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Abstract. We start from an interpretation of the BC2-symmetric \Type I"
(elliptic Dixon) elliptic hypergeometric integral evaluation as a formula for a
Casoratian of the elliptic hypergeometric equation, and give an extension to
higher-dimensional integrals and higher-order hypergeometric functions. This
allows us to prove the corresponding elliptic beta integral and transformation
formula in a new way, by proving both sides satisfy the same di�erence equa-
tions, and that the di�erence equations satisfy a Galois-theoretical condition
ensuring uniqueness of simultaneous solution.

1. Introduction

Plain hypergeometric functions and their q-analogues are widely used in math-
ematics and mathematical physics. They can be de�ned either as in�nite series or
contour integrals, more or less on an equal footing [2]. As to the recently discov-
ered elliptic hypergeometric functions, the situation with them is di�erent|their
general instances are de�ned only via integral representations. The general concept
of elliptic hypergeometric integrals was introduced in [14]. Elliptic beta integrals
[4, 10, 13, 14, 17] are the simplest representatives of integrals of such type. In the
univariate setting there is only one elliptic beta integral [13], presently the top level
known generalization of the Euler beta integral. In the multivariable case such
integrals are grouped in three classes.

The n-dimensional type I elliptic beta integrals contain 2n+ 3 free parameters,
and there are two known general methods of proving them [10, 16]. The type II inte-
grals have a smaller number of parameters, and admit a straightforward derivation
from the type I integrals [4, 14]. Both types of these exactly computable integrals
admit higher-order extensions with more parameters, with associated transforma-
tion laws [10]. For the BCn root system, these are elliptic analogues of an integral
due to Dixon [5] (type I) and of Selberg's famous integral [2] (type II, with 5 + 1
parameters), respectively. Multiple elliptic beta integrals of the third class [14] can
be represented as determinants of univariate integrals, which, in turn, reduce to
computable theta function determinants.

In the present paper, we follow up on the observation implicit in [10] that the
elliptic Dixon integrals can be expressed as determinants of univariate elliptic hy-
pergeometric integrals, higher-order analogues of the elliptic beta integral. This
allows us to give a new proof of the corresponding evaluation formula and of the
related transformation formula established �rst in [10]. The evaluation result lifts
Varchenko's determinant of univariate plain hypergeometric integrals [19] and the
Aomoto-Ito determinant [3] to the elliptic level and enriches the list of known com-
putable determinants compiled in [7].
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We use the following notation. The key in�nite product is

(z; p)1 :=

1Y
k=0

(1� zpk);

where jpj < 1 and z 2 C. The elliptic theta function has the form:

�p(z) := (z; p)1(z�1; p)1;

where z 2 C�. It obeys the properties
�p(pz) = �p(z

�1) = �z�1�p(z)
and �p(z) = 0 for z = pZ. We follow the standard useful convention that

�p(a1; : : : ; am) :=

mY
k=1

�p(ak); �p(tz
�1) := �p(tz)�p(tz

�1);

and say that a meromorphic function f(z) is p-elliptic if f(pz) = f(z). The simplest
nonconstant p-elliptic function (of the second order) has the form �p(az; bz)=�p(cz; dz),
where ab = cd.

The standard elliptic gamma function, depending on two complex bases p and q
lying in the unit disc, jpj; jqj < 1, has the form:

�p;q(z) =

1Y
j;k=0

1� z�1pj+1qk+1

1� zpjqk
;

where z 2 C�. It obeys the properties �p;q(z) = �q;p(z),

�p;q(qz) = �p(z)�p;q(z); �p;q(pz) = �q(z)�p;q(z);

and has zeros at z = pZ>0qZ>0 and poles at z = pZ�0qZ�0 . The re
ection formula
has the form �p;q(a)�p;q(b) = 1; ab = pq; we set also

�p;q(a1; : : : ; am) :=

mY
k=1

�p;q(ak); �p;q(tz
�1) := �p;q(tz)�p;q(tz

�1);

�p;q(tz
�1
1 z�12 ) = �p;q(tz1z2)�p;q(tz1z

�1
2 )�p;q(tz

�1
1 z2)�p;q(tz

�1
1 z�12 ):

2. The elliptic hypergeometric equation

The following elliptic analogue of the Gauss hypergeometric function was intro-
duced in [14, 15]

(1) V (t; p; q) = �

Z
T

Q8
j=1 �p;q(tjz

�1)

�p;q(z�2)

dz

2�
p�1z ;

where � = (p; p)1(q; q)1=2 and T is the positively oriented unit circle. The pa-

rameters tj are restricted by the balancing condition
Q8

j=1 tj = (pq)2 and the

inequalities jtj j < 1; j = 1; : : : ; 8. The V -function can be meromorphically contin-
ued to all tj 2 C� preserving the balancing condition. For t7t8 = pq (and other
similar restrictions), it reduces to the elliptic beta integral [13]

(2) �

Z
T

Q6
j=1 �p;q(tjz

�1)

�p;q(z�2)

dz

2�
p�1z =

Y
1�j<k�6

�p;q(tjtk):
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The addition formula for elliptic theta functions written in the form

t3�p(t2t
�1
3 ; t1z

�1) + t1�p(t3t
�1
1 ; t2z

�1) + t2�p(t1t
�1
2 ; t3z

�1) = 0

yields the following contiguity relation, via a corresponding relation for the inte-
grands:

(3)
t1V (qt1)

�p(t1t
�1
2 ; t1t

�1
3 )

+
t2V (qt2)

�p(t2t
�1
1 ; t2t

�1
3 )

+
t3V (qt3)

�p(t3t
�1
1 ; t3t

�1
2 )

