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THE LEFT SPECTRUM AND IRREDUCIBLE REPRESENTATIONS
OF 'SMALL’ QUANTIZED AND CLASSICAL RINGS.

Alexander L. Rosenberg

INTRODUCTION

The first Heisenberg and Weyl algebras and Ufsi(2)) - the unmversal enve-
loping algebra of the Lie algebra  sif2) - are the most important "small” algeb-
ras of the preceeding to quantum group epoch of mathematical physics and repre-
sentation theory. Quantum group activity has already produced a lot more. The
following list contains only principal examples of "small" quantum algebras:

(a) Quantum plane (or, better, g-plane) kq[x.y] 1S an associative algebra
over a field % generated by x and y satisfying the relation:

Xy = gyx, q € k* (H

(b) The algebra of g-differential operators IDq no= [Dq h[x,_,v] which is
defined by the relation:

Xy - gyx = h. (2)

(c) Quantum Heisenberg algebra [Hq generated over the field & by x, vy,

z subject to the following relations:
| XZ = qx, Iy = qyz, XY - gyx = L (3)
(d) The first quantum Weyl algebra Mql which 1s obtained from [Hq by

y

adding the relations: :
(xy - ¢"'yx)z = 1 = zxy - ¢ 'y). )
(e) The quantum enveloping algebra of the Lie algebra sl(2), Uq(sl(z)),
defined by the relations:

. (5)
7 - 7

X = g, Iy = @y Xy - oyx o=
q-4q

(f) The coordinate ring of quantum 2 X 2 matrices M (2)  which has gene-
q o
rators x, y, u, v satisfying the relations
XU = qux, XV = VX, qQyi = Uy, -gyv = vy, uv = v,

XV - Y= (q - g juv. (6)

(¢) The coordinate algebra A(SLq(Z)) otherwise called the algebra of fun-
ctions of the quantum group SL(2), is generated by x, y, u, v  subject to the

relations:



XU = qUX, XV = QVX, qgyu = uy, qyv = Vy, Uuv = vy,

(7

xy - quv =1 = yx - ¢ luw.

(h) Twisted SL(2) group, wv(sl(z)), by Woronowicz [W] which is defined
by relations:
xz - Vize = (1 + Vi)x, zy - viyz = (1 + vy

(8)

2
Xy - Vyx = vz

The problems of determining the irreducible representations of the Weyl al
gebra and of the Lie algebra sl2) were for a long time regarded as hopeless,
and their solution by R. Block [Bl], [B2] is still remembered as a real ’break
through’ which it, certainly, was.

One of the goals of this work is to obtain the representation theory of all
listed above algebras. The way we approach to the problem is based on the deve-
loped in [R1], [R2], and [R4] noncommutative local algebra and on the following
observation: .

all the algebras above, and a number of others, belong to the class of hy-
perbolic rings (which was first introduced in [R3]).

Given an automorphism 6 of a commutative ring A, and an element & of
A, the hyperbolic ring A(8,§] is defined as the ring generated by A and the
two indeterminates x, y satisfying the relations:

xa = O(a)x, ay = yb(a) for all a € A, (1

=8 =086 (2)

(Chyperbolic’ is due to the relation (2)). As the reader shall see, the hyperbo-

lic rings turn out to be convenient enough to allow a complete description of
their left spectrum.

The left spectrum is a natural extension of the set of left maximal ideals.
And, in many cases, it i1s not difficult to single out left maximal ideals ("clo-
sed points") from the description of the left spectrum. For instance, we recover
the classification by R. Block of irreducible representations of the first Weyl
algebra [B1], [B2] just by using general facts about relations between the Krull
dimension and the hight of points of the left spectrum established in [R5].

Note that R. Block studied irreducible representations of U(si(2)) and of
the enveloping algebra of the two-dimensional nonabelian algebra  Lie [B2] by
using the homomorphisms of these algebras to the first Weyl algebra Al and the
already obtained classification of the irreducible representations of AL Here
we first get the classification of the left spectrum of skew polynomial and hy-

perbolic rings, and then apply it to special cases. As a result, the classifica-
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tion we get is given in terms of natural for each of the rings in question para-
meters.

Section O provides preliminaries on the left spectrum for readers’ conveni-
ence. In particular, we discuss the relations between the left spectrum and the
prime spectrum, and between corresponding classification problems.

In Section 1, we study the left spectrum of the ring of skew polynomials
over a commutative ring. The specialization of general facts gives a complete
description of the left spectrum of the universal enveloping algebra of the 2-
dimensional noncommutative Lie algebra over a field of characteristic zero and
the quantum plane, kq[x,y], when ¢ is not a root of unity.

To cover the root of wunity and positive characteristic cases, we introduce,
in Section 2, vrestricted skew polynomial rings and study their left spectrum. A
restricted skew polynomial ring is given by the relations

xa = B(a)x for all ae A, x = u,
where © is an automorphism of A such that 6" = id, x is an indeterminate,
and u a fixed element of A. _

Section 3 is the heart of this work. It contains an "almost complete” desc-
ription of the left spectrum of hyperbolic rings and restricted hyperbolic rings
(the latter are defined when 8" = id for some n). The complete description
is out of reach of the technique used here. We shall get it in the forthcoming
paper {R6], and even in a much more general setting which gives an access to
some important classes of "non-small" algebras, like the Weyl and Heisenberg al-
gebras of arbitrary ranks and their (quantum) deformations.

The results of Section 3 allow to describe the left spectrum of all listed
above -hyperbolic rings (cf. (c) - (h)) and of a number of others. We sketch the-
ir spectral pictures in Sections 4 and in Appendix which a reader can regard as
a kind of a handbook on representation theory of important (not only for mathe-
matical physics) examples of hyperbolic rings of small GK-dimension.

A pure luck is that most of *small’ rings of interest are hyperbolic.

I am delighted to have another opportunity to thank Max-Plank-Institut. fiir
Mathematik for hospitality and for an excellent working atmosphere.

0. PRELIMINARIES ON THE LEFT SPECTRUM.

0.1. The left spectrum. Let R be an associative ring with unity. Define a pre-
order < in the set IIR of left ideals of R as follows: m < n if there

exists a finite set x of elements in R such that



(m:x):= [re R| rx ¢ mj € n

Note that, if m is a two-sided ideal, then m < n iff m < n In
particular, < coincides with inclusion if the ring i1s commutative.

The left spectrum, SpeclR, of the ring R  consists of all left ideals p
in R satisfying the following property: (p:r) < p forany re R - p.

Note that p < (p:r) Dby definition of < Since < 18 < for two-sided
ideals, SpeClR coincides with the prime spectrum when R 1S commutative.

We are interested not in the elements of SpeclR, but in the equivalence
classes of these elements with respect to the relation m =n iff m < n < m.

0.2. The spectrum of an abelian category. The proofs of the assertions of this
and the next section can be found in [R4].

We shall need a definition of the left spectrum in categorical terms.

Let 4 be an abelian category (in this paper, « is the category  R-mod
of left R-modules); and let M, N be objects of & We shall write M > N if
there exists a diagram

(DM < L > N,
where ()M is the direct sum of [ copies of M; the first arrow is a mono-

morphism and the second arrow is an epimorphism.
Denote by Specs# the collection of all the objects M of &4 such that N
> M for any nonzero subobject N of M.

0.2.1. Lemma. The relation > is a preorder in Obd. In particular, >  deter-

mines an equivalence relation, =, in Specd.

Proof. See Lemma 1.1.1 in [R4]. =
Denote the (ordered) set of equivalence classes Specd/= by Specd.

0.2.2. Remarks. a) It follows from the definition that  Specd#  contains all sim-
ple objects of the category 4.

b) An equivalence of abelian categories, « —— B, induces a bijection of
- Specd/= onto SpecB/=. =

0.2.3. Proposition. Let 4 is the category R-mod  of left modules over a ring
R.  Then the map Spec[R —— Obd, assigning to a left ideal p  the quotient

module R/p, induces a bijection of the sets of equivalence classes



(<p>| p € Spec;R}:= Spec;R —— Specd.

Proof. The assertion follows from Proposition 4.2 in [R4]. =

0.24. Corollary. Let rings R and R’ be Morita equivalent; i.e. there is an
equivalence between the categories of left modules, R-mod and  R’-mod. Then

there is a bijection of Spec[R onto SpeclR "

0.2.5. Corollary. The set Male of left maximal ideals of R is contained in
SpeclR.

This follows from Proposition (.2.2 and Remark 0.2.2 a). =

0.3. The spectrum and exact localizations. A localization 1s a functor which 1s
universal with respect to the «class of arrows it inverts (cf. [GZ], I1.1.1). Here
we are interested in exact localizations, 1.e. localizations which are exact
functors.

Recall that a full subcategory T of an abelian category d is called
thick if, for any exact sequence

0 —M — M — M —5 0,
M e Obt if and only if M" and M" belong to T.

One can see that the kernel of any exact functor @: & —— B (which 1s
the full subcategory of the category 4  generated by all objects X  such that
Q(X) = 0) is a thick subcategory. '

Conversely, for any thick subcategory T of an abelian category o,  there
exists unique up to equivalence exact localization er" 4 —— AT such that
KerQ1T = T (cf. [Gr]). The functor Qv is the localization at the class Z of

T
all arrows s in & such that Ker(s) and Cok(s) belong to T.

0.3.1. Proposition. Let g: 4 — B be an exact localization of an abelian
category . Then, for any P € Specd, either Q(P) = 0, or Q(P) € SpecB.

Proof. See Proposition 2.2 in [R4]. =

For any object X of a category «, denote by <X> the full subcategory
of « generated by Obd - {M € Obd| M > X}. One can check that X » Y if and
only if <¥Y> ¢ <X>. - :

In particular, Specd/= with the induced by > preorder is canonically
realized as Specd:= ({<P>| P € Specd).D). '



For any subcategory T of 4, denote by T  the full subcategory of «
generated by all X € Ob«4 such that any nonzero subquotient of X has a nonze-
ro subobject from T.

A thick subcategory T  of the category 4 is called (in [R4]) a Serre
subcategory, if T = T .

An advantage of Serre subcategories is that, for a ’good’ abelian category
4 (e.g. a Grothendieck category), the localization 4 — T at a Serre sub-

category has a right adjoint functor.

0.3.2. Proposition. For any P € Specd, the category <P> is a Serre subcate-
gory and. the quotient category &/<P> is local.

Proof. See Proposition 2.3.3 and Corollary 3.3.2 in [R4]. =

Local means that . «/<P> has a nonzero object M  (called quasi-final) such
that <M> = 0; ie. X » M for any nonzero object X. ' »

Note that "all simple objects of a local category (if any) are isomorphic to
each other. In particular, the category of left modules over a ring R is local
iff R is a local ring.

0.3.3. The localizations of the category of modules. Suppose now that « = R-mod
for some ring R. And let S be a Serre subcategory of . Then the
localization  Q at S has a right adjoint functor, or. Denote their
composition by GS' We have an adjunction morphism 7 M M — GS(M) for any
module M. It is known [G] (see also [B], exercises to Chapter 1I, or [F|Ij,
Chapter 16) that GS(R) has a unique structure of a ring such that Np is a
ring morphism. And, for any R-module M, the R-module _GS(M) has unique struc-

ture of GS(R)—module; Since the localization @ is exact and the nght adjoint

functor on is (always) left exact, GS is a left exact functor. In particu-
lar, it maps left ideals of the ring R into left ideals of the ring GS(R)
(or, ruther, the functor Gs, defined uniquely up to isomorphism, can be chosen
this  way). If'° m is a left ideal in R, then, in general, the preimage

T]R-’(Gs(m)) contains m properly. There is the following assertion:

0.3.3.1. Proposition. Suppose that p € SpeclR, and R/p & Obs. Then
(a) Gs(p) € SpechS(R);
(b) the preimage T]R'](GS([))) of GS(‘D) in R coincides with p. ‘
(c) if p e Spec,GS(R) and R/‘r[R"(p’) g Obs, then p' = Gs(p”). where



p' = Mg ().

(Note, however, that p” s not necessarily an element of Spec,R.)

(d) if the functor GS is exact (which means that the quotient category
A/5 is naturally equivalent to the category GS(R)-mod of left GS(R)-modules),

then R/I]R’l(m) & Obs for any proper left ideal m in G(R).

Proof. (a) See Proposition 2.5 in [R2].

(c) See [R2], Proposition 2.7.

The assertion (b) follows from (a) and (c).
The assertion (d) is just a plain observation. m

We are going to use Lemma 0.3.3.1 in the following way. Suppose we have a
Serre subcategory S of 4 = R-mod such that it is relatively easy to find the
left spectrum of the ring GS(R). [t happens that, in the cases we consider in
this work, the functors G are exact. So, the only thing which remains is to

S
find those p’ & Spec,G.(R) for which m, '(p’) is in Spec,R.
s R !

0.4. The spectrum of principal domains. Proposition 0.3.1 allows to simplify the
matter by taking an appropriate localization Q: &4 -—— B and studying the ima-
ge of the spectrum. The most simplifying localizations are those for which B
is the category of modules over left and right principal ideal domains.

Recall that a ring R is a left (resp.) right) principal ideal domain if
it has no zero divisors and each left (resp. right) ideal in R is generated by
one element.

0.4.1. Proposition. Let R  be a left and right principal ideal domain. Then any
nonzero ideal from SpecIR is equivalent to a left maximal ideal. And any left
maximal ideal in R is of the form Rf, where [ is.an irreducible element of

the ring R.

Proof. Let p € SpeclR. Since R is a left principal ideal rnng, p = Rf
for some element f. The absence of zero-divisors garantees that the right ide-
al fR is proper. ’ ‘

In fact, if fg = 1, then (l-gflg = g(l-fg) = 0 which implies that gf
is equal to 1; ie. p = Rf =R

Being proper, fR is contained in a right maximal ideal p. Since R s

a right principal ideal domain, p = gR  for some irreducible element g. In



particular, f = gh for some h. Note that h € Rf.
Indeed,
[he p] = [h=uf foran ue Rl = [gu=1] = [u = gR = R].
Since p € SpeclR and h ¢ p, the left ideal (p:h) is equivalent to p.
Clearly Rg < (p:h). But, Rg is a left maximal ideal thanks to the irreduci-
bility of g. Hence Rg = (p:h). =

0.5. Ring morphisms and morphisms of spectra. Let f: A —— B be a ring mor-
phism. If the ringgs A and B are commutative, the correspondence pr—— f ]p
induces a map from  SpecB to  SpecA. It is not that straightforward in the
noncommutative’ case. There are two ways to deal with the problem. The standart
one is to single out a subcategory of ’‘compatible’ morphisms. The other way is
to understand what kind of functoriality arises in the noncommutative setting.

We begin with the first way.

0.5.1. Compatible morphisms. Consider the subcategory  LRings of the category of
rings formed by all ring morphisms f° R® —— R such that, for any p € SpeclR
and any left ideal m in R, the relation m < p implies that f"'m < f'p.

0.5.1.1. Proposition. If f: R° —— R is a morphism from  LRings, then the
map pr—— [ lp defines a morphism of preordered sets
U (SpecRS) —— (Spec/R'<). (1)
In particular, af induces a map SpeclR/= " SpeclR'/r-.

Proof of this fact can be found in [R1], Section 9. Or, better, see [R2],
Proposition 3.1.1. =

0.5.2. Left normal morphisms. Given a ring morphism f R" —— R, set
N[(_f).‘:: {z € R| fix)z € Rf(x) for any x e R’}
Clearly N[(f) i1s a subring in 'R which we call the left normalizer of f.
A morphism  f is called left normal if Nl(f) and  f(R’)  generate the

ring R.

0.5.2.1. Example: central extensions. Recall that a ring morphism f R® —— R
is called central extension if its image,  f(R’), and its centralizer

Clfi= [z € R| fix)z = #fix)}
generate R. Clearly C(f) c N](f); hence any central extension 1is a left (and
right) normal morphism. =



0.5.2.2. Example: quantum plane. Let & be a field (or a commutative ring), and
g a nonzero element of k. The guantum plane is the k-algebra
kq[x,y]:= k<x, y>/Axy—qyx),
where k<x,y> denotes the k-algebra freely generated by X and y. The
determining kq[x.y] relation, xy = gyx, shows that the canonical imbeddings
Kx] —— & [xy] —— k]
are left {(and right) normal morphisms. =

0.5.2.3. Example: skew polynomial rings. Let k be a commutative ring and A a
(not necessarily commutative) k-algebra. And let 8  be a k-algebra automorphism
of A. The associated to this data skew polynomial ring, A[x;0], is generated
by A (as a subring) and an indeterminate x subject to the relations
xa = 6fa)x for all a e A. (1)
Clearly quantum plane (Example 0.5.2.2) is an example of a skew polynomial
ring. Just take A = kfy], Of(y) = flgy).
The relations (1) show that the natural algebra morphism kix] —— Afx;8]

1s left normal. =

0.5.2.4. Proposition. The class NIRings of left normal morphisms forms a sub-
category of the category LRings.

Proof. See Proposition 3.2.3 in [R2]. =

0.5.3. A nonabelian functoriality. Fix a ring morphism f A —— B. For any
element p € Spec,B, set p':= f'p; .and consider the set
Qp": {(p:a})| a € A - P}

0.5.1. Lemma. For any left ideal v- in a ring A, all maximal with respect to

the preorder < elements of Qv.'= {(via)] a € A - v} belong to SpecfA.

Proof. Let a € A - v be such that (vra) is a maximal element of Qv'
Take an arbitrary r € A - (vca). Then (v:a) £ ((v:a):r) by definition of <.
But, ((v:a):r) = (v:ra), and ra & v  which means that the left ideal (v:ra)
belongs to Qv' Therefore, due to thel maximality of  (v:a), the ideals (v:ra)

and (v:a}) are equivalent. =

Return now to our ring morphism f- A —— B. We have a correspondence 'af



which assigns to any p € Spec[B the set max(Qp,,S), pi=f ]p.

In the principal for this paper examples, A is a commutative noetherian
ring which garantees that af(p) is nonempty for all p.

Since we are interested in the elements of the spectrum up to equivalence,
we need to assign to f a correspondence SpeclB/= —_ Specrf{/r-. This is
already straightforward: we assign to any element p in Spec,B/= the set

U<p’>| p" € “fip). <p> = pJ.

Here <p> denotes the equivalence class of the element p.

Note that if f i1s a morphism of LRings (in particular, if f s left
normal), the correspondence we obtain this way reduces to the map mentioned in
Proposition 0.5.1.1. '

0.6. The left spectrum and the prime spectrum. Fix a ring R. Recall that the
prime spectrum of R is the set SpecR  of all two-sided ideals p  such that,
for any two-sided ideals o and f in R, the inclusion off € g implies that
eitherr o € p, or P < p  Prime spectrum is intensively studied for decades,
and now, probably, more intensively than ever thanks to the abundant supply (by
mathematical physics and related representation theory) of concrete rings to in-
vestigate. As usual in mathematics, the traditionally most important problem re-
lated to the prime spectrum is the classification problem (for a given ring or a
class of rings).

In this subsection we summarize shortly the relations between the left spe-
ctrum and the prime spectrum, and explain how a classification of the left spec-

trum can be used to obtain a classification of the prime spectrum.

0.6.1. Zariski topology and the prime spectrum. For any two-sided ideal «, de-
note by Vl(a) the set f(p € SpeclR| o € p/. One can check that

VioB) = Vi) U V(B) and V(supQ) = n V(o) (1)
/ l l 0EQ {
for any pair o, B and for any family Q of two-sided ideals (cf. [R2], Lemma

1..10.2.1). This shows that the sets Vf(cc), o € [R:= {the set of two-sided ide-
als in R}, form the family of all closed sets of a topology which is called Za-
riski topology.

The following assertion is easy to prove:

0.6.1.1. Lemma. A Zariski closed subsetr W  of Specl,R is irreducible if and
only if it is equal to Vl(p) for some prime ideal p.

