
hy(z,a) =y* = —a1zy — azy (mod A(Fy)),

1 2 .
ha(z,a) =23 + za3 = —§a1$y + §a3m (mod A(Fy)).
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Then the corresponding V; belongs to DerlogQ(Fy), (¢ = 1,2,3). By simple computation
we obtain

1
V](al)=0, Vz(a])z—a], V3(01)=—§al,

s0 V; € DerlogX as well. We also have

1 1
det(V1(a), Va(a), V3(a)) = —501(03 + §aaa¥)
is a reduced equation for (X, 0), so by the results of Saito [27] (see also [6]) we find that

(X,0) is a free divisor.

O
We define the following ideals of Oy, ) and Oy, 4 respectively,
- of Of \2
O(f) = I () + (g 7o) Ot

and

- = OF oF
O(F) = (y)J(F) + (6_:::1’"" a—m-;)zo(y,z,a)-

For determining all fields tangent to the quasicaustic we need the following

Lemma 6.4. The space O, »)/O(f) is finite dimensional. Its C-basis also generates
the quotient space O(y ;. 4)/O(F) as an O(s)-module.

Proof. ©(f) D A(f) and f is finitely determined as a boundary singularity. Thus
O(y,z)/©(f) is C-finite dimensional with the basis {g1, ..., g~ }. Let us define the mapping

T : (Cx C" x C?,0) — (C x C" x C=F x C?,0),

U(y,z,a) =(y%§—(y, z,a), yg—i(y, T,a),... y%(y, T,a),
o0 0) 5 (12,),0),
with 1 <7,7 < n; i <7, and ordered set of pairs (z, 7). Thus we have
O(y,z,0)/ " (M(y,2,0))Oty,z,0) = O(y,2)/O(F)O(y )
By the Preparation Theorem (see [23]) an every element k of O, . ,) has the form:
N
1s2,0) = 3 0 2,0 (055,09 2,0)

oF oF
'a?'_(% z, a)aTj(ya z, a)a a)gf(ya m)
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Thus
N
O(ﬂ,zpﬂ)/é(F) = {Z ¢i(a)gi(ya ZE)}, i,b,' € O(a):
i=1

which completes the proof of Proposition 6.4.

O
Let {g1,...,gn} be a C-basis for O, ;,/O(f). In general we have

Proposition 6.5. Functions h € O, ;) which reconstruct the O(,y-module of

vector fields tangent to Q(F'), can be written as :

N
h(y,:l?, a’) = Z ai(a)gi(ya SC),

where
ZN:a-(a)a—gi—(O x) € I(F)
s L3 ay ] )
XN: ai(@) 2900, 2) € I(F)
o i axJ H )
1<7<n.

Proof. By Lemma 6.4, any h € O(, ; ) can be written as

N F i OF
h(y,z,0) =Y ey(a)giy, z) + ﬁ(y,w,a)yaa—y(y,z,a) +2_Bi(y, 2, a)y5—(y,7,0)
i=1 g

=1

- oF oF
+ Z ﬁk,l(yv T, a)é?k-(y, Z, a)'é'"m—;(y, z, a)a

k=1

where a; € O(qy, B, Bj, Brit € Oy, z,4)- By simply checking the assumptions of Proposition
5.5, we see that the three last terms in the above formula do not affect on the resulting

vector field belonging to DerlogQ(F). This proves Proposition 6.5.
O

Proposition 6.6. O,)-module DerlogQ(Fy), i.e. the module of holomorphic vector
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fields tangent to the Whitney’s cross-cap, is generated by the following fields:

1 15, a
W= ala +a 23a3
b3, b3,
Va2 —al'a_;‘ +az— aa?_
1 15, d
V, = z
3= 3% 5, "' % By
0
Vi —aza—al,
0
Vs —aaa—al,
3]
Vo =a; —
6 as 3ag ’
with relations,
0 =a;Vs — asVy,

0=-— a3V1 - %alaavs + 3a2V3 + %a1a3V4,
0 =ai(as — 1)V3 — aiVs — apa1 Vs + a1a3 V5.
Proof. We have
Oy /O(F) 2 [1,2,y,2%,2°, zy].
So by Proposition 6.5, all functions h € O, . ) reconstructing DerlogQ(Fy) can be
written as:

h(y,z,a) =Ao(a) + (a3Ci(a) + a2 Dy(a))z + (asAi(a) + a2 B1(a))y+
(61314.2((1) -+ CllBl (a) + GQBQ(G)).'By -+ %(0302((1) -+ GIDI(G) -+ ang(a)):r:2
+ %(BCl(a) + a3Cs(a) + a1 D2(a) + a2D3(a)):c3,

where A;, B;, Ck, Dy, € Oy, 1 =1,2,3; 7 =1,2;k =1,2,3; 1 =1,2,3. Thus the
general vector field tangent to Q(F}) can be written as:

