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THE LEFT SPECTRUM AND IRREDUCIBLE REPRESENTATIONS

OF 'SMALL' QUANTIZED AND CLASSICAL RINGS.

Alexander L. Rosenberg

INTRODUCTION

IS

( 1)

which[)q,hfx,.vl=[)
q.h

The first Heisenberg and Weyl algebras and U(sl(2)) - the universal enve-

loping algebra of the Lie algebra sl(2) - are the most important "small1! algeb­

ras of the preceeding to quantum group epoch of mathematical physics and repre­

sentation theory. Quantum group actlvlty has already produced a lot more. The

following list contains only principal examples of "smalI" quantum algebras:

(a) Quantum plane (or, better, q-plane) kqfx.yJ 15 an associative algebra

over a field k generated by x and y satisfying the relation:

xy = qyx, q E k*.

(h) The algebra 0/ q-differential operators

defined by the relation:
xy - qyx = h. (2)

(c) QuantLilll Heisenberg algebra fr-I generated over the field k by x, y,q
z subject to the following relations:

xz = qzx, zy = qyz; xy - qyx = z.
(d) The first quantum Weyl algebra tJIq, I which 1S

adding the relations:

obtained from fr-I
Cf

(3)

by

-[ -I
(xy - Cf yx)z = I = z(xy - q yx).

(e) Tlze quantuni enveloping algebra 0/ the Lie algebra

defined by the relations:

sl(2).

xz = qz.x, zy = qyz; xy - yx =
- I

Z - Z
- 1

q - q

(5)

2 x 2 nultrices lvJ. (2)q(j) The coordinate ring 0/ quantlllll

rators x, y, u, v satisfying the relations

xu = qux. xv = qvx, qyu = uy, .Cfyv = vy, llV = Vll.

which has gene-

-[
xy - yx = (q - q )uv.

(6)

ctions of the quantum group

relations:

called the algebra of fun­

x, y, ll, v subject to the

otherwiseA(SL (2))q
SL(2), is generated by

algebracoordinate(g) Tize



xu = qux, xv = qvx, qyu = uy, qyv = vy, llV = vu,

1
-[ (7)xy - quv = = yx ~ q uv.

(h) Twisted 5L(2) group, 'JIy (si(2)). by Woronowicz [W] which IS defined

by relations:
4 " 4 "XZ - Y z.x = (1 + y- )x, zy 4 V yz = (1 + y-)y,

"xy - v-yx = vz.
(8)

Here

and of

(1)

(2)

the hyperbo­

description of

The problems of determining the irreducible representations of the Weyl al

gebra and of the Lie algebra sl(2) were for a long time regarded as hopeless.

and their solution by R. Block [B I], [B2] is still remembered as a real 'break

through' which it, certainly, was.

One of the goals of this work is to obtain the representation theory of all

listed above algebras. The way we approach to the problem is based on the deve­

loped in [R 1], [R2], and [R4] noncommutative loeal algebra and on the following

observation:

all the algebras above. and a number of others, belong to the class of hy­

perbolic rings (which was first introduced in [R3]).

Given an automorphism 8 of a commutative flng A, and an element S of

A, the hyperbolic ring Are,sJ is defined as the fing generated by A and the

two indeterminates x, y satisfying the relations:

xa = 8(a)x, ay = y8(a) for all a E A,

xy = S' yx = e-I(S).
Chyperbolic' IS due to the relation (2». As the reader shall see,

lic rings turn out to be convenient enough to allow a complete

their left spectrum.

The left spectrum IS a natural extension of the set of left maximal ideals.

And, in many cases, it is not difficult to single out left maximal ideals ("cl0­

sed points") from the description of the left spectrum. For instance, we recover

the classification by R. Block of irredueible representations of the first Weyl

algebra [B 1], [B2l. JUS! by using general facts about relations between the Krull

dimension and the hight of points of the left spectrum established in [R5].

Note that R. Block studied irreducible representations of U(S/(2))

the enveloping algebra of the two-dimensional nonabelian algebra Lie [B2] by

using the homomorphisms of these algebras to the first Weyl algebra A and the
[

already obtained classification of the irreducible representations 01' A .
I

we first get the classification of the left spectrUiTI of skew polynomial and hy-

perb?lic rings, and then apply it to special eases. As a result, the classifiea-
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tion we get IS glven In terms of natural for each of the rings In question para­

meters.

Section 0 provides preliminaries on the left spectrum for readers' convenl­

ence. In particular, we diseuss the relations between the left speetrum and the

prime speetrum, and between corresponding classification problems.

In Seetion I, we study the left spectrum of the ring of skew polynomials

over a commutative nng. The speciaiization of general facts glves a compiete

description of the left spectrum of the universal enveloping algebra of the 2­

dimensional noncommutative Lie algebra over a field of eharacteristic zero and

the quantum plane, k/x,yJ, when q is not a root of unity.

To cover the root of unity and positive characteristic cases, we introduce,

In Seetion 2, restricted skew polynomial rings and study their left spectrum. A

restricted skew polynomial ring is given by the relations

xa = S(a)x for all a E A, x
n = u,

wheie e IS an automorphism of A such that Sn = id, x IS an indeterminate,

and u a fixed element of A.

Section 3 is the heart of this work. It contains an "almost complete" desc­

ription of the left spectrum of hyperbolic nngs and restricted hyperbolic rings

(~he latter are defined when an = id for some n). The compiete description

is out of reach of the technique used here. We shall get it in the forthcoming

paper [R6], and even in a much more general setting which glves an access to

some important classes of "non-small" algebras, like the Weyl and Heisenberg al­

gebras of arbitrary ranks and their (quantum) deformations.

The results of Section 3 allow to describe the left spectrum of all listed

above . hyperbolic rings (cf. (c) - (h)) and of a number of others. We sketch the­

ir spectral pictures in Sections 4 and 10 Appendix which areader ean regard as

a kind of a handbook on representation theory of important (not only for mathe­

matieal physics) examples of hyperbolic rings of small GK-dimension.

A pure luck is that most of 'small' rings of interest are hyperbolic.

I am delighted to have another opportunity to thank Max-Plank-Institut· für

Mathematik for hospitality and for an excellent working atmosphere.

O. PRELIMINARIES ON THE LEFT SPECTRUlVI.

0.1. The left spectrum. Let R be an associative ring with unity. Define a pre-

order :::; in the set I,R of left ideals of R as folIows: m:S; n if there

exists a finite set x of elements 10 R such that

3



Note that, if m

(m:x):= Ir E RI rx c mJ C n.

is a two-sided ideal, then m:S; n iff m c n. In

particular, :s; coincides with inclusion if the ring is commutative.

The left spectrum, Spec f. of the ring R consists of all left ideals p

In R satisfying the following property: (p:r):S; p for any r E R - p.

Note that p:S; (p:r) by definition of :S;. Since :s; IS c for two-sided

ideals. Spec/R coincides with the prime spectrum when R IS commutative.

\Ve are interested not in the elements of Spec/R, but in the equivalence

classes of these elements with respect to the relation m =:: n iff m:S; n ~ In.

0.2. The spectrum of an abelian category. The proofs of the assertions of this

and the next section can be found in [R4].

We shall need adefinition of the left spectrum In categorical terms.

Let iJ be an abelian category (in this paper, A is the category R-Inod

of left R-modules)~ and let M. N be objects of A. We shall write M >- N if

there exists a diagram

(I)M t--- L~ N,

where (l)M is the direct sum of I copies of M; the first arrow IS a mono-

morphism and the second arrow is an epimorphism.

Denote by SpecA the collection of all the objects M of .i1 such that N

>- M for any nonzero subobject N of M.

0.2.1. Lemma. The relation >- IS apreorder III OhA. In particular,

mines an equivalence relation, . in SpecA.

Proo! See Lemma 1.1.1 In [R4].•

Denote the (ordered) set of equivalence classes Spec:iJ/=:: by SpecA.

>- deter-

induces a bijection of

0.2.2. Remarks. a) It follows from

pie objects of the category A.

b) An equivalence of abelian

Spec:Al=:: onto Specr3/;=. •

the definition that

categories,

SpecA contains all slm-

0.2.3. Proposition. Let .i1 IS the category R-mod of left modules

R. Then the map SpeclR ~ OhA. assigning to a left ideal p

module Rlp. induces a bijection of fhe sets of equiva/ence c1asses

4

over a rmg

fhe quotient



Proo! The assertion follows from Proposition 4.2 in [R4].•

0.2.4. Corollary. Let rings Rand R' be Morita equivalent;

equivalence between the categories of left modules, R -/1Jod and

there is a bijection of Spec/? onto Spec/?'.

0.2.5. Corollary. The set MaxlR of left maximal ideals 0/ R

SpecjR.

This follows from Proposition 0.2.2 and Remark 0.2.2 a).•

i.e. there is an

R '-mod. Then

IS contained In

0.3. The spectrum and exact localizations. A loealization 1$ a funetor which is

universal with respect to the class of arrows it inverts (cf. [GZ], 1.1.1). Here

we are interested In exact localizations, Le. loealizations whieh are exact

funetors.

Recall that a full subcategory Y of an abelian eategory

thick if, for any exaet sequence

o~ M' ----7 M -----? M" ----7 0,

M E Obi if and only if M' and M", belong to Y.

One can see that the kernel of any exact functor Q: dl ~ :B

the full subeategory of the category dl generated by all objects X

Q(X) = 0) is a thick subcategory.

Conversely, for any thick subcategory "U" of an abelian category

exists unique up to equivalenee exaet loealization Q]": d1 ----7 i1Iir

KerQy ="U" (cf. [Gr]). The functor Qy is the localization at the class

all arrows s in A such th~t Kerfs) and Cok(s) belong to i.

IS called

(whieh is

such that

til, there

such that

Li of

0.3.1. Proposition. Let Q: dJ -----?:B be an exact

category dJ. Then, for any P E SpecdJ, either Q(P) = 0,

Proo! See Proposition 2.2 in [R4].•

localization 0/ an abelian

01' Q(P) E Spec'B.

For any object X of a category dJ, denote by <X> the full subcategory

of A generated by OhA - {M E OhAI M >- X}. One can check that X >- Y if and

only if <Y> ~ <X>.

In partieular, Specdl/::: with the induced by >- preorder 15 canonically

realized as Specd1:= ({ <P> I P E Spectil},~).
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of A, denote by -rr-- the full subeategory of dl

such that any nonzero subquotient of X has a nonze-

IS called (in [R4])of the eategory

For any subeategory "Ir

generated by all X E OhiJ

ro subobject from "Ir.

A thiek subeategory

subcategory, if i = i-.

An advantage of Serre subcategories is that, for a ' good'

.i1 (e.g. a Grothendieek eategory), the localization iJ --7 oV"rr

eategory has a right adjoint functor.

a Serre

abelian category

at a Serre sub-

0.3.2. Proposition. For any

gory and. the quotient category

P E SpeciJ, the category

i1I<P> is local.