= 0;

where V (qtj) denotes the V (t; p; q)-function with the parameter tj replaced by

qtj (with the balancing condition being
Q8

j=1 tj = p2q). Bailey-type symmetry

transformations for the V -function [10, 14] give to (3) di�erent forms, including in
particular:
(4)Q8

j=4 �p (t1tj=q)V (t1=q)

t1�p(t2=t1; t3=t1)
+

Q8
j=4 �p (t2tj=q)V (t2=q)

t2�p(t1=t2; t3=t2)
+

Q8
j=4 �p (t3tj=q)V (t3=q)

t3�p(t1=t3; t2=t3)
= 0;

where
Q8

j=1 tj = p2q3. In combination with (3), this yields the elliptic hypergeo-

metric equation [15]:

A(t1; t2; : : : ; t8; q; p)
�
U(qt1; q

�1t2; q; p)� U(t; q; p)
�

(5)

+A(t2; t1; : : : ; t8; q; p)
�
U(q�1t1; qt2; ; q; p)� U(t; q; p)

�
+ U(t; q; p) = 0;

where we have denoted

(6) A(t1; : : : ; t8; q; p) := �p(t1=qt3; t3t1; t3=t1)

�p(t1=t2; t2=qt1; t1t2=q)

8Y
k=4

�p(t2tk=q)

�p(t3tk)

and

U(t; q; p) :=
V (t; q; p)Q2

k=1 �p;q(tkt
�1
3 )

:

The potential A(t1; : : : ; t8; q; p) is a p-elliptic function of parameters t1; : : : ; t8, one
of which should be counted as a dependent variable through the balancing condition.

We set t1 = (pq)2=t2 � � � t8 and perform the shift t2 ! pt2 (so that t1 ! t1=p).
Since the function A is p-elliptic in all parameters, we have A(p�1t1; pt2; : : :) =
A(t1; t2; : : :). The function U(p�1t1; pt2) de�nes therefore an independent solution
of the elliptic hypergeometric equation. Let us compute the Casoratian of these
two solutions (i.e., a discrete version of the Wronskian). For this, we multiply the
above equation by U(p�1t1; pt2), the equation

A(t1; t2; : : : t8; q; p)
�
U(p�1qt1; pq

�1t2)� U(p�1t1; pt2)
�

+A(t2; t1; t3; : : : ; q; p)
�
U(p�1q�1t1; pqt2)� U(p�1t1; pt2)

�
+ U(p�1t1; pt2) = 0

by U(t1; t2), subtract them and obtain

(7) A(t1; t2; : : : t8; q; p)D(p�1t1; q
�1t2) = A(t2; t1; t3; : : : ; q; p)D(p�1q�1t1; t2);

where

D(t1; t2) = U(qpt1; t2)U(t1; pqt2)� U(qt1; pt2)U(pt1; qt2)
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is the needed Casoratian. It is symmetric in p and q, which is an important property.
The expression

D(t1; t2) =
V (pqt1; t2)V (t1; pqt2)� t�21 t�22 V (qt1; pt2)V (pt1; qt2)Q2

k=1 �p;q(tkt
�1
3 ; pqtkt

�1
3 )

can obviously be interpreted as the determinant of a particular 2� 2 matrix whose
elements are expressed via the V -function.

Since t1 is a dependent variable, this is actually a �rst order di�erence equation
in t2. After scaling t1 ! pt1; t2 ! qt2 (so that t1 = pq=

Q8
j=2 tj), we obtain the

following equation for f(t2) := D(t1; t2):

f(qt2) =
A(pt1; qt2; t3; : : : ; q; p)
A(qt2; pt1; t3; : : : ; q; p)f(t2)

= � t1
qt2

�p(t1=q
2t2; t1=qt3; t

�1
1 t�13 )

�p(t2=t1; t2=t3; q�1t
�1
2 t�13 )

8Y
k=4

�p(t2tk)

�p(t1tk=q)
f(t2);

which yields

D(t1; t2) = C(t2)

Q8
k=3 �p;q(t1tk; t2tk)

�p;q(t1=t2; t2=t1)

2Y
k=1

�p;q(t
�1
k t�13 )

�p;q(tkt
�1
3 )

;

where C(qt2) = C(t2). We can repeat the whole consideration with permuted p
and q and obtain C(pt2) = C(t2). This means (for incommensurate p and q) that
C does not depend on t2, but it may depend on other parameters t3; : : : ; t8. To
compute C, we apply the residue calculus. For this we take the parameter t3 from
inside the unit circle to its outside and impose the constraints jt3j > 1 > jqt3j; jpt3j.
Then we deform the contour of integration T entering the de�nition of V (t) to the
contour Tdef deformed in such a way that no poles are crossed during such a change
of t3. The Cauchy theorem leads to

V (t) := VTdef (t) = VT(t) +

Q8
j=1; 6=3 �p;q(tjt

�1
3 )

�p;q(t
�2
3 )

:

We take then the limit t2 ! 1=t3 and �nd the value of C through the limit for
ratios of the left and right-hand sides of the above equality

C = lim
t2t3!1

V (pqt1; t2)V (t1; pqt2)� t�21 t�22 V (qt1; pt2)V (pt1; qt2)Q8
k=3 �p;q(t1tk; t2tk)

�p;q(t1=t2; t2=t1):

For t2 ! 1=t3, the function V (t1; pqt2) reduces to the elliptic beta integral, the
residues of V (pqt1; t2) blow up with VT(pqt1; t2) remaining �nite, the residues of
V (pt1; qt2) and V (qt1; pt2) remain �nite as well as the functions VT(pt1; qt2) and
VT(qt1; pt2). As a result, only the �rst term of our Casoratian survives and yields

C =

Q
3�j<k�8 �p;q(tjtk)

�p;q(t
�1
1 t�12 )

:

We obtain thus the formula

(8) V (pqt1; t2)V (t1; pqt2)� t�21 t�22 V (qt1; pt2)V (pt1; qt2) =

Q
1�j<k�8 �p;q(tjtk)

�p;q(t
�1
1 t�12 )

:
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The described solution of the elliptic hypergeometric equation is de�ned for
jqj < 1, although equation (5) itself does not demand such a condition. It can be
veri�ed that

A
�
p1=2

t1
; : : : ;

p1=2

t8
; q; p

�
= A �t1; : : : ; t8; q�1; p� :

The transformation tj ! p1=2=tj , j = 1; : : : ; 8; maps therefore the elliptic hyperge-
ometric equation to itself with the base change q ! q�1. Equivalently, the same
inversion q ! 1=q occurs after the transformation tj ! paj=tj with integer ai such

that
P8

j=1 aj = 4. As a result, we obtain the following solution of the elliptic

hypergeometric equation in the regime jqj > 1

U(t; q; p) =
V (p1=2=t1; : : : ; p

1=2=t8; q
�1; p)Q2

k=1 �p;q�1(p=tkt3; t3=tk)
:(9)

As to the unit circle case jqj = 1, the corresponding solution of equation (5) can
be obtained with the help of the modi�ed elliptic gamma function or the modular
transformation [15].

