p-adic distributions associated to

Heegner points on modular curves

Winfried Kohnen

```
Universität Augsburg
Mathematisch-Naturwissenschaftliche Fakultät
Memmingerstr. 6
8900 Augsburg, FRG
```

Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3, FRG

Let f be a normalized newform of weight 2 on $\Gamma_{0}(N)(N \in \mathbb{N})$ and let A_{f} / \mathbb{Q} be the abelian subvariety of the jacobian of the modular curve $X_{0}(N) / Q$ corresponding to f. Let p be a rational prime with ptN and denote by \mathbb{C}_{p} a completion of an algebraic closure of the field of padic numbers.

Let K be an imaginary quadratic field and let K_{∞} / K be the anticyclotomic \mathbb{Z}_{p}-extension of K.

Suppose that every rational prime ℓ dividing N is split or ramified in K, and every rational prime ℓ with ℓ^{2} dividing N is split in K. The main purpose of this paper then is to construct a distribution μ_{f} on Gal $\left(K_{\infty} / K\right)$ with values in the subspace of the \mathbb{C}_{p}-vector space $\mathbb{C}_{p} \theta_{\mathbf{Z}} A_{f}\left(K_{\infty}\right)$ which is generated by the Heegner points for K. This distribution is of moderate growth w.r.t. an appropriate norm (§3.). Choosing an anticyclotomic p-adic logarithm τ over K we then obtain a p-adic function $h_{f, r}(x, s)$ for every finite character x on $G a l\left(K_{\infty} / K\right)$ in the usual way as a Mellin-Mazur integral (\$4.). In the final section of the paper (\$5.) we give a simple relation (kindly suggested to me by P. Schneider) between μ_{f} and the measure constructed by Mazur in [9], \$22., which plays an important role in recent work of Perrin-Riou ([1: $]$) on a p-adic analogue of the theory of Gross-Zagier ([3]). We also make some further remarks on μ_{f} and $h_{f, \tau}$, respectively.

As P. Schneider pointed out to me. Heegner points -like cyclotomic units- behave almost like universal norms, and then by a rather formal argument this property can be translated into a distribution relation (Heegner points as universal norms are also treated in [9], §19. and in [11]). In this context -as is true for many distributions occurring in
practice- μ_{f} is a special case of P. Schneider's fundamental notion of a distribution of Galois type arising from norm-finite elements ([16]).

Acknowledgements: I would like to thank B. Mazur for some useful discussions; in particular, after I talked to him about a first version of this article, he showed me a preprint of his paper [9], frow which I profitted very much. -I also would like to thank P. Schneider for several useful suggestions and improvements on this paper.
81. Modules in imaginary quadratic fields

Let K be an imaginary quadratic field. For $n \geq 0$ we denote by σ_{n} the order of K of conductor p^{n}. where p is a fixed rational prime. We write $\theta=\sigma_{0}$. We let D be the discriminant of K.

There is a homomorphism from the monoid of proper σ_{n}-lattices onto the monoid of proper O-lattices given by

$$
\begin{equation*}
\alpha \mapsto \sigma \theta \tag{1}
\end{equation*}
$$

The group $\left(\theta / p^{n} \theta\right)^{*} /\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{*}$ is isomorphic to its kernel under the map

$$
x \longmapsto c_{n, x}
$$

where

$$
\begin{equation*}
q_{n, x}=p^{n} \theta+\mathbb{Z x} \tag{2}
\end{equation*}
$$

Denote by I_{n} the group of proper σ_{n}-lattices modulo equivalence and put

$$
A_{n}=\left(\left(\sigma / p^{n} \sigma\right)^{*} /\left(z / p^{n} Z\right)^{*}\right) /\left(\theta^{*} / \mathcal{G}_{n}^{*}\right)
$$

Then (1) induces an exact sequence of finite abelian groups

$$
0 \rightarrow A_{n} \rightarrow I_{n} \rightarrow I_{0} \rightarrow 0
$$

(note that $\sigma_{n}^{*}=\{ \pm 1\}$ for $n \geq 1$ and that $\sigma^{*} / \sigma_{n}^{*}$ is non-trivial only for $D=-3$ and $D=-4$, in which cases its order is 3 and 2 , respectively). In particular

$$
\left|I_{n}\right|=\left|I_{0}\right|\left[\theta^{*}: \theta_{n}^{*}\right]^{-1} p^{n}\left(1-\left(\frac{D}{p}\right) \frac{1}{p}\right)
$$

Note that (1) also induces a bijection between proper θ_{n}-ideals prime to p and proper O-ideals prime to p (the inverse map is given by $\left.\alpha \mapsto \operatorname{an} \sigma_{n}\right)$.

Let

$$
\pi_{n}: A_{n} \rightarrow A_{n-1} \quad(n \geq 1)
$$

be the canonical projection. The order of ker π_{n} is p for $n \geq 2$ and is $\left[\theta^{*}: \theta_{1}^{*}\right]^{-1}\left(p-\left(\frac{D}{p}\right)\right)$ for $n=1$.

Lemma. Let 4 be a proper O-ideal prime to p. Let $x \in A_{n}$. Then for all $x^{\prime} \in \pi_{n+1}^{-1} x$ the lattice $\left(q_{n} \theta_{n+1}\right) q_{n+1, x}$, has index p in $\left(c_{n} \theta_{n}\right) G_{n, x}$.

Proof. Write $G_{n}=\operatorname{Gn} \sigma_{n}$. We shall prove that

$$
\begin{equation*}
P G_{n} G_{n, x} \subset G_{n+1} G_{n+1}, x \cdots \tag{3}
\end{equation*}
$$

The Lemma will follow from this. Indeed, the inclusion

$$
G_{n+1} G_{n+1}, x^{\prime} \subset G_{n} G_{n, x}
$$

must be strict, since $(G, p)=1$ and so the coefficient ring of $G_{n} G_{n}, x$ is O_{n} and that of $G_{n+1} C_{n+1}, x$ is θ_{n+1}.

