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NONCOMMUTATIVE LOCAL ALGEBRA

Alexander L. Rosenberg

The purpose of this work is to introduce the basic facts of noncommutative
local algebra and algebraic geometry. Initial objects of the theory are abelian
categories (thought as categories of quasi-coherent sheaves). To any abelian ca-
tegory  a set Specd - the spectrum of 4 - is assigned, together with canoni-
cal topologies on it. Given a topology T on  Specd, canonical or not, there
is a mnaturally defined functor from il to the category of presheaves on
(Specd, X), which sends objects of the -category 4 into corresponding ’structu-
re’ presheaves. The important thing is that, for the canonical topologies, the
stalks of the category of quasi-coherent sheaves (we call them the stalks of the
category «) are usually much simpler than the category 4  itself: they re-
semble to (are natural generalizations of) categories of modules over local

rings.

A short overview of the contents:

In the first section, the notion of the spectrum of an abelian category is
introduced and some basic properties of the spectrum are discussed.

The second section is concerned with the localizations at points of the
spectrum and the behaviour of the spectrum with respect to arbitrary exact loca-
lizations. '

In the third section, we introduce and study local abelian categories the
classical prototypes of which are categories of modules over commutative local
rings.

In the fourth section, the obtained results are specified for the category
of left modules over an associative ring. This way we recover the introduced in
[R1] (cf. also [R2]) left spectrum of a ring.

Section 5 deals with basic properties of supports and related to the sub-
sets of the spectrum localizations. :

Section 6 is dedicated to the Zariski topology.

In Section 7 some other canonical topologiés are discussed.

In Section 8, the associated points of objects of an abelian category are
introduced and their properties - straightforward analogs of the classical ones

- are established.



Section 9 is concerned with certain functorial properties of the spectrum.
We introduce the notion of the spectrum of a functor (- the relative spectrum)
and study several of related to this notion constructions and facts.

It is worth to mention that the relative spectrum is the main object of in-
vestigation in [R4] and [R6] dedicated to applications of the sketched here non-
commutative local algebra to the study of representations.

I am grateful to Joseph Bernstein for careful reading of this paper and a.
number of valuable suggestions. I would like to thank Max-Plank-Institute fiir
Mathematik for hospitality and support.

1. THE SPECTRUM OF AN ABELIAN CATEGORY.

1.1. A preorder in abelian categories. Fix an abelian category «£  For any two
objects, X and Y, of the category 4 we shall write X > Y if Y is a
subquotient of a coproduct of a finite number of copies of X, ie. if, for
some finite &, there exists a diagram

(k)X «— U — Y,
where the left arrow is a monomorphism, and the right one is an epimorphism; he-
re (k)X denotes a direct sum of k& copies of X.
1.1.1. Lemma. The relation > is a preorder on Obd.

Proof. In fact, let X » Y, and Y » Z; i.e. there exist the diagrams

X U 8,y (1)
and

J f
n)yY eV —2 2

in which the arrows i, j are monomorphisms, and the arrows g, f are epi-
morphisms. Evidently, the direct sum of »n copies of the diagram (1)

(nix < my (M8, )y
is of the same type. Let W be a fibred product of
(n)g: MU —— (n)Y and j: V — (n)Y;

and let " W — (n)JU ad h : W —— V be the canonical projections. Since
j is a monomorphism and (n)g is an epimorphism, the arrow { is a monomor-
phism, and h is an epimorphism. Hence



(n)ioi’: W — (nk)X
1s a monomorpism, and
(njgeh : W — Z

is an epimorphism; ie. X > Z. m

1.1.2. The notation. Denote by | 4] the ordered set of equivalence classes of
objects of 4 with respect to the relation >  We save the same symbol, », for
the induced order on |#4|.

1.2. The spectrum of an abelian category. Let M be a nonzero object of the ca-
tegory 4 We write M € Specd if, for any nonzero subobject N of M, we
have: N > M. Since M > N, we can say that M € Specd if and only if it is
equivalent with respect to the preorder > to any of its nonzero subobjects.

Denote by  Specd the ordered set of equivalence classes (with respect to
> ) of elements of Specd. We call Specd the spectrum of the category d.

1.3. Spectrum and simple objects. Clearly every simple object of the category &
belongs to  Specd. Moreover, we shall see in a moment that two simple objects

are equivalent if and only if they are isomorphic.

1.3.1. Proposition. Let M be a simple object of the category 4,  and let N
be an object of 4. Then the following conditions are equivalent:

(a) N is isomorphic to (k)M for some (ﬁniré) k;

(b) M > N.

Proof. Clearly (a) = (b). Let us show that (b) = (a). By assumption, N is
a subquotient of (/)M  for some [ Since M is simple, this implies by a
standart argument that N « (n)M for some n <[ =

1.3.2. Corollary. Let M and M  be simple objects of the category . Then
M > M if and only if the objects M and M’ are isomorphic.

2. THE SPECTRUM AND EXACT LOCALIZATIONS.

2.1. Preliminaries about exact localizations. A localization is a functor having
a universal property with respect to the class of arrows it inverts (cf. [GZ,
I.1.1). Here we are interested in localizations which are exact functors - exact
localizations.

Recall that a subcategory S  of the category & is called thick if the



following condition holds:

the object M in the exact sequence

0 > M’ > M s M"” y O

belongs to s if and only if M and M" are objects of S. In other words,
S 15 closed under taking subquotionts and extensions.

2.2. Proposition. Let Q: 4 —— B be an exact localization of an abelian ca-
tegory 4. Then, for any P e Specd, either Q(P) = 0, or Q(P) € SpecB.

Proof. 1) Any exact functor is compatible with the preorder > ; in par-
ticular, the localization @ is compatible with >
2) Let P € Specd - KerQ, and let ¢ : N »—— Q(P) be a nonzero subob-
ject of Q(P). Since the functor @ is exact, the class % of all arrows s
of 4 such that Qs is invertible, admits left and right fractions (cf. [GZ],
1.3.4). This implies that there exists a commutative diagram
N —2 s 0(P)

u l Os (1)
QOh
Q(M) —— Q(P’)

where « and (s are isomorphisms. Consider the pair of arrows

h

M P p )

Note that s 1is a monoarrow,

In fact, Ker(s) € KerQ, Dbecause Qs is a monomorphism. If Ker(s) # 0,
then, since P € Specd, Ker(s) » P, Therefore P is an object of KerQ which
contradicts to the assumption.

Now, since ¢: N ——— Q(P) is a nonzero monomorphism, as well as arrows
u and Qs (cf. the diagram (1)), @Qh is also a monoarrow. Therefore Ker(h) €
Ker(Q. Replacing the arrow 2 in the diagrams (1) and (2) by the canonical mor-
phism

M/Ker(h) ——— P’
and the isomorphism u in the diagram (1) by the composition of « and the

isomorphism Q(M —— M/Ker(h), we can assume that A is a monomorphism. Con-.
sider the pullback of the arrows (2):



hl

M _———— P

s'l J s 3)

M L) P
By general properties of cartesian squares, the monomorphness of A  (resp.
s) implies that of A" (resp. s'). Being exact, the functor Q sends the
cartesian square (3) into the cartesian square. Hence, the isomorphness of Qs
implies that Qs” is an isomorphism.
Now, it follows from the commutativity of (1) that there is unique morphism
Ar N —— QO(M’) such that
Qs'oh = u and QWA = . (4)

Moreover, the first of the equalities (4) shows that A  is invertible: A
= Qs 'eu. In particular, the monomorphism A is nonzero. Since P € Specd,
this means that M’>- P  which implies, thanks to the exactness of (@, that N «
QM) > Q(P). =

2.3. Points of the spectrum and Serre subcategories. Fix an abelian category 4.

For any M € Obd, consider the full subcategory <M> of & defined as
follows: Ob<M> consists of all objects N such that the relation N > M  does
not hold.

Note that, for any object M, the subcategory <M>  contains all subquoti-
ents and finite direct sums of copies of any of its objects.

2.3.1. Lemma. Let M, M’e Obd. The following conditions are equivalent:
(a) M > M’;
(b) <M’'> c <M>,

Proof. Since we are dealing with full subcategories, the inclusion <M’> c
<M> is equivalent to that Ob<M’'> g Ob<M>.

Note that Obd -Ob<M> consists of all objects L of 4 such that L > M.
Clearly, since > is a preorder (cf. Lemma 1.1.1), M > M’ if and only if Ob«
-Ob<M> < Obd# -Ob<M’>, or, equivalently, if and only if Ob<M’'> < Ob<M>. =

Thus, the map M—— <M> induces an isomorphism of ordered sets (cf.
1.1.2):
|4 = (]4].>) ——— ((<M>| M e Oba}, D).



We shall use this realization of |4] all the time.

2.3.2. Serre subcategories. For any subcategory T  of an abelian category 4,
denote by T the full subcategory of &  generated by all objects M  such
that any nonzero subquotient of M has a nonzero subobject from T.

2.3.2.1. Lemma. For any subcategory T of an abelian category 4,

(a) the subcategory T s thick.

(b) (T7) =T.

(c) T < T if any subquotient of any object of ¥ is isomorphic to an ob-
Ject of T.

Proof. (a) Suppose that the object M is the exact sequence

0 — M — s M S M — 0 (1)

belongs to T ; i.e. any nonzero subquotient of M  contains a nonzero subob-
ject from T. Since any subquotient of M or M" is at the same time a sub-
quotient of M, both M and M" have this property.