<P> IS a Serre subcate-

Proo! See Proposition 2.3.3 and Corollary 3.3.2 In [R4].•

Local means that AI<P> has a nonzero object M (called quasi-final) such

that <M> = 0; l.e. X,...M for any nonzero object X.

Note that all simple objects üf a local category (if any) are isomorphic to

each other. In partieular, the category of left modules over a nng R IS loeal

iff R IS a loeal ring.

0.3.3. The localizations of the category of modules. Suppose now that .i1 = R-mod

for sOlne ring R. And let S be a Serre subcategory of dl. Then the

localization Q at S has a right adjoint functor, Q/\. Denote their

composition by Gs' We have an adjunction morphism 11M: M~ Gs{M) for any

module M. It is known [G] (see also [B], exercises to Chapter II, or [F,I],

Chapter 16) that Gs(R) has a unique structure of a ring such that llR IS a

ring morphism. And, for any R-module M, the R-module Gs{M) has unlque struc-

ture of Gs{R)-module. Since the localization Q is exact and the right adjoint

functor Q/\ is (always) left exact, Gs IS a left exact functor. In particu-

lar, it maps left ideals of the ring R into left ideals of the ring Gs{R)

(or, ruther, the funetor Gs' defined uniquely up to isomorphism, can be chosen

this way). If m IS a left ideal In R, then, in general, the prelmage

11R-1(Gs(m)) eontains m properly. There is the following assertion:

0.3.3.1. Proposition. Suppose that p E Spec/R, al1d Rlp ~ Obs. Thell

(a) Gs(p) E Spec,Gs(R);
-]

(bJ (he prei111age llR (Gs(p)) 0/ Gs{p) in R coincides with p.

(c) lf p' E Spec,Gs(R) (md RIrlR-1{P') e Obs. (hen p' = Gs(p"), ~vhere
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pli =l1
R

-l(p').

(Note, however, that p" is not necessarily an element oJ SpecIR.)

(d) if the Junctor Gs is exact (which means that the quotient category

AIS is naturally equivalent to the category Gs(R)-mod oJ left Gs(R)-modules),
-1

then RlrtR (m) ~ Obs Jor any proper leJt ideal m in Gs(R).

Proof. (a) See Proposition 2.5 in [R2].

(c) See [R2], Proposition 2.7.

The assertion (b) follows from (a) and (c).

The assertion (d) is just a plain observation.•

\Ve are gOlng to use Lemma 0.3.3.1 In the following way. Suppose we have a

Serre subcategory s of A = R-mod such that it 15 relatively easy to find the

left spectrum of the nng Gs(R). It happens that, In the cases we consider In

this work, the functors Gs are exact. So, the only thing which remalOS IS to

find those
,

Spec,Gs(R) for which llR-I(P') Spec,R.p E IS In

0.4. The spectrum of principal domains. Proposition 0.3.1, allows to simplify the

matter by taking an appropriate localization Q: d1 ----7 73 and studying the Ima­

ge of the spectrum. The most simplifying localizations are those for which 73

IS the category of modules over left and right principal ideal domains.

Recall that a fing R IS a left (resp.) right) principal ideal domain if

it has no zero divisors and each left (resp. right) ideal In R is generated by

one element.

0.4.1. Proposition. Let R be a leJt Clnd right principal ideal dOl1lain. Tlten any

nonzero ideal Jrom Spec,R is equivalent to a leJr maximal ideal. And any left

maximal ideal 111 R is 0/ rite font! Rj. where f is. an irredllcible element 01
rite nng R.

for

Proo! Let

SOOle element

P E SpecjR.

f The

Since

absence

R IS a left principal ideal flng,

of zero-divisors garantees that the,

p = Rf

right ide-

al fR is proper.

In fact, if Jg = I, then (I-gf)g = g{l-fg) = 0 which implies that gf

IS equal to I' l.e. p = Rj = R.,

Being proper, fR 15 contained In a right Inaximal ideal ~. Since R 15

a right principal ideal domain, ~ = gR for same irreducible element g. In

7



R] ~ [gu = I] ~ [J-l = gR = R].

the left ideal (p:h) is equivalent to p.

left maximal ideal thanks to the irreduci-

particular, I = gh for some h. Note that h E Rf

Indeed,

[h E P] ~ [h = ul for an u E

Since p E SpeeIR and h e p,

Clearly Rg ~ (p:h). But, Rg IS a

bility of g. Hence Rg = (p:h). _

0.5. Ring morphisms and morphisms of spectra. Let f' A --) B be a flng mor-

phism. If the rings A and Bare commutative, the correspondence p~ flp

induces a map from SpeeR to SpecA. It is not that straightforward in the

noncommutative" case. There are two ways to deal with the problem. The standart

one is to single out a subcategory of 'compatible' morphisms. The other way IS

to understand what kind of functoriality arises in the noncommutative setting.

We begin with the first way.

0.5.1. Compatible morphisms. Consider the subc'ategory LRings of the category of

rings formed by a11 ring morphisms f' R' --) R such that, for any p E SpeclR

and any left ideal m In R, the relation m ~ p implies that j,"I'l1 S; flp.

0.5.1.1. Proposition. Jf f' R' --) R is a 11l0rphis11l Irom

map p~ f'p defines Cl morphism 01 preordered sets

(1: (Spec/R,~) ------;) (Spec/R',S;).

In particu/ar, al induces a map Spec/Rlz ------;) Spec/R'/z.

LRings, t/zen fhe

(I)

Proof of this fact can be found in [R 1], Section 9. Or, better, see [R2],

Proposition 3.1.1. _

0.5.2. Left normal morphisms. Given a ring morphism f' R' --) R, set

NffJ:= (z E R I I(x): E RI(x) for any x E R'}.

Clearly Nfl) IS a subring in "R which we call the /elt nonllalizer 01 f
A morphism f is called lelt nonnal if Nil) and f(R') generate the

nng R.

f' R' ------;) R

generate R. Clearly

right) normal morphism. _

0.5.2.1. Example: central extensions. Recall that a ring morphism

is called centr(t! extension if its image, ' f( R'), and its centralizer

C(}):= (z E R I f(x)z = zf(x)}

C(j) ~ N/!); hence any central extension IS a left (and

8



commutative ring), and

imbeddings

0.5.2.2. Example: quantum plane. Let k be a field (or a

q a nonzero element of k. The quantuffl plane is the k-algebra

kq[x,yj:= k<x,y>l(xy-qyx) ,

where k<x,y> denotes the k~algebra freely generated by

determining k/x,yj relation. xy = qyx, shows that the canonical

k[xj -------7 ~q[x,y]~ k[y]

are left (and right) normal morphisms.•

x and y. The

0.5.2.3. Example: skew polynomial rings. Let k be a commutative fing and A a

(not necessarily commutative) k-algebra. And let S be a k~algebra automorphism

of A. The associated to this data skew polynomial ring, A[x;S]. IS generated

by A (as a subring) and an indeterminate x subject to the relations

xa = S(a)x for all a E A. (l )

Clearly quantum plane (Example 0.5.2.2) IS an example of a skew polynomial

fing. Just take A = k[y] , SJ(y) = J(qy).

The relations (l) show that the natural algebra morphism k[x] -------7 A[x;Sj

is left normal. •

0.5.2.4. Proposition. The class N,Rings

category oJ the category LRings.

Proo! See Proposition 3.2.3 In [R2].•

of left nomlal morphisms fomls a sub-

0.5.3. A nonabelian functoriality. Fix a fing morphism f' A ------7 B.

element p E SpeclB, set p':= f[p; .and consider the set

n ,:= {(p:a) I a E A - p').p

For any

0.5.1. Lemma. For any left ideal v . 111 a ring A, all maximal with respect (0

the preorder S; elements 0/ nv:= ((v:a) I a E A - vJ belang to Specr4.

Proof Let a E A - v be such that (v:a) IS a maximal element of nv '

Take an arbitrary r E A - (v:a). Then (v:a) ::; ((v:a):r) by definition of ::;.

But, ((v:a):r) = (v:ra), and ra e v which means that the left ideal (v:ra)

belongs to nv' Therefore, due to the maximality of (v:a), the ideals (v:ra)

and (v:a) are equivalent. •

Return now to our fing morphism f' A --) B.

9
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which assigns to any p E Spec/B the set max(Qp,,:5), p':= [lp.

In the principal for this paper examples, A is a commutative noetherian

ring which garantees that af(p) is nonempty for a11 p.

Since we are interested in the elements of the spectrum up to equivalence,

we need to assign to f a correspondence Spe~lB/== ---4 Spee(J==. This is

already straightforward: we assign to any element p in SpeeIB/== the set

U{<p'> I p' E af(p), <p> = pi·
Here <p> denotes the equivalence class of the element p.

Note that if f is a morphism of LRings (in particular, if f IS left

normal), the correspondence we obtain this way reduces to the map mentioned in

Proposition 0.5.1.1.

0.6. The left spectrum and the prime spectrum. Fix a flng R. Reca11 thut the

prime spectrum of R IS the set SpeeR of a11 two-sided ideals p such that,

for any two-sided ideals 0: and ß in R, the inclusion o:ß ~ pimplies that

either 0: c p, or ß c p. Prime spectrum is intensively studied for decades,

and now, probably, more intensively than ever thanks to the abundant supply (by

mathematical physics and related representation theory) of concrete nngs to In­

vestigate. As usual In mathematics, the traditionally most important problem re­

lated to the pnme spectrum is the classification problem (for a given ring or a

class of rings).

In this subsection we summanze shortly the relations between the left spe­

ctrum and the prime spectrum, and explain how a classification of the left spec­

trum can be used to obtain a classification of the prime spectrum.

0.6.1. Zariski topology and the prime spectrum. For any two-sided ideal 0:, de-

note by Vlo:) the set (p E SpeclR I Ci c pJ. One can check that

v/o:ß) = V10:) U V/ß) and V/ supQ) = n V/a) (l)
aEn

for any pair Ci, ß and for any family n of two-sided ideals (cf. [R2], Lemma

1.10.2.1). This shows that the sets Via), a E IR:= {the set 01 two-sided ide­

als in RJ, form the family of a11 closed sets of a topology which is ca11ed Za­

risk~ topolo~y.

The following assertion IS easy to prove:

0.6.1.1. Lemma. A Zariski closed subset w IS irreducible if ({nd

only if it is equal to V/p) for some prime ideal p.

10



Proof See [R2], the proof of Theorem 5.3.•

0.6.2. Left spectrum and annihilators. Another pretty straightforward checking

is that the map

p~ (p:R):= Ir E Rl rR c p} = Ann(R1p) (1)

sends SpeelR into SpeeR. But. a quite nontrivial refinement IS that the ring

of factors R/(p:R) has no nonzero locally nilpotent ideals. This fact follows

from (is a part oD Theorem 5.3 in [R2]).

