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Abstract. In the article, we study real Campedelli surfaces up to
real deformations and exhibit a number of such surfaces which are
equivariantly diffeomorphic but not real deformation equivalent.

Introduction

The real DIF=DEF problem is at least as old as the complex one.
As in the complex DIF=DEF problem it is a question of interaction
between two basic equivalence relations: by diffeomorphisms of real
structures, and by deformations of varieties together with real struc-
tures.

A real structure on a complex surface X is an anti-holomorphic in-
volution X → X. A complex surface supplied with a real structure
is called a real surface. A deformation of surfaces is a proper holo-
morphic submersion p : Z → D, where Z is a 3-dimensional complex
variety and D ⊂ C is a unit disk. If Z is real and p is equivariant,
the deformation is called real. Two real surfaces X ′ and X ′′ are called
deformation equivalent if they can be connected by a chain X ′ = X0,
. . . , Xk = X ′′ so that Xi and Xi−1 are isomorphic to real fibers of a
real deformation.

Under these definitions, up to a diffeomorphism the real structure is
preserved under deformation. So the problem is in what extent the
diffeomorphic type of the real structure determines the deformation
type. In fact, the diffeomorphisms provided by deformations preserve
the canonical orientation and the canonical class. But following the
tradition, we include into the statement of the Dif=Def problem only
the orientation preserving hypothesis.

Namely, let call a real surface X to be quasi-simple if it is defor-
mation equivalent to any other real surface X ′ such that, first, X ′ is
deformation equivalent to X as a complex surface, and, second, the
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real structure of X ′ is diffeomorphic to the real structure of X via an
orientation preserving diffeomorphism. Thus, we understand the real
DIF=DEF problem as the question are there non quasi-simple real sur-
faces? (Note that in the case of curves the response to such a question
is in negative: any real curve is quasi-simple. In this, and many other
quasi-simplicity results, the orientation preserving hypothesis can be
omitted.)

The first quasi-simplicity result belongs to F. Klein and L. Schläfli
[13] and concerns real cubic surfaces in the projective 3-space. In fact,
the quasi-simplicity holds for many other special classes of surfaces. It
is observed for rational surfaces (A. Degtyarev and V. Kharlamov [9]),
for real Abelian surfaces (follows from A. Comessatti [4]), for geomet-
rically ruled real surfaces (J.-Y. Welschinger [22]), for real hyperelliptic
surfaces (F. Catanese and P. Frediani [3]), for real K3-surfaces (follows
from V. Nikulin [20]), and for real Enriques surfaces (A. Degtyarev and
V. Kharlamov; the quasi-simplicity statement was announced in [8],
and the complete list of deformation classes of real Enriques surfaces
was obtained in collaboration with I. Itenberg in [6]; note also that
quasi-simplicity of hyperelliptic and Enriques surfaces extends to quasi-
simplicity of the quotients of Abelian and K3-surfaces by certain finite
group actions, see [7]).

Whether elliptic surfaces and irrational ruled surfaces quasi-simple
is, as far as we know, still an open question.

It was natural to expect that such a simple behaviour would no
longer take place for more complicated surfaces, like those of general
type. However, probably because of lack of convenient deformation in-
variants not covered by the differential topology of the real structure,
no any example of non quasi-simple real surfaces (or real varieties of
higher dimension) was known. The main result of this paper is pro-
viding such examples. Namely, we prove that the Campedelli surfaces
(see the definition in Section 1.1) are not quasi-simple: there exist real
Campedelli sufaces which have diffeomorphic real structures without be-
ing deformation equivalent. In these examples, the diffeomorphisms of
real structures preserve not only the orientation but the canonical class
as well. (Note that under the canonical orientation the intersection
form of Campedelli surfaces is of signature (1, n) with n = 7 > 1, so
that every diffeomorphism of Campedelli surfaces preserves the canon-
ical orientation.)

Let us notice that existence of non quasi-simple families of surfaces
of general type does not prevent certain particular classes of surfaces
of general type from being quasi-simple. And examples of quasi-simple
real surfaces of general type do exist. One such example is given by
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real Bogomolov-Miyaoka-Yau surfaces, that is, surfaces covered by a
ball in C2, see [14]. In fact, in [14] it is also shown that there exist
diffeomorphic, in fact complex conjugated, Bogomolov-Miyaoka-Yau
surfaces which are not real and thus, being rigid, they are not deforma-

tion equivalent. These surfaces are counter-examples to the Diff = Deff
problem in complex geometry. (Let us notice that in these examples
the diffeomorphisms reverse the canonical class.)

The first counter-examples to the Diff = Deff problem in the complex
geometry of surfaces belong to Manetti [18]. They are not involving the
complex conjugation. Already their existence explains why we need to
fix complex deformation class in the definition of quasi-simplicity of real
varieties. Moreover, our examples of diffeomorphic but not deformation
equivalent real structures are closely related to Manetti’s examples. In
fact, to establish a diffeomorphism we follow Manetti’s approach, and

to study the deformation equivalence we use the full description of the
Campedelli surfaces given by Miayoka [19].

The paper is organized as follows. In Section 1, we collect essentially
known results on complex Campedelli surfaces adapting them to our
needs and making emphasis on representing Campedelli surfaces as Ga-
lois coverings of P2. In Section 2, we begin our study of real structures
on Campedelli surfaces and give a kind of classification of real struc-
tures on such surfaces. Section 3 is devoted to a study of real structures
up to diffeomorphisms and up to deformations. In Section 4, we apply

the technique developed to construct real surfaces which have diffeo-
morphic real structures without begin deformation equivalent. Related
remarks are collected in Section 5.

1. Moduli space of Campedelli surfaces

1.1. Campedelli surfaces as branched Galois coverings of the

projective plane. Let X be a Campedelli surface, that is, X is a
minimal surface of general type which has pg = q = 0, K2

X = 2,
and π1(X) = (Z/2Z)3. Denote by Xcan = Proj(

∑
mH

0(X;mK)) the

canonical model ofX, by X̃ the universal covering ofX, by Gun the Ga-
lois group of this universal covering, and by X̃can the canonical model
of X̃. Note that X̃can and Xcan have at most simple double points as
singularities, so that X̃can is the universal covering of Xcan. The uni-
versal coverings X̃ → X and X̃can → Xcan have the same Galois group,
so that Xcan = X̃can/Gun.

According to [19], Theorem 9, the following statement holds.
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Theorem 1.1. The canonical map imbeds X̃can in P6. With respect to
suitable homogeneous coordinates w0, . . . , w6 in P6, this image of X̃can

is given by equations

w2
i = aiw

2
0 + biw

2
1 + ciw

2
2, ai, bi, ci ∈ C, i = 3, 4, 5, 6, (1)

and the group Gun = (Z/2Z)3 acts on X̃can by diagonal projective trans-
formations: g∗(wj) = ±wj for any g ∈ Gun. �

As equations (1) and Theorem 1.1 show, the whole group G̃ '
(Z/2Z)6 ⊂ PGL(6,C) of diagonal involutions (g∗(wj) = ±wj for any

g ∈ G̃) acts on X̃can and the following statement holds.

Corollary 1.2. The quotient space X̃can/G̃ is isomorphic to P2 and the

quotient map X̃can → X̃can/G̃ is a Galois covering of P2 with Galois

group G̃ ' (Z/2Z)6 branched along seven lines given by equations

zi = 0, i = 0, 1, 2,
aiz0 + biz1 + ciz2 = 0, i = 3, 4, 5, 6,

where z0, z1, z2 are homogeneous coordinates in P 2 = X̃can/G̃.
The canonical model Xcan of X is a Galois covering of P2 with Galois

group G ' (Z/2Z)3 branched along the same lines. �

Let us underline that in the above statements the choice of the equa-
tions and the coverings are not arbitrary.

1.2. Few basic facts on Galois coverings. Recall that a Galois cov-
ering of a smooth algebraic variety Y is a finite morphism h : X → Y of
a normal algebraic variety X to Y such that the function fields imbed-
ding C(Y ) ⊂ C(X) induced by h is a Galois extension. As is well
known, a finite morphism h : X → Y is a Galois covering with Galois
group G if and only if G coincides with the group of covering transfor-
mations and the latter acts transitively on every fiber of h. Besides,
a finite branched covering is Galois if and only if the unramified part
of the covering (i.e., the restriction to the complements of the rami-
fication and branch loci) is Galois. In addition, a branched covering
is determined up to isomorphism by its unramified part. Moreover,
a map of Galois coverings from the unramified part U1 → V1 of one
branched covering h1 : X1 → Y1 (where U1 ⊂ X1 and V1 ⊂ Y1) to
the unramified part U2 → V2 of another one, h2 : X2 → Y2 (U2 ⊂ X2

and V2 ⊂ Y2), induces a morphism X1 → X2 of covering varieties if
the extension of the morphism of underlying varieties, V1 → V2, to the
branch loci is given. Let us recall also that an unramified covering is
Galois with Galois group G if and only if it is a covering associated
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with an epimorphism of the fundamental group of the underlying va-
riety to G, and, in particular, the Galois coverings with abelian Galois
group G are in one-to-one correspondence with epimorphisms to G of
the first homology group with integral coefficients. All these results are
well known and their most nontrivial part can be deduced, for example,
from the Grauert-Remmert existence theorem [12].

In what follows we deal with Galois coverings with Galois group
G ' (Z/2Z)k. Galois groups are considered up to isomorphism, and
two Galois coverings h1 : X1 → Y and h2 : X2 → Y with Galois groups
G1 and G2 are said to be equivalent if there exist a biregular map
f : X1 → X2 and an isomorphism F : G1 → G2 such that h2 ◦ f = h1

and F (g)f(x) = f(gx) for any x ∈ X1 and g ∈ G1.

1.3. Galois coverings of P2 with Galois group (Z/2Z)k branched

along seven lines. Let L = L0 ∪ · · · ∪L6 be an arrangement of seven
distinct numbered lines in P2. The simple loops λi, 0 6 i 6 6, around
the lines Li generate H1(P

2 \ L,Z) ' Z6. They are subject to the
relation

λ0 + · · · + λ6 = 0.

The natural epimorphism ϕ̃ : H1(P
2 \ L,Z) → H1(P

2 \ L,Z/2Z) '
(Z/2Z)6 defines a particular Galois covering of P2 branched in L. We

call it universal and denote by g̃ : Ỹ → P2. The following state-
ment, which is a straightforward consequence of the general results on
branched coverings mentioned in Section 1.2, precises, in particular, at
what sense it is universal.

Proposition 1.3. Galois coverings with Galois group G ' (Z/2Z)k

branched along L exist if and only if k 6 6. Their equivalence classes
are in one-to-one correspondence with epimorphisms H1(P

2 \ L) → G
considered up to automorphisms of G. If g : Y → P2 is a Galois
covering with Galois group G ' (Z/2Z)k branched along L, then there

exists a Galois covering h : Ỹ → Y such that g̃ = g ◦ h. �

Without loss of generality, we can assume that the universal Galois

covering g̃ : Ỹ → P2 is associated with the epimorphism ϕ̃ : H1(P
2 \

L,Z) → (Z/2Z)6 sending λ0 to (1, . . . , 1) and λi with 1 ≤ i ≤ 6 to
(0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th place.

Let (v1, v2) be affine coordinates in C2 = P2 \ L0 and li(v1, v2) = 0,
1 6 i 6 6, be a linear equation of Li ∩ C2. The function field Ku =

C(Ỹ ) of Ỹ is the abelian extension C(Ỹ ) = C(v1, v2, w1, . . . , w6) of the
function field K = C(v1, v2) of P2 of degree 26 determined by w2

i = li,

i = 1, . . . , 6. (In other words, the pull-back of P2 \L0 in Ỹ is naturally
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isomorphic to the affine subvariety of C8 given in affine coordinates

v1, v2, w1, . . . , w6 by equations w2
1 = l1, . . . , w

2
6 = l6.)

The action of γ = (γ1, . . . , γ6) ∈ (Z/2Z)6 on Ku is given by

γ(wa) = (−1)(γ,a)wa,

where for any multi-index a = (a1, . . . , a6), 0 ≤ ai ≤ 1, we put

wa =
6∏

i=1

wai

i .

Therefore, Gal(Ku/C(v1, v2)) = (Z/2Z)6 and

Ku =
⊕

06ai61

C(v1, v2)w
a

is a decomposition of the vector space Ku over C(v1, v2) into a finite

direct sum of degree 1 representations of (Z/2Z)6.