Conversely, let M’ and M" are objects of T . And let L be a nonzero
subquotient of M; i.e. there is a diagram

1

M ¢ K—¢ .,

where 1 is a monoarrow and e is an epimorphism.
If the composition of the canonical monomorphism
V: KnL— K

and e is nonzero, then L:= im(eol’) is a nonzero subobject of L and a
subquotient of M’. Hence L’ has a nonzero subobject from T.

If eol = 0, then we have a commutative diagram

0 SM — Mt M , 0
I
0 — KL y X s K’ s 0

e\L/e'

where i’ is a monoarrow and ¢ is an epiarrow; i.e. L is a subquotient of
M", hence L has a nonzero subobject from T.
(b), (c). The assertions (b) and (c¢) are evident. m



Call a subcategory T of an abelian category « a Serre subcategory if it
coincides with T .

2.3.3. Proposition. If an object P  of the category 4  belongs to  Specd,
then <P> s a Serre subcategory of 4.

Proof. Suppose that there is an object M  of the category 4  which be-
longs to <P>", but does not belong to <P>. The latter means that there is a
diagram

(MM — K % P,

where i is a mono- and ¢ an epimorphism. In other words, P is a subquo-
tient of (n)M. According to Lemma 2.3.2.1, <P>" is a thick category; in par-
ticular, (n)M  belongs to <P>". Being a nonzero subquotient of an object from
<P>", the object P has a nonzero subobject from <P>. But, since P € Specd,
any nonzero subobject of P is equivalent to P; hence it cannot belong to the
subcategory <P>. =

2.4. Categories with the property (sup). Their Serre subcategories and their
spectrum. Consider abelian categories with the following property: '

(sup) for any ascending chain 2 of subobjects of an object M, the sup-
remum of ) exists; and for any subobject L of M, the natural morphism

supfX n L : X € Q) —— (supQ) n L
is an isomorphism.
The categories with property (sup) are called otherwise the categories with

exact direct limits.

2.4.1. Example: Grothendieck categories. Recall that an abelian category £ s
called a Grothendieck category if it has a set of generators, and, besides, the
following condition holds:

ABS5. There exists a direct sum of every set of objects of 4, and, for any
ascending chain € of subobjects of an object M and for any subobject N of
M, the natural morphism

supfX nN: X e Q) —— (supQ) n N
is an isomorphism.
Note that the existence of small direct sums garantees the existence of
supl  for any family €  of subobjects of any object M of &,  since this



supS) is the image of the canonical arrow

@ X— M
X e Q

Thus Grothendieck categories are categories with coproducts, a set of gene-
rators and the property (sup).

Recall three important examples of Grothendieck categories:

1) The category R-mod of left modules over an associative ring R.

2) The category of sheaves of R-modules on an arbitrary topological space.

3) The category of quasi-coherent sheaves on a quasi-compact and quasi-
separated scheme.

Note that it is not known if the category of quasi-coherent sheaves on an
arbitrary scheme has enough injectives or even all limits ({TT], B.2). But, one
can easily see that it has the property (sup).

In fact, the inclusion of the category Qcoh(X) on a scheme X into the
category Ox-mod of Ox-modules is a fully faithful exact functor which ref-
lects finite limits and all colimits. This implies that the category Qcoh(X)
has all colimits and inherits the property (sup) from Oy-mod. w

2.4.2. Example: noetherian categories. An object M of a category « is called
noetherian if any set of its subobjects has a maximal element. An abelian cate-
gory 4 is called noetherian if it has a set of generators and all its objects
are noetherian.

The standart examles of a noetherian category is the category of left modu-
les of finite type over a left noetherian ring and the category of coherent she-
aves on a noetherian scheme.

Note that if all objects of an abelian category 4 are noectherian, then
the category « enjoys the condition (sup).

This is a consequence of the fact that the condition (sup) restricted to
finite families of subobjects holds for any abelian category. w

2.4.3. Lemma. Let an abelian category 4  have the property (sup). And let T
be a Serre subcategory of the category 4.

Suppose that Q is a family of subobjects of an object M  of the category
4  such that M = supQ; and S is a subset of the subcategory T. Then M

also belongs T.



Proof. We need to show that the object M =~ supQ belongs to the subcatego-

ry T.
In fact, let Q" denote the directed family

{supX | X is a finite subset of €}

of subobjects of M. For any finite subset ¥ of €, supX is isomorphic to
the image of the canonical arrow
& L -— M,
Le ¥
Since the subcategory T  is thick (cf. Lemma 2.3.2.1), hence closed under

any finite coproducts, @© L and, therefore, its image in M, sup¥, belong
L e ¥
to T.

Let now we be given an arbitrary diagram

Ml k% L%
where i is a monoarrow, e is an epiarrow, and X % 0. For any (finite sub-
set ¥ of €, denote by K(X) the intersection of K  with the subobject
supX. Thanks to the property (sup), there is a finite subset X < Q  such that
the composition of the embedding 1 K(X¥) ———— K and the epimorphism e is

nonzero. The image of eol is a nonzero object from T.
This shows that M € ObT . =

Recall that a subcategory S of a category 4 is said to be coreflective
(resp. reflective) if the inclusion functor S —> 4 has a right (resp. left)

adjoint.

2.44. Lemma. (a) Any coreflective thick subcategory of an abelian category is a
Serre subcategory.

(b) Let 4 be an abelian category with the property (sup). Then any Serre
subcategory of 4 is coreflective.

Proof. (a) lLet & be an arbitrary abelian category; and let T be a core-
flective subcategory of . Take an arbitrary object M in the subcategory
T. Since T is coreflective, M  has the T-torsion, T(M), -  the biggest
among the subobjects of M which belong to T.

If the quotient object M/T(M) is nonzero, then M/I(M) has a nonzero
subobject, X, from 7. Since the subcategory T is thick, the preimage of X
in M is a subobject of M containing properly T(M) which contradicts to the



maximality of T(M).

Therefore M/T(M) = 0, 1e. M = T(M) € ObT.

(b) Fix a Serre subcategory T of the category 4.

For any object M of 4, consider the family T/M/ of all subobjects of
M which belong to T. According to Lemma 2.4.3, T(M):= supT{M} belong to T.
Clearly, T(M) is the T-torsion of M - the biggest among the subobjects of M
which belong to T.

One can see that the map M+—— T(M) defines uniquely (once the subobject
T(M) is chosen for each M) the right adjoint to the inclusion functor

T—— 4 =

2.4.5. Corollary. Let an abelian category 4  have the property (sup). Then, for
any Serre subcategory T of 4, the embedding Jpp T —— 4 preserves and
reflects colimits.

In particular, any Serre subcategory of A is closed wunder small copro-
ducts (taken in 4).

Proof. In other words, the assertion sounds as follows:
for any small diagram D: ®» —— T, ©colim(D) exists if and only if the

colimit of the composition JFoD exists, and the canonical arrow

colim(J.ﬂ,oD) _— Jv(colim(D))
is an isomorphism.
(i) Suppose that colim(J]ToD) exists. Denote this colimit by M, and take
as € the family of images of all canonical arrows

JFoD(x) —s M, x € 0ObD.

Clearly the canonical arrow  supQl —— M is an isomorphism. By Lemma
2.4.3, this means that M belongs to T = T.

(ii) 1If colim(D) exists, then Jv(colim(D)) is canonically isomorphic
to colim(JFoD).

This follows from the existence of a right adjoint to the functor J.. =

2.4.6. Note. The assertion (i) in the proof of Corollary 2.4.5 is a special case
of a more general fact. Namely, it is a consequence of the full faithfulness of
the embedding J1r’
2.4.4, and Proposition 1.1.4 in [GZ]). =

the existence of a right adjoint to J.  functor (cf. Lemma

10



Corollary 2.4.5 shows that the given here definition of a Serre subcategory
coincides with the conventional one in the case of Grothendieck categories.

2.4.7. Proposition. Let an abelian category 4  have the property (sup). Then,
for any object 'V of 4 such that <V> is a Serre subcategory, there is an
object P € Specd which is equivalent to V; ie. <V> = <P>,

Proof. Let M be an object of the category & such that <M> is a Serre
subcategory. Since 4  has the property (sup), the subcategory <M> is corefle-
ctive (cf. Lemma 2.4.4); ie. each object L of & has <M>-torsion <M>(L).
Denote by f<M>L the quotient object L/A<M>(L). Since <M> is thick, f<M>L
is <M>-torsion free; hence f<M>L and L belong or do not belong to <M> si-
multaniously. In particular, M  is equivalent to  f<M>M  with respect to >
Clearly any nonzero subobject of f<M>M, being <M>-torsion free, is equivalent
to f<M>M with respect to » ; ie. f<M>M € Specd. m

2.4.8. Serre subcategories and flat localizations. We call an exact localization
Q: 4 ——— B flat if the functor @  has a (necessarily fully faithful) right
adjoint functor.

A thick subcategory T of an abelian category & is called localizing if
it is a kernel of a flat localization.

Note that any localizing subcategory is coreflective.

In fact, let Q@ be a flat localization, Q" a right adjoint to @  func-
tor, and W Idﬁ —— Q@%@ an adjunction arrow. Then the map M+—— Kem(M)
defines a functor which is right adjoint to the inclusion functor KerQ —— «.

It is known (cf. [Gab], Ccrollary 3.3.3) that if 4 is an abelian category
with injective hulls, then the converse is true:

A thick subcategory of an abelian category with injective hulls is locali-
zing if and only if it is coreflective.

This and Lemma 2.4.4 imply the following assertion:

2.4.8.1. Proposition. Let A be an abelian category with property (sup) and
with injective hulls. Then any Serre subcategory of 4 is localizing.

