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Introduction

Let z : CU {0} \ {q1,...,9:} — R3 be a complete conformal minimal
immersion. For each end ¢; (7 = 1,...,n) of z, the fluz vector is defined by

©; :-—-/ nds,
s

where y; is a positively oriented curve surrounding g;, and 7 the conormal such
that (v/,1) is positively oriented. It is well known that the flux vectors satisfy
a “balancing” condition so called the fluz formula

n
2 %i=0.
Jj=1

The minimal immersion z is called an n-end catenoid if each end g; is of
catenoid type. The catenoid and the Jorge-Meeks surfaces [JM] are typical ones.
Recently, new examples of n-end catenoids have been found by [Kar], [L], [Xu],
[Rossl], [Ross2|, [Kat] and [UY]. For any n-end catenoid z, each flux vector ¢;
is proportional to the limit normal vector v(g;) with respect to the end g;, and
the scalar w(q;) := ;/4nwv(q;) is called the weight of the end ¢;. In this case,
the flux formula can be rewritten as follows.

Y 4rw(g;) v(g;) = 0.
=1
It should be remarked that w(g;) may take a negative value.
We consider the inverse problem of the flux formula proposed in [Kat] and

[KUY] as follows:

Problem. For given unit vectors v := {vy,...,v,} in R3, and nonzero real
numbers a := {a,...,a"} satisfying }_, a’v; = 0 (we call such a pair (v,a)
fluz date), is there a (non-branched) n-end catenoid z : CU{oo}\{q1,...,q.} —
R? such that v(q;) = v; and a; i3 the weight at the end g, ¢
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We remark that Kusner also proposed a similar question (see [Rossl]).
Rosenberg and Toubiana [RT] found solutions with branch points in the category
that the Gauss map is of degree 1. But if one wishes non-branched solutions,
the degree of their Gauss map must be n — 1, which is the case just treated in
this paper.

The problem is not exactly affirmative. By the classification of Lopez (L],
we can see that the answer for n < 3 is “Yes” except for the case when two
of {v;}}., coincide. Moreover, for n > 4, some obstructions exist as closed
conditions in the space of flux data as shown in our previous paper [KUY]. In
spite of these obstructions, the authors also showed in [KUY] that the inverse
problem is true for almost all flux data (v,a) when n = 4. In this paper, we
treat the case n > 5 and show the following theorem:

Theorem. For each integer n > 3, the problem 1s solved for almost all flux
data.

In Section 1, we reduce the inverse problem to seeking a sampling point sat-
isfying certain non-degeneracy conditions. T'wo lemmas in Appendix A are ap-
plied to complete the reduction. In Section 2, we shall give a proof of Theorem.
However, required technical calculations are done in Section 3 and Appendix B.

The author are very grateful to Professors Yusuke Sakane, Ichiro Enoki and
Koji Cho for valuable discussions and encouragements.

1. Reduction

As shown in the previous paper, the inverse problem of the flux formula
reduces to finding solutions of a system of algebraic equations:
Theorem 1.1. ([KUY]) Let (v,a) be a pair of unit vectors v = {vy,...,vp}
(n > 4) in R® and nonzero real numbers a = {a',...,a"} satisfying the balanc-
tng condition:
(1.1) Y afv;=0.

=

Then there is an evenly branched n-end catenoid x : CU{co}\{q1,-..,qn} — R®
(g; # 00) such that the induced metric is complete at the end ¢;, v(q;) = v; and
a’ is the weight at the end ¢; (j = 1,...,n), if and only if there exist complez
numbers b}, ..., b" satisfying the following conditions:

4 1
j Pi — Dk i
(1.2) Yy L= = gd
b
4 n (.7=1a'°'1n’))
(1.3) py Bt
FHE



where p; == o(v;), 0 : S = CU {00} is the stereographic projection, and we
assume p; # 00.

Moreover, the surface x has no branch points if and only if the two the
polynomials

(14) Qz) = zb’ 11 G-,
ey
(15) P(z) = ilp,-bf Il¢-a

are mutually prime and one of them has degree n — 1.

Remark 1.2. When p; = rq;, the theorem reduces to the results in the first
author [Kat]. In this case the system (1.2) and (1.3) reduces to

oy b = o
+2)
bi i bk|7'|2<1—:‘¢1k+ L
k=1 95 — 9k
As seen in [Kat], the surface has no branch point if and only if 8 := ¥}, b # 0.
By using the relation P(z)/Q(z) = rz—rf/ ( V(- qj)), it is also checked
directly from the last condition of the theorem.

Remark 1.3. The position of the ends {q1,...,4n} in the source domain C U
{00} has the freedom of M&bius transformations. For example, the following
normalization is possible:

¢ =1 Ga-1+ qn-2 =0, gn = 0.

Remark 1.4. The system of the equations {1.2) and (1.3) has another expres-
sion

(1.6) 'bff:bk S A /]
) = gGi—a lpil2+ 1’
kit
n . |n.l2 —
(1.7) bJZ bkm — aJ IPJ‘2 1.
= g Ip;|2 + 1
L k#5



Moreover we may replace (1.6) by

1.8 P DY LI
18) e

In fact, if we set

. n 1 . n pk
7-::&’2 b* , 6-:=b’§ AR A ji=1,...,n
d k=1 qj_qk ’ k=1 qj_qk ( ’ )’
k#j L ¥

then (1.2) and (1.3) are written as
pivi—8i=d, v +P6;=0.
It is equivalent to the relations

lpsl? — 1
Ipi2+ 1’

i Dy
RPN . < B
psi2 +17

i P+ 6 =d’

that is (1.6) and (1.7). On the other hand,

[p;|? ipil? =1 a’ a’
=a =piv;+6; + ———
PR+l g+l R+l HETA T R

Py = aj
which yields (1.8).

