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Abstract. This paper studies some aspeelS of a particular dass of bifureation varieties
whieh are provided by simple and unimodal boundary singularities. Their eorrespon
denee to a diffraetion theory is establishcd. The gcnerie eausties by diffraetion on
apertures are derived and their generating families for the corresponding Lagrangian
varieties are ealeulatcd. It is proved that the quasieaustics associated to simple singu
larities are smooth hypcrsurfaecs or Whitney's eross-eaps. The procedure for ealculating
the modules of logarithmic vcctor fields is given, and the minimal sets of the corre
sponding generators arc explicitely calculated. The construction is conducted for the
general boundary singularities and the structure of quasicaustics dcfined by parabolic
singularities is investigated.
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1. INTRODUCTION

Let F : (cn+l X CP, 0) --+ (C,O) be a genn of a holomorphie funetion. By (8,0) c
(cn+l, 0) we denote a genn of a some hypersurfaee in (Cn+1, 0). The quasieaustie Q(F)

of F is defined as

Q(F) = {a E CP; F(., a) has a critieal point on 8}.

Let F represent the distanee funetion from the general wavefront in the presenee of an

obstacle fonned by an aperture (cf. [18-9]) with boundary S. The corresponding quasi

caustic Q(F) is build up from the rays orthogonal to the given wavefront and touehing

the boundary of the aperture (see the example of the quasieaustie illustrated in Figure 4).

The quasieaustie is a subvariety of the usual eaustie (also ealled the bifureation set [6-31])

{a E CP j F(., a) or F Is)(cp (., a) have a critieal point},

and represents the strueture of shadows fonned by the eommon, pecular positions of

aperture and ineident wavefront

In this paper we investigate the strueture of generic causties and quasicausties by diffrac

tion on smooth obstaele eurves and apertures (optical instruments). We use for this the

elassical phase space for general optieal instruments, Le. the space of pairs of rays (1, i),
where 1 is an incident ray and I is transfonned ray (produced by 1 and the optieal instru

ment), endowed with the canonical symplectie structure. This space was first introduced by

R. K. Luneburg [21] in his mathematical theory of oprlcs and then revived by V. GuiHemin

and S. Sternberg [13] in their symplectic approach to various physical theories. To eaeh op

tical instrument, in the mentioned phase space, there corresponds a Lagrangian subvariety,

say A, defining all physical properties (from the point of view of the geometrieal theory of

optics [19] ) of the system. So when A is fixed we can obtain all transfonned wavefronts

by taking the symplectie images A(L) of all Lagrangian subvarieties L of incident rays

(Le. optical sources) . See also [14].

The plan of the paper is as follows. In Section 2 we give preHminary results about the

basic phase spaces and eonstruct representative examples in the symplecric approach to

general optical systems. The geometrical structure of causties by diffraction on apertures,

as weH as their generie classification in the ease of half Hne aperture on the plane and
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half plane aperture in Euelidean three-space, is investigated in Section 3. We compute

the normal forms for generating families of the generie canonical varieties in the case of

diffraction on smooth curves in Section 4. When eonsidering the caustics by diffraction

on apertures, the quasicaustic component becomes important. In Section 5 we generalize

the methods for orrnnary caustics initiated by 1. W. Bruce [7-8] to investigate the structure

of logarithmic vector fields on quasicaustics. In Section 6 we derive the generators for

the modules of tangent vector fields to the quasicaustics corresponding to simple boundary

singularities and prove that they are not free. Finally in Section 7 we analyse the structure

of quasicaustics and the reduction of functional moduli in normal forms of Lagrangian

pairs.
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2. SINGULARITIES IN ACTION OF OPTICAL INSTRUMENTS

Let (M, w) be the symplectic manifold of all oriented lines in V "J R 3
• We look onV as

the configurational space of geometrical optics with refraction index n : V -+ R, n =1.

(M, w) is given by the standard symplectic reduction

where the hypersurface H-1 (0) is defined by the Hamiltonian

H: T*V -+ R,
1

H(p, q) := 2(11 p 11 2 -1),

and 1TM is the projection along characteristics of the associated hamiltonian system.

Let (p, q) be coordinates on (T*V,wv), where Wv is an associated Liouville 2-fonn. By

(U,w) we denote the Iocal chan on (M, w) described as an image 1i"M(H-1 (0) n{Pl > O})

with restricted symplectic form w. (p, q) form Darboux coordinates on (T*V, wv). In

corresponding Darboux coordinates (r, s) on (U, w) we can write

where the unique reduced sympiectic structure w is given by the fonnula

2

WV IH-l(O)= 1i"MW, w lu= L dri /\ ds i .
1=1

In the introduced coordinates on M, to each point (r, s) E U we can uniquely associate

the corresponding ray (in parametric form),

By the above formula one can translate the concrete optical problems into the language of

the phase space (M, w) and vice versa (cf. [21-13-26]).

Let (U, w), (U, w) be two exemples of the symplectic space of optical rays or its open

subsets. Usually these manifolds denote the spaces of incident and transformed rays of an

opticaI instrument (see Figure 1,a,b).
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(a) refraclion

(U,w)

(b) reßeclion

(U,w)

incidcnt ra}'

Figure L

causlic

(U,w)

rcfractcd ray

(Ü,w)

Definit ion 2.1. Tlle pllase space oE optical instrunlents is tlle follawing product

sYlnplectic l1HlJlifold:

II = (U x Ü; 1r;W - 7r;w),

wllere, 7rl,2 : U x Ü --+ U, Ü are canollical projections (this was first introduced by R.

K. Luneburg [21]).
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The process of optical transformation, say reflection, refraction or diffraction, etc. (see

Figure 2.) of the ineident rays is govemed by the subvariety of IT, which is Lagrangian,

i.e. it is stratified onto isotropie submanifolds of IT where maximal strata are Lagrangian

(cf. [1~14-16]).

Definit ion 2.2. \Ve define tlle general optical instrulnent to be a Lagrangian sub

variety oE II(generalized synlplectic relation, [14-32]).

REMARK 2.3. It is easily seen that reflecting or refracting optieal instruments (cf.

[10]) correspond to graphs of sylnplectomorphisms between (U;w) and (Ü,w). But, for

example, the diffraction process is described by quite general Lagrangian subvariety of II

(see Figure 2, below, cf. also L18J).

aperture

(U,w)

l~

(Ü,w)

diffraclcd rays

Figure 2.

In fact let (a, b, x, y, 'U, V, tu) -+- F(a, b, x, y, U, v, tu) be the optical distanee function (cf.

[9·28]) from the wavefront
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in the presenee of the aperture {a ;::: 0, Z = mb - 1} , where m ;::: 0. If the ineident ray

goes from (x,y) = (0,0) to (a,b) = (0,0) then the transformed rays from (a,b) = (0,0)

to (u, v, w) are given by equation

aPab (O,u,v,w) = 0,

F(b,x,y,u,v,w): = F(O,b,x,y,u,v,w),

(see Figure 3.), which for the distanee funetion

F = ((x - a)2 + (y - b)2 + (<p(x, y) - mb + 1)2)1/2

+ ((u - a)2 + (v - b)2 + (w - mb + 1)2)1/2

reads

and

v +m(l +w) ~ O.