Let us now prove (3) which is equivalent to

$$
\begin{equation*}
p^{2}\left(G_{n} \cdot p^{n} G_{n, x}\right) \subset G_{n+1} \cdot p^{n+1} G_{n+1}, x^{\prime} \tag{4}
\end{equation*}
$$

The lattices G_{n} and $p^{n} G_{n, x}$ are O_{n}-ideals with $\left(G_{n}, p^{n} G_{n, x}\right)=1$, since ($\left.G, p\right)=1$ Therefore

$$
G_{n} \cdot p^{n} G_{n, x}=G_{n} n p^{n} G_{n, x}
$$

Therefore (4) is equivalent to

$$
p^{2}\left(G_{n} n p^{n} G_{n, x}\right) \subset G_{n+1} n p^{n+1} G_{n+1}, x^{\prime}
$$

or to

$$
p^{2}\left(c \cap p^{n} c_{n, x}\right) \subset c_{n} p^{n+1} G_{n+1, x^{\prime}}
$$

The latter inclusion, however, is obvious since $p G_{n, x} \subset G_{n+1, x}$, by definition of x^{\prime}.
\$2. Heegner points

For basic facts on Heegner points we refer to [2] (our notation will be consistent with that of [2]). Let $N \in \mathbb{N}$ and suppose that every rational prime ℓ dividing N is split or ramified in the imaginary quadratic field K, and every rational prime l with $\ell^{2} \| N$ is split in K. Let y be a proper O-ideal with $\sigma / x, \sigma \cong \mathbb{Z} / N Z$ (such an ideal n exists if and only if the above conditions on N and \mathcal{L} are satisfied). We put $\mu_{n}=x_{n} \theta_{n}$, where θ_{n} is the order of K of conductor p^{n} and p is a fixed rational prime with $p k N$.

We let $Y_{0}(N)$ be the open modular curve of level N, which classifies triples (E, E^{\prime}, φ) consisting of two elliptic curves E and E^{\prime} and a cyclic isogeny $E \xrightarrow{\varphi} E^{\prime}$ of degree N.

If α is a proper σ_{n}-ideal and $[\alpha] \in I_{n}$ its class we denote by

$$
\left(\theta_{n}, x_{n},[\alpha]\right)
$$

the corresponding Heegner point ($\left(a / a \hookrightarrow \sigma / a n_{n}^{-1}\right.$) on $Y_{0}(N)$. It is rational over the ring class field $H_{n}=K\left(j\left(\theta_{n}\right)\right)$ obtained from K by adjoining the j-invariant of θ_{n}. The extension H_{n} / K is anti-cyclotomic with Galois group canonically isomorphic to I_{n} by class field theory (recall that an abelian extension L / K is called anti-cyclotomic if L / \mathbb{Q} is Galois and if the nontrivial element of $G a l(K / Q)$ acts on $G a l(L / K)$ by complex conjugation).

The Galois group of H_{n} over K acts on Heegner points according to the formula

$$
\left(\theta_{n}, x_{n},[\alpha]\right)^{\sigma[\alpha]}=\left(\theta_{n}, u_{n},\left[a, s^{-1}\right]\right)
$$

(b- a proper θ_{n}-ideal, $(f, p)=1$, $\sigma[\&]$ the Artin symbol of $[b]$ in $G a l\left(H_{n} / K\right)$; cf. [2], 4.2.).

Let $J_{0}(N) / Q$ be the jacobian of the complete modular curve $X_{0}(N) / Q$. The divisor

$$
\left(\theta_{n}, n_{n},[Q]\right)-(i \infty)
$$

is rational over H_{n}, and we shall write

$$
y\left(\theta_{n}, x_{n}^{\prime},[\alpha]\right)
$$

for its image in $J_{0}(N)\left(H_{n}\right)$.

Let

$$
H=\bigcup_{n \geq 0}^{\cup} H_{n}
$$

and put

$$
v=\boldsymbol{c} \theta_{\mathbf{Z}} J_{0}(N)\left(H_{\infty}\right)=\cup_{n \geqslant 0}^{\cup} \mathbb{C} \otimes_{\mathbf{Z}} J_{0}(N)\left(H_{n}\right) .
$$

By the Mordell-Weil Theorem the group $\mathrm{J}_{0}(N)\left(H_{n}\right)$ is finitely generated for every $n \geq 0$. The complex vector space V has an hermitian inner product given by

$$
\left\langle z e, z^{\prime} e^{\prime}\right\rangle=z \vec{z}\left\langle e, e^{\prime}\right\rangle_{J}
$$

Here $e, e^{\prime} \in J_{0}(N)\left(H_{\infty}\right)$ and $<,>_{J}$ is the normalized height pairing on $\mathrm{J}_{0}(\mathrm{~N})\left(\mathrm{H}_{\infty}\right)$.

Let \mathbb{T} be the commutative subalgebra of $E n d_{Q}\left(J_{0}(N)\right)$ generated over Z by the Hecke operators T_{l} with ℓN and the Atkin-Lehner involutions w_{l} with llN. Then \mathbf{T} acts on V in a natural way. Since this action is selfadjoint w.r.t. <, >, we have a spectral decomposition

$$
V=\underset{F}{\oplus} V_{F},
$$

where $F: T \rightarrow \overline{\mathbb{Q}}$ runs through the finite set of characters of \mathbb{T} and V_{F} denotes the corresponding eigenspace.