Let ϕ : H1(P
2\L,Z) → (Z/2Z)k be an epimorphism given by ϕ(λi) =

(ai,1, . . . , ai,k), where a0,j + · · · + a6,j ≡ 0 mod2 for every j = 1, . . . , k,

and let g : Y → P2 be the Galois covering associated with ϕ. This

covering is branched in the union Lϕ of lines Li ⊂ L with ϕ(λi) 6=
0. The epimorphism ϕ factors through a unique epimorphism ψ :

(Z/2Z)6 → (Z/2Z)k, so that, by Proposition 1.3, the covering g factors

through a unique Galois covering h : Ỹ → Y . The latter determines

the inclusion h∗ : C(Y ) → Ku of the function field C(Y ) of Y into the

function field Ku = C(Ỹ ). Clearly, Gal(Ku/h
∗(C(Y ))) = kerψ, the

field h∗(C(Y )) coincides with the subfield Kϕ = C(v1, v2, u1, . . . , uk) of

Ku, where

uj = w
a1,j

1 · . . . · w
a6,j

6 , (2)

and

Gal(Ku/Kϕ) = { (γ1, . . . , γ6) ∈ (Z/2Z)6 |
6∑

i=1

ai,jγi ≡ 0 (2), 1 ≤ j ≤ k }.

1.4. Resolution of singularities of Y . By construction, Y is a nor-

mal surface with isolated singularities. The singular points of Y can

appear only over an r-fold point of Lϕ with r > 2, i.e., over a point

belonging to exactly r lines Li1 , . . . , Lir ∈ L with ϕ(λik) 6= 0, 1 6 k 6 r.

Lemma 1.4. (see, f.e., ([15]) If p = Li1∩Li2 is a 2-fold point of Lϕ and

ϕ(λi1) 6= ϕ(λi2), then Y is non-singular at each point of g−1(p). �
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We say that an r-fold point pi1,...,ir of Lφ is a non-branch point with
respect to ϕ if

∑r
j=1 ϕ(λij) = 0.

To resolve the singularities of Y , we start from a suitable blow-up of
P2. First, we blow up all the 2-fold non-branch points and all the r-fold
points of Lϕ with r ≥ 3. Second, for each pair (pi1,...,ir , k) such that
pi1,...,ir is an r-fold point of Lϕ and

∑r
j=1 ϕ(λij ) = ϕ(λik), we effectuate

a blow-up with center at the intersection point of the strict transform
of Lik with the exceptional divisor Ei1,...,ir blown-up over pi1,...,ir at the
first series of the blow-ups. The resulting combination of the blow-ups
is denoted by σ : P̂2 → P2.

By L′

i ⊂ P̂2 we denote the strict transform of Li, by E ′

p with p =
pi1,...,ir the strict transform of Ei1,...,ir , by Ep, ik the exceptional curves of

the second series of the blow-ups, and by εp, εp, ik ∈ H1(P̂2\σ−1(Lϕ),Z) =
H1(P

2 \ Lϕ,Z) simple loops around E ′

p and Ep, ik , respectively.

The identification H1(P̂2 \ σ−1(Lϕ),Z) = H1(P
2 \ Lϕ,Z) composed

with ϕ provides an epimorphism ϕ̂ : H1(P̂2 \ σ−1(Lϕ),Z) → (Z/2Z)k.

Let consider the associated Galois covering f : X → P̂2.

Lemma 1.5. ([15]) Let p = Li1 ∩ · · · ∩ Lir be an r-fold point of Lϕ,
r > 2. Then,

(i) εp = λi1 + · · ·+ λir ,

(ii) εp, ik = λik +
r∑

j=1

λij ,

(iii) ϕ(εp, ik) = 0.

�

The following theorem is a straightforward consequence of Lemmas
1.4 and 1.5.

Theorem 1.6. The Galois coverings f and g are included in the com-
mutative diagram

X
ν - Y

?
f

?
g

P̂2
σ

- P2

in which ν : X → Y is a resolution of singularities of Y . �

Lemma 1.7. Suppose that the Galois group of the covering Y → P2

is (Z/2Z)3. Then, a point q ∈ Y situated over an r-fold point p =
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pi1,...,ir = Li1 ∩ · · · ∩Lir of Lφ is not a canonical singular point (that is,

q is not an A-D-E-singularity) if, and only if, either r > 3 or r = 3

and p is not a branch point of ϕ.

Proof. To determine the type of a singular point we look at its resolu-

tion provided by ν : X → Y , see Theorem 1.6.

If r = 2 and ϕ(λ1) 6= ϕ(λ2), then, by Lemma 1.4, each point q ∈
g−1(p) is a nonsingular point of Y . If, by contrary, ϕ(λ1) = ϕ(λ2), then

the covering f : X → P̂2 is not branched at E ′

p and it splits over E ′

p into
four copies of a Galois double covering of P1 branched at two points,

so that each of the four points q ∈ g−1(p) is replaced in the resolution

by a rational curve with self-intersection number (−1)· 8
4

= −2. Hence,

in this case all the four points are of type A1.

If r = 3 and p is a non-branch point, then up to a coordinate change

in G we have ϕ(λi1) = (1, 0, 0), ϕ(λi2) = (0, 1, 0), and ϕ(λi3) = (1, 1, 0).

Therefore, f−1(E ′

p) is a disjoint union of two rational curves C1 and C2

with self-intersection (−1)· 8
2

= −4. Hence, the singular points q ∈
g−1(p) are not canonical.

Now, let suppose that r = 3, p is a branch point, and ϕ(λi1), ϕ(λi2),

ϕ(λi3) are pairwise distinct (note that for a branch point the latter
assumption is equivalent to

∑3
j=1 ϕ(λij) 6= ϕ(λik) for any 1 6 k 6 3).

Then, after a coordinate change in G we may suppose that ϕ(λi1) =

(1, 0, 0), ϕ(λi2) = (0, 1, 0), ϕ(λi3) = (0, 0, 1). Therefore, for E ′

p we
get a Galois covering over E ′

p = P1 with Galois group (Z/2Z)2 and

three branched points, so that f−1(E ′

p) is a rational curve with self-

intersection (−1)· 8
4

= −2, and, hence, the singular point q = g−1(p) is

of type A1.

Next, let treat the case when r > 3 and there is at least one k such

that
∑r

j=1 ϕ(λij) = ϕ(λik). Then: p is a branch point, σ−1(p) = E ′

p +∑s
j=1E

′

p,kj
where (E ′

p)
2 = −(s+ 1) and (E ′

p,k1
)2 = · · · = (E ′

p,ks
)2 = −1;

E ′

p is a branch curve of f , but E ′

p,k1
, . . . , E ′

p,ks
are not branch curves of

f . Therefore, each of f−1(Ep,kj
), 1 6 j 6 s, splits into a disjoint union

of four (−2)-curves, while f ∗(E ′

p) = 2C1 + · · · + 2C2n, where 2n is the
index in G of the subgroup Gi1,..., ir generated by ϕ(λi1), . . . , ϕ(λir) and

C1, . . . , C2n are copies of a Galois covering of E ′

p of degree 22−n (recall
that deg f = 8) branched at r − s points. Thus, for each i = 1, . . . , 2n

we have

(C2
i )X = −21−n(s + 1),

g(Ci) = 2−n(r − s) − 22−n + 1 = 2−n(r − s− 4) + 1,
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where 0 ≤ n ≤ 2. If g−1(p) consists of canonical singularities, then
(C2

i )X = −2 and g(Ci) = 0. Therefore

21−n(s+ 1) = 2,
2−n(r − s− 4) + 1 = 0.

The only solutions are n = 1, s = 1, r = 3 and n = 2, s = 3, r = 3. In
the first subcase g−1(p) splits in two A3-singularities, and in the second
one, it splits in four D4-singularities.

The only remaining case is when r > 4 and
∑r

j=1 ϕ(λij) 6= ϕ(λik)

whatever is 1 6 k 6 r. Then f−1(E ′

p) splits into a number of copies
of a 2m-sheeted Galois covering C → P1 = E ′

p branched at r points,
where m ≥ 1. By the Hurwitz formula,

g(C) = 2m−2r − 2m + 1 ≥ 1.

Hence the singular points q ∈ g−1(p) are not canonical. �

Lemma 1.8. Suppose that the Galois group of the covering Y → P2 is
(Z/2Z)3 and that the line arrangement L = L0∪· · ·∪L6 have no r-fold
singular points with r ≥ 4. If ϕ(λi) 6= 0 for any 0 6 i 6 6 and there are
two distinct lines Li1 and Li2 with ϕ(λi1) = ϕ(λi2), then pg(X) 6= 0.

Proof. By (2), Y can be given by equations

u2
j =

∏
li(v1, v2)

ai,j , j = 1, 2, 3,

where (ai,1, ai,2, ai,3) = ϕ(λi). Since ϕ is an epimorphism to (Z/2Z)3,
there are at most four lines with equal values of ϕ. Hence, up to
renumbering of lines and acting on ϕ by an automorphism of (Z/2Z)3

there are four cases to consider:

• (four equal values) ϕ(λ1) = ϕ(λ2) = ϕ(λ3) = ϕ(λ4) = (1, 0, 0),
ϕ(λ5) = (0, 1, 0), and ϕ(λ6) = (0, 0, 1);

• (three equal values) ϕ(λ1) = ϕ(λ2) = ϕ(λ3) = (1, 0, 0), ϕ(λ4) =
(0, 1, 0), and ϕ(λ5) = (0, 0, 1).

• (two pairs of equal values) ϕ(λ1) = ϕ(λ2) = (1, 0, 0), ϕ(λ3) =
ϕ(λ4) = (0, 1, 0), and ϕ(λ5) = (0, 0, 1).

• (one pair of equal values) ϕ(λ1) = ϕ(λ2) = (1, 0, 0), ϕ(λ3) =
(0, 1, 0), ϕ(λ4) = (0, 0, 1), while ϕ(λi) with i ∈ {0, 5, 6} are dis-
tinct from each other and distinct from (1, 0, 0), (0, 1, 0), (0, 0, 1).

In the first three cases the function u = u1u2u3 ∈ C(Y ) satisfies the
following equation

u2 = l1(v1, v2) . . . l5(v1, v2)l6(v1, v2)
a, (3)

where a = 0 or 1 (in the first case, a = 1). Such an equation defines
a double covering Z → P2 branched in six lines (L1, . . . , L6 if a = 1



10 V.M. KHARLAMOV AND VIK.S. KULIKOV

and L1, . . . , L5, L0 if a = 0). Since the line arrangement has no r-fold
points with r ≥ 4, Z has only canonical singularities, and therefore it
is a K3-surface, and hence it has pg(Z) = 1. The inequality pg(X) ≥ 1
follows now from the existence of a dominant rational map from X to
Z.

To complete the proof, let us notice that the fourth case is impossible.
Indeed, it is impossible to satisfy the relation ϕ(λ0) +ϕ(λ5) +ϕ(λ6) =
(0, 1, 1), by three distinct elements among (1, 1, 0), (0, 1, 1), (1, 0, 1),
and (1, 1, 1). �

1.5. Campedelli surfaces as Galois coverings branched over

Campedelli arrangements. Let L be a line arrangement in P2 con-
sisting of seven distinct lines Lα labeled by the non-zero elements
α ∈ (Z/2Z)3. We call such a labeled arrangement L a Campedelli
line arrangement if it has neither r-fold points with r ≥ 4 nor triple
points pα1,α2,α3 = Lα1 ∩Lα2 ∩Lα3 with α1 +α2 +α3 = 0. We say that a
Campedelli line arrangement L =

∑
Lα is obtained from a Campedelli

line arrangement L′ =
∑
L′

α by means of renumbering of lines if there
is an automorphism τ ∈ Aut(Z/2Z)3 such that Lα = L′

τ(α) for any

α ∈ (Z/2Z)3 \ {0}.
Given a Campedelli line arrangement L, one can consider the Galois

covering Y (L) → P2 with Galois group (Z/2Z)3 branched in L and
defined by the epimorphism ϕ : H1(P

2 \ L,Z) → (Z/2Z)3 given by
ϕ(λα) = α. We call this covering the Galois covering branched over
a Campedelli arrangement L. Clearly, a renumbering of a Campedelli
arrangement leads to an equivalent covering.

Theorem 1.9. For any Campedelli surface X there exists a Campedelli
line arrangement L such that Xcan = Y (L).

Proof. By Corollary 1.2, given a Campedelli surface X there exists
an arrangement L of seven distinct lines in P2 such that Xcan is a
(Z/2Z)3-Galois covering of P2 branched in L. Since Xcan has only
canonical singularities, Lemma 1.7 implies that L have no neither any
r-fold point with r ≥ 4 nor any 3-fold point which is not a branch
point. Now Lemma 1.8 applies and shows that L is a Campedelli
arrangement. �

The following, converse, statement is proved in [17].