1 1 1 1 0
(a3A2 + O.IB] + ang — 5(1101 - 5(11(1303 — §G§D2 9(1.1(12D3) +
1 1 1 0
(asA; + ay By — 6010302 - EG%DI 60102172) +
2 1 1 1 3
(-3-&30] + a2D1 - §G§C3 - -9-a3al.D2 - §GQG3D3)5’E;'.

By straightforward calculations we find the generators V;, (¢ = 1,...,6) and the relations

between them.

J
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7. ON QUASICAUSTICS OF UNIMODAL BOUNDARY SINGULARITIES

Let us consider the miniversal deformations for parabolic boundary singularities (see
(3D,
Fio: yv*+ 22 + a9z + agzy + asy® + aqy + asz,
Ky y*+z'+ayz? + agzy + azz? + asz + agy,
Dya(=Le): 3alzo + 323 + yz1 + a1yzs + 3027} + asy + ayz) + asza,
where a; is a moduli parameter, Milnor number ;. = 6 and the boundary: {y = 0}.

Proposition ?.1. For parabolic unimodal boundary singularities, the modules of
logarithmic vector fields DerlogQ(F), are not free. They can be generated by the

following vector fields:

DerlogQ(Fi ) :

0 9 a i a 9 a 0 + a i a 9
aal’ 6(13 ’ 53&4, 56(12, 23&2 4304, 4802’
- 9 + 2a i a 9 aza 9 +a 2 9 —1a2i
2 bas " 0as P 8ay’ % 0ay e 6% 0a;
vu® 1,0 10 18 8 ' o
a4 305’ 9 23 6a2a48a4 9(15 26&5’ 2 48 0.50.46 5’
DerlogQ(Ky ) :
. 17} ta 0 ta a " 7, +a e 17, % __@__ + d
1 9a, % Bay %8as’  ‘d0ay >8ay’ “5aa1’ “ 8a, a43a5
13} d a 1 2 0 1 %) 1 0
25t g, Mg, —plige tgtge + (6 = paias) 5
1 0 l , O 1a s + 1 - d + 1 0
19a1028a5 7 13 ( 102 + a1 e (as 0103) -
1 1 6 1 1
(§(130.2 + '8-(11(14)8—04 — 6(1%8—, (—GII{ - —alag)-a-;l— — (a1H + Ealas-{-
—02)— - (']:'asﬂz + iala.;) 9 +( a1a} = =402 — l0305)—
16 2’ 9a; '8 20 das 716 6 Oay
—(La +iaa)a (—10aya +16aI\.’)a — (Bagas + 80a, H 0
1 2505 145 2 Ba, 205 2)3a2
0 0 0
- (10(130.5 -+ 4(120.4)5;; =+ (4a2a§ - 5(14,(15)6—&1 - SOLag-a—a;, 4(15Kaal
17} o J 0 1% 0
— 90H as — — _ — _ -
20Has s a4a53 =~ + aaai"a » 20Las as’ 2ay —=— Ba, Qg — 5
0 17} 0 5]
+ 2(138— + 30.4 aa 241& 6(1 - (100,] as + 120H)"a'— + 9&46—0'3—
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a 0 a
4al — ez ~— (8aza3 + 120L)— aa --Gala;;a—al — (4a1a4 + 3a2a3)a—az

0 a g 0

—_— 2_ — — — P —— —_— —

6aj e Tasas Ba, 2aqa4 as’ (32a3 K — 10a, a4)aa1

— (Bagayq + 160H )a - 18 9 + (8aj — 5a3 ) — 160 Li

a4 as das 03046 a4 as das
d o , 8 8 a
40,4[{8—1 — 20a4H8 - —ay=— B +a3a4 B2, -20La46—a5-.
Derlog(Dy 1) :
O o .0 0
o day a3 da;’ *Ba;’ Bay’ w2 da, s das’ 0ay’