Reca11 that an ideal m is loeally ni/potent if any finite subset of ele-

ments of nl generates a nilpotent subring.

Let LSpeeR denote Levitzki speetrum 0/ R which is the set of a11 pnmes

p in R such that the ring Rlp has no nonzero locally nilpotent ideals.

0.6.2.1. Theorem. The map (l ) is a quasi-homeomorphism 0/ (SpeeIR, tZa r? to the

Levitzki speetrum LSpecR with the (indueed from SpeeR) Zariski topology.

Proo! Theorem 5.3 in [R2].•

0.6.2.2. Proposition. lf R lS a left noetherian ring, then

of SpeelR.

Proo! See Corollary 6.4.6 in [R2].•

SpeeR is a subset

0.6.2.3. Corollary. If

jeetion 0/ SpeelR onto

R is

SpeeR.

Cl left noetherian ring, then the map ( 1) lS {[ sur-

In other words, if R IS left noetherian, the pnme ideals are exactly the

annihilators of quotient modules Rlp. where p runs through Spec IR.

Thus, if we have managed to find a classification of the left spectrum of a

certain noetherian ring (which we are able to do for all listed in the introduc­

tion rings an a number of others), then we have a good chance (0 get a classifi­

cation of the prime spectrum.

0.6.2.4. The case of PI rings. If R 15 a PI algebra (over it5 centrum), then

a11 the primes are in the left spectrum, und any p E Spec,R is equivalent (0

the prime ideal (p:R) = Al1ll(Rlp). Thus, if R 15 a PI algebra, a classifica-

tion of SpeeR produces a classification of Spec,RJ~ and vice versa.

I I



of the k-algebra A

Consider two speci-

1. THE LEFT SPECTRUM OF THE RING OF SKEW POLYNOMIALS.

QUANTUM PLANE.

Let A be a commutative ring with unity, and let t} be an automorphism of

A. The associative ri~g A[x; t}} of t}·skew polynomials is generated by the

nng A and the indeterminate x subject to the relations:

xa = fJ(a)x for every a E A.

1.1. Examples. Let A = k[y}. A generic automorphism, t},

is defined by {f(y) = q(y + a), where q E k* and a E k.

al cases:

(a) Let a = O. Then A[x; f}} is the k-algebra generated by x and y

which satisfy the relation:

xy = qyx.

This algebra is called quantum plane and is, usually, denoted by kq[x,y].

(h) Let now q = I. Then the ring A[x;f}} is generated by x, y satisfy-

lng the relation:

xy = yx + cu.

Denote this algebra by V/k,a). Clearly V/k,O) = k[x,y}. If a -:t. 0,

then the k-algebra V/k,a) is the enveloping algebra of the (unique up to iso-

morphism) two-dimesional non-abelian Lie algebra.

(e) The generic case, more explicitly, the case q -:t. I, is again a quantum

plane. In fact, f}(y - aJ( t -q)) = q(y - aJ( I-q)) which means that the, change of

variables' Z~ (y - aJ(t-q)) establishes a k-algebra isomorphism of the quan­

tum plane k [x,z} and the algebra .A[x;f}]. •q

1.2. The left spectrum of A[x;t}} and the prime spectrum of A. We begin with the

following observation:

A[x;f1}x is a two-sided ideal, and the natural map

A ~ A[x;f}}IA[x;iJ}x

is an isomorphism.

Therefore Spect [x; iJ} = V/x) U V/x). where the closed

{pI x E p} = {p! A[x, {f}x ~ p} IS naturally homeomorphic to

open subset V/x) = {pI x e p} = V/A[x, l1]x) is going to be

investigation.

subset V/x) =

SpeeA. and the

the subject of our

Note that

is the module

U/x)
-I

A[x,x }

-I -I A(l
is Izomeomorphie to Spee,A[x,x ;iJ], where A[x,x ;vi

of Laurent polynomials with the multiplication. (unique-

12



ly) detennined by the requirement

xa = 'Ö(a)x Jor any a E A (hence x·la = 'Ö-I(a)x- I).

Suppose now that the flng A lS noetherian. Fix P E Spect[x,x-l;fJ]; and

set p = p n A. Let (p:a) be a maximal (with respect to the inclusion) ele-

ment of the set Q,:= {(p:b) 1 b E A . p}. According to Lemma 0.5.1, the ideal
p

(p:a) is prime. Thus, replacing the ideal p by the equivalent to p ideal

(p:a), we can assurne that the ideal p = p n A of the ring A is prime.

In the non-noetherian case, we restrict our study to the subset of those

ideals p E Spect[x,x·l;fJl for which p n A is a prime ideal in A.

1.3. The left ideals of A[x, 'Öl over primes in A. We assurne now that A is

an arbitrary commutative ring, and shall study left ideals p In A[x, 'Öl such

that the interseetion p n A is a prime ideal in A.

It is convenient to distinguish the following alternatives:

(a) p = p n A = (o;;
(&) P is non-trivial alld invariant under 'Ö;

(c) p is not invariant under {}n Jor any n.

Thus, the only remaining possibility is:

(d) p is not 'Ö-illvariant. but p is invariant under 'Ön Jor some n.

Consider each of these cases.

1.3.1. The stahle cases. Which are the cases (a) and (b) above.

. (a) Let p = p n A = {O}; in part.icu'ar, A is a domain.

Then we can take the loealization QA of the ring B: = A[x,x-I;'ÖJ at the

set A ~ {O}. Note that A - {O; is an Ore set, whieh implies that QAB lS

isomorphie to the ring K(A)[x.x-1;iJ'}, where K(A) is the field of fractions

of the ring A, und t}' lS the (unique) extension of the automorphism i} outo

the field K(A).

It is easy to check that K(A)[x;'ÖJ 15 an euclidean domain (for any 5kew

field K(A)). In particular, K(A)[x. i}J is a left and right principal ideal

domain. Therefore (cf. Proposition 0.4.1) an~ ideal from . Spec,K(A)[x;'Ö'1 is

equivalent to a left maximal ideal, and any left maximal ideal is of the form

K(A)[x,iJ'Jg, where g is an irreducible element (polynornial) of K(A)[x,iJ').

Clearly
-I ~~ hSpec,K(A)[x,x ;"ÖJ is Spec/K(A)[x.;v} without one point t e (two·

13



sided) maximal ideal K(A)[x,iY}x.

(&) Suppose 110W that p:= p n A is a nonzero 'Ö-invariant prime ideal.

Then 'Ö induces an automorphism, 'Ö', of the quotient ring A' = Alp.

The surjection A ----) A' induces an epimorphism,

<p: A[x, {)J ) A'[x, iY}

such lhat <p(x) = x. The image, p', of the ideal p belongs to the left spe-

ctrum of A'[x, {}'}; and p' n A' =. {O}.

Hence there exists an element g = g(x) E A[x,lJ} such that g'= q>(g) 15

an irreducible element In K(A')[x, 'Ö'] and p is the preimage of the maximal

ideal p'= K(A' )[x, f)' ]g' under the canonical ring morphism

A[x,f)] ) K(A')[x,f)']

(cf. (a) above).

(c) Consider now the most interesting, case: the ideal p = p n Aisnot

invariant under the automorphism f).

1.3.2. Lemma. Let p

is a prime ideal in A.

be a left ideal of the nng A[X,X-1;f)}

Suppose that p contains a polynomial

such that p n A

fex) = L xmg E A[x;f)},nz
g 01 which da not belang to

m
some of the coefficients

an . integer v such that

I ~ v ~ 11 = deg(fJ , and

p.

-v
{) (p nA) ~ P n A.

Then there exists

Proo! Denote the interseetion p n A, by p. Choose a polynimial fex) =
L. xm

gm E p of minimal degree among the polynomials from p with some coeffici­

ents from A - p. We can (and will) assurne from the very beginning that a11 the

nonzero coefficients of the polynomial f do not belong ta the ideal p.

Let A be an arbitrary nonzero element of the ideal p. It IS easy to see

that
1.{j I "rn-I -rn I "rn-I I'':i(x) - fex)/\, = x( L.. X {) (I\)g - k x g 1\,)m m

Since Af(x) - f(x)'A and L. xm-1g 'A are elements of p, the polynomialrn

also belangs ta p.

mality of deg(f) ,

But deg({)A('A)f) < deg(j). Therefare, thanks ta the mlnl-

a11 the caefficients, {)-m(A)gm' af the palynamial {)A('A)!

14



are elements of the ideal p.

ro coefficients of the polynomial

riant under the automorphism it-m

Since p ESpecA, and, by hypothesis, the

/ belong to A - p, the ideal p

provided the coefficient g IS nonzero. _
m

nonze­

is inva-

1.3.3. Corollary. Let be left ideal 0/ the
-1

such thatp a nng A[x,x ;it} p

= p n A is a prime ideal in A. Suppose that p is invariant under itn Jor

sonle n ~ 2, but not invariant under i}m Jor any I :s; m < n. Then every poly-

nomial in oJ degree less than belongs to
-Ip n P n A[x,x ,it}p.

and let there existA;nng

Then

to Spect[x, ~}.

a nlaximal ideal oJ the
n n-Ix E p, but x e p.

p = A[x,it}xn + A[x,it]p

1.3.4. Proposition. Let p be a left ideal in A[x, it} such that p:= p n A is

a nonzero prime ideal, which is not i}m-stable Jor any integer m. Then

1) IJ the ideal p does not contain xn Jor any n~l, then p is gene-

rated by p: p = A[x, it}p.

In particular, p belongs

2) Suppose that p is

a positive integer n such that

(p:a) = A[x;{}]xm + A[x;~]p.

3) In general case, if
exists a E A-p such that

nx E p Jor some positive integer n, then there

Jor sOlne I ~ In ~ H.

Proo! 1) If does not contain n for ~ then the idealp x any n I, p

is the of left ideal of the
-I

and p' n Aprelmage a p flng A[x .,x, {}}; = p.

So, the assertion follows from Lemma 1.3.2.

2) & 3) Let now the ideal contain n far same n ~ but n-Ip x I, x e p.

Suppose that n and letp * A[x, f}}x +A[x, f}}p;

I I-I
h(x) = xa.+x a. +... +aO' a. * 0,

I I-I I

be a nonzero polynomial from p of minimal degree with respect to the praperty:

all the nonzero coefficients of h are from A - p.

For every A. E P we have:

h(x)A.

Since deg( f} I(A.)h(x) h(x)A) < deg(h) and, for every m, there exists A.

E P such that f}m(A,) - A e p, all the coefficien ts am' 0 ::; m ::; i- [, are ze-

ros; i.e. h(x) = Ixa ..
I

15



Denote by
,

the set of all the elements E A such that i ItP a xa E p.

is easy to see that
,

is an ideal In A. Note that the ideal
,

p p IS proper:

otherwise the ideal p would contain i which contradicts to the hypothesisx,

about the minimality of the integer such that nn x E p.

Obviously,
,

containsp p.