10



Proof. See [R2], the proof of Theorem 5.3. w

0.6.2. Left spectrum and annihilators. Another pretty straightforward checking
is that the map
pr— (p:R):= [r € Rl rR € p} = Ann(R/p) (1)

sends SpeclR into  SpecR.  But, a quite nontrivial refinement is that the ring
of factors R/Ap:R) has no nonzero locally nilpotent ideals. This fact follows
from (is a part of) Theorem 5.3 in [R2]).

Recall that an ideal m is locally nilpotent if any finite subset of ele-
ments of m generates a nilpotent subring.

Let LSpecR denote Levitzki spectrum of R  which is the set of all primes
g in R such that the ring R/p has no nonzero locally nilpotent ideals.

0.6.2.1. Theorem. The map (1) is a quasi-homeomorphism of (SpeclR,tZa r) to the
Levitzki spectrum LSpecR with the (induced from SpecR) Zariski topology.

Proof. Theorem 5.3 in [R2]. =

0.6.2.2. Proposition. If R is a left noetherian ring, then  SpecR is a subset
of SpeclR.

Proof. See Corollary 6.4.6 in [R2]. =

0.6.2.3. Corollary. If R is a left noetherian ring, then the map (1) is a sur-
jection of Spec[R onto SpecR.

In other words, if R is left noetherian, the prime ideals are exactly the
annihilators of quotient modules R/p, where p runs through SpeclR.

Thus, if we have managed to find a classification of the left spectrum of a
certain noetherian ring (which we are able to do for all listed in the introduc-
tion rings an a number of others), then we have a good chance to get a classifi-
cation of the prime spectrum.

0.6.2.4. The case of Pl rings. If R is a Pl algebra (over uts centrum), then
all the primes are in the left spectrum, and any p € Spec[R is equivalent to
the prime ideal (p:R) = Ann(R/p). Thus, if R is a Pl algebra, a classifica-
tion of SpecR produces a classification of Spec[R/z and vice versa.

11



1. THE LEFT SPECTRUM OF THE RING OF SKEW POLYNOMIALS.
QUANTUM PLANE.

Let A be a commutative ring with unity, and let O be an automorphism of
A.  The associative ring  A[x;0] of  O-skew polynomials is generated by the
ring A and the indeterminate x subject to the relations:

xa = Bfa)x for every a € A.

1.1. Examples. Let A = kfy]. A generic automorphism, ¥, of the k-algebra A
is defined by O(y) = gy + o), where g € k* and o € k. Consider two speci-
al cases:

(a) Let o = 0. Then A[x;8] is the k-algebra generated by x and y
which satisfy the relation:

Xy = qyx.
This algebra is called quantum plane and is, usually, denoted by kq[x,y].
(b) Let now ¢ = 1. Then the ring A[x8] is generated by x, y satisfy-

ing the relation: ‘
Xy = yx + O

Denote this algebra by Uz(k,(x). Clearly Uz(k,O) = kfxy]. If o # 0
then the k-algebra U (ko) is the enveloping algebra of the (unique up to iso-
morphism) two-dimesional non-abelian Lie algebra.

(c) The generic case, more explicitly, the case ¢ # 1, is again a quantum
plane. In fact, ¥y - ofi-q)) = gy - ofi-q)) which means that the. change of
variables 2— (y - o/1-q)) establishes a k-algebra isomorphism of the quan-
tum plane kq[x,z] and the algebra A[x;8]. =

1.2. The left spectrum of A/x;3]/ and the prime spectrum of A. We begin with the
following observation: |

Alx;O]x is a two-sided ideal, and the natural map

A —— A[O)/A[xO]x

is an isomorphism. ,

Therefore Spec[A[x;ﬁ] = Vl(x) U U[(x), where the closed subset Vl(x) =
{pl x € p/ = (p| AlxO]x ¢ p/ is natwrally homeomorphic to  SpecA, and the
open subset Ul(.r) = [p| x ¢ p/ = UI(A[x,ﬁ]x) is going to be the subject of our
investigation.

Note that U[(x) _is  homeomorphic to Spec,A[x,x'];ﬁ], where A[x,x'l:ﬁ]

is the module  Alxx'] of Laurent polynomials with the multiplication (unique-

S -



ly) determined by the requirement

xa = Sa)x for an.y a€ A (hence x'a = 9'(a)x")

Suppose now that the ring A is noetherian. Fix p € Specﬁ[x,x";ﬁ]; and
set p = pn A Let (p:a) be a maximal (with respect to the inclusion) ele-
ment of the set Qp, r= {(p:b})] b € A - p]. According to Lemma 0.5.1, the ideal
(p:a) is prime. Thus, replacing the ideal p by the equivalent to p  ideal
(p:a), we can assume that the ideal p = p A of the ring A is prime.

In the non-noetherian case, we restrict our study to the subset of those
_ideals p € Specr‘i[x,x'l;ﬂ] for which p n A is a prime ideal in A.

1.3. The left ideals of Afx 8] over primes in A. We assume now that A is
an arbitrary commutative ring, and shall study left ideals p in A/x, 8] such
that the intersection p n A 1s a prime ideal in A.

[t is convenient to distinguish the following alternatives:

(@ p=pnAs= (0 |

(&) p is non-trivial and invariant under O;

(c) p is not invariant under y" for any n.

Thus, the only remaining possibility is:

(d) p is not O-invariant, but p is invariant under D for some n.

Consider each of these cases.

1.3.1. The stable cases. Which are the cases (a) and (b) above.

(a) Let p =pnA = [0} inparticular, A is a domain.

Then we can take the localization Q, of the ring B:= Afxx';9] at the
set A - {0). Note that A - (0] is an Ore set, which implies that QAB is
isomorphic to the ring K(A)xx 0], where K(A) is the field of fractions
of the ring A, and & is the (unique) extension of the automorphism 3 onto
the field K(A).

It is easy to check that K(A)[x; %] is an euclidean domain (for any skew
field K(A)). In particular, AK(A)[x,ﬁ] is a left and right principal ideal
domain. Therefore (cf. Proposition 0.4.1) any ideal from . SpeclK(A)[x;f}’] is
equivalent to a left maximal ideal, and any left maximal ideal is of the form
K(A)[x,¥]g, where g is an irreducible element (polynomial) of K(A)[x,¥].
Clearly

Spec[K(A)[x,x_';f}] is SpeCIK(A)[x,;'B] without one point - the (two-
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sided) maximal ideal K(A)[x, ¥ ]x .

(&) Suppose now that p:= p n A is a nonzero O-invariant prime ideal.

Then ¥ induces an automorphism, ¥, of the quotient ring A’ = A/p.
The surjection A —— A" induces an epimorphism,

©: Alx O] —— A'[x Y]
such that @(x) = x. The image, p’, of the ideal p belongs to the left spe-
ctrum of A’[x,%J; and p’' n A" =.{0}.

Hence there exists an element g = gfx) € A[x0] such that g'= ¢g) is
an irreducible element in  K(A)[x,0'] and p is the preimage of the maximal
ideal p’= K(A')[x,¥]g" under the canonical ring morphism

Alx, 0] ——— K(A)[x V]
(cf. (a) above).

(c) Consider now the most interesting, case: the ideal p = p nA is not

invariant under the automorphism 8.

1.32. Lemma. Ler p be a left ideal of the ring Alxx ;9] such that p n A

is a prime ideal in A. Suppose that p contains a polynomial

fix) = 2 xmgm € Alx8]
some of the coefficients . of which do not belong to p. Then there exists

aninteger VvV such that
1 £V £ n = deg(f), and 13'V(p nA cpnA

Proof. Denote the intersection p n A by p. Choose a polynimial flx) =
z xmgm € p of minimal degree among the polynomials from p with some coeffici-
ents from A - p. We can (and will) assume from the very beginning that all the
nonzero coefficients of the polynomial f do not belong to the ideal p.

Let A be an arbitrary nonzero element of the ideal p. It is easy to see
that

M) - ok = " g - S g )
Since AMf{x) - flx)h and X .rm"gm). are elements of p, the polynomial
MWfx) = T A hg,

also belongs to p. But deg(OMNA)) < deg(f). Therefore, thanks to the mini-
mality of  deg(f), all the coefficients, t?}-m(l)gm , of the polynomial  OMNA)f
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are elements of the ideal p. Since p € SpecA, and, by hypothesis, the nonze-
ro coefficients of the polynomial f belong to A - p, the ideal p is inva-
riant under the automorphism 9" provided the coefficient 8, 1S nonzero. m

1.3.3. Corollary. Let p be a left ideal of the ring Afxx ;9] such that p
= p A isa prime ideal in A. Suppose that p is invariant under " for
some n > 2 but not invariant under " for any 1 S m < n. Then every poly-
nomial in p of degree less than n belongs to p A[x,x'l,ﬁ]p.

1.3.4. Proposition. Let p be a left ideal in A[x O] such that p:= p n A is
a nonzero prime ideal, which is not " -stable for any integer m. Then

1) If the ideal p does not contain x* for any n2i, then p is gene-
rated by p :p = Alx8]p.

In particular, p belongs to Spec[A[x,l‘}].

2) Suppose that p is a maximal ideal of the ring A; and let there exist
a positive integer n such that X'e p, bur X 'e p. Then

p = Alxd)X" + A[xO)p

3) In general case, if Ae p for some positive integer n, then there
exists a € A-p such that
(p:a) = Alx 9" + Alx;9]p.
for some 1 £ m < n

Proof. 1) If p does not contain x" for any n 2 1, then the ideal p
is the preimage of a left ideal p’ of the ring Afx'x9J; and p’ nAaA=np
So, the assertion follows-from Lemma 1.3.2.

2) & 3} Let now the ideal p contain ' for some n 21, but X'e p.
Suppose that p # A[x,ﬂ]xn-i-A[x,ﬂ]p; and let

i i-1
hix) = x al.+x ai-|+"'+00’ a; # 0,
be a nonzero polynomial from p of minimal degree with respect to the property:

all the nonzero coefficients of 4 are from A - p-
For every A € p we have:

S (W) - hh = 2B Mag +..+(8') - Aa
Since deg(ﬂi(?\.)h(x) - N(x)A) < deg(h) and, for every m, there exists A

€ p such that o™(A) - A e p, all the coefficients a,. 0 £m < i1, are ze-
ros; i.e. h(x) = x’ai.



Denote by p’ the set of all the elements a € A such that Xa e p. It
is easy to see that p’ is an ideal in A. Note that the ideal p° is proper:
otherwise the ideal p would contain xi, which contradicts to the hypothesis
about the minimality of the integer n such that x’e p.

Obviously, p’ contains p.

2) Therefore, if the ideal p is maximal, then p° = p  contradicting to
the assumption.

3) Suppose now that the ideal p is not maximal, and p’ is strictly
greater then p. For any a'e p'-p, the ideal (p:a’) contains xi. and,
since p is prime,

(p:d’) nA = (p :a) = p

Note that i < n If (p:d’) still does not coincide with A[x;ﬁ]xi +
Alx;%]p, we repeat the procedure and find an a” € A-p such that ((p:a’):a")
= (p:a”a’) contains x’ for some Vv < i

Clearly this process stabilizes and we shall come to the desired equality:
(pa) = Alx:d)" + Alx;9]p

for some m<n and ae€e A-p =

1.3.5. Proposition. /) Let p be a left ideal from the left spectrum of A[x9]
such that x ¢ p and p n A is a prime ideal of the ring A, which is not
stable under the automorphism 9" for any integer m. Then

p = A[x9](p n A)

2) Let p° be a prime ideal of the ring A, which is nor stable under the
automorphism 8" for any integer m. Then the left ideal p = A[xO]p" be-
longs to the left spectrum of the ring A[x,9].

If the ideal p’ is maximal, then the left ideal A[x,8]p" is maximal.

Proof. 1) Since ([p € SpeclA[x,f}]| xX & p} = Spec[A[x.x‘],ﬂ] (cf. 1.2); in
particular, e p for any n, the first assertion follows from Lemma 1.3.2.

2) Since the embedding A[x®] — A[xx ' ®] respects the left spect-
rum, it suffices to show that the left ideal p:= Alxx 8 belongs to
Specﬁ[x,x'l.ﬁ].

Let V  denote - the quotient A[x.x'l,ﬁj-modple Alx.x' 9)/p, and let VO
be the image of the subring A in V. We have to check that, for any nonzero
cyclic submodule M of the module V, there exists a diagram

(M —< W > V
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for some positive integer ! (cf. 3.10).

Lct. M = A[x,x",ﬁ]-v for some (nonzero) element v € V; and let fix)
= 2 x'ai , n, n’2 0, be an element from the preimage of v such that each
nsign '
nonzero coefficient a; of f  belongs to A - p’. Clearly n'# n (otherwise
xMix) = a, is an element of p).

a) There exists an element s of the ring A such that
sx’"ﬂx) € (A+p) - p;
ie sx fix) = san;+ g(x), where sa, € A-p, and g(x) € p.

In fact, let N = n-n" be the degree of the polynomial h(x):= " fx).
By condition, there exists an element t € p° such that ﬂN (1) e A - p. We
have: ‘

thix) = ﬁN{t)an, + than + xh (x)

Clearly ﬁN(t)a , € A - p, since ﬁN(t) and a_, do not belong to p’;
N N, " ‘

x'ta € xp cp; and deg(xh(x})SN-i1. Therefore we can proceed by induction. )

b) Thus, applying to the image v of the element f{x) the element s
(cf. the heading a) of the proof), we obtain a nonzero element v of the
A-submodule VO of the module V. Since VOuA/p', where p° is a prime ideal
of A, there exists a diagram

(DAY ——< Wp—V, (1)
for some positive integer [.  Note that the ring Alxx' 9] is flat over A;
ie. the functor Aflxx ' ,8/® 4 is exact. Thus, to the diagram (1), there cor-
responds the diagram _
(DM = (DA[x X' B]v e—< W = Alxx,8]W, — Alxx 8]V, = V,
we were looking for.

Suppose now that the ideal -p° is maximal; ie. the A-module Vo= A’ s
simple. Then the intersection of any cyclic submodule W ~ with VO’ being non-
zero, coincides with VO; hence W = V. This means that V = A[x.x'l.ﬂ]/p,
where p = A[x.x-*,ﬁ]p’, is a simple A[x,x-',l‘)]-modulc; i.e. P is a left ma-

ximal tdeal. m

1.4. Using an algebra structure. Suppose that A is an algebra over a field &;
and let O be a k-algebra automorphism. We can gather some additional informa-
tion relevant to Proposition 1.3.4, paying attention to the natural embedding

© : klx] — AlxB]
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Since ¢ is a left normal morphism (cf. 0.5.2), the preimage p  kfx] of
the ideal p belongs to Speck(x]; ie. p n kix] = klx]f, where f = fp is
either irreducible polynomial or zero (cf. Propositions 0.5.2.4 and 0.5.1.1).

Consider the case when f = 0 i.e. f is an irreducible polynomial.
Since the nonzero coefficients of - f do not belong to p, it follows from Lem-
ma 1.3.2 that there exists a positive integer m < deg(f) such that the ideal
P n A is stable under the automorphism ",

In particular, if the field k ~ is algebraically closed, then the intersec-
tion pnA is stable under §.

Now, suppose that A s a domain, and let @ be the localization at the
set of nonzero elements of A. Fix a nonzero prime (hence makimal) ideal  k/x]f
of the polynomial ring k/x].

If AlxBJ]f € Spec[A[x,ﬂ], then, since exact localizations respect the
left spectrum, Q(A[x,8]f) = K(A)[xS]f belongs to SpeclK(A)[x.ﬁ]. Therefore
f is an irreducible element of the ring K(A)[x,8].

Conversely, let a polynomial f € k[x] be an irreducible element of the
ring  K(A){x,8]; and let p be an ideal from SpeclA[x,f}], containing  A/[x,B]f.
Since the ideal A[xU]f is the preimage of its localization - the maximal left
ideal  K(A)[x,8]f, - then either p = A[xO)f, or p n A # (0], In the second
case, it follows from Proposition 1.3:4 that

an element a € A - p can be found such that (p:a) n A is a nonzero
prime ideal which is stable under the automorphism 8" for some integer m.

In particul-ar, |

if f0) # 0, and for any m > 0, there are no nonzero O"-stable ideals

in SpecA, then the ideal A[x,8]f is maximal.

1.5. Example: the algebra U (ko). Let- A = kfzJ u =z and let the auto-
morphism ¥ is determined b;/ the equality ®(z) = z + «; ie. A[x¥] is the
ring U (ko) generated by x, z with the relation '
) Xz = zx + ox 0

(cf. Example 1.1).

If p e Specle(k,a) and  p n kfz] # (0], then there exists an irredu-
cible polynomial h = h(y) such that p n kfzJ] = kfz]h Invariance of the ide-
al  k[zjh with respect to Y means that

8V(h) = h(y + vo) = uly) h(y) (2)
for some polynomial u#. One can easily deduce from the equality deg(ﬁv(h)) =
deg(h) that wu = 1, ie. hy + va) = h(y). The last equality is possible on-

18



ly if deg(h) = 0. Since the ideal k[zJh is proper, h should be zero.
Thus, we can use Proposition 1.3.4, which provides the following descripti-
on of Specle(k,a).
a) There is the embedding
Y, Speciklz] — Spec,U (k o), (3)

assigning to a prime ideal k/zJh  (determined by an irreducible polynomial k)
the left ideal U (ka)h.

b) There is the embedding )‘z" Spec[k[z] —_— Specle(k,a), sending a pri-
me ideal kfzjh into the two-sided ideal Ulko)x + kizjh which is maximal
itf A % 0. | )

Note that, if & # 0, thc_a maximal ideal lz(k[a]h) is the only speciali-
zation of the ideal Uz(k,a)h.

c) There is an embedding

Y Speclk[x] — Specle(k.a), k[x]g +—— szk,oc)g. )

Note that if the polynomial g is not of the form cx, then Ukog s
a maximal left ideal. But it 1s not two-sided.
If g = cx, ¢ € k*  then the set of specializations of Uz(k,a)g =
U7(k,a)x coincides with the 'line’
) A (Specklz)) = (U (kax + klz]h| kizlh € Specjkiz]).

d) The remaining part of Spec[Uq(k.a), denote it by E(Uz(k.a)), con-
sists of the ideals p of the form

Us(ka) n k(z)[xar, (5)

where  k(z)[x,0] is the localization of  the algebra Uz(k,a) at  kfz] - [0},
and r = rzx) is a polynomial in z x such that r is an irreducible ele-
ment of the ring k(z){x,a], but not of the form f(z)g(x).

e) Finally, there is a generic point {0}. u

1.6. Remark. We could produce a similar analysis of the quantum plane. But, the
quantum plane, besides being a generic skew polynomial ring over k[y/, has an
additional advantage: it is a hyperblic ring (which is not the case with the al-
gebra Uz(k.a) if o # 0). The hyperbolic structure allows to get a descripti-
on of the left spectrum of the quantum plane much more gracefully. We shall do

it in Section 3. =
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1.7. The remaining part of the spectrum. Now we return to a general skew polyno-
mial ring A/x, 9] and a left ideal p from Spec[A[x.f)] such that p:= pn A
is a prime ideal in A. It remains to consider the last among the listed in the
section 1.3 alternatives:

(d} The ideal p is not O-stable, but it is 8" -stable for some n = 2.

The description of this part of the left spectrum in general requires more
sophisticated technique. We shall do it, among other things, in a forthcoming
paper [R6]. Here (in the next section) we consider an important for applications
special case; namely, we assume that 8 = 1d.

2. THE RESTRICTED SKEW POLYNOMIAL RINGS.

2.1, Definition. Fix again a noetherian commutative ring A and an automorphism
% of A. Suppose that there exists an integer »n 2 1 such that 9" = 4. Fi-
nally, let u be a nonzero ¥-invariant element of the ring A : U(u) = u.