These conditions define the half-cone of diffracted rays (see [18-19]).

EXAMPLE 2.4. Re/lection from the curve (see Figure l.b):

Let the mirror be defined by equation {ql = O}. Let (U,w) -tbe space of incident mys

be defined as 'lrM(H-1 (0) n {PI > O}) and the eorresponding space of reflected rays

fj = 'lrM(H- 1 (0) n {PI< O}). Then tbis reflecting optical instrument is equivalent to the

following Lagrangian subvariety of II,

II::) {((r,s),(f,s)) E U x U;r = r,s = s} =: A

and its eorresponding generating family (cf. [34.15·33]),

G(A, s, s) = A(S - .5),

where A E R, is a Morse parameter.

In our approach the sources of radiation produee rays in tbe space denoted by (U, w).

Thus we have
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z
y

incidcnt
ray

the cone
or diffracted
ra)'s

edge

aperture

Figure 3.

Definit ion Z5.. l'Ve deli,ne tlle general source oE ligllt as a Lagrangian subvariety

L c (U,w) oE tlle space oE incident rays. H A C rr is aJ] optical instrument, tllen tbe

transEormed system oE rays (01' equivalently tlle transformecl waveEront , cE. [15] ) is

a symplectic inlage L' oE L by l11cans oE A, i.e.

LI := A(L) := {Jj E [r; tllcre exists]J E L such that (p, Ij ) E A},

which is usually a Lagrangian SUbV81'iety oE (Ü, w),(cf. [14]).

EXAMPLE 2.6. Rejiec/iolJ o[ a parallel beam o[ rays:

The beam of parallel rays is given in (U,w) by L = {7' = O} (a point source of light at
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infinity). By reflection in the mirror, x -t (<p( x), x) E R 2
, <p(0) = <p' (0) = 0, <pli (0) 1= 0,

the canonical variety A C II (defining the reflection process) brings into L some focusing

property and produces the weIl known caustic (see Figure l.b) . The reflected beam of

rays A(L) has the form:

(__) = ( 2cp' (x) _ cp(X)cp' (x)( 1 + cp' (x)2 )2)
r, S cp' (X ) 2 + 1' x cp' (x)2 _ 1 .

REMARK 2.7. Local genericity of the wavefront produced by L c (U, w) is preserved

during the process of reflection or refraction (cf. [10]) because the corresponding canonical

variety is a graph of symplectomorphism. Thus the caustics, produced by reflection or

refraction are classified by the simple singularities of type A kl D k , Ek, (see [3]). It may not

be so in a diffraction process, where A C II is no longer the graph of symplectomorphism.

In this case the differentiable structure of L is drastically changed by A and A(L) is no

longer smooth. Its singular locus brings a completely new type of caustic responsible for

the structure of shadows and halfshadows of an obstacle as weIl.
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3. CAUSTICS AND QUASICAUSTICS BY DIFFRACTION

Let L be a source of light or transfonned wavefront in (M,w). Now we reeall the

geometrie eonstruetion which allows us to define caustic or wavefront evolution in V,

corresponding to L, (cf. [1.16]). Let 3 be the produet symplectie manifold

where 1Tl,2 : M x T*V ---+ M, T*V are the eanonieal projections. One can check that

k := graph1TM C 3 is a Lagrangian submanifold of 3. Thus there exists its local

generating Morse family (cf. [34]), say

[(: R k X X X V --+ R,(j.l,x,q) --+ [«(f-l,x,q),

where T*X is an appropriate Iocal cotangent bundle structure (special sympieetic stnlcture

[1..16·32]) on (M, w). The transformed system of rays forms a Lagrangian subvariety of

(T*V,wv) given as an image

L = (K 0 A)(L) c (T*V,wv),

where k 0 A c 3 is a composition of symplectic relations (cf. [1·34]). If

G: R 1 x X X X --+ R,(v,x,x) --+ G(v,x,x), X,X ~ Rn,

is a generating family for A eIland F : R m X X --+ R, (A, x) --+ F( A, x) is a generating

family for L, then the transfonned Lagrangian subvariety L c (T*V,wv) is generated by

(not necessary a Morse family),

F : R k+l+m+2n X V --+ R,

F(A, v, Jl, x, x; q) := G(v, x, x) +K(j.l, x, q) +F(,,\, x),

where R k+l+m+2n is a parameter space.

In optical arrangements the source of light is usually a smooth Lagrangian submanifold

of (U, w). Only after the transformation process through an optical instrument does it

become singular.
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incidcnt
raJs

apCl'tul"e

Figure 4.

edge

Definit ion 3.1. Let L C (U,w) be an initial saurce variety. We define the caustic by

an optical instrument A C II, ta be a jlypersurface ofV fonl1ed by two components :

(1) Singular values of 1TV li-Singi;

(2) 1Tv(SingL),

where L = (!( 0 A)(L) 811d SingL denotes the singular lOCLJS oE L.

REMARK 3.2. In reflection or refraction we da not go beyond smooth category of

L (at least in this paper) so the associate caustics, in transfonned wavefronts L, are

those realisable by sl1100th generic sources (cf. LS-IOJ). Thus in what follows we will

be interested in caustics cuused by diffraction which will enrich substantially the list of
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optical events (cf. [4]) and complete the correspondence between singularities of functions

and groups generated by reflections (see [28-29]).

Diffracted rays are produced, for example, when an incident ray hits an edge of an

impenetrable screen (i.e. an edge of a boundary or interface, cf. [18]). In this case the

incident ray produces infinitely many diffracted rays, which have the same angle with the

edge as does the incident ray (see Remark 2.3.) This is so if both, incident and diffracted,

rays lie in the same medium. Otherwise, the angles between the two rays and the plane

normal to the edge are related by Snells law (see [19]). Furthermore, the diffracted ray

lies on the opposite side of the normal plane from the incident ray. The edge diffraction

is illustrated in Figure 3. That is exactly that all mIes and laws of geometrical optics

correspond exactly to the lagrangian properrles of the corresponding varieties A c n.
Let I be the diagonal in n. By n we denote the set of oriented lines in (U, w) which

do not intersect the screen. Thus we have

P roposit ion 3.3. In the edge diffraction in an arbitrary Euclidean space, tbe canon

icaJ variety A c II bas two components

where AI = n x n c I and A D is a pure diffraction ofrays passing through the edge

of an aperture, defined in Remark 2.3.