3. A characterization theorem for the V -function

We would like now to present contiguous relations for the V -function (and, so,
equation (5)) in a 2� 2 matrix form. For that we introduce the function

W (t1; : : : ; t8; z) :=
V (t1; : : : ; t8; p; q)Q8

j=1 �p;q(tjz
�1)

;

where z is some auxiliary variable. Replacing parameters t1;2;3 by t4;7;8 and the
V -function by W in (3), we obtain after shifting t3 ! qt3

(10) W (qt3; qt7) = �(t; z)W (qt3; qt4) + �(t; z)W (qt3; qt8);

where W (qtj ; qtk) means the W (t; z)-function with respective parameters tj and tk
replaced by qtj and qtk, and

�(t; z) =
�p(t4z

�1; t7t
�1
8 )

�p(t7z�1; t4t
�1
8 )

; �(t; z) =
�p(t8z

�1; t7t
�1
4 )

�p(t7z�1; t8t
�1
4 )

are p-elliptic functions of all variables (including z).
Replacing now t1;2;3 by qt1;2;3 in (4), and then permuting t1 and t2 with t4 and

t8, we obtain

(11) W (qt3; qt4) = 
(t; z)W (qt3; qt8) + �(t; z)W (qt4; qt8);

where


(t; z) =
�p(t8z

�1; t3t
�1
8 )

�p(t4z�1; t3t
�1
4 )

Y
j=1;2;5;6;7

�p(t4tj)

�p(t8tj)
;

�(t; z) =
�p(t8z

�1; t4t
�1
8 )

�p(t3z�1; t4t
�1
3 )

Y
j=1;2;5;6;7

�p(t3tj)

�p(t8tj)
(12)

are, again, p-elliptic functions of the parameters. EliminatingW (qt3; qt4) from (10)
and (11), we obtain the relation

(13) W (qt3; qt7) = (�(t; z)
(t; z) + �(t; z))W (qt3; qt8) + �(t; z)�(t; z)W (qt4; qt8):
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We de�ne now the matrices

M(t1; t2; t3; t4; t5; t6; t7; t8) :=

�
W (pt1; qt3) W (pt2; qt3)
W (pt1; qt4) W (pt2; qt4)

�
;(14)

A(t1; t2; t3; t4; t5; t6; t7; t8) :=

�
A11 A12

A21 A22

�
;(15)

where

A11(t1; t2; t3; t4; t5; : : : ; t8; z; p; q) = �(pt1; q
�1t8)
(pt1; q

�1t8) + �(pt1; q
�1t8);

A12(t1; t2; t3; t4; t5; : : : ; t8; z; p; q) = �(pt1; q
�1t8)�(pt1; q

�1t8);

A21(t1; t2; t3; t4; t5; : : : ; t8; z; p; q) = A12(t1; t2; t4; t3; t5; : : : ; t8; z; p; q);

A22(t1; t2; t3; t4; t5; : : : ; t8; z; p; q) = A11(t1; t2; t4; t3; t5; : : : ; t8; z; p; q)

are p-elliptic functions. In particular,

Aij(p
�1t1; pt2; t3; t4; t5; : : : ; t8; z; p; q) = Aij(t1; t2; t3; t4; t5; : : : ; t8; z; p; q):

After replacements t7 ! t7x; t8 ! t8x
�1, equations (13) and its partner obtained

after permuting t3 with t4 are rewritten as a linear �rst order matrix q-di�erence
equation

(16) M(qx) = A(x)M(x);

where we indicate only x-dependence.
After the permutations p$ q; t1 $ t3; t2 $ t4, the matrix M is transformed to

its transpose MT . Equation (16) gets therefore transformed to

(17) M(px) =M(x)B(x);

where

(18) B(x) := B(t1; t2; t3; t4; t5; t6; t7x; t8x
�1) :=

�
B11 B12

B21 B22

�
;

B11 = A11(t3; t4; t1; t2; t5; t6; t7x; t8x
�1; z; q; p);

B12 = A21(t3; t4; t1; t2; t5; t6; t7x; t8x
�1; z; q; p);

B21 = A12(t3; t4; t1; t2; t5; t6; t7x; t8x
�1; z; q; p);

B22 = A22(t3; t4; t1; t2; t5; t6; t7x; t8x
�1; z; q; p):

In principle, from the existence of �rst equation (16), it follows that there exists
some p-di�erence equation of the form (17) with q-elliptic coe�cients [6]. Indeed,
we can simply take B(x) :=M(x)�1M(px) and see that

B(qx) =M(x)�1A(x)�1A(px)M(px) =M(x)�1M(px) = B(x):

However, this B-matrix is not unique. We let g(x) denote a matrix satisfying
g(qx) = g(x): Equation (16) does not change after the replacement M !Mg, but
the B-matrix gets changed to B ! g(x)�1B g(px) showing a functional freedom in
the de�nition of this matrix.

We suppose now, thatM 0 is another meromorphic solution of equations (16) and
(17). The matrix N =M 0M�1 satis�es then the di�erence equations

N(px) = N(x); N(qx) = A(x)N(x)A(x)�1:

The �rst equation states that N has p-elliptic entries, and the second one is a q-
di�erence equation with the p-elliptic coe�cients. The normalization chosen above
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works for q- and p-shifts of all parameters, not just those of t7 and t8, because of
the permutational symmetry.