Define the n-restricted O-skew polynomial ring. Alx; 9| un]. by the rela-
tions

xa = O(a)x for every a € A, A= (0

2.2. Example. Let O be an automorphism of the ring ‘A" such that - 8 = 1d
for some n 2 1. Then yn is a central element of the ring 'A’[y,t‘)]; in par-
ticular, A'[yn] is a commutative subring of A’[y,8]. Set A:= A’[z]. Denote
by ©® the extension of the automorphism 9 onto A’fzJ] such that ¥(z) = =z
There is a natural isomorphism from  A’[y,8] onto A/x;®|zn/ which sends  a
polynomial f{y) into f{x). m

Now fix a restricted skew polynomial ring A/x;9|un].

2.3. Lemma. Every element of the ring A[x;ﬁ}u,n] is uniquely represented as a

polynomial %, x‘ai with coefficients in A.
O<i<n

Proof. Note that A[x;0|un] is the quotient of’ the ring Af[x,0] with re-
spect to the two-sided ideal generated by X"y, Since X" and u are both
central elements of the ring A[x8/, the generated by xtu two- sided ideal
coincides with the left ideal  Afx,dJ(x"-u). This means that the canonical epi-
morphism maps a nonzero polynomial /f{x) € A[x9] into a zero element of the

ring  Afx;8|un] if and only if Alx) = f(.r)(xn-u) for some flx) € A[x98].



In particular, either deg(h) 2 n, or h(x) = 0.
Clearly every element of the ring A[x;3|u,n] is the image of a polynomial

g(x) = 2 xia,- € AlxY],

0<i<n

and the argument above shows that the image of g(x} is zero if and only if
glx) = 0. =

24. The decomposition. Being O-invariant, u 1S a <central element in
Afx;0|u,n]. This implies that
' Specﬁ[;;ﬂlu,n] = V[(u) U U[(u).
Clearly
V[(u) = Spec[A[x;ﬁ|O,n] = SpecAx;Q)/A[x;Q]x = SpecA,

since the ideal J:= A[x;8|0,n]x is nilpotent: = {0).
As for the open subset U [(u), we have:
Ul(u) o~ Spec,A'[x;ﬂ’|u’,n],

where A’= (u)'A, « is the image of wu in A’, ©® s the induced by ©

automorphism of A’
n

Since the element " is invertible and x'= u’, the element x is also
invertible in A'[x; 8| n]. This means that A'[x; % | n] x
Al |u',n], where the ring on the right side is obtained from the ring

’

A'[xx'%] of skew Laurent polynomials by adding the relation x" = u’.

2.5. Proposition. Let p be a left ideal of the ring  A[x;0|un] such that
p:= p A is a nonzero prime.ideal in A which is not stable under the auto-
morphism 8" if + < m < n Suppose that the element u is invertible. Then
p = A[x;%|un]p.

Proof. The assertion follows immediately from Corollary 1.3.3 and the pre-
ceeding observation (cf. the end of 2.4). wu

2.5.1. Remark. There is a straightforward analog of Proposition 1.3.4 for rest-
ricted skew polynomial rings. However, since this analog does not play any role
in the description of the left spectrum of hyperbolic rings, we leave it to the
reader. ’
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2.6. The rest of the spectrum. We shall follow the scenario outlined in 1.3.

(a) Suppose that the ring A is prime, and P is a left ideal from
Specﬁ[x.‘13|u,n] such that p n-A = (0). Then p is the preimage of a left
ideal, p*, in the localized at the set A - (0} ring K(A)[x;0urn]  (cf.
1.3).  But, the ring K(A)[x;9"|ur\n] is a skew field. Therefore p* = 0 which
implies that p = 0.

(&) Suppose now the left ideal P € SpeclA[x;ﬁ|u,n] is such that the in-
tersection p:= p n A is a O-invariant prime ideal in A.

This case is reduced to the study of left ideals p from
Spec[A’[x:ﬁ’|u’,n] such that p" n A" = (0] for the triple A’, ¥, u’, where
A'= Alp, O is the induced by O automorphism, « is the image of w: the
ideal p is the preimage of such an ideal p° (cf. 1.3, (&)). This means that

either p is the ideal generated by x and p (the case when u € p);

or p is generated by p (when u’ ¢ p; cf. (a) abové).

Note that in both cases p is a two-sided ideal.

If =n is a prime number, the listed above cases exhaust all the possibili-
ties. If n is not prime, there might be 9" -stable, but not ¥-stable, primes
for an m < n.

We omit here the investigation of such cases. They will be cleared up in
[R6], where a complete description of the left spectrum is obtained for skew po-
lynomial and hyperbolic rings over an arbitrary (noncommutative in general) “co-
efficient” ring.
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3. THE LEFT SPECTRUM AND IRREDUCIBLE REPRESENTATIONS OF
HYPERBOLIC RINGS.

To study simultaneously the universal enveloping algebra Ufsl{2,k)) and
different versions of quantum group SLq(Z,k) (cf. [CK] and [MNSU]), as well as
some other deformations of U(sl(2,k))  (for example, those from [S1]) the alge-
bra Uq(sl(Z,k)) is replaced by its straightforward generalization - the ring
A<®,u>, which i1s generated by a commutative ring A and by the indeterminates
x, y, satisfying the relations:

xa = ¥a)x, ya = 'B'l(a)y for every a e A, (1)
where ¥ is a fixed automorphism of the ring A, and

Xy - yx = u for some u € A;

In the case of Uq{sl(Z)), A = kfzz'] and
Of(z) = flgz) for all fe kfzZ2'], u = (zz Mq-q).

In the case of U(si(2)), A = k{z], u =z, and OVffz) = flz+a), o € k*

It follows from the relations (1) that the subring R  generated by A  and
xy is commutative (actually, isomorphic to the polynomial ring  A[fr]).  So, one
can rewrite the relations in terms of R  and elements x, y. This is the way
the hyperbolic ring R{0,E} appeared in the first place (in [R3]).

In Section 3.1, we make a transition from the rings A<%u> to hyperbolic
rings and consider some motivating examples.

Section 3.2 contains the description of a part of the left spectrum of a
hyperbolic ring which often happens to ‘be the whole left spectrum (if the root
of unity or a base field of positive characteristic are not involved).

In Section 3.3, we introduce restricted hyperbolic rings which correspond
to the "root of unity case” and show that the description of their left spectrum
is reduced to the description of the left spectrum of some associated restricted

skew polynomial rings.

3.1. HYPERBOLIC RINGS.

3.1.0. The ring A<%u>. Let A be a commutative ring, O its automorphism,
u a fixed element of A. With this data, we relate the ring A<®G,u>  which is
generated by the ring A and by the indeterminates x, y  subject to the follo-

wing relations:
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xa = ¥a)x, ya = ﬂ"(a)y for any a € A; (1)
Xy - yx = u for some u € A (2)

3.1.1. Example. Let A = kfz], u = z; and let the automorphism ¥ is determi-
ned by the equality: ©(z) = z + o  Then, obviously, ©'(z) = z - o; and
A<B,u> turns out to be the k-algebra generated by x, y, z with the relations
X7 =X 4+ OXx, yZ =2y -0y, Xy - VX = 2 (3)
If o # 0, then the relations (3) determine the universal enveloping alge-
bra U(sl(2,k)} of the Lie algebra si(2,k). m

3.1.2. Example: the quantum universal enveloping algebras of sl(2,k). Now let
A = kfzz']J; and let

| ) = qz. u=(2-2Mq-q') @
where ¢ is an element from & - (0,1). Then A<Ou> is the k-algebra genera-
ted by ¢z 7 x y with the relations ‘

[
t
3

z = (5)
o= gxz, Iy = q vz [xy] = =
q-4

This algebra is known as the quantum  universal enveloping algebra
Uq(sl(Z,k)) of sl(2,k) [MNSU]

Another version of quantum universal enveloping algebra of  si(2,k) is ob-
tained by taking u = (z-z ' Mg-¢"') [CK]. m |

3.1.3. From the ring A<%u> to the ring A/§](6,E). The defining the ring

A<B,u> relations (cf. 3.1.0) show that the element & = xy commutes with every
element of the ring A; ie. the ring AfE], generated by A and §, is com-
mutative.  This fact suggests to consider A<®,u> not as an A-ring,” but as an
A[E]-ring.

Define the extensions © and ©° of the automorphisms © and O  res-
pectively onto A[E], setting ©(E) = { + O(u) and OY(E) = &-u. We have:

- 0:0(€) = 0(E-u) = (§ + O(u)-B(u) = &
0oB(E) = O(E + O(w) = Gu) + u = &
In other words, © = 6. Now the relations defining the ring A<®u>
(cf. 3.1.0) can be rewritten in the following way:
xb = O(b)x and yb = 07'(b)y for all b e A[E]; ()
xy =& =6 | 2)
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3.1.4. The hyperbolic ring R/6,£). Let © be an automorphism of a commutative
ring R; and let & be an element of R. Denote by R{6,f] the R-ring gene-
rated by the indeterminates x, y with the relations:

xa = O(ajx and ya = Bnl(a)y for any a € R; ‘ (1)
xy = &. (2)
yx = 67(8). (3)

Note that the relation (3) follows from (1) and (2) if it is known that y
1S not a zero divisor, since

)y = Y& = 07'(%)y.
The ring R{6,§) is called hyperbolic because of the relations (2) and (3)

which can be interpreted as the equations of a (noncommutative) hyperbola.

3.1.5. Example: the coordinate algebra of SLq(Z.k). The coordinate algebra
A(SLq(Z,k)} of the algebraic quantum group SLq(2,k) (cf. [M]) is the
k-algebra generated by the indeterminates x, y, 4, v which satisfy the qux =

XU, qvx = Xv, gyu = uy, gyv = vy, uv = vy, (H
Xy - quv =1 = yx - g luy (2)

Now take the algebra  kfu,v] of polynomials in u v as R, and set
Offuv):= flqu.gqv)  for any polynomial  ffu,v). Finally, denote by &  the ele-
ment 1 + q"uv by &  Then the relations (1), (2) become equivalent to the
relations (1), (2) in 3.1.4, determining the ring R{0,5/). =

3.1.6. Lemma. Every element of the ring R{0,E} can be represented as flx) +
g(y), where

fry= T Ma and g(y) = T y'b,
m=20 21

are uniquely determined polynomials with coefficients in R.
Proof. Clearly every element of R{68,§) can be represented, thanks to the
relations xy = & and yx = 9"(&), as the sum of a polynomial in x and a

polynomial in y.

The uniqueness follows from the fact that the same relations,

xy = & yx = 67'(E),

define a multiplication on the direct sum
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R[x,6] ® yR[y,0"'] - (1)
and the obtained this way ring satisfy the relations of (1)-(3) in 3.1.4. There-
fore the obvious map
R[x8] & yR[y0"'] —— R(B,E)
is a ring 1somorphism. m

3.1.7. Corollary. Every nonzero left ideal of the ring R{B.E) has «a nonzero
intersection either with R[x,d] or with R[y 9]

Proof. Suppose that the left ideal m of the ring R{9,&)} contains an
element f{x) + g(y), where both flx) and g(y} are nonzero polynomials; and
let v = deg(g). Then xv(f(x) + g(y)) is a nonzero polynomial in x. =
3.1.8. The canonical anti-automorphism. It is easy to see that the formulas

of(a) = 0'(a) forany ae R, o(x) =y, Oy = x. (1)
define an anti-automorphism of the ring R{8,E}.

3.1.9. The adjoint ring and the adjunction isomorphism. We call R{G_'.G'z(ﬁ)}
the adjunct to R{6,E} ring. 1Tt is easy to check that the formulas

Ofa) = 6 '(a) forany ae R, ©O(x) =y Oy =x

define an isomorphism © : R{0.87%(f)) — R(0.E}. The inverse to © iso-
morphism is described, obviously, as follows:

®'l(a) = O(a) for any ae€ R; Ox) =y Oy = x

Thanks to the adjunction isomorphism ©, we can, after finding half of the
representations of R{6,§}, obtain the other half for free.

3.1.10. The hyperbolic rings and the rings A<%pu>. Lét R be a ring of po-
lynomials with coefficients in the ring A: R = Afr]. Fix an automorphism ©
of the -ring R such that the subring A is invariant with respect to 6  and
consider the hypebolic ring R{6,t/.

It follows from the ’degree’ considerations that

O(t) = at + b and O'(t) = ¢t + d for some a, b, ¢, d € A.

From the equalities
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t = 0:07'(t) = O(ct + d) = O(c)at + b) + B(d) =
B(clat + O(c)b + 6(d),
t=0"'0(1) = 0'ar + b) = 6 (a)ct + d) + 087'(b) =
0 '(ajct + 0 '(a)d + 07\(b)
we obtain:

c=0"a"), d=-06"8(c)hb) = -c0'(b) = -67'(a"'D) (1)

Futher, it follows from (1) and from the equality (4) in 3.1.4 that (since

by definition xy = )

yx = 07(1) = ct + d = 8a )-8 (b)) | (2)

The equations (2) and xy = ¢ imply that
xy - 8 (ajyx = 67'(b) (3)

On the other hand, for a given ring A and its automorphism ¥, consider
the ring A<®;p,u> generated by the indeterminates x, y with the relations

xa = Sa)x and ya = 9 '(a)y for any a € R; (4)

Xy - pyx = u. (5)

where p is an invertible and « is an arbitrary element of A.

Now set t = xy. It is easy to see that the element ¢ commutes with any
element a of A. One can also verify that the ring generated by A and 1t s
isomorphic to the ring Afr] of polynomials in ¢ with coefficients in A.

Define the extension of the automorphism ¥ up to an endomorphism 6  of
the ring A[t] as follows:

O(1) = Yp)t + B(u). (6)
It is easy to check that the formulas
O(a) = O '(a) for any a € A,
0'(t) = pl(tu) (7)

determine an inverse to © endomorphism of A[t].
In fact,

0.0'(1) = 8(p” (=) = O(p) " (8(1)-0(w)) = O(p) Dlp)t = 1.

Similarly, ©6%¢6(r) = .
Thus, the hyperbolic rings  A[t]{6,1}, where 8  runs over the set of all
the automorphisms of the ring Afr] under which A is invariant, are in one-
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one correspondence with rings A<®,p,u>, where ¥ is an automorphism of A, p
i1s an invertible element and « is an arbitrary element of A. =

3.1.10.1. Note. It follows from the equation (3) that the ring Alt]{6,t) coin-
cides with the ring A<%u> (cf. 3.1.0) for an appropriate & and u (O s
the induced By ® automorphism of the ring A, u = O'I(b)', cf. (3)) if and
only if ©(t) =t + b forsome b€ A =u

3.2. THE LEFT SPECTRUM OF A HYPERBOLIC RING.

3.2.1. From the prime spectrum of the ring R to the left spectrum of the ring
R{6,€). In this section, we assume for convenience that the ring R is noethe-
rian. By Lemma 0.5.1 (and the following it short discussion), this garantees
that, for any <p> € SpeclR{O,Ej,}:: SpeclR{O,él/=, the subset

ai(<p>):= {p € SpecR| pPn R = p for some pe <p>/ (1)
of SpecR in nonempty. Here i is the embedding R —— R{6.E).

Actually, this is the only place, where the noetherian hypothesis is used.
The results of this Section are valid for any noetherian ring R  provided that
only those points p of SpeclR{e.F;} are considered for which the set ai(<p>)
1 nonempty.

The problems which occupy this section are:

(a) to describe the correspondence <p>r—— ai( <p>);

(b) to find (if possible) the inverse to 4 map.

Consider the set of orbits, SpecR/A8), of the action of the group (6):=
{6"| n € 2} on SpecR. Denote by SpecR/(G)é the set of orbits €2 € SpecR/6)
such that & ¢ p for any p € Q. And let Spec(R|6,§) be the preimage in
SpecR  of the complement to SpecR/(B)E". It happens that if the set ai(<p>)
intersects with  Spec(R|6,§), then it lies entirely inside of Spec(R|6.§)..

Theorem 3.2.2 provides the solution of both problems for those <p>  which
land in  Spec(R|0.§).

Proposition 3.2.3  establishes that each infinite orbit from Spec(R)/(G)é
i1s the set ai(<p>) for a unique <p>, and the map which assigns to a prime
ideal p the left ideal R{BEJ/p of the ring R{B,E] induces a bijection of
the set SpecR/(G)g’w . -of infinite orbits onto the corresponding part of
SpeclR{B.ﬁj.

Generic  finite  orbits  require  more  sophisticated  technique. They  are
studied in [R6]. Instead, we consider several important special cases. . '
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3.2.2. Theorem. (i} Let p € SpecR.
0)If 8'¢) e p. and & e p, then the left ideal
p. = p + RIOE)x + ROE)
is a two-sided ideal from Spec:lR(O.éj.
1) If 9"(@) € p, Bl(?';) g€ p for 0<ign-, and 9"(&) € p, then the
left ideal
| Pons= RIOEIP + RIBE)x + RO.E)™

in the ring R{6.8) belongs to SpeclR{B,E:,}.
2)If 0 ) e p for i 20 and ©'E) € p, then
P = RIBEID + RIBL)x
belongs 10 SpeclRle.ﬁ,’. '
3)If Ecp and OYE) e p for 21, then the left ideal
P, = RIOE/p + R(BE)y
belongs 1o Spec,R(8.5/}.
(ii) If the ideal p in 1), 2) or 3) is maximal, then the corresponding
left ideal from SpeclR,’B.i} is maximal. ' N
(iii) Every ideal p from Spec[R{G.éj such that Gv(ﬁ) e p fora veI
is equivalent to one of them for a uniquely defined p € SpecR. The latter
means that
if p and p' are prime ideals of the ring R and o and v,u take
if and

values 1,00, oo, o000, or \,n.  Then pa'B. is equivalent to pV.LL
only if a=v,B=W and p = p.

Proof. (i) Consider the cyclic modules corresponding to the ideals. Let m
be one of the ideals from the listt We shall prove that m is from the left
spectrum of R{6,§] by showing that, for any cyclic (nonzero) submodule W  of

R’/m there is a diagram of module morphisms

(DWW < N > R(6,E}/m,

where the right arrow is a monomorphism and the left one is an epimorphism.

Take a nonzero element v of the module R{6,E}/m. -

a) Suppose first that v € V0=- R/p.  Since the ideal p is prime, the cyc-
lic R-submodule Ry is isomorphic to VO. This implies that the cyclic submo-
dule R{6,E/v is isomorphic to R{8,§}/m. .

Note that the assertion () 1is already proved, since R(8,E}/m coincides

with its zero component VO'
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b) It is clear now that, if v € R{QE)/m - VO, it suffices to show that

the cyclic module R{6,§}v contains a nonzero element from VO.

Let . .
fix) + gly) = X x‘ai + X vb.

0<i<s o<j<v /
be a preimage of v in R{6,§} such that a & p and bv ¢ p, and, necessa-
rily, s + v 2 1. Then

1) In the first case, 1 £ s <n, v =0, and

s d

Y(fix) + g(y) € ag ) 0% + p,,

1€d<s-1 '
. d | s
Since ag and 07(§), 1 £ d £ s-1, belong to R - p, the element y'v
is nonzero and belongs to VOxR/p.

2) In the second case, s =2 1, v = ( and, as above, ysv iS a nonzero

element of Vo* Rip.

3) In the third case, x'v is a nonzero element of VO.

(ii) According to (i), every nonzero submodule, W, of  R{0,§}/m has a
nonzero intersection with the R-submodule V0= R/p. If the ideal p is maxi-
mal, then VO is a simple R-module; hence W contains VO which i1mplies that
W = R{0&)/m. Thus, R(0.E})/m is a simple R{6,§}-module, or, equivalently, m
is a left maximal ideal. : . :

(iii) Let p be .a left ideal from  Spec,R(6.5/  such that 0Vg) e p for
some integer V.