COROLLARY 3.4. Let L c (U, w) be an incident system of mys. Then the edge

diffracted system of rays

L = (j( 0 A)(L)

is a regular intersection (cf. [25]) of two smooth components: LI = (K 0 A1)(L) and

L2 = (K 0 AD)(L), i.e. L = LI U L2 , dimL I n L2 = dimL I - 1 and Tx(L I n L2 ) =

Txt I n TxL2 •

Thus we see that the caustic caused by the edge diffraction has a three components:

(1) The caustic of LI, which is a part of the caustic in incident wavefront L.

(2) The caustic, purely by diffraction on the edge, i.e. the caustic of L2 •

(3) Tbe image 1rv(LI n L 2 ), of the rays passing exact1y through an edge.
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(a)

a

aperture

(IJ)

a

aperture

(c)

Figure S.

upcrlurc
3pcrlurc

Definit Ion 3.5. Tlle set '7rv( LI n L2 ) c V is caJled the quasicaustic by diffraction

Oll apel'ture. Tlle rays bclollgillg to Cjuasicaustic wllidl are containcd in aperture

plane we will call tlle raJ's at infinity.

Usually the quasicaustics describe the structure of shadows and half-shadows in config

urational space V (see Figure 4).
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P roposit ion 3..6-

1. Generic caustics by diffraction on tbe half line aperture on the plane are diffeo

morpbic to tbe 12 , 1a, B 2 c::: C2 , Ba boundary caustics. Normal fonns for their

generating families as images A(L) (or pairs (A, L) in general p osition) are the

following:

A 2 : _~,.\a + "\(q2 - a) - !ql,.\2, a > 0, and A := {ql = 0, q2 =:; Ol, (see Figure 5.a),

..4a : -i,.\4 + ,.\(Q2 - a) - ~ql,.\2, a> 0, and A:= {ql = 0,q2 =:; O}, (see Figure 5.b),

B 2 : _~,.\2 +Q2"\ - ~Ql,.\2, {,.\ ~ O}, and A := {ql = 0, Q2 ::; O}, (see Figure 5.c),

Ba : _~,.\a - !ql).2 + "\(Q2 - Qla), {,.\ ~ Ol, and A := {Ql = 2a, q2 ::; 2a2}, a > 0,

(see Figure 5.d),

where ,.\ is a Morse parameter and a is the moduli of common position.

2. In generic one-parameter families oE caustics by diifraction on the haIfline aper

ture, whicb do not pass through infinity, the only possible conngurations are those

ones described in metamorphoses oE optical caustics (see [11] ,[5],p.113) and tbe

additional cases illustrated in Figure 6.a,b,c,d.

Proof. 1t is easily seen that k = graph'TrMe=: (see (3.1» is generated locally by

1 2
J«r, q1, q2) = Q2 r - "2qlr .

The only stable systems of rays K(L) C (T*V,wv) are generated in (M,w) by L :=
8F

{ (r l s); S = - 8r (r)}, where

Al : Fl(r) = _~r2,

A2 : F2 (r) = -lra,

Aa : Fa(r) = -ir\ (cf. [5-15]).

Let the aperture (so A C II) be defined in its nonnal fonn by equations: Ql = 0, q2::; o.
Thus we have the boundary singularities (cf. [24]) A(L) defined in (M, w) by the following

generating functions:

Ä1 : Pl (f) = -!f2, {f ~ O},

A2 :. F2 (f) = -lfa, f E R ,

Äa : Fa(f) = -~f4, {f ~ O}.

Taking Ai in general position with respect to A we obtain part "1." of Proposition 3.6. Part

"2." follows by checking all the possible one-parameter evolutions (where the quasicaustic
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(a)

J
I

I
I

/,,,.

• C3 -invisilJlc,
\
\

\ ,
.... ....

aperture npcrtllrc

(IJ)

aperture Bpcrtllrc aperture

(c)

B.j-secliOIl

3/2

I
I

aperture npcrture aperture

aperture npcrture aperture

Figure 6.
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is not passing through infinity) of the stable caustic on the plane and in the presence of

the half-line aperture. 1\\10 possible directions of interseetion of A 2-caustic by an edge

of aperture give us the cases "a" and "b" in Figure 6. The evolution of an edge of the

aperture passing through the ray tangent to the cusp caustic A3 is illustrated in Figure 6,c.

Finally an evolution through the intersection point of A2 +A2-caustic gives us the case of

Figure 6, d. This completes the proof of Proposition 3.6.

D
Looking at the position of quasieaustie in the diffraction problem with a half-plane

aperture in R3 we can eliminate the C4 -boundary caustic. Thus we have

Propo si t Ion 3.7. Generic caustics by diffraction on tbe half-plane apert ure in R 3

are diffeomorphic to the A2 , Ä3 , 1 4 , B2 , Ba, B4 , F4 boundary caustics.

REMARK 3.8.

1. For the general linear hyperbolie system of first order (cf. [19]),

a a
Lu = Ut +L A JI a

U +Eu = 0,
11=1 XII

where u represents, say in the ease of crystal optics, the pair of veetors (E, H) and

.cu = 0 corresponds to Maxwells equations. In the geometrical optics approximation

we obtain an another characteristic equation (eikonal equation),

(

3 a~)
det cI> I +~ A

P

8xP = 0

for the phase funetion ~(x, t); u rv eiw4'(x ,t)aO(x, t). In this case the conical refraction

in crystal optics is an example of a Lagrangian variety quite generally situated in the

associated phase space (cf. [13-19]).

2. In the edge diffraetion on system of apertures (mentioned in [18]) the singularities of the

distanee funetion are classified by the singularities on many dimensional corners (see

[30]). In very constrained systems of apertures the classification is obtained using the

methods of the theory of singularities of funetions on singular varieties (cf. [7-28]).

3. The generic quasieaustie in the edge diffraction in R 3 , eorresponding to the F4 singu

larity of the distanee funetion (cf. [11]), is realized geometrieally (see Figure 4) when

the eurve of rays passing through the edge on the ineident wavefront is tangent to a

constant curvature line on the wavefront. This situation is generie (cf. [5]).
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4. DIFFRACTION ON SMOOTH OBSTACLES

Now we can apply an introduced symplectic framework to describe the diffraction on

smooth closed surfaces in R 3
. Tbe problem is connected to the Riemannian obstaele

problem (cf. [2]), Le. detennination of geodesics on a Riemannian manifold with smooth

boundary. Any geodesie on such manifold is Cl and consists generically finitely many so

called switchpoints, where geodesic has an initial or end point according to He in interior

pan of the manifold or on the boundary. Cauchy uniqueness for manifolds with boundary

states that every boundary point (point of an obstacle) has a neighbourhood in which: if

two geodesic segments with the same initial point, initial tangent vector and length do not

coincide, then one of them has its right endpoint in the interior part of the manifold and

is an involutive of the other (in the planar case it lies on an appropriate involute of the

obstacle curve). By an involutive of a geodesic , is meant a beodesic " whieh has the

same initial point, initial tangent vector and length as ,. Tbe refonnulation of the above

obstacle problem in tenns of geometrical optics of diffraction needs to define a surface

diffracted ray. A surface diffracted ray is produced when a ray is incident tangentiallyon

a smooth boundary or interface. It is a geodesie on the surface in the metric rrls, where n

is the refractive index of the medium on the side of the surface containing the incident ray.