2.4.8.2. Corollary. Suppose that 4 is an abelian category with propery (sup)

and with injective hulls. Then

a) The map Q+—— KerQ provides a one-to-one correspondence between the

11



equivalence classes of flat localizations of 4 and Serre subcategories of the
category 4.
b) For any P € Specd, the subcategory <P> s localizing.

Note that Corollary 2.4.8.2 is applicable to the case when 4 is a Gro-
thendieck category, because any Grothendieck category has both the property
(sup) and injective hulls.

3. LOCAL ABELIAN CATEGORIES AND LOCALIZATION
AT POINTS OF THE SPECTRUM.

Thus, according to Proposition 2.3.3, to any point <M> of Specd an
exact localization, Q <M>" 4 —— &/<M>, corresponds.

Our immediate goal is to show that these localizations at points of the
spectrum (or, ruther, quotient categories A<M>) are as special, as the loca-
lizations of categories of modules over a commutative ring at points of the
prime spectrum.

3.1. Local abelian categories. A nonzero object M  of an abelian category A
will be called quasifinal if N > M for any nonzero object N of 4.
In other words, a nonzero object M is quasi-final if and only if <M> =

{0} <N>.

=N

N € Oba-{0}
Clearly a quasifinal object of the category 4  (if any) belongs to  Specd,

and every two quasifinal objects of 4 are equivalent.

3.1.1. Definition. An abelian category o will be called local if it possesses
a quasifinal object. m

3.1.2. Lemma. The following properties of an abelian category 4  are equiva-
lent:

(a) 4 is local and has simple objects;

(b) any nonzero object of 4 has a simple subquotient, and all simple ob-

jects of 4 are isomorphic one to another.

Proof. (a) = (b). Let M be a quasifinal object and L a simple object of
the category & Then L » M  which implies, by Proposition 1.3.1, that M s

12



a coproduct of a finite number of copies of L; hence M is equivalent to L.

Since. L in this argument is an arbitrary simple object, we have obtained
that all simple objects are equivalent each other which means, according to Co-
rollary 1.3.2, that they are pairwise isomorphic.

The implication (b} = (a) is evident. =

3.1.3. Example. It is easy to see that the category R-mod of left modules over
an associative ring R is local if and only if any two maximal left ideals m
and m" are equivalent in the following sense: m’ = (m:x) for some x € R,
where (m:xx) = {y € R| yx € m} by definition. In particular, the category of
modules over a commutative ring &k is local if and only if the ring &k is lo-

cal. m

3.2. Local categories and local rings. For any abelian category 4,  denote by
3(4) the “"center" of 4  which is, by definition, the ring of endomorphisms of
the identical functor Id " Clearly the ring 3(4) is commutative.

3.2.1. Proposition. Let 4 be a local abelian category. Then the ring  (d) s

local.

Proof. Let M be a quasi-final object in the category 4. (a) The endo-
morphism £ of Id, is invertible if and only if EM) # 0.

Suppose that Ker&(X) # 0 for some object X; and let o be the canoni-
cal monomorphism KerE(X) —— X. The equality
0 = E(X)oo = oo(KerE(X))

implies that &(KerE(X)) = 0.
Since M is a quasi-final object, there exists a diagram

(DKerf(X) e— vV —% s M

where i is a monomorphism and e is an epimorphism.
0 = E(([)KerE(X))oi = i:&(V) = §(V) = 0,
since i is a monoarrow, and
0 = ¢cof(V) = EM)oc = EM) = 0

thanks to the epimorphness of e.
Suppose now that Cok&(X) # 0; and let v be the canonical epimorphism

13



X —— Cok&(X).
The equalities

&(Cok(X))ov = vek(X) = 0
imply that &(Cok&(X)) = 0.
Since M is a quasi-final object, there exists a diagram

%4 ’

(n)Cok&(X) «—— V —55 M

where i* is a monomorphism and e’ is an epimorphism which implies (by the
same argument as above) that &E(M) = 0.

Thus, if §&M) # 0, then §&(X) is an isomorphism for any object X in
4, ie. & is an isomorphism.

In particular, &(M) is invertible if and only if &(M) # 0.

(b) Thus, the map &E—— &M) is an epimorphism of the ring 3(«4) onto
the skew field (E§(M)| & € 3(4)). =

3.3. Localizations at points of the spectrum. Now we are going to get one of the
most convincing indications that the chosen here notion of the spectrum 1is a
right one.

3.3.1. Proposition. Let 4 be an abelian category. For any object M  of the
category A  such that <M> is a thick subcategory of 4, the quotient catego-
ry &/<M> s local.

Proof. Denote by @ the localization & —— «/<M>. Fix a nonzero ob-
ject, X, of the quotient category &/<M>. There is an object X of the ca-
tegory 4 such that X = Q(X’). Since the object X is nonzero, X & Ob<M>
which means that X’ > M. The last relation is respected by exact functors. In
particular, we have: X « Q(X’) » Q(M). Thus, Q(M) is a quasi-final object of
the category #/<M>. m

3.3.2. Corollary. For any abelian category 4 and any object M  from  Specd,
the quotient category #A/<M> s local.

Proof. By Proposition 2.3.3, if M € Specd, then <M> is a thick subcate-
gory. m
4. THE LEFT SPECTRUM OF A RING.

Let # be the category R-mod of left modules over an associative ring R

14



with unity. Since each module from Spec(R-mod) is equivalent to any of its cy-
clic submodules, we can restrict ourselves to the modules of the form R/m,
where m runs over the set [ R of left ideals of the ring R. The next step,
which we are going to do now, is to translate the defined above notions of pre-
order > and spectrum from the language of modules into the language of Ileft
ideals.

4.1. Lemma. Let m and n be left ideals of the ring R. The relation R/m >
R/n is equivalent to the following condition:

(#) there exists a finite set 'y of elements of the ring R  such that the
ideal (m:y) := {z € R| zy € m} s contained in the ideal n.

Proof. By definition, the relation R/m > R/  means that, for some posi-
tive integer k, there exist a submodule N of the module (k)R/m and an epi-
morphism fo N —— R/m. Let e be the image of the unity e of the ring R
under the canonical epimorphism R —— R/n; and let z be an element of the
module N such that f{z) = e. It is clear that the restriction of the epimor-
phism f onto the cyclic submodule Rz is also an epimorphism. This implies
that the annihilator Ann(z) of Z is contained in the annihilator Ann{e’)

of the element €. But Anmn(e) = n, and Ann(z) = (m:y), where y =
{yl,y2,...,yk} is the set of elements of the ring R such that z is the di-

rect sum of Tl:(yl.), i =1,.,k; here m is the canonical map R —— R/m.
Conversely, if the left ideal (m:y) is contained in the left ideal n
for some finite set y = {yl,...,yk} of elements of the ring R, then there

exists an epimorphism of the generated by direct sum of the elements n(yi), i =
1,...,k, submodule of the module (k)R/m onto R/n. =

We will write m > n if the left ideals m and »n satisfy the condition
(#) of Lemma 4.1. Thus, the preorder > in the category R-mod  induces the
preorder - in the set [ [R of left ideals of the ring R.

4.2, Proposition. Let p be a left ideal of the ring R The quotient module
R/p belongs to SpecR-mod if and only if the following condition holds:

(*) for any x € R - p, the left ideal (p:x) is equivalent to p with
respect to the preorder - ; or, what is the same, (p:x) > p.

Proof is left to the reader.m

Thus, the set of all left ideals p such that the module R/p  belongs to
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the spectrum of the category R-mod  coincides with the left spectrum, SpeclR,
of the ring R (cf. L.1).

4.3. Localizations at points of the left spectrum of a ring. We have the follow-
ing picture.

4.3.1. Proposition. For every ideal p  from the left spectrum of the ring R,
the localization of the category R-mod at p is naturally realized as a full
local subcategory R-mod/<p> of R-mod, or, what is sometimes more convenient,

as a full local subcategory G<p>R-mod/<G<p>p> of the category G<p>R-mod.

Proof. This assertion follows from results of Section L2 and LO. We
leave the details to the reader. m

The ring R is called left local if the category R-mod of left R-modules
is local. Since R-mod is a category of finite type, it means that all simple
left R-modules are isomorphic to each other, or, equivalently, for any two left

maximal ideals m and m of the ring R there exists an element z of R
such that m" = (m:z).

4.4. Lemma. Let p € Spec[R. The following conditions are equivalent:

(a) The natural module morphism  G<p>R/G<p>p —— GF(R/p) is an isomor-
phism.

(b) The quotient module G<p>R/G<p>p  belongs to the (quotient) subcategory
G<p>R-mod/<G<p>p>.

(c) The functor G<p> is exact; ie.

G<p>R-mod/<G<p>p>=G<p>R-mod.

(d) The ring G<p>R is left local, and its left ideal G<p>p is equiva-

lent to a left maximal ideal.

Proof is left to the reader. m

4.5. Remark. The equivalent conditions of Lemma 4.4 hold for any commutative
ring and for any hereditary ring. They hold also for some "good" rings, such as
certain rings of differential operators, and some others. But the left spectrum
of most rings (and even most among interesting rings) is far from being abundant
with points satisfying the conditions of Lemma 4.4. =
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5. SUPPORTS AND LOCALIZING SUBCATEGORIES.

5.1. The topology 1. Fix an abelian category & Clearly the least require-
ment on a topology of the spectrum, Specd, of the category 4 is that it
should be compatible with the preorder > This means that the closure of any
point <P> of Specd should contain the set s(<P>) of all specializations of
that point, i.e. all <P’> € Specd such that <P'> ¢ <P’>.