Let

$$
f(z)=\sum_{n \geq 1} a_{n} e^{2 \pi i n z} \quad(z \in \mathbb{C}, \quad \operatorname{Im} z>0)
$$

be a normalized newform $\left(a_{1}=1\right)$ of weight 2 on $\Gamma_{0}(N)$ and let A_{f} / Q be the abelian subvariety of $J_{0}(N) / Q$ corresponding to $f([17]$, chap.7). Then

$$
\mathbb{C 8} \boldsymbol{R}_{\mathbf{f}} A_{\mathrm{f}}\left(\mathrm{H}_{\infty}\right)=\underset{\sigma}{\theta} \mathrm{V}_{\mathrm{f}^{\sigma}}
$$

where σ runs through the distinct complex embeddings of $Q\left(\left\{a_{n}\right\}_{n \geq 1}\right) / \mathbb{Q}$ and $f^{\sigma}=\sum_{n \geq 1} a_{n}^{\sigma} e^{2 \pi i n z}$. Moreover, we have identified the newform f^{σ} with the corresponding character $T \rightarrow \overline{\mathbb{Q}}, T \rightarrow \lambda^{\sigma}(T)\left(T f^{\sigma}=\lambda^{\sigma}(T) f^{\sigma}\right)$.

In order to obtain a spectral decomposition w.r.t. Talso for $\mathbb{C}_{\mathrm{p}} \boldsymbol{\theta}_{\mathrm{Z}} \mathrm{J}_{0}(\mathrm{~N})\left(\mathrm{H}_{\infty}\right)$ we now choose a \mathbb{Q}-isomorphism $\mathbb{C} \cong \mathbb{C}_{\mathrm{p}}$. Then $V \cong \mathbb{C}_{\mathrm{p}} \mathbb{Z}_{\mathrm{Z}} \mathrm{J}_{0}(\mathrm{~N})\left(\mathrm{H}_{\infty}\right)$, and V and V_{f} become \mathbb{C}_{p}-vector spaces.

If a is a proper σ_{n}-module we write

$$
y_{f}\left(\theta_{n}, x_{n},[a]\right)
$$

for the image of the Heegner point $y\left(\theta_{n}, n_{n},[a]\right)$ in V_{f}.
83. p-adic distributions associated to Heegner points

We keep all notations of §1. and §2. In particular, we let I_{n} be the group of classes of proper σ_{n}-lattices. For $n \geq 1$ there is a surjective homomorphism

$$
\pi_{n}: I_{n} \rightarrow I_{n-1},[a] \mapsto\left[a \theta_{n-1}\right]
$$

which extends the projection $\pi_{n}: A_{n} \rightarrow A_{n-1}$. We let

$$
I_{\infty}=\underset{\leftarrow}{\lim }\left(I_{n}, \pi_{n}\right)
$$

By class field theory I_{n} resp. I_{∞} is canonically isomorphic to $\mathrm{Gal}\left(\mathrm{H}_{\mathrm{n}} / \mathrm{K}\right)$ resp. $\mathrm{Gal}\left(\mathrm{H}_{\infty} / \mathrm{K}\right)$, and the diagram

$$
\underset{\substack{I_{n} \\ \operatorname{Gal}\left(H_{n} / K\right)} \xrightarrow{T_{n}} \xrightarrow{I_{n-1}} \xrightarrow{\text { res }} \operatorname{Gal}\left(H_{n-1} / K\right) .}{ }
$$

is commutative, where res is the restriction map.
Recall that a p-adic distribution v on I_{∞} with values in an abelian group Y is given by a family $\left\{u_{n}\right\}_{n \geq 1}$ of maps

$$
v_{n}: I_{n} \rightarrow Y
$$

which satisfy the compatibility relations

$$
\begin{equation*}
v_{n}(A)=\sum_{\prod_{n+1} B=A} v_{n+1}(B) \tag{5}
\end{equation*}
$$

for all $n \geq 1$.
Now let us suppose that

$$
\left\{\begin{array}{l}
\text { i) } f(z)=\sum_{n \geq 1} a_{n} e^{2 \pi i n z} \text { is a normalized newform of weight } 2 \\
\quad \text { on } \Gamma_{0}(N) ;
\end{array} \quad \begin{array}{rl}
\text { ii) every rational prime } \ell \text { with } \ell N \text { is split or ramified in the } \\
& \text { imaginary quadratic field } K, ~ a n d ~ \\
\ell^{2} \mid N \text { implies that } \ell \text { is split } \\
\text { in } K
\end{array}\right.
$$

(6)
we keep u fixed throughout the following and therefore
mostly omit it from the notation):
iv) p is a rational prime with pll and $\rho=\rho_{p}$ is a root of
$\begin{aligned} & \left.x^{2}-a_{p} x+p=0 \text { which satisfies }|\rho|_{p}\right\rangle|p|_{p}=p^{-1} \text {, where }\left|.| |_{p} \text { is the }\right. \\ & \text { normalized p-adic absolute value on } \mathbb{C}_{p} \text {. }\end{aligned}$

From now on we will always assume that the conditions in (6) are aatisfied.

For $n \geq 1$ we define a map

$$
v_{f, n}: I_{n} \rightarrow v_{f}
$$

by

$$
v_{f, n}(A)=\rho^{-n} y_{f}\left(\theta_{n}, x_{n}, A\right)-\rho^{-n-1} y_{f}\left(\theta_{n-1}, x_{n-1}, \pi_{n} A\right)
$$

We put
(7)

$$
v_{f}=\left\{v_{f, n}\right\}_{n \geq 1}
$$

Theorem 1. Under the assumptions in (6) the family v_{f} defined by (7) is a p-adic distribution on I_{∞}.