At every point it sheds a diffracted ray along its tangent (cf. [18-4]). A surface diffracted

ray is also produced on the second side of an interface by a ray incident from the first side

at the critical angle (arcsin(;;;)). In this case at every point it sheds rays back toward

the first siele at the critical angle. However in what follows we will neglect these rays.

Let us consider an open subset S of an obstacle surface in R 3
• By 11 we denote the

initial tangent Hne to the geodesie segment, on S. Let 12 be a tangent Hne to S. We

say that 12 is subordinate to 11 with respect to an obstacle S if 12 (or its piece in (R3 , S))

belongs to the geodesie segment with the same initial point and the same tangent vector

as , has. By simple checking we have the following (cf. [15]).

Proposit ion 4. 1. Let, be a geodesie flow on S. Then the set

A = {( I, I) E II; fis subormnate tol with respect toS and geodesie flow,}

is a Lagrangian subvariety oE rr defining the cliffraction process on an obstacle S.

Now we look for the generic pairs (A, L). At first we consider the planar case.
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(a)

(c)

(b)

Figure 7.

Proposit ion 4.2. For the generic obstacle curve on tlle plane tlle only possible

canonical varieties A c II have tlle following normal [arms of generating families (ar

functions):

Ä" . G(r f) = _..L(r3 + f3)2 . , 12 ,

(obstac1e curve q2 = -qi), see Figure 7,a ,

H3 : G(Al, A2, 7', f) = /0 (.\r + A~) -"Al- rAg + ~7·2 Al + ~f2A2l

(obstac1e cW've q2 = qf), see Figure 7, b,

A2 ,2 : G(,', f) = ~(,. 17' I +1': I'": l),

(double tangent), see Figul'e 7,c.
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Proof. Let us take the noninflection point of the generie eurveo Parametrieally the eurve

is given as (Ql' Q2) = (v, _v2
), vER, and the eorresponding family of tangent lines

eorresponding to the given ineident ray has a fonn (ql, q2) = (0, v2) +u(l, -2v), u E R.

B 'd °fi' 2 4v - -2 - 4v h (-) R 2 .Y 1 enD eatlon s = v , r = 1+4v2 , S = v , r = I+4v2 , w ere v, v E parametnze

the variety A, we obtain the ease A2 which corresponds to the cartesian product of two

ordinary foIds, Taking the inflection point for an obslacle curve, we obtain, in the same

way, the following parametrization for A c II, namely

3 2 3v2,
S = -2v3

, r = v S = -2v3 f =VI + 9v4 ' '-v-;:;'1=+=9:;::v::;:4

After straightforward calculations we obtain the generating family for it, denoted by fI3.

Analogously we abtain the A2 ,2 ease (see Figure 8),

D

Figure 8.

Coroll ary 4.3. Für (A, L) in general position lve lJave tlle following possible stable

images A(L) c (1\1, w),
A 2 : PI (f) = ~ /2 f3 ,

H3 ' F.2 ().;:) = 2-).5 - ;: ..,\3 + 1;:2).
° , 10 2'

A 2,2: F3 (f) = 4I f I r.
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and tbe generating families for tbeir corresponding configurational images

J«(Az): F1(A,ql,qZ) = -lZ)..3 + qz).. - !q1 AZ ,

J«(H3) : FZ(Al, )..z, ql, qz) = 1
9
0 A~ - )..zA~ + !)..~)..1 + qZAz - !qI )..~,

[«Az,z) : F3(A, qI, qz) = !).. I ).. I +qz).. - !ql)..Z,

(see Figures 9, a. b. c. and also Figures in [4]).

Proof. In general position of A and L, only one point of L is tangent to an obstacle

curve in the neighbourhood of the considered point of this curve. Hence in calculation of

(i< 0 A)(L) in all cases (A z ,H3, and Az,z) it is necessary to put r = const. in generating

families of Proposition 4.2.

o
REMARK 4.4.

A. The first, most important, results in obstacle geometry and its correspondence to the

structure of singular orbits of H 3 and H 4 group actions, were discovered by Scherbak

[28]. The aim of the present paper is to show how singular wavefront evolutions appear

in general setting of mathematical theory of optics (cf. [13-15-21]) and to complete

investigations of the caustics and quasicaustics which appear there. As we see the planar

obstacle problem is connected to the studies of tangent developables. More degenerated

singularities there can be described using the blowing~up construction (cf. [22]).

B. The K(Az,z) singularity appeared as an adjaicent to the higher singular one (see Figure

10.) in generic one-parameter family of obstacles qz = -iqt + !aq; - ~az, a E R+.

i.e.

r = -2avE - 3fyaV~ + (4a3
- l)v: + O(v:),

3s = 2€a3
/
ZvE +4av; +3€vav: + 4v:,

€ = ±1, v+ ;::: 0, v_ ~ O.

C. We can see that choosing the special symplectic strllcture fibered over (PI, pz) in the

H 3 case, we can investigate only a cuspidal edge of A(L). In fact its generating family

after reduction of J.LI, {Lz, and AZ parameters we obtain the generating family for the Hz

singularity,
I 9 5 3 1 2

Fz()..,p) = 10).. - PZA + 2Pz )..
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(u)

Figure 9.

and its level-sets (wave [ronts) as has bccn written down in Tablc 2. of [28]. That

observation is connected with much more general feature of obstacle singular wavefront

evolutions. Namely a11 singularities in obstacJe geometry as indicated in Table 2. of [28J

are generated by the generalized open swallowtails (in (A1, w) space) with generating

farnily (see [14] p. 106),
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SI, (I ~ 1), 6.1, (1 ~ 2) (cf. [28])- singular waveffont ev01utions are reconstructed fronl

Ä2( k+l) singularities by specifying an appropriate conlIllon generic positions of A C II

and Ä2(k+l) C (M,w).

Figurc 10.
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5. VECTOR FIELDS ON CAUSTICS AND QUASICAUSTICS

As we can see from the preceeding sections, caustics in the wavefront evolution, or

in diffracted wavefront on aPerture, are defined as bifurcation sets for the corresponding

generating family (Morse family [9-34]) of functions or the family of functions on manifold

with boundary respectively (cf. [3-24]). To investigate tbe structure of these sets and

modules of tangent vector fields on them, in what follows, we shall consider the real

analytic or holomorphic functions (germs). For the ordinary caustics, defined as the critical

values of Lagrange projections (cf. [3]) from the Lagrangian submanifolds, which are not

necessary fibered by optical mys, the procedure is following (see [6-31]):

Let / : (C n , 0) -+ (C, 0) be a holomorphic function of finite codimension ,i.e. the

dimension of the quotient CJ(x)/ J(/) as a complex vector space is finite, where O(x)

denotes the ring of holomorphic functions h : (Cn
, 0) -+ (C,O) and J(/) is the ideal in

o(x) generated by the partial derivatives aaf ,,,. ,aaf . Let M (x) denote the maximal
Xl X n

ideal in O(x)' If 91, ... , 9p is a basis for M(x) / J(!), then

F: (C n
X CP, 0) -+ (C,O),

p

F(x, a) = fex) +L aigi(X)
i=l

is a miniversal unfolding of f (cf. [23]).