Theorem 1.10. ([17]) For any Campedelli line arrangement L the
surface Y (L) is isomorphic to the canonical model of a Campedelli
surface. �
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If a Campedelli line arrangement L has no triple points, then by
Lemma 1.4, the surface Y (L) is nonsingular (so that it is itself a
Campedelli surface, X = Xcan) and it can be imbedded as a complete
intersection into the weighted projective space

P9
w = P9(1, 1, 1, 2, 2, 2, 2, 2, 2, 2)

with three weight-1 coordinates zi, i = 0, 1, 2, and seven weight-2 coor-
dinates uα, α ∈ (Z/2Z)3 \ {0}. Namely, in accordance with what was
seen in subsection 1.3, Y (L) is isomorphic to a surface in P9

w given by

u2
(1,0,0) = l(1,0,0)l(1,1,0)l(1,0,1)l(1,1,1)

u2
(0,1,0) = l(0,1,0)l(1,1,0)l(0,1,1)l(1,1,1)

u2
(0,0,1) = l(0,0,1)l(0,1,1)l(1,0,1)l(1,1,1)

u2
(1,1,0) = l(1,0,0)l(0,1,0)l(1,0,1)l(0,1,1)

u2
(1,0,1) = l(1,0,0)l(0,0,1)l(1,1,0)l(0,1,1)

u2
(0,1,1) = l(0,1,0)l(0,0,1)l(1,0,1)l(1,1,0)

u2
(1,1,1) = l(1,0,0)l(0,1,0)l(0,0,1)l(1,1,1).

(4)

where lα(z0, z1, z2) = 0 are linear equations of Lα ⊂ L in P2.
Note that uα satisfy the following relations

u(1,1,0) =
u(1,0,0)u(0,1,0)

l(1,1,0)l(1,1,1)

, u(1,0,1) =
u(1,0,0)u(0,0,1)

l(1,0,1)l(1,1,1)

,

u(0,1,1) =
u(0,1,0)u(0,0,1)

l(0,1,1)l(1,1,1)

, u(1,1,1) =
u(1,0,0)u(0,1,0)u(0,0,1)

l(1,1,0)l(1,0,1)l(0,1,1)l(1,1,1)

.

(5)

Note also that if L′ is obtained from L by a renumbering of the lines L
given by an automorphism τ ∈ Aut(Z/2Z)3, then this renumbering (in
order to save the form of the equations in (4)) defines the renumbering
of uα by the automorphism τ−1.

1.6. Moduli space of the Campedelli surfaces. In this section,
we identify the moduli space of Campedelli surfaces with the moduli
space of Campedelli line arrangements. Here and further, we apply to
Campedelli surfaces the following general property of minimal surfaces
of general type: their isomorphisms (respectively, automorphisms) are
in a natural bijection with the isomorphisms (respectively, automor-
phisms) of their canonical models.

As above, let a Galois covering g : Y (L) → P2 with Galois groupG '
(Z/2Z)3 be branched along a Campedelli line arrangement L =

∑
Lα,

where the sum is taken over all α ∈ G, α 6= 0, and be determined by
an epimorphism ϕ : H1(P

2 \ L,Z) → G such that ϕ(λα) = α. Denote
by X = X(L) the minimal nonsingular model of Y (L) constructed in
subsection 1.4. Since L has neither r-fold points with r ≥ 4 nor triple
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points pα1,α2,α3 = Lα1∩Lα2∩Lα3 with α1+α2+α3 = 0, this construction

reduces to the composition σ : P̂2 → P2 of the blow-ups with centers
at all the 3-fold points of L followed by the covering f : X(L) → P̂2

induced by the lift ϕ̂ of ϕ.
Denote by fσ the composition fσ = σ ◦ f : X(L) → P2.

Lemma 1.11. ([17]) The bicanonical system |2KX | of X = X(L) is
equal to |f ∗

σL|, where L ⊂ P2 is a line in P2. �

The next Lemma is a straightforward corollary of Proposition 1.3.

Lemma 1.12. Let L1 =
∑7

i=1 L1,αi
and L2 =

∑7
i=1 L2,βi

, αi, βi ∈
G = (Z/2Z)3, αi, βi 6= 0, be two Campedelli line arrangements in P2

such that L1,αi
= L2,βi

for i = 1, . . . , 7. Then the Galois coverings
Y (L1) → P2 and Y (L2) → P2 are equivalent if, and only if, L1 can be
obtained from L2 by means of renumbering of lines. �

Theorem 1.13. Let X1,can = Y (L1) and X2,can = Y (L2) be two Galois
coverings gi : Xi,can → P2 branched over Campedelli line arrangements
L1 and L2. If X1,can and X2,can are isomorphic, then any isomorphism
ν : X1,can → X2,can can be included in a commutative diagram

X1,can
ν - X2,can

?
g1

?
g2

P2

ψ
- P2 .

Proof. Consider the resolutions Xi = X(Li) of Xi,can = Y (Li), the

associated morphisms fi : Xi → P̂2, and the composed morphisms
fσ,i = σ ◦ fi : Xi → P2. As it was mentioned above, since Xi are mini-
mal surfaces of general type, any isomorphism between their canonical
models, X1,can → X2,can lifts uniquely to an isomorphismX1 → X2, and
vice versa. Thus, for given isomorphism ν : X1 → X2, it is sufficient to
find a projective transformation ψ such that ψ ◦ fσ,1 = fσ,2 ◦ ν. More-
over, the latter relation would follow from the corresponding relation
between the induced maps of the function fields: ν∗ ◦ f ∗

σ,2 = f ∗

σ,1 ◦ ψ
∗.

As for any Campedelli surface, the torsion subgroup Tors(Xi) of
H2(Xi,Z) is 2-torsion and isomorphic to (Z/2Z)3. Given any α ∈
Tors (Xi), α 6= 0, the linear system |KXi

+α| is non-empty as it follows
from Serre duality,

dimH2(Xi,OXi
(KXi

+ α)) = dimH0(Xi,OXi
(α)) = 0,
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and the Riemann-Roch theorem. Hence, there exists at least one effec-
tive divisor Dα ∈ |KXi

+ α|, and 2Dα ∈ |2KXi
|. Since Xi are minimal

surfaces of general type, we have dimH0(Xi,O(2KXi
)) = K2

Xi
+1 = 3.

On the other hand, dimH0(P2,OP2(L)) = 3, where L is a line in P2,
while by Lemma 1.11 we have |2KXi

| = |f ∗

σ(L)|. Finally, |2KXi
| =

f ∗

σ,i(|L|) and D ∈ |KXi
+ α| for some α ∈ Tors(Xi) if and only if

2D = f ∗

σ,i(L̃) for some L̃ ∈ |L|.

The only lines L̃ ∈ |L| for which the divisors f ∗

σ,i(L̃) are divisible by
2 are the seven branch lines belonging to Li. Hence, they give all the
different torsion elements and can be relabeled by the torsion elements
so that Li =

∑
Li,α, where the sum is taken over the nonzero torsion

elements, and 1
2
f ∗

σ,i(Li,α) = Di,α ∈ |KXi
+ α|. (Note that this labeling

of lines may not coincide with the initial one.)
Let ν : X1 → X2 be an isomorphism. It induces an isomorphism of

torsion groups, ν∗ : Tors (X2) → Tors (X1), and isomorphisms of linear
systems,

ν∗ : H0(X2,OX2(KX2 + α)) → H0(X1,OX1(KX1 + ν∗(α)))

for each α ∈ Tors (X2). Therefore, ν∗(D2,α) = D1,ν∗(α) for any α ∈
Tors(X2), α 6= 0, and we get

ν∗(f ∗

σ,2(L2,α1 − L2,α2)) = ν∗(2D2,α1 − 2D2,α2) = 2D1,ν∗(α1) − 2D1,ν∗(α2) =
f ∗

σ,1(L1,ν∗(α1) − L1,ν∗(α2))

for any non zero α1, α2 ∈ Tors (X2). Since any rational function is
defined uniquely up to multiplication by a constant by its divisors of
zeros and poles, it implies the existence of a system of constants cα1,α2

such that

ν∗(f ∗

σ,2(
l2,α1(v1, v2)

l2,α2(v1, v2)
)) = cα1,α2f

∗

σ,1(
l1,ν∗(α1)(v1, v2)

l1,ν∗(α2)(v1, v2)
), (6)

where v1, v2 are affine coordinates in P2 and l2,α, l1,β are linear equations

of the corresponding lines. Since the functions f ∗

σ,i(
li,α1

(v1 ,v2)

li,α2
(v1 ,v2)

)) generate

the subfields f ∗

σ,i(C(P2)) of C(Xi), the relations (6) imply the existence

of a projective transformation ψ : P2 → P2 such that f ∗

σ,1 ◦ ψ∗ =
ν∗ ◦ f ∗

σ,2. �

Corollary 1.14. If X = X(L), where L is a generic Campedelli line
arrangement, then Aut(X) = Gal(Y (L) → P2) ' (Z/2Z)3. �

Denote by P = P2 × · · · × P2 the product of seven copies of the
projective plane. We consider each factor in this product as the dual
projective plane, so that elements of each factor are lines in the initial
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P2. In addition, we numerate the factors of P by the non-zero elements
α ∈ G = (Z/2Z)3. Let D be the union of all diagonals in P,

T3 = { L ∈ P | ∃αi1, αi2 , αi3 such that
αi1 + αi2 + αi3 = 0 and Lαi1

∩ Lαi2
∩ Lαi3

6= ∅},

T4 = { L ∈ P | ∃αi1 , αi2 , αi3, αi4 such that
Lαi1

∩ Lαi2
∩ Lαi3

∩ Lαi4
6= ∅}.

The group PGL(2,C) × AutG acts on P \ (D ∪ T3 ∪ T4) as follows:
PGL(2,C) acts in a usual way on each factor of P, and the elements h
of AutG permute the factors, h : P2

α → P2
h(α).

The following theorem is a consequence of Lemma 1.12 and Theorems
1.9, 1.10, and 1.13.

Theorem 1.15. The moduli space M of the Campedelli surfaces is
isomorphic to the quotient space

(P \ (D ∪ T3 ∪ T4))/(PGL(2,C) × AutG).

�

Note that, as a result, all Campedelli surfaces are deformation equiv-
alent.

2. Real Campedelli surfaces

2.1. An extension of the automorphism group. For any complex
space X, denote by Kl = Kl(X) the group of holomorphic and anti-
holomorphic bijections X → X. Recall that, by definition, an anti-
holomoprhic map X → X can be seen as a holomorphic map X → X,
where X states for the complex conjugate to X.

Note (cf. subsection 1.6) that for any minimal surface X of general
type the groups Kl(X) and Kl(Xcan) are naturally isomorphic. In what
follows we identify them as soon as it does not lead to a confusion.

Clearly, if Kl contains at least one anti-holomorphic element, the
holomorphic elements form in Kl a subgroup Aut = Aut(X) of index 2.
In other words, there is a short exact sequence 1 → Aut → Kl → H →
1, where H ' Z/2 or 1. We denote by kl : Kl → H the homomorphism
of this sequence.

The real structures on X are the elements c ∈ Kl(X) such that
kl(c) 6= 1 and c2 = id. Two real structures, c1 and c2 are called
equivalent (or isomorphic) if there exists h ∈ Aut(X) such that h ◦
c2 = c1 ◦ h. Recall that on the projective plane P2 (as well as on
any projective space of even dimension) any two real structures are
equivalent by a projective transformation.
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2.2. A criteria of existence of real structures on Campedelli

surfaces. Given Campedelli surface X = X(L) associated with a
Campedelli line arrangement L, we consider the composed map fσ =
σ ◦f : X → P2 and say that cX ∈ Kl(X) is lifted from P2 if there exists
cP ∈ Kl(P2) such that the following diagram is commutative

X
cX - X

?
fσ

?
fσ

P2
cP

- P2.

Theorem 2.1. For any Campedelli line arrangement L, every cX ∈
Kl(X) is lifted from P2. In particular, if X has a real structure cX ,
then there exists a real structure cP on P2 such that cP ◦ fσ = fσ ◦ cX .

Proof. If cX ∈ Aut(X), then cX is lifted from P2 by Theorem 1.13. Let
cX ∈ Kl(X) and cX 6∈ Aut(X). Then cX : X → X is a holomorphic

isomorphism. Consider the complex conjugated covering f σ : X → P2.
By Theorem 1.13, there is a holomorphic isomorphism cP : P2 → P2

which makes commutative the following diagram

X
cX - X

?
fσ

?
fσ

P2
cP

- P2.

To get the last statement, it is sufficient to notice that c2P = id if
c2X = id. �

Corollary 2.2. For any Campedelli line arrangement L ⊂ P2, the
Campedelli surface X = X(L) admits a real structure if, and only if,
for a suitably chosen real structure cP of P2 the (labeled) Campedelli line
arrangement L is real, that is, there exists an automorphism (renum-
bering) τ : (Z/2Z)3 → (Z/2Z)3 such that cP (Lα) = Lτ(α) for each
α ∈ (Z/2Z)3, α 6= 0.