Theorem 1.1 produces many n-end catenoids as seen in [Kat] and [KUY].
First, we fix our attention to the equation (1.3). We consider a matrix

Pipk+ 1
(1.9) A, = (—‘1————-) ,
G = ) ik=1,..n

where the diagonal components are interpreted as 0. Then the vector (b!,...,b")
belongs to the kernel of the matrix A,. As shown in the later sections, it is rea-
sonable to expect that the rank of the matrix A, is generically n — 1. In this
case, ‘(b',...,b") should be proportional to any column vector of the cofactor
matrix A, of A,. (By the definition, A A, = ApA, = (det A,)/ holds.) So we

set
bp(g) = “(b(q), - .., b2(q)) := the n-th column of the cofactor matrix A,(g).

Now we projectify the problem: For fixed p := (p1,...,p,) € C, define a
rational map between two complex projective spaces

Hﬂz[fpl’sf;] Pl o pr-l

4



by

(110)  filqu... ) =B T E@QZ= (i=1,...,n).
k3 95 — Gk

We set ' _
f€(q) == A9)° - fi(q),
where A(g) is the difference product defined by

n

(1.11) Alg, ... ,qn) = [T (g5 — @)

>k
It is easily seen that each f£J is a homogeneous polynomial in ¢y,. .., ¢, and
JF¥p, has another expression

Fep = [fﬂ:,,...,ﬂ;].
This projective formulation is reasonable in the following two senses:

o Any homothety of n-end catenoids changes their weights (a',...,a") only
by a constant multiplication. It allows us to projectify the image of FZ,,.

e Changing coordinates of n-end catenoids by homothetic transformations
corresponds to complex multiplications of (gqy,...,¢s). (See Remark 1.3.)
It allows us to projectify the domain of FZ,.

Since p; is the stereographic image of v;, the balancing condition (1.1) is
rewritten as | 12
pil"—1 ; o
——q’ =0, =0
2 |p;l? + 1 Z IPJP + 1%

=1

We define a subspace W;,‘*“ in P*! by

' n 2 n " n
—4 1 n n-1 ., Ip.fl -1 o ﬁ‘g fo Pi .
_{[a,...,a]GP 'J.;*”_“!p,-lul"’"°’§|p1|2+1“’"°’§|p,-12+1“’ 0}.

We will show that for open dense p € C”, the image of the map FZ, is
open dense in W24, and next show that it covers open dense subset of the
totally real set W’R {la] € Wi~*; a; € R}. Then the image of the map %,
contains [a] € Wi for almost all flux data (p,a), and Theorem in Introduction
is obtained. If 7%, is a holomorphic map and there is a point at which the rank
of dFZ, is n — 4, the surjectivity of the map follows by the proper mapping
theorem. (See [GR].) But unfortunately, the map 7, is singular on the set
M7-1 Z(f&), where Z(f#) is the set of zeros of fJ. As shown below, we will
overcome th.ls difficulty by a usual blowing up process.

From here, assume dim(vy,...,v,) = 3, where v; := 0~!(p;) and o is the
stereographic projection. Then clearly dimW;,‘*“ = n—4. We remark here that
dim W;““ = n — 4 holds for open dense p € C". Now we have the following
lemma:



Lemma 1.5. For each p € C?, the following relation holds:
7,200\ () 28)) < Wi,
j=1
where A, i3 the determinant of the matriz A - A, and Z(),) is the set of zeros
of the homogeneous polynomial A,.

(Proof.)  Let g € Z(A,) \ M=y Z(fG). If A(g) =0, then it is easy to see that
q € (= Z(f¥). Hence A(q) # 0, a.ndwe get (1.2) with ¥ = bi(q) ( =1,...,n).
Recall Remark 1.4. Then the assertion of the lemma immediately follows by
summing up (1.7), (1.6) and (1.8) for j=1,...,n. (qe.d.)

We define an (n — 1)-matrix J, by

ddet A, O ff ddeth, B1E

et 2 p.—-——E— p' £
(112)  Jp: ((fp"){ 9. 0g 04 O f)
» poenytt—

where
o fJ .
g f" G=1,...,n-1).

The matrix J,, has a direct expression

_ [B8detA, [Of} v Ofp | odeta, [Off . Ofp
J”—( Oy {Bq, Je—Jp: &b} 8q; {3qn fr—Ip- Bg, J,kzl,...,n—l‘

The following proposition plays an important role to establish Theorem in
Introduction.

Proposition 1.6. Suppose that there existug € C" and a pointc = [¢1,...,¢,) €
P" satisfying the following conditions:

(1) e,...,cn are all distinet;

(2) The rank of the matriz A, (c) isn —1;
(3) ‘Mﬁ does not vanish at q = c;

(4) The rank of the matriz Jy(c) is n — 4;

(5) Two polynomials P(z) and Q(z) defined in (1.5) and (1.4) associated with
the data (q, p) = (c,u0) and b = by (c) are mutually prime and one of them
has degree n — 1;



(6) fl,(c)#0(j=1,...,n)
(7 cj#o (j=1,...,ﬂ—1).