The caustic of F (or bifurcation set of F, see [31-7]) is the following set (genn),

B(F) = {a E CP; Fa has adegenerate critical point}.

Tbe set of critical values of rr : (EF,O) -+ (CP, 0) (rr is a canonical projection on the
aF 8F . .

second factor), where EF = {(x,a) E cn x CP; -8 = ... = -8 = O}, 1S the causUc.
Xl X n

It appeared to be important to know the modu1es of tangent vector fields to caustics (as

well as to wavefronts [35-3-7], which is easier). Tbey are useful in reduction of functional

modu1i in elassifieation of generic symmetrie and nonsymmetrie Lagrangian submanifolds

(cf. [17] ,[3] ,p. 344). We reeall after [27-6] some necessary definitions. The set of

genns of holomorphie veetor fields on CP, at 0, tangent to the nonsingular part of B (F) is

ealled the set of logarithmic vector fields of B(F) at O. It is denoted also by Derlog B(F).

In [31-7-8] (see also [35-27]) it was given a general method for computing these vector

fields. It was shown there that A k singularities are the only ones whose module of tangent
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vector fields to B(F) is free (i.e. eaustie is a free divisor [27]). Applying the method used

in these papers we investigate the modules of vector fields tangent to the quasieausties in

diffraetion on apertures (this is a first step in investigation of the strueture of caustics by

diffraetion) .

Let O(y,x) denote the ring of holomorphic functions h : (C x cn, 0) --+ (C,O). The

hypersurfaee S = {y = O} corresponds to the boundary of an aperture. Following the

general scheme used in [3] for boundary singularities, we shall consider holomorphic

funetions I : (C X C n
, 0) --+ (C, 0) of finite codimension, i.e.

dimcO(y,x)/ß(/) < 00,

where ß(/) = (y ~/, aal, ... , ~I ) denotes the ideal in O(y,x) generated by the par-
uy Xl UX n

tial derivatives aal, ... ,~I and y °a! (cf. [3·20]). Let 90, ... , 91l-1 form a basis for
Xl UX n Y

O(JIIX)/ß(f) with 90 = 1 and 9i E M(y,x)' Then the miniversal deformation, in the

category of deformations of functions on manifold with boundary, as aMorse family for

the corresponding diffracted Lagrangian variety (cf. [25-16]) is defined as follows

F: (e x C n X CIl-I,O) --+ (C,O)

1l-1

F(y, X, a) = I(y, x) + L aiei(Y, x).
i=l

P roposit ion 5.1. The caustic (or bifurcation set) by cliffraction on aperture, having

the generating family F : (C x C n X CP, 0) --+ (C,O) (p is not necessary minimal) of

functions on manifold with boundary (extended edge) has a three components,

(1) BI (F) = {a E CP; F(.,., a) has adegenerate critical point},

(2) B 2 (F) = {a E CP; F(O,., a) has adegenerate critical point},

(3) Q(F) = {a E CP; F(.,., a) has adegenerate critical point on S = {y = O}}.

Proof. By Corollary 3.4 ·we have the three isothropic submanifolds defining the system

of diffracted rays LI, L2 and LI n L2 • It is easily seen that in terms of generating family

- distance funerion F, the corresponding caustics ean be written in fonns (1), (2), (3) of

the proposition.

D
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The set-genn

n 8F aF aF
(ErF, 0) = ({(x,a) E C x CP; -a ls= -a Is= ... = -a Is= O},O)

Y Xl X n

we call the restricted critical set.

Using the splitting Lemma (see [23]) and the versality property of F we have,

P roposit ion 5.2.

A. The restricted critical set (ErF, 0) is the germ of a smooth manifold of dimension

p-l.

B. The quasicaustic oE F, (Q(F), 0) is an image of(ErF,O) by the natural projection

7r : "ErF, °--t CP,°to the second factor.

The set of logarithmic vector fields of Q(F) at °is defined (cf. [27.6]) to be the set of

genns of holomorphic vector fields on CP at 0, tangent to the nonsingular part of Q(F);

it is an O(a)-module.

P roposit Ion 5.3. Let ~ E DerlogQ(F), tben it is 7r-liftable, i.e. for same germ oE

a vector neld e, on C n X CP, tangent to 'ErF at °we have

Proof. e lifts uniquely by 7r at every point a E CP - r (7r 1Er F ). Hence elifts to

a holomorphic vector field el on cn X CP, tangent to ErF and defined off a set of

codimension 2 in C n x CP. By Hartogs theorem tl extends to a holomorphic vector field

t tangent to ErF.

D
Now using the 7r-Iowerable vector fields ~ tangent to 'ErF we will construct the mcxlule

DerlogQ(F). Let F be as above, we define the ideal

ap 8P
I(F) = (1/J(x, a), -a (x, a), ... , -a (x, a)}O(x,a),

Xl X n

where 1/J and F are given by decomposition

F(y, x, a) = F(O, x, a) + y1f'(x, a) + y2 g(y, x, a), F(x, a) := F(O, x, a).

Let e= L:7=l ßi a8 + L:f=l 'Yi aa , ßi, ,i EO(x ab be the germ of a vector field at
Xi ai '

oE c n x CP, tangent to "ErF. Then we have

- 8F
~(ay(O,X, a)) E I(F)
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and
- 8F .
~(8Xi (0, x, a)) E I(F), t = 1, ... , n.

For our F(y, x, a) = f(y, x) + L:r:11aigi(y, x) we have

8f p-l 8g
i

'lj;(x,a) = a(O,x) + L aia(O,x).
y i=l Y

So we need

and
n 82 F p-l 8g

iL ßi 8x.8x. +L Ti 8x' E I(F), 1 'S: j 'S: n,
i=l I J i=l ]

where g(x) := g(O,x). Thus we obtain

lemm 5.4. ~ is a lifting oE ~ E DerlogQ(F), ~ = Ef=l lr;(a) a~;' iE and only iffor

same ßi E O(x,a), (i = 1, ... , n) we bave

n 8'lj; p-1 8g.
~ ßi ax; +~ lrj a: laxen E I(F),

(5.1)

(5.2)

We have choosen the normal fonn for F in such a way that the variables aJ~' ... , a p

(p 2:: p. - 1) do not appear in F. Now following the general scheme used in [6-8] for

ordinary bifurcation sets, we can propose the procedure for constructing the tangent vector

fields to quasicaustics.