Denote by 1T  the strongest among the topologies having this property. It
is easy to describe T  explicitly: the closure of a subset W  with respect to

T is U s(<P>)
<P> e W
One can check that not only the intersection, but also the union of any fa-

mily of closed in the topology 1t subsets is closed. This shows that 1t is too
strong to be really useful in terms of applications. Still, since any admissible
topology lives inside of T, it is convenient to take T into account.

5.2. Supports. The support of an object M of an abelian category « is the
set Supp(M) of all <P> e Specd such that M > P.

For instance, if M € Specd, then Supp(M) coincides with the set s(M)
of specializations of M - the closure of the M in the topology 1T  (cf.
5.1).

Clearly Supp(M) is closed in the topology T for any object M.

Note that Supp(M) depends only on the equivalence class, <M>, of the
object M. So, we could write Supp(<M>) instead of Supp(M).

5.2.1. Lemma. For any object M of the category 4,
Supp(M) = {<P> € Specd| Q
where Q<P> is the localization at <P>.

<p>M # 0,
Proof. In fact, by the definition of the support,
<P> € Supp(M) if and only if M ¢ <P>.

On the other hand, Q M=#0 ifandonlyif Mg <P> u

<P>

5.2.2. Proposition. (a) For any exact short sequence

0 s M’ > M > M” > 0, ()

Supp(M) = Supp(M’) U Supp(M").

(b) Suppose A4 is a Grothendieck category. If an object M is the supre-

mum of a family, Z, of its subobjects, then
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Supp(M) = U Supp(X).
Xe =

Proof. (a) Since M > M, as well as M > M”, and > is a transitive re-
lation, we have the inclusion

Supp(M) 2 Supp(M’) U Supp(M").

On the other hand, for any <P> € Specd, the localization Q <p>+ being an
exact functor, sends the exact sequence (1) into the exact sequence

0 —— Q p M ——Q p M ——Q_p M —— 0, )

If <P> € Supp(M), then, according to Lemma 5.2.1,
lies, thanks to the exactness of (2) that either Q < P>M' # 0,

Q.psM # 0 which imp-
or Q<P>M" # 0
(b) Now, let «& be a Grothendieck category. Again, we have the inclusion
Supp(M) 2 U Supp(X)
Xe k=

=

for free.

Note now, that, since the functor (@ <P> 1s flat, it sends subobjects into
subobjects, and the canonical arrow

sup Q X —— 0 (sup X) = Q M
Xe = <P> <P>X c = <P>

is an isomorphism. Hence, if <P> € Supp(M), ie. Q<P>M # 0 (cf. Lemma
5.2.1), then Q < P>X # 0 for some X € E which means, by Lemma 5.2.1, that <P>
belongs to Supp(X) for that particular X. mw

5.2.3. Corollary. For any family Z  of objects of a Grothendieck category 4,

Supp( @ X) = U Supp(X).
XeZ Xe&Z

5.2.4. Lemma. The map M+ Specd - Supp(M) is a functor from the preorder
|4|:= (Obd,>) to the preorder (Open(1),c) of open subsets of the topological
space (Specd,T).
Proof. Since the relation > is transitive, the map
M+—— Supp(M):= {<P>| M » P]

is a contravariant functor from [4] to the preorder (under <) of closed sub-
sets of the topology T on Specd which implies the assertion of the lemma. m
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5.3. Subsets of the spectrum and topologizing subcategories. For any abelian ca-
tegory B, denote by |B| the order induced by »; ie. |B|] can be regarded
as the set of full subcategories [<M>| M € ObB] with the order 2 (cf. Lemma
2.3.1).

Call a full subcategory, T, of an abelian category 4  topologizing if it
contains all subquotients (in ) of any of its objects and a coproduct (in &)
of any pair of its objects.

Clearly any thick subcategory is topologizing.

5.3.1. Lemma. Any topologizing subcategory T of a abelian category 4  defines

a subset of Specd, Tw—— [T| n Specd, which is closed in the topology 1.
Moreover, |T| n Specd = SpecT.

Proof. In fact, since the -category T is topologizing, it contains with
every object X all the objects Y of the category #4 such that X » Y. In
particular, the set |T| n Specd is closed in the topology 7.

The equality |T]| n Spec# = SpecT is left to the reader as an exercise. m

5.3.2. Proposition. (a) For any subset W < Specd, the full subcategory  4(W)
generated by all objects M of the category 4  such that Supp(M) < W is a
Serre subcategory.

(b) The subcategory (W) coincides with the subcategory <Wil>:= n <p>,
pe Wi
where Wl:= Specd - W.

(c) If the set W is closed in the topology 1T, then (and only then)
Specd n |4(W)| = Speca(W) = W.

Proof. (b) It follows from the definitions of Supp and <Wl>  that the
relation M € Ob<WLl> means exactly that

Supp(M) n WL = &, ie. SuppM) c W.

(a) One can check that the intersection of any set of Serre subcategories
is a Serre subcategory. Thus the assertion (b) imply the assertion (a).

(c) For any <P> € Specd, the support of P coincides with the set s<P>
of specializations of  <P> (or, the closure of the ’point’ <P> in topology
1). Hence Specd  |4(W)| consists of all <P> € W such that s<P> c W. =m

Thus, we have the diagram:

19



{thick subcategories of «} \
,[ { topologizing subcategories of )

{closed subsets of (Specd, 1)}

The first arrow determines the localization at any closed subset of
(Spec«,T); the second arrow can be used to create new topologies on Specd.
Namely, choosing a class of topologizing subcategories of &, we obtain a set
of subsets in Specd  which is considered as a base of closed subsets of a topo-
logy.

We are going to use this procedure in Section 6 to define the Zariski topo-
logy.

5.4. The residue field of a point. Fix any point <P> of Specd. According to
Proposition 5.3.2, A<P>"):= A Supp(P}) is a thick subcategory of 4. Consi-
der the quotient category

K <P>:= d(<P>")/<P>.

Clearly the category K <P> is local. Moreover, one can see that it is
"zero-dimensional”; i.e. SpecK <P> consists of only one point.

Denote by K<P> the full subcategory of the category K <P> generated by
all objects M of XK <P> which are supremum of its subobjects V —— M such
that <V> = <P>.

We call the category K<P> the residue category of <P>.

One can check that the subcategory  K<P> is topologizing which implies
that it inherits the nice properties of the category K <P>: it is local and
its spectrum consists of only one point.

54.1. Lemma. (a) If one of the categories &/<P> K <P> and K<P> has ob-
jects of finite type, then the other two also enjoy this property.

(b) If the quotient category /<P> has objects of finite type, then  K<P>
is equivalent to the category of modules over a skew field.

Proof. (a) A local category has objects of finite type if and only if its
quasi-final object is semisimple. Clearly, the latter property holds for all the
listed in the assertion (a) categories if it holds for one of them.

(b) Since quasi-final objects of  K<P> are semisimple, every nonzero ob-
ject of K<P>, being a sum of its simple subobjects, is semisimple. Thus, K<P>
is a semisimple category with only one up to isomorphism simple object, say M.

20



Therefore the functor
X —— K<P>(MX)

from X<P> to the category K(<P>)-Vec of vector spaces over the skew field
K(<P>):= K<P>(M,M) is an equivalence of categories. w

We call the field K(<P>) from (the proof of) Lemma 5.4.1 the residue skew
field of the point <P>,

Clearly the residue skew field of a point is defined uniquely up to isomor-
phism.

6. LEFT CLOSED SUBCATEGORIES AND ZARISKI TOPOLOGY.

6.0. Preliminaries about the Gabriel multiplication. For any two subcategories,
X, ¥ of an abelian category &, define their product Xey as the full subca-
tegory of 4  generated by all objects M of 4  such that there exists an
exact sequence

0 > M’ > M > M > 0
with M e Oby and M" € Ob2Z One can check that if %X and Y are topologi-
zing subcategories, then such is Xey.

Note that, for any three topologizing subcategories, S, T, and U,
Se(Tel) = (SeT)sl); and (eSS = Se0 = S.
It follows from definitions that a topologizing subcategory T is thick if
and only if TeT = T.

6.1. The Gabriel multiplication and the spectrum. Recall that, for any topologi-
zing subcategory $ of 4, the set V($) consists of all <P> € Specd such
that P e Obs.

6.1.1. Lemma. For any pair S, T of topologizing subcategories of an abelian
category #, we have: V(SeT) = V(s) U V(T).

Proof. a) Clearly $ < SeT © T which implies the inclusion
- V(seT) o V(3) U V(1) (1)
b) Let <P> € V(seT); ie. P € Specd  Ob(SeT). The latter means that
there exists an exact sequence

0 > P’ s P > P" > 0

in which P € Obt and P" € Obs.
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If PP #0, then P » P; hence P e ObT.
If PP =0, then P« P" ie. P e Obs.
Thus
Specd (y Ob(seT) < (Specdt  ObS) U (Speca y ObT)
which implies the inverse to (1) inclusion:
V(seT) < V(s) U V(T). =

Identifying  V(?)  with  Spec(?), we can rewrite the equality V(SeT) =
V(s) U V(T) of Lemma 6.1.1 as

Spec(SeT) = Spec(s) U Spec(T). (2)

6.2. Left closed subcategories. A subcategory S of an abelian category 4 s
called closed if it is both topologizing and coreflective (in [Gab], IV.4) . We
call a subcategory S of o left closed if it is topologizing and reflective.

6.2.1. Lemma. Suppose that subcategories S and T of an abelian category A
are closed (resp. left closed). Then the subcategory SeT is closed (resp. left
closed).