Then there exists an open dense subset U C C" and an open dense subset (2,
of the totally real set Wr = {[a] € W}, a; € R} such that, for anyp € U
and [a] € ), there exists an (non-branched) n-end catenoid with the fluz data

(p,a).

By the proposition, the inverse problem of the flux formula can be solved
for almost all flux data if one succeeds to take such a point c¢. This will be done
in the next section. The outline of the proof of the proposition is as follows.

By the condition (4), at least one (n — 4)-submatrix S, of J,, is of rank
n-—-4. Let 1 < j; < j3 <:-- < jun-q4 < n be the indices of the columns of the
submatrix Sy, and {m;,mg,m3} their complement, namely {m;,ms,m3} =
{1,...,n =1} \ {J1,...,Jn-4}- By Remark 1.3, we may restrict the flux map
into the following subspace of P?~! containing the sampling point c:

V3= (g1, -+, o] € P™Y Cmglmy — Cmu@me = 0, Cmalmy — CmyGms = 0}

Now we define a homogeneous polynomial in ¢y, ...,¢, by

qO0det

Hyla) = B 25 2() - det (A(q)‘sp(q))-ﬁptq)-ﬁl @)

where £ is chosen sufficiently large so that det(A(q)‘Sy(g)) is a homogeneous
polynomial in ¢y,...,q,, and R, is the resultant of the two polynomials P(z)
and Q(z) of degree n— 1 defined by (1.5) and (1.4). (It can be easily shown that
R, is also a homogeneous polynomial with respect to g. Or one may replace
R, by the resultant of P(q:1z) and Q(q:z).) Then by the conditions (1)-(7),
c € V"3 satisfies H,,(c) # 0. We prove the following

Lemma 1.7. The subset
U:={peC"; Z(0)NV"° ¢ Z(Hy)}

is open dense in C", where A, = det(A - A,) is the homogeneous polynomial
defined in Lemma 1.5. .

(Proof.) Obviously U is an open subset of C*. Suppose that U is not dense
in C". Then there exists an open subset V such that

(1.13) Z(Aphmes) C L(Hylms)  (PEV).



Since V"2 = P"3, by Lemma A.l in Appendix, (1.13) holds for any p € C"
such that A, # 0. But this contradicts the fact that A, (c) = 0, Ay, # 0 and
Hy(c) #0. (g.e.d.)

Roughly speaking, if /¥, has no singularities and is of maximal rank, then
it is surjective and we can find a pair (g, b,(q)) satisfying (1.2) and (1.3). But
unfortunately, 7%, has singularities on (\;_, Z( fEf,). For this reason, we define
a new variety V" and a map F%,: V"% — Wr—1 instead of V"3 and F¥, as
follows. First we consider an algebraic set

5 = { gl e @) € PP
Cmzdm, — c'ullqﬂ’l? =0, CmaGm; — CmyGmg = 01
dfts=d*8  (jk=1,...,n),

pj? - o
Elp§|2+1 me ZI:I’H =0

=11P
(j == 13""”)}!
and define two canonical projections:

7: "% 3 ((q], [a]) > [g] € V3,
7 : V"% 3 (lg], la]) - [a] € W

These two projections are both well-defined on J™~3. Let V"3 be the algebraic
closure of the set

(1.14) Vel =g (v"-"\ ﬁ Z( feg,)) .

We denote the restriction of the first projection  to V=3 also by . We remark
that 'ﬂ'lvn—-a V“‘3 — VP3\ N, Z( ij ) is bijective. On the other hand, we

denote the restriction of the second projection 7’ to ym-3 by
F,: Vo Wpt,

The map F¥, o 7 is well-defined on 1};‘;3, and coincides with the map FZ,.
Lemma 1.8. For each p € U satisfying dimWp—* = n — 4, there ezists an
irreducible component X "4 of the algebraic set Z(\yom)NV™3 such that Hyom
is not identically zero on X"~*. In addition, the restriction of the lifted flur map
Fp| gn-a : X" = Wi is surjective.



(Proof.)  Suppose that Z{)\, o w) N V"3 ¢ Z(H, o 7). Since H, is identically
zero on the singular set N}_; Z( /&), it follows that

Z(A) N V™3 C Z(H,).

But this contradicts Lemma 1.7. Hence there exists an irreducible component
X4 of the algebraic set Z(Apom)N V=3 such that Hy o is not identically
zero on X", We set

X = g(X").
Now we take a point zo € X™* such that H,(z;) # 0. Consequently, we have
zo & i1 Z(f&) and so FY,(zo) € Wi~* exists. We remark here that m-th
component of z; in the homogeneous coordinate is not equal to zero. Now we
take a coordinate of P*~! around z;, defined by

0:C™1'32 = (Z1,- ., Zmy—1, Tty -+ »Tn)
= g= [Ih ren 3I'm1—1)1:$m1+11' .- :xn] € |
Since we chose xp so that Hp(zg) # 0, it holds that the derivative 6%"—”1 does

not vanish at z5. So by the implicit function theorem, there exists aqﬁmction
Qr, defined on a sufficiently small neighborhood of zy such that

Ap(zh ooy Tmy-1, 1:-'17m1+1; <oy Tp—1y Qﬂ(m))
= det Ap(mh sy Tmy—1, 17$m1+h sy Tn-1, Qﬂ(m)) =0.