Proof. In the case of a real arrangement, to lift cP it is sufficient to
notice that cP (as any real structure on P2) has a whole real projective
plane of fixed points, to pick such a fixed point in the complement
of the arrangement, and to identify the unbranched points of Xcan

with classes of pathes issued from the fixed point. So that cP and the



16 V.M. KHARLAMOV AND VIK.S. KULIKOV

identification define c properly acting on Xcan. A renumbering induced
by a transformation of P2 is a homomorphism, since it factors through
the induced action on H1(P

2 \ L,Z). �

2.3. Real Campedelli line arrangements. The Galois group G =
Gal(X/P̂2) ' (Z/2Z)3 is a subgroup of Aut(X). As it follows from
Theorem 2.1, G is a normal subgroup of Kl(X), and in addition, by
Corollary 2.2, c(Lα) = Lcαc−1 for any α ∈ G and c ∈ Kl(X).

Proposition 2.3. Let L be a Campedelli line arrangement which is
real with respect to some real structure cP : P2 → P2. Then either L
consists of seven real lines or it consists of three real lines and two pairs
of complex conjugated lines. Respectively, cP acts on the labeling of L
either identically or not.

Proof. The homomorphism α ∈ G = (Z/2Z)3 7→ cαc−1 ∈ G = (Z/2Z)3,
where c is the real structure on X, is an involution, and, as any in-
volution on a Z/2-vector space, it splits into irreducible 1- and 2-
dimensional components. In dimension 3, there are only two possi-
bilities, either the involution is trivial or it contains a 2-dimensional
irreducible component, that is an involution interchanging two gener-
ators. In the first case, all α are fixed, and hence all the lines are real.
In the second case, there are three and only three fixed elements, and
hence three and only three real lines. �

Let call a Campedelli line arrangement L purely real if it consists of
seven real lines and mixed real if it consists of three real lines and two
pairs of complex conjugated lines.

Given a real structure cX , denote by Kl(X, cX) the subgroup of
Kl(X) generated by G and cX . If X = X(L) and L is real with respect
to a real structure cP on P2, then the subgroup Kl(X, cX) does not
depend on the choice of a lift cX of cP and we denote it by Kl(X, cP ).
Note that for a generic real Campedelli line arrangement L it holds
AutX(L) = G, so that Kl(X) = Kl(X, cX) for any cX .

Proposition 2.4. Let X = X(L) be a Campedelli surface associated
with a Campedelli line arrangement L which is real with respect to cP .
Then:

(i) if L is a purely real line arrangement, then Kl(X, cP ) ' (Z/2Z)4,
and if L is a generic purely real line arrangement, then there
are exactly eight different real structures on X;

(ii) if L is a mixed real line arrangement, then Kl(X, cP ) ' H ×
(Z/2Z), where H is the quaternion group of order eight, and
if L is a generic mixed real line arrangement, then there are
exactly four different real structures on X.
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Proof. Pick a real point p ∈ P2 \ L and consider a real structure c ∈
Kl(X) which is a lift of cP from P2 to X and have fixed points over p.
If all the lines are real, then cαc−1 = α for any α ∈ G (indeed, since
c = id at each point of the G-orbit over p, the relation cαc−1 = α holds
at the points of this G-orbit, and, hence, it holds everywhere).

If there are only three real lines in the arrangement, then in a suitable
basis e1, e2, e3 of G the (renumbering) involution α 7→ cαc−1 acts as
e1 7→ e2 and e3 7→ e3. Therefore, in the latter case, Kl(X, cP ) splits in
a direct sum of Z/2 generated by e3 with a non-commutative group of
order 8 generated by e1, e2, and c.

Since for a generic arrangement it holds Kl(X) = Kl(X, cX), the
statements concerning the generic cases follow now from enumerating
anti-involutions in Kl(X, cP ) ' (Z/2Z)4 and, respectively, Kl(X, cP ) '
H × (Z/2Z). �

2.4. Purely real Campedelli line arrangements. Let L = ∪Lα

be a Campedelli line arrangement which is purely real with respect
to a real structure cP : P2 → P2. Choose homogeneous coordinates
(z0, z1, z2) in P2 such that cP turns in the standard complex conjugation

cP (z0, z1, z2) = (z0, z1, z2).

Then each of the lines Lα ∈ L, α ∈ G \ {0}, is given by equation

aα,0z0 + aα,1z1 + aα,2z2 = 0

with real coefficients, aα,i ∈ R.
Consider the set RP2 = {(z0, z1, z2) | zi ∈ R} of real points of P2. If

L has no triple points, then L divides RP2 into twenty two n-gons Pi,
i = 1, . . . , 22, 3 ≤ n ≤ 7. The collection (m3, . . . , m7), where mn is the
number of n-gons Pi, is called the type of L.

The following description of topology of the inverse image of Pi in the
associated Campedelli surface X(L) is a straightforward consequence
of the construction of ramified coverings.

Proposition 2.5. For any polygon Pi of a purely real Campedelli line
arrangement L without triple points, its inverse image f−1(Pi) ⊂ X(L)
is a two-manifold and it is homeomorphic to the following quotient of
Pi × G, G = (Z/2Z)3: the points (a, β) and (b, γ) are identified if
a = b ∈ Lα where γ = β + α. �

A triangle Pi bounded by Lα1 , Lα2 , and Lα3 is said to have linear
(in)dependent sides, if α1, α2, α3 are linear (in)dependent.

Corollary 2.6. For any n-gon Pi of a purely real Campedelli line ar-
rangement L without triple points,
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(i) the Euler characteristic of f−1(Pi) is equal to 8 − 2n;

(ii) f−1(Pi) is the disjoint union of two copies of RP2, if n = 3 and

the triangle Pi has linear depended sides;

(iii) f−1(Pi) is the two-dimensional sphere, if n = 3 and the triangle

Pi has linear independent sides;

(iv) f−1(Pi) is connected, if n = 4, and it is orientable if, and only

if, α1 + · · ·+ α4 = 0, where αj are the labels of the sides Lαj
of

Pi;

(v) f−1(Pi) is a connected non-orientable two-manifold, if n ≥ 5.

Proof. The Euler characteristic e(f−1(Pi)) is equal to

e(f−1(Pi)) = 8 − 4n+ 2n = 8 − 2n

according to the cellular decomposition given by Proposition 2.5.

Let Lα1 , . . . , Lαn
be the sides of Pi. Consider a subgroup GPi

=

〈α1, . . . , αn〉 of G generated by α1, . . . , αn. As it follows from Propo-

sition 2.5, the number of connected components of f−1(Pi) coincides

with the index of GPi
in G. On the other hand, since n > 2, either GPi

coincides with G or it is a subgroup of index 2, and in the latter case,

Pi is a triangle with linear dependent sides. Therefore, f−1(Pi) is con-

nected except in the case of triangles with linear dependent sides and,

moreover, if Pi is a triangle with linear dependent sides, then f−1(Pi)

consists of two connected components.

If n = 3, then e(f−1(Pi)) = 2. Hence, if Pi is a triangle with linear

independent sides, then f−1(Pi) is the 2-sphere, and if Pi is a triangle

with linear dependent sides, then f−1(Pi) is the disjoint union of two

copies of RP2.

Let n ≥ 4. Then, Pi has three successive sides whose indices α1, α2, α3

are linear independent. After renumbering we can assume that α1 =

(1, 0, 0), α2 = (0, 1, 0), and α3 = (0, 0, 1). Following Proposition 2.5,

perform a partial gluing of eight copies Pβ = (Pi, β) of Pi as is depicted

in Fig. 1 (in Fig. 1, we denote the union of sides Lα4 ∪ · · · ∪ Lαn
by

L̃α).
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L̃α L̃α L̃α L̃α

L̃α L̃α L̃α L̃α

L(1,0,0) L(1,0,0) L(1,0,0) L(1,0,0)

L(0,1,0) L(0,0,1) L(0,1,0) L(0,0,1) L(0,1,0)

L(0,1,0) L(0,0,1) L(0,1,0) L(0,0,1) L(0,1,0)

P(1,1,1)

P(0,1,1)

P(1,1,0)

P(0,1,0)

P(1,0,0)

P(0,0,0)

P(1,0,1)

P(0,0,1)

Fig. 1

Let n = 4. Then, for L̃α = Lα4 there are four cases: either α4 =
(1, 1, 0), or α4 = (1, 0, 1), or α4 = (0, 1, 1), or α4 = (1, 1, 1). It is easy
to see from Fig. 1 that f−1(P ) is non-orientable in the first three cases
and it is orientable in the last case.

Let, finally, n ≥ 5. Then, L̃α = Lα4 ∪ · · · ∪ Lαn
and at least one

of α4, . . . , αn, say αj, has to be equal to either (1, 1, 0), or (1, 0, 1), or
(0, 1, 1). Therefore, the gluing of P(0,0,0) and Pαj

along Lαj
gives rise

to non-orientability of f−1(P ). �

Consider a real structure cX : X(L) → X(L) which is a lift of cP .
According to Proposition 2.4, cX commutes with every element of G.
Therefore, for any Pi, 1 6 i 6 22, there exists one and only one gi ∈ G
such that cX(x) = gi(x) for any x ∈ X for which fσ(x) ∈ Pi. Using
the same identification of G with (Z/2Z)3 which we have already fixed
introducing the labeling of L, ϕ : H1(P

2 \ L,Z) → (Z/2Z)3, we put

gi = (gi,1, gi,2, gi,3)

and for each Pi introduce sign-triples

Sign(Pi) = Signi = (signi,1, signi,2, signi,3),

where, by definition, signi,k = (−1)gi,k , 1 6 k 6 3. When we renumber
the lines in L by means of an automorphism h : (Z/2Z)3 → (Z/2Z)3

the labels gi of Pi transform in h(gi); in particular, the signs Signi of
the polygons Pi equal to Signi = (+,+,+) (corresponding to gi = 0)
remain unchanged under any renumbering. We call a polygon Pi to be
positive if its signs are Signi = (+,+,+).
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The labels Signi satisfy the following transition rule:

signi,k = (−1)aksignj,k (7)

if Pi and Pj have a common side on Lα, α = (a1, a2, a3). In particular,

if one of Signi is given, then it determines all the other.

Let us notice that we switch from gi to Signi by two reasons: first,

it allows us to distinguish more easily (say, on Figures) a labeling of

lines, Lα 7→ α, from a labeling gi of polygons Pi; second, these signs

have a natural meaning described below (and are convenient in use).

Namely, to give an equivalent description of the above sign-labeling,

let consider the embedding of Y (L) into P9
w given by equations (4) and

the products

l(1,0,0)l(1,1,0)l(1,0,1)l(1,1,1),
l(0,1,0)l(1,1,0)l(0,1,1)l(1,1,1),
l(0,0,1)l(1,0,1)l(0,1,1)l(1,1,1)

(8)

participating in the first three equations (see subsection 1.5 for nota-

tions related with P9
w). As any homogeneous form of even degree with

real coefficients, each of the products has a well defined sign at any

point of RP2, where the product is nonzero. In particular, all the three

products have well defined signs at the interior of each of Pi, 1 6 i 6 22.

Clearly, for each Pi the triple of signs ordered in accordance with the

appearance of the products in (8) is equal to Sign(Pi) determined by

the real structure induced on Y (L) by the standard complex conjuga-

tion in P9
w, zk 7→ z̄k and uα 7→ ūα. (Any real structure on Y (L) lifts to

a real structure on X(L) and such a lift is unique, cf. subsection 2.1.)

By Proposition 2.4, there are eight and only eight distinct real struc-

tures cX which are lifts of cP . Let show that each of them can be

induced by a suitable diagonal real structure on P9
w, where by a diag-

onal real structure on P9
w we mean a real structure given by zk 7→ z̄k

and uα 7→ εαūα with εα = ±1. Note that such a real structure cε

preserves Y (L) if, and only if, each of the equations (5) is preserved.

In particular, there are eight and only eight real diagonal structures

which preserve Y (L) and they are determined by an arbitrary choice

of εα with α = (1, 0, 0), (0, 1, 0), and (0, 0, 1). We denote by

cε(1,0,0),ε(0,1,0),ε(0,0,1)
: X(L) → X(L)

the real structures thus obtained. Each of them is a lift of cP , since

they all transform zk in z̄k.
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As is easy to check, the sign-triple Sign′

i = (sign′

i,1, sign
′

i,2, sign
′

i,3) of
Pi defined by cε(1,0,0),ε(0,1,0),ε(0,0,1)

is equal to (ε1signi,1, ε2signi,2, ε3signi,3),
which in its turn is equal to the triple of sings of the homogeneous forms

ε(1,0,0)l(1,0,0)l(1,1,0)l(1,0,1)l(1,1,1),
ε(0,1,0)l(0,1,0)l(1,1,0)l(0,1,1)l(1,1,1),
ε(0,0,1)l(0,0,1)l(1,0,1)l(0,1,1)l(1,1,1).