Theorem 1. For incommensurate p and q, N is a constant multiple of the identity.

The proof of this Theorem is given in a more general context in the last section.
This statement simply means that the non-trivial p-elliptic functions (the matrix
elements of N) cannot satisfy this q-di�erence equation with p-elliptic coe�cients.

With the help of three pairwise incommensurate quasiperiods !1;2;3 and the
parametrization

q = e2�i
!1
!2 ; p = e2�i

!3
!2 ;

we can convert q- and p-di�erence equations into linear �nite di�erence equations.
For this it is su�cient to pass to parameters gj introduced as tj = e2�igj=!2 ; j =

1; : : : ; 8; and x = e2�iu=!2 : As a function of u, the V -function is thus characterized
as a unique (up to a constant independent of u) solution of 5 linear �ninite di�erence
equations: two di�erence equation in (16) working with the shifts u! u+!1, their
partners in (17) working with the shifts u! u+!3, and the condition of periodicity
under the shifts u ! u + !2, equivalent to the analiticity condition in x 2 C�. In
order to characterize the proper function V (t; q; p) as a function of t1; : : : ; t8 up to
a constant, we simply need to adjoin the permutational symmetry group S8.

4. Determinant representation of elliptic Dixon integrals

The elliptic Dixon integrals (a.k.a. Type I integrals with BCn symmetry) have
the form:

I(m)
n (t1; : : : ; t2n+2m+4) = �n

Z
Tn

Y
1�i<j�n

1

�p;q(z
�1
i z�1j )

nY
j=1

Q2n+2m+4
i=1 �p;q(tiz

�1
j )

�p;q(z
�2
j )

dzj

2�
p�1zj

;

where jtj j < 1,

2n+2m+4Y
j=1

tj = (pq)m+1; �n =
(p; p)n1(q; q)n1

2nn!
:

By convention, when n = 0, I
(m)
0 := 1; when n = 1, the resulting univariate integral

is a higher-order version of the elliptic beta integral.
The following transformation identity has been proved in [10].

Theorem 2. The integrals I
(m)
n satisfy the relation

(19)

I(m)
n (t1; : : : ; t2n+2m+4) =

Y
1�r<s�2n+2m+4

�p;q(trts) I
(n)
m

�p
pq

t1
; : : : ;

p
pq

t2n+2m+4

�
:

In particular, when m = 0, the integral on the right-hand side is 0-dimensional,
and one obtains an explicit evaluation of the left-hand side.

One of the objectives of the present work is to give a more elementary proof of
this transformation, by showing that both sides satisfy the same family of di�erence
equations and initial conditions. We will also obtain a new proof of the special case
m = 0.
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The key idea is that I
(m)
n can be written as a determinant of integrals of the

form I
(n+m�1)
1 ; we will thus be able to use di�erence equations for the univariate

integrals to deduce di�erence equations for I
(m)
n .

Due to the re
ection identity �p;q(z)�p;q(pq=z) = 1, we can write the I
(m)
n inte-

grand's cross factors asY
1�i<j�n

1

�p;q(z
�1
i z�1j )

=
Y

1�i<j�n

�
z�1i �p(ziz

�1
j ) z�1i �q(ziz

�1
j )
�
:

The point, then is that the antisymmetric factor
Q

1�i<j�n z
�1
i �p(ziz

�1
j ) can be

written as a determinant; more precisely, we have the following elliptic analogue of
the Cauchy determinant:

det
1�i;j�n

 
1

a�1i �p(aiz
�1
j )

!
=

Q
1�i<j�n a

�1
i �p(aia

�1
j )

Q
1�i<j�n z

�1
i �p(ziz

�1
j )

(�1)n(n�1)=2Q1�i;j�n a
�1
i �p(aiz

�1
j )

(which, as observed in [9], can be obtained from the usual Cauchy determinant via
a suitable substitution), using which we can bring our integral to the form

I(m)
n (t1; : : : ; t2n+2m+4) =

�nQ
1�i<j�n a

�1
i �p(aia

�1
j )b�1i �q(bib

�1
j )

�
Z
Tn

nY
j=1

 Q2n+2m+4
r=1 �p;q(trz

�1
j )

�p;q(z
�2
j )

nY
k=1

b�1k �p(bkz
�1
j ) b�1k �q(bkz

�1
j )

dzj

2�
p�1zj

!

� det
1�i;j�n

�i(zj) det
1�i;j�n

 i(zj);

where �i(zj) = ai=�p(aiz
�1
j ),  i(zj) = bi=�q(biz

�1
j ). But then, using the Heine

identity:

1

n!

Z
det

1�i;j�n
�i(zj) det

1�i;j�n
 i(zj)

Y
1�i�n

d�(zi) = det
1�i;j�n

Z
�i(z) j(z)d�(z);

we can write

I(m)
n (t1; : : : ; t2n+2m+4) =

Y
1�i<j�n

1

aj�p(aia
�1
j )bj�q(bib

�1
j )

� det
1�i;j�n

0
@� Z

T

Q2n+2m+4
r=1 �p;q(trz

�1)

�p;q(z�2)

Y
k 6=i

�p(akz
�1)

Y
k 6=j

�q(bkz
�1)

dz

2�
p�1z

1
A ;

where � = (p; p)1(q; q)1=2. If we choose ai = ti, bi = tn+i, 1 � i � n, then the

entries of the above determinant are of the form I
(m+n�1)
1 . To be precise, the ij

entry is

Tq(ti)
�1Tp(tn+j)

�1I
(m+n�1)
1 (qt1; : : : ; qtn; ptn+1; : : : ; pt2n; t2n+1; : : : ; t2n+2m+4);

where Tq(tk) represents the q-shift operator, Tq(tk)f(tk) = f(qtk). We can also let
the sequences a, b overlap, at the cost of some slight extra complication. For in-
stance, for n = 2;m = 0 and ai = bi = ti; i = 1; 2; we obtain on the right-hand side

the Casoratian of V -functions (8), which yields I
(0)
2 (t1; : : : ; t8) =

Q
1�j<k�8 �p;q(tjtk):

This result hints that the integral I
(0)
n is computable in the closed form for arbitrary

n > 2.
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Note that when m = �1, the balancing condition reads t1 � � � t2n+4 = 1, and
thus at least one of the entries of the determinant cannot use the unit circle as its
contour. This is not, however, a serious issue, since there always exists some valid
choice of common contour, and the Heine identity works regardless.