Proof. We must verify (5). Write v_{n} instead of $v_{f, n}$. We have
(8) $\left\{\begin{array}{l}\sum_{n+1} B=A \quad v_{n+1}(B)=9^{-n-1} \sum_{\pi_{n+1} B=A} y_{f}\left(\theta_{n+1}, u_{n+1}, B\right) \\ -\rho^{-n-2} \sum_{n+1} B=A \quad y_{f}\left(\theta_{n}, m_{n}, \pi_{n+1} B\right) .\end{array}\right.$

For $p \boldsymbol{N}$ let T_{p} be the Hecke operator of degree p viewed as a correspondence on $X_{0}(N)$. Then T_{p} acts on Heegner points according to
(formula 6.1. in [2]: here R is an arbitrary order in K, and are proper R-modules, $R / h_{n} \cong / N Z$, the sum is taken over the $p+1$ sublattices

Let $A \in I_{n}$. Write $A=[a]$, where or is a proper θ_{n}-ideal with (a, p)=1. Then

$$
\pi_{n+1}^{-1} A=\left\{\left[\alpha n \sigma_{n+1}\right]\left[\zeta_{n+1}, x^{\prime}\right] \mid x^{\prime} \in \operatorname{ker} \pi_{n+1}\right\}
$$

with $\varphi_{n, x}$ defined by (2), and the lattice $\left(\alpha_{n} \sigma_{n+1}\right) \zeta_{n+1, x}$, has index p in
a by the Lemma in 81. (take $q=a \theta$, so $\operatorname{cn} \theta_{n}=a$). Therefore for $n \geq 1$ the p lattices $\left(a_{n} \sigma_{n+1}\right) G_{n+1,} x^{\prime}\left(x^{\prime} \in\right.$ ker $\left.r_{n+1}\right)$ together with pa. σ_{n-1} give all the. $p+1$ different sublattices of a of index p. Since $T p$ commutes with the projection onto V_{f} we conclude

$$
\begin{aligned}
& a_{p} y_{f}\left(\theta_{n}, u_{n}, A\right)=T_{p} y_{f}\left(\theta_{n}, u_{n}, A\right) \\
&=\sum_{n+1} B=A \\
& y_{f}\left(\theta_{n+1}, u_{n+1}, B\right)+y_{f}\left(\theta_{n-1}, \dot{x}_{n-1},\left[p a \sigma_{n-1}\right]\right)
\end{aligned}
$$

and so
(9)

$$
\sum_{\pi_{n+1} B=A} y_{f}\left(\theta_{n+1}, n_{n+1}, B\right)=a_{p} y_{f}\left(\theta_{n}, m_{n}, A\right)-y_{f}\left(\theta_{n-1}, m_{n-1}, \pi_{n} A\right)
$$

Substituting (9) into the first term on the right of (8) and observing that $\left|k e r \pi_{n}\right|=p$ for $n \geq 2$ we obtain

$$
\begin{aligned}
\sum_{n+1}=A=v_{n+1}(B)= & \rho^{-n-1} a_{p} y_{f}\left(\theta_{n}, u_{n}, A\right)-\rho^{-n-1} y_{f}\left(\theta_{n-1}, u_{n-1}, \pi_{n} A\right) \\
& -\rho^{-n-2} p y_{f}\left(\theta_{n}, n_{n}, A\right) \\
= & \rho^{-n-2}\left(\rho a_{p}-p\right) y_{f}\left(\theta_{n}, u_{n}, A\right)-\rho^{-n-1} y_{f}\left(\theta_{n-1}, u_{n-1}, \pi_{n} A\right) \\
= & \rho^{-n} y_{f}\left(\theta_{n}, n_{n}, A\right)-\rho^{-n-1} y_{f}\left(\theta_{n-1}, u_{n-1}, \pi_{n} A\right) \\
= & v_{n}(A),
\end{aligned}
$$

where in the third line we have used $\rho^{2}-a_{p} \rho+p=0$. This completes the proof.

We remark that formally ν_{f} is an analogue for the "modular symbols distribution" introduced in [6] and [7] to construct the cyclotomic p-adic L-function of f.

Now recall that the group I_{∞} is isomorphic to $F \times Z_{p}$, where F is a finite group. Let K_{∞} be the fixed field of F. Then K_{∞} / K is the anticyclotomic Z_{p}-extension of K. Let F_{n} be the image of F under the canonical projection $I_{\infty} \rightarrow I_{n}^{-}$, and let

$$
\bar{I}_{\infty}=\lim _{\rightleftarrows}\left(I_{n} / F_{n}, \bar{\pi}_{n}\right)
$$

where $\bar{\pi}_{n}$ is the reduction of π_{n}. We have canonical isomorphisms (10) $\mathrm{Gal}\left(\mathrm{K}_{\infty} / K\right) \cong I_{\infty} / F \cong \bar{I}_{\infty}$.

Let W_{f} be the f-subeigenspace of the \mathbb{C}_{p}-vector space $\mathbb{C}_{p} \boldsymbol{\theta}_{\mathbf{Z}} J_{0}(N)\left(K_{\infty}\right)$. The group Gal $\left(H_{\infty} / K\right)$ acts on $\mathbb{C}_{p} \boldsymbol{8}_{\mathrm{Z}} \mathrm{J}_{0}(\mathrm{~N})\left(\mathrm{H}_{\infty}\right)$ in a natural way, and the Galois average

$$
\sum_{0 \in F_{n}} v_{f, n}(A)^{c} \quad\left(A \in I_{n}\right)
$$

of $v_{f, n}(A)$ is in W_{f}; from the action of the Galois group on Heegner points (\$2.) we see that it only depends on the coset of $A \operatorname{modF}_{n}$. We define a distribution

$$
\mu_{f}=\left\{\mu_{f, n}\right\}_{n \geq 1}
$$

on I_{∞} by

$$
\begin{equation*}
r_{f, n}: I_{n} / F_{n} \rightarrow W_{f}, \quad \mu_{f, n}(\bar{A})=\sum_{\sigma \in F_{n}} v_{f, n}(A)^{\sigma} \quad\left(A \in I_{n}, \bar{A}=A \bmod F_{n}\right) \tag{11}
\end{equation*}
$$

That this, in fact, is a distribution follows from the equation

$$
\begin{aligned}
\left|F_{n}\right| \sum_{\sigma \in F_{n+1}} \sum_{\prod_{n+1} B=A} & v_{f, n+1}(B)^{\sigma} \\
& =\left|F_{n+1}\right| \sum_{\bar{T}_{n+1}} \sum_{\bar{B}=\bar{A}}\left(\sum_{\sigma \in F_{n+1}} v_{f, n+1}(B)^{\sigma}\right)
\end{aligned}
$$