(9)

In what follows, a line arrangement L equipped with one of these eight

sign-labelings is called equipped (by signs).
The sign-equipment of a (labelled) pure real Campedelli arrangement

contains a complete information on the real structure, as the following
proposition shows.

Proposition 2.7. Let Campedelli line arrangements L and L′ be pure
real with respect to real structures cP : P2 → P2 and c′P : P2 → P2.
A real structure c : X(L) → X(L) lifting cP and a real structure
c′ : X(L′) → X(L′) lifting c′P are equivalent if, and only if, there
exist a homomorphism h : (Z/2Z)3 → (Z/2Z)3 and a projective trans-
formation H : P2 → P2 such that

c′P ◦H = H ◦ cP , φ′ ◦H∗ = h ◦ φ

(here φ : H1(P
2 \ L; Z) → (Z/2Z)3 and φ′ : H1(P

2 \ L′; Z) → (Z/2Z)3

are the labelings participating in definition of L and L′), and

Sign′(H(Pi)) = (−1)h(gi),

where
(−1)gi = SignPi.

Proof. It follows from Theorem 1.13 and the definition of the sign-
triples (recall that one sign-triple determines all the other). �

Proposition 2.8. The eight real structures cε(1,0,0),ε(0,1,0),ε(0,0,1)
are dis-

tinct. If L has no triple points, these eight real structures are the only
reals structures of X(L).

Proof. There exist points in Y (L) where all the three coordinates z0, z1,
z2 are real and all the three coordinates u(1,0,0), u(0,1,0), u(0,0,1) are nonzero.
The real structures cε(1,0,0),ε(0,1,0),ε(0,0,1)

with different (ε(1,0,0), ε(0,1,0), ε(0,0,1))
act differently on such a point. It implies the first statement.

Now, assume that L has no triple points and consider two real struc-
tures, c : X(L) → X(L) lifting cP and c′ : X(L) → X(L) lifting c′P .
Assume that L is pure real with respect to cP .

Let show, first, that L is pure real with respect to c′P as well. Suppose
that L is mixed real with respect to c′P . Then, c′P preserves three lines
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in L and two points which are intersections of conjugated lines in L. On
the other hand, cP preserves all the lines in L. Therefore, cP ◦ c′P acts
trivially on three generic lines and two points outside them. Hence,
cP ◦ c′P = id, so that cP = c′P . Which is a contradiction.

If L is pure real with respect to both c′P and cP , then the same
argument implies that cP = c′P . Thus, c and c′ differ by a Galois
transformation. �

Remark 2.9. As follows from Propositions 2.7 and 2.8, if L is a
pure real Campedelli arrangement without nontrivial projective auto-
morphisms, then the eight real structures cε(1,0,0),ε(0,1,0),ε(0,0,1)

are non-
equivalent to each other and they represent all the real structures on
X(L).

Lemma 2.10. For any choice of εα with α = (1, 0, 0), (0, 1, 0), and
(0, 0, 1), the real point set XR = Fix c, c = cε(1,0,0),ε(0,1,0),ε(0,0,1)

, is

XR =
⋃

Signi=(+,+,+)

f−1(Pi),

where Signi are the sign-triples defined by c. �

Assume that L has no triple points (in fact, one can treat in a similar
way the degenerate cases, but we do not need it). Let Pi0 be a n-gon.
For each its side and for each its vertex, there is one and only one
polygon Pi, i 6= i0, intersecting Pi0 along this side or, respectively, only
at the vertex. Inspecting the sides and the vertices along the border of
Pi0, we obtain a sequence of polygons

(Pi1, P
′

i2 , . . . , Pi2n−1 , P
′

i2n
),

where P ′

−
are the polygons adjacent to the vertices. Let us and associate

with Pi0 an integer sequence Ai0 = (ni1 , n
′

i2
, . . . , ni2n−1 , n

′

i2n
), where nij

and n′

ij
state for the number of sides of Pij and, respectively, P ′

ij
. The

sequence Ai0 is called the adjacency type of Pi0. The adjacency type is
defined up to cyclic permutation and reversing the order.

Let finally L be equipped by signs and let Pi1 , . . . , Pik be the set
of positive polygons. The unordered collection A(L) = (Ai1, . . . , Aik),
where Aij is the adjacency type of Pij , is called the adjacency type of
positive polygons.

Lemma 2.11. If L is a purely real Campedelli line arrangement with-
out triple points, then any its sign-equipment contains at least seven
different labels Signi.
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Proof. The arrangement L, as any arrangement without triple points
consisting of > 5 lines, defines at least five triangles Pi. Through a
simple counting of edges and cells, it implies that in the case of seven
lines there is a n-gon Pi with n ≥ 5.

If Pi is a > 6-gon, then Pi and six polygons having a common side
with Pi have all different triples of signs, as it follows from the transition
rule (7).

Let Pi be a 5-gon bounded by Li1 , Li3, Li5 , Li7 , and Li9 , and let
(Pi1, P

′

i2 , . . . , Pi9 , P
′

i10) be its sequence of adjacent polygons. As in the
proof of Lemma 2.5, we can assume (maybe, after renumbering of lines
and a cyclic permutation of adjacent polygons; note that a renumber-
ing may change the sign-equipment but preserve distinct the distinct
sign-triples) that αi1 = (1, 0, 0), αi3 = (0, 1, 0), αi5 = (0, 0, 1) and

αi7 , αi9 ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

By the transition rule (7), the sign-triples of Pi and its adjacent poly-
gons form the set {(−1)aSigni, a ∈ A}, where A = {0, αi1 , αi3, αi5 ,
αi7, αi9 , αi1 + αi3 , α3 + αi5 , αi5 + αi7 , αi7 + αi9, αi9 + αi1}. We
have (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1) ∈ A, that is,
A consists of at least six elements. If α7 or α9 is equal to (1, 0, 1)
or (1, 1, 1), then A consists of at least seven elements. Otherwise, if
{α7, α9} = {(1, 1, 0), (0, 1, 1)}, again A consists of at least seven ele-
ments, since in this case (1, 1, 0) + (0, 1, 1) = (1, 0, 1) ∈ A. �

The following proposition follows from Lemma 2.10 and Lemma 2.11.

Proposition 2.12. Let L be a purely real Campedelli line arrangement
without triple points. For each real structure cε(1,0,0),ε(0,1,0),ε(0,0,1)

on X =

X(L) except, possibly, one, its real points set is non-empty.

2.5. Mixed real Campedelli line arrangements. Let L = ∪Lα

be a Campedelli line arrangement which is mixed real with respect
to a real structure cP : P2 → P2. Choose homogeneous coordinates
(z0, z1, z2) in P2 such that cP turns in

cP (z0, z1, z2) = (z0, z1, z2).

Then, up to a renumbering and a real projective transformation, the
lines L(1,1,0), L(1,1,1), and L(0,0,1) are given by equations z0 = 0, z1 = 0,
and z2 = 0, while the lines L(1,0,0), L(0,1,0), L(1,0,1), and L(0,1,1) are given
by equations

aα,0z0 + aα,1z1 + aα,2z2 = 0,

where a(1,0,0),j = a(0,1,0),j and a(1,0,1),j = a(0,1,1),j for any j = 0, 1, 2 (cf.,
the proof of Proposition 2.4).
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As above, consider the set RP2 = {(z0 : z1 : z2) | zi ∈ R} of real
points of P2. A mixed real Campedelli line arrangement L intersect RP2

along three distinct real lines Lα,R = Lα ∩ RP2, α = (0, 0, 1), (1, 1, 1),
and (1, 1, 0), and at two distinct real points p1 = L(1,0,0) ∩ L(0,1,0) and
p2 = L(1,0,1) ∩ L(0,1,1). We call the points p1 and p2 the vertices of L.
The vertices can not belong to L1,1,0, but it may happen that one of
them (or both together) belong to L1,1,1∪L0,0,1. There is a renumbering
which exchange the indices of p1 and p2.

Denote by lα = aα,0z0 + aα,1z1 + aα,2z2, α ∈ G \ {0}, the above linear
forms defining Lα. Put q1 = l(1,0,0)l(0,1,0) and q2 = l(1,0,1)l(01,1). Note
that q1 and q2 have real coefficients. Moreover, q1 > 0 and q2 > 0 at
each point of RP2.

The Campedelli surface X = X(L) is given in P9
w by equations

u2
(1,0,0) = l(1,0,0)l(1,0,1)z0z1,

u2
(0,1,0) = l(0,1,0)l(0,1,1)z0z1,

u2
(0,0,1) = q2z1z2,

u2
(1,1,0) = q1q2,

u2
(1,0,1) = l(1,0,0)l(0,1,1)z0z2,

u2
(0,1,1) = l(0,1,0)l(1,0,1)z0z2,

u2
(1,1,1) = q1z1z2.

(10)

It inherits a real structure c++ : X → X from the real structure on P9
w

defined by zk 7→ z̄k and u(i,j,k) 7→ ū(j,i,k).
In accordance with Proposition 2.4, there are three more real struc-

tures on X (only three, if the arrangement has no a nontrivial projec-
tive automorphism) which are obtained from c++ by composing it with
Galois automorphisms. Namely, they are

c−+ = g(1,0,0)c++g(1,0,0), c+− = g(0,0,1)c++, c−− = g(0,0,1)c−+, (11)

where g(1,0,0), g(0,0,1) ∈ Gal(X/P2) are defined as follows:

g(1,0,0)u(i,j,k) = (−1)iu(i,j,k), g(0,0,1)u(i,j,k) = (−1)ku(i,j,k).

In particular, one can notice that up to conjugation by automorphisms
of X this list of four real structures reduces to two conjugacy classes
represented, respectively, by c+ = c++ and c− = c+−.

We subdivide mixed real arrangements L having no triple points in
three following types. The lines Lα,R, α = (0, 0, 1), (1, 1, 1), (1, 1, 0),
divide RP2 into four triangles Pi, i = 1, . . . , 4, as it is depicted in Fig.2,
where the axe x = 0 is the line L(1,1,1),R, the axe y = 0 is the line
L(0,0,1),R, while the line L(1,1,0),R is put at infinity. Using renumberings
which transform (1, 0, 0) in (1, 0, 0), (0, 1, 0) in (0, 1, 0), and (0, 0, 1) in
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(1, 1, 1) together with linear transformations x 7→ ±x, y 7→ ±y , we
can and will assume that p1 ∈ P1 and p2 belongs either to P1 (Type

I), or to P2 (Type II), or to P3 (Type III).

-

6

P1

P2

P4

P3

y

x

Fig. 2

Such a normalization makes the products l(1,1,0)l(1,1,1) = z0z1 and
l(1,1,0)l(0,0,1) = z0z2 to be positive on P1 (and on P3) and, in particular,
fixes a choice of c+. Under this convention, c− becomes the real struc-
ture induced by zk 7→ z̄k and u(i,j,k) 7→ ū(j,i,k) on the copy of X which
is given by

u2
(1,0,0) = l(1,0,0))l(1,0,1)v1,

u2
(0,1,0) = l(0,1,0)l(0,1,1)v1,

u2
(0,0,1) = −q2v1v2.

(12)

Lemma 2.13. Let L be a mixed real Campedelli line arrangement with-
out triple points. Suppose that Pi and c± are labelled as above. Then,
for any i = 1, . . . , 4,

(i) f−1(Pi) is a disjoint union Pi,1 ∪ Pi,2 of two connected non-
orientable two-manifolds,

(ii) the Euler characteristic of Pi,j, j = 1, 2, is equal to 1−2n, where
n is the number of vertices {p1, p2} belonging to Pi,

(iii) the real point set XR = Fix c, c = c±, is

XR = Pi,1 ∪ Pi+2,1,

where i = 1 if c = c+ and i = 2 if c = c−.

Proof. It is similar to the proof of Lemma 2.6. The only difference is
that here inside Pi we have vertices p1, p2 which are (simple) branching

points of the projection P̃i,j → Pi. �

Remark 2.14. A Campedelli line arrangement can be purely real with
respect to one real structure and mixed real with respect to another
one. More precisely, a Campedelli line arrangement L is simultaneously
purely real and mixed real if and only if (maybe after renumbering of
the lines) there are coordinates (z0, z1, z2) in P2 such that: zi = 0,
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i = 0, 1, 2, is an equation respectively of L(1,1,0), L(1,1,1), L(0,0,1); the
lines L(1,0,0) and L(0,1,0) are given by a1z1 + (a0z0 ± z2) = 0, and the
lines L(1,0,1) and L(0,1,1) are given by b1z1 + (b0z0 ± z2) = 0 for some
non-zero a0, a1, b0, b1 ∈ R.