(a) We claim that in that case the ideal p is equivalent to an ideal p'e
Spec/R(0.5} which contains either x, or y.

It suffices to prove the assertion for v 2 0, because the case of negati-
ve v is obtained by dualization (i.e. by switching to the adjoint hyperbolic
ring, cf. 3.2.7). '

Consider the alternatives.

(al) yw'l g p. Then the left ideal '(p:yv+l) is equivalent to p, and

it contains x, since
xyV+l= gy\/ - yvev(&) € p
(a2) yv+' € p. Then there is n 2 1 such that y" € p, and y ‘& p.
Thus, the ideal (p.'y”") i1s equivalent to p, and it contains .
(b) Thus, we can assume that p contains either x, or y. Consider the

case y € p.
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(bl) y € p. Since R is a noetherian ring, there exists an r € R such
that p:= (p:r) n R € SpecR. Clearly y € (p:r).

(b1.0) If X" & (p:r) for any n = 1, then, by Proposition 2.3.4, the in-
tersection (p.r) n R{x8] coincides with R{x,0]p. It follows from the asser-
tion 2) of Lemma 3.2.4 that

(p:r) = (pir) (Rx8] + (pir) y R[%.8] = R[x8]p + RIx8]y;

re. (p:r) = Pos
(bl.1) If some power of «x  belongs to (p:r), then, by the assertion 3)
of Proposition 2.3.4, there exists an element a of R such that
((p:r):a) q RIx8] = (p:ar) n R(x8] = R[x68jp + R[x8)x"

for some positive integer m. Since
w = (™= 07 = e,

this implies that O'm(i) € p. Let n be the maximal integer between (0 and
m-1 such that 87%&) e p
(b1.1.0) Let n = 0. Then

(p:ar) = (p:ar) 0y R[y.8] + (p:ar) q R[x8] =
R(B.E)p + R(0.E)y + R(O,E)x.

One can see that the left ideal

m- m
)

((p-ar):x “ar)
is equivalent to p, and contains x and ym, since

= (o 6i®)y e (pear).

1SISm-1

Note that y"'e (p:x" 'ar). In fact,

1-1 -1
yox =

since, by assumption, 9'l(§) g p if O0<i < m-t, and the ideal p is prime.
Note also that (p:x"'ar) nR = 8" (p).
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’

Indeed, set p:= (px" ‘ar) n R Clearly, 6" 'p) < p’. By the same
reason

0'""(p') < ((p:A™"any™ ") n R = ((prany™ ") R = p.

-m

’

Thus, p < 6" (p’) c p which means that p’= 6" '(p).
We have showed that

(px™ar) = p', = RIOEIP + RIOE)x + RIOEH

is an ideal from SpeclR{G.éj.
(bl.1.1) Suppose now that 1 £ n £ m-1. Clearly, the left ideal

((p:ar):x") = (p:x"ar)

is equivalent to p, and contains both y and x*, where s = m - n. There

exists A € R such that

pi= ((p.'.rnar).'X) = (p:?\xnar) n R

is a prime ideal in R.

If e‘i(g) € (p:?uc"ar) for some 1 < i < s-1, we repeat the procedure.
This way, we shall come to the case (b1.1.0) above.

(b2) If x € p, then a part of the argument above shows that either p =
Pow OF P=p, for some v = 1,

(c) It remains to show the uniqueness:

In the representation R{G.ﬁ}/pl'n both elements x and y annihilate

some nonzero elements, while inﬂ the representations R{G,i//p’l’w, R{E),i}/p’m'l
and R{6,§)/p’  _ respectively’ y, x and both act injectively.
Thus, if };l'n> p'v.u’ then wv,u = 1,m for some m.
Note that n ust be greater or equal 1o m.
In fact, if n < m, then yn+] annihilates the  module R{e'};M)l,n and
does not annihilate R{B.i}/p’l.m; Le.
(b, RIOEN > Y ™ 'e (v | :RIOE)) (1)

But, the relation p > p

’ implies that the inclusion
LN L, 1

(p, RIBE)) < (pf

1,n L,m

:R18.5))
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which contradicts to (l). Thus, n 2 m. “In particular, if p’] m is equivalent
to P then n = m.
(cl) The relation P, p’lm means that there is a diagram of
R{6,&}-modules
vi= (VRO | —— K —— Vi= RIBE)Y @
where i 1S a monomorphism, and e 1s an epimorphism. The module
(V)R[G.ﬁl/pln can be written as @ y'(v)V), where V = Rp. In particu-
' 0<i<n o
lar, it is isomorphic, as an R-module, to
® (V)RE(p).
0<i<n
Similarly,
V= RIOE)D = @ y'v,
' 0<i<m
where V' = Rp’.
Thus, the diagram (2) induces the diagram
& (VR (p) — K, —=— R/’ (3)

0<i<n

where KO:= ¢ (V) and i s the restriction of i to KO'
The diagram (3) implies that

pe Supp( @® (VRB(p)) = u_ Supp(RA™(p));

0<i<n O<i<n

ie. G'i(p) c p for some 1 <i<n.

If v = W’,. then n = m, and p g Bi(p’) c 9i+j(p), where i, j take
values 0 or n. Since the ring R is noetherian (in particular, p has a
finite height), the inclusion p ¢ 'Bi+j(p) implies that p = 8[+j(p). Hence p
= o'p’) = 6 p).

Since 0'(¢) € p’. the equaliy p = Bi(p’) implies that Bi'l(é) € p.
Since 0 < i £, and Gj(ﬁ} g p if 0
lity is ¢ = 0, ie. p = p. ,

’

[ =ed

< j € n-1, the only remaining possibi-

(c2) Let now Plow =P . Then the same argument, as in (¢!} shows that
p = 91(}?') = BH-j(p) for some 4, j 2 0.

This implies that 8“(&) € p which means (since Gj(ﬁ) g p for j 2 0)
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that i = 0, ie. again p = p’.

(c3) the implication Py = P, = P =P follows from (c2) by swit-
ching to the adjoint hyperbolic ring. =

3.2.2.1. Remark. It is easy to describe the set Ji(<p>) (cf. 3.2.1), if p s
from the list of Theorem 3.2.2:

“U<p, ) = fp} Cit<p, ,>) = (67| 0 S i <)

Yi<p, ,>) = (67(p)| i 20l Cil<p, >) = (8'p)] iz ).

I might be useful to specify the ‘“inverse” to 4 - map from the set
Spec(R|0,§) (which consists of all p € SpecR such that & e 6" (p) for some
n; cf. 3.2.1) into SpeclR{B,ﬁj. This map, %, is defined as follows:

a) If & e ppn6p) then xp) = P,

b) If & ¢ e”(p) N Bm(p) - U Gl(p) for some n < 0 < m such that m - n
n<i<m

v

2, then
m-1
(p)l.m-n'

xX(p) = ©

¢)IfE e 6%p) - U @) for some n <0, then

n<i<os N
xX(p) = 0(p)

oo, 1’
d) If ¢ e Bm(p) - U Gi(p) for some m 2 1, then

-eo<i<m m-1
xp) =87 (p)
Note that these numbers, m and n, are uniquely defined in each case
which implies that x is well defined. =

3.2.3. Proposition. (i) Let p  be a prime ideal of the ring R such  that
8'(t) ¢ p and Bi(p)—p 2 & for every integer |.

Then the ideal

P o= RIOEID

belongs to SpecIRIG,ﬁl.

(ii) Moreover, if p is a left ideal in R(8,§) such that p n R = p
then p =p_ .

n parti,cular, if p is a maximal ideal, then  p is a maximal left

oo' oo
ideal.
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(iii) If a prime ideal p° in R is such that p_ = p' . then p

8" (p) for some integer n.
Conversely, G"(p)meo =p_ ., Jorevery neZ

Proof. (i} As in the proof of Theorem 3.2.2, it is enough to show that any
nonzero cyclic submodule  R{8,EJv  of R{B,E,]/pmw contains a nonzero element
from Voz Rip. '

Let

f) + gly) = T dag+ T b,
0<is<s 0<j <y

be a preimage of v in R{6,§} such that a, € p and b, & p. Multiplying by
X1 for an appropriate 1, T2V, we can assume that g(y) = 0 and apé p. Now
we can proceed by induction.

The case s = 0 is trivial.

If s = 1, there exists (by condition on © and p) an element r € p
such that (-)S(r) € p. We have

0°(rfix) = x'ar + f(x) € f(x) + RIOE)p,

where degf< s-1 and f(0) = Bs(r)ao & p.

(ii) Let p be a left ideal in the ring R{0,§/ such that p n R = p.
Cleartly p 2 p_ = R{0,E)p. Suppose that p # P, .5 Le p contains a non-
zero polynomial ’ fix) + g(y) with all nonzero coefficients from R-p.  Consider
the alternatives:

a) g(y) = 0. .
b) fflx) = 0. It follows from the fact that p is prime and ﬁl(ﬁ) g p
for all { - that xvg( y), where v = deg(g), is a nonzero polynomial in x

with all nonzero coefficients from R-p.

c) flx) + gly) = X fa. + I y’b., where a_ ¢ p and b, & p. But
‘ 0siss ' igjsy s v
then xv(f(x) + g(y)) is a nonzero polynomial in x  with all nonzero coeffici-

ents from R - p.

So, if p # Peo oo then P,= P R{x;8] contains a nonzero polynomial
with nonzero coefficients from R-p. This implies, by Proposition 2.4, that
there exists a € R-p such that

(p:a) = (p:a) n RIx8] = Rix0x" + R[x:0)p

for some n 2 1. Since

yxn = e-l(‘&)xn-l - xll-le-n(é)’
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it follows from the last equality that o) € p. But, this contradicts to
quality tha p

the assumption of this Proposition that Gl(é) g p for any i

(iii) Fix a positive integer n. Since e , the left ideal

pOO'DO

Y N .
(pmlw.x ) 1s equivalent to Poo, o0

Clearly
0%p) < p'i= (p, X N R
hence
p < 8P) S (py )Y ) A R = (b, YY) n R
But,
Yy = m 0’ E)e R-p
1Si<n
which implies that
((po-ral oo"ynxn) = poo oo’

In particular,

((pwjoo..ynxn) n R = p.

All together shows that p’ = Gn(p}, and (p_ o0:,1:") = p’oo o
Dually, (p_ c”::yn) = 9"1(p)wm is equivalent to p__ _. .

Let now p° be another prime ideal in R.

The argument similar to that of the part (¢/) of the proof of Theorem 3.2.2
shows that the relation p_ > p'__ implies that p C e”(p') for some n €
z. Thus, if p___ = p'mm, then

R ! ' ‘ n, i
p<0(p)c6p)
which, thanks to the noetherian property of - R, implies that  p is equal to
the ideal 6"(p’). u

3.2.4. The Generating function. Following the tradition, we can concentrate all
the information about the equivalence classes of ideals from Specl.R{B.é},
which have a nonzero intersection with R, in one formal power series in A
and A7, o
6(A0.5):= T B'EN, _ (1
e
which we call generating function of the ring R{6,E).

3.2.5. The ’independent’ part of the left spectrum. Consider now the ’points’ of

the spectrum, which do not originate from any nonzero prime ideal of the commu-
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tative subring R. In other words, consider those p € SpeclR[O,ﬁj for which

(a) pn R = {0] € SpecR.

Note that if S 1S a multiplicative subset in R which is B-invariant,
then S is an Ore subset in R{6,£). In particular, R-{0} is an Ore subset
in  R{BE). So that we can localize the ring R{6,£} at the multiplicative set
R - {0} and obtain, as a result, the ring K(R){©,E'}, where K(R) is the
field of fractions of the ring R, © the induced by 6 automorphism of K{(R),
& the image of & in  K{(R). Since localizations respect the left spectrum,
the localization Q at the set R - (0} sends the ideal p into the left ide-
al Qp from SpeclK(R){O,ﬁ'}.

Note now that the element &,  being nonzero, is an invertible element of

the ring K(R); and the relation yx = & rmeans that y = @c'[. Therefore the

. ring K(R){®,E'} is isomorphic to the ring K(R)[x,©]. In particular, the
ideal op is determined by an irreducible element r = rlx) of the ring
K(R)[x,©]: |

Op = K(R){6.5)r.
Note that the localization Q@  sends the (skew polynomial) subring R[x, 8]
generated by R and «x into the subring K(R)[x,8] of the ring K(R){8.E}.

3.2.6. Points over O-invariant prime ideals. Suppose now that p is a left ide-
al from SpeclR[B,ﬁ} such that p = p n R is a O-invariant prime ideal in R
Then 6 induces an automorphism, 0, of the quotient ring R = R/p, and the
canonical map m- R —— R’ extends to a ring morphism '
n': R{8,§}) — R{0".E],

where & = m&), n'(x) = x, wfy) = y. Since @ is an epimorphism, the
image: p’ of the ideal p belongs to the left spectrum, and p" n R” = (0}

There are two possibilities: either & € p, or & ¢ p.

Consider each of them.

(a) Degenerate case: § € p. This implies that, since p is B-invariant,
8°f(§) € p. Thus, both xy and yx are in p. This means that the ring
R(6.E} = R(0,0} is defined by the relations:

xr = 0'(r)x, ry = y0'(r) for any r e R
xy = 0 = yx
We shall write R0’} instead of R’{6".0/.
Clearly R'{®})y and R(0’Jx  are two-sided ideals in Spec[R’{e’}; and,
since R(0'}x-R'{0'})y = {0],



V(R(8')x) U V(R'{8')y) = V({0)) = Spec,R'(S}

Futher, the quotient ring RO J/R {6 )x is naturally isomorphic to the
skew polynomial ring R[y.07']).  Thus, we have canonical bijections (homeomor-
phisms): A

V(R'(8'}x) = Spec{R'{6'}J/R'(6'}x) = SpeclR’[y,E)"l J.
Similarly,
VI(R'{G’}y) =~ Speci(R'{B’//R'le'}y) = SpecIR'[x,B'].
Since the quotient of the ring Rf6°} by the ideal R'{0')x + R'{&})y is

naturally isomorphic to the ring R’, we have the canonical homeomorphisms:
VI(R'{G'}x} N V[(R’{G'}y) = V[(R'{G'}x + R'[0'})y) ~ SpecR’.

So, SpeclR’{B’} is the disjoint union of the closed subset VI(R'{B’}x +
R’{®'}y), which is homeomorphic to SpecR’, and two open subsets:

V(R(O')x) - V(R(6')x + R(&')y)
and
V,(R’{E)’/y) - V[{R’{G’}_r + R'{®}y),
which are naturally homeomorphic respectively to Spec[R’[_v.y'];G"l ] and to

Spec IR’[ xx 9],

(b) Nondegenerate case: & ¢ p. 1t follows from 3.2.5 that the subset of
SpeclR{O.Q} which consists of ideals of this type coincides with the preimage
of Spec/K(R')[xx"':6'). '
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3.3, THE RESTRICTED HYPERBOLIC RINGS.

The only situation which is not covered by the analysis above is when  6(p)
#p, but 6%p) =p forsome n, and OV(E) g p forall ve z

In this section, we consider an important special case - when 6" = Id for
some n 2 2. The general case (in a much more general setting, for hyperbolic
ring over noncommutative rings) is considered in [R6].

3.3.1. Definition. Let 6 be an automorphism of a commutative ring R  such

that 6" = id And let & u, and v be elements in R having the proper-
ties: .
B(u) = u, Bv) = v, and uo = [ 8 '(E).

1<i<n
The restricted hyperbolic ring, R({6,§|u,on}, is given by the relations:

xr = O(r)x, ry = y0(r) for every re R, xy = E,
n n (D

3.3.2. Example. Let R{6,E) be a hyperbolic ring, and 6" = id for certain n

2 1. Note that, thanks to the last equiﬂity, X' and y® commute with every

element of R and between themselves. To check the latter property, notice that

= m ei(g)
-1
and

ynxn = O'i(é) _ 9'”( m Bi(i)) = Bi(ﬁ) _ x"yn.

i<ign 1<1<n-1 1<i<n-1

Thus, the ring R{B,E] contains the polynomial subring R[x”,yn] which we
denote by & Set u = X", o = . Clearly the ring R{6,§] is isomorphic to
the restricted hyperbolic ring %/6,§|u,vn/. =

3.33. The left spectrum. Fix a restricted hyperbolic ring R{6.&In) =
R{6.§|u,v,n). Since the elements u and v are central, we have the following
decomposition of the left spectrum of the ring R{6,§|n/:

SpecR{B.&|n} = V{Ru + Ro) U (v,(u) 0 Ul(u)) U (v,(u) a U[(u)) U Ufuv).

It is easy to see that
V[(Ru + Rv) = Spec(R/RE);

Vi) n Ufo) = Spec(o) 'R0 |on] = Spec R[y.8"" o],

39



’

where R = (v)'R, © is the induced by 6 automorphism of R, v is the
image of o in R, R'[y,ﬁ"|o',n] is a restricted skew polynomial ring (cf.
3.3.1);

V[(u) N Ul(u) = Spec[(u)"R[x.B|u.n] = Spec[R"[x,f)"|u",n],

where R" = (u)"R, ¥" is the induced by 0 automorphism of R", u" is the

image of u in R

Uuv) = spect(uu)"R/e,mn} = SpecR{©.EM ur oA n),

where ® = (uv)'R, Er, o, uM are the images of & o and u in R, © is
the induced by © automorphism. Note that, since the elemcnts. o and u® are
invertible, x, y  and EA = xy  are invertible. In particular, y = x'En
This implies that the ring R{©,EM | n,ur oM} is isomorphic to the restricted

skew Laurent polynomial ring R[x,x'];(-3|u",n]. In particular,

U[(un) = Speclﬂt[x,.t' e) |urnj.

4, APPLICATIONS TO BASIC EXAMPLES.

In this Section, we apply the results of Section 3 to get the spectral
picture of most popular classical and quantum algebras:

the quantum and classical enveloping algebras of the Lie algebra s/(2);

quantum coordinate algebra of SL(2);

first Weyl algebra;

the algebra of g-differential operators;

quantum plane.

For the last three algebras we show how to deduce from the description of
the left spectrum a classification of irreducible representations. For the first
Weyl algebra AI, we show that any nonzero (i.e. non-generic) point of the left
spectrum is closed; i.e. it is equivalent to a left maximal ideal. Thus we get
almost for free (modulo results of Section 3) a description of irreducible rep-
resentations of the first Weyl algebra differs from the one given by R. Block
(B1], [B2]. The reason is the difference in the choices of parametrization: we
use hyperbolic presentation of Al — the coordinate & = xy -  which allows to
simplify the description.

A generic algebra of g¢-differential operators (i.e. ¢ # 1, o) has lots of

nonclosed points. As well as the quantum plane. It is worth to underline that
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the spectral picture of the algebra of g-differential operators 1S much closer
(when ¢ # 1) to that of g-plane than to the spectral picture of AI.

4.1. The quantum coordinate algebra of SL(2). Let R/6f) be the quantum
coordinate algebra of SL(2,k), i.e.
R = kfuv], Oftuv) = flgqu,qv) for any fe R, & =1+ g 'uv
(cf. Example 3.1.5).
Let p be a nonzero prime ideal of the ring R = kfuv]/, and let an .ideal
p € Spec!R{9.§} be such that pn R = p.

(1) Principal series. Suppose that x € p. Then, the element
yx = 07'E) = 1 + ¢ uv

belongs to the ideal p = p n R.
() If R{8,E}/p is of finite type over R, then

‘Bm'l(ﬁ) =1 + qzm-3uv € p

for some m 2 1. This and the inclusion 1 + ¢~ uv € p imply that

l - qzm € p;, le. qzm =1

In particular, if q is not a root of unity, then the principal series
contains no representations of R-finite type. '
(1) The representation R{B.E}/p of principal series is not of finite
type if and only if .
) =1 + ¢ 'ww e p for any n2.