Since
_._a"...la_,. mm = % on vn"':?’,
Cony Crmy
(Zj1s---+Zj,_,) is considered as a local coordinate system of the variety X™*
around the regular point zg. Since

OQn _  0OdetA, 8det4,

Oz;, - dq;, Oy

Ty =1, Tmy=

(£=1,...,n—4)

holds, one can easily check that the condition det S;(xo) # 0 implies that the
matrix

or 5o oz e 61!,‘"

(a(f; op) , 8Qu U} op)

)kzl,...,n~l;£=1,...,n-4

is of rank n — 4 at z;. Hence the Jacobi matrix of FZ, is of rank n — 4 at
Zo, and so is that of .ﬁ; at 7" !(xp). Thus by the proper mapping theorem,
.ﬁ;()‘( "~4) is an analytic subset of dimension n — 4 in the same dimensional
complex projective space Wy ~*. Hence F (X = Wp—4. (q.ed.)



Lemma 1.9. Let Wr = {[a] e W}™*; a; € R}. Then

Wp-\ T (Z(H, o m) N X* )} N W
13 an open dense subset in WR.

(Proof.) By the proper mapping theorem and the theorem of Chow, f’z(Z(Hpo
7)) is an algebraic subset of Wp~¢. Thus it is a closed subset in W74 in
the usual topology. Hence {M’;,“" \ﬁp(Z(Hp om)NX “'4)} N Wh is an open
subset in Wr. Suppose that it is not dense in Wr. We may assume that
FE,(Z(Hp, o m) N X" %) is common zeros of some homogeneous polynomials

-1 Z(h;). Then there exists an open subset in VV,’,““ on which each h; is
identically zero. Since WR is a totally real subset of the complex projective
space Wr—4, by Lemma A.2 in Appendix we have

hy=---=h=0 on W™
This implies that FZ,(Z(H, 0 ) N X™*) = Wi, So it holds that
n—4 = dimWr* = dim F,(Z(H, 0 m) N X1
< dimZ(H,om)n X™4 < dimX**=n-4

By the irreducibility of X", we have Z(H, o 7) N X"™* = X™ 4. But this
contradicts the fact that Hy(zo) # 0. (qed.)

(Proof of Proposition 1.6) Let p be a point in U satisfying dim Wy~ =n—4.
As we mentioned before, dimW,’,'"“ = n — 4 holds on an open dense subset of
{pr € C"}. Then for any

la] € (Wo="\ FB(Z(H, 0 ) N X™4)) N W,

there exists z € X"\ Z(H,) such that FZ,(z) = [a] by Lemma 1.8 and Lemma
1.9. Since ff}(x) # 0 and also the resultant R,(x) does not vanish, (z, by(z))
induces an n-end catenoid with the flux data (p,a) by Theorem 1.1. (q.e.d.)

For the later application, the following modification of Proposition 1.6 is
needed: Recall here that any elements of the matrices A, and J, are rational
functions in py,...,Pn, P1,-..,0n a0d qy,...,qn. Let Ap and J,, be the matrices
obtained by replacing p, by p,, namely

(115) Ap = Ap(Pl:---stIjh---11-’n-1,PmQIa---,Qn)a
(116) j? = Jp(pl';'--,pmﬁl,'°°1ﬁn—lapn,q1,”'1Qn)a

and let b (resp. fJ, Wr4) be the vector (resp. function, set) obtained by
replacing p,, in b) (resp. fJ, Wi™*) by py.

10



Proposition 1.10. Suppose that there existug € C" and a pointc=[cy,...,¢,] €
P" satisfying the following conditions:

(1) e1,...,cn are all distinet;
(2) The rank of the matriz A, (c) isn —1;

Bdet A .
(3) —5;=2 does not vanish at ¢ = ¢;
(4) The rank of the matriz Jy (c) isn — 4;

(5) Two polynomials P(z) and Q(z) defined tn (1.5) and (1.4} associated with
the data (q,p) = (c,u0) and b = b,,(c) are mutually prime and one of
them has degree n — 1;

6) fl)#0(G=1,...,n);
(M e#0(@G=1...,n-1).

Then there erists an open dense subset U C C” and an open dense subset
2, of the totally real set Wr = {[d] € VV,’,‘*’“; a; € R} such that, for p =
(P1y...,Pn) € U satisfying p, € R and [a] € 2y, there exists an (non-branched)
n-end catenotd with the fluz data (p,a).

(Proof.)  The proof of Proposition 1.6 works even if we replace §, by p;.
When py, is real, A, J,, 2, and Wr~* coincide with Ay, J,, 2, and Wi
respectively. (ged.)

Remark 1.11. To solve the inverse problem of the flux formula, we may assume
that p, € R since by a suitable rotation in {(z,y,z) € R}, we can choose
that v, is in the zz-plane. By the above modification of Proposition 1.6, the
parameter p, (=the stereographic image of v,) can be treated as a complex
analytic parameter.

2. Finding a regular point of the flux map

In the previous section, we reduced our inverse problem to finding a regular
point of the flux map. However, the following difficulties arise in this process.

e As seen in [Kat] and [KUY], n-end catenoids with many symmetries are
easy to construct. But unfortunately, they are not expected to be a regular
point of the flux map because of their symmetries.

o If we take a less symmetric n-end catenoid, the computation of the rank of
the flux map is very complicated and hard to calculate even by computer.