0 0 0 a 0 1 7
(125;3-, 23_0,1_2018_(13—3((1](14 —(13)5‘—1: '—2((12 —04)6—%, Eazala—az
- + i _|.( 4+ a5 — )i + (2a4 — as + )i —3a i

(az 01) Das a3 +as — a104 Das ( iy — az + azaz das’ 1 day

a d 0 0 M+1
+a2§1;_038 s +a4a—a4+(405+3ala4"3a3)a_a57 (6(11(12

d g
-+ E(Qal az — 20.3))8—0'1 + (a5 + ajaq4 — ag)a—a2 -+ (2(130.2 — 2a4—|-
l(6a as — 6a2aq + 3ala ))i—2a a i+(8a, az + 8azas — 12aza
5, 2 d 1 15,
- 8010204)6—%, H(2a]a3 + az)a—al + (aq — ﬂ% + as + 501&4)3_02

2 1 éj
-+ (2(1% — 2(15 —ajas + M(Gg, —-aqa; + 50%)6—(13 + ((14(13 + azaq — 2(120.5

7, ad 0 0
- 010204)5(?4- - (13(2(1% -— 205 — 0.104)6—0,;, (a? — 2)6_(12 — 401“--—

; 9 9 0 0 -
-{-—2(133—4 + 2(a1a3 — GQ)a—as, 6 +2(133 s +4a4a—a4 Doy

— §2 __212+a — a3 a+2a5a1_ — 82 2ara _
where, M = 1+ 3a7, K= 2@, H=2 —Zm?— a3), L = 22(52} —a3).

Proof. For the cases F}p and K, the method of the proof is analogous to the one

used in the proof of Proposition 6.6. We only show how to prove the case D, ;. Here we
have

2 2 3 .2 2 .3 .4 3
O,y /0(f) = (1,21, 22,y, 27, T1T2, T3, T2y, T, T1T2, T125,Th, Tg, T1T5),

where z = (21, z2). So by Proposition 6.5, we have
h =ag + o121 + agzo + a3y + a4$f + aszize + Olsﬂig + arzay
+ Q’SJ::]} + O.'QF(O,I, a) + Q’]gil?lilf% + 06]1:13% + O.’lgxg + (113221'.’1!3.
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Now we need

. oh
(i) a—Il(O,:r:,a) = ay + 2047y + 3asz? + aszy + amxg + a13:cg € I(F)
6—1:2(0,23, a) =ay + 20622 + 3oy 75 + doy2zh + a5z
(i) + 202122 + 3(]!13&3127% € I(F)

Using the relations

1 = — a72 — az(mod I(F)),
2173 = — ag(modI(F)),
z? =a a4 — az(mod I(F)),
2 = — ayzy + -;-(ala4 — a3) — as(modI(F)),

1 1 1
$% =(a§ - Eala‘t - a5)$2 + §a102‘14 + azax — 503(12 -_ §a4a3(mod I(F)),

we can solve (i), (ii) and obtain a4, ag, a3, as, ag; expressed linearly by independent

functions w4, ag, @9, @0, @11, @12, (13, With polynomial coefficients. Then using the
relations

a:f = — 2(3:% + a1y + a2z 4 as)(mod B(F)),
23 = — 2(yay + (a2 ~ a4)z2 — yz2 + as)(mod A(F)),
123 = — y — as(mod A(F)),

3 1 1 _
zg = — éal:z:zy - agzz:% + §a4a:1 —a5Ty — Eagy(mod A(F)),
3 1 1
:c% =m§(a§ —as) + wzy(§a1a2 + m(ﬁalag + 9a3a? —2a3)) — Eaga,;a:l
1 3 _
+ azaszy + Ey(a;;ag —a4+ m(2a5a1 ~2a}ay + a;a2))(mod A(F)),
1 1 _
:C]:C% =ﬁ(y:c2(2a1a3 + (12) + y(a5 — 41 + Eag) - a4:c§(mod A(F)),
1 -
F(O, x, (1) =6(203y + 4(14231 4+ agﬂfg + 405272)(1]’10(1 A(F)),

we obtain, after straightforward if messy calculations, the vector fields listed in the propo-
sition.
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Let p : CP — CF, be a projection on C* C CP. We say that Q(F) C CP is locally
equisingular along C* near py € C* if for all p € C* near py the pairs (p~!(p),0) and
(p~(p) N Q(F),0) are all diffeomorphic. Checking the vector fields listed in Proposition

7.1, we have

Corollary 7.2

1. The quasicaustic Q(F} o) is equisingular along the two-dimentional singular locus,
parametrized by {a1,as}.

2. The quasicaustic Q(Dy 1) is equisingular along the two-dimensional singular locus,
parametrized by {a1,a,}, where a; # £/2.
In both cases the fibre (p™!(p) N Q(F),0) is diffeomorphic to the Whitney’s cross-

cap.