Thus we have obtained

Corollary. Let K_{∞} / K be the anti-cyclotomic \mathbb{Z}_{p}-extension of K and let W_{f} be the f-subeigenspace of $\mathbb{C}_{p} \mathbb{X}_{\mathbf{Z}}{ }_{0}(N)\left(K_{\infty}\right)$. Assume that the conditions in (6) are satisfied. Then via the identifications given in (10) the family $\mu_{f}=\left\{\mu_{f, n}\right\}_{n \geq 1}$ defined by (11) is a distribution on $G a l\left(K_{\infty} / K\right)$ taking values in. W_{f}.
84. Mellin-Mazur transform of μ_{f}

We will now define an ultrametric norm $11 . \|$ on the \mathbb{C}_{p}-vector space $\mathbb{C}_{p} \mathbb{Z}_{\mathrm{Z}} \mathrm{A}_{\mathrm{f}}\left(\mathrm{K}_{\infty}\right)$ and hence on the subspace W_{f}, for which μ_{f} is of moderate growth, i.e. there is $r \in\left[0,1\right.$) and $c \in \mathbb{R}$. such that $\left\|\mu_{f, n}(\bar{A})\right\| \leq p^{r n+c}$ for all $A \in I_{n}$ and all n (cf. [6], [8]); in fact, μ_{f} will be bounded if a_{p} is a p-adic unit.

Lemma. Let A be an abelian variety over a number fibld k. Then for any \mathbb{Z}_{p}-extension k_{∞} / k the group $A\left(k_{\infty}\right)$ modulo torsion is a free \mathbb{Z}-module.

The above result is essentially due to B. Perrin-Riou and was proved for A an elliptic curve in [10]. II, 1.3., Thm. 4 ; it was pointed out to me by P. Schneider that the proof carries over to the general situation if one replaces Lemma 6 in [10] by the following argument (we use the same notation as in [10]): since $\theta=G a l\left(k_{\infty} / k\right)$ is a pro-cyclic pro-p-group, we have an isomorphism between $H^{1}\left(\theta, \Omega\left(k_{\infty}\right)\right)=H^{1}\left(\theta, \Omega\left(k_{\infty}\right)(p)\right)$ and the θ-coinvariants of $\Omega\left(k_{a} / k\right)$. Now $\Omega\left(k_{\infty}\right)(p)$ is a \mathbb{Z}_{p}-module of cofinite type, hence the θ-coinvariants of $\Omega\left(k_{\infty}\right)(p)$ are finite if and only if the θ-invariants of $\Omega\left(k_{\infty}\right)(p)$ are finite; the latter, however, is $\Omega(k)(p)$, which obviously is finite.

Now let $w \in C_{p} g_{z} A_{f}\left(K_{\infty}\right)$ and let $\lambda_{1}, \lambda_{2}, \ldots$ be the C_{p}-coordinates of w w.r.t. any \mathbb{Z}-basis of $A_{f}\left(K_{\infty}\right)$ modulo torsion. We put

$$
\begin{equation*}
\|w\|=\max _{n \geq 1}\left\{\left|\lambda_{n}\right|_{p}\right\} \tag{12}
\end{equation*}
$$

Using the non-archimedean property of $1 . l_{p}$ one readily sees that this definition is independent of the chosen basis. Thus we have
 normed C_{p}-vector space, and the norm is ultrametric.

Theorem 2. The distribution μ_{f} is of moderate growth w.r.t. \|. \| . Moreover, if ${ }^{a} p$ is a p-adic unit, then μ_{f} is bounded.

Proof. Let $X=\underset{\sigma}{\oplus} \mathbb{C} f^{\sigma}$ with the sum over all embeddings σ of $\mathbb{Q}\left(\left\{a_{n}\right\}_{n \geq 1}\right) / \mathbb{Q}$ in \mathbb{C} and let $r=\operatorname{dim}_{\mathbb{C}} X$. If $F \in X$ and $F(z)=\sum_{\alpha \geq 1} c_{d}(F) e^{2 \pi i d z}$ we may view c_{α} as an element of the \mathbb{C}-dual X^{\prime} of $X . \operatorname{Let} c_{i_{1}}, \ldots, c_{i_{r}}$ be a basis of X^{\prime}. Then the matrix

$$
M=\left(c_{\alpha}\left(f^{\sigma_{\beta}}\right)\right)_{1 \leq \alpha, \beta \leq r}
$$

is invertible.

If $A \in I_{n}$ we put

$$
x\left(\theta_{n}, x_{n}, A\right)=\sum_{\sigma \in F_{n}} y\left(\theta_{n}, u_{n}, A\right)^{\sigma}
$$

Thus $x\left(\sigma_{n}, n_{n}, A\right) \in J_{0}(N)\left(K_{\infty}\right)$. Let $x_{A_{f}}\left(\sigma_{n}, n_{n}, A\right)$ resp. $x_{f}\left(\theta_{n}, n_{n}, A\right)$ be the images of $x\left(\theta_{n}, n_{n}, A\right)$ in $A_{f}\left(K_{\infty}\right)$ resp. W_{f}. Then

$$
\begin{equation*}
x_{A_{f}}\left(\theta_{n}, n_{n}, A\right)=\sum_{1 \leq \beta \leq r} x_{f^{\sigma_{\beta}}}\left(\sigma_{n}, n_{n}, A\right) \tag{13}
\end{equation*}
$$

Since $T_{\alpha} x_{A_{f}}\left(\sigma_{n}, n_{n}, A\right)$ is rational over K_{n}, it is of norm ≤ 1. Applying T_{α} on both sides of (13) we obtain

$$
\left(T_{\alpha} x_{A_{f}}\left(\theta_{n}, n_{n}, A\right)\right)_{\alpha=i_{1}}, \ldots, i_{r}=\left(x_{f}^{\sigma_{\beta}}\left(\theta_{n}, n_{n}, A\right)\right)_{\beta=1, \ldots, r} M^{t}
$$

where M^{t} is the transpose of M. Since the column on the left has entries bounded w.r.t. II.\|, and since M is invertible and has integral algebraic entries, we see that $\mathrm{x}_{\mathrm{f}}{ }^{\sigma}\left(\theta_{\mathrm{n}}, n_{\mathrm{n}}, A\right)$ has bounded norm, and the bound is independent of A.