Note that, since & = | + g 'uv € p, this implies that ¢ is not a root
of unity.

(2) Discrete series. Let now p € Spec[R{B.il be such that p n R = p and
p does not contain any degrees of x or y. This means that

E=1+qg'uwe p and ) - & = (¢ - )g'w e p

for any nonzero integer n. In other words, ¢ is not a root of unity, and the
elements w, v, 1 + q"uv do not belong to the ideal p.

4.1.1. Series of irreducible representations (the case of algebraically closed
field). Suppose now that the field k is algebraically closed. Then every
maximal ideal in the ring R = kfuv] is of the form R(u - A) + R(v - m),
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where A, 1 are elements of the field k. From 2.1, we obtain the following:
1) The ideal p = Ru - &) + R(v - n). A m € k  defines a representation
of principal series if and only if
A#0 and m = -g/A
2) The ideal p = R(u - A) + R(v - m) defines the representation of the
discrete series if and only if
A#0 Mm=0 and M # -g/h

4.2. The left spectrum and irreducible representations of Uq(sl(Z)). © Assume
that
R = A[E], A is O-stable, and () = & + u for some ue A

(which holds both for Uq(sl(.?)) and U(sl(2))). One can see that

"l =0+ T 0w - (1)
0<i<n-1
and
OME) =k - T 0 ‘ 2)
1fisn

for every n 2 1.

Consider now the case of Uq(sf(2)); ie. A is the algebra kfz,z”']  of
Laurent polynomials in z;  Offz) = flqz); u = (z-z")/(q-q'l). We assume, for
simplicity, that g is not a root of unity, and there is a square root of ¢

in k, ie g = A? for some A-e k The formulas (1), (2) in this case look
as follows:
Q") = (& - w) + Z'q(1-g" ) (1-9) (g ™") (3)

™) = & + ' (1-g g 1(1-9)) (g™™) (4)

for any n 2 1.

Fix a prime ideal p of the ring R = A[E], and denote by p’ the inter-
section p n A. Now we shall follow the pattern of Theorem 3.2.2.

Let & - u € p. Then the ideal p is generated by the element & - u and
by the prime ideal p” = p q A of the ring A = k{z7']:

p = A[ENE - u) + A[E]D.

1) Suppose that & € p. Then wu € p’ which implies that p° is generated
either by z - I, or by =z + 1. Thus, we have two maximal ideals in Uq(sl(2))

of codimesion 1  which are generated by x, y, z £ | respectively (cf. Theorem
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3.2.2).
2) It follows from (3) that G)n(f;) € p if and only if

(g = e A+ AT e p

which means that either p’ = (z + XA"), or p’ = (z - A"
By Theorem 3.2.2, the left ideals of the ring Uq(sl(2)) generated by

" and (z+ A" or (z-A"

E-w=xy-u x Y
are maximal; and one can see that the corresponding irreducible representations
are (n + 1)-dimesional.

Note that we can replace in the above list of generators

E-u==E8-uz) by E-ur".

Thus, we have, for each n 2 1, exactly two n-dimensional representations.
And this exhausts the list of finite dimensional representations of U (si(2)).

3) Every irreducible polynomial  ffz)  which is not equal to Az or to
Mz 2A") for any A e k- {0} and n 21, defines two left maximal ideals:

the one generated by & - u(z), x and f{z);

the other one generated by &, y and f{z).

The corresponding quotient modules are infinite  dimensional  (irreducible)
representations of principal series.

Note that the left ideals

Uq(st(z))(é - w(z) + Uq(sl(2))x and Uq(st(z»é + Uq(sl(Z))y
are also in the left spectrum, but they are not maximal.
According to Theorem 3.2.3, every pair of «, Yy € & such that y # 0, and

o # ¥ ' -g"(g1)1-9) (¥-¢")

for any integer n, defines a maximal left maximal ideal

Uq(sl(Z))(ﬁ - o)+ Uq(si(f!))(~ - ).

In case when k& is algebraically closed, these ideals  exhaust the list of-
the left maximal ideals of Uq(;l(Z)) which are generated by a prime ideal of
the subring AlE] = Alxy] (cf. Theorem 3.2.3). But, there are lots of non-
closed points of the form Uq(sl(Z))p, p € SpecA[E].

The non-degenerate case remains (cf. 3.2.5): the ideals of the left spect-
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rum which have zero intersection with the subalgebra  A[E] = k[z,z",&]. Accor-
ding to 3.2.5, this part of Spec,Uq(s[(Z))' is isomorphic to the left spectrum
of the quantum plane without origin; i.e.

Specqu(sl(2)) = Spec[k(z.i)qf-’f.x—l],

where the ring k(z.ﬁ)q[x,x"] of g-Laurent polynomials is defined by the rela-
tions:

xz = qzx, x§ = (§ + u)x

Now, Speclk(z,f,)q[x,x'] ] Specll_((z,g)q[x] - {0} each  ideal  of
Speczk(z,é';)q[x] - {0} is equivalent to a maximal left ideal (cf. 3.2.5); and
any maximal left ideal is generated by an irreducible skew polynomial in x
with coefficients in  k(z.§) which is not equal to Ax for any A € k(z§)*

4.3. The classical case. Let now R(®E] = Ufsi(2)), Le. R = k[z,§], and
Of(z€) = flz+a.E+z). Then

o' =0'® + T @y = 0@ + e+ U (1)
<i<n-i
and . -
0ME =¢t- I 0w =8-n - Mg )
t<i{<n _
Here n 2 1.

Repeating the same kind of analysis as for Uq(s[(Z)), one can (with less
effort) recover the spectral picture and the well known results of the represen-
tation theory of the Lie algebra si(2). Actually, this is the easiest known to
me way to get the representation theory of si(2).

Assume that char(k}) = 0.

Fix a prime ideal p of the ring R = A[§] = k[z&]; and set p'= p n A
Again, we follow the patterns of Theorem 3.2.2. :

(a) Lett. & - z € p. Then the ideal p is generated by & - z and by the
prime ideal p" = p A of the ring A = kfz]: p = A[EJE - 2) + A[E)]p".

It follows from (1) that ©"(&) € p if and only if z + (n—joz € p'.

By Theorem 3.2.2, the left ideal Pn of the ring Uf(si(2)) generated by

E-z=xy-2 & Y and z + (n—1)o/2
(or, what is the same, by & + (n-i1)o2, x, y”, and z + (n—1)ov?)  is maxi-
mal, and the corresponding irreducible representation l/'(sl(Z))/pI n 1$ n -di-

mesional. Thus, we have for each #n 2 |  exactly one n-dimensional representati-



on. And this exhausts the list of finite dimensional representations of si(2).

(b) Any irreducible polynomial f{z) such that finovz) # 0 for all inte-
gers n, defines two left maximal ideals:

P, . 8enerated by € -2z x and f(z);

Poo,, generated by &, y, and f{z).

Here p is the maximal ideal in k[z] generated by f.

The corresponding quotient modules are infinite dimensional (irreducible)
representations of principal series. In particular, for any A € k  which is not
equal to no2 for any n € Z, we have the highest and the lowest weight rep-
resentations (Verma modules) corresponding to the polynomial z - A In this
case (which is general if k& is algebraically closed), '

Plow = (& -A x,z-A) and P, = €, y, 2 = A).

(b1) The left ideals

_ UsU2NE - z) + Ulsl2))x and  U(sl(2))§ + U(sl(2))y
are also in the left spectrum, but they are not maximal.

(c) Tt follows from Proposition 3.2.3 that any maximal ideal p  of the po-
lynomial ring k{zE] such that (§ - nz — n(n—)or) € p for all n € z, ge-
nerates a left maximal ideal p_ = U(sl(2))p.

In the case the field & i1s algebraically closed, these are exactly ideals
generated by (§ - ¥y), (z — A), where Yy # nA + n(n—1)or for any n € L

(cl1) Every nonclosed point p € Speck(z€] such that (E—nz-n(n-)os) e p
for any n € Z generates a nonclosed point SpecIU(sl(2)).

(d) The non-degenerate case remains (cf. 3.2.5): the ideals of the Ileft
spectrum which have zero intersection with the subalgebra A[E] = k[zE]. Ac-
cording to 3.2.5, this part of SpeclU(sl(Z)) is isomorphic to the left spect-
rum of the ring of skew Laurent polynomials k(z.&)[x.x";e], where 8  acts on
rational functions by 6f{z,§) = flz+o,E+z). Now,

- Speck(zE)[x.x":0] = Speck(zE)[x:0] - (0F; .
any ideal of Speclk(z,é)[x;ej - {0} is equivalent to a maximal left ideal (cf.
3.2.5); and any maximal left ideal is generated by an irreducible skew polyno-
mial f{x) with coefficients in k(z,§) such that f0) # 0.

4.4. The left spectrum of the first Weyl algebra, quantum plane, the algebra of
g-differential operators. Fix a field k, and consider the family of k-algebras
[Dq,h’ where  (g,h) 1s an arbitrary element of k* X & The algebra Dq,h is
generated over &k by elements x and y subject to the relation:

Xy - gyx = h (H
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Thus, [qu 1s a quantum (’classical’ if g = 1) plane; D, (=D if

* * I'h
h # 0) is the first Weyl algebra which is isomorphic to the algebra  kfx d/dx]
of differential operators with polynomial coefficients. If g # 1, then the al-
gebra EDq B is naturally realized as the algebra of g-differential operators

with polyno;nial coefficients k[y.dq] which is the k-subalgebra of the algebra
of endomorphisms of the k-module k{zJ] of polynomials in z generated by the
operator of multiplication y: flz)—— zf{z) and by the g-derivative

dq’h: i) —— nwflqz) - fidNzg - 2).

is isomorphic to the hyperbolic k-algebra

R(O.E} = k[E](B,E],
where the k-algebra automorphism 0 is defined by 6(§) = ¢§ + h

The algebra Dq,h

Thus, if g # 1, then we have:

en(g) - qn& + h(l : qﬂ)/(l _ q) = qnﬂe-](i) + h(l R qﬂ'l‘i)/(l ; q)’ (2)

07"(E) = gt + n(l - g7 W1 - q)
for every n 2 0.
If g =1, then
6"E) = &£ + nho= 07E) + (n + L)n,
0"(E) = & - nn

for every n 2 0.

4.4.1. Quantum case. Consider first the case ¢ # l.
Fix a prime ideal p of the ring R = k[§].
(a) Let p = R(E - n). If g is not a root of unity, then

P oo = RIBEHE - b) + R(B.E)x

is a left maximal ideal. One can see that the module R{G,é}/ploo is isomorphic
to the canonical representation of the ring th as the ring of g-differential
operators (see above).

If ¢" =1 forsome m=22 and ¢ #1 if 1 <i<m, then

Py = RIBGEJE - 1) + RIBE/ + RIOEH™

is a left maximal ideal.

(b) Dually, if p = RE and ¢ is not a root of unity, then

Poo, = RIOEJE + RO.L)y

46



is a left maximal ideal.

(¢) The maximal ideal Rf of the ring R = k[E] is ©-stable if and only
if figE + h) = A(E) for some A € k* One can see that the function §& -
h(l-g)'  satisfies this property with A = ¢, hence the ideal R(E - h(l-g)')
is O-stable. If g is not a root of unity, this is the only possibility.

Suppose that this is not the case, and f{§) is a polynomial in & such
that 6fi€) = M(E) for some A € k* We can represent f in the form

f& = T af -y
0<i<m

where y:= h(l-g)"', and ag# 0. Then

ME) = OfE) = fI05) = T ag'® -y

O0<i<m

Since  a, # 0, A = 1. This implies that qi = 1 for every ¢ such that
a; # 0.

Clearly the quotient ring  R/R(E-y) is isomorphic to  k,  and the corres-
ponding quotient hyperbolic ring is defined by the equations:

xy = n(l-g)" = yx

i.e. the quotient hyperbolic ring is a hyperbola over k. So, its spectrum co-
incides with Speck[x.x"'].

The same argument shows that, if g is not a root of unity, then every
6"-stable maximal ideal in k{&] is generated by the element & - K l-q)'l; in

particular, it is B-stable.

(d} If ¢ is not a root of unity, then every irreducible polynomial  f{&)
which is not equal to W& - n(l-g)) or to ME - n(l-g"M1-q)) for some
integer n generates a left maximal ideal, R{8,E}f.

(d) There is a natural embedding of Ma.rzk(é)[x,x";ﬁ] into Spec[R{B.";},
where O is the induced by 6 automorphism of the field k(&) () = ¢€ + h
Every irreducible element g of the ring k(E)[x;®] such that g(0) # 0  gene-
rates a left maximal ideal in k(é)[x,x";ﬁj.

In particular, every polynomial x - f, where [ = fl§) € k&)*  genera-
tes a left maximal ideal in the ring k(ﬁ)[x..r'l,‘ﬁ].

4.4.2. The classical case. Consider now the case ¢ = I, h # 0; 1ie. th is
the first Weyl algebra. Then .
9”(&) =& + nh = e"(g) + (n + L)n,
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07"&) = § - mn
for every n 2 0.
Fix a prime ideal, p, of the ring R = k[E].
(a) Let p = R(§ - n). If char(k) = 0, then

P, o= RIBENE - h) + R{B.E)x

is a left maximal ideal. One can see that the module R{G.é}/plm is isomror-

phic to the canonical representation of the ring as the ring of

D
g.h
g-differential operators (see above).

If char(k) = p > 0, then
Ppp = RIOEIE - 1) + RIBE/r + RO.L)Y

is a left maximal ideal.
(b) Dually, if p = RE, and char(k) = 0, then

Po., = RIBEE + RIO.E)y
1s a left maximal ideal. .

(¢} The maximal ideal k{E]f  of the ring k(E] is 6'-stable if and only
if  fiE+n) = AfE) for some A € k* Clearly A = 1. ie. flf) iself is
0"-stable.  Now, the equality  flE€+n) = f(E) implies that n = [char(k) for
some integer [.

Consider the whole picture in the case when chark = 0. Then there is no
0" -stable non-constant polynomials for any # # 0. According to Theorem 3.2.2,
every irreducible polynomial f{€) which is not equal to wE& - n) for some n
€ Z and W € k* generates a left maximal ideal R{0,§Jf  This fact implies a
theorem by Dixmier [D2].

There is a natural imbedding of Maxlk(a)[x,x";ﬁ] into Spec R85/,
where 8 is the induced by © automorphism of the field k(&): 9(€) = & + L
Every irreducible element g of the ring k(E){x;0] such that g0) # 0 gene-
rates a left maximal ideal in k(ﬁ)[,r,x'l;ﬁ]. In " particular, every polynomial
x - f, where f = flE) e Kk(&)*  generates a left maximal ideal in the ring
k(E)[xx" 0],

4.4.3. Proposition. Any nonzero element of Specp, h = 0, s equivalent to

hl
a maximal left ideal.

We shall give two proves of this assertion.
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The first proof. a) Fix an abelian category 4  For any P € Specd, de-
fine the height bHt(P) of P as the supremum of nonnegative integers n  such
that there exists a chaim P DO PI -l P2 > .. D Pn of distinct elements of
Specd. Here we take the canonical realization of  Specd  (cf. 0.3.1). Now we
define the spectral dimension, dimsad, of 4 as the supremum of ht(P) while P
runs through Specd.

4.4.3.1. Proposition. Suppose that a ring R  has a finite Krull dimension. Then
dimsad < KdimR.

Proof. The assertion follows immediately from Corollary 6.4.2 in {R5]. =

4.4.3.2. Corollary. Ler R be a prime ring of Krull dimension 1. Then any
nonzero ideal of SpecIR is either equivalent to zero, or to a left maximal
ideal. ,

b) The Krull dimension of the first Weyl algebra is l. Therefore, by
Corollary 4.4.3.2, all nonzero ideals from Spec[DI.h which  have zero
intersection with the subring k[E] = klxy] are equivalent to left maximal

ideals.

The second proof. Let r = X xtal. be an element of D & which is irredu-

cible as an element of  k(§){x 8] So that the generated by r left ideal in
k(E)[x; 8] is maximal. Denote by (r) the intersection of this left ideal with
the Weyl algebra D ¢

a) If the generated by the .coefﬁcients {al.} of r ideal in k[&] coin-
cides with k&[], then the left ideal (r) is maximal. :

In fact, if (r) 1S not maximal, it contains properly in a maximal left
ideal p  which has a nontrivial intersection with  k[E]. This implies that u
= D.f for some irreducible polynomial [ In particular, all coefficients

a; should belong to the ideal &fEJf which contradicts to the hypothesis.

b) Consider now the general case: the coefficients {ai} of r generate a
proper ideal k/€Jg for some polynomial g. Since (r) n k/&] = 0. and (1)
belongs to the left spectrum, the ideal ((r):g) is equivalent to (r). Note
that  ((r)g) = (rl), where r,o= g = X xial/g, and the coefficients {a’/gl
generate  kfE). Therefore the ideal (rl) is maximal. =

Thus we have recovered (in slightly different terms) the Richard Block’s
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classification of irreducible representations of the first Weyl algebra [BI].

4.4.4, The quantum plane. This is the algebra D 0 which is usually denoted by
kq]x.y]. The action of O is very simple: OfE) = ¢E  Clearly the ideals 0
and (€) are O-stable. If ¢ 1S generic (i.e. not a root of unity), or the
field k i1s algebraically closed, then these two ideals are the only ©-stable
primes in R = k[§]. If ¢ is generic, then, for any »n, O and () are the
only 8" -stable primes in  R.

Consider the generic case: ¢ 1s not a root of one. We have the following
picture:

a) The quotient ring R/RE is isomorphic to k; and the corresponding
hyperbolic ring is a commutative k-algebra with generators x, y  subject to the
relations:

xy = yx = 0.

[ts spectrum is naturally homeomorphic to Speck{x] L Speck(y].
Speck

b) The corresponding to 0  part of the left spectrum is Speclk(ﬁ){ﬁ,g},

where O is the extension of 8. And k(E){8.&} ~ K&)[x;8]. So that
Speck(ENOE) - (0) = Speck(E)x0] - (0) = Maxj()[x;D];

and any left maximal ideal of  k(§){x;0] is a principal ideal generated by an
irreducible element of k(&)[x;8].

¢) The remaining part of the left spectrum consists of all ideals of the
form kq[x,y]f, where  f  runs through the set of all irreducible polynomials
in & such that f0) = 0.

4.4.5. The quantum torus. By definition, the quantum torus T is the k-module
of g-Laurent polynomials kq[x,x",y.y']] with  the multiplication defined by
the same relation xy = gyx. Clearly the algebra Tq is isomorphic to the lo-
calization of the quantum plane at the multiplicative system (€) generated by
& = xy. Therefore the .S',r:aecl,Ter is the complement to the closed subset V[(i) =
Spec]kq[x,y]/(é) of the left spectrum of the quantum plane. That is Spec[Tq
consists of the pieces b) and c) of Speclkq[x._y] (cf. 4.4.4),

Note that all points of Spec!Tq except the generic poiAnt 0 are closed.
This can be showed by the argument similar to that of the second proof of Propo-
sition 4.4.3.

4.4.6. About closed points of a quantum plane. It follows from Proposition 3.2.3
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that all the ideals of the series c¢) are maximal. There is also an obvious set
of closed points; namely the preimage of the set of closed points of V[(é) =
Spec qu[x, yME).

The generic point which is the zero ideal;

The left ideals generated respectively by x and y. They are preimages
of the corresponding ideals in the commutative quotient ring kq[.r,y]/(i) (cf.
a) above); in particular, both are two-sided. The set of specializations on (x)
(resp. (y)) is the preimage of Speck{y] (resp. Speck(x]).

But, there is also a series of left ideals

{kq[x,y]f| f is an irreducible polynomial in xJ, (x)
and, symmetrically,
{kq[x,y]g| g is an irreducible polynomial in y/. ()

Both series are preimages of the corresponding subsets of Mmlk(&)[x;ﬁ].