By Preparation Theorem (see [23-3]), the module

O(y,x,a)/ LS.(F) ,

- 8F 8F aF .
where ß(F) = (y ay' a

X
1 , ••• , 8x

n
)O(y,x,a), IS a free O(a)-module (see [3]) generated

by 1, gl, ... , gp-1. So for any h E O(y,x,a) we can write

8F n 8F
h(y, X, a) =ß(Y,x, a)Y-a (y, X, a) + L ßi(Y, X, a)-a. (y, x,a)

Y i=l XI

p-l

+ L aj(a)gj(Yl x) + a(a),
j=l

for some ßi E O(y,x,a), aj E O(a), a E O(a)'
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Proposit ion 5.5. Let h E O(y,x,a) satisfy

ah ah-a IOXC"xcpE1(F), -a loxc"xcpEI(F), i=l, ... ,n.
Y Xi

Then tbe vector neid e= 2:f=l D:i aa , where G'i, i = 1, ... , J1. - 1, are denned in
ai

(5.2) and D:i, i = Il, ... ,p are arbitrary hoiomorphic ftmctions from O(a), is tangent

to quasicaustic Q(F) = 1l"(Er F). ConverselYj suppose e= Ef=l G:i aa is tangent to
ai

Q(F), then there is some h E O(y,x,a) aB above with

ah ah
and -a loxcnxcpE I(F), -a loxC"xCpE I(F).

Xi Y

Proof. For derivatives of h we have

ah I = ß1/J 1 +~ 8ßi 1 8P
8y s S ~ 8y S 8X i

n a1/J 1l-
1 8gi

+~ßi 15 8Xi + ~Q'ia IsE I(F),
,=1 1=1 Y

8h n aßi aP n 82 F
8x' 15= L ax' 15 8x. +Lßi 15 ax.8x'

J i=l) 'i=l ')
Jl-l

+L eri ::i. IsE I(F}, j = 1, ... , n,
i=l )

where S = {(y,x,a) E C x C n X CP jY = O}, But, on the basis of assumptions, these

conditions are equivalent to (5.1.), so Ef=l Q'i aa , is tangent to Q(F). The converse
ai

statement is straightforward .

o
We see that the set of all such h with aah Is E [(F), 8

8h Is E I(F), 1 ~ i ~ n form
Y Xi

an O(a) -module. In fact it is the kernel of the O(a)-module homomorphism,

. (8h ah 8h ) ( O(y,x,a) ) n+1
<P . O(y,x,a) :1 h --. 8y' aXt' ...,8X n E I(F) + (y)M(y,x,a)

Li(F) C I(F) + (y)M(y,x,a) and clearly the set of tangent vector fields to Q(F) is a

finitely generated O(a)-module.
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6. QUASICAUSTICS OF SIMPLE BOUNDARY SINGULARITIES

The simple singularities of functions on the boundary {y = O} of a manifold with

boundary were classified in [3], (p.281). Their miniversal unfoldings are:

ÄIt :

Bit :

G,..:

DIt :

E6 :

E7 :

Es :
F4 :

1 .
±y± x lt+1 + "'I!'- a'x 1

Il > 1L...J1=l 1 , ,.... - ,

±ylt ± x 2 + ~1!'-1 a 'y,..-i H > 2L.Jl=l 1 ,,.... - ,

± ,.. + ,,1t-1 ,..-i > 2yx X L.Ji=l ajX ,11 _ ,

± 2 ,..-1 ~J-l-2 j 4
Y+X 1X2±X2 +L.Ji=l ajX2 +alL-IxI, p.~ ,

±y+ x~ ± x~ + a1x1 + a2x2 + a3x~ + a4x1x2 + a5xlx~,

±y+ x~ +X1X~ +alx1 + a2x2 +a3x~ +a4x1x2 + a5x~ + a6x~,

±y+ x~ + x~ +alxl + a2x2 +a3x~ +a4XtX2 + a5x~ + a6x1x~ + a7xlx~,

±y2 + x 3 + azy + a3x + al XY'

Thus we have, after direct checking, the following

P roposit ion 6.1. The quasicaustics for simple boundary singularities are:

Ä p , D,.., Ek : Q(F) = 0,

BJ-l : Q(F) = {a E CJ-l-1; aJ-l-l = O},

G,.. : Q(F) = {a E C It -
1; a,..-l = O},

F4 : Q(F) = {a E c 3
; a~ + laia3 = O}, (i.e. Wbitneys cross-cap, see Figure 4).

Thus we need to calculate only the module of vector fields tangent to Q(F4 ). Let us

define the germ, at zero, of the variety X := Q(F4 ) U {al = O}. We see that the vector

fields tangent to (X,O) lie in DerlogQ(F4 ).

P roposit ion 6.2. The vector fields

a a
Vz =a1-a +a2 -a '

a1 a2

form a free basis for the O(a)-module DerlogX.

Before we prove this theorem we need the following
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P roposit ion 6.3. For corank two boundary singuiarities F : (C x C x CP, 0) --..

(C,O), the space of ftulctions h E O(p,x,a) reconstructing the O(a)- module of vector

neids tangent to quasicaustic Q(F) has a following form

J.
x (ßF ßF )h(y,x,a) = 0 ßy (O,s,a)1/;l(s,a) + ßx (0,s,a)1/;2(s,a) ds

+ y2~(y,x,a),

where,pi E O(x,a), (i = 1, 2), ~ E O(p,x,a).

Proof. Every function h E <'(p,x,a) can be written in the fonn

h( y, x, a) = 1}2 (x, a) + Y1Jl (x, a) + y2 7]( y, x, a),

and thus
ßh 0772
OX (0, x, a) = OX (x, a).

ßh
ßy(O,x,a) = 1}l(x,a),

By Proposition 5.5, we can take

1)1 (x, a) E I(F), and 1)2(X, a) = J.x g( s, a)ds, 9 E [(F),

obtaining all functions

2 -
1J2(X, a) + yr/1 (x, a) + Y 1J(Y, x, a) (rnodß(F»,

defining the O(a)-rnodule of vector fields tangent to Q(F). Now we see that,

2 2 8F 8F
7]2(X, a) + Y77] (x, a) +Y 17(Y, x, a) = 1]2(X, a) +Y ~(y, x, a) (rnod(y 8y ,y 8x )O(p,x,a»,

where ~ E "(p,x,a). Adding an element of (y)J(F), (J(F) is an ideal of "(p,x,a) gener-
8F 8F 8F .

ated by: -8 ' -8' ... , -8) does preserve the space of funcuons and does not affect the
Y x] X n

resulting vector field.