2) Therefore, if the ideal IS maximal, then
,

contradicting to.p p = p

is not maximal, and p'

the assumption.

3) Suppose now that the ideal p

greater then p. For any a'E p'-p,

since p IS pnme,

the ideal (p:a') contains

IS strictly
ix t and,

A[x;fJ]p, we repeat the procedure and find an a" E A-p such that

= (p:a"a') contains xV for some V < i.

Clearly this process stabilizes and we shall come to the desired equality:

(p:a) = Alx;fJ]xm + A[x;{}]p

Note that < n.

(p:a') n A = (p :a') = p.

If (p:a') still does not coincide with Alx;ijjxi +

((p:a'):a")

for some m < n and a E A - p. •

Alx, ij]be a left ideal from the left spectrum of

n A is a prime ideal of the ring A. which is not
m·

ij for any integer In. Then

p = Alx, ijJ(p n A)

2) Let p' be a prime ideal of the rIng A. which is not stable under the

automorphism ijm for any integer m. Then the left ideal p = A[x,1j)p' be-

langs (0 fhe left spectrum 01 the ring Alx, ij].

ff the ideal p' is maximal, then the left ideal Alx, ij]p' is maximal.

1.3.5. Proposition. 1) Let p

such rhat x e p and p

stahle under the automorphism

-]
Proof 1) Since {p E Spec(llx, 'Ö) I x e p} = Spec!t[x,x ,'Ö) (cf. 1.2); In

particular, xn e p for any 12, the first assertion follows from Lemma 1.3.2.

2) Since the embedding Alx,{}) ---) A[x,x-
I
,{}) respect~ the left spect-

-] ,
rum, it suffices to show that the left ideal p:= Alx.x. {})p belongs to

-1
Spec!t[x,x ,{}].

-1 -ILet V denote· the quotient A[x,x .{} j-module A[x,x, ij)/p, and let V0

be the image of the subring A In V. We have to check that, for any nonzero

cyclic submodule A1 of the module V, there exists a diagram

(I)M f--< W --7) V

16



v

for some positive integer I (cf. 3.10).
-I

Let M = A[x,x ,i}J-v for some (nonzero) element v E V;

= L Xla . n, n'~ 0, be an element from the preimage of
'-:", .< In ~l~

nonzero coefficient a. of / belongs to A - p'. Clearly
I

x-nf(x) = a IS an element of p').
n

a) There exists an elelnent s 0/ the ring A such that

and let fix)

such that each

(otherwise

,
-n

sx fix) E (A+p) - p;

,
-nLe. sx fex) = sa ,+ g(x),

n
where sa ,E A - p', andn g(x) E p.

,
In fact, let N·= n-n' be the degree of the polynomial h(x):= x-n fix).

By condition, there exists an element t E p' such that fJN(O E A - p'. We

have:
N N

th(x) = i} (t)a , + x ta + xh (x)
n n 1

A',

(1)

Clearly i}N(t)a, E A - p', since iJN(O and a, do not belong to p';
n n

xNta E xNp' c p; and deg(xh(x))~-1. Therefore we can proceed by induction.n ,
b) Thus, applying to the image v of the element j(x) the element sx-n

(cf. the heading a) of the proof), we obtain a nonzero element v' of the

A-submodule V0 of the module V. Since VO~Alp', where p' is a prime ideal

of A; there exists a diagram

(I)Av' ~< Wo~ Vo
-[

for some positive inleger I. Note that the ring A {x,x ,i}] 1S flat over

l.e. the functor A[x,x- 1
J f}]®A is exact. Thus, to the diagrarn (I), there cor-

responds the diagram

(l)M = (l)A[x,x-l,iJ]-v ~< W = A{x,x-l,fJ]W
O
~ A[x,x-l,fJ]V

O
= V,

Vo= Alp' is

V0' being non-
-I

V = A[x,x ,fJ]lp,

is a left ma-p

we were looking for.

Suppose now that the ideal . p' is maximal; i.e. the A-module

simple. Then the intersection of any cyclic submodule W· with

zero, coincides with V0; hence W = V. This means that

where p = A{x,x-I,fl]p', is a simple A[x,x-',fJ]-module; i.e.

ximal ideal. •

1.4. Using an algebra structure. Suppose that A IS an algebra over a field k;

and let iJ be a k-algebra automorphism. We can gather some additional informa­

tion relevant to Proposition 1.3.4, paying attention to the natural embedding

<p .' k[x] ------7 A{x, i}].

17



is a domain, and let Q be the localization at the

A. Fix a nonzero prime (hence maximal) ideal k[xlf

Since <p IS a left nonnal morphism (cf. 0.5.2), the preimage p n k[x} of

the ideal p belongs to Speck[x}; i.e. p n k[x} = k[x}J, where f = f IS
P

either irreducible polynornial or zero (cf. Propositions 0.5.2.4 and 0.5.1.1).

Consider the case when f *' 0; l.e. f is an irreducible polynomial.

Since the nonzero coefficients of "f do not belong to p, it foUows from Lem-

ma 1.3.2 that there exists a positive integer m ~ degifJ such that the ideal

p n A IS stable under the automorphism 1}m.

In particular, if the field k is algebraically closed, then the intersee-

tion p n A is stable under 'Ö.

Now, suppose that A

set of nonzero elements of

of the polynomial ring k[x].

If A[x, f>}f E Spect[x, fj}, then, Slnce exact localizations respect the

left spectrum, Q(A[x,f>}f) = K(A)[x,'Ölf belongs to SpecIK(A)fx,f>}. Therefore

f 15 an irreducible element of the ring K(A)fx, f>}.

Conversely, let a polynomial f E k[x] be an irreducible element of the

flng K(A){x,f)]; and let p be an ideal from Spect[x,'Ö], contatnlng A[x,1}lf.

Since the ideal A[x,:ölf IS the preimage of its localization - the maximal left

ideal K(A)[x, 'ÖJJ, - then either p = A[x, 'ÖJ/' or P n A -:;= (al. In the second

case, it follows from Proposition 1.3:4 that

an element a E A - P can be found such that (p:a) n A is a nonzero

prime ideal which is stahle under the automorphism {Jm for same integer m.

In particular,

if f(O) *' 0, Qnd, for any m > 0, there are no nonzero iJrn-stable ideals

in SpecA, {hen the ideal A[x, fj]! is maximal.

1.5. Exampl~: the algebra U/ k, a). Let" A = k[z], u = z; and let the auto­

morphism iJ is determined by the equal ity f)(z) = z + Cl; l.e. A[x, 1}] is the

flng U/ k, Cl) generated by x, z with the relation

xz = zx + a.x ( l)

(cf. Example 1.1).

If p E Spec,U/k,a) and p n kfz] *' {Oj, then there exists an irredu-

cible polynomial h = !z(y) such that p n kfz] = k[z]h. Invariance of the ide~

al k[z]h with respect to fjv means that

fjV(ll). =" h(y + va) = u(y) h(y) (2)

for some polynomial u. One can easily deduce from the equality deg(iJv (h)) =

deg(h) that u = I; i.e. h(y + va) = h(y). The last equality is possible on·
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ly if deg(h) = O. Since the ideal k{z}h is proper, h should be zero.

Thus, we can use Proposition 1.3.4, which provides the following descripti­

on of SpecIU/k.a).

a) There is the embedding

Yi Spec!'[z}~ SpecIU/k.a), (3)

h)(determined by an irreducible polynomialk[z}hasslgnlng to a pnme ideal

the left ideal U (k,a)h.
2

b) There is the embedding Ai Spec!'fz} ~ SpecIU/k,a), sending a pri-

me ideal k{z}h into the two-sided ideal U (k.a)x + k{z}h which is maximal
2

iff h 'i= O.

Note that, if h 'i= 0, the maximal ideal

zation of the ideal U/k.a)h.

c) There is an embedding

Yx: Spec!<[x]~ SpecIU/k.a), k[x}g

A (k[a}h)z is the only speciali-

(4)

Note that if the polynomial g is not of the fonn cx, then

a maximal left ideal. But it is not two-sided.

lf g = cx, C E k*, then the set of specializations of

U/k.a)x coincides with the 'line'

Ax(Spec/[z)) = /U/k.a)x + k{z}hl k{z}h E Specf[z}}.

U/k.a)g is

U (k,a)g =
2

d) The remaining part of SpecZU/k,a),. denote it by

sists of the ideals p of the form

3(U (k,a)),
2

con-

U2(k,a) n k(z)[x,a}r, (5)

r is an irreducible ele-

where k(z)[x, a} IS the localization of the algebra

and r = r(z.x) is a polynomial in z, x such that

ment 01 the ring k(z)[x,a}, but not of the fonn I(z)g(x).

e) Finally, there is a generic point {O}.•

at kfz} . {Oj,

1.6. Remark. We cO,:!ld produce a similar analysis of the quantum plane. But, the

quantum plane, besides being a generic skew polynomial ring over kfy], has an

additional advantage: it is a hyperblic ring (which is not the case with the al­

gebra U2(k,a) if a 'i= 0). The hyperbolic structure allows to get a descripti­

on of the left spectrum of the quantum plane much more gracefully. We shall da

it in Section 3.•
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1.7. The remaining part of the spectrum. Now we return to a general skew polyno­

mial ring A[x,f}] and a left ideal p from Spec!t[x,f}] such that p:= p n A

IS a prime ideal in A. It rerpains to consider the last among the listed in the

section 1.3 alternatives:

(d) The ideal p is not f}-stable, but it is f}n -stahle for same n ~ 2.

The description of this part of the left spectrum in general requires more

sophisticated technique. We shall do it, among other things, in a forthcoming

paper [R6]. Here (in the next section) we consider an important for applications

special case; namely, we assurne that f}n = ld.

2. THE RESTRICTED SKEW POLYNOl\flAL RINGS.

A fjell) = u.

A[x,'f) )u.n]. by the rela-

2.1. Definition. Fix again a noetherian commutative ring

lJ of A. Suppose that there exists an integer n;:: I

nally l let u be a nonzero t}-invariant element of the ring

Define the n-restricted {J-skew polynomial ring.

tions

A and

such that

an automorphism

f)n = ld. Fi-

xa = {J(a)x for every a E A, nx = ll. (1)

2.2. Example. Let fJ be an automorphism of the flOg A' such that . fJn = ld

far same n;:: I. Then yn IS a central element of the ring A'[y, f}]; In par~

ticular, A,[yn] is a commutative subring of A'[y,{J]. Set A:= A'[z}. Denote

by 'Ö' the extension of the automorphism f} ooto A'[z] such that fJ'(z) = z.

There is a natural isomorphism from A'[y, f}} onto A[x;f} IZ,n] whicb sends· a

polynomial j(y) into j(x).•

Now fix a restrieted skew polynomial ring A[x:f} j u.n].