Now, the fact that the integral vanishes for m = �1 (a fact visible from the
explicit formula for m = 0) implies that the rows of the above matrix must be
linearly dependent. Conversely, if we can �nd a linear dependence between integrals

Tq(ti)
�1Tp(tn+j)

�1I
(n�2)
1 (qt1; : : : ; qtn; ptn+1; : : : ; pt2n; t2n+1; t2n+2);

which is independent of j (i.e., is p-elliptic in tn+1; : : : ; t2n), that will imply van-
ishing for m = �1, which as shown in [4] allows one to compute the integral for
m = 0. This leads us to examine recurrence relations for the univariate integrals.

In general, not only are the entries of the above matrix integrals of the form

I
(n+m�1)
1 , but in fact the k � k minors themselves are proportional to integrals of

the form I
(n+m�k)
k . The recurrence for univariate integrals implicit in the vanishing

of I
(�1)
n gives rise to recurrences for higher I

(m)
n in the following way.

Lemma 3. Let M be a n � k matrix, and suppose the vector v satis�es vM = 0.
Then the k � k minors of M satisfy the (n� k + 1)-term relationX

k�i�n

vi det
l2f1;:::;k�1;ig;l02f1;:::;kg

(Mll0) = 0:

Proof. This certainly holds, by linearity, if we were to extend the sum down to i = 1,
but the additional terms all have repeated rows in the minors, thus vanish. �

There are two main sources of recurrences for hypergeometric integrals. The
�rst is recurrences of the integrands themselves (so long as the contour conditions
can be satis�ed by a common contour, that is).

Theorem 4. The integral I
(m)
n satis�es the (n+ 2)-term recurrence

(20)X
1�i�n+2

tiQn+2
j=1; j 6=i �p(tit

�1
j )

Tq(ti)I
(m)
n (t1; : : : ; t2n+2m+4) = 0;

2n+2m+4Y
j=1

tj = (pq)mp:

Proof. If we divide out by common factors of the integrand, this reduces to the
relation (see Lemma A.1 in [4] or Corollary 2.3 in [9]):X

1�i�n+2

tiQn+2
j=1; j 6=i �p(tit

�1
j )

Y
1�j�n

�p(tiz
�1
j ) = 0:

�

This approach alone is insu�cient to get the full system of di�erence equations;
for one thing, it is completely independent of the balancing condition. As in [9],
the key is to multiply the integrand by functions related to the di�erence operators
of [10].

With this in mind, we consider the following function:

g(m)(z; t1; : : : ; tm+2; v1; : : : ; vm+4)

=

Q
1�i�m+4 �p(viz)

z�p(z2)
Q

1�i�m+2 �p((pq=ti)z)
+

Q
1�i�m+4 �p(vi=z)

z�1�p(z�2)
Q

1�i�m+2 �p((pq=ti)=z)
:
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By inspection, this is invariant under the change z 7! 1=z. In addition, if
Q

1�i�m+2 tiQ
1�i�m+4 vi = (pq)m+1q, then both terms are (meromorphic) p-theta functions

with the same multiplier, and thus

g(m)(pz; t1; : : : ; tm+2; v1; : : : ; vm+4) = pz2g(m)(z; t1; : : : ; tm+2; v1; : : : ; vm+4):

Moreover, the apparent poles at z = �1;�pp must by symmetry have even order,

and thus g(m) must in fact be holomorphic at those points. Thus g(m) has only
simple poles at the points (pq=ti)

�1pZ; it follows that

g(m)(z; t1; : : : ; tm+2; v1; : : : ; vm+4) =
X

1�i�m+2

�i
�p(pqz�1=ti)

for suitable coe�cients �i which can be computed in the usual way: clear the
denominator and set z = ti=q to �nd

�i =
q
Q

1�j�m+4 �p(vjti=q)

ti
Qm+2

j=1; 6=i �p(tj=ti)
:

The relevance of this function for our purposes is that it integrates to 0 against

the I
(m)
1 density. More precisely, we haveZ

jzj=1

g(m)(z; t1; : : : ; tm+2; tm+3; : : : ; t2m+6)

Q
1�r�2m+6 �p;q(trz

�1)

�p;q(z�2)

dz

2�
p�1z = 0;

so long as
Q

1�i�2m+6 ti = (pq)m+1q and jt1j=q; : : : ; jtm+2j=q; jtm+3j; : : : ; jt2m+6j <
1. Indeed, by symmetry, both terms of g(m) have the same integral; if we restrict
to the �rst term (thus gaining a factor of 2), perform the change of variables z 7!
q�1=2=z, and move the contour back to the unit circle (which crosses over no poles),
we obtain

2

Z
jzj=1

q1=2z

�p(z2)

Q
1�i�m+2 �p;q(q

�1=2tiz
�1)

Q
1�i�m+4 �p;q(q

1=2tm+2+iz
�1)

�p;q(z�2)

dz

2�
p�1z :

But now the integrand is antisymmetric with respect to z 7! z�1, and therefore the
integral vanishes.

Using the partial fraction decomposition of g(m), we thus obtain a new recur-
rence.

Lemma 5. If t1 � � � t2m+6 = (pq)m+1q, then we have the following (m + 2)-term

recurrence for I
(m)
1 :

(21)
X

1�k�m+2

Q
m+3�i�2m+6 �p(titk=q)

tk
Q

1�i�m+2;i6=k �p(ti=tk)
Tq(tk)

�1I
(m)
1 (t1; : : : ; t2m+6) = 0:

Applying the operator Tp(tm+2+l)
�1 to this equality, we obtain

X
1�k�m+2

vkMkl = 0; vk =

Q
m+3�i�2m+6 �p(titk=q)Q
1�i�m+2;i6=k �p(ti=tk)

;(22)

Mkl = Tq(tk)
�1Tp(tm+2+l)

�1I
(m)
1 (t1; : : : ; t2m+6):

Corollary 6. If t1 � � � t2n+2 = 1, then I
(�1)
n = 0.