D
Proof of Proposition 6.2. I(F4 ) = (a]x + a2,3x2 + aa)O(x,a). By Proposition 6.3,

taking 1/;], 'ljJ2, ~ = 1, we have ,

1 2 1 2 1 -
h](x,a) ='2 a1x + a2X = -6a1Y + a2x - 6a1aa (mod ß(F4 »,

h2(x, a) =y2 = -alxy - a2Y (mcxi ~(F4»'
a 12-

ha(x, a) =x + xaa = -'3a1xy + '3a3x (rnod ß(F4 ».
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Then the corresponding Vi belongs to DerlogQ(F4 ), (i = 1,2,3). By simple computation

we obtain

so Vi E DerlogX as weH. We also have

1 2 1 2
det(VI(a), V2(a), V3(a)) = -3al(a2 + 3 a3a1 )

is a reduced equation for (X, 0), so by the results of Saito [27] (see also [6]) we find that

(X,O) is a free divisor.

o
We define the following ideals of O(y,x) and O(y,x,a) respectively,

B/ 8/ 2
8(/) = (y)J(/) + (-a , ... ,-8) O(y,x),

Xl X n

and
- - 8F aF 2
8(F) = (y)J(F) + (aXI , ... , 8x

n
) O(y,x,a)'

For determining all fields tangent to the quasicaustic we need the foHowing

Lemm 6.4. Tbe space O(y,x)/8(!) is finite dimensional. Its C-basis also generates

the quotient space O(y,x,a)/G(F) as an O(a)-module.

Proof. 8(/) =:) 1::::,.(/) and / is finitely detennined as a boundary singularity. Thus

O(y,x)/8(/) is C-finite dimensional with the basis {gI, ... ,9N}. Let us define the mapping

qJ: (C X C n x CP,O) -t (e x C n
XC~ x CP,O),

aF 8F aF
w(y,x,a) =(y-a(y,x,a),y-a (y,x,a)'''''Y-a (y,x,a),

y Xl X n

aF aF
-8(y,x,a)-8 (y,x,a),a),

Xi Xj

with 1:::; i,j :::; nj i :::; j, and ordered set of pairs (i,j). Thus we have

By the Preparation Theorem (see [23]) an every element h of O(y,x ,al has the fonn:

N 8F 8F 8F
h(y, x, a) =L <Pi(Y7J(y, X, a), Ya(Y, x, a), ... ,Ya(Y, x, a),

1=1 y Xl X n

aF 8F
8x. (y, X, a) 8x' (y, x, a), a)g,(y, X).

I J
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Thus
N

O(1I,x,a)/8(F) ~ {L 'ljJi(a)gi(Y, x)},
i=l

which completes the proof of Proposition 6.4.

D
Let {gI, "', 9N} be aC-basis for O(y,x)/G(f). In geneml we have

Proposit ion 6.5. Functions h E O(y,x,a) which reconstruct the O(a)-module of

vector neids tangent to Q(F), can be written as :

N

h(y,x,a) = LOi(a)gi(Y'X),
i=l

where

N
8giLai(a) 8x . (0, x) E I (F),

i=l )

1 '5: j '5: n.

Proof. By Lemma 6.4, any h E O(y,x,a) can be written as

N 8F n aF
h(y,x, a) = L Qi(a)gi(Y, x) + ß(y, x, a)ya(y, x,a) + L ßj(Y,x, a)y~(y,x, a)

i=l Y j=l x)

n aF aF
+ L ßk,l(y,x,a)-a(y,x,a)-a (y,x,a),

k,l=l Xk x,

where Qi E O(a), ß, ßj, ßkl E O(lI,x,a)' By simply checking the assumptions ofProposition

5.5, we see that the three last tenns in the above fonnula do not affect on the resulting

vector field belanging to DerlogQ(F). This proves Proposition 6.5.

D

P roposit ion 6.6. O(a)-module DerlogQ(F4 ), i.e. tbe module ofholomozphic vector
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fields tangent to the Whitney's cross-cap, is generated by the following neIds:

1 2 8 8
VI = - -al- + a2-,

6 8a2 aaa
a a

V2 =al -8 + a2-a '
al a2

1 a 2 a
Va = - -a]- +-aa-

3 aal 3 aaa'
a

V4 =a2 -a'
a]

a
Vs =aa-a '

a]

a
V6 =aa-a 'a2

with relations,

o=a2V5 - aa V4,
2 1 2 3 1o= - aa V] - 6'a]aaV6 + '2a2 Va + '2a ]aa Vt,

o=al(aa - 1)Va - aiV5 - a2a] V6 + a]aa V2.

Proof. We have

O(y,x)/G(f) ~ [1, x, y, x 2
, x a, xy].

So by Proposition 6.5, all functions h E 0 (y IX ,a) reconstrllcting DerlogQ(F4 ) can be

written as:

h(y, x, a) =Ao(a) + (aaG] (a) + a2Dl(a))x + (aaAl (a) + a2Bl (a))y+

(a3 A2(a) + aIB1(a) + a2 B2(a))xy + ~(a3C2(a) + aID1(a) + a2 D2(a))x2

1 a
+ '3(3C](a) + aaCa(a) + a]D2(a) + a2 Da(a))x ,

where Ai, B j , Ck, D
"

E O(a), i = 1,2,3; j = 1,2; k = 1,2,3; 1 = 1,2,3. Thus the

general vector field tangent to Q(F4 ) can be written as:

1 1 1 2 1 a
(a3 A 2 + alB] + a2 B 2 - -3 a]C1 - -al aaGa - -a]D2 - -al a2D a)-a+

9 9 9 a]

1 1 2 1 a
(aa A l +a2B ] - 6'a1 a3 C2 - 6 a]D1 - 6ala2D2)aa2 +

2 1 2 1 1 a
(-aaGI + a2D l - -aaG3 - -aaa]D2 - -a2 a3 Da)-.

3 9 9 9 aaa
By straightforward calculations we find the generators Vi, (i = 1, ... ,6) and the relations

between them.

o
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7. ON QUASICAUSTICS OF UNIMODAL BOUNDARY SINGULARITIES

Let us consider the miniversal defonnations for parabolic boundary singularities (see

[3]),

F1,o: ya + xa + aly2 x + a2 XY + aay2 + a4Y + asx,

K4,2: y2 + x 4 + alyx2 + a2 x y + aa x2 + a4 x + a~y,

D4,1(= La): !X~X2 + !x~ + YXl + alYX2 + !a2x~ + aaY + a4 x l + aSX2,

where al is a moduli parameter, Milnor number /-l = 6 and the boundary: {y = O}.

Proposit ion 7.1. For parabolic unimodal boundary singularities, tbe modules of

logarithmic vector fields DerlogQ(F), are not {ree. They can be generated by the

following vector fields:

DerlogQ(F1,o) :

DerlogQ(I<4,2) :
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h M -l.2. 2 J:{ __ ~2+a~
W ere, - + 2 a 1 , .1.' - 2 4-a '

1

Pr00f. For the cases F1,o and !{4,2 the method of the proof is analogous to the one

used in the proof of Proposition 6.6. We only show how to prove the case D 4 ,l' Here we

have

where x = (x1, X 2)' So by Proposition 6.5, we have
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Now we need

(i)

(ü)

ah ( 2 3-a 0, X, a) =a2 + 2aeX2 + 3an X2 + 4al2X2 + aSxI
x2

+2alOXIX2 + 3a13xIX~ E I(F).