3. Diffeomorphisms and deformations of real Campedelli

surfaces

3.1. Deformations and smoothing of A1-singularities. By a real
Morse-Lefschetz perturbation of a real surface with A1-singularities we
mean a complex three-manifold Z with a real structure c : Z → Z
equipped with a proper holomorphic map f from Z to the unit disc D ⊂
C respecting the real structures on Z and D ⊂ C and such that: all the
fibers of f , except the fiber over 0, are (compact) nonsingular surfaces;
the fiber over 0 contains only isolated singular points O1, . . . , Ok, and
the quadratic form of f at each of the singular points is non-degenerate.
The fibers f−1(t) are denoted by Xt, so that the singular fiber f−1(0)
is denoted by X0. The real structure c : X0 → X0 lifts to a unique
real structure c : X̃0 → X̃0 where X̃0 is the minimal desingularization
of X0. According the definition of the deformation equivalence of real
surfaces, for all t ∈ R, t 6= 0, of the same sign the real surfaces (Xt, c)
are of the same real deformation type. If Oj, 1 6 j 6 k, is real then we
pick a small (Milnor) ball Bj ⊂ Z around Oj and, for every small real
t 6= 0, speak on the local Euler characteristic of Xt,R which means the
Euler characteristic of the intersection of the real part of Xt with Bj.

Such Morse-Lefschetz perturbations will arise by reversing of triangle
of real Campedelli line arrangements, see subsection 3.2.

Lemma 3.1. Let (Z, f, c) be a real Morse-Lefschetz perturbation of a
real surface with A1-singularities. If for t′ 6= 0 of certain sign, at each
real singular point Oj ∈ X0 the local Euler characteristic of Xt′,R is
0, then (Xt′ , c) with t′ of this sign are real deformation equivalent to

(X̃0, c).

Proof. Introduce an auxiliary real one-parametric family by making
the base change which substitutes u2 instead of t if t′ is positive, and
−u2 otherwise. The total space of this family has A1-singularities at
O1, . . . , Ok ∈ X0 and it has no any other singular point. Blowing up
the total space at the A1-singularities we respect the real structure,
replace each of the singular points by a quadric, and resolve both the
singular points of the family and the singular points of X0. At each
real point Oj, the blown-up quadric is real, and the two families of
generating lines on this real quadric are real if, and only if, the local
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Euler characteristic of Xt,R with t = t′ is 0. Pick a real family of
lines at each of real Oj and conjugated families of lines at each pair
of conjugated Oj. As is known, a contraction of any family of lines
gives a smooth family. The contraction of the chosen families is real
and thus provides a real deformation equivalence between (X̃0, c) and
(Xt′ , c). �

Remark 3.2. If (Z, f, c) is a Morse-Lefschetz perturbation of a real
surface with complex conjugated (non real) A1-singularities, then all
(Xt, c) with real t 6= 0 are real deformation equivalent to each other.

3.2. Reversings of triangles. Let L be an equipped purely real Cam-
pedelli line arrangement, see subsection 2.4, and let Pi0 ⊂ RP2 be
a triangle whose sides are Lα1 , Lα2 , Lα3 belonging to L. A modi-
fication depicted in Fig. 3 which turns L into an equipped purely
real Campedelli line arrangement L′ is called the reversing of triangle
Pi0. By definition, the sign-triples Sign′

i = Sign(P ′

i ) with i 6= i0 co-
incide with Signi = Sign(Pi), while, in accordance with the transition
rule (7), Sign′

i0
= (sign′

i0,1, sign′

i0,2, sign′

i0,3) is determined by Signi0 =
(signi0,1, signi0,2, signi0,3) as follows:

sign′

i0,j = (−1)aj signi0,j,

where (a1, a2, a3) = α1 + α2 + α3.

L

!Pi0

Lα1

Lα2

Lα3

Pi2

Pi3

Pi4 Pi5

Pi6

Pi1

L0

!

Lα1

Lα3

Lα2

Pi2

Pi3

Pi4 Pi5

Pi6

Pi1

Lα2

Lα3

L′

P ′

i0

Lα1

P ′

i2

P ′

i3

P ′

i4

P ′

i5

P ′

i6

P ′

i1

Fig. 3

Remark 3.3. If the sides of Pi0 are linear dependent, then: Signij =

Signij+3
for j = 1, 2, 3; Sign′

i0 = Signi0 ; and Signi1 , Signi2 , and Signi3

are pairwise distinct. In the case of linear dependent sides, L0 is not a
Campedelli arrangement.
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If the sides of Pi0 are linear independent, then all the triples Signij
,

j = 0, 1, . . . , 6, are pairwise distinct and Sign′

i0
is the complementary

element in the set of all triples of signs. In the case of linear independent
sides, L0 is a Campedelli line arrangement and the canonical model
X(L0) of a Campedelli surface X0 has a unique A1-singular point over
the triple point (the point to which Pi0 degenerates). The local Euler
characteristic of X(L) at this singular point is 0 if, and only if,

(+,+,+) /∈ {Singik}k=0,2,4,6.

Respectively, the local Euler characteristic of X(L′) at this singular
point is 0 if, and only if, (+,+,+) /∈ {Sing′ik}k=0,2,4,6. The last condi-
tion is equivalent to (+,+,+) ∈ {Singik}k=0,2,4,6; in particular, if the
local Euler characteristic is equal to 0 for one of L and L′, it is not
equal to 0 for the other one, and vise versa.

3.3. Reduction to generic deformations.

Lemma 3.4. Suppose that (Z, f, c) is a real deformation such that
all the fibers except X0 have nonsingular canonical models, while the
canonical model of X0 is a surface with A1-singularities. Then, at each
singular point Oj ∈ Z which is real the local Euler characteristic of
Xt,R, t 6= 0 is 0.

Proof. The deformation (Z, f, c) is a simultaneous resolution of the sin-
gularities of the family constituted of the canonical models X can

t of Xt

and regarded over the same base. Hence, for each small real t the local
Euler characteristics of Xt,R coincide with the local Euler characteris-
tics of the resolution of the singular points. The latter characteristics
are 0 in the case of A1-singularities, whatever are the real forms of the
singularities. �

Lemma 3.5. Let (Z, f, c) be a real deformation of Campedelli surfaces.
For any real t′ ∈ D, there exist a real neighborhood U ⊂ D of t′ and
a real family Lt, t ∈ U, of Campedelli line arrangements in a real pro-
jective plane (P2; cP ) such that Xt = X(Lt) and ct = c|Xt

are lifts of
cP .

Proof. Consider the relative bi-canonical bundle 2K|Z/D. Its restriction
to any fiber Xt is the bi-canonical bundle of Xt. The space of sections
of such a restriction is of dimension three, and the sections determine
a finite map to P2 representing Xt as X(Lt), where Lt is the branching
locus of this map, see the proof of Theorem 1.13. Since the space of
sections is of constant dimension, any three sections generating the bi-
canonical bundle of Xt′ extend to three sections generating 2K|Z/D at
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least over a small neighborhood of t′. By theorem 2.1, the three sections

of the bi-canonical bundle of Xt′ can be chosen real with respect to a

real structure cP of P2, and then it remains to average their extensions

by c and pick a sufficiently small equivariant neighborhood of t′. �

Proposition 3.6. Let (X1, c1) and (X2, c2) be two deformation equiv-

alent real Campedelli surfaces associated respectively with Campedelli

line arrangements L1 and L2. If L1 is purely real, then L2 is also purely

real. If they are purely real and have no triple points, then their sign-

equipments in RP2 are homeomorphic, so that, in particular, L1 and L2

have the same type and the same adjacency type of positive polygons.

Note that this statement implies that a deformation can not provide

any reversing of triangle.

Proof. By Lemma 3.5, a chain of real deformations connecting (X1, c1)

and (X2, c2) is a result of a choice of a chain of real families of Campedelli

line arrangements Lt. We look at Lt with real values of t. It gives

a chain of real Campedelli line arrangements connecting L1 and L2.

Campedelli line arrangements have at worse triple points. Therefore,

the number of real lines in an arrangement is not changing in a chain

of real deformations. It proves the first statement.

Now assume that L1 and L2 are purely real and have no triple points.

The triple points on intermediate arrangements Lt appear and dis-

appear independently. Their appearance and disappearance befalls

by triangle half-reversings: contracting and reappearing of triangles

like in Fig. 3. The half-reversing provided by a reappearing triangle

should turn back the local combinatorial structure and the local sign-

equipment, since, on one hand, according to Lemma 3.4 the local input

to the Euler characteristic of the real part should be 0 for both types

of half-reversings, and, on the other hand, as we observed already in

subsection 3.2, such an input due to a contracting triangle Pi0 (or, re-

spectively, to a turning back triangle P ′

i0
) is 0 if, and only if, (+,+,+) /∈

{Singik}k=0,2,4,6 (respectively, (+,+,+) /∈ {Sing′ik}k=0,2,4,6). Finally, it

implies that replacing the straight lines Li,R by suitable flexible lines

one can connect L1 and L2 by a continuous family of equipped flexible

configurations in RP2 without triple points. �
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3.4. Smoothing of T (−4) singularities. By a real smoothing of a

real surface (M, c) we mean any real fiber of a real flat family of surfaces

Z → D over the unit disc D (where the real structure on D is given

by the usual complex conjugation) such that (X0, c) = (M, c) and Xt

is nonsingular for any t ∈ D, t 6= 0. A singular point of a surface is

called T (−4)-singularity if its germ is isomorphic to the (Z/2Z)2-Galois

covering of the germ (C2, 0) branched in three lines Lα1 ∪ Lα2 ∪ Lα3

through 0 with a (Z/2Z)2 labeling {αi}i=1,2,3 such that α1+α2+α3 = 0.

We speak on a real surface with non real T (−4)-singularities, if all the

singular points of the surface are T (−4)-singularities and neither of the

singular points is real.

Theorem 3.7. Any two real smoothings (M1, c) and (M2, c) of a real

surface (M, c) with non real T (−4) singularities have diffeomorphic

real structures.

Proof. The pairs (M1, c) and (M2, c) are obtained from (M, c) by re-

moving c-invariant Milnor neighborhoods Uj ∪ c(Uj) of the each pair of

conjugated singularities followed by a c-invariant gluing of some stan-

dard pieces Nj ∪Nj̄, Nj = (N, j) and Nj̄ = (N, j̄), instead of Uj ∪ c(Uj)

by means of some boundary diffeomorphisms φj : ∂N → ∂Uj, φj̄ :

∂N → ∂c(Uj) such that c ◦ φj = φj̄ (so that c acts on Nj ∪ Nj̄ by
(x, j) 7→ (x, j̄)). As is shown, for example, in [18], the result of gluing

of the half of these pieces, say ∪Nj, gives diffeomorphic four-manifolds

M1 \
⋃

j Nj̄ and M2 \
⋃

j Nj̄ (in fact, ∂N is a lens space L(4, 1) and the
existence of such a diffeomorphism follows from a corresponding Bona-

hon theorem, see [1]). Now, it remains to extend such a diffeomorphism

Φ to M1 → M2 by symmetry, that is by taking Φ(x) = (c ◦ Φ)(x) for

each x ∈ (N, j̄). �

The following corollary is straightforward.

Corollary 3.8. Let L and L′ be two equipped real Campedelli line

arrangements related by a reversing of triangle Pi0 . Suppose that the

sides of Pi0 are linear dependent and that Signij 6= (+,+,+) for j =
0, 1, . . . , 6, where Pij , j = 1, . . . , 6, are the polygons adjacent to Pi0 .
Then the real Campedelli surfaces X(L) and X(L′) have diffeomorphic

real structures. �

Remark 3.9. In Theorem 3.7 and Corollary 3.8 the diffeomorphism

carrying one real structure into another preserves both the orientation

and the canonical class.
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Proof. The orientation and the canonical class of M = X0, M1 = Xε,
and M2 = X−ε are determined by the complex structure. The identi-
fication of M \ ∪Uj with the corresponding pieces of X±ε is given by
Morse-Lefschetz diffeomorphisms. Since the complex structure on Xt

depends continuously on t 6= 0, the Morse-Lefschetz diffeomorphisms
preserve the complex orientation and the canonical class. Therefore,
Φ restricted to M ext

1 = M1 \
⋃

j(Nj ∪ Nj̄) → M ext
2 = M2 \

⋃
j(Nj ∪

Nj̄) preserves the complex orientation and transforms K(M ext
2 ) into

K(M ext
1 ). It remains to notice that the homomorphisms H2(Mi,Z) →

H2(M ext
i ; Z) induced by inclusions M ext

i ⊂ Mi are injective. Indeed,
by Poincaré-Lefschetz duality, H2(Mi,M

ext
i ; Z) = H2(

⋃
j(Nj ∪Nj̄); Z),

while H2(
⋃

j(Nj ∪Nj̄); Z) = 0, since each (of pairwise disjoint) Nj and

Nj̄ is homotopy equivalent to RP2, see Corollary 2.6. �

3.5. Classification of mixed real Campedelli line arrangements

up to real deformations. Let L be a Campedelli line arrangement
which is mixed real with respect to a real structure cP : P2 → P2. We
say that a real Campedelli surface (X, cX), where X = X(L) and cX is
a lift of cP , has the type J±, where J = I, II, or III, if: L is without
triple points; it has the type J ; and cX = c± (see subsection 2.5 for
notation I, II, III and c±).