ELLIPTIC HYPERGEOMETRIC INTEGRALS 11

Indeed, as shown above the integral I
(�1)
n is proportional to the determinant

of the matrix M in (22) with m = n � 2 and scaled parameters. However, the
vector v = (v1; : : : ; vn) belongs to the kernel of M , vM = 0, and, so, detM = 0.
For n = 2, such a result follows also from (8) and the elliptic beta integral. This
statement proves the vanishing hypothesis of [4], which was needed there for a proof
of the evaluation formula for the elliptic Dixon integral.

Applying Lemma 3 to relation (22), we obtain equality
Pm+2

k=n vkdk = 0, where
dk = det(Mll0) with l 2 f1; : : : ; n � 1; kg, l0 2 f1; : : : ; ng. The minors dk are pro-

portional to the integrals I
(m�n+1)
n (t1=q; : : : ; tn�1=q; tn; : : : ; tk=q; : : : ; tm+2; tm+3=p;

: : : ; tm+3+n=p; tm+4+n; : : : ; t2m+6). Substituting corresponding explicit expressions,
multiplying parameters t1; : : : ; tn�1 by q and tm+3; : : : ; tm+3+n by p, changing
m ! m + n � 1, and permuting parameters appropriately, we obtain a recurrence

for general I
(m)
n -integrals.

Theorem 7. If t1 � � � t2m+2n+4 = (pq)m+1q, then we have the following (m + 2)-

term recurrence for I
(m)
n :

(23)
X

1�k�m+2

Q
m+3�i�2n+2m+4 �p(titk=q)

tk
Q

1�i�m+2;i6=k �p(ti=tk)
Tq(tk)

�1I(m)
n (t1; : : : ; t2n+2m+4) = 0:

Corollary 8. [10, 16] If t1 � � � t2n+4 = pq, then

I(0)n (t1; : : : ; t2n+4) =
Y

1�i<j�2n+4

�p;q(titj):

Proof. Indeed, both sides satisfy the same 2-term recurrence, and thus their ratio
is invariant under Tq(ti)

�1Tq(tj), and similarly for p-shifts. It follows that their
ratio is independent of t1; : : : ; t2n+4. To determine the remaining factor, we may
consider the limit of the ratio as t2n+3t2n+4 ! 1, and proceed by induction. �

Corollary 9. If t1 � � � t2n+2m+4 = pq, then we have the
�
n+m
m

�
-dimensional deter-

minant

det
R;S�f1;2;:::;n+mg;jRj=jSj=m

 Y
r2R

Tp(tr)
Y
s2S

Tq(ts+n+m)I
(m)
n (t1; : : : ; t2n+2m+4)

!

=
� Y
1�i<j�n+m

tj�p(tit
�1
j )tn+m+j�p(tn+m+it

�1
n+m+j)

�(n+m�2m�1 )

�
Y

1�i<j�2n+2m+4

�p;q(titj)
(n+m�1m ):

Proof. Using the determinantal representation of I
(m)
n , we can express the (R;S)

entry of the above determinant as� Y
i;j2Rc

i<j

tj�p(tit
�1
j )

Y
i;j2Sc

i<j

tn+m+j�p(tn+m+it
�1
n+m+j)

��1

� det
i2Rc

j2Sc

� Y
1�r�n+m

r 6=i

Tp(tr)
Y

1�s�n+m
s 6=j

Tq(tn+m+s)I
(m+n�1)
1 (t1; : : : ; t2n+2m+4)

�
;
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where Rc = f1; 2; : : : ; n +mg n R. The �rst two factors can be pulled out of the
determinant, as they are independent of the column or row as appropriate; this
gives an overall factorY

R�f1;2;:::;n+mg
jRj=m

Y
i;j2Rc

i<j

(tj�p(tit
�1
j ))�1 =

Y
1�i<j�n+m

Y
R�f1;2;:::;n+mg
jRj=m; i;j =2R

(tj�p(tit
�1
j ))�1

=
Y

1�i<j�n+m

(tj�p(tit
�1
j ))�(

n+m�2
m ):

We are thus left with computing a determinant of determinants. These are all
minors of a �xed matrix, and thus our

�
n+m
m

� � �n+mm �
matrix is the n-th exterior

power of the n+m� n+m matrix with ij entry

Tp(ti)
�1Tq(tn+m+j)

�1
Y

1�r�n+m

Tp(tr)Tq(tn+m+r)I
(m+n�1)
1 (t1; : : : ; t2n+2m+4);

i.e., the matrix giving the action of the original matrix on the n-th exterior power
of its natural module. In general, the n-th exterior power of the n +m � n +m
matrix M has determinant

det(M)(
n+m�1
n�1 );

which can be seen easily by reduction to the diagonal case (the naturality of the
construction implies invariance under conjugation). In our case, the n+m�n+m
matrix has determinant2

4 Y
1�i<j�n+m

tj�p(tit
�1
j )tn+m+j�p(tn+m+it

�1
n+m+j)

3
5 I(0)m+n(t1; : : : ; t2n+2m+4);

which implies the desired result. �

Remark 1. When m = 1, this is essentially an elliptic version of Varchenko's
determinant of univariate hypergeometric integrals [19, 12]. Indeed, Varchenko's

determinant is equivalent to Dixon's integral evaluation, which is a limit of the I
(0)
n

evaluation formula [11, Thm. 7.2]. Convergence of the matrix itself is somewhat
more subtle, as the domain of integration tends to pass through algebraic singular-
ities of the integrand in the limit, thus giving rise to somewhat tricky phase issues.
One does �nd, however, that

lim
q!1�

�p;q(q
�1+�2)