Proof. Since the subcategories S and T  are topologizing, such is their
Gabriel product SeT (cf. 6.0).
a) Let § and T be closed; ie. the inclusion functors

Js.'5—>ad and JT'F—)A

have right adjoints JS" and J1IA respectively. Following [Gab], denote by S
the functor JSoJS": #4 —— 4 which assigns to any object M of & the big-
gest among subobjects of M  which belong to the subcategory . For any object
M of 4, denote by MS,]I the kernel of the composition of epimorphisms

M — MMM —— M/A(M/M)

It is clear that ,‘.‘lr'l"!.».[r contains TM  and the quotient object M/MS1r be-
longs to the subcategory S; i.e. MS1I € ObSeT. It is equally evident that
MS'[r is the biggest among the subobjects of M  which belong to  SeT; ie.
MS,]I = (SeT)M.

b) Note that a subcategory T of 4 is topologizing iff its opposite,
1P,  is a topologizing subcategory in 4P, And also, for any two subcategori-
es & and T of 4 we have:

(5eT)%P = 1%es?P.
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Finally, note that a subcategory S of o is reflective iff its dual,
s s a coreflective subcategory of 4°P.

This shows that the assertion about left closedsubcategories follows from
the assertion about closed subcategories. m

6.2.2. Lemma. Let an abelian category 4  have supremums of sets of subobjects
(for instance, # is a category with coproducts).

Then the intersection of any set of left closed subcategories is a left
closed subcategory.

Proof. Clearly the intersection of any set of topologizing subcategories of
4 i1s a topologizing subcategory. So, it remains to show that, under the assump-
tion, the reflectiveness stands the intersections.
In fact, let € be a set of reflective subcategories of &  Fix an object
M of 4 and, for any S € £, denote by KS(M)} the kemel of an adjunction
arrow
Eg(M): M —— J "I (M).

Here, as usual, "JS denotes a left adjoint to the inclusion functor

JS.'S—Hd.

Set QK(M):= sup{Ks(M)| s € €. Note that the quotient object M/QK(M)

belongs to the intersection n _s
s e f

This follows from the epimorphness of ES(M) for any s € €, and from the
fact that every s € K, being topologizing, contains all quotients of any of
its objects. And M/AQK(M) 1is a quotient of JSo"JS(M) for every s € Q.

On the other hand, if g- M —— V is any arrow such that V belongs to

N S then, for any s € (), the morphism g is (uniquely) represented as a
s e Q
composition gsoes(M). Therefore the kermnel of g contains KS(M) for all S

€ €  which implies that g is represented as a composition of the canonical
epimorphism
e(M): M —— M/QK(M)

and a uniquely defined arrow 80y’ MRQKM) —— V.
This shows that the functor which assigns to an object M of 4 the ob-
ject  M/AAK(M) and acting correspondingly on morphisms, is left adjoint to the

inclusion functor n S$S——d =
se Q
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6.2.3. Note. The proof of Lemma 6.2.2 shows that, for any abelian category 4,
the intersection of a finite number of left closed subcategories is left closed.
By duality the same holds for closed subcategories. m

6.3. Zariski topology. For any abelian category 4, denote by 3Y the set of
sets V(T), where T runs through the set of all left closed subcategories of
the category .

6.3.1. Lemma. For any abelian category 4, the set 3Y is closed under finite
intersections and finite unions.
If 4 is a category with supremums of sets of subobjects, then 3Y Is ad-

mits arbitrary intersections.

Proof. By Lemma 6.1.1, V(3) U V(T) = V(seT) for any pair of topologizing
subcategories of 4.  And, according to Lemma 6.2.1, the subcategory ST s
left closed if & and T are, Hence the set 3y is closed under finite uni-
ons. Clearly

Vi n s)= n Vs
s e Q g e Q
for any set €  of topologizing subcategories of 4 If €Q is a finite set of

left closed subcategories than n S is also left closed by Lemma 6.2.2 (cf.
S € Q
Note 6.23). If Q is an infinite set of left closed subcategories, but the ca-

tegory £ has supremums of sets of subobjects, then, again by Lemma 6.2.2, the

subcategory n S is left closed. Thus in both cases, n V(s) Dbelongs to
S e Q $ €
3L, m

We define the Zariski topology on  Specd as the topology 3t  which has
3Y as a base of closed sets. According to Lemma 6.3.1, if the category &4 has
supremums of sets of subobjects, then 3%  coincides with the set of all closed
sets of the Zariski topology.

6.4. Left closed subcategories and the spectrum of a category of modules. Let A
be the category R-mod left modules over a ring R. let o be a two-sided ide-
al in R; and let R-mod|o. denote the full subcategory of R-mod generated by
all R-modules M such that Ann(M)} o .

Clearly the canonical (full) embedding
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R/0-mod ———— R-mod

induces an equivalence of categories R/0-mod ——— R-mod|a.

6.4.1. Proposition. Left closed subcategories of the category R-mod are exact-
ly the subcategories R-mod|o, where O runs through the set IR of all two-
sided ideals of the ring R.

Proof. 1) Clearly R-mod|o. is a left closed subcategory of the category
R-mod, since

(a) it is a topologizing subcategory;

(b) the canonical embedding R-mod|oc ——— R-mod has a left adjoint func-
tor, M+—— M/oM = R/o. ®p M. .

2) Let s be a left closed subcategory of the category « = R-mod,

Js: S —— 4

the natural embedding, and "Js the left adjoint to Je functor. Since the ad-
junction arrow
N =N ld —— JS°AJS
is an epimorphism, the generator JSR is isomorphic to R/ for some left ide-
al o. This ideal « is, actually, two-sided.
In fact, the quotient modules RAa:x), x € R-0, being cyclic submodules
of R/o, are in S.
(Recall that (oux) = {r e R| @ € af.)
The projection
. R —— RAoux)
is represented as a composition of
no= nS(R) : R —— R
and a uniquely defined arrow
hx: R/0. —— RA0.:x).

Since m. is an epimorphism, hx is an epimorphism. But the epimorphness
of hx means that o < (o.x). Therefore, since the element x € R-o0 paramet-
rizing this inclusion is arbitrary, the ideal o is two-sided.

This implies, since the R-module R/o is a generator of the subcategory
S, that S coincides with R-mod|o. =

Let Q be a family "of left closed subcategories of R-mod. By Proposition
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6.2, Q is a set of the categories R-mod|a, where o runs through a set, X,
of two-sided ideals in R.

One can see that n R-mod|a = R-mod|( Z o).
oae X oe X

6.4.2. The Zariski topology on the left spectrum. Consider now the left spectrum
Spec[R of the ring R  which consists of all left ideals p in R such that
the module R/p  belongs to  SpecR-mod  (cf. Section 4). The canonical surjec-
tion

SpeclR —— SpecR-mod, p—— <R/p>, (1)

allows to transfer the Zariski topology (as any other topology) on SpeclR. Na-
mely, define the Zariski topology, 1t*  on Spech as the weakest topology
such that the map (1) is continuous; i.e. the set of closed sets in ™ con-
sists of preimages of closed sets in the Zariski topology 3t on SpecR-mod.
Clearly the preimage of the set V(a):= V(R-mod|a), where @ is a two-sided '
ideal in R, is the set V[(a) =(pe SpeclR| o C p/. And the equalities

V(seT) = V(5) U V(T), V( n s)=  V(s)
$e Q $e Q
correspond to the equalities

ViaB) = Vi) UV/B), V( £ a) = V(o).
I(B I( I(B lSEQ SQQI

6.4.3. The Serre subcategory related to a Zariski closed set. Fix a two-sided
ideal o in the ring R. To the closed set V(a):= V(R-mod|a), there corres-
ponds the Serre subcategory, &(a), of R-mod generated by all R-modules M
such that

Supp(M) < Spec(R-mod|0.). n

(cf. Proposition 5.3.2). The following Lemma can be regarded as an estimate of
the difference between &(o) and R-mod|a.

6.4.3.1. Lemma. Suppose that an R-module M has the property:
o < L(Ann(M))
for some two-sided ideal «o. Then M € Ob(0.).
Here  L{Ann(M)):= Levitzki radical of the ideal Ann(M):= the preimage of
the biggest locally nilpotent ideal in R/Ann(M).

Proof 1) For any two R-modules, M and M’, the relation M > M’ impli-
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es the inclusion Ann(M) ¢ Ann(M’).
In particular, for any <P> € Supp(M), Ann(M) < Ann(P).
In fact, the relation M > M’ means that there is a diagram

(VM — L & M

where v is a positive integer, i is a monoarrow, and e is an epimorphism.
Thus, we have:
Ann(M) = Amn((v)M) c Ann(L) c Ann(M’).

2) By Theorem 1.4.10.2, the Levitzki radical L(Ann(M)) is the intersecti-
on of all the ideals Ann(P}, where <P> runs through all elements of the spe-
ctrum, Spec(R-mod), such that Ann(M) < Ann(P).

Thus, we have the inclusion:

L(Ann(M)) < N Ann(P)
<P>e Supp(M)

which implies the assertion immediately. m

6.5. When the Zariski topology has a base of quasi-compact open sets? One of the
most important properties of the conventional Zariski topology is the quasi-
compactness of affine schemes and the (following from it) existence of a base of
quasi-compact open subsets for a general scheme.

We are going to show that, in the noncommutative case, the affine objects -
the spectra of categories of modules - are still quasi-compact and have (canoni-
cal) base of open compact subsets in the Zariski topology.

Note that the second fact does not follow from the first one, and, -certain-
ly, does not imply the existence of a base of quasi-compact open subsets of the
topological space  (Spec#,3t) for a general abelian category &,  since most of
abelian (or even Grothendieck) categories are not locally affine.