Since furthermore, by assumption, $\left.|\rho|_{p}\right\rangle|p|_{p}=p^{-1}$ and $|\rho|_{p}=1$ if |aplon we conclude that μ_{f} is of moderate growth and is even bounded for $\left|a_{p}\right|_{p}=1$.

The conjectures of Birch and Swinnerton-Dyer for abelian varieties predict that the groups $A_{f}\left(H_{\infty}\right)$ and $A_{f}\left(K_{\infty}\right)$ (and so the vector spaces V_{f} and W_{f}) are not finitely generated. In fact, let $L(f 8 y, s)$ be the complex L-series attached to the tensor product of the ℓ-adic representations of $G a l(\bar{Q} / \mathbb{Q})$ corresponding to f and ind ψ, where $\psi: G a l\left(H_{n} / K\right) \rightarrow \mathbb{C}^{*}$ is any ring class character ([2]). Then by [2] and [4] L(f8y,s) satisfies a functional equation under $s \mapsto 2-s$, and under the assumption that every prime dividing N is split or ramified in K, and every prime whose square divides N is split in K, its root number is -1 , and so in particular $L(f \otimes \psi, 1)=0$. Let $L\left(A_{f} / H_{n}, s\right)$ be the Hasse-Weil L-function of $\mathrm{A}_{\mathrm{f}} / \mathrm{H}_{\mathrm{n}}$. Then

$$
L\left(A_{f} / H_{n}, s\right)=\prod_{\sigma, \psi} L\left(f^{\sigma} \theta \psi, s\right)
$$

with ψ running over all characters of $G a l\left(H_{n} / K\right)$ and σ running over the distinct complex embeddings over \mathbb{Q} of $\mathbb{Q}\left(\left\{a_{n}\right\}_{n \geq 1}\right)$, and with f^{c} defined as in 82. Therefore ord ${ }_{s=1} L\left(A_{f} / H_{n}, s\right)$ goes to infinity with $n \rightarrow \infty$ and hence -by the conjectures of Birch and Swinnerton Dyer- so should do

Note that if the results of Rohrlich ([13,14]) and Greenberg ([1]) could be generalized to give $L^{\prime}(f 8 \psi, 1) \neq 0$ for almost all primitive ψ and n, then it would be a consequence of the work of Gross and Zagier ([3]) that V_{f} and W_{f} are, in fact, infinite-dimensional.

Let $\left(\bar{W}_{f},\|\|.\right)$ be the completion of ($W_{f},\|$.$\|). We can integrate$ any continuous function $g: I_{\infty} / F \rightarrow a_{p}$ w.r.t. μ_{f} in the usual manner: if g_{n} is a sequence of locally constant functions converging uniformly to g, we put

$$
\int_{I_{\infty} / F} g d \mu_{f}=\lim _{n \rightarrow \infty} \sum_{\bar{A} \in I_{n} / F_{n}} g(\bar{A}) \mu_{f, n}(\bar{A}),
$$

where the right-hand side is an element of \bar{W}_{f}.
Now let τ be an anti-cyclotomic p-adic logarithm over K, i.e. a non-trivial homomorphism from $G a l(\overline{\mathbb{Q}} / \mathrm{K})$ to the additive group of \mathbb{Q}_{p}, whose K/Q conjugate is equal to its inverse (cf. [9], 815.). Any two anticyclotomic p-adic logarithms over K are proportional by an element of Q_{p}^{*}. The fixed field of kert is \mathbb{K}.

Denote by $\bar{W}_{f}[[s]]$ the $\mathbb{C}_{p}[[s]]$-module of power series in s with coefficients in \bar{W}_{f}.

Definition. Let $x: \operatorname{Gal}\left(K_{\infty} / K\right) \rightarrow \mathbb{C}_{p}^{*}$ be a character of finite order, and let τ be an anti-cyclotomic p-adic logarithm over K. Assume that the conditions in (6) hold. Then we define the Mellin-Mazur transform of μ_{f} associated to τ and X as the power series

$$
h_{f, \tau}(x, s)=\sum_{n \geq 0} \frac{1}{n!}\left(\int_{I_{\infty} / F} x \tau^{n} d \mu_{f}\right) s^{n}
$$

in $\bar{W}_{f}[[s]]$.

Proposition 2. Let $n \geq 1$ and let $X: I_{n} / F_{n} \rightarrow \sigma_{p}^{*}$ be a character such that the inflation $\widetilde{x}: I_{n} \rightarrow C_{p}^{*}$ of X is primitive (i.e. not induced by a character of $I_{\text {m }}$ with $\left.m<n\right)$. Then

$$
h_{f, \tau}(x, 0)=\rho^{-n} \sum_{A \in I_{n}} \tilde{x}(A) y_{f}\left(0_{n}, n_{n}, A\right)
$$

The proof is standard and will be left to the reader.

Proposition 3. Let x_{0} be the trivial character, let $p>3$ and assume that $\left(\frac{D}{p}\right)=-1$. Then

$$
h_{f, \tau}\left(x_{0}, 0\right)=\frac{1}{\left|F_{0}\right|}\left(1-\rho^{-2}\right) \sum_{A \in I_{0}} y_{f}(\sigma, x, A) .
$$

This is proved by arguments similar to those used in the proof of Theorem 1. In general, the value $h_{f, \tau}\left(x_{0}, 0\right)$ is given as the sum of

$$
\frac{\alpha}{F_{0} \mid}\left(\alpha^{-1}+p \rho^{-2}(\alpha-1)+\rho^{-2}\left(\frac{D}{p}\right)\right) \quad \sum_{A \in I_{0}} y_{f}(\theta, n, A) \quad\left(\alpha=\left[0^{*}: 0_{1}^{*}\right]\right)
$$

and a certain correction term (vanishing for $\left(\frac{D}{p}\right)=-1$) which arises from the fact that the order of ker \forall_{1} is $\alpha^{-1}\left(p-\left(\frac{D}{p}\right)\right)$ and so depends on the value of $\left(\frac{D}{p}\right)$.