�p;q(q�1 ; q�2 ; q�
+

1
+�+

2 a1a2; q�
+

1
+��

2 a1=a2; q�
�
1
+�+

2 a2=a1; q�
�
1
+��

2 =a1a2)

I
(n�1)
1 (pq1��

+

1 =b1; : : : ; pq
1��+n =bn; q

���
1 b1; : : : ; q

���n bn;

q�
+

1 a1; q
��
1 =a1; q

�+
2 a2; q

��
2 =a2; p; q)

= j�p(a1a�12 )j1��1��2 �(�1 + �2)

�(�1)�(�2)
(2�(p; p)21)Z

z2[a1;a2]

j�p(a1z�1)j�1�1j�p(a2z�1)j�2�1
Y

1�r�n

�p(brz
�1)�r

j�p(z2)jdz
2�
p�1z ;(24)

where a1, a2, b1,. . . ,bn are on the unit circle with positive imaginary part and
<(a1) > <(a2), the exponents satisfy the convergence conditions <(��i ) > 0 >
<(��i ), and one has the balancing condition �1+�2 =

P
i �i; with �i := �+i +��i ,
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�i := �+i + ��i . The domain of integration is the counterclockwise arc from a1 to
a2. The proof is as in Theorem 7.2 of [11]; note also that by Lemma 7.1, op. cit.,
one has

�p(brz
�1)�r = exp

���r(log(�brz) + log(�br=z))=2
�j�p(brz�1)j�r :

The resulting factor is in particular locally constant in z on the upper semicircle,
changing only when z passes over one of the singularities bi. Also, as noted in [11],
the change of variables x = ��p(z)2=�p(�z)2 turns this into a higher-order ordinary
beta integral, precisely as appears in Varchenko's determinant identity. Our result
can also be viewed as a generalization of the main result of the work of Aomoto and
Ito [3], which corresponds to a further degeneration of the trigonometric integral
of [11, Thm. 5.6]; the Jackson integral is obtained as the sum of residues obtained
upon shrinking the contour to 0.

The integrals I
(m)
n thus provide solutions of the system of recurrence relations

(20) and (23) and their partners obtained after permutations of parameters. How-
ever, these recurrence relations do not imply the constraint jqj < 1 which is needed

for the de�nition of I
(m)
n . The construction of solutions of the elliptic hypergeo-

metric equation with jqj > 1 (9) extends to arbitrary values of n and m. Modulo
some ellipticity factor, the q-shift equations satis�ed by

I(m)
n (t1; : : : ; t2n+2m+4)

Y
1�i�2n+2m+4

�p;q(tiz
�1)�1

are invariant under the transformation ti 7! pai=ti; q 7! 1=q; where a1; : : : ; a2n+2m+4

is any sequence of integers or half-integers (but not mixed) such that
P2n+2m+4

i=1 ai =
2m+2. That is, for both recurrence relations, the rescaled coe�cient of each term
gets multiplied by the same quantity under such a transformation. This observa-
tion provides us with the solutions of those recurrences for jqj > 1. Solutions with
jqj = 1 are obtained (as in the n = m = 1 case) by using the modi�ed elliptic
gamma-function which we do not consider for brevity.

5. A proof of the transformation formula

The two recurrences we have given for I
(m)
n are also recurrences for the right-hand

side of relation (19): the transformation simply swaps the two kinds of recurrence.
The proof of Theorem 2 using these di�erence equations boils down to showing that

I
(m)
n is the unique meromorphic solution of the full system of p- and q-di�erence
equations, up to an overall constant (which is then easy to obtain via a limit). As a
subcase, this proves Theorem 1 as well. It is not particularly elementary; it involves
some di�erence/di�erential Galois theory [8]. We start by giving the key auxiliary
statement needed for us.

One technical issue that arises in our application of di�erence Galois theory is
that the literature, and many of the main statements, require that the constant
�eld be algebraically closed. Since we are dealing in our case with a family of
di�erence equations, this constraint is too strict. However, we can evade this issue
via a suitable base change, as follows. Let (k; �) be a di�erence �eld (i.e., � is an
automorphism of the �eld k) of characteristic 0 such that the �eld k� of constants
is algebraically closed in k. (In other words, the only �nite orbits of � on k are of
length 1.) There is then a canonical extension of � to the �eld l := k 
k� k� , such
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that the algebraic closure k� is the new constant �eld. We thus obtain a well-de�ned
notion of Galois group over l.

Lemma 10. Let A 2 GLn(k), and let W be the space of vectors w 2 kn such that
�(w) = Aw. Let G be the Galois group of this di�erence equation (viewed as an
equation with coe�cients in l), with associated representation V . Then

dimk� (W ) = diml(V
G):

Proof. The absolute (ordinary) Galois group Gal(k� ) acts naturally on l, and
commutes with the action of � ; in particular, we have a natural isomorphism
Gal(k� ) = Gal(l=k), and the latter is well-de�ned. In particular, if we extend
coe�cients of the di�erence equation to l, the resulting vector space is stable under
Gal(l=k), and thus admits a basis of k-rational vectors. In other words, the dimen-
sion dimk� (W ) is unchanged under this coe�cient extension, and we may therefore
assume k = l, or in other words that the �eld of constants in k is algebraically
closed.

Now, let the k-algebra R be a Picard-Vessiot ring of the di�erence equation.
Then, by de�nition, the set of solutions w 2 Rn of the di�erence equation is an
n-dimensional vector space over k� with a G action equivalent to the representation
V . A solution has coe�cients in k i� it is invariant under the action of G, and thus
the result follows. �

Remark 2. A similar lemma holds for the di�erential case (replacing GLn by its
Lie algebra); note that in that case, the constant �eld is automatically algebraically
closed in the coe�cient �eld.

Remark 3. More generally, if � is any rational representation of GLn(k), one can
apply the lemma to the di�erence equation �(w) = �(A)w, using the fact that the
new Galois group is simply �(G).