2.3. Lemma. Every element of the. ring A[x;fJ lll,n} is uniquely represented as a

polynomial L ),/a. with coefficients in A.
fV' l
~l<n

Proof Note that A[x:f1 Ill, n} is the quotient of the fing A[x;fJ] witb re-,
speet (0 the two-sided ideal generated by ·xn

-Li. Since x
n

. and u are both

central elements of the nng A[x, f)}, the generated by /1_U two~ sided ideal

coincides with the left ideal A[x, {)](xl1 -u). This menns that the canonieal epi-

morphism maps a nonzero polynomial hex) E A[x,lJ} into a zero element of tbe

nng A[x;f1 lu.n] if and only if hex) = j(x)(xn
-u) for some fex) E A[x. f)].
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In particular, either deg(h);;::: n, or hex) == O.

Clearly every element of the ring A[x,o'Ö Iu,n] is the Image of a polynomial

g(x) = L xia. E A[x, 'Ö],
05. i <n I

and the argument above shows that the image of g(x)

g(x) == O.•

is zero if aod only if

InelementcentralaISu'Ö-invariant,decomposition. Being

This implies that

Spect[::;'Ö Iu,n] = Vfu) U U/u).

2.4. The

A[x;'Ö Iu,n].

Clearly

Vlu) ~ Spect[x;f) IO,n] :::.: SpecA[x;f)]IA[x;f)]x ~ SpecA,

SInce the ideal J:= A{x;f) IO,n]x is nilpotent: .fl= (Ol.

As for the open subset Uf u), we have:

Ulu) ~ Spect'[x;f)' Iu',n],

where A'= (urlA, u' IS the image of U In A', {}' IS the induced by f)

automorphism of A'.

Since the element u' is invertible and xn= u', the element x is also

invertible In A'[x;f)' Iu',nj. This means that- A'[x,'f)' Iu',n} ::.:

A'[x,x- I ,oil' Iu',n], where the ring on the right side IS obtained from the ring

A'[x,x- I
;'Ö'] of skew Laurent polynomials by adding the relation xn = u'.

2.5. Proposition. Let p be a lelt ideal 01 the ring A[x;'Ö Iu,n] such that

p:= p n A is a nonzero pnme ideal in A which is not stahle under the auto­

morphism 'Öm if I $;111 < n. Suppose that the element u is invertible. Then

p = A{x;f) Iu,n]p,

Proof The assertion follows immediately from Corollary 1.3.3 and the pre­

ceeding observation (cf. the end of 2.4).•

2.5.1. Remark. There is a straightforward analog of Proposition 1.3.4 for rest­

ricted skew polynomial rings. However, since this analog does not play any role

in the description of the left spectrurn of hyperbolic rings, we leave it to the

reader.
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2.6. The rest of the spectrum. We shall follow the scenario outlined in 1.3.

(a) Suppose that the ring A is prime, and p IS a left ideal from

Spect[x;~[u,n] such that p n· A = {Ol. Then p IS the preimage of a left

ideal, pI" In the localized at the set A - {Ol ring K(A)[x;lY' Iu",n] (cf.

1.3). But, the ring K(A)[x;{J" Iu",n] is a skew field. Therefore pJ\ = 0 which

implies that p = O.

(&) Suppose now the left ideal p E Spect\[x;i) 1u,n] is such that the 10-

tersection p:= p n A is a {}-invariant prime ideal in A.

This case IS reduced to the study of left ideals p' from

Spec~'[x;{J'lu',l1] such that p' n A' = {Oj for the tripie A', {J', u', where

A'= Alp, 13-' is the induced by {J automorphism, u' is the image of u: the

ideal p IS the preimage of such an ideal p' (cf. 1.3, (&)). This means that

either p is the ideal generated by x and p (the case when u' E p);

ar p is generated by p (when u' e p; cf. (a) above).

Note that in bath cases p is a two-sided ideal.

If n

ties. If 11

IS a pnme number, the listed above cases exhaust a11 the possibili-

is not prime, thefe might be {Jm -stable, but not {J-stable, primes

for an m < 11.

We omit here the investigation of such cases. They will be cleared up in

[R6], where a complete description of the left spectrurn is obtained for skew po­

lynomial and hyperbolic rings over an arbitrary (noncornrnutative in general) "CO­

efficienf' nng.
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to hyperbolic

which correspond

their left spectrum

assoe iated restrie ted

3. THE LEFT SPECTRUM AND IRREDucmLE REPRESENTATIONS OF

HYPERBOLIC RINGS.

To study simultaneously the universal enveloping algebra U(sl(2,k)) and

different versions of quantum group SL (2,k) (cf. [CK] and [MNSUD, 'as weIl as
q

some other deformations of U(sl(2,k)) (for example, those from [S 1]) the alge-

bra U (sl(2,k)) IS replaeed by its straightforward generalization the ring
q

A <13-, ll> , whieh is generated by a eommutative ring A and by the indeterminates

.x, y, satisfying the relations:

xa =.13-(a)x, ya = 13-- I
( a)y for every a E A, (1)

where 13- is a fixed automorphism of the ring A, and

xy - yx = u for some U E A;

In the ease of U
q

(sl(2)), A = kfz,z-'} and

"ÖI(z) = I(qz) for all I E k[Z,Z-I}~ II = (z-z-I)I(q-q-I).

In the ease of U(s/(2)), A = kfz}. II = z, and 'ÖI(z) = !(z+CJ.), a E k*.

It follows from the relations (l) that the subring R generated by A and

xy 15 eommutative (aetually, isomorphie to the polynomial nng Aft]). So, one

ean rewrite the relations in terms of Rand elements x, y. This is the way

the hyperbolic ring R{e,~} appeared in the first plaee (in [R3]).

In Seetion 3.1, we make a transition from the rings A<tr,ll>

nngs and eonsider some motivating examples.

Seetion 3.2 eontains the descripti?n of apart of the left spectrum of a

hyperbolie ring which often happens to :be the whole ,Ieft spectrum (if the root

of unity or a base field of positive charaeteristie are not invoIved).

In Section 3.3, we introduce restricted hyperbolic rings

to the "root of unity ease!! and show that the deseription of

IS reduced to the deseription of the left spectrunl of some

skew polynomial rings.

3.1. HYPERBOLIC RINGS.

3.1.0. The ring A<t},ll>.

II a fixed element of A.

generated by the nng A

wing relations:

Let A be a commutative ring,

With this dara, we reiate the ring

and by the indetermi nates x, y
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A <"Ö, ll> which is

subject to the follo-



xa = 13-(a)x, ya = 13-- 1
( a)y for any a E A;

xy - yx = u for some U E A;

(1)

(2)

3.1.1. Example. Let A = kfz}, U = z; and let the automorphism 13- IS determi-

ned by the equality: 'Ö(z) = z + a. Then. obviously. 'Ö-I (z) = z - a; und

A<'Ö,u> turns out to be the k-algebra generated by x, y, z with the relations

xz = zx + ax, yz = zy - ay, xy - yx = z (3)

If a ~ 0, then the relations (3) determine the universal enveloping alge-

bra U(sl(2,k)) of the Lie algebra sl(2.k).•

3.1.2. Example: the quantum universal enveloping algebras of sl(2,k).

A = k[Z,Z-I}; and let

Now let

.<1 .,~" - I
u(z) = qz. u = (z- - Z -)/(q - q ),

where q is an element from k - {O.I}. Then A<"Ö,u>
-1

ted by z, Z I X, Y with the relations

(4)

IS the k-algebra genera-

2 -2 (5)
-I

[x,y} Z - ....z..x = qxz, zy = q YZ, = - Iq - q

IS known as the quantunI universal enveloping algebraThis algebra

Uq(sl(2.k)) 0/ sl(2.k) [MNSU].

Another version of quantum universal enveloping algebra of

tained by taking u = (z-z-I )/(q-q-[) [CK].•

sl(2,k) 15 ob-

3.1.3. From the ring A<11,U> to the ring A[~}{8.~}. The defining the flng

A<"Ö,u> relations (cf. 3.1.0) show that the element ~ = xy commutes with every

element of the flng A' l.e. the ring A{~}, generated by A and ~. is corn-I

rnutative. This fact suggests to consider A<'Ö,u> not as an A-ring, . but as an

and

A[~}-ring.

Define the extensions 8 and 8' of the automorphisms

pectively onto A[~}, setting 8(~) = l; + i}(u) and i}'(~) = ~-u.

808'(~) = 8(~-1l) = (~ + "Ö(u))-"Ö(u) = ~

8' oe(~) = 8'(~ + "Ö(u)) = (~-u) + u = ~.

1.3- and 1.3-- 1

We have:

res-

In other words, 8' = 8- 1
• Now the relations defining the flng

(cf. 3.1.0) can be rewritten in the following way:

8 -I ...
xb = (b)x and yb = 8 (b)y for all b E A[S];

xy =~, yx = 8-'(~).
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3.1.4. The hyperbolic ring R{S,~J. Let S be an automorphism of a commutative

flng R; and let ~ be an element of R. Denote by R{S,~J the R-ring gene-

rated by the indeterminates x, y with the relations:

xa = S(a)x and ya = S-I(a)y for any a E R; Cl)

xy = ~. (2)

yx = 8- 1(~). (3)

Note that the relation (3) follows from (1) and (2) if it is known that y

IS not a zero divisor, since

(yx)y = y~ = 8-1(~)y.

The ring R{8,~J IS called hyperbolic because of the relations (2) und (3)

which can be interpreted as the equations of a (noncommutative) hyperbola. .

3.1.5. Example: the coordinate algebra of SL (2,k). The coordinate
q

A(SLq(2,k)) of the algebraic quantum group SLq(2,k) (cf. [MD

k-algebra generated by the indeterminates x, y, u, v which satisfy the qLL"t =

xu, qvx = xv, qyu = uy, qyv = vy, uv = vu,

-I
xy - quv = ] = yx - q uv

algebra

IS the

(1)

(2)

Now take the algebra k[u, v] of polynomials III u, v as R, and

Sf(u, v):= f(qu,qv) for any polynomial f( Li, v). Finally, denote by ~ the

ment +
-]

by ~. Then the relations Cl), . (2) becOine equivalent to] q LiV

relations (1), (2) in 3.1.4, determining the ring R{8,~}.•

set

ele­

the

3.1.6. Lemma. Every element 0/ the ring R{8,'E,} can be represented as fex) +

g(y), where

fex) =

are uniquely determined polynomials with coefficients in R.

follows from the fact that the san1e relations,

Proof Clearly

relations xy = ~

polynomial in y.

The uniqueness

every element of

and yx = 8- 1(~),

R{e,~J can be represented, thanks to the

as the surn of a polynomial In x and a

define a multiplication on the direct sUln
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-I
R[x,8] EB yR[y,8 ] (1)

and the obtained this way ring satisfy the relations of (1 )-(3) In 3.1.4. There­

fore the obvious map

R[x,8] EB yR[y,e- l
] --~) R{e,~}

is a flng isomorphism.•

3.1.7. Corollary. Every nonzero left ideal of the rIng

intersection either with R[x, l}] or with R[y, {}].