Using the relations

Xl = - alx2 - a3(mod I(F»,

XIX2 = - a4(modI(F»,

xi =at a4 - a3(mod I(F»,

2 1
x2 = - a2 x2 + '2(a1a4 - a3) - as(modI(F»,

3 2 1 1 1 1
x2 =(a2 - '2a1a4 - as)x2 + '2ala2a4 + a2 a:s - '2a3a2 - '2 a4a3 (mcxl I(F»,

we can solve (i), (ii) and obtain aJ, a2, aa, a:s, a6, expressed linearly by independent

functions a4, aB, ag, alO, an, a12, a13, with polynomial coefficients. Then using the

relations

22-
Xl = - 2(X2 + alY + a2 x 2+ as)(mod 6.(F»,

3 -
Xl = - 2(yal + (a2 - a4)x2 - YX2+ as)(mod 6.(F»),

XtX2 = - Y - a4(mod ~(F»),

3 3 2 1 1-
x 2 = - '2alx2Y - a2 x2 + '2 a4x1 - aSx2 - '2a3y(mod 6.(F»),

4 2( 2 3 1 2 1
x2 =x2 a2 - as) + X2Y( '2ata2 + 4M(6a}a2 +9a3al - 2a3») - '2a2a4xl

1 3 2 2 -+ a2 aS X 2 + '2 y(a3a2 - a4 + 2M(2a5at - 2al a4 + ala3»)(mod 6.(F»),

3 1( ( ) ( 1 2 2 -XIX 2 = M YX2 2a} a3 +a2 +y as - a4 al + '2 a3 ) - a4 x2(mod .6.(F»,

1 2 -
F(O, X, a) =6(2a3Y + 4a4xI + a2x2 + 4a:sx2)(mod 6.(F»,

we obtain, after straightforward if messy calculations, the vector fields listed in the propo

sition.
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D
Let p : CP --+ C k

, be a projection on C k C C p . We say that Q(F) c C P is Iocally

equisingular along C k near Po E C k if for all p E C k near Po the pairs (p-1(p), 0) and

(p-1 (p) n Q(F), 0) are all diffeomorphic. Checking the vector fields listed in Proposition

7.1, we have

Coroll ary 7.2.

1. The quasicaustic Q(F1 ,o) is equisingular along the two-climentional singular locus,

parametrized by {al, a3}.

2. The quasicaustic Q( D4,1) is equisingular along tbe two-dimensional singular locus,

parametrized by {al, a2}, wbere al :f ±J2.
In botb cases the Ebre (p-I(p) n Q(F), 0) is diffeomorpmc to the Wbitney's cross-

cap.

The Iogarithmic vector fieIds, can be used also for the classification of the generic

Lagrangian pairs (L 1, L2 ) up to quasicaustic equivalence (cf. [25-17]). The singular

Lagrangian variety LI U L 2 is provided by generic families of functions on manifold with

boundary. In this sense, to detennine the genn of Lagrangian pair means to define the

generating family of functions on a manifold with boundary (cf. Section 3).

Let f : (C x cn, 0) --+ (C,O) be a finitely detennined boundary singularity. Let

F : (C x cn X CJl-I, 0) --+ (C, 0) be its miniversal unfolding. If G : (C x C n X CP, 0) --+

(C,O) is a generating family for Lagrangian pair, then generically G is a pullback from

the miniversal unfolding F of the finitely detennined germ f(v, x) = G(y, x, 0), i.e.,

G(y,x,a) = F(<P(y,x,a),4>(a)) + h(a),

where <P : (C X cn X CP, 0) --+ (C X cn, 0) is a family of biholomorphisms, germs

preserving the hypersurface {y = O}. The pullback <P : (CP, 0) --+ CJl-I, 0), ~ E Ora)1

and h E O(a)' Thus, analogously to the classification of generic Lagrangian submani

folds (see [3], p.337), the classification of generic Lagrangian pairs is done by specifying

the miniversal unfoldings of finitely detennined boundary singularities and their generic

pullbacks ifJ E o(a)1
•

Let Us assurne that Lagrangian pairs are modelIed on unimodal singularities f : (C X

cn,O) --+ (C,O), i.e. the generic generating family with such f has the following pre-
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nonnal form

G : (C X C n
X CP, 0) -+ (C, 0), p ~ /-L - 2,

1J.-2

G(y, x, a) = f(y, x) + 2:= 9i(Y, x)ai + glJ.-1 (Y, x)A(a),
i=l

where 9,.,.-1 (y, x) defines the modulus direcrion.

Generieally, the pullbaek 4> is transversal to this direcrion, so ). := A I{al= ...=al'_.=or

(C P-IJ.+2, 0) -+ (C,O) is aMorse funetion. Thus there are possible two generie normal

forms for the generating families of Lagrangian pairs of unimodal type :

1. A(a) = alJ.-1 , when P > /-L - 2, and D ).(0) =I- 0,

2. A(a) = 7](aI, ... , alJ.-2) ± a~-1 ± ... ± a;, when D)'(O) = 0,

where 7] E O(ci), (a = (al, ... ,alJ.-2 )) is a funetional modulus.

To obtain more infonnation abaut classifying quasicausties, we need to introduee a

weaker equivalence relation in Lagrangian pairs (cf. [3-17] in the ease of funetional

moduli in standard classification of Lagrangian submanifolds). Let

G1 (y,x,a) = F(y,x,cPl(a)) + fl(a),

G2(y,x,a) = F(y,x,rP2(a)) + f2(a),

be two generating families for the corresponding Lagrangian pairs LI and L2 respeetively.

We say that LI, L2 are quasieaustic equivalent if 4>1,4>2 are right-Ieft equivalent, i.e.,

for some biholomorphism ~: (CP, 0) -+ (CP, 0), and some biholomorphism 7jJ

(CIJ.-I,O) -+ (C,.,.-l, 0) preserving the quasicaustic (Q(F), 0).

Proposit ion 7.3. FOT ummodaJ parabolic singularities F, by quasicaustic equiva

lence, the functional modulus ). can be reduced to zero.

Proor. On the basis of [3],(p. 343) we need to check only that

(*)

which implies that

M(a) ~ (A~ (a), ..., Al (a))O(a),
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for <p : (CP, 0) -+ (C~-l,0) being in geneml position to the modulus direction. Here by

f,( <p) we denote the vector fields along <p (cf. [23]). Let f,(J-L -1) and f,(p) be the spaces of

vector fields on (CIl-l ,0) and (cP) 0) respectively. This enables us 10 apply the ordinary

homotopic method to eliminate the functional modulus A. Taking into account the vector

fields listed in the Proposition 7.1, Vi = L:~=l A~ aa ,we immediately have fulfilled (*)
ai

for the parabolic singularities.
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