85. Complements

5.1. Relation of μ_{f} to Mazur's distribution

The following observations were kindly suggested to me by P. Schneider.

Assume that A_{f} is of dimension 1 , let σ be a p-adic cyclotomic logarithm over K and let $<,>_{\sigma}$ be the p-adic height pairing on $A_{f}\left(K_{\infty}\right)$ associated to σ ([9], 820.). Let $\breve{\mu}_{f}=\left\{\breve{\mu}_{f, n}\right\}_{n \geqslant 1}$ be the distribution on I_{∞} / F defined by

$$
\check{\mu}_{f, n}(\bar{A})=\mu_{f, n}\left(\overline{A^{-1}}\right)
$$

and define the convolution product

$$
\left(\mu_{f}^{*} \check{\mu}_{f}\right)_{n}(\bar{A})=\sum_{\bar{B} \bar{C}=\bar{A}}\left\langle\mu_{f, n}(\bar{B}), \check{\mu}_{f, n}(\bar{C})\right\rangle_{0}
$$

Then $\mu_{f}{ }^{*} \check{\mu}_{f}$ is a \mathbb{C}_{p}-valued distribution. Since ${ }_{f}$ is of Galois type in the sense of [16], i.e.

$$
v_{f, n}([\sigma])=v_{f, n}\left(\left[\sigma_{n}\right]\right)^{\sigma\left[\dot{\alpha}^{-1}\right]}
$$

(cf. 82. for notation), we can easily check (using the invariance of $\langle\text {, }\rangle_{\sigma}$ under the action of $\mathrm{Gal}\left(\mathrm{K}_{\infty} / K\right)$) that

$$
\left(\mu_{f}^{*} \mu_{f}\right)_{n}(\bar{A})=p^{n}\left\langle\mu_{f, n}\left(\overline{\left[\sigma_{n}\right]}\right), \mu_{f, n}(\bar{A})\right\rangle_{\sigma}
$$

The distribution $\mu_{f}{ }^{*} \mu_{f}$ therefore is of the same kind as the distribution constructed by Mazur in [9], §22. Mazur's distribution plays an important role in the work of Perrin-Riou ([12]) on a p-adic version of the theory of Gross-Zagier.
5.2. Zeros of $h_{f, \tau}(x, s)$

For simplicity suppose p>2. If we fix an isomorphism k : $G a l\left(K_{\infty} / K\right)$ $\widetilde{\rightarrow} 1+p Z_{p}$, then $\tau=c \log _{p} o k$ with $c \in Q_{p}^{*}$ and therefore

$$
h_{f, \tau}(x, s)=\int_{I_{\infty} / F} x \exp \left(\operatorname{cs} \cdot \log _{p} o k\right) d \mu_{f}
$$

($\log _{p}$ and $\exp _{p}$ denote the p-adic logarithm and exponential, respectively) Clearly, the integral converges for $|s|_{p}<r:=p^{\delta}|c|_{p}^{-1} \cdot\left(\delta=1-\frac{1}{p-1}\right)$. If we fix a topological generator γ of I_{∞} / F, then

$$
h_{f, \tau}(x, s)=H_{f, \tau}\left(x, \exp _{p}\left(\operatorname{cs\operatorname {log}_{p}}(k(\gamma))-1\right) \quad\left(|s|_{p}<r\right)\right.
$$

with a power series $H_{f, \tau}(x, T) \in \bar{W}_{f}[[T]]$. Now if $\left|a_{p}\right|_{p}=1$, then μ_{f} is a measure and hence the coefficients of $H_{f, \tau}(x, T)$ are bounded. One may then ask whether $H_{f, \tau}(x, s)$-if not identically zero- has only finitely many zeros for $|s|_{p}<r$. This is in fact true. The argument which was pointed out to me by P. Schneider, runs as follows.

Let L be a finite extension of Q_{p} containing ρ and all the Fourier
coefficients a_{n} of f. Let U be the completion w.r.t. $\|$.ll of the f-eigenspace in $\mathrm{Le}_{\mathrm{Z}} \mathrm{J}_{0}(\mathrm{~N})\left(\mathrm{K}_{\infty}\right)$. According to [15], Cor. 2.4. and Thm. 4.15. the space U is pseudo-reflexive and hence, in particular, the natural map of U to its topological bidual is injective (loc.cit. p. 60). Therefore if we set $H(T)=H_{f, \tau}(x, T)$ and write

$$
H(T)=\sum_{n \geq n_{0}} u_{n} T^{n}
$$

with $u_{n_{0}} \neq 0$, then there is a bounded linear map $\ell: U \rightarrow L$ with $\ell\left(u_{n_{0}}\right) \neq 0$. It follows that the power series

$$
H_{l}(T)=\sum_{n \geq n_{0}} \ell\left(u_{n}\right) T^{n} \in L[[T]]
$$

is not identically zero and has bounded coefficients, and that

$$
H_{\ell}(s)=(1 \hat{\otimes \ell})(H)(s) \quad\left(|s|_{p}<r\right)
$$

where $1 \hat{\theta} \ell$ is the natural extension of ℓ to $\bar{W}_{f}=\mathbb{C} \mathbb{Q}_{L} U$ (for the precise meaning of the symbol $\boldsymbol{n}^{\circ}{ }^{n}$ cf. [15]). Since by the Weierstrass Preparation Theorem $H_{l}(s)$ has only finitely many zeros for $\mid s l_{p}<r$, the result follows for $H(T)$.