The following investigation provides a way to find out if the topological
space (Specd, 3t) has a base of quasi-compact open sets for a wide class of
abelian categories.

6.5.1. Lemma. Let an abelian category 4 have a generator of finite type. Then
any left closed subcategory of 4 enjoys the same property.

Proof. (a) et M be a generator of finite type in 4 and let ~J be a
left adjoint to the inclusion functor Js = J of a closed subcategory & into
4. Then A~J(M) is a generator of finite type of the category S.
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In fact, A~J(M) is a generator of the category § because any arrow o
from M to J(V) is represented as a composition of the adjunction morphism

nM)g: M —— JN(M)

and an arrow Jo for a uniquely defined arrow o :A(M) —— V.

(b) Note that the adjunction arrow 1 Id g JoNJ is an epimorphism.

In fact, for any object M of the category «, the image of m(M), being
a subobject of an object from §, is also an object of S.  Therefore, thanks
to the universal property of mn(M), the canonical monoarrow

ImM(M)) ——— JN(M)

is an isomorphism; i.e. mM(M) is an epimorphism.

(c¢) Since the adjunction arrow m(M) is an epimorphism, and M is of fi-
nite type, the object  JoNJ(M) is of finite type. This implies, thanks to the
faithfulness of J, that the object ~J(M) 1is of finite type. =

Let S be a closed subcategory of a Grothendieck category «, J the na-
tural embedding of S into 4, and
U Idd —_ Jso"\JS
an adjunction arrow.

For any object V of the category 4, set for convenience
- A -—
sVi= Jg °JS(V)’ and K.V = Kerm (V).

Thus, we have the short exact sequence

Ng(M)
0 —1 KSM > M y SM > 0 (%)

To the inclusion § ¢ S, there corresponds a morphism
() — (8

of the exact sequences corresponds such that

the acrow M ——— M is identical;

the arrow S$'M —— SM is an epimorphism;

the arrow KS,M S KSM is (therefore) a monomorphism.

Now, let # have a generator M of finite type.

Call the closed subcategory S finite if KSM is .of finite type with res-
pect to the subobjects KFM, $ ¢ T; ie. for any inductive system of subob-
jects KEM —— KM, Te Q, such that supQ = KM, the arrow KTM _— KSM

is an isomorphism for some T &€ .
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It is left to the reader to check that the notion is well defined; ie. it
does not depend on the choice of a generator of finite type.

6.5.2. Proposition. Let an abelian category 4  have the property (sup) and a
generator of finite type. And let Z  be a family of closed subcategories of the
category 4  such that the intersection, S, of all the categories from Z= s

finite. Then S is the intersection of a finite number of categories from Z.

Proof. 1) Denote by Q all possible finite intersections of categories
from Z.

2) Fix a generator of finite type, M, of the category 4. For any T €
Q, JVM is a generator of the subcategory T (cf. the proof of Lemma 6.5.1).

The exact sequences

N (M)
0 —— KFM > M >y MT. > 0 (T)
T € Q, form an inductive system; and the limit of this inductive system is

again an exact sequence (thanks to the property (sup)) which we denote by

0 s M’ s M s M" 5 0. (D

Since, for any T € £, the canonical arrow TM —— M"” is an epimor-

phism, M" €  ObT = Obs.
TeQ
On the other hand, the canonical arrows of short sequences

form a cone. The cone (2) defines a unique arrow from the sequence (1) to the

sequence ($). In particular, we have a commutative diagram

M— > M"

a | | s

M—— sM

Since M" is an object of S, and M —— SM is the universal arrow, ©
is an isomorphism which means that the whole arrow (1) —— ($) is an isomor- '
phism. In particular, the object M’ in the sequence (1) is isomorphic to KsM‘

Since KSM is the inductive limit of {K‘B‘M’ T € Qf, and S is finite by
assumption, KTM —— M’ is an isomorphism for some T € Q. Therefore TM =
M" ~ sM; ie. the subcategories S and T coincide. =
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6.5.2.1. Corollary. Let an abelian category 4  have the property (sup) and a
generator of finite type. Then the topological space  (Specd,3t) is quasi- com-
pact.

Proof. It is just the application of Proposition 6.5.2 in the case when §

= {fo]. =

6.5.3. The Zariski topology in the affine case. Let « be the category R-mod
of left modules over an associative ring R.
Recall that a closed subset W of a topological space X is noetherian if

any family € of closed subsets of X such that X equals to n Y con-
Y e Q
tains a finite subfamily which has the same property. In other words, the closed

set W is noetherian iff the open set X - W is quasi-compact.

6.5.3.1. Proposition. A closed (in the Zariski topology) subset W is noetheri-
an if and only if it coincides with  Spec(R-mod|0)  for some (finitely generated
two-sided ideal «.

Proof. 1) By Proposition 6.4.1, any left closed subcategory of the category
R-mod equals to R-mod|o/ for some two-sided ideal o'. The left closed sub-
category  R-mod|o  is finite if and only if the ideal o is finitely generated
(as a two-sided ideal).

Therefore, according to Corollary 6.5.2.1, the closed set Spec(R-mod | o)
is noetherian for any finitely generated two-sided ideal o.

2) Suppose now that the closed set V = Spec(R-mod|a’) is noetherian. The
(two-sided) ideal o is the supremum (union) of an inductive system  Ia') of
its  finitely generated two-sided subideals. This implies that Spec(R-mod | o)
is the intersection of  Spec(R-mod|c), where o  rmns through the set J(a).
Since the topological space Spec(R-mod | o) is noetherian, it coincides with
Spec(R-mod|a) for some o € Fo') =

6.5.3.2. Corollary. For any associative ring R, the topological space
(SpecR-mod,3t), where 3t is the Zariski topology, is quasi-compact and has a

base of quasi-compact open subsets.
6.5.3.3. Remark. Proposition 6.5.3.1 has been obtained in [R2] (a detailed ac-

count is in [R3]) as a corollary of the following, much more subtle, fact (Theo-
rem 1.4.10.2):
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The intersection of all ideals of the left spectrum of a ring R  coinsides
with the biggest locally nilpotent ideal in R.

One of the consequences of this theorem 1is that the topological space
(SpecR-mod,3t)  is quasi-homeomorphic to the Levitzki spectrum of R which is,
by definition, the subspace of the prime spectrum, Speck, formed by all the
prime ideals p in R such that the quotient ring R/ has no nonzero locally
nilpotent ideals.

Note that the Levitzki spectrum, LSpecR, is a sober space; i.e. any irre-
ducible closed subset of LSpecR has unique generic point (Theorem L.5.3). m

7. SOME OTHER CANONICAL TOPOLOGIES.

7.1. The central topology. Fix a abelian category &, and denote by  3(«4} the
ring of endomorphisms of Id &

For any & € 4(d4), denote by ’di the full subcategory of 4 generated by
all those objects M for which E&M) = 0.

7.1.1. Lemma. The subcategory .ﬂg is closed and left closed.

Proof. In fact, the maps
M+——— Ker§(M) and M+—— Cok&(M), M € Ob4,
are uniquely extended to functors, Kerf and Cokf, from # to 4 which have

the canonical morphisms
ke Kert —— Id , and ck: Id P CokE,

The both functors take values in the subcategory aﬂé.

This follows immediately from the commutative diagram

Kert kG > Id,g e > CokE,

& Keré)l ‘ 4 \ &(Coké)

Kert, hG > 1d

C& —_
y Cok€,

Denote the corestrictions of the functors Kerf and Cokf onto ﬂé by
KE and CE respectively.
Clearly, the functor K& is right adjoint to the embedding J&: ad& — A
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having the adjunction arrows &g, id, and C& is left adjoint to JE  with the
adjunction arrows id, <&,

One can see that Aﬁ is a topologizing subcategory of the category 4.
Therefore, by Lemma 7.1.1, it is both closed and left closed. m

7.1.2. Lemma. For any £ € 4(4) and <P> € Specd, either E(P) is a monomor-
phism, or §&(P) = 0.

Proof. Suppose that Kerf(P) # 0, and let i KerE(P) —— P  denote the
canonical monomorphism. The equalities

1oE(Ker&(P)) = &(P)ei = 0
show that E(KerE(P)) = 0.
On the other hand, since <P> € Specd, there exists a diagram

(DKerE(P) e—— V %, p

for some integer [ 2 1 such that i is a monomorphism and e is an epimor-
phism. The equalities

i1o&(V) = E(()KerE(P))ei = (1)§(KerG(P))ot = 0oi = 0

imply that §&(V) = 0, and it follows from the epimorphness of e and the equa-
lities

E(P)oe = eok(V) = ¢00 = 0
that E(P) = 0. m

7.1.3. Corollary. For any <P> € Specd, the set

(<P>):= (§ € o4)| E(P) = 0]

is a prime ideal in the ring (d).

Thus, we have a well defined map
o =0, Spec# —— Specs(d).

Define the central topology, T3, on Specd as the weakest topology for
which the map ¢ is continuous. In other words, the sets

V(X):= {<P> € Specd| E(P) = 0 for every § € X/,
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where X  runs through the set of the ideals (or subsets) of the ring s(4), is
the set of closed subsets in the topology T3

Clearly the sets V() = {<P> € Specd| EP) = 0}, where & runs through
3(#4), form a basis of closed sets of the topology 13  Since WE) = V(saa)
and the subcategory A§ is left closed (cf. Lemma 7.1.1), each Vg is closed
in the Zariski topology; i.e. the topology 13 is weaker than the Zariski topo-

logy.