Note that each ideal kq[x,y[f of the series (x) has unique (up to equi-
valence) specialization which is the maximal left (and two-sided) ideal genera-
ted by f and y. Similarly, the points of (y).

There are other series of nonclosed points. For instance, any linear func-
tion «x - fl€), f e k[E], generates a left ideal from Speclkq[x,y] (which is
the preimage of a left maximal ideal in k(E)[x;8]). It is clear that the ideal
in question has a specialization which is the maximal left (actually, two-sided)
ideal generated by x - ff0) and E.

Having this bunch of nonclosed points, it is natural to ask how to distin-
guish closed points among those elements of the left spectrum which have zero
intersection with k/&].

4.4.6.1. Lemma. A left ideal |n  in kq[x,y] = k{E]{0,.5} is not contained in

any of maximal ideals containing & = xy if and only if W has an element of
the form 1 + E@ for some @ € kq[.’c,y].

Proof. a) We represent elements of the ring kq[x,y] as functions

fixyE) = X xmam + X ynbn (2)
ma0 n2i
where {am, bnl are polynomials in § (cf. Lemma 3.1.6). Consider the set of

functions p:= [flxy;0)] f € pj. Clearly p’ is an ideal in the ring of fac-
tors R:= kq[x,y]/(f;). And the ideal P is not contained in any maximal ideal
of the form (1) iff ' contains the unity element of the ring R.  This means
exactly that p contains an element of the form | + E@ for some ¢ € kq[.r,_v].
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b) The inverse implication is evident. m

4.4.6.2. Corollary. A left ideal p € Spec[kq[x,y] such that  u n k€] = 0 s
a closed point (ie. is equivalent to a maximal left ideal) if and only if it

contains elements of the form 1 + £ for some @ € kq{x.y].

Corollary 4.4.6.2 provides a recipe of creating closed points: just take
any element r € k [x,y] of the form 1 + &o, ¢ € k [xy], which is an irredu-
cible element in  k(E)[xx';®] (we replace y by x'E). Then the left ideal
(r):= kENOE)r 1 kq[x,y] represents a closed point of the left spectrum; i.e.
there exists an element f in  kf§] such that the left ideal ((r):f) is ma-

ximal.

4.4.7. Closed a nonclosed points of Dq,h' Consider the algebra Dq,h in the
generic case: ¢q, h € k* g # 1. Assume that char(k) = 0.

The description closed and nonclosed points of the ‘diagonalizable’ part of
the left spectrum (i.e. those - p € Speclﬂjq,h for which p n k] # 0) is imme-
diate: the only nonclosed points are the generic point 0 and the two-sided
ideal generated by & - vy, where v = nfi1—q) (cf. 4.4.1).

As in the case of quantum plane, we have a couple of canonical families of
nonclosed points of the spectrum having only one specialization. These are prin-
cipal left ideals generated by irreducible polynomials f in x or in y such
that f{0) # 0.

Finally, we have the vsame elementary criterta for a non-diagonalizable ele-

ment of the left spectrum of D to represent a closed point:

q.h
4.4.7.1. Lemma. A left ideal p € Spec]kq[.r,y] such that p n k&) = 0 is a
closed point (ie. is equivalent to a maximal left ideal) if and only if it con-
tains elements of the form  + (E—y)¢ for some ¢ € kq[_t,y].

Here v = v/f1—g).

Proof is analogous to that of Lemma 4.4.6.1.

4.4.8. An observation. When ¢ e k - (0,1}, the spectral picture of 'Dq,h for
h # 0  differs from the spectral picture of the quantum plane, [Dq‘o, only in
the commutative part: the hyperbola xy = yx = hf1—gq) splits into two axes.

But, the difference between SPeCIDq,h when ¢ # 1 and the left spectrum

of the first Weyl algebra D is very considerable.

h
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APPENDIX: COMPLEMENTARY FACTS AND EXAMPLES.

Section 4 covers only a part of the given in Introduction list of quantized
(and classical) algebras. And the list itself is far from being representative. .

The purpose of this appendix is to give to a reader a better view of the
host of concrete ’small’ algebras acquiring an importance in (not only) mathema-
tical physics. Needless to say that the remaining examples from Introduction are
included.

Also, the appendix (together with Section 4) might be regarded as a sort of
a handbook on examples of hyperbolic rings. which are of interest nowadays. In a
couple of cases, we sketch (using the géneral results of Section 3 and some spe-
cific properties of the algebras in question) spectral pictures. But, mostly, we
just give formulas needed to make the application of Theorem 3.2.2 and Porposi-
tion 3.2.3 straightforward leaving the formulations and details to a reader.

Sections A.l, A2, A3 present the study of the left spectrum of special
classes of hyperbolic rings. These classes are:

rings of M(2)-type (algebras Mq(2), SLq{Z), GLq(Z) are of M(2)-type);

rings of Heisenberg type (the quantum Heisenberg [KS], [Ma], and Weyl [H]
algebras are principal examples);

and, finally, rings of Uf(si(2)-type the particular cases of which are the
enveloping algebra U(si(2)), the quantum enveloping algebra Uq(sl(Z)), and
the introduced in [S] "algebras similar to  U(sl(2))".

Section A.4 is concerned with the left spectrum of those 3-dimensional al-
gebras (in the sense of [BS)) which happen to be hyperbolic, but do not belong
to any of the listed above classes. Among them, the dispin algebra (- the uni-
versal enveloping algebra of the Lie superalgebra osp(1,2)) and the introduced
by Woronowicz (W1] nvisted U(sl(2)).

. A.l. Hyperbolic rings of M(2)-type. Fix a hyperbolic ring R{6.E} over a commu-
tative noetherian ring R.

A.1.1. Lemma. ) The following properties of a O-invariant element Yy  of the
ring R{B,E] are equivalent:

(@) B(5) + Y07 '(&) = (v + & ,

(b) Y0 '(E) - & is a central element in the ring R[O,E).

2) If § - 9-'(5) is not a zero divisor, then the element 7y in (a) and
(b) is uniquely defined.

53



Proof. 1) (a) = (b). We shall show that the element 'YG"(E,) - & is cent-
ral in R{6.E). Note that, since Y0 () - & e R, it is central if and only
if it is O-stable. The last property follows immediately from (1):

8(Y07'(8) - &) = 1§ - B(8) = 1§ + YT(E) - (v + 1§ = 0T(®) - &
(b) = (a). Conversely, the fact that 19'1(5,) - & and A are B-stable is
expressed by the equality:
AE - B(E) = ABT'(E) - E,
which is equivalent to (1) with 7y replaced by A.
2) Note that the equality (1) is equivalent to) the equality

B(E - 07'(8) = B(E) - & = & - 87'()). (1)

This means that if the element w:= & - 9"(@) is not a zero divisor, then
the element vy is uniquely defined. In particular, if the ring R is a domain,
then either the element E itself is O-stable, or the element Y (if any) is
uniquely defined. =

Thus, if R is a domain and 6(&) # &, then the central element

56,8 = W'(E) - & @
is uniquely defined by 6 and &.

A.1.2. A special case: the ring A<Ou>. Let R{0,E}] be the corresponding to
the ring A<O,u> hypebolic ring (cf. 3.2.1): ie  R:= A[E], 6], = 0 8(E) =
E + Ou), 6 =E-u

Then & - e'*(g) = u; and the condition (a) in Lemma A.l.l1 is equivalent
to the equality

B(u) = yu (D

(cf. the part 2) of the proof of Lemma A.I.1). ‘

Note that it follows from (1) that 7y is an element of the ring A.

A.1.3. Example: the coordinate ring of quantum 2 x 2 matrices. The coordinate
algebra sa(Mq(Z)) 18 the k-algebra with generators X,y w,ov and with the
relations

- qwxy = Xw, gyvx = v, gyw = Wy, gyv = vy, Wy = Vi,

(1)

Xy - ¥x o= (g - g wy

These relations describe the algebra A<®,u>, where
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A = k[wy], Oflwv) = figw.qv), u = (q - q")wv.
The corresponding hyperbolic algebra, R{6,§} = R{x,y,8,§), is given by

R = kfwvE], and Offwv.&) = flgw.gv.§ + (q3 - g)wv)
for any polynomial fiw,v.E).
Note that
0" fwng) = fig ' wg vE(q - g Iwv)

Clearly  O(w) = qu; i.e. the ring R({0,E} satisfies the conditions of
Lemma A.l.l. m '

Giving priority to this example, we shall say about a hyperbolic rings with
the property (a) (or (b)) from Lemma A.l.l that they are of M(2)-type.

A.1.4. The left spectrum of a hyperbolic ring of M(2)-type. Now fix a hyperbolic
ring, R{6,E}, of M(2)-type. And denote by u the element & - 67'(&).
The equalities

') = & - u

and
8E) = & + yu = 0'(E) + (1 + Yu
imply that . . ‘
') =&+ ( = Yu=0") +( = ¥ )
1Sj<i O<j<i
and . ' '
') =8 -( T Yu=0"€ -3 Y)u | @)
0<j<i 1< <i

for every positive integer .

First consider special situations.

A.14.1. The degenerate case: u = (. This means that & = 6(f), or, equiva-
lently, € . is a central element in  R{6,&). In particular, R{6,EJE is a
O-stable two-sided ideal. Thus, we have the partition of the left spectrum of
the ring R{6.&}: .

Spec]R/B.§} = V!(ﬁ) U.U[(‘i),
and

V(&) = SpecRIBEVRIBEE), U(E) = Spec/(5)RIB.E))

The quotient ring  R{6.E}/R(B.E)E  is isomorphic to the ring  (R/RE){0.0/,
where 6" is the ring automorphism on R/RE induced by 0; te. it is defined
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by the relations:
xr = 0(r)x, rv = y8'(r) for every r € R/RE;
xy =0 = yx

Thus, Spec[(R/Ri)IB’,O} is "naturally homeomorphic (with respect to any na-
tural topology we might consider) to the push-forward

Spec (R/RE)[x.8'] Ll Spec {R/RS)[.8""'].
&0

It remains the open part of the decomposition (3) - the left spectrum of
the localized ring (&)'R{6,E}.

Note that, thanks to the 6-invamance of & the ring  (&)'R{6,E) s
isomorphic to the ring ((&)"'R)/6AEA).  where 9% is the induced by O  auto-
morphism of the ring (E)"'R, & is the image of & in (E)'R. The equa-
tions

| xy = EA = g
imply thai the elements x, y are icvertible, and y = x '€\ This means that
the hyperbolic ring (&) 'RIONEN is iscmorphic to the skew polynomial ring
(&) R(48")].

Thus, in the degenerate case, ¢ = 9(¢), the description of the left spec-
trum of hyperbolic rings is reduced to the description of the left spectr.m of
skew polyrnomial rings, waich is already kucwn .l(‘.f. Section 1),

A.1.4.2. The nondegenerate case. Svppuse now ihat the element u  iv irvertible.
Then vy is also invertible, since © is an auvtomorphism. Now the 0O-stable ele-
ment Y provides the decomposition of the left specuum:

SpecR(BE] = V1-vi U Uj(1-y),

and
V1Y) = Spec (R[8,E)/RI8.5)(1-Y)),
Ulfl-y) = Specl((l-y)"'R{'G, r;})
Consider each of the spaces in the right side of the last two expressions.
A.1.4.2.1. The left spectrum of R{6,E)/R{0,E)(1-Y). Note that, again, since

-y is B-stable,

R{®.E//R(B.E)(1-y) = R"[6"8"},
where R":= R/R(1-y), 9" is the induced by 6 automorphism of R", §&" the
image of & in R"



Clearly the hyperbolic ring R"{8"E"] is of M(2)-type, but, since the
image of ¥y in R” is 1, the element
ur-= &rr_ eu'l(érr)
1s  O"-stable (cf. A.1.3). Therefore, the formulas (1), (2) (cf. the beginning

of the section A.1.4) acquire, in this case, a particularly simple form:

07E) = & + nu" = 87'(E) + (n+iju” (5)
and
9"-n(E_,) =& - (n+)u" = 9"'1@) - nu” (6)
for every positive integer 5.
We leave to a reader the application of Theorem 3.2.2 and Proposition 3.2.3
to this case. '

A.1.4.2.2. The open part. Since the element -y is B-stable,
(1-7)'R(8.8) = RIO.E),
where  R:= (1—7}"R - the localization of the ring R at 1y, © the auto-

morphism induced by 6, & the image of E&.
Set u': = & - OFE), and let Yy denote the image of <y in R It
follows from the formulas (1), (2) (cf. the beginning of A.1.4) that

Qt) = & + Yoy (Y = ') + (1) Gy T %)

and

/&) = & - (1) (v = 07®) - Yoy iy (8)

A.1.4.3. General case. Let now R{0,E} be a generic ring of M(2)-type, w:= & -
67'(£), O(u) = yu  Then, thanks to the last property, R{6,Eju is a two-sided
ideal, and the quotient ring, R{0.E}/R(B.EJu is isomrphic to the hyperbolic
ring R{0.€}), where R'= R/Ru, 0 is the induced by 6 automorphism, &’
the image of & in R’

The equality ©(u) = yu implies that the multiplicative subset  (u):= (u'|
n 2 0} is an Ore set. The localization of R{G,@} at  (u) is isomorphic to
the hyperbolic ring  RAOMNEA),  where  RA= (u)'R, 8 is the induced by 6
automorphism of RA,  EA is the image of &  Clearly the ring RABNEN s
also of M(2)-type, and the image «” of the element w« is invertible.

Thus, we have the decomposition

SpecIR;’B.&} = V() U Ufu) = Spec[R'{B'.é'} U Spec!R"{(')",ﬁ"},

~in  which the hyperbolic ring  R(6.&’} is degenerate, i.e. &= O()  (cf
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A.1.4.1), and RAOMNEM] is nondegenerate (cf. A.1.4.2).

A.1.5. The left spectrum of the ring A(Mq(Z)). Recall that the coordinate al-
gebra, A(Mq(2)), of quantum 2 x 2 matrices is the ring A<®,u>, where

= kfwyv], Bftwyv) = flgw.qv), u = (q - g jwv.
(cf. Example A.1.2). The corresponding hyperbolic ring, R{6.E} is given by:

= kfwv,E], Ofiwv.E) = flgw.qu.§ + (q3 - gwv) (1)

. for any polynomial f{w,v.§).
Clearly

) Y = qz.' O(u) = O(u) = q u.
According to A.1.4.3,

SpeclR[B.ﬁ} = Vu U Ufu),

and
Viu) = SpecIR’{G’.ﬁ'j, Ufu) = SpeclR"/B".ﬁ"},
where
R = kfwv.El/fvw] = (k{v] 1 k[w](E], )
and Oflvwi&) = flgv.gwt’) for every flvwi&') € R,
RA « k[w,w",v,v'l,ﬁ"]. (3)

and OM{wwE) = flgw.gv.& + (q'jl - g)wv)  (cf. (1)).
According to A.1.4.1, |

SpecR{(-) &) = (SpecR"[x.6"] L Spec,R"[7.8" Ny Spec &) RO},
SpecR”
where

R" = R/RE = k{v] 11 klw], and O"(flvw) = flgv.qw) for every flv,w) =
g(v) + h(w) € R", and '

(&)'RI0VE} = (&) R = (kiv] 11 kDw)IEE ™ Jx6].

Therefore
Spec R"[x0"] U Spec R"[y,8" '~
SpecR” €))
Speck [v.x] U Spec,k oV y''7 U Spec,k [v.x] U Spec [wy
[kq[ Speck[v]’ Speck I7q Speck{v] Ik

-1
where v = ¢, and
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Specy(&')"'R(8°5") = )
Speclk [x,vv '] U Speck [x, w,w '],
Speck[v] q
Now consider the nondegenerate part of the left spectrum - the open subset
SpeclR"{B".i"], where RN = kfwow vy B and  BMwvEN) = flgw.gvEN
(7 - gwv) (. ().

fa) If vy = q2 = 1, then, for every positive integer n,
ONIEN) = EA + nuh = ON(EN) & (neul, (6)
and :
O ER) = EA - (ntjut = BN(EN) - (7
where ur = (g - q'l)vw. The general theorems of Section 3 provide the follo-

wing assertion.

A.L5.1. Proposition. Let char(k) = 0. Then
1) To every prime ideal p in l([w.z.w'l,v.v'l I correspond two non-
equivalent left ideals from SpeclR"{G",g“}:
Pou = RMBNENp + RMONENEN + RMONEN)y

and

p|'oo= RAMOMNEN D + RMONEMHEA- ) + RMBANEN X,

Every p € SpecIR"{G",é"} such thar & nu™ € p  for some n 2 1 (resp.
n £ 0) is equivalent 1o P\ o {resp. to. Poo. | ) for some ideal p  from
Speck[w,w Lov

2) Let an ideal p € Speck[ww ' v EN  be such thai, for every nonzero
integer n, there is an  flvyw&*) in p such thar  flvwérnu*) € p,  and
Er - iuh e p  for all integers i

Then every left ideal p in RMNBNEN)  such that

' P n RMONEN = p

coincides with Pog oo’ = RMONENp,  and Poo oo € SpecI,R"{B",ﬁ"}.

(b) Suppose néw that .y ;= ¢~ # 1. Then
or'(er) = & + Yy (s
o~ (En) TR (R

for every positive integer i Here the specialization of general facts looks

and

It
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as follows.

A.1.5.2. Proposition. Let q (hence Y = qz) be not a root of unity. Then
t) To every p € Speck[w,w ' vv''], correspond two non-equivalent left
ideals from Spec IR"‘{ VAR R
Py = RMOMENp + RMONENES + RAONENy

and
P, o= RMBNENp + RMBAENEN ut) + RABNENX.
Every p € Spec[R’\IB",ﬁ’*} such that .
g+ Yoy (Y e p
(resp. & - (19" (¥t € p)
for some i 2 1 (resp. i 2 0) is equivalent to P, oo (resp. 1o p__ l) for

certain  p € Speck[w,w ' vv'].
_ 2) Let a prime ideal v in k[w,w'l,v,v-l,l';"]' do not contain neither M +
Y1-v) " (7 ), nor &N - (1-7)'](1-'f')u’* for any integer i 2 0, but, for
every [ 21 and n 2 0, there exist an flyw&") and an g(vwé&r) in
such that both ‘ ‘
foow & + vy (Y )er) and  glvwEr - () (19 )ud)

do not belong to p.

Then every left ideal p in RMONEN)  such thar

P N RMONEY = p

coincides with Poo oo’ = RMNONEA D, and Poo o0 € SpeclR"{E)".ﬁ"/.

A.1.6. Coordinate algebras of SLq and GLq. The quantum determinant,
E - quv =xy-quv = yx - ¢ uv,
is a B-stable element in R{8,§):

0 - quv) = & + (q3 - quv - q3uv =& - quv

which means exactly that & - quv is a central element.

(Note that if q is not a root of wunity, then the center, @(ﬂ(Mq(2))),
of the algebra A(Mq(Z)) is generated by the ‘quantum determinant’).

The coordinate ring sd(SLq(Z)) . 1s the quotient of the coordinate ring
sa(Mq(Z)) of quantum 2 x 2  matrices by the ideal generated by & - quv - «
i.e. the algebra sd(SLq(Z)) is obtained from sd(Mq(Z)) by adding the relation:

Xy -quv =1
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(cf. 4.1).

The coordinate ring aa(GLq(2)) is the localization of the coordinate ring
sa(Mq(2)) of quantum 2 X 2 matrices at the powers of the determinant.