According to the above we can write

$$
H_{f, \tau}(x, T)=P_{f, \tau}(x, T) H_{f, \tau}^{(0)}(x, T)
$$

where $P_{f, \tau}(x, T)$ is a polynomial with coefficients in \mathbb{C}_{p} whose zeros coincide with those of $h_{f, \tau}(x, s)$ for $|s|_{p}<r$ and $H_{f, \tau}^{(0)}(x, T) \in{\underset{W}{f}}^{p}[[T]], H_{f, \tau}^{(0)}(x, s)$ $\neq 0$ for all s with $|s|_{p}<r$. Does the polynomial $P_{f, \tau}(x, T)$ have any arithmetical meaning?

5.3. A distribution induced by μ_{f}

We would like to describe how μ_{f} induces a distribution in a somewhat different way. Suppose again that $A_{f}=E$ is an elliptic curve defined over Q and assume that E is given by a Néron minimal equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \quad\left(a_{v} \in Z\right)
$$

Let p be a prime of K lying above p and let \neq be prime of K_{∞} lying
 an isomorphism

$$
E\left(\tilde{K}_{\alpha}\right) / E_{0}\left(\tilde{K}_{\infty}\right) \cong \bar{E}\left(k_{\infty}\right)
$$

where $E_{0}\left(\tilde{K}_{\alpha}\right)$ is the kernel of the reduction map, \bar{E} is the reduced curve $\bmod \mathscr{F}^{\circ}$ and k_{∞} is the residue field. Since K_{∞} / K is totally ramified at γ we have $k_{\infty}=\sigma / \not$, . Put

$$
\begin{equation*}
r=\left|\bar{E}\left(k_{\omega}\right)\right| \tag{14}
\end{equation*}
$$

View x and y as rational functions on E having poles of orders 2 and 3. respectively, at the origin 0 of E and put $t=-\frac{x}{y}$. Let

$$
\omega=\frac{d x}{2 y+a_{1} x+a_{3}}
$$

be a differential of the first kind on E and write

$$
\omega(t)=\sum_{n \geq 0} h_{n} t^{n}
$$

with $h_{n} \in \mathbb{Z}\left[a_{1}, \ldots, a_{6}\right]$ and $h_{0}=1$. Let

$$
L(t)=\int w(t) d t=\sum_{n \geq 1} h_{n-1} \frac{t^{n}}{n}
$$

be the elliptic logarithm of the formal group of E, and let

$$
E_{\mathcal{F}}=\left\{\left.P \in E_{0}\left(\tilde{K}_{\infty}\right)| | t(P)\right|_{p}<1\right\}
$$

Then E_{f} is a subgroup of $E_{0}\left(\tilde{K}_{\infty}\right)$, and the map

$$
P \mapsto L(t(P))
$$

 chap. III, 83.).

The distribution μ_{f} now gives rise to a \tilde{K}_{∞}-valued distribution $\tilde{\mu}_{f}$ $=\left\{\tilde{\mu}_{f, n}\right\}_{n \geq 1}$ defined by

$$
\tilde{\mu}_{f, n}=(i d \otimes L \cdot t) \cdot(i d \theta \bar{r}) \cdot \mu_{f, n}
$$

where \mathbf{r} denotes multiplication by $\mathbf{r}(\mathrm{cf} .(14)$) and id is the identity map of Z_{p}. Elementary estimates for the rate of growth of L only show that $\tilde{\mu}_{f}$ is of growth 1 in the sense of [8], i.e. $\left|\tilde{\mu}_{f, n}\right|_{p} \leq p^{n+c}$ where c is a constant, and so it is not clear if analytic functions could be integrated.

Nevertheless, if x is a primitive character on $I_{n} / F_{n}(n \geq 1)$ we might ask for the meaning of the sum

$$
\sum_{A \in I_{n} / F_{n}} x(A) \tilde{\mu}_{f, n}(A)
$$

Is there any analogy with Leopoldt's analytic formula giving the value of the Kubota-Leopoldt p-adic L-function of a primitive non-principal Dirichlet character at $s=1$ in terms of the p-adic logarithm?

References

[1] R.Greenberg, On the Birch and Swinnerton-Dyer conjecture, Invent. math. 72, 241-265 (1983)
[2] B.H.Gross, Heegner points on $X_{0}(N)$, in: Modular Forms, ed. R.A. Rankin, Ellis Horwood Series Mathematics and its Applications, Chichester, 87-105 (1985)
[3] B.H.Gross, D.Zagier, Heegner points and derivatives of L-series, to appear in Invent. math.
[4] P.K.Kurcanov, The zeta functions of elliptic curves over certain abelian extensions of imaginary quadratic fields. Math. USSR Sbornik 31, 49-62 (1977)
[5] S.Lang, Elliptic Curves: Diophantine Analysis, Grundlehren der Math Wiss., No.231, Springer, Berlin-Heidelberg-New York
[6] J.I.Manin, Periods of modular forms and p-adic Hecke series, Math. USSR Sbornik 21, 371-393 (1973)
[7] B. Mazur, H.P.F.Swinnerton-Dyer, Arithmetic of Weil curves, Invent. math. 25, 1-61 (1974)
[8] B.Mazur, A meromorphic continuation of the Gauss sum, manuscript, unpublished
[9] B. Mazur, Modular curves and arithmetic, Proceedings of the International Congress of Mathematicians, Warszawa August 16-24. 1983, Vol. 1, PWN, North Holland (1984)
[10] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d' Iwasawa, Mem. Soc. Math. France 17 (1984)
[11] B. Perrin-Riou, Fonctions L p-adiques, théorie d' Iwasawa et points de Heegner, preprint (1985)
[12] B. Perrin-Riou, Fonctions L p-adiques et points de Heegner, preprint (1985)
[13] D.E.Rohrlich, on L-functions of elliptic curves and anti-cyclotomic towers, Invent. math. 75, 383-408 (1984)
[14] D. E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. math. 75, 409-423 (1984)
[15] A.van Rooij, Non-archimedean functional analysis, Marcel Dekker (1985)
[16] P.Schneider, letter to the author, September 19, 1985
[17] G.Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten, Princeton 1971