R{e,~} has Cl nonzero

Proof Suppose that the left ideal m of the ring R{e,~} contains an

element fex) + g(y), where both fex) and g(y) are nonzero polynomials~ and

let v = deg(g). Then xV(f(x) + g(y)) is a nonzero polynomial in x.•

3.1.8. The canonic,al anti ..automorphism. It is easy to see that the formulas

ara) = e-I(a) for any a E R; cr(x) = y, cr(y) = x.

define an anti-automorphism of the ring R{e,~}.

3.1.9. The adjoint ring and the adjunction isomorphism. We call

the adjunct to R{a,~} rIng. It is easy to check that the formulas

B(a) = e- I
( a) for an}' a E R; B(x) = y, B(y) = x

(1)

R{S-l, S-2(~)}

define an isomorphism B: R{e-l,e-2(~)} ------4 R{e.~}. The inverse to B IS0-

morphism is described, obviously, as folIows:

-I -
B (a) = 8(a) for any a E R; Sex) = y, B(y) = x

Thanks to the adjullctiol1 isomorphism e, we ean, after finding half of the

representations of R{e,~}, obtain the other half for free.

3.1.10. The hyperbolic rings and the rings A<-ß.,p,u>. Let R be a ring of po-

lynomials with coefficients in the ring A: R = Alt]. Fix an automorphism S

of the .ring R such that the subring A 15 invariant with respect to e and

consider the hypebolic ring R{e, t}.

It follows from the ' degree' considerations that

S(t) = ar + band e-I(t) = cf + d for some Cl, h, c, d E A.

From the equalities
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we obtain:

t = SoS-I(t) = e(ct + d) = S(c)(at + b) + S(d) =

S(c)at + S(c)b + S(d),

t = S-loS(t) = S·I(at + b) = S-I(a)(ct + d) + S-I(b) =
8- J (a)ct + S-l(a)d + S-l(b)

c = S-I(a-I)~ d = -S-I(S(c)b) = -cS-I(b) = -S-I(a-1b) (1)

Futher, it follows from (1) and from the equality (4) In 3.1.4 that (since

by definition xy = t)
-I -I -I -I

yx = e (t) = ct + d = S (a )[t-S (b)).

The equations (2) and xy = t imply that

xy - e-J(a)yx = S-I(b)

(2)

(3)

On the other hand, for a given ring A and its automorphism ~, consider

the nng A<~;p,u> generated by the indeterminates x, y with the relations

xa = {}(a)x und ya = {}-J(a)y for any a E R;

xy - pyx = u.

(4)

(5)

where p IS an invertible and LI is an arbitrary element of A.

Now set t = xy. It is easy to see that the element t commutes with any

element Cl of A. One can also verify that the ring generated by A and t 1$

isomorphie to the ring A[t} of polynomials in t with coefficients in A.

Define the extension of the automorphism {} up to an endomorphism S of

the ring A[t} as folIows:

8(t) = {}(p)t + {}(u).

It IS easy to check that the formulas

8'(a) = l}-J(a) for any a E A.

S'(t) = P- I ( t -u)

determine an inverse to S endomorphism of Alt}.

In fact,

(6)

(7)

Similarly, 8'08(t) = t.

Thus, the hyperbolic nngs

the automorphisms of the nng

A[t}(8,t}, where

Alt] under which
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one eorrespondenee with rings

is an invertible element and u

A<'Ö,p,u>, where 'Ö IS an automorphism of

is an arbitrary element of A.•

A, p

3.1.10.1. Note. It follows from the equation (3) that the flng A[t]{8,t} eOln-

eides with the ring A <'Ö, u> (cf. 3.1.0) for an appropriate i} and u (i) is
-1

the indueed by S automorphism of the flng A, u = S (b)~ cf. (3)) if and

only if 8(t) = t + b for some b E A.•

3.2. THE LEFT SPECTRUM OF A HYPERBOLIC RING.

aretechnique. They

special cases.

require more sophisticated

consider several importantstudied In [R6]. Instead, we

3.2.1. From the prime spectrum of the ring R to the left spectrum of the ring

R{8,~}. In this seetion, we assurne for convenience that the ring R is noethe­

rian. By Lemma 0.5.1 (and the following it short diseussion), this garantees

that, f6r any <p> E SpecIR{S,~}:= SpeeIR{S,~}/=, the subset

ai«p»:= {p e SpeeR I p/n R = p for some p'e <p>} (1)

of SpeeR in nonempty. Here i is the embedding R ---) R{S,~}.

Aetually, this is the only place, where the noetherian hypothesis IS used.

The results of this Seetion are valid for any noetherian ring R provided that

only those points p of SpecIR{S,~} are considered for which the set air<p»

IS nonempty.

The problems which occupY this seetion are:

(a) to describe the correspondence <p> I ) air<p»~

(h) to find (if possible) the inverse to a i map.

Consider the set of orbits, SpeeR/(S) , of the action of the group (8):=

{Sn I n e l} on SpeeR. Denote by Spe~R1(S)S the set of orbits Q e SpeeR/(S)

such that 'S ~ p for any p e n. And let Spee(R I 8,S) be the preimage in

SpeeR of the complement to SpeeR/(S)S' It happens that if the set air <p»

intersects with SpeerR IS,S), then it lies entirely inside of SpeerR IS,S)· .

Theorem 3.2.2 provides the solution of both problems for those <p> which

land in SpeerR Ie,~).
Proposition 3.2.3 establishes that each infinite orbit from SpeerR)/(8Js

is the set air <p» for a unlque <p>, and the map which assigns to a prime

ideal p the left ideal R{8,S}p of the ring R{8J,} induces a bijection of

the set SpeeR/(8)S, oo . of infinite orbits onto the corresponding part of

Spec,R{8,S}.

Generic finite orbits
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3.2.2. Theorem. (i) Let pE SpeeR.

0) If e-I(~) E p, and ~ E p, then the Left ideaL

p := p + R{e,~}x + R{e,~}y
I, [

is a two-sided ideaL froln Spe~IR{e,~}.

J) If e-I(~) E p, elo;) e p for 05:i~-[, and 8n(~) E p, then the

left ideal

p [,n+ I = R{8,~}p + R{8,~}x + R{e,~Jyn+ I

In the ring R{e,~J beLongs to SpecIR{e,~J.

2) If 81(~) e p for i;::: 0 and e-[(S) E p, then

p = R{e,~}p + R{8,~Jx
1,00

belangs to SpeeIR{8,~}.

3) If ~ E P and 8-l(~) e p for [Cl, then the left ideal

p00, I = R{8,~}p + R{e,~Jy

belangs to Speef{e,~}.

(U) If the ideal p in J), 2) or 3) is maximal, then the eorresponding

left ideal front SpeeIR{8,~} is maximal.

(iii) Every ideal p from SpeelR{8,sJ sueh that ev(~) E P for aVE I

is equivalenl to Olle oj lhem for a uniquely defined pE SpeeR. The latter

means that

if and
,

prime ideals of lhe ring R (md a,ß (md v,jl takep p are

values 1,00, 00, I, or I,n. Then Pa,ß" is equivalent to
, if (md00,00, P v,jl

only if a = v, ß = jl, alld
,

p = p.

Proo! (i) Consider the cyclic modules corresponding to the ideals. Let m

be one of the ideals from the list. We shall prove that 111 is from the left

speetrum of R{8,~) by showing that, for any eyclie (nonzero) submodule W of

R'/m there is a diagram of module morphisms

(l)W E-(-- N ----4) R{B,s}/m,

where the right arrow IS a monomorphism and the left one is an epimorphism.

Take a nonzero element v of the module R{B, S}/m..

a) Suppose first that v E VO~ RJp: Sinee the ideal p IS prime", the cyc-

lie R-submodule Rv is isomorphie to VO' This implies that the eyclic submo-

dule R{B,~}v is isornorphie to R{B.SJ/m..

Note that the assertion 0) is aJready proved, Slnce R{B,~J/m eoineides

with its zero eomponent VO'

29



b) It is clear now that, if v E R{8.~}/m - V0' it suffices to show that

the cyclic module R{8.~}v contains a nonzero element from VO'

Let ..
j(x) + g(y) =. I :/a. + I !b.

0'5. i 5:s I ~j 5:v }

I 5: S 5: n. v = O. and

be apreimage of v In

rily, s + v ;::: I. Then

I) In the first case.

Rf8,~} such that a e: ps and and, necessa-

s
y v

IS a nonzero

the element

s
y v

R - p.

and, as above,

belong to

= 0;

S-I.8d(~). 1 ~ d :s;

to VO::tR/p.

case, S;::: I, V

andSince as
IS nonzero and belongs

2) In the second

element of VO::t Rlp.

3) In the third case. xvv is a nonzero element of VO'

(ii) According to 0), every nonzero submodule. W. of R{8.c,J/m has a

nonzero intersection with the R-submodule V0= Rlp. If the ideal p IS maxI-

mal, then V0 IS a simple R-module; hence W contains V0 which implies that

W = Rf8,S}//n. Thus, R{8.~}/m IS a simple R{8.~}-module, or. equivalently, m

is a left maximal ideal.

forsuch that 8v(S) E p(ili) Let p be.a left ideal from Specff8.SJ

some integer v.

(a) We claim that in rhat case rhe ideal p is equivalenr to a/1 ideal p'E

SpecIR{8.'E,} which contains either x. or y.

It suffices to prove the assertion for v;::: 0, because the case of negati-

ve V is obtained by dualization (i.e. by switching to (he adjoint hyperbolic

fing, cf. 3.2.7).

Consider the alternatives.

(01) yv+ I e p. Then the left ideal

it contains x, slnce

V+l.(p:y ) IS equivalent to p. und

p, and it contains y.

contains either x. or v. Consider the

(a2) V+I Then therey E p. IS

Thus, the ideal
11-1

is equivalent(p:y ) to

(h) Thus, we can assurne that p

11 ~ 1 such that 11
Y E p, und 11- I

Y e p.

ease y E p.
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(bi) y E p. Since R IS a noetherian flng, there exists an r ERsuch

that p:= (p:r) n RE SpeeR. Clearly y E (p:r).