Theorem 3.10. There are exactly five different types of deformation
equivalent real Campedelli surfaces (X, c) associated with mixed real
Campedelli line arrangements. Arrangements of type II+ represent the
same deformation type as the arrangements of type II−. The other
four deformation types are provided by arrangements of types I± and
III±.

Proof. According to Proposition 3.6, X(L) and X(L′) are not de-
formation equivalent if L is a purely real Campedelli arrangement
and L′ is a mixed real one. By Lemma 3.1, if L has triple points,
the surface (X, cX) is real deformation equivalent to a surface asso-
ciated with a mixed real Campedelli line arrangement without triple
points. Therefore, there exist at most six types of deformation non-
equivalent real Campedelli surfaces corresponding to six types of mixed
real Campedelli arrangements: I±, II±, and III±. To distinguish them,
notice that a real deformation of a real Campedelli surface (X, cX) is
simultaneously a H = Kl(X, cP )-deformation, in a sense that not only
the action of cX but the action of the whole group H extends to the to-
tal space of the deformation. Moreover, since the Galois group G ⊂ H
preserves each fiber of the deformation, the real deformation of (X, cX)
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is simultaneously a real deformation for each of the other real structures

contained in H.

In the case of mixed real Campedelli arrangements, H is a quaternion

group (see Proposition 2.4), it contains four distinct real structures, and

they split in two conjugacy classes c± (see subsection 2.5). Finally, the

topological type of the unordered pair of two-manifolds (Fixc+,Fixc−)

is invariant under real deformations of (X, cX). Lemma 2.13 implies

this invariant distinguishes the types I±, II+, and III±.

To finish the proof, let us show that the types II+ and II− are de-

formation equivalent. Up to deformation equivalence, we can assume

that the vertices p1 and p2 of an arrangement L of type II have pro-

jective coordinates (1, 1, 1) and, respectively, (1, 1,−1). Moreover, we

can assume that l(1,0,0)l(0,1,0) = (z1 − z0)
2 + (z2 − z0)

2 and, respectively,
l(1,0,1)l(0,1,1) = (z1 − z0)

2 + (z2 + z0)
2. Then, the diagonal transforma-

tion z0 7→ z0, z1 7→ z1, z2 7→ −z2 gives rise (see equations (10)) to an

equivalence between the real structures c− and c+ after renumbering

(1, 0, 0) 7→ (1, 0, 1), (0, 1, 0) 7→ (0, 1, 1), and (0, 0, 1) 7→ (0, 0, 1). �

4. ”Dif 6= Def”

In this Section we give several examples of diffeomorphic real Campedelli

surfaces which are not deformation equivalent.

4.1. Example of a pair of diffeomorphic, but deformation non-

equivalent real surfaces.

Example 4.1. Two real Campedelli surfaces which have diffeomorphic

real structures but which are not real deformation equivalent.

Let L be a purely real Campedelli line arrangement defined by the

sides of a 7-gone P1, that is an arrangement of type (7, 14, 0, 0, 1).

Label the lines in a way that three consecutive sides of P1 be labelled

by (1, 0, 0), (1, 1, 0), and (0, 1, 0). Then, we equip L by signs so that

the triangle P0 having a common side with P1 along L(1,1,0) has the

signs Sign0 = (−,−,−). Recall that this choice can be extended to a

sign-equipment of L following transition rule (7), see a fragment of L

in Fig. 4.
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L

P0

L(1,0,0)

L(0,1,0)

L(1,1,0)

− + −

+ −−

+ + − − + −
+ −−

+ + −

Fig. 4

Let L′ be a sign-equipped arrangement obtained by the reversing the

triangle P0. This arrangement is of type type (7, 13, 1, 1, 0). By Corol-

lary 3.8, the real Campedelli surfaces X(L) and X(L′) have diffeomor-

phic real structures, and by Proposition 3.6 they are not deformation

equivalent.

4.2. Example of eight diffeomorphic, but pair-wise deforma-

tion non-equivalent real surfaces.

Example 4.2. Eight real Campedelli surfaces (X1, c1), . . . , (X8, c8)

which have diffeomorphic to each other real structures and which are

pairwise non-deformation equivalent.

Similar to Example Example 4.1, we search for equipped purely real

Campedelli line arrangements Li, i = 1, . . . , 8, such that, first, they

are related be sequences of reversings of non-positive triangles with

linear dependent sides, and, second, they differ by their types or the

adjacency types of their positive polygons. Then, by Theorem 3.7, the

real Campedelli surfaces X(Li) have diffeomorphic real structures, and

by Corollary 3.6, they are pairwise non-deformation equivalent.
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L(0,1,1)

L(1,0,1)

L(1,1,0)

L(1,0,0)

L(0,0,1)

L(0,1,0)

L(1,1,1)

P1

P2

P3 P4

P5

P6

P7

P8

P9

P10

P11

P12

P13 P14

P15
P16

P17

P18

P19

P20 P21

P22

Fig. 5

To construct such arrangements, start from a purely real Campedelli

line arrangement L(0,0,0,0) of type (11, 5, 5, 1, 0) depicted in Fig 5. This

arrangement has six pairwise disjoint triangles P1, . . . , P6. Each of them

has linear dependent sides. The number of sides for each of P7, . . . , P22

is given in Table (0, 0, 0, 0)1.
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P7 P8 P9 P10 P11 P12 P13 P14

4 4 5 4 5 4 4 5

P15 P16 P17 P18 P19 P20 P21 P22

3 5 3 5 3 6 3 3

Table (0, 0, 0, 0)1

Sign the triangle P1 by (+,+,+) and extend this choice to a sign-
equipment of L(0,0,0,0) following the transition rule (7). Then, as is easy
to check, L(0,0,0,0) has only two positive polygons, namely P1 and P2.

To insure a possibility to perform independent reversings of the four
triangles P3, . . . , P6 it is sufficient to consider L(0,0,0,0) as a small pertur-
bation of a degenerate configuration shown in Fig. 6. Now, it remains
to select the reversings and to count for each configuration its type and
the adjacency type of its positive polygons.

r

r

r

r

P3 P4

P5

P6

P1

P2

L(1,0,0)

L(1,1,0)

L(0,0,1)

L(1,1,1)

L(1,0,1)

L(0,1,1)

L(0,1,0)

Fig. 6

Before, for convenience in further computations, we collect in Table
(0, 0, 0, 0)2 the adjacency types of the triangles P1, . . . , P6 of L(0,0,0,0).

P1 (47, 4
′
8, 59, 3

′
15, 514, 4

′
13) P2 (516, 3

′
17, 518, 3

′
21, 620, 3

′
19)

P3 (59, 4
′
10, 511, 3

′
17, 516, 3

′
15) P4 (511, 4

′
12, 413, 4

′
7, 518, 3

′
17)

P5 (412, 4
′
13, 514, 3

′
19, 620, 3

′
22) P6 (620, 3

′
21, 48, 5

′
9, 410, 3

′
22)

Table (0, 0, 0, 0)2
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(Here, we include in the adjacency type of the triangle Pi, i = 1, . . . , 6,
the indices of the adjacent polygons. For example, in the adjacency
type (47, 4

′

8, 59, 3
′

15, 514, 4
′

13) of P1 the pattern 47 points out that the
polygon P7 having four sides has a common side with the triangle P1.)

The adjacency type of the positive polygons of L(0,0,0,0) is equal to

A(0,0,0,0) = ((4, 4′, 5, 3′, 5, 4′), (5, 3′, 5, 3′, 6, 3′)).

Perform in L(0,0,0,0) the reversing of P3. We obtain a new equipped
purely real Campedelli line arrangement. We denote it by L(1,0,0,0) and
we keep to denote its polygons (denoted by P ′

i in subsection 3.2) by Pi.
To count its invariants, we notice, first, that the adjacency type of P3

changes as follows:

(59, 4
′

10, 511, 3
′

17, 516, 3
′

15) 7→ (4′9, 510, 4
′

11, 417, 4
′

16, 415).

After that, we adjust the number of sides of P9, P10, P11, P17, P16, P15

given in Tables (0, 0, 0, 0)1 and (0, 0, 0, 0, )2 and obtain the tables for
L(1,0,0,0): Table (1, 0, 0, 0)1 and Table (1, 0, 0, 0)2.

P7 P8 P9 P10 P11 P12 P13 P14

4 4 4 5 4 4 4 5

P15 P16 P17 P18 P19 P20 P21 P22

4 4 4 5 3 6 3 3

Table (1, 0, 0, 0)1

P1 (47, 4
′
8, 49, 4

′
15, 514, 4

′
13) P2 (416, 4

′
17, 518, 3

′
21, 620, 3

′
19)

P3 (4′9, 510, 4
′
11, 417, 4

′
16, 415) P4 (411, 4

′
12, 413, 4

′
7, 518, 4

′
17)

P5 (412, 4
′
13, 514, 3

′
19, 620, 3

′
22) P6 (620, 3

′
21, 48, 4

′
9, 510, 3

′
22)

Table (1, 0, 0, 0)2

We conclude that: L(1,0,0,0) has the type (9, 9, 3, 1, 0); it contains two
and only two positive polygons, namely P1 and P2; and the adjacency
type of its positive polygons is equal to

A(1,0,0,0) = ((4, 4′, 4, 4′, 5, 4′), (4, 4′, 5, 3′, 6, 3′)).

Perform in L(1,0,0,0) the reversing of P4. Denote the new equipped
purely real Campedelli line arrangement by L(1,1,0,0) and proceed as
before. As a result, we obtain two tables for L(1,1,0,0): Table (1, 1, 0, 0)1

and Table (1, 1, 0, 0)2.
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P7 P8 P9 P10 P11 P12 P13 P14

5 4 4 5 3 5 3 5

P15 P16 P17 P18 P19 P20 P21 P22

4 4 5 4 3 6 3 3

Table (1, 1, 0, 0)1

P1 (57, 4
′
8, 49, 4

′
15, 514, 3

′
13) P2 (416, 5

′
17, 418, 3

′
21, 620, 3

′
19)

P3 (4′9, 510, 3
′
11, 517, 4

′
16, 415) P4 (3′11, 512, 3

′
13, 57, 4

′
18, 517)

P5 (512, 3
′
13, 514, 3

′
19, 620, 3

′
22) P6 (620, 3

′
21, 48, 4

′
9, 510, 3

′
22)

Table (1, 1, 0, 0)2

We conclude that: L(1,1,0,0) has the type (11, 5, 5, 1, 0); it contains two

and only two positive polygons, namely P1 and P2; and the adjacency

type of its positive polygons is equal to

A(1,1,0,0) = ((5, 4′, 4, 4′, 5, 3′), (4, 5′, 4, 3′, 6, 3′)).

Perform in L(1,1,0,0) the reversing of P3. Denote the new equipped

purely real Campedelli line arrangement by L(0,1,0,0) and proceed as

before. As a result, we obtain two tables for L(0,1,0,0): Table (0, 1, 0, 0)1

and Table (0, 1, 0, 0)2.

P7 P8 P9 P10 P11 P12 P13 P14

5 4 5 4 4 5 3 5

P15 P16 P17 P18 P19 P20 P21 P22

3 5 4 4 3 6 3 3

Table (0, 1, 0, 0)1

P1 (57, 4
′
8, 59, 3

′
15, 514, 3

′
13) P2 (516, 4

′
17, 418, 3

′
21, 620, 3

′
19)

P3 (59, 4
′
10, 411, 4

′
17, 516, 3

′
15) P4 (4′11, 512, 3

′
13, 57, 4

′
18, 417)

P5 (512, 3
′
13, 514, 3

′
19, 620, 3

′
22) P6 (620, 3

′
21, 48, 5

′
9, 410, 3

′
22)

Table (0, 1, 0, 0)2
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We conclude that: L(0,1,0,0) has the type (11, 5, 5, 1, 0); it contains two
and only two positive polygons, namely P1 and P2; and the adjacency
type of its positive polygons is equal to

A(0,1,0,0) = ((5, 4′, 5, 3′, 5, 3′), (5, 4′, 4, 3′, 6, 3′)).

Perform in L(0,1,0,0) the reversing of P5. Denote the new equipped
purely real Campedelli line arrangement by L(0,1,1,0) and proceed as
before. As a result, we obtain two tables for L(0,1,1,0): Table (0, 1, 1, 0)1

and Table (0, 1, 1, 0)2.