7.1.4. Example. Let & Dbe the category of left modules over an associative ring
R, 4 = R-mod. 1t is well known (and easy to check) that the ring () is
isomorphic to the center 4(R) of the ring R: the isomorphism 3R) —— 4(s)
sends an element of 3(R) into the action of this element on modules.
Now, Specd = Spec[R, and the corresponding to
¢, Specd —— Specy(«)
map

Spec[R —— Specs(R)

assigns to any ideal p € SpectR its intersection with the center:
p—— P n ¥R).

The transfered to SpeclR central topology is described by ’zeros’ of sets
of cental elements: any closed subset is of the form V[(X):= p € SpeclR| X ¢
p/ for some subset X of 3(R)

In particular, the central topology on Spec[R has a base of ’principal’

open subsets which consists of the sets

U(z):= (p € SpecR| z ¢ pJ,
where z runs through 3(R).
The localization at the open set Ulz), z € 3(R), coincides with the
"classical’ localization
M—— (2R @ M

at the multiplicative set (z):= {zn| n e Z+}. n
7.2. The topology T*  Another way to define a topology on Specd is to single

out a class of objects, €I, of the category « and declare the set {Supp(M)|
M e €I} a base of closed subsets.
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This is the way we define the topology 1t* by taking as €[ the union of
the class ft4 of all objects of finite type in & with Spec«.

If « is the category of modules over a commutative ring, then 7T* coin-
cides with the Zariski topology 3t (and also with the central topology 37).

If 4 = R-mod, where the ring R is noncommutative, then 1T* can differ
from the Zariski topology 3t drastically.

For instance, if R is a simple ring, the Zariski topology 3t is trivial
(since there is no non-trivial two-sided ideals), while the topology T* is
quite ample even in the general case.

In fact, it follows from the definition of T* that, for any abelian cate-
gory 4, the closure of any point of the spectrum of £ coincides with the set
of specializations of this point; ie. the closure of a point in the topology
T* coincides with its closure in the topology 7. It cannot be better.

A draw back is that, even in affine case, & = R-mod, the topological spa-
ce  (Specdt*) is not quasi-compact in general. It is, however, in a lot of im-
portant special cases.

7.3. The topology 1Ts. The base of closed subsets of the topology 1s is the
set  [s(<P>)}| <P> € Specd] of all the closures of points of the spectrum in to-
pology 7t; i.e. the sets

s(<P>) = [<P'>| <P'> ¢ <P>} = [<P’>| P » P/}

of specializations of points.

Clearly 1s is the weakest among the topologies on Specd having the men-
tioned above property: the closure of any point of the spectrum coincides with
the set of the specializations of that point.

7.4. Structure presheaves. Fix a topology ¥ on Specd. To any set U € Openz,

we assign the Serre subcategory <U>:=  P.  According to Proposition 5.3.2, the
PeU
subcategory <U> is generated by all M e Ob#4 such that Supp(M) is contained

in the complementary to U closed subset.
To any object M of the category 4, we assign a function M~ on Openk
which sends any open set U into the localization of M at <U>:

M (U) = Q<U>M'

The map M is functorial in a natural sense and is defined uniquely up to
isomorphism. It is called a structure presheaf associated to the object M. One
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can show that presheaves M~ are actually sheaves: the object M (U) can be
reconstructed from local data related to any finite covering of U.

The explicit definitions and reconstruction (globalization) theorems can be
found in [R3] for the affine case and in [R7] for the general case.

8. ASSOCIATED POINTS.

Fix an abelian category 4. For any object M of &, denote by Ass(M)
the set of <P> € Specd such that P is a subobject of M, and call the
points of Ass(M) associated to M elements of the spectrum.

Clearly Ass(M) < Supp(M) for any M.

8.1. Example. If M € Specd, then Ass(M) = [<M>]. =
In general, Ass(M) might by empty.

8.2. Proposition. (a) For any short exact sequence,
0 > M’ M s M" —— 0,
Ass(M’) < Ass(M) < Ass(M’) U Ass(M").
(b) Suppose that 4 has the property (sup). Then

if S is a directed family of subobjects of an object M  such that the
canonical arrow sup Q ——= M is an isomorphism, then

Ass(M) = U Ass(X).
Xe Q

Proof. (a) The inclusion Ass(M’) < Ass(M) is obvious.
Let now <P> € Ass(M), and there is a monoarrow P —— M.
If P M is nonzero, then <P> = <P n M’>; hence
<P nM> e Ass(M').
If P M = 0, then the composition of the P —— M and the epimor-
phism M —— M"” is a monoarrow; i.e. <P> € Ass(M").

(b) It follows from (a) that U Ass(X) < Ass(M). We need to show that
X e Q
the inverse inclusion is also true.

Let <P> be an arbitrary element of Ass(M) (we assume that P is a sub-
object of M). Since « has the property (sup), the canonical arrow

sup(PnX) —— P
XeQ
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is an isomorphism. In particular, the monoarrow P 75 X —— P is nonzero for

some X € €. But then <P> = <P N X>, and, since the other canonical arrow,
PnX — X,

-is also a monomorphism, <P n X> € Ass(X). =

8.3. Corollary. Let 4 be a category with the property (sup). Then, for any fa-

mily Z of objects of 4 such that there is a coproduct @ X
Xe =
Ass( ® X) = U Ass(X).
Xe = Xe =

Proof. 1t follows from the assertion (a) of Proposition 8.2 that, for any
objects L and M,
Ass(L) U Ass(M) < Ass(L®M) < Ass(L) U Ass(M);
ie.
Ass(LOM) = Ass(L) U Ass(M).
Therefore

Ass( ® X) = U Ass(X)
Xe Q Xe Q

for any finite family of objects €2 Since the coproduct of an arbitrary fami-
ly, z, of objects is the inductive limit of coproducts of finite subfamilies
of Z, the assertion follows from the assertion (b) of Proposition 8.2. m

And let

.
Z  be a finite family of subobjects of an object M  such that n X =0
X €

8.4. Corollary. Let M be a nonzero object of an abelian category

Then Ass(M) C U  Ass(M/X).
Xe =

Proof. In fact, the canonical map

M—— & MX
Xe Z
is a monomorphism. =

Futher on, we shall assume that 4 has the property (sup).
8.5. Proposition. Let M € Obd, and let & be an arbitrary subset of Ass(M).

There exists a subobject L —— M  such that
Ass(M/L) = ®, and Ass(L) = Ass(M) - .

36



Proof. Let D Dbe the set of monoarrows '— > M such that Ass(M’) c
Ass(M) - ®. Clearly D is not empty, since it contains the zero subobject. It
follows from Proposition 8.2 that, for any directed subset, Q, of subobjects
of D, sup Q € D. Therefore, by Zorn’s Lemma, there exist a maximal subobject,
L, in 2.

Now, it is enough (thanks to Proposition 8.2) to show that Ass(M/L) < .

Let <P> e Ass(M/L), and P —— M/L be a monoarrow. Then the canonical

morphism P':= P X M —— M is a monoarrow too. By Proposition 8.2,
M/L
Ass(P’) c Ass(L) U {<P>).

Since L is maximal in D, P ¢ D. Therefore <P> € ®. =

8.5.1. Remark. It follows from the inductiveness of 9 (cf. the proof of Propo-
sition 8.5) that, for any @ g Ass(M) and any subobject k: K —— M  such
that Ass(K) < Ass(M) - &, there is a monoarrow I L —— M which ’contains’
B (ie. k is the composition of | and a unique monoarrow K —— L) and
has the following properties: Ass(L) = Ass(M) - @, Ass(M/L) = ®, and

L L — M

is the maximal among the subobjects satisfying to these conditions. m

8.5.2, Example. Let S be a Serre subcategory of the category 4 and M an
object from Obd - ObS. Take & = Ass(M) - Specs.
Clearly the s-torsion, SM, of M has the property:

Ass(sM) = Ass(M)  Specs = Ass(M) - @,

Hence there is a subobject L —— M  which contains SM and is maximal
with respect to the properties:

Ass(L) = Ass(M) y Specs, Ass(M/L) = Ass(M) - Specs (1)

(cf. Remark 8.5.1). w

8.5.3. Example. Let W be a closed subset of (Spees,1), and M an object of
4. Set @ = Ass(M) - W, and take the maximal subobject,
MW) — M,
among those subobjects L —— M for which Supp(L) c W.
Clearly
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Ass(M(W)) @ Supp(M(W)) < Ass(M) n W = Ass(M) - &.
By Proposition 8.5 (and Remark 8.5.1), there exists a subobject L of M
which contains M(W) —— M and is maximal with respect to the properties:
Ass(L) = Ass(M) n W, Ass(M/L) = Ass(M) - W.
Note that this example is a special (but important) case of Example 8.5.2:
one should take (in 8.52) S§ = W) - the Serre subcategory generated by all
objects X of 4 such that Supp(X) ¢ W (cf. Proposition 5.3.2). m

8.5.4. Associated points and exact localizations. Let (Q: 4 —— B be an exact
localization of an abelian category 4, M  an object of the category &,  and
<P> e Ass(M) - |KerQ|. We assume that P is a subobject of M. Then, since
Q(P) € SpecB and @ respects monoarrows, <Q(P)> € Ass(Q(M)).
One can easily check that the map
Ass(M) - |KerQ| —— Ass(Q(M)), <P>+——— <Q(P)>,
is injective.

9, RELATIVE SPECTRA.

Define the spectrum of a functor § from an abelian category B to an
abelian category 4 as the ordered set Spec(y) of all pairs (<M><P>) €
SpecB X Specd such that there is an M’ € ObB satisfying the conditions:

<M’'> = <M>, and <P> e Ass(M’).
The order in Spec(y) is induced from SpecB X Specd.