11



To avoid these difficulties, we first take an n-end catenoid with many symme-
tries, and next consider a perturbation of it which attains the desired properties.
Set m := n — 1. First we consider a 1-parameter family of (m + 1)-end

catenoids given in [Kat];

(

pi=rt (j=1,...,m), Pmy1:=0,
21) | a'= .=a"‘ .=m—1r(r2+l), a™! =
¢G=¢" (G=1...,m), gmu:=0,
[ B==bmi=1, bH =ﬁ211(r2~1),

m+l . _ m(m - 1)

5 r(r2 -1),

where r > 0, 7 # 1 and ( := exp(27v/—1/m). In fact, they are (m + 1)-end
catenoids without branch points by Remark 1.2, and are invariant under the
action of the cyclic group Z,,. Unfortunately, as we shall see below, J,(q) =
J,(q) = 0 holds for any of these examples, namely they all are singular points
of the flux maps. However, we will show that there exists a regular point near

1

9 —0m41 \
1

2= qm+1

them.
Note here that the matrix Ay(q) (defined in (1.9)) for the example above is
given by
iracl 1 rﬁcm—l
( 0 lq: ) fn Zgm
li‘l"’s_l 0 1+,.’ -2
29 @3 —Gm
(2.2) Ap(g) = :
Lirdgmtm) 142 (m-) 0
Gm—%N gm—q
\ 1 1 1
qm+1=q1 Gm+1—92 Qi —Gm

‘Now, We consider a 1-parameter family of matrices

1

N =qm+1 \
1

0 pdt 1!
( n—4q92 H-=qm
lj;gg" 0 Lypgm—2
L o k] 32=qm
(23) Alg,p) = :
1tpg—tm=D g imed 0
dm—q1 9m—¢2
\ 1 1 1
Gmn+1—q gm+1—93 Im+1--9m

2= 9m+2

e
Gm = Gm-41

0

/

By comparing (2.2). with (2.3), we have A(g,7%) = Ay(q) for p as in (2.1).
When we evaluate it at ¢ = ¢° := (1,¢%,...,{™%,0), we have

12



(2.4) A, ) = : : he 3 :
14 m;_—(l':;l) 1 !,,.E ;_—l:(—?) L 0 C-(m— 1)

\ -1 ~t .. —¢m-D o)

We remark that the matrix A(q°, 4) has the simplest form when p = 1.
The following lemma holds.

Lemma 2.1. The (m+ 1)-matriz A(q°, n) is of rank m except for finite values
of u € R. Moreover A(¢°, 1) has a 0-eigenvector given by

m—1
‘(1,...,1,——2—(p—1)).

(Proof.)  The second assertion is easily checked. Hence the rank of the matrix
A(q®, —1) is at most m. Moreover, it is easy to see that the rank of the matrix
A(q°,—1) is m. Since each component of A(q°, ;1) is a polynomial in g, the first
assertion is obtained. (q.e.d.)

Remark 2.2. Similarly, a 0-eigenvector of *A(¢?, 1) is given by

‘(1,...,1,%{2#—(m—l)(p.+1)}).

Proposition 2.3. The following identity holds.

Jdet A
9q;

(@p)=0 (=1,...,m+1).

(Proof.)  We denote the cofactor matrix of A(g, ) by B(g,u). By Lemma
2.1 and Remark 2.2, it can be easily checked that B(q°, 1) is written in the form

B(¢%, 1) = f()S(1), where f(y) is & polynomial in y satisfying f(-1) =1,

o1 D)
25 S = : ’
(2.5) (1) Lo )
e(p) -+ o(u) wlp) Y

13



and ¢(p) and () are explicitly given by

o) =" =), )= {2 - m -+ D)},

Note here that
ddet A A
) =Tr [ =—(q,4) - Blg,
3a; (g, 1) (aqj(q 1) - Blg u))

always holds for any j. Denote the (k,£)-component of the matrix A(g, ) by
ake(q, ). Then we have

( 14 p¢td

~(G - Ty (k=7¢=1,...,m £ #j)
aau qo _CWQ(J b —k (k_Jae m+1)
( py={ _1+ug"
@rogp (ET ek
¢~20-1 (k=m+1;£=_7)
. 0 elsewhere
forj=1,...,m, and
A (k=1,...,ml=m+1)
aaa"’ @) =9 ¢V (k=m+10=1,...,m)
Im+1 0 elsewhere
for j=m+1.
For j =1,...,m, by using the formula above, we have
BdetA

(@ p) = (gA ¢, ) - B(d, #))
= if 30"’((1” u)+ Zf(ﬂ)—(q 1)

#

Lok 4
L

lvﬁJ

SR, ) o) + 5P, S ()

QD

+

m j— m 24—
= 1w {g T - 3 e — el + (7 %(u)]

h=1
LEF] l¢:

m-1 - m—1 k
= f(u)¢?Y {Z L uék)? kg (itlg)z - (m— 2)#‘}

m-—1 k
= pf(p)¢2D {E C’°11+ CC,,) (m — 2)}
m—1 m—1
= pf (p)¢20-0 {k{_jl Cl,c + Zj (m — 2)}

=puf(W)¢ {1+ (m - 1) - (m —~2)}=0.

14



On the other hand, for j = m + 1, we have

Odet A 0A
aqm+1 (q(), l‘) = Tr (30m+1 (q01 p’) : B(qo: "'))

= ZC‘“”"‘)J’ o(p) - ZC‘“‘“”f (1) (p)

= fu)eln) Z (=

This completes the proof. (qed.)