P7 P8 P9 P10 P11 P12 P13 P14

5 4 5 4 4 4 4 4

P15 P16 P17 P18 P19 P20 P21 P22

3 5 4 4 4 5 3 4

Table (0, 1, 1, 0)1

P1 (57, 4
′
8, 59, 3

′
15, 414, 4

′
13) P2 (516, 4

′
17, 418, 3

′
21, 520, 4

′
19)

P3 (59, 4
′
10, 411, 4

′
17, 516, 3

′
15) P4 (4′11, 412, 4

′
13, 57, 4

′
18, 417)

P5 (4′12, 413, 4
′
14, 419, 5

′
20, 422) P6 (520, 3

′
21, 48, 5

′
9, 410, 4

′
22)

Table (0, 1, 1, 0)2

We conclude that: L(0,1,1,0) has the type (8, 10, 4, 0, 0); it contains two
and only two positive polygons, namely P1 and P2; and the adjacency
type of its positive polygons is equal to

A(0,1,1,0) = ((5, 4′, 5, 3′, 4, 4′), (5, 4′, 4, 3′, 5, 4′)).

Perform in L(0,1,1,0) the reversing of P4. Denote the new equipped
purely real Campedelli line arrangement by L(0,0,1,0) and proceed as
above. As a result, we obtain two tables for L(0,0,1,0): Table (0, 0, 1, 0)1

and Table (0, 0, 1, 0)2.

P7 P8 P9 P10 P11 P12 P13 P14

4 4 5 4 5 3 5 4

P15 P16 P17 P18 P19 P20 P21 P22

3 5 3 5 4 5 3 4

Table (0, 0, 1, 0)1
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P1 (47, 4
′
8, 59, 3

′
15, 414, 5

′
13) P2 (516, 3

′
17, 518, 3

′
21, 520, 4

′
19)

P3 (59, 4
′
10, 511, 3

′
17, 516, 3

′
15) P4 (511, 3

′
12, 513, 4

′
7, 518, 3

′
17)

P5 (3′12, 513, 4
′
14, 419, 5

′
20, 422) P6 (520, 3

′
21, 48, 5

′
9, 410, 4

′
22)

Table (0, 0, 1, 0)2

We conclude that: L(0,0,1,0) has the type (10, 6, 6, 0, 0); it contains two
and only two positive polygons, namely P1 and P2; and the adjacency
type of its positive polygons is equal to

A(0,0,1,0) = ((4, 4′, 5, 3′, 4, 5′), (5, 3′, 5, 3′, 5, 4′)).

Perform in L(0,0,1,0) the reversing of P3. Denote the new equipped
purely real Campedelli line arrangement by L(1,0,1,0) and proceed as
before. As a result, we obtain two tables for L(1,0,1,0): Table (1, 0, 1, 0)1

and Table (1, 0, 1, 0)2.

P7 P8 P9 P10 P11 P12 P13 P14

4 4 4 5 4 3 5 4

P15 P16 P17 P18 P19 P20 P21 P22

4 4 4 5 4 5 3 4

Table (1, 0, 1, 0)1

P1 (47, 4
′
8, 49, 4

′
15, 414, 5

′
13) P2 (416, 4

′
17, 518, 3

′
21, 520, 4

′
19)

P3 (4′9, 510, 4
′
11, 417, 4

′
16, 415) P4 (411, 3

′
12, 513, 4

′
7, 518, 4

′
17)

P5 (3′12, 513, 4
′
14, 419, 5

′
20, 422) P6 (520, 3

′
21, 48, 4

′
9, 510, 4

′
22)

Table (1, 0, 1, 0)2

We conclude that: L(1,0,1,0) has the type (8, 10, 4, 0, 0); it contains two
and only two positive polygons, namely P1 and P2; and the adjacency
type of its positive polygons is equal to

A(1,0,1,0) = ((4, 4′, 4, 4′, 4, 5′), (4, 4′, 5, 3′, 5, 4′)).

Finally, perform in L(1,0,1,0) the reversing of P6, denote the new
equipped purely real Campedelli line arrangement L(1,0,1,1) and, once
more, proceed as before. As a result, we obtain two tables for L(1,0,1,1):
Table (1, 0, 1, 1)1 and Table (1, 0, 1, 1)2.
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P7 P8 P9 P10 P11 P12 P13 P14

4 3 5 4 4 3 5 4

P15 P16 P17 P18 P19 P20 P21 P22

4 4 4 5 4 4 4 5

Table (1, 0, 1, 1)1

P1 (47, 3
′
8, 59, 4

′
15, 414, 5

′
13) P2 (416, 4

′
17, 518, 4

′
21, 420, 4

′
19)

P3 (5′9, 410, 4
′
11, 417, 4

′
16, 415) P4 (411, 3

′
12, 513, 4

′
7, 518, 4

′
17)

P5 (3′12, 513, 4
′
14, 419, 4

′
20, 522) P6 (4′20, 421, 3

′
8, 59, 4

′
10, 522)

Table (1, 0, 1, 1)2

We conclude that: L(1,0,1,1) has the type (8, 10, 4, 0, 0); it has two
and only two positive polygons, namely P1 and P2; and the adjacency
types of its positive polygons is equal to

A(1,0,1,1) = ((4, 3′, 5, 4′, 4, 5′), (4, 4′, 5, 4′, 4, 4′)).

The results obtained show that each two of the eight constructed
arrangements either have different types or if their types coincide, they
have different adjacency types of their positive polygons.

4.3. Mixed real arrangements.

Example 4.3. Real Campedelli surfaces of types I− and III+ have
diffeomorphic real structures, while they are not deformation equivalent.

Indeed, let (X, c) be a real Campedelli surface of type III+ associated
with a mixed real Campedelli line arrangement of type III. We can
move the vertex p2 so that it goes from the triangle P3 to P1 through
the line at infinity, L(1,1,0). Theorem 3.7 applies and shows that the
real structures c and c1 are diffeomorphic.

On the other hand, by Theorem 3.10, real surfaces of type I− are
not deformation equivalent to real surfaces of type III+. �

In fact, in the case of mixed real types one can get a complete answer
to the Dif6=Def. As it follows from the next theorem and Theorem 3.10,
the number of Dif classes is four, and the number of Def classes is five.

Theorem 4.4. The real structures of types I±, II+, and III− are
pairwise non-diffeomorphic.

Proof. As it follows from Lemma 2.13, their real points sets have dif-
ferent topological types. �
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5. Final remarks

5.1. A pre-maximal surface. Recall that a real surface (X, c) is

called an (M−k)-surface, if dimH∗(XR; Z/2Z) = dimH∗(XC; Z/2Z
⊗

)−

2k.

One can show that there are no M - and (M−1)-surfaces among real

Campedelli surfaces. As seems for us, the following (M − 2)-surface is

of certain interest.

Let L be the equipped purely real Campedelli line arrangement de-

picted in Fig. 7. Its type is (7, 14, 0, 0, 1) and it has three and only

three positive polygons: the 7-gon P1 and two quadrangles, P2 and P3,

with the sides L(1,1,0), L(0,1,1), L(0,0,1), and L(1,1,1) for P2, and L(0,1,0),

L(1,0,0), L(0,1,1), and L(1,0,1) for P3.

L(0,1,1)

L(1,0,1)

L(1,1,0)

L(1,0,0)

L(0,0,1)

L(0,1,0)

L(1,1,1)

P1

+ + +

−−−

− + +

+ −− + + +

P3+ + −

−− +

− + −
+ −−

−−−

+ − +
−− +

−−−
+ + −

+ −−

+ + −
+ − +

+ + +

P2

− + −

×

− + +

−− +

Fig. 7
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Consider the Campedelli surface X = X(L) with its real structure

c = c+++. As it follows from Corollary 2.6, the real part XR of (X, c)

consists of three connected components: the one over P1 is a connected

sum of eight real projective planes (the Euler characteristic −6), the one

over P2 is a Klein bottle, and the one over P3 is a torus. It may be inter-

esting to notice that, in accordance with the Smith-Thom inequality,

dimH∗(XR; Z/2Z) = 10 + 4 + 4 < 22 = dimH∗(XC; Z/2Z), while the

ordinary Betti numbers of XR surpass those of XC: dimH∗(XR; Q) =

8 + 2 + 4 = 14 > 10 = dimH∗(XC; Q).

5.2. Bad reversings of triangles. Let us show that the hypothesis

on the signs in Corollary 3.8 is essential: without it, there is no local

equivariant diffeomorphism between the real Campedelli surfaces X(L)

and X(L′), where L and L′ are related by a reversing of triangle as

in Corollary 3.8. For example, in the less evident case, when X(L)

(and thus X(L′) as well) has a real component over the triangle, to

prove the nonexistence of a local equivariant diffeomorphism one can

argue in the following way. We need to compare the quotients by the

complex conjugation of the Galois (Z/2Z)2-coverings of a small ball

around the triple point branched in, respectively, L and L′ (recall that

α1 + α2 + α3 = 0). More precisely, the boundaries of these quotients

are naturally identified, and the question is about possibility to extend

this identification to the interior. In fact, this is exactly one of the

questions treated in [21] in an equivalent form. As it follows from

[21], the extension does not exist if and only if the four-manifold M

obtained by sewing of the quotients along the boundary has the same

homology as the four-sphere S4. Observing that there is a loop on the

real projective plane lying over the vanishing triangle in one half of M

linked with the real projective plane lying over the vanishing triangle

in the other half (it is sufficient to consider a loop over one of the sides

of the vanishing triangle), and applying the Poincaré-Lefschetz duality

to Hi(M,M−) (M± stand for the halves of M) in the exact sequence

→ H2(M,M−) → H1(M
−) → H1(M) → H1(M,M−) →,

one can easily deduce that H∗(M) = H∗(S
4).
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5.3. Moves of class T . Theorem 3.7 (and its Corollary 3.8) are based
on smoothings of T (−4)-singularities. The latters constitute the sim-
plest example of the so-called singularities of class T . These singular-
ities, introduced by J. Kollár and N. J. Shepherd-Barron in [16], play
crucial role in Manetti’s examples [18]: as is proved in [18], smoothings
of such singularities provide diffeomorphic surfaces. As a consequence,
the statement and the proof of Theorem 3.7 extend word-by-word to
real smoothings of real surfaces with arbitrary non real singularities of
class T .

5.4. On the number of deformation classes. According to Propo-
sition 3.6, the set of deformation classes of real Campedelli surfaces
splits into two disjoint subsets: deformation classes of real surfaces as-
sociated with mixed real Campedelli line arrangements, and those of
real surfaces associated with purely real Campedelli line arrangements.
By Theorem 3.10, the first subset contains only five elements. Let us
show that the other one contains more than hundread elements.

We base our count on Proposition 2.7 (and Proposition 3.6), which
implies that if X(L1) and X(L2) are real deformation equivalent, where
Li, i = 1, 2, are equipped purely real Campedelli line arrangements
without triple points, then, after a change of the labels in L2 and the
change of the sign-equipment corresponding to it by a renumbering
isomorphism h : (Z/2Z)3 → (Z/2Z)3, it is possible to find a homeo-
morphism λ : RP2 → RP2 which transforms L1 ∩RP2 in L2 ∩ RP2 and
preserves the labels and the sign-equipments.

Consider an arrangement L of seven real lines which has no triple
points and is of type (11, 5, 5, 1, 0). It has 7! distinct labelings turning
it in purely real Campedelli line arrangements, and, for each labeling,
there are the eight distinct sign-equipments. Any homeomorphism of
RP2 preserving L ∩ RP2 should preserve L(1,0,0) ∩ RP2 and the six-gon
P20 (see Fig. 5). It is easy to see that, up to isotopy fixing L ∩ RP2,
there is only one such homeomorphism, except identity. Since the order
of the group AutG of G = (Z/2Z)3 is equal to 7 · 6 · 4 = 168, we find
that there are at least 7!·8

(7·6·4)·2
= 120 distinct deformation classes of real

Campedelli surfaces X = X(L), where L is of the type (11, 5, 5, 1, 0).
In fact, the number of deformation classes is even bigger. Indeed,

similar arguments show that at least 120 more deformation classes of
real Campedelli surfaces are given by X = X(L), where L are of the
type (9, 9, 3, 1, 0). In addition, as is known (see [11], [5], and [23])
there are nine other deformation classes (of seven other types) of purely
real arrangements of seven lines without triple points. Note also that
two such arrangements are deformation equivalent if, and only if, they
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are homeomorphic, see [11] (proof is found in [10]). Similarly, a self-
homeomorphism of an equipped purely real arrangement of seven lines
without triple points should be isotopic to a projective automorphism,
which would imply, according to Corollary 3.6, that the number of
deformation classes of purely real Campedelli surfaces is the same as
the number of deformation classes of equipped purely real Campedelli
arrangements without triple points.
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