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This talk is based on the joint work with J. Athreya on the logarithm laws
for unipotent flows.

Two important classes of dynamical systems on non-compact manifolds are
the geodesic and horocycle flows on the unit tangent bundle of a finite volume
non-compact hyperbolic surface. Both of these flows are known to be ergodic,
and thus, generic points are dense. A natural question is to understand the
behavior of excursion of the trajectories into the cusp(s).

For geodesic flows, statistical properties of these excursions were first stud-
ied by D. Sullivan (in the context of finite volume hyperbolic manifolds) and
later, in the more general context of finite volume locally symmetric spaces, by
D. Kleinbock and myself. About ten years ago we proved the following result:

Let S be a noncompact irreducible locally symmetric space of noncompact
type and finite volume. Let S = K\G/Γ for some semisimple Lie group G, and
irreducible non-uniform lattice Γ ⊂ G. Here K denotes the maximal compact
subgroup of G. For x ∈ S, let T 1

x (S) denote the unit tangent space at x, let ν
denote the Lebesgue measure on T 1

x (S). For θ ∈ T 1
x (S), and t ∈ R let gt(x, θ)

denote the image of (x, θ) under geodesic flow for time t, let dS denote the
distance function on S.

Theorem 1. There exists k = k(S) > 0 such that the following holds: for
all x, y ∈ S, and any sequence of times t, and almost every θ ∈ T 1

x (S),

lim supt→∞
d(gt(x, θ), y)

log t
= 1/k.

The proof of Theorem 1 is mostly based on the exponential rate of mixing
for the geodesic flow on the unit tangent bundle of S.

Recently J. Athreya and myself considered the question of excursion into
the cusp for unipotent flows and horospherical actions on finite volume homoge-
neous spaces, and in particular, on the spaces of unimodular lattices in Rn. We
used probabilistic techniques (generalized Borel-Cantelli lemmas), estimates on
decay of matrix coefficients for unitary representations of semisimple groups,
dynamics of horospherical actions and some other methods. Here I will con-
centrate on results related to the geometry of numbers. These results apply to
unipotent flows on SL(n, R)/SL(n, Z).



Let Ωn = SL(n, R)/SL(n, Z) denote the space of unimodular lattices in Rn.
Define α1 : Ωn 7→ R+ by

α1(Λ) := sup
0 6=ν∈Λ

1
||ν||

The logarithm of α1(Λ) characterizes, up to a bounded function, one of the
natural distances (in Ωn) from Λ to Zn.

Let {ut}t∈R denote a unipotent one-parameter subgroup of SL(n, R).
Theorem 2. For almost every Λ ∈ Ωn (with respect to the Haar measure

µ = µn on Ωn),

lim supt→∞
log α1(utΛ)

log t
=

1
n

.

We split the proof of Theorem 2 into two halves:
(1)Upper bounds: lim supt→∞

log α1(utΛ)
log t ≤ 1

n .

(2)Lower bounds: lim supt→∞
log α1(utΛ)

log t ≥ 1
n .

For the upper bound, we use the Siegel integral formula, presented below, to
estimate the measure of the set of lattices that have a short vector, and apply
the easy (convergence) half of the Borel-Cantelli Lemma).

For the lower bound, we construct a sequence of times tk so that utkΛ has
an appropriately short vector. In order to do this, we construct a sequence
of regions Ak ⊂ Rn such that if Λ ∩ Ak 6= {0}, then utkΛ has a short vector.
For n = 2 the regions Ak that we construct are centrally symmetric rectangles
of area 4, and by Minkowski’s theorem, we can find non-zero lattice points in
these regions for any lattice (and thus, our lower bound holds for every lattice
Λ whose {ut} orbit is not closed). For n > 2, not all lattices intersect our Ak’s
non-trivially. Instead, we estimate the measure of the set of lattices who do not
intersect Ak non-trivially.

Let n = 2. Then we can assume that

ut = ht
def.=

(
1 t
0 1

)
.

Let Λ ∈ Ω2 be a lattice without a horizontal vector (i.e. it is not {ht}-periodic).
For k ∈ N define

Ak := {(x, y) ∈ R2 : |x| ≤
√

k, |y| ≤ 1/
√

k}.

Ak is a convex, centrally symmetric region of area 4, so by Minkowski’s
theorem, there is a non zero point (xk, yk) ∈ Ak ∩ Λ, and moreover, since Λ
has no horizontal vectors, yk 6= 0 for all k. Let tk = −xk/yk. The sequence
{(xk, yk)} is unbounded: otherwise, our lattice would have an accumulation
point. Therefore tk →∞. Now, note that

α1(htkΛ) ≥ 1/|yk|,

since htk(xk, yk) = (0, yk). Now |tk| = | − xk/yk| ≤
√

k/yk ≤ 1/y2
k, so

log α1(htkΛ) ≥ log 1/|yk| ≥
1
2

log |tk|,



so we have produced an unbounded sequence of times tk where we achieve our
lower bound (but with maybe tk → −∞).

Now, let n > 2. As all essential ideas are contained in the case n = 3, we
describe only this case. Then we can assume that either

(i) ut =

 1 0 0
0 1 t
0 0 1

 or (ii) ut =

 1 t t2

2
0 1 t
0 0 1

.