By Lemma 2.1 and Proposition 2.3, it follows that J.0(¢°) =0 (r € R).
Therefore, we try to perturb a sampling point. To do this, we consider an
m-matrix 'ni1(p) by

_ [ &det A 0(f"/f"‘+1) 8° det A U /™) o
i) o= (ggeetalu) AL 0,y - G2 AL u))”:]mm,

where we denote the (7, k)—oomponent of the cofactor matrix B(q, 1) by B;x(q, 1),
and set

(2.6)
1 i—1 k-1
o) = Bemirla ) (Z} Bim+1(q, u)—g: + Bmt1ma1(g, u)qk i %H)
ik
(k - 1 7m)1
¢i-1
™ @m) = Brmiimile, u)Zﬁ; w4 1) ——.
=1 ’

(Compare with the definition of the matrix Jp(q) and f¥(g).) We prove the
following

Theorem 2.4. Suppose that there erists a posilive number p such that the ma-
tric Tyi(p) (n=m+12>5) is of rank m — 3(=n —4) and

PdetA
—(q", 0.
0010qm 11 (@) #

Then, for each of almost all fluz data, there ezists an n-end catenoid with the
fluz data.

(2.7)

Till now, we fix the parameter p,,.; at

Pm+1 =0.

Let us now move the parameter p,, .
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Lemma 2.5. Let u # 1 be a positive real number such that f(u) # 0, where
f(n) is a polynomial given by (2.5). Then
0det Ay(q) £0
OPm+1

at the point ¢ = ¢ = (1,{1,...,¢™1,0) for p = /iig", where Ay(q) is defined
in (1.15).
(Proof.) We denote the cofactor matrix of Ay(g) by B,(g). Since A vielg) =

A‘/-pqo(q) for any p > 0, it holds that B J—uqo(q) = B jip(g) and in particular, we
have B z0(¢°) = B zp(q°) = B(¢®, p). Then we have

ddet Ape®)|  _ gy [ 0Ae)
OPmat pe= /A OPm1

' B g (qo)) -
=i

Since

84,(¢°)

the (j, k)-component of
G:¥) po Opm+1

-1 G=m+Lk=1,...,m)
0 elsewhere,

¢T20-D (G=1,...,mk=m+1)
r=iq°

by (2.5), we have
- (aﬁp(q")

OPm+1

- B(¢, #))
=V

- f(u) {90(#) kﬁ (2061 _ (g — 1)¢(u)}

(m—1)

= —(m — ) F (W)() = (s~ 1)f () 0.

Now the assertion is clear. (qe.d.)

(Proof of Theorem 2.4.) Since f(u) is a polynomial in g and f(u) # 0, by
our assumptions and Lemmas 2.1 and 2.5, we can choose a positive number p
such that /() # 0, rank A /(%) = m, rank Tpny1 () =m — 3,

0910Gm41

ddet A,(q°)

apm-H P=\/_qu

Throughout this proof, we fix the parameters except for q; and pp,41 to the
same values as ¢ = ¢° and p = /fig":

pjz\/ﬁcj_l (j=11"'1m)?
G=¢"1 (1=2,...,m), gm+1 = 0.

(@®)#£0 and # 0.
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Regard det Ap(q) as a function with respect to only ¢; and p,,.1, and apply
the implicit function theorem to the point (¢1,pm4+1) = (1,0). Then' there
exist an open neighborhood U C C of 1 € C and & complex analytic function
Pm+1 = Pm+1(q1) : U — C such that pp1(1) =0 and

det A, =0 (g1 €V).
Pm+1=Pm+1{0)
Since rank A\/'m" (¢°) = m, rank Aply. . =pmir(q) = ™ holds also for g near 1.

Since A = A at p = /fig°, by Lemma 2.3, we have
an'
On the other hand, the assumption (2.7) yields
Odet A, £0

m+1 |pmtr=pms1(ar)
for any q; # 1 enough close to 1. Therefore we have

®)=0 (G=1,...,m+1).

ddet A T
i | JOURLY 250U/
q—1 an Odet A aqm-'l-l
Dgm+1 Pmt1=Pm+1(@1) / jk=1,...m
. 8% det 4 3
_ {a(f{éf;u+l) ~ 8?“1: .a(g/f;"ﬂ'l)}
q; 2 det Tm
J L — * r=vB®0=/ jp=1,..m
&% det A -
= (-aqla—q\f‘;qo(qo)) Fm+l(/'l')i
and hence
rank Jpl

Pm+1=Pm+1{q1)

an' | 9det Ay Ogm+1
Fi] Gm-+1

- {a(f:/f,;"“) e ,a(f:/f;"“)}

Prm+1=Pm+1(91) / j=1,...m
=m-~-3=n-—4

for any ¢; as above.

Since the initial sampling point ¢ = ¢°, p = \/fi¢" is chosen from the data
which realizes a non-branched n-end catenocid (n = m + 1), A(¢°) # 0 and
q? #0 (7 =1,...,m), the other conditions in Proposition 1.10 are also satisfied
for ¢; near 1. Now, by Remark 1.11, we have proved the theorem. (q.ed.)

Thus we will get our main theorem in Introduction, if the matrix I,y 11 (1)
is of rank m — 3(= n — 4) and (2.7) holds for some p > 0, which will be shown
in the next section.
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3. Computation of I';,,;(1)

In this section, we compute the matrix I'y41(p) defined in the previous
section, and show that it is of rank m — 3 for almost all 4 > 0,# 1.