Applying remark 3 to the adjoint representation gives the following:

Corollary 11. Let A;G be as above, and let W be the space of matrices M 2
End(kn) such that �(M) = AMA�1. Then

dimk� (W ) = diml(EndG(V )):

In particular, if G is irreducible, then W is 1-dimensional, and (since I 2 W ) W
consists of scalar matrices.

That EndG(V ) = l when V is irreducible is a standard fact (Schur's lemma) of
representation theory. Any endomorphism which is not a multiple of the identity has
at least one proper eigenspace (since l is algebraically closed), and each eigenspace
is invariant, making the representation reducible.

We can pass now to the proof of our transformation formula itself. In this case
the �eld k coincides with the �eld of p-elliptic functions in one of the parameters
x (actually, in all parameters), and � is the q-shift operator, �(f(x)) = f(qx).
Therefore k� is a �eld of constants independent on x (the only simultaneously p-
and q-elliptic set of x-functions). In order to apply the above theory, we need
to show three things: �rst, that our two recurrences can be combined to give a
di�erence equation in matrix form as above, second, that the coe�cients of this
di�erence equation can be made elliptic upon suitable renormalization, and third,
that the resulting elliptic di�erence equation has irreducible Galois group.
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Proof. To see that the recurrences combine to give a matrix di�erence equation of
order

�
n+m
m

�
, we need to show that one can use the recurrences to express

I(m)
n (qt1; : : : ; qtm; tm+1; : : : ; qt2m+2n+3; t2m+2n+4=q; p; q)

as a linear combination ofY
i2S

Tq(ti)I
(m)
n (t1; : : : ; t2m+2n+4; p; q);

where S ranges over m-element subsets of f1; 2; : : : ; n+mg. Using the n+ 2-term
recurrence, we obtain a linear dependence between the original integral, the integral

I(m)
n (qt1; : : : ; qtm; tm+1; : : : ; t2m+2n+3; t2m+2n+4; p; q);

and the n integrals

Tq(ti)I
(m)
n (qt1; : : : ; qtm; tm+1; : : : ; t2m+2n+3; t2m+2n+4=q; p; q)

for m+1 � i � m+n. By symmetry, it su�ces to consider the term with i = m+1.
But then the m+ 2 term recurrence gives a linear dependence between the m+ 2
integrals

Tq(ti)
�1I(m)

n (qt1; : : : ; qtm+1; : : : ; t2m+2n+3; t2m+2n+4; p; q)

for i 2 f1; : : : ;m+1; 2m+2n+4g. We thus obtain a matrix di�erence equation of
the form required. (One also notes that the corresponding matrix A is quite sparse;
the entry corresponding to a pair S, T of m-subsets of f1; 2; : : : ; n+mg is 0 unless
S \ T � m� 1.)

Next, for ellipticity, we consider the renormalization 
�p;q(v

�2)Q
1�r�2m+2n+4 �p;q(trv

�1)

!n

I(m)
n (t1; : : : ; t2m+2n+4; p; q):

This di�ers from the corresponding minor of the matrix for I
(m+n�1)
1 by multipli-

cation by a pair of factors, one of which is p-elliptic in all variables other than v,
and the other of which is similarly q-elliptic. We thus �nd that the matrix A is

essentially just the n-th exterior power of the corresponding matrix for I
(m+n�1)
1 ,

up to a pair of diagonal matrices that combined have no e�ect on ellipticity. It will
thus su�ce to show that the di�erence equation is elliptic when n = 1.

Consider the m+ 1�m+ 1 matrix

M(x)ij := Tp(ti)
�1Tq(tj)

�1
�p;q(v

�2)
Q

1�r�m+1 �p;q(v
�1=tr)

�p;q(xv�1; v�1=Tx)
Q

m+2�r�2m+4 �p;q(trv
�1)

� I
(m)
1 (pqt1; : : : ; pqtm+1; tm+2; : : : ; t2m+4; x; 1=Tx; p; q);

where T =
Q

1�r�2m+4 tr. This is symmetrical between p and q (being replaced

by its transpose when p and q are swapped), so it su�ces to consider its behavior
under a q shift. One �nds, in fact (using the two recurrences as described above),
that

M(qx) = A(x)M(x);
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where

A(x)ij = �ij
�p(xt

�1
i ; Txv�1)

�p(xv�1; Txt
�1
i )

+
�p(tiv

�1; Txv�1)

�p(ti(Tx)�1; xv�1))

� �p(Tx
2)
Q

1�l�m+1 �p(tlTx)Q
m+2�l�2m+4 �p(Tx=tl)

�p(tjx)
Q

m+2�l�2m+4 �p(1=tltj)

�p(tjTx; v�1=tj)
Q

1�l�m+1;l 6=j �p(tl=tj)

These coe�cients are readily veri�ed to be elliptic as required.
It remains only to prove that the Galois group is (generically) irreducible for all

m, n. Now, the Galois group for n > 1 is the n-th exterior power of the group for
n = 1, so it will su�ce to show that the generic group for n = 1 contains SLm+1

(all nonzero exterior powers of which are irreducible). We can proceed as in the
proof of Theorem 3.3.3.1 in [1]. The point is that, by Andr�e's theory, the Galois
group can only become smaller under specialization, including degeneration to a

di�erential equation. We have already discussed the fact that the integral I
(m)
1 can

be degenerated to a higher-order classical beta integral, and indeed one can obtain
a basis of the corresponding di�erential equation in that way. It thus follows that
the elliptic hypergeometric di�erence equation degenerates under that limit to the
Jordan-Pochhammer di�erential equation. But this is known [18] to have generic
Galois group containing SLm+1. �

Remark 4. Note, in particular, that the given formula for A indeed converges
to the identity matrix in the Jordan-Pochhammer limit, as in particular T !
1, making the diagonal contribution converge to 1; the o�-diagonal contribution
vanishes since tjtj+m+1 ! 1. One can moreover directly compute the limiting
di�erential equation, and use the rigidity of the Jordan-Pochhammer equation to
verify that the two equations are equivalent.
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