9.1. Example. Clearly Spec(/d A) coincides with the diagonal in  Specd X Specd.
In particular, Specd can be naturally identified with Spec(ld A)‘ .

9.2. Example. Let ¢ A —— B be a ring morphism and 3§ = ¢, the correspon-
ding functor from B = B-mod to 4 = A-mod. If the ring A is commutative and
noetherian, then the projection

Spec(¢,) ——— SpecB

is surjective, since, for any nonzero B-module M  (in particular, for any M €
SpecB), the set Ass(d (M)} is nonempty. This means that knowing Spec(¢,) we
can recover the spectrum of B.

This is not true in general. m

Fix a functor ¥ ® —— 4. It is important to single out, in a natural
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way, some topologizing (or thick) subcategories B of B such that Ass(¥(M))
# & for all <M> € Spec®.

The defined below subcategories [4.5] and <d,¥> are most straightfor-
ward examples of such natural constructions.

9.3. The subcategory [«4,3]. Fix abelian categories, 4 and B, and a functor
3 4 —— B. Denote by [43] the full subcategory of the category «£ which
is generated by all objects M  such that, for any nonzero subquotient L  of
M, Ass(zL) # @.

Note that the restriction of F to [43F] is a faithful functor.

9.3.1. Lemma. If the functor JF: 4 —— B is left exact, then [4F] is a
Serre subcategory of 4.

Proof. In fact, let M is an object of [43. And let L is a nonzero
subguotient of M. Since M € Ob[475], there is a nonzero subobject X of L
which belongs to  [43]. Therefore Ass(3(X)) # ©. Since §F is left exact,
HMX) is a subobject of 3(L) which implies the inclusion Ass(3(L)) 2
Ass(F(X)). =

9.3.2. Corollary. letr &4 and B  be abelian categories and § a left exact
functor from 4 to B. Then
Spec/,3] = Specst y |[4,3]].

Proof. According to Lemma 5.3.1, SpecT = Specd  |T| for any thick subca-
tegory 7. And the category [«43] is thick by the first assertion of Proposi-
tion 9.3.1. =

9.3.3. Example. Clearly the subcategory [4,1d] contains all simple objects of
the category o, By Proposition 9.3.1, it contains also all objects of finite

length and a lot more. m

9.3.4. Example. let o B —— A be a ring morphism, 3§ the corresponding
functor A-mod —— B-mod. Suppose that the ring B is commutative and noe-
therian. Then [A-mod, 3] = A-mod.

In fact, if M is a module over a commutative noetherian ring, then
Ass(M) = @ if and only if M = 0 (cf. [BCA], Ch. IV, Corollary 1.1.2). =
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9.3.5. Example. Let k be a Lie subalgebra of a Lie algebra g. Consider the
corresponding to the embedding & —— g morphism, ¢: Uk) —— Ulg), of
the universal enveloping algebras, and take as 3§ the base-change functor

U(g)-mod ——— U(k)-mod.

The subcategory  [U(g)-mod,3]  contains the category HC(g,k) of Harish-
Chandra g-modules with respect to the subalgebra &.

In fact, by definition (cf. [D], 9.1.4), a g-module V  is a Harish-Chandra
module with respect to & if the k-module 3JV is the sum of its irreducible
submodules.

Note that if the Lie subalgebra k  is finite dimensional and commutative
(for example, k is a Cartan subalgebra of a finite dimensional reductive Lie
algebra g), then, according to Example 9.3.4, [U(g)-mod,5] = U(g)-mod. =

9.4. The subcategory <«|3>. Let 3 4 —— B8 be a functor. Set
<d|F> = § ([BId]).

9.4.1. Lemma. (a) If the functor ¥ is exact, then <&|F> is a thick subcate-
gory of the category 4.

(b) If the functor § is exact and faithful, then <d&|3> is a subcategory
of the category [4,F] (cf. 9.3).

Proof. (a) Since the functor J§ is exact, Z{'(‘[F) is a thick subcategory
of 4 for any thick subcategory T of ®B. In particular, it follows from Pro-
position 9.3.1 that the subcategory <d|F>:= §"([fB,Id]) is thick.

(b) Let M € Ob<d|F>, and let K be a nonzero subquotient of M. Since
% is exact, FK is a subquotient of JIM. And FK # 0 thanks to the faithful-
ness of 3§ Therefore Ass(3K) # &  which means, by definition (cf. 9.3), that
M e Obf43] =

Note that the functor of Example 9.3.4 (hence that of 9.3.5) is exact and
faithful.

The main advantage of the subcategories <«&|F> in comparison with the sub-
categories [4,5] is their functoriality. The latter means that, for any quasi-

commutative diagram of functors
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a—H

s\,

(ie. § ~ §oH), the functor H sends objects of the subcategory <«{F> into
objects of <ud'|F'>.

Thus, we can consider the category Ex/B  the objects of which are exact
(additive) functors from abelian categories to B, and morphisms

from 5 4 —s B to F: o —— B

are pairs (Hh), where H: 4 —— & is a functor, & is an isomrophism
from FoH to 3JF. The composition is defined in an obvious way:
(H W )o(Hh) = (H oH hoh'H).
(Clearly what is defined above is a metacategory. To make it category one
should consider functors from categories which are equivalent to "small" catego-
ries.)

APPENDIX: GABRIEL LOCALIZATIONS.

A.l. Serre subcategories and radical filters. For any subcategory B  of the ca-
tegory R-mod  of left R-modules, denote by 3J(B) the set of all left ideals m
of the ring R such that the module R/m belongs to B. If B is a thick
subcategory of  R-mod, then the set F(B) turns to be so called Gabriel ( or
localizing) filter.

By definition, the set F  of left ideals of the ring R is a Gabriel fil-
ter iff it has the following properties:

(a) if m e F, then for any element r € R, the ideal

(m:r):={y € R: yr € m}

also belongs to F;

(b) if m e F, and »n is a left ideal such that (n:y}) € F for each y €
m, then n belongs to F.

Conversely, to any set F of left ideals of the ring R one can assign a
full subcategory $(F) of the category R-mod formed by all the modules M
such that the annthilators of all the elements of M belong to the set F.

One can check that the subcategory S(F) is thick. Moreover, S(F) is clo-
sed with respect to small coproducts (taken in  R-mod) which means that  S(F)
is a Serre subcategory. It is easy to see that, for any thick subcategory B  of
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R-mod, the subcategory S(3(B)) coincides with B~ (cf. 1.7). In particular,
B equals to S(3(B)) if B 1is a Serre subcategory; te. if B = B,
This proves the following assertion:

Al.l. Lemma. The map 3§ : B —— 3J(B) establishes a one to one correspondence
between the set of Serre subcategories of the category  R-mod  and the set of
Gabriel filters of left ideals of the ring R.

More explicitly, the restriction of the map F —— S(F) to the set of
Gabriel filters is inverse to the restriction of 3§ to the set of Serre subca-

tegories.

A.2. Localizations in terms of radical filters. Let F  be a Gabriel filter of
left ideals of the ring R; and let R-mod/F be a full subcategory of the cate-
gory R-mod formed by all the left modules M  such that the canonical map
M+——— R-mod(mM), which sends an element z of the module M into the arrow
r —— rz, is a bijection for any ideal m from the filter F.

On the other hand, for any R-module M, denote by ‘HF(M) the direct li-
mit  colim{R-mod(n,M): n € F}. The Z-module ‘HF(M) possesses a natural struc-
ture of R-module,

g : R —— Hom(‘HF(M),"HF(M)),
such that the canonical map

iF(IM): M —— HF(M):=("HF(M),g)
turns to be an R-module morphism. Moreover, the map M —— HF(M) is extended
to a functor HF: R-mod —— R-mod such that the collection iF={iF(M): M €
ObR-mod} is a functor morphism from Id to HF. Denote the square of the fun-
ctor HF by GF (- Gabriel functor), and set jF:=HF(iF)oiF.

A.3. Proposition. a) The category  R-mod/F  is equivalent to the quotient cate-
gory R-mod/S(F).

b) The functor GF takes values in the subcategory R-mod/F, and the co-
restriction of GF onto  R-mod/F is a localization. More precisely, for an
arbitrary R-module M and a module N from R-mod/F, any R-module morphism
f+ M —— N is uniquely represented as a composition f=f ojF(M).

A.4. Proposition. 1} There is a unique ring structure on GF(R) such that the

canonical R-module morphism JF(R): R ——— GF(R) turns to be a ring morphism.

2) For any R-module M, there is a unique extension of R-module structure
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on GF(M) to GF(R)-module structure.
3) These extensions (for all M € ObR-mod) define a full and faithful left
exact functor SF: R-mod/F —— GF(R)-mod.
4) The functor SF s right adjoint to the localization
QF: GF(R)-mod —— R-mod/F
at the Serre subcategory SF  formed by all  GF(R)-modules which are F-torsions
as R-modules.

A.5. Remark. It is easy to see that the following conditions are equivalent:

a) The functor

SF: R-mod/F ——— GF(R)-mod

is an equivalence of categories.

b) GF is isomorphic to the functor GF(R)®R .

According to ([Gab], Corollary V.2.2, the condition &) holds if the functor
GF is exact and the Gabriel filter F  contains a cofinal subset of finitely
generated left ideals.

The exactness of the functor GF 1is garanteed in the following two cases:

1) The filter F contains a cofinal subset of projective (as R-modules)
ideals.

2) There is a multiplicative system S satisfying the left Ore conditions
and such that F  consists of left ideals m  such that (m:y) contains some

clements from S for any y € R. =
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