(Computation of %%(qo,p)) As before, we write A(q, ) =: (Qke)ke=1,..,m+1

and B(g, ) =: (Bre)k,=1,...m+1. By (2.6), (2.5) and straightforward calculations,
we have, for any k =1,...,m,

k m+1
(3.1) %—{,. = f4 [(m -1+ so)f’-‘fg;-;ﬂ + 3 Pm 5;’;“ + fbe""m}
J =]
L£k
at (¢°, 1), where
n o) (=)
My = o=im1 F=1,...,m;j#£k)
¢ F () (j=m+1),

and for k=m+ 1,

8fm+l _ aﬁ‘m 1m = 813lm 1 ftpl/ICl"J (j=1,...,m)
62 =5 “f'/’['”_gT“J’ Z;T;"{o (i=m+1)

Hence we have only to compute f(u) and %'%*—‘(qo,p.). Denote the first
m x m-submatrix of A(q®, ) by A%(p). Clearly fot = Bniims1 = det AL, Set
C, :=diag[1,¢!,...,{™ !]. Since C;A° is a cyclic matrix whose (4, k)-component
is equal to (1 + u¢*7)/(1 — ¢*¥7), and whose diagonal components vanish, it
can be diagonalized as Cy7'C1A°Cy =diag{th1, . .., ¥m), Where -

1 1 ere 1
a2 cee 1
Co = : : .
el came L

and the eigenvalues ¥,. .., %y of C;A? are given by
™14+ Ck-—] _
be(p) = -i“:%r_’r(C')k '
k=2
_ [ (-2 p+ (e-2P) (@=1,...,m-1)
—Brp+ B (£ =m).
Now we have

fov= (=1 ] v
=1

18



Note here that ¢, = ¢ and ¥, = — and that ¥,(1) # O holds forany u > 0,# 1
(£=1,...,m).

To compute the derivatives g—;l’—i':(qo,p) of the cofactor matrix B(q,p), we
apply the formula (B.2) in Appendix B by putting X := E,,,, where E, ., is
the (m + 1)-matrix given by

0 00
E. =1 S
m-+1 0 - 0 0

For Ai(q, 1) = A(q, p) + t Eq 41, we have already shown that

Odet A
det A(¢%, 1) = ;, (@ p) =0
a;

in Lemma 2.1 and Proposition 2.3. Moreover we have

Tt (Ems1 - B(¢, 1)) = f()p(p)d(p) #0.
Thus we may apply (B.2), and get the following identity

oB 1 A oY, )
3.3 927 - L In(22.%% ).p
B3 3 fmb{ (aqj 3 |
aY; oA 0A BY.:
"o, 9 PPy }

at (¢% ), where Yi(u) is the cofactor matrix of A(¢°, i) + tEmy1. The first
m X m-components of & |oY:(ss) is given as the cofactor matrix of the first
m X m-components of A(q°, u), that is

det A°- (A1 = foy- Cudiaglyy™',..., ¥m |C27ICy
_ fedb (Ck-lzcu By )
k=1,....m

=1
_ f Y0
m 1
and the other components of Z|.oY;(xs) vanish. Namely
0
fe¥y0
_— = m
5 Ibo Yi(w)
0 0 0
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Therefore we have
1
(3.4 (aﬁg"f“) f"”{ (6 yo).f_yo.gi} :
G Jk=tmt1 T q; 95 1
@

at (g°, ). Recall here the values of %‘-’—;‘:f(qo, ) computed in the proof of Propo-
sition 2.3. Now, by direct computation, we have

65 TEEEL = Ll
(1 - Sln'm(“)) (k,j=1,...,m)
R0 (k=m+1;j=1,..,m)
CHro(dmor ()t (k=1,...,m;j=m+1)
0 (k=j=m+1),
where
miy o= { TS m oLt nr ) T (k=)
R GE R e S LR (R) by g ) ok #5).

Putting it into (3.1) and (3.2), we get

" .
(36) 83—{;<q°, 1) = —f () ()¢

2(m — 1+ () - ZFEE p () — () (k5 =1,...,m)
(2m + 1)p(p) (k=m+1j=1,...,m)
0 (k=1,....m+1;j=m+1).

In particular, we have

#?det A ofk afm+t
r = +1y-2 07 det A ( +1 k )
m+1 (Ju') (fm ) 8918‘]m+1 f?ﬂ aqj f an A
at (¢°, ).
(Computation of 8‘; S24-(q% p)) First we compute
PdetA o PA_ o 4240 _
Serenlas 1) = T (G =) B =) 4 G, (e, ))

It is easy to see that,

Ba -2 (k=Lf=m+1)
e 3“ @-1) =2 (k=m+1£=1)
910Gm1 0 elsewhere.
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On the other hand, we have

(Q—m ¢! ¢t -0\

' 1 @2-m) - ¢t 0

_3_ Yi(—1) = : : : i
Ot |y

¢! e (2=-m)™t 0

\ 0 0 0 0/

By putting these values into (3.3), we have
-(m - 1)41—*’ + Cl—! (k! £=1,... sm)

(3.7) O0Bxe (¢%,—1) = (m —1)¢1-* (k=1,...,mf=m+1)

an+1 ’ h “(m—l)cl-l (k=m+1;£= 13"-:m)