Fix ε > 0. In the case (i) we put Ak := {(x, y, z) ∈ R3 : |x| ≤ |k|−1/3,−k2/3 ≤
y ≤ −1, k−1/3−ε ≤ z ≤ k−1/3+ε} and in the case (ii) we put Ak := {(x, y, z) ∈
R3 : |x− y2/2z| ≤ |k|−1/3,−k2/3 ≤ y ≤ −1, k−1/3−ε ≤ z ≤ k−1/3+ε}.

In both cases m(Ak) →∞ where m is the Lebesgue measure. Suppose that
we proved the following

Lemma 1. Let {Bk}k∈N be a sequence of Borel measurable sets in Rn, n ≥
3, such that m(Bk) →∞.

Then
lim

k→∞
µ(Λ ∈ Ωn : Λ ∩Bk = ∅) → 0.

Then, for almost all Λ ∈ Ω3, by passing to a subsequence of needed, we can
produce a sequence of distinct points {(xk, yk, zk) ∈ Ak} with zk 6= 0.

Set tk = −yk/zk. Then tk → +∞. Also in both cases (i) and (ii)

α(utkΛ) ≥ 1
2k−1/3+ε

and
tk ≤ k1+3ε.

From this we get that

lim supt→∞
log α1(utΛ)

log t
>

1
3
− δ(ε)

where δ(ε) → 0 as ε → 0. It gives the desired lower bound for almost all Λ ∈ Ωn.
The proof lemma 1 is based on classical results from the geometry of num-

bers. Let f : Rn 7→ R be a bounded, compactly-supported function. We define
f̂ : Ωn 7→ R by

f̂(Λ) =
∑

0 6=ν∈Λ

f(ν).

We have the Siegel Integral Formula:∫
Ωn

f̂dµ =
∫

Rn

fdm

where m is the Lebesgue measure on Rn and µ is the normalized Haar measure
on SL(n, R)/SL(n, Z). As a consequence of this, we got that the L1-norm of f̂
is not greater than the L1-norm of f .

For L2-norms we have the following Lemmas 2 and 3, which are special cases
of results obtained by C. A. Rogers more than fifty years ago. We specialize
to the case where f = IA, the indicator function of a bounded set A. Define
a := ||IA||1 = m(A). Let Ba be the ball around the origin 0 with m(Ba) = a.



Lemma 2. For n ≥ 3, ∫
Ωn

Î2
Adµ ≤

∫
Ωn

Î2
BA

dµ.

Remark. Rogers works with general Borel measurable functions and their
spherical symmetrizations.

Lemma 2 is a corollary of the following integral formula.
Lemma 3. Let n ≥ 3. Let f be a non-negative Borel measurable function

on Rn. Then∫
Ωn

f̂2(Λ)dµ = (
∫

Rn

fdµ)2 +
∑

k,q∈Z:(k,q)=1

∫
Rn

f(kx)f(qx)dm(x)

where (k, q) is the greatest common divison of k and q.
In fact, the proof of this result (and its analogs for p-norms, p > 2, also

given by Rogers) and the proof of the Siegel integral formula (which can be
thought of as such a formula for p = 1) follow on much the same lines. Define
a functional Tp on the space Cc(Rn \ {0})p of continuous, compactly supported
functions on (Rn \ {0})p by

Tp(h) =
∫

Ωn

∑
v1,...,vp∈Λ\{0}

h(v1, . . . vp).

This is clearly SL(n, R) invariant, and thus the measure that defines it
must be combination of SL(n, R)-invariant measures on SL(n, R)-orbits in (Rn\
{0})p. We perform this decomposition and apply it to functions h on (Rn\{0})p

defined by h(v1, . . . , vp) = f(v1) . . . f(vp), where f ∈ Cc(Rn \ {0}).
For p = 1 there is only one orbit, all of Rn \ {0}. For p = 2, there is

an orbit consisting of linearly independent paris of vectors, which yields the
first term (||f ||21 = ||f̂ ||21), and the second term captures the contribution of
paris of linearly dependent vectors. For p > 2, the formula becomes much
more complicated. It should be noted that the p-norm formula only works for
dimensions n > p (in fact if n = p then the Lp-norm of f̂ is usually infinite).

Using Siegel integral formula, one can easily get the following:
Lemma 4. For n ≥ 3,

lim
a→∞

a2

||ÎBa ||2
= 1.

Lemma 1 is an easy consequence of Siegel intergral formula, lemmas 2 and
4, and of the Cauchy-Schwartz inequality.

Concluding remarks. (a) If p < n is an integer, Rogers proved that
||ÎA||p ≤ ||ÎBA

||p in the following cases: (1) p = 3, (2) A is convex. I do not
know if this inequality is proved for any A and any integer p < n. It will be
interesting to prove the inequality when p ≥ 1 is not an integer.

(b) A. Venkatesh informed us that the statement of Lemma 1 is true also
for n = 2. In this case the proof is much more complicated and is based on the
theory of Eisenstein series.



(c) A. Venkatesh also suggested the following question which is in the spirit
of Lemma 1. Let A ⊂ R be a set of positive Lebesgue measure. Is it true that
the complement in R of the union

⋃
n∈Z nA has finite Lebesgue measure?

(d) It would be interesting to get an analog of Lemma 1 for the set of saddle
connections in a strata if abelian differentials on a surface of genus g > 1.