[t is more convenient to describe these two algebras in terms of the cor-
responding hyperbolic rings. ‘

In fact, if R{6,§} is the hypebolic ring of Mq(2), and derq:: & - quv
is the quantum determinant, then the quotient of  R{6,§) by the ideal generated
by (detq - 1) = & - quv - is naturally isomorphic to a hyperbolic ring
Af{8,C}, where

A = kluv], Sffuv) = flgugv), § =t + quv

Similarly, the localization of R{B,E)} at (detq) is just the hyperbolic
ring R(&E}, where R is the localization of the (commutative) ring R
at (detq), 6" is the unique extension of the automorphism 6 onto R, &

is the image of & wunder the canonical morphism R —— R’

A.2. Quantum Heisenberg algebra. Given nonzero elements, g and p, of a field
k, denote by H(q.p) the k-algebra generated by indeterminables X oy z
which satisfy the following relations:

xz = q'wx; yz= qzy. (1)

Xy - pyx = Z. (2)

The algebra  H(g,p) is a two-parameter deformation of the Heisenberg alge-

bra. Clearly  #(q,p) is one of the most straightforward examples of the rings

A<B,pu> (cf. 3.1.10):
A = kiz], Of(z) = f(g"'z) for any polynomial f(z), u = z.
The corresponding hyperbolic algebra is R{6,§}, where

R = k[zE], 6fiz¥) = fig'epl+q’'s) for any fe kiz&]
(cf. 3.1.10).

Note that 9-'f(z.§) = flgzp '(E-z)). In particular, we have:
MG+ = g o

The equality (3) suggests that a special choice of parameters, namely p =
g, might have some advantages. And this is really the case, as the following
Proposition shows:

A.2.1. Proposition. Let . 6 be an automorphism of a commutative ring R.

Suppose that an element & of R satisfies the condition
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0E) + 87'(&) = (p + p ') (4)

for some invertible element p such that ©(p) = p.
Then (5 - p 'O "E)NE - pO () is a central element in the hyperbolic
algebra R{6,§} = R{xy;0,E}.

Proof. We have:

8% - po7'(E) = B(E) - pE = p'E - 07E)) = pT'(E - pBT(E)). (5)

Since p and p'l enter symmetrically into the equation (4), 1t follows

from (5) that

o0& - p'87'(%)) = p(& - p'67'(E)). (6)

Therefore

(& - p 07 (ENE - pO'(E))

is a B-stable (hence central) element. m

The algebra  #(q.q) was introduced in [KS] as a g-analog of the Heisenberg
algebra (in [KS], it is denoted by Hq). The prime spectrum of this algebra is
studied in [Ma]. ‘

A.2.2. ’Heisenberg type’ Hyperbolic algebraé. Now, instead of direct investiga-
tion of the rings Hq: ¥(q.q), we shall consider properties of a more general
class of Hyperbolic rings which arises from Proposition A.2.1.

That class consists of Hyperbolic rings R{6,§] such that

BE) + 07'(E) = (p + p ') (1)

for some O-stable invertible element p.  We shall refer to the hyperbolic rings
with property (1) as hyperbolic rings of Heisenberg type.

Note that the class hyperbolic rings of Heisenberg type is stable under the
adjunction (cf. 3.1.9); ie. the adjoint to R{B,E) ring, R(87',87%&)), also
satisfies the condition (1):

(07'+ 0)07(E) = 6707+ O)E) = 07(p +p )E) = (p + p )OE).

A.2.3. Special case: rings A<8,p,u> of Heisenberg type. Let ¥ be an outomor-
phism of a commutative ring A, p an invertible element of A, and A<O.pu>
a ring defined by the relations:

xa = Ha)y, ay = yOa) for every a € A,

xy - pyx = u for certain u € A.

62



Finally, let R{6,§] be the associated with A<®¥,p,u> hyperbolic ring:

R = A[E], B(E) = O(p)& + O(u), |, = 9.

(cf. Section 3.1.10).
Since 67'(E) = p'(E - u), we have:

8E) + 07'(E) = (9(p) + p E + (B(u) - plu). ()

The equality (1) implies that
£ and only if 0E) + 67(&) = (p + p )& )
p) =p and Ou) = pu 3)

A.2.3.1. Example. Let A = kfz]. Offz) = f(q"z), as in A.1.3; but let u =
hy"  for some nonnegative integer n and an h € k*  Then (3) holds if and

only if p = qn. In particular, p =1 if u=he k
Similarly, we can take, instead of A = kfz], the algebra of Laurent poly-
nomials, A = k[z,z-'], with the same sort of action, iz) = f(q-'z), and

with u = h7' for some h € k and an integer n. Then (3) holds if and only
if p=4g".

Note that if ¢ is not a root of unity, then the only solutions of the
system (3) are u = hZ', p = 4' n20.

In fact, the equality O(p) = p means exactly that p € k  Since g s
not a root of unity, the equality Hu) = p-lu implies that u = hZ"  for some
h € k and some integer n. =

A.2.4. A canonical central element. Let R{08,§} be a hyperbolic ring of Heisen-
berg type; i.e.
0.+ 6')E) = (p+p )& and B(p) = p. (1)
for an invertible element p such that 6(p) = p.
By Proposition A.2.1,

e(p) = (& - p 'O EINE - pB'(E)) (2)

is a central element in the ring R{8,&).

A.2.4.1. The case of rings A<®pu>. If R{6,§) is the hyperbolic ring associ-
ated with the ring A<8,p,u> (cf. A.2.3), then

c(p) = (xy - p'lyx)u. ()
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In particular, if A = kfz] (or if A = kfzz']), then, necessarily, u

= h7' and p = q" (cf. Example A.2.3.1), and

o(p) = hixy - ¢ yx)" (2

It follows from the equalities ©(x) = p'u and ®(p) = p that

¢(p) = (xy - P-lyx)u = Xyu - P-lye(u)x = xyu - P-lyp-lux = xXyu - P-zyux
Le.

o(p) = x(yu) - p”(yu)x. (3)

The equality (3) shows that if the element u  is invertible, then the ring
A<¥,p,u> is isomorphic to the ring A<13,p".c(p)>.

A.2.5. The hyperbolic rings and the rings A<9,pu> of Heisenberg type. Let,
for a short while, R{6,£) be a generic hyperbolic ring, and let p be an
invertible element in R. Denote by u« the element & - p87'(§), and consider
the ring R<B,p,u>. Let R[t]{©,t] be the associated with R<0,p,u>
hyperbolic algebra (cf. A.2.3): G)]R =0, Of) = 0(ph + 6(u).

Clearly the map (pp : R[t] ———— R which is identical on R and sends ¢
into &, is a ring epimorphism such that (ppo® = eo(pp. Therefore <pp defines
the canonical ring epimorphism

Wp ; R{1){©,}] ——— R(B,E).

Now suppose that the hyperbolic ring  R{B,E} is of Heisenberg type, and
let p be an element such that '

(6 +07')E) = (p+ p )5 and O(p) = p. (1)

It follows from (1) that
Ou = O - p87'(E) = 8(&) - p(&) = p'& - 67€) = plu
Since O(p) = p and B(u) = p'u, the ring R<O.puj, or, what is the
same, the associated hyperbolic ring R[t]{©,1], is of Heisenbel;g type. Note
also that

o) = pt + plu (2)



A.2.6. The left spectrum of a hyperbolic ring of Heisenberg type.
hyperbolic ring R{§,6} of Heisenberg type:
8(&) + 07'(&) = (p + p )
And set, as above, wu:= & - pB'(E).

A.2.6.1. Lemma. For any nonnegative integer n,

9"(&) _ pn+1e 1(};) + pn( ¥ py)u,
O<isn
and .
67 (E) = p™E - p-n-l( Y oM
' 0<is<n
Proof. When n = 0, the formula (1) is just the definition of wu:

& =p07(8) + u

If (1) holds for some ~n, then, thanks to the equalities

. 8(p) = p and O(u) = p'u,
it holds for n+1:

0"*'&) = 8(p"'07(E) + p( T p¥u) =
{

p"HE + p (T oMierw) =

Fix a

(1)

(2)

O<isn
pn+26-l(g) + pn+|u + p-n( Z p2l)p-1u -
0<i<n
pnﬂe-l(g) - p-n-l( ) p2i)u.

0<i<n+i
The formula (2) follows from the formula (1) for the conjugate ring,
R/®7'07%E)) with p' instead of p and, as a consequence, -u instead of
u. This is an easy way to write it. But, once the formula is written, it is

~ easier to prove it by induction. The details are left to a reader. w

A.2.6.2. Decompositions. Thanks to the property O(u) = p-lu, the left ideal

R{O,&}u is, actually, two-sided. Thus, we have the decomposition
Speb[R{G.éj = Vu) U Uyfu),
and -
V[(u) o SpeclR'{()'.ﬁ'}, U/(u) o SpeclR”{e".ﬁ”},

where R'= R/Ru, 8 is the induced by © automorphism of R/, &
image of &,
R" = (u) 'R, 8" is the induced by 6 automorphism of R", &
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image of E.

A.2.6.2.1. SpeclR’/B’,g’}. Since  0€’) = pt, where p° is the image of p
in R, the left ideal R'{0".&'J)& is two-sided. Therefore

SpecR18E'] = V(&) U UE),

and
V[(ﬁ’) = SPEC[(R'/R'Q')/B'.OI; U[(ﬁ') x SPf?Cl(g')_lR'/ 6.8’/
The left spectrum of (R/R'E'){®",0} is homeomorphic to
Spec(R'/RE)[x8'] Spec[(R'/R'g')[y,e"' J.
SpecR'/R'E’
- And
(&) 'RI0°E) = (E)'Rxx" 0],

(cf. A.1.4.1).

A.2.6.2.2. SpeclR"le”,ﬁ"j. Now the image, u”, of the element 1 is

invertible. So, following the scenario of A.1.42, we consider the decomposition
with respect to the central element |-p"2, where p" is the image of the

element p in R
SpeCan(eu’élr} = Vi(l_prrz) U U[(]_p;,2)1

and
Vl.(l-p"z) = Spec!R_{B_.é_}, where R™= R/R"(1-p™);
Ul(l—p”zj ~ SpeclR"{E)".é"‘}, where RA= (l-p"zj"R".
Now it remains only the open set Ui(l-p”z) x SpeclR"{B",é"}.
Denote by w» and p* the images in RMONEN  of w and  p
respectively.  Since the element " l-p"\2 is invertible, we can rewrite the

formulas (1), (2) from Lemma A.2.6.1 as

9""(&_,) _ p,\n-l-'le,\-l(g) + p"'”(l-p’\z(’Hl))(l-p"z)'lu" (1)
and

6°(E) = pr g - oA (1 p T ) s @

The formulas (1), (2) provide a specialization of Theorem 3.2.2 and
Proposition 3.2.3 which we formulate here for readers’ convenience.
Set ch(pA) = 0 if - A e p for all i =1, otherwise it is equal to

the minimal positive integer i such that 1 - A e p.

A.2.6.2.2.1. Proposition. (a) Let p € SpecRM
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DIf N'E) e p and chi(p.ph') = v, then the left ideal

Py = RIBNENp + R{NENx + R(ONENY™

belongs to Spec[R{G,gj.
2)If 08YE) € p. and ch(p.pr’) = O, then the left ideal

P, o = RIBNEND + RIBAENx
is in Spec[R"/e“,ﬁ,"}.
3)If £E€ p and cb(p,p"\z) = 0, then the left ideal

Po, = RIONENP. + R(BNEN)y
is in SpeclR"{G’\,i"}.
4) Suppose that

p"n+19"_[(§) + p"-n(l-p"z(n'Fl})(l-p"g)-lu’\ ¢ p

and
onlE) = pne L T (1pr M pnd) i g p

for every nonnegative integer n; and let p  be not o~ stable for any nonzero
integer m. Then the left ideal Poo oo’ = R(8.E)p belongs to0 SpeclR"{G",Q"}.

(b) All the listed above left ideals are not equivalent one to another.

(c) Every left ideal p from Spec[R"[G‘“,i"‘} which contains

p“n+16"'l(§) + p"-n(l—p"z(}”l))(l-p’\l)_iu’\

for some integer n 2 0 is equivalent either to or 0 p for
1,00

p ,
Lr+
certain p € SpecRM

(d) Every left ideal p from SPEC[RA/BA,éA} which contains

GA"I"(ﬁ) _ p,\-n-lg i p"‘-n'l(l-p"z(”-'-]})(l-p"z)“lu" ¢ p

for some integer n 2 0 is equivalent either to or Py, for certain

'Dl,r+|’
p € SpecR™

A.2.6.3. A Version of Engel’s theorem. Recall that, given a ring B and its
subring A, a B-module is called A-finite if it is finitely generated as an
A-module. |

One of the consequences of the obtained description of the left spectrum of
Heisenberg type hyperbolic rings is the following fact:

A.2.6.3.1. Proposition. Let R{B.E)} be a hyperbolic ring of Heisenberg type

with the weight p. Suppose that the subring of O-invarinant elements of the
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ring R is a field and p is not a root of unity. .

Then the following properties of a left ideal p  from SpeclR{G,E;} are
equivalent:

(a) the quotient module R{6,5}/p is R-finite;

(b) p=p+ R(OEJx + R[BE)y for some p € SpecR.

In particular, p is two-sided, and

R(8.x}/p = RARE + RO™'(E)).

A.2.6.3.2. Corollary. Let R{8,E} be as in Proposition A.2.6.3.1.

1) If o= RE + RO'E) is a proper ideal in R, then a simple left
R{8.§)-module is R-finite if and only if it is isomorphic, as an R-module, to
the quotient module RAL  with zero action of x and 'y, where W is a maxi-
mal ideal in R which contains o

2) If RE + ROE) coincides with R, then there are no nonzero R-finite
R{6,§}-modules.

A.2.8. A version of skew Weyl algebras. T. Hayashi [H] has defined a quantum
version of the first Weyl algebra as the ring Aq which 1s generated over a

field k& by x, y, z with the relations

xz = g ' vz = gy (5)
Xy - pyx = ) (6)

and N
c(q) = (xy - q yx)z = 1. (7

By analogy, consider the ring, R{6,p,E/,  which is obtained from  R{6,§/
by adding the relation:
o(p) = (5 - p 'O ENE - pBT(E) = 1 (8)

The ring R{0,p.§) shall be called the Weyl ring associated with  R{6,§}
or, shortly, the Weyl ring, when it does not create ambiguity.

A.2.8.1. The ring WA<®O,p,u>. Consider the special case, - when Rf0,§} is the
hyperbolic ring associated with the ring A<O,p,u> of Heisenberg type (cf.
A.2.4). Then the associated Weyl ring, R(6.p.E}, can be described in terms
A, 8, u and p (using the canonical isomorphism A<8.pu> —— R{0.E)) as
the ring generated by x, y and A with the relations:

xa = Ha)x, ay = yO{a) for every a € A, | (H
xy - pyx = u for certain u € A. (2)
o(p) = (xy - plyvu = 1. (3)
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The ring defined by the relations (1), (2), (3) will be denoted by
WA<Q.p,u>.
Clearly the ring WA<3,Lu>  coincides with  WA<9,1,1>; ie. this ring is
given by the relations:
xa = Ba)x, ay = yO(a) for every a € A, (D
Xy - yx = I 4)
In particular, the (conventional) first Weyl algebra is a subalgebra of
the ring WA<Y,1,1>.

A.3. Rings of U(sl(2))-type. A ring A<Bu> will be said to be of U(sl(2))-type -
if there exists an element v in A such that |

v - 9 '(v) = w ' ()

Clearly the solution of (1) is determined uniquely up to a U-invariant sum-

mand. We shall call any solution of (1) a weight of the ring A<%,u>.

A.3.2. Example. Let A<Ou> = U (sl(2)); ie. A = kfzz'], Ofiz) = flgz)

for some g e k- (0%}, u=(z-2'q-q")
Then -1 N Sy
v=1(qz+ 2z )qg-1){(q-q) (2)

satisfies the equation (1).

If we consider the different version of Uq(sl(2)). the one with
w=(z-2Mq-q')
then, instead of (2), one should take
o= (g2 + NG - ) g - 7). S ®
A3.3. Example. Let now A = k[z], Offz) = flz+1). This subclass of algebras
A<B,u> was introduced in [S] under the name algebras similar to the enveloping
algebra of  sl(2). One can easily check that, if deg(u) 2 1, the equation (1)
has unique solution v such that o(0) = 0 (cf. [S], Lemma 14). =
Let R{0.5} be the associated with A<O,u> hyperbolic ring:
R = A[E], O(E) = & + O(u), 9|A = 0
A3.4. Lemma. Suppose A<Su> is.a ring of U(sl(2))-type with a weight .
Then & - o is a O-invariant (hence central) element in R{0,E)].
Proof. In fact,
B - v) =& + Ou) - o) =& + v -9'(v)) - o) =& -v m
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Fix a weight, v, of the ring A<®u>. And let m denote the O-invariant
element & - v. It is convenient to represent the ring R = A[§] as A/m]
with 6] ,= 0 and 6M) =7, and with E=1n+ o

Clearly, for every integer n, we have:

6"€) = + 8"v) = & + (8"0) - v) =

-1 n -1 4
07'(8) + (8"(v) - ¥'(v))

Note that the elements 1‘)"(0) - o and 13"(0) - 9'(v) do not depend on
the choice of o:

o) - 90) = T V(w (5)
0<i<n
and .
8" 0) -0 = T 8w (6)
g<i<n

for every integer n 2 0.
As we did in other cases, consider the corresponding to the element m  de-
composition of the left spectrum:
Spec[R{G,Q} = VMm U Um).
Since the element m is central, we have:

Vi) = SpecAfd0); Um) = Spec A J{Om+v), (7)

where the automorphism © s the trivial extension of ©®, ie. O] 4 = 9, and
Om) = . ,

A straightforward application of results of Section 3 provides descriptions
of both parts, SpectA{ﬁ,u}. and Spec[A[n,n"]{E).n+u}, of the left spectrum of
the ring R({6,E}. The details are left to a reader.
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A.4. Other examples of hyperbolic rings. There are lots of interesting hyperbo-
lic rings which do not belong to any of the three classes discussed in Sections
A.l, A2, and A.3. One of the best known of such rings is the dispin algebra.

A.4.1. The dispin algebra. The dispin algebra, Ulosp(1,2)), is the enveloping
algebra of the Lie superalgebra osp(1.2). It is generated by X, v, Z with
the relations

Yy -YZL =Yy, YN+ Ay =2, XZ-2X =X
Take A = kfzJ, and define the automorphism © by
Wfz) = fiz + 1)
Ther algebra Ufosp(1,2)) coincides with the algebra A<9,p,u>, where
p=-, U=z
The corresponding hyperbolic algebra is R{6,5), wiere
R = A[E] = k28], 05 = -E + 7z + &
Clearly R(6,E) cannot be of M(2)- or U(sl(2))-type
Since 07'(E) = (£ - z), we have:

0E) +07&) = E+z+r-Era=p+plll+ay

which shows that it is not of Heisenberg type either.

A.4.2. Another deformation of U(sl(2)). An example of | a ’'quantized’ hyperbolic
ring which is not of M{2)-, U(sl(2})- or Heiserberg type is the introduced by
Woronowicz [W] deformation of Ulsl(2)). This deformation. W(sl(2)), is the
k-algebra with generators x, y, z subject to the relations
xz - Vi = (1 + vz)x,
Xy - vzyx = vz,
4 , 2
y - VyZ = (1 + V),

where VvV € k* is not a root of unity.

We can rewrite these equations as
4 2
X2 = (v + 1+ V)x
2 :
Xy - Vyx = vz
3
y = y(v"z + 1 4+ V)

Now it is clear that this Woronowicz’s algebra is the algebra A<O,p.u>,
where
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5

A= klz], Ofiz) = fiv'z+ 1 + V), p =V u=wz
The corresponding hyperbolic algebra, R{6,§}, is given by
R = k[zE], OE = O(p)E + Bu = VE + v(V'z + 1 + V).
Since 07'¢ = p'(& - u) = v¥E - vz), we have:
08 + 07'E = VEE + v(ViZ + 1L+ V) + VHE - vy =
v+ VHE + (vt - vz + ).