0 (k=€=m+1).
Now, by a straightforward calculation, we have
& det A

3.8 ——(¢",-1) =m{m —-1) #0.
(58 S (s =1) = m(m — 1) #
Since Bgl 33.':.1', (q'0 {t) is a polynomial in g, it does not vanish for any p except
for finite values

(Computation of the rank of I';,,1(x)) For any g4 > 0,7 1 such that
3%12_5@1_((10’ i) # 0, define a cyclic matrix

1 8fk fk 6fm+1 )
FO = - - - C .
mHT T () (3‘11' ™0 )yt

Then it is clear that the rank of I‘Am+1 is equal to the rank of 1"91,l +1- The (k, 7)-
component vx; of [',, ; is given by

m—14+¢ m-2+4+¢
i = — m - o 12 — ",

and the eigenvalues xi, ..., Xm of ['0,,; are given by

xelp) = Y yw)(¢Hy !
=1
{p+D{(m—Dut+m41} (1) {{—m+ 1) —
- n “4¢‘(”) (E—].,...,m'_].)
0 (£ =m).

Now it is clear that x,(x) # 0 for £=2,...,m -2, and I'Y | is of rank m — 3.
Consequently, 'y, is of rank m — 3 for any u > 0,5 1 except for finite values.

Now, by Theorem 2.4, we get the following theorem:
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Theorem 3.1. For almost all given unit vectors v = {vy,...,v,} (n > 5) in
R?, and nonzero real numbersa = {a',...,a"} satisfying 3%, a’v; = 0, there is
a (non-branched) n-end catenoid z : C\ {q1,...,qn} — R® such that v(g;) = v;
and a; is the weight at the end g;.

This theorem and the results for n < 4 ([L], [KUY]) imply our main theorem
in Introduction.

Appendix A

In this appendix, we give two lemmas on real analytic families of algebraic
equations which are applied in the proof of Proposition 1.6.

Lemma A.1. Let {fp(q1,---,9a)}pert and {gp(q1,- - -,9n)}pemrt be two real an-
alytic families of polynomials on C of degree bounded by m. Suppose that there
exists a non-empty open subset U such that

(A1) Z(fp) C Z(gp) (peU).
Then (A.1) holds for all p € R? such that f, # 0.

(Proof.)  For each p € RY, since the degree of f, is bounded by m, Z(f,) C
Z(gp) if and only if (g,)™ is divided by f,. We operate a differential operator

gl
[ 5 e
aq‘i’] o aq::n

_into the rational function @, := (g,)™/ fp. Let N®(y,) be a polynomial formally
defined as
Ne(pp) i= (fp)eH! - Do

which is the numerator part of D%p.

Now we fix an element py € R’ such that f, # 0, and choose an element
go € C" such that f, (go) # 0. Since f, is real analytic with respect to the
parameter p, we can take a subdomain V of U such that f,(g) # O for all
p € V, and g, is a polynomial on C of degree bounded by m? for any p € V.
Hence for any multi-index |o| > m?, we have N*(y,)(q) = 0 for p € V. By
the real analyticity with respect to the parameter p, we have N*(pp,)(g0) =0
for |a| > m2. Since fy,(q) # 0, we get D®p(go) = 0 for |a| > m?. Thus ¢y, is
also a polynomial on C. (ged.)

The following lemma is easily proved by using the Cauchy-Riemann equa-
tion.
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Lemma A.2. Let W, be a totally real subset of P*! defined by
Wo:={[a},...,a" | e P ;d’€R (j =1,...,n)}.

Let h be a homogeneous polynomial on C. If h is identically zero on a non-empty
open subset in Wy, then h =0 on P" 1

Appendix B

Let A be an n xn matrix. The cofactor matrix B of A is the matrix satisfying
the identity BA = AB =det A - I. In this appendix, we give an identity which
is useful to compute a differential of the cofactor matrix of a singular matrix.

Let Q be a domain in C containing the origin, and A(g) : @ — M(n,C) a
smooth map into the set of all n X n matrices. Let B(q) be the cofactor matrix
of A(q). We set A := A(0) and B := B(0). Suppose that

(B.1) det A = 9

3 det A(q) =

q=0

Then the following lemma holds.

Lemma B.1. Let X be an n X n matriz such that T(XB) # 0. Then the
following tdentity holds:

8B ! oA, Y
B2 5,0 = mxs){ﬂ(a (©)- ‘aTbo)'B
oy, 04 oY,
“ )|, BB —(0) £ }

where Y; is the cofactor matriz of A+ tX.

(Proof.) Weset A;(q) := A(q)+tX, and denote by B,(q) its cofactor matrix.
We have the following Taylor expansions:

AdD) = (A+X)+ 5 (0)+olg),

Blg) = mq%';—( )+ o(a).

Since A;(q)B:(q) = det Ai(q) - I, we have by taking the first degree terms that

8 0A 9B,
Bg|  detAg) -1 =5-(0) Yo+ (A+1X)- 5 20).

99}
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Since

det(A + tX) = Te(X B) #0,

Atl—g
A +tX is non-singular around ¢ = 0. Hence we have
0B, (9 \ 0A
—(0) = (A+tX) | ==| detAdq)-T——=(0)-Y
0%|q_ det A(q) - Y: - ;- 22(0) - Vi
B det(A + tX)
Apply de L’Hospital rule to the right-hand side of %(0) = lim, g ‘%%(0). Then
we get the equality (B.2). (qed.)
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