The logarithmic vector fields, can be used also for the classification of the generic
Lagrangian pairs (L1, Lz) up to quasicaustic equivalence (cf. [25-17]). The singular
Lagrangian variety L; U L, is provided by generic families of functions on manifold with
boundary. In this sense, to determine the germ of Lagrangian pair means to define the
generating family of functions on a manifold with boundary (cf. Section 3).

Let f : (C x C",0) — (C,0) be a finitely determined boundary singularity. Let
F:(CxC"xC# 1 () — (C,0) be its miniversal unfolding. If G : (Cx C" x C?,0) —
(C,0) is a generating family for Lagrangian pair, then generically G is a pullback from
the miniversal unfolding F of the finitely determined germ f(y,z) = G(y, z,0), i.e.,

G(y,z,a) = F(2(y, z,a), $(a)) + h(a),

where @ : (C x C* x C?,0) — (C x C",0) is a family of biholomorphisms, germs
preserving the hypersurface {y = 0}. The pullback ¢ : (CP,0) — C#*~1,0), ¢ € Of‘a—)l
and h € O,). Thus, analogously to the classification of generic Lagrangian submani-
folds (see [3], p.337), the classification of generic Lagrangian pairs is done by specifying
the miniversal unfoldings of finitely determined boundary singularities and their generic
pullbacks ¢ € O;‘a')l.

Let us assume that Lagrangian pairs are modelled on unimodal singularities f : (C x
C»,0) — (C,0), i.e. the generic generating family with such f has the following pre-
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normal form

G:(CxC"xCrP0)—(C,0), p>pu-2,
n—2

G(ya z, a) = f(ya CC) + Z gi(ya :c)a; + g#—l(yj m)’\(a),

i=1
where g,_;(y, z) defines the modulus direction.

Generically, the pullback ¢ is transversal to this direction, so A := A l{ay=...=a, _3=0)
(Cr—#+Z 0) — (C,0) is a Morse function. Thus there are possible two generic normal
forms for the generating families of Lagrangian pairs of unimodal type :

1. A(a) =a,—1, when p > p — 2, and DA(0) # 0,
2. Ma)=n(a1,.,ay—2)ta’_; .. La2, when DX(0) =0, |

where € O, (@ = (ay,...,a,—2)) is a functional modulus.

To obtain more information about classifying quasicaustics, we need to introduce a
weaker equivalence relation in Lagrangian pairs (cf. [3-17] in the case of functional

moduli in standard classification of Lagrangian submanifolds). Let

G1(y,x,a) = F(y,z,41(a)) + fi(a),
G2(y,z,a) = F(y,z,¢2(a)) + f2(a),

be two generating families for the corresponding Lagrangian pairs £; and £, respectively.

We say that £;, £, are quasicaustic equivalent if ¢;, ¢, are right-left equivalent, i.e.,

¢1(a) = (¥ 0 ¢3 0 £)(a),

for some biholomorphism ¢ : (CP,0) — (CP,0), and some biholomorphism 1 :
(C#~1,0) — (C#~1,0) preserving the quasicaustic (Q(F),0).

Proposition ?.3. For unimodal parabolic singularities F, by quasicaustic equiva-

lence, the functional modulus A can be reduced to zero.

Proof. On the basis of [3],(p. 343) we need to check only that
*) Mg C (41(a), .., AT(a)) Oa),

which implies that
Ma)€(¢) C ¢"E(n — 1) + To(E(p))
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for ¢ : (CP,0) — (C#~1,0) being in general position to the modulus direction. Here by
£(¢) we denote the vector fields along ¢ (cf. [23]). Let £(1—1) and E(p) be the spaces of
vector fields on (C#~1,0) and (CP, 0) respectively. This enables us to apply the ordinary
homotopic method to eliminate the functional modulus A. Taking into account the vector
fields listed in the Proposition 7.1, V; = E‘Ll Ai%, we immediately have fulfilled (*)

for the parabolic singularities.
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