(bi.O) If xn e (p:r)

tersection (p:r) n R[x,8]

tion 2) of Lemma 3.2.4 that

for any 1l ~

coincides with

I, then, by Proposition 2.3.4, the in-

R[x,8]p. It follows from the asser-

(p:r) = (p:r) n. R[x.8] + (p:r) n R[y.8] = R[x.8]p + R[x.8]y;

l.e. (p:r) = p .
. 00,1

(bi.i) If some power of x belangs to (p:r), then, by the assertion 3)

of Proposition 2.3.4, there exists an element a of R such that

m
((p:r):a) n R[x.8] = (p:ar) n R[x,8] = R[x.8]p + R[x.8]x

for some positive integer m. Since

this implies that 8~m(~) E p. Let 11 be the maximal integer between 0 and

rn-I such that S~1l(~) E P

(bi.i.O) Let n = O. Then

(p:ar) = (p:ar) n R[y.8j + (p:ar) n R[x,S] =

One can see that the left ideal

ln-I ln-]
((p:ar):x ) = (p:x ar)

~s equivalent to p, and contains x and In .
y , Since

m m~ I ( i :c )y x = n S (...,) Y E (p:ar).
]5i~-1

m~1 ln-INote that y ~ (p:x ar). In fact,

m~ I m-] ~l :c
y x = n 8 (...,) ~ p,

l:5i9n-1

SInce, by assumption, , 8-i(~) e p if 0 5 i ~ m~ I, and the ideal p IS pnme.

Note also that (p:xm~lar) n R = Sm-I(p).
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Indeed, set
, rn-I

p:= (p:x ar) n R. Clearly, By the same

reason

eI-rn , rn-I rn-I rn-I rn-I
(p) c ((p:x ar):y ) n R = ((p:ar):y x ) n R = p.

Thus, P c el-m(p') c p which means that p'= ern-I (p).

We have showed that

IS an ideal from Spec[RIS, ~j.

(bi.i.i) Suppose- now that 1:5 12 $; rn-I. Clearly, the left ideal

n n
((p:ar):x ) = (p:x ar)

IS equivalent to p, and contains both

exists A. ERsuch that

y and sx, where s = rn - n. There

is a prime ideal 10 R.

If S-i(~) E (p:"'..xnar) for some I $;' i :5 S-I, we repeat the procedure.

This way, we shall come to the case (bI.I.D) above.

(b2) If x E p, then apart of the argument above shows that either p::;:

p , or p:::::: p for some v 2: I.
1,00 I,V .

und

annihilate

R{e,~}/p'
00, I

yandxboth elements

(c) It remains to show the uniqueness:

In the representation RIS, ~}/p
I,n

same nonzero elements, while in the representations R{e. ~}/p' ,
_ 1,00

und R{e.~}/p' respectively' y, x und both act injectively.
00,00

Thus, if p >- p' , then v,J.! = I,m for some m.
I,n v,J.l

Note that n must be greater or equal to m.

I f 'f h n+ I 'h'l h d I RIS ~}/n act, 1 11 < m, t en y annl 1 ates t e Ino u e .~ p
I,n

does not annihilate RIS, ~J/p' ; l.e.
l,m

(I)

But, the relation P >- p' implies that the inclusion
-1,11 1,111

(p :RIS.~J) ~ (p' :R{8,~})
1,11 1,111
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whieh eontradiets to (1 ). Thus, ~ "In partieular, if
,

equivalent11 m. P1,m IS

to PLn' then n = m.

(cl) The relation I that there diagram ofP1,11>- P I,m means IS a

R{S,s,J-modules

(v)R{S,s,J/p ( K e ) w':= R{S,~J/p' , (2)w·-.- I,n I,m

where IS a monomorphism, and e IS an epimorphism. The module

(v)R{S,SJ/p ean be written as El1 yi((V)V), where V = Rlp. In partieu-
l,n

D5:i5:n
lar, it is isomorphie, as an R-module, to

-iEB (v)1W (p).
05:i$n

Similarly,

w':= R{S.s,J/p'
I.m

where V = Rlp'.

Thus, the diagram (2) induees the diagram

El1 (V)RJ8- i(p)
05:i~

., ,
(--_1_ Ko __e--7) Rlp', (3)

h -] V I fw ere KO:= e ( ) and i is the restrietion 0 "

The diagram (3) implies that

p' E Supp( EB (v)RJ8-
1
(p)) =

05: i ~l
U Supp(lW-i(p));

05:i91

p

take

has a

Hence

1, J

p

implies that el
-

I
(S) E p.

the only remaining possibi-

p = el(p')

o S; j S; 11-],

,

the equality

eI(s) e p ifand
,

l.e. p = p.

S; 11,o :::; i

lity is i = 0;

l.e. S-l(p) ~ p' for some I:::; i S; n.

If w:::: ~l, then 11 = m, and p ~ Si(p') ~ Si+i(p), where

values 0 or n. Sinee the ring R 1S noetherian (in particular,

finite height), the inclusion p c "Si+i(p) implies that p = Si+i(p).

= Si(p') = Si+i(p).

Sinee e-J(S) E p',

Sinee

(c2) Let now Then the same argument, as In (cl) shows that

p = Sl(p') = ei+i(p) for same i, i ~ o.

This implies that 81
-

1
(S) E P whieh means (sinee eJ(S) e p for j 2:= 0)
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that i = 0; I.e. again p = p'.

(c3) the implication p ;;:;:: p' =>
00, I 00, I

ching to the adjoint hyperbolic flng. _

I

P = P follows from (e2) by swit-

3.2.2.1. Remark. It is easy to describe the set air<p» (cf. 3.2.1), if p is

from the list of Theorem 3.2.2:

Gi«p » = (pi, ai«p » = (e-i(p) I 0 $; i ::; n-I};
1,1 l,n

I might be useful to specify the t1inverseH to Cl i . map from the set

Spee(Rle,s) (which consists af all pE SpeeR such that SE Sll(p) für same

n; cf. 3.2.1) intü Spec,R{8,SJ. This map, X, is defined as follows:

a) If S E P n S(p), then X(p) = p .
. I, I

b) If S E en(p) n em(p) - u e1(p) for some n:5 0 ::; m such that 111 - n
n<i<m

;;:: 2, then

x(p) = Sm-I( )
p I,m-n'

c) If S E en(p) - u e1(p)
n< i <00

for süme n:5 0,

nxJp) = e (p) .
00, I

then

d) If ~ E Sm(p) - U e'(p) für some m ~ 1. then
-00< i <m

Note that these numbers, m and

which implies that X is weil defined. -

11, are uniquely defined 10 each case

3.2.3. Proposition. (i) Let p be G prime ideal of the rIng

ei(~) e p and e1(p)_p ':t 0 for every integer i.

Then the ideal

R such that

such tlwt p n R = p,

belo11g.s to Spee,R{S,~}.

(ii) Moreover, if
then p = p .

00,00

/n partieular, if
ideal.

p

p

p := R{e,S}p
00,00

is Cl left ideal in R{S, S}

lS a maximal ideal, then
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(iii) If a prime ideal p' ll1 R is such that

el1
(p) for some integer n.

Conversely, en(p) :::; p for every 11 E I.
00,00 00,00

,
poo,oo:=::: p 00,00'

then
,

p =

f(x) + g(y) = I ../a. + I!b .
05: i <'I l 05:} $y }

Proof (i) As in the proof of Theorem 3.2.2, it is enough to show that any

nonzero cyclic submodule R{e,~Jv of R{e,~}/p contains a nonzero element
00,00

from V0::': Rlp.

Let

be apreimage of v In R(e,~J such that a ~ p and by e: p. Multiplying bys
x11 for an appropriate 11, 11~y, we can assurne that g(y) = 0 and aOe p. Now

we can proceed by induction.

The case s = 0 is trivial.

If s ~ I, there exists (by condition on e and p) an element r E p

such that eS(r) e: p. We have

eS(r)f(x) = :la r + fex) E fex) + R{8,~}p,
S

where degf5: S-1 and /(0) = eS(r)Cl
O

e p.

(ii) Let p be a left ideal in the flng R{e,~J such that

Clearly P;;d P := R(e,~}p. Suppose that P '* p ; l.e. P
00,00 00,00

zero polynomial fex) + g(y) with all nonzero coefficients from

the alternatives:

p n R = p.

contains a non­

R-p. Consider

a) g(y) = O.

b) fex) = o. It follows from the fact that p IS pnme and l}i(~) e p
y

for all i· that x g(y), where y = deg(g), IS a nonzero polynomial In x

with aB nonzero coefficients from R-p.. .
c) fex) + g(y) = L xla. + L !b., where a e: p and by e p. But

OS i "5:s l 1'5: j 5:v } S

then xY (f(x) . + g(y)) is a nonzero polynomial in x with all nonzero coeffici-

ents from R - p.

So, if P '* Poo,oo' then p:= p n R[x;8j contains a nonzero polynomialx
with nonzero coefficients from R-p. This implies, by Proposition 2.4, that

there exists a E R-p such that

(p :a)
x

for some n ~ I. Since

= (p:a) n R[x;8j
11= R[x;8jx + R[x;e}p
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it follows from the last equality that 8-n(~) E p. But, this contradicts to

the assumption of this Proposition that airS) e p for any l.

( iii) Fix positive integer Since n e the left ideala n. x p00,00'

11(p :x) 15 equivalent to Poo,oo'00,00

Clearly

hence

But,

which implies that
11 n

((poo,oo:y x ) = Poo,oo'
In particular,

n 11
((p :y x ) n R = p.

00,00

All together shows that p' n= 8 (p),
I

P 00,00'

Dually, ( n) e-/1()p :y = p
00,00 00,00

is equivalent to p00,00' •

Let now p' be another prime ideal in R.

The argument similar to that of the part (cl) of the proof of Theorem 3.2.2

shows that the relation p 00,00 >- p'00,00 implies that p c e/1 (p') for some 11 E

I. Thus, if p ::;: p' , then
0000 0000.

" /1 m
p C e (p') ~ e (p)

which, thanks to the noetherian property of· R, implies that p IS equ~1 to

the ideal en(p'),.

3.2.4. The Generating function. Following the tradition, we can concentrate all

the information about the equivalence classes of ideals from SpecIR{e.~},

which have a nonzero intersection with R. In one formal power senes 10 "A
and . "A- l ,

G(A;e,s):= L el(~)Al,
iE I

which we call generating function of the" ring R{B.S}.

(1)

3.2.5. The 'independent' part of the left spectrum. Consider now the 'points' of

the spectrum, which do not originate from any nonzero pnme ideal of the cornnlU-
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tative subring R. In other words, consider those p E SpeelR{8,~} for which

(a) p n R = {O} ESpeeR.

Note that if S IS a multiplieative subset in R which is 8-invariant,

then S is an Ore subset in R{e,~}. In partieular, R-{O} is an Ore subset

In R{8,~}. So that we ean localize the ring R{8,~} ut the multiplicative set

R - {O} and obtain, as a result, the ring K(R){8,~'}, where K(R) is the

field of fraetions of the flOg R, 8 the induced by 8 autonlorphism of K(R),

~' the image of ~ in K(R). Since localizations respect the left spectrum,

the localization Q at the set R - {Ol sends the ideal p ioto the left ide-

al Qp from SpeelK(R){8,~'}.

Note now that the element ~, being nonzero, is an invertible element of

the ring K(R)~ and the relation yx = ~ means that y = c;.t'- t. Therefore the

nng K(R)(8,~'} is isomorphie to the ring K(R)[x, 8j. In particular, the

ideal Qp is determined by an irredueible element r = rex) of the flng

K(R)[x,8}:

Qp = K(R){e,~}r.