Thus, the equality (O + O ')E) = p + p")?'; does not hold; ie.
W(sl(2)) is not a ring of Heisenberg type.

A.4.3. 3-Dimensional quasi-polynomial algebras. Both, the dispin algebra
Ulosp(1,2)) and the Woronowicz’s algebra W(sl(2)) are examples of algebras
which were introduced in [BS] as 3-dimensional skew polynomial algebras. To
avoid confusion with the notion of a skew polynomial ring which is used in this
paper, we rename them  into  quasi-polynomial  rings. By  definition, a
3-dimensional quasi-polynomial k-algebra is given by the relations

yx -oxy = A, oz -Prz =W, xy-yx=v (D
such that '
i) AU, VE ke + ky+ kz+k and o, B, Y€ k¥
2) the ’standart monomials’, {xiyiz1| ijl 2 0), form a basis of the al-
gebra.

A.4.3.1. Theorem (2.5 in [BS]). Let &4 be a 3-dimensional algebra defined by
the relations (1). Up to isomorphism, 4 is given by the following relations:
(@) if |{o.By}| = 3 then o is given by
_ yz -ozy =0, zx - Bxz =0, xy - px =0
(b) if |{a.BY} =2 andif Bzoa =v=1 disone of the following:

(i) yz-zy= 2 (i) yz-zy=12z (i) yz-2y= 0
x - Bxz =y zx - Pxz = b zx - Pxz =y
Xy - yx = X Xy - yx= X xy -yx= 0

(iv) yz-zy=20 (V) yz-zy= az (vi) yz -zy= 2

zx - Pxz = b - Pxz =0 zx - Pz =0
xy - yx= 0 Xy - yx = x xy - yx= 0
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Here a, b € k are arbitrary; all nonzero values of b  yield isomorphic

algebras.
(c) if [{oBy/| =2 andif B#o =7v#1, then
(@) yz-ozy =0 (i) yz -ozy =790
- PBxz=y+b 2 - Bxz = b
xy - ayx = 0 xy - ayx = 0

b € k arbitrary; all nonzero values of b yield isomorphic algebras.
(d)if oo =B =vy#1, then 4 Iis given by

yz - ozy
X - 0xz

ax + .bI

a2y+b2
xy-ayx=a3z+b3

If a, = 0, then all nonzero values of bi yield isomorphic algebras.

(e) if oo =P =v=1 then 4 Iis isomorphic to one of the following:
(i) yz-zy= x (ii) yz-z2y =0 (iii) yz-zy =20

X -xz2 =y zx-xz =0 x-xz2 =0

Xy -yx = 2 xXy-yx =z Xy - yx = b
(iv) yz-zy = -y (v) yz -zy = az

IX-XZ =X+ Yy X -XZ = X

xy-yx =0 xy -yx =0

a, b € k arbitrary; all nonzero values of b yield isomorphic algebras.

A.4.4. 3-Dimensional skew polynomial and hyperbolic ringé. The following
algebras in the list of Theorem A.4.3.1 are either hyperbolic or skew
polynomial:

(b): algebras (i), (il) = are hyperbolic, the algebra (vi) is skew polyno-
mial; | .

(c): both algebras (i) and (ii) are hyperbolic;

(e): the algebra (i) is hyperbolic, the algebra (v) is skew polynomial.

We shall support this observation by producing the hyperbolic or skew poly-
nomial structure for each of the listed above rings. Besides, we shall describe
the part of the left spectrum covered by Theorem 1.1.2 and Proposition 1.1.3 in

the most interesting cases.

(b) (i) Take A = K[y, Of(y) = fly - 1). Then the relations (i) are
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xa = 9 a)x, za = Sa)z, zx - Pxz = y € A;
ie. &4 = A<S,By>. The corresponding hyperbolic ring is R{6,E/, where

R = k[y&]. Ofty8) = fiy - vBE + y - ).
In particular, the dispin algebra (cf. A4.1) is isomorphic to the
hyperbolic ring R{8,} for B = -.
Clearly the ring  4<9,1,y> (hence  R{6,£}) is isomorphic to the envelo-
ping algebra U(sl(2)). So, we assume that f # 1.
One can check that

o) = BTG+ T B9 =

0<Li<sn

B Te7(E) + E By - n + i) = (1)

0Lisn

BTN E) + (1 - By - BTy - )+ - (- BT+ (- BTG - BT

and -n -n -l 4 i-n
o) = B - T By =
1€isn }
B - S Bly+n-ip=p"E- 3 Bly+i)= @)
1<ign 0<i<n-1

BE - B - BN - By + B - B+ B - BT - B)TY).

Let the ideal p € SpecR contain ©7'(&) = B'(& - y. It follows from
(1) that 6"'(€) € p if and only if

(1 -B)y -n+ )+ 1 -m-2f"" + -0 -B)le p 3)

The formula (3) shows that, for every positive integer »n  such that p" =
1, there exists unique prime ideal p such that

p = RIBEIp + R(6E)x + RBE) (4)

is'a left ideal from SpeclR(G,ﬁ}. This ideal, p, is

p(Mn)) = R(§ - An)) + R(y - Mn)), (5)

where '
M)y =n -0+ (- - BT - BT,

Similarly, if B" # 1, there exists unique prime ideal p such that

Ppi= RIBEID + R(8E)z + R(OEN" (6)
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is a left ideal from SpeclR{e,E,}. This ideal, p, is
p(M-n)) = RE + R(y - M-n)), 0

where

M-n) = (1 - ") (nB" B) - B(i - B)

Obviously, for every integer n, the ideal  p(A(n)) is maximal, and the
quotient ring, R/p(AMn)) is isomorphic to k. Therefore the left ideal
p(?k(n})I " is maximal for every n, and the corresponding quotient module,

RIOENp(Mn), .

has dimension n over &k And this exhausts the list of finite dimensional ir-
reducible representations and even R-finite modules from the spectrum of the ca-
tegory R{6,&}-mod.

In particular, the Ilist of equivalence classes of finite dimensional irre-
ducible representations of the dispin algebra (the case when B = -1) contains
one representation in every odd dimension and no even-dimensional representati-
ons.

Every prime ideal p in k[y] which does not contain  y+A(n) (i.e. is
not equal to k[yJ(y+A(n))) for any n, defines two ideals from SpecIR{B,é} :

RI6,ENE - y) + R[B.EJp + R{6.E)x

and

R(B.LJE + R(6.5/p + R(B.L)z.
Thus, the 'Verma’ part of the left spectrum contains two non-closed points,

- p(0) = R{6,SJ(€ - y) + R(B.E)x (8)
p(0) = R(O.5)E + R{6.5)z, 9)

and two families of closed points (- maximal left ideals):

» P(:= RIBENE - y) + RIOE) + R(BE)x (10)

pYg)= R{O.5)C + R(B.E)g + R{6.5), (11)

where f = fly) and g = g(y) run through the set of all irreducible polynomi-
als in y which are not equivalent to y - A(n) for any n.

In particular, if the field k is algebraically closed, then, instead of
(8) and (9), we can write: |

H(r):= RIO.EHE - A) + RIB.EHy - A) + R[0.E)x (12)
where A runs through & - {AMn)| n 2 0), and
WAMi= RIBEJE + RIB.ENx - M) + R(B.E)z, (13)
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where A runs through & - [A(-n)| n 21}

Note that the family of ideals (10) is exactly the set of all nontrivial
specializations of the ideal p(0) (cf. (8)), and the family of ideals (l1) is
the set of all nontrivial specializations of the ideal p*(0) (cf. (9)).

Now, suppose that p is a prime ideal in R = k[yE] such that 8"p = p
for every n # 0, and 6"(E) ¢ p for any n.

For example, the ideal m(y,v):= R - y) + R(y - v), where

Y20, Y= (-0 -B) 0+ Mn) - V),
n -1 ' (14)
Yy - P - B) (V-M-n)) for any n 21,
have this property. ,
Then the left ideal p__ = R{8EJp belongs to SpeclR{&E_,}. Moreover, if

the ideal D is maximal, then P o 1s a maximal left ideal. In particular,
the left ideals

MYV, oo = RIBENS - ¥) + RIGE/(y - V), (15)

where the pair vy, v satisfies the conditions (14), are maximal.

(b) (ii) 4 = A{9,B,b} for the same A and © as in (i), but with b € k*
instead of y. lLe. & ~ R{6,E], where

R = KyEL OftnE) = fly - uBE + b).

So, we have:

") = pPeNE) + T B =

O<isn
B"TI0TE) + b1 - B - BT,
6" = BE - T BTy =

1<i<n
67&) = BE - b - B - BY)).
This time, the left ideal

P, 4= RIBEIp + RIBE)x + R(OE)",

where p € SpecR and & - y € p, belongs to SpeclRIB,é} if and only if p" =
, but B if 1€i<n -

Moreover, the left ideals
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P, = RIBEIp + R{6,&/x and|or Poo = R(8.EJp + R(B,E)z

belong to Spec[R{B.ﬁj if and only if [ is not a root of unity.
If pe SpecR is such that
E+ b0 -B ' -BY)ep
and Bn(p) # p for any =n, then p = R{8,EJp belongs to the left spectrum.
If p is a maximal ideal, then the left ideal P oo is also maximal. In parti-

cular, the left ideal

R(B.EHE - v) + R{BEHy - v)
is maximal if ¥ # % b(1-B)"'(1-8") for any n.

(b) (vi) Take B = klxy], Ofixy) = fiBxy+t). Then 4 = B[z;0].

(c) (i) Take A = kfy], Ofly) = floy), u = y + b. Then 4 = A<)Bu>.
The corresponding hyperbolic ring is R{6,§}, where
R = k[yEl, OfnE) = o’ yps + o’y + b).

Note that Woronowicz’s deformation of Ulsl(2)) (cf. Example A.4.2)
belongs to this class: o = V4, B = V'z, b = vz(vz- 1)'].
- We have: 4
en(g) — Bn+|9'](§) + E Blﬂn'f(y + b) =
0<is<n
B0 E) + T Bay + by
0<isn
If of =1, then it follows from the last expression that

0"'&) = 8"07'&) + np" My + bt - B0 - BT

If off #1, then .
en-l(g) - Bne-l(a) + (I . U.B)-IC(-’H-I(I } (aB)H)y + b([ ) B)'l(] ) Bn)
Similarly, o o
0" =B - T By =BTE - T Plaly + b)),
1S <n 0<i<n-i
which implies that

0"E) = BE - ny - b1 - B0 - BY))

if ocB =, and . .
07E) = BE - (v - ) - (o) )y - b - B - BT))
if aff =1
For any integer n 21, set
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tn) = n B b - B - B, ten) = - B - BT

if of =1, and
in) = (1 - af)a (1 - (aB)) b - B0 - B,

t(-n) = (1 - of)(r - (aB)')'b(r - BN - B
if (af)’ = 1.
Let the ideal p € SpecR contain ©0'(&) = P - y - b) It follows
from (16) that 6""&) e p if and only if
either o =1 =B, or (af)+ 1 and y + f(n) € p.

(a) Let of = 1. And suppose that PB” = 1, but Bi #1 if 1 £i < n
Then every p € Spec[R/G.Q} such that the quotient module R{B.E}/p is
R-finite, is equivalent to one of the left maximal ideals

pi= RIBEJE - 1(i) - b) + R{BEy + (i) + R(BE/x + R{BE)

i

for every 1+ £ i < n; and, if 1§ # j, the ideals P, pj are not equivalent
to each other.

If P is not a root of unity, then, for every i 2 1, the maximal left
ideal P, is in SpeczR{G,él; P is not equivalent to pj if i # j, and
every p € SpeclR[G.E_,} is equivalent to one of P,

Clearly any prime ideal, p, in R which contains 6 (&) is of the form

p=RO'E) + Rf = RE -y-b)+ RS
where f = f(y) is an irreducible polynomial. The left ideal

P, o= RIBEJE - y - b) + R{BE)f + R{BE)x,

belongs to  Spec;R(6,§) if and only if fly) is not equivalent to y + (i)
for any i

Similarly, the only ideals Peo | in SpeclRIB,T;} (p is prime, and & €
B8(p)) are of the form

R{6.S/S + R(B.E/f + R(B.E)z,

where f = fly) is an irreducible polynomial which is not equivalent to y +
ti(-i) for any 1 2.

It is not difficult to describe the ideals p € SpecR such that R{6.Ejp €
SpeclR{E).é} (cf. Proposition 3.2.3):
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Every p € SpecR such that 6"(&) ¢ p belongs to this set except
the ideals Rg for any irreducible g € kfyJ, if [ is a root of unity;
the ideal Ry, if [P is not a root of unity.

(b) Let now of # 1. And suppose that o = 1 = B”, but the condition
o= 1 = BI does not hold for 1 < i < n - 1. Then
p(0) = RBEIE - y - b) + R{6.E)x + R(O.L)"
belongs to SpeclR,’B.E}. The set of nontrivial specializations of the ideal

p(O)l.n consists of all the ideals
of), = RIBEIE - y - b) + ROEIf + RIOE)x + RIOE),
where f = f{y) is any irreducible polynomial which is not equivalent to y +
i(i) for some 1 <i<n such that (af)= 1.
Clearly all the left ideals p(f)]'n, f # 0, are maximal.
Besides, there are the maximal left ideals

b, ;= RIOENE - (D) - b) + R{BE)(y+i(i)) + RBE)x + RIOEN,

for every i such that 1 £i < n and (aB)i:t I
The ideals p(O)] o {eo(f) .} and {p

1A 11
another, and every ideal p € SpeclR{B.E_,} such that the module R{0.E)/p s

/ are not equivalent one 1o

R-finite, is equivalent to one of them.

Since "= id, the series {pl’m}, {pm,I} and /pm'm} are, evidently,
empty.

(c) Now assume that of # 1, and the condition o = : = B does not hold
for any n 2 1. Then, for every i such that ((I.B)i;ﬁ (, the left ideal

o, ;= RIBEIE - Ki) - b) + RIBE)(y+i(i) + RIOE/x + R(BE)Z,

is maximal. Every p € Spec[RIB,Ej such that the. quotient module R{8.E}/p is
R-finite, is equivalent to one of the ideals p, . '
The series {pl o/ and [p_ l} consist of the ideals

RIBENE - y - b) + R{B.E) + R{B.,E)x,
R{B.EJE + R(0,5)g + R(6.E)z,

where f  (resp. g) runs through the set of all irreducible polynomials in y
which are not equivalent to y + (i} (resp. to y + #f-i}) for any i = 1.

Suppose that p € SpecR is such that 8"(&) € p for any n. Then p_ =
R{BE)p € SpeclR{B,E_,} provided ' : ’

p # Ry, if @ is not a root of unity;
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p # Rg for any irreducible polynomial gfy), if o is a root of unity.
Moreover, if the ideal p is maximal, then p__~ is a maximal left ideal
In particular, the left ideals '
m(yV)_ .. = RIBENE - v) + RIOENY - V),
where vy # (i) for any intege'r i, are maximal.

(c) (i) &4 = A<O,B.b>, where A = k[y], Ofly) = floy).
The corresponding hyperbolic ring is R{6,§}, where

R = k[y.E], OfinE) = flo'y.BE + b).

Here the formulas for Gin(!';) are the same as in the case (b) (ii) :
en(é) - Bn"'le'l(&) + b(l ) B)"l{l _'Bn+1),
07(&) = 87%&) = BTE - b0 - B - B)).

We leave the description of SpeclR{O,E_,} to the reader as an exercise.

(e) (i) This is the enveloping algebra of the Lie algebra with basis x, y,
-z and the relations :

[yzl = x [zx] =y [xy] =z
In other words, « = U{sl(2).

(e) (v) Let A = kfxy], Ofixy) = flx+1,y - a). Obviously & = A[z;0].

A.4.5. 3-Dimensional rings of skew differential operators. Let O be an auto-
morphism of a ring A and @ a O-derivative; ie. 8 is an additive map from
A to A such that

d(ab) = 8(a)p + (a)d(b)

for all a, b in A. Recall that an Ore extension of a ring A defined by ¢
and 8 is the ring A[x0,8] generated by A and the indeterminable x . sub-
ject to the relations:

xa = Majx + 8(a) for all a € A. (1)

Clearly A[x,%,0] coincides with the skew polynomial ring A/fx, 9]/

Generic Ore extensions are called ‘sometimes skew polynomial rings. However,
the difference between geometrical pictures (the left spectrum, simple modules
etc.) in the degenerate case, a = 0, and non-degenerate case turns out to be
considerable enough to split these two cases. So, the ring of skew differential
operators (with coefficients in A) seems to be more adequate version of a se-

cond name for Ore extensions.
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The left spectrum and irreducible representations of rings of skew diffe-
rential operators are pretty well understood in the case when the ring of coef-
ficients is commutative and noetherian (cf. [R8], [R9]).

Now, resuming the contemplation of the list of algebras in Theorem A.4.3.1,
note that five of them - (b) (iii) and (iv), and (e} (i), (ii), (iv) - are

rings of skew differential operators:

(b) (iii) Take B = klxy], fixy) = fiBxy), and define a O-derivation
& by 8x) =y &y =0 Then 4 = B[z;,0,8].

(b) (iv) 4 = Bfz;8,8], where B and O are as in (iii) and the
O-derivation & is defined by a(x) = b, 8(y) = 0.

(e) (ii) This is the universal enveloping algebra of the Heisenberg Lie al-
gebra. So, it can be considered either as

k{z]{x,y:id,\,z}, or as k{yz][x:id 8],

where d(y) = z, 8(z) = 0.

(e) (iii) &4 = A[x;idd], where A = kf[yz], as in (ii), and &(y) = b,
&(z) = 0.

(e) (iv) Take A = kfxy], 8(y) =y, 8(x) = x + y. Then « = A[zid 3]

One can apply to these algebras the results of [R8] and obtain a descripti-
on of the left spectrum and irreducible representations.

A.4.6. The remaining cases. The only algebras left from the list of Theorem
A43.1 are: the ’generic’ 3-dimensional algebra ({a), the algebra (b) (v)
and, finally, the algebras (d).

(a) Let A = kfz], Oftz) = floz) for every f € A; and let © be the
automorphism of the algebra B = A[y,f}] which assigns to a polynomial  g(yz)
the polynomial g{Yy,B"z). It is easy to see that « = B[x,0O]. '

(b) (v) Let A = kfy], Ofty) = fly + 1); and let 6 be the automorphism-
of A’= A[x;9] defined by 0g(xy) = g(Bxy + a). Clearly 4 = A’{z,8].

Thus, in both cases, (a) and (b) (v), the ring & is a double skew polyno-
mial extension of a commutative (polynomial)} ring.

The invariant (categorical) approach to the noncommutative algebraic geome-
try (cf. [R6]) allows to describe the left spectrum of iterated skew polynomial
extensions.

(d) Suppose now that the algebra &  belongs to the class (d); 1e. it is
defined by the relations
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yz - 0zy = ax + bl:= A
-z =ay+ b=
Xy - Oyx = az + b}:: Y

where a =B =y =21

A4.6.1. A special case. Let a, = 0. Define the automorphism O of the alge-
bra A = kfy] by 9Offly) = flay), and the O-derivative 8 by 8(y) = b}.
Now, define the automorphism © and the ©O-derivative 8 of the ring B =
Afx9,8] by
Og(x,y) = g((xx,a'ly). dx) = ay +‘b2, &(y) = -o:'l(alx +b).

Clearly our ring coincides with the Ore extension B/[z6,8].

In other words, if one of the coefficients a; 1s zero, then the ring is a
double Ore extension. Again, there is a way to get a pretty ample information
about the left spectrum of a double Ore extension.

Thus the only case which remains, apparently, out of reach of the presented

in this chapter technique (as well as ([BS]) is when all the coefficients a;
are nonzero.
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