Note that the localization Q sends the (skew polynomial) subring

generated by Rand x into the subring K(R)[x, f) } of the flng K(R)(8,~}.

R[x,f))

3.2.6. Points over 8.. invariant prime ideals. Suppose now that p lS U left ide­

al from SpeelR{e,~} such that p = p n R is a 8-invariant prime ideal In R.

Then Binduces an automorphism. B', of the quotient nng R' = Rlp, and the

eanonical map rr: R -----? R' extends to a ring morphism

rr'; R{B,~} ) R'{e',~'},

where ~' = rr(~), rr'(x) = x, n'(y) = y. Since n' 15 an epimorphism, the

image' p' of the ideal p belongs to the left spectrum, and p' n R' = (O}.

There are two possibilities: either ~ E p, or ~ e p.

Consider each of them.

(a) Degenerate case: ~ E p. This implies that, SlOce p 15 B-invariant,

8-1(~) E p. Thus, both xy and yx ure In p. This means that the nng

R'{8',~'} = R'{B',O} is defined by the relations:

xr = B'(r)x, ry = yB'(r) for any r ER',

xy = 0 = yx.

We shall write R'(B'} instead of R'{e',O}.

Clearly R'{B'}y and R'(B'}x are two-sided ideals 10

since R'{B'}x·R'{B'}y = {O},
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v IR'{e'}x) U v IR'{S'}y) = v/{O}) = Spee,R'{S'}.

Futher, the quotient ring

skew polynomial nng R[y,S,-l j .

phisms):

R'{S'}/R'{S'}x 15 naturally isomorphie to the

Thus, we have canonieal bijeetions (homeomor-

Similarly,

V/R'{S'}y) =.: Spee/R'{8'}/R'{e'}y) ~ Spee,R'[x,e'].

Sinee the quotient of the ring R{e'} by the ideal R'{S'}x + R'(S'}y 1S

naturally isomorphie to the ring R', we have the canonical homeonl0rphisms:

V/R'{e'}x) n VIR'{S'}y) ~ VIR'{S'}x + R'{e'}y) ~ SpeeR'.

So, SpeeIR'{e'} is the disjoint union of the closed subset

R'(e'}y), which is homeomorphic to SpeeR', and two open subsets:

and

V/R'(S' }x) - V/ R'{S'}x + R'(S'}yJ,

V/R'{8'}y) - VIR'{e'}x + R'{S'}y),

which are naturally homeomorphic respeetively to
, -I S'Spee,R [x,x .. ].

, -] S,-ISpec,R [y,y.. ] and to

(b) Nondegenerate case: ~ e p. It follows from 3.2.5 that the subset of

SpeelR{8.~} which consists of ideals of this type eoineides with the prelmage

f ' -] 8'o Spec,K(R )[x,x .. ].
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3.3. THE RESTRICTED HYPERBOLIC RINGS.

The only situation which is not covered by the analysis above is when 8(p)

*' p, but 8n
(p) = p for SQme 11, and 8v(~) e p for all v E 7l.

In this seetion, we consider an important special case - when 8n = Id for

some 1l ~ 2. The general case (in a much more general setting, for hyperbolic

ring over noncommutative rings) is considered in [R6].

3.3.1. Definition. Let 8 be an automorphism of a commutative flng R such

that Sn = id. And let ~, u, and "0 be elements In R having the proper-
ties:

8i-I(~).S(u) = U, 8("0) = "0, and UD = n
l~i~J1

The restricted hyperbolic ring, RIS,~ Iu, D,n}, is given by the relations:

xr = S(r)x, ry = y8( r) for every r E R; xy = S,
n n

·x = u, y = u.
(1)

3.3.2. Example. Let RIS,s} be a hyperbolic ring, and en = id for certain n

2: I. Note that, thanks to the last equality, xn and yll commute with every

element of Rand between themselves. To check the latter property, notice that

xnyn = n SirS)
l~i:9l-1

and
n n

y x ~l ~
= n S (~)

l~i~J1

n n
x y .

Thus, the nng RIS,s} contains the polynomial subring R[xn,yll ] whieh we
n n ~denote by ~. Set u = x, u = y. Clearly the flng RIS,...,} IS isomorphie to

the restricted hyperbolic ri rig 'KI8, ~ Iu. D, n} . •

3.3.3. The left spectrum. Fix a restricted hyperbolic fIng RIS.s In} =

RIS,s Iu. u,n}. Since the elements u and u are central, we have the following

decomposition of the left spectrum of the flng RIS,s In}:

I t is easy to see that

VIRu + Ru) ~ Spec(RJRs);

-I -I I -I
V/u) n Ufu) ~ Spec/u) R[y,S ID,n] ~ Spec,R[y,{} lu,nj,
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Image of

3.3.1)~

u In R',
is the induced by 8

R'{y,fJ-llu',n} is a

automorphism of R', u' is the

restricted skew polynomial nng (cf.

where R" = -I
(u) R, is the induced by e automorphism of R", u" IS the

Image of u In R"~

where 9t -I C;", l:r''' u'" the of C;. and ~R, e= (uu) R, are Images u u In IS

the induced by e au tomorphism. Note that, Slnee the elements 0" and u" are

invertible, and C;" invertible. In particular, -1 c;X, Y = xy are y = X "'.

This implies that the nng 9t{8,C;" In, u", o"') IS isomorphie to the restrieted

skew Laurent polynomial
~ I

In particular,nng '1i..[x,x ;8 Iu",n}.

4. ApPLICATIONS TO BASIC EXAMPLES.

In this Seetion, we apply - the results of Section 3 to get the spectral

picture of most popular classical and quantun1 algebras:

the quantum and classical enveloping algebras of the Lie algebra S/(2);

quantum eoordinate algebra of 5L(2);

first Wey I algebra;

the algebra of q-differential operators;

quantum plane.

For the last three algebras we show how to deduce frain the description of

the left spectrum a classification of irreducible representations. For the first

Weyl algebra AI' we show that any nonzero (i.e. non-generic) point of the left

spectrum is closed; i.e. it is equivalent to a left maximal ideal. Thus we get

almost for free (modulo results of Section 3) adescription of irreducible rep­

resentations of the first Weyl algebra differs from the one given by R. Block

[B I]. [B2].· The reason IS the difference in the choices of parametrizatian: we

use hyperbolic presentation of A - the coordinate C; = xy which allows to
I

simplify the deseription.

A generic algebra of q-differential operators (i.e. q 7= I, 0) has lots of

nonclased points. As weil as the quantum plane. It is worth to underline that
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the spectral picture of the algebra of q-differential operators IS much closer

(when q -:t I) to that of q-plane than to the spectral picture of A.
I

4.1. The quantum coordinate algebra of SL(2). Let Rle,~l be the quantum

coordinate algebra of SL(2,k)~ l.e.
.l: -IR = k[u, v], Sj(u,v) = j(qu.qv) for any j E R, ..., = 1 + q uv

(cf. Example 3.1.5).

Let p be a nonzero prime ideal of the ring R = k[u. v]; and let an ·ideal

P E SpecIRrS,c) be such that p n R = p.

(1) Principal series. Suppose that x E p. Then, the element

yx = S-I(S) = 1 + q-3uv

belongs to the ideal p = p n R.

(I') If RIS.sl/p IS of finite type over R, then

-öm-I(S) = I + q2m-3uv E p

for some m;;:: 1. This and the inclusion
-3+ q uv E p imply that

2m q21n -_ 1.- q E p; l.e.

In particular, if q IS not a root of unity, then the principal senes

contains no representations of R-finite type.

(1") The representation R{8,S}lp of principal senes 1$ not of finite

type if and only if

Note that, Slnce

of unity.

~ =
-[

1 + q llV E p, this implies that q IS not a root

(2) Discrete series. Let now p E Spec,RrS.SJ 'be such that p n R = P and

p does not contain any degrees of x or y. This means that

.l: -I.., = 1 + q uv ~ p and

for any nonzero integer
-Ielements u, v, + q uv

n. In other words, q is not a root of unity, and the

do not belong to the ideal p.

4.1.1. Series of irreducible representations

tield). Suppose now that the field k

maximal ideal in the flng R = k[u, v} 15
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where 1..., Tl are elements of the field k. From 2.1, we obtain the following:

1) The ideal p = R(u - 1...) + R(v • Tl). A. Tl E k, defines Cl representation

0/ principa/ series if and only if
I... i; 0 and Tl = -q/A.

2) The ideal p = R(u • 1...) + R(v . Tl) defines the representation 0/ the

discrete series if and only if
I... 1:= 0, Tl i; 0 and Tl 1:= -q/A.

4.2. The left spectrum and irreducible representations

that

of U (s/(2)).
q

. Assume

R = A[S]. A is 8-stable, and G(S) = S + u for some u E A

(which holds both for U (sl(2)) and U(sl(2))). One can see thatq

Gn-l(~) = e-I(~) + I en-I-I(U) (1)
05, i :0l-1

and

n "i-ne- (~) = ~ - L e (u)
I=:; i~

(2)

for every n 2: I.

Consider now

Laurent polynomials

simplicity, that q

In k; l.e. q =
as folIows:

the of U (sl(2)); A the algebra -1
ofcase l.e. IS k[z,z ]

q
-I -IIn z; Gf(z) = !(qz); u = (z-z )/(q-q ). We assume, for

IS not a root of unity, and there IS a square root of q

1...2 for some A"E k. The formulas ( I). (2) In this case look

Gn(s) = (s - u) + z-lq(l_qn+l)((q2_ 1}{1_q)t l (z2_q-n)

e-n(~) = S + z-l q2(1.q-1l)((q2. 1}{1_q)t 1(z2_q-n+l)

(3)

(4)

f~r any n 2: 1.

Fix a prime ideal p of the ring R = A[S]; and denote by p' the inter-

seetion p n A. Now we shall follow the pattern of Theorem 3.2.2.

Let S - u E p. Then the ideal p . is generated by the element S - Li und

by the prime ideal p' = p n A of the ring A = k[Z,Z-I]:

p = Afs}(E, - u) + A(E,}p'.

J) Suppose that S E

ei ther by z - I , or by

of codimesion which

Then E
,

which implies that
,

IS generatedp. u p p

z + 1. Thus, we have two maximal ideals In U (sl(2))
q

are generated by x. y, z ± respectively (cf. Theorem
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3.2.2).

2) It follows from (3) that en(~) E p if and only if

., -n i -n i -n ,
(z- -q ) = (z -I\, )(z + I\, ) E P

which means that either p' = (z + "A-n), or p' = (z - "A-n).

By Theorem 3.2.2, the left ideals of the flng U (sl(2)) generated by
q

~ n+1
~ - u: = xy - ll, X, Y

are maximal; and one can see that the corresponding irreducible representations

are (n + l)-dimesional.

Note that we can replace In the above list of generators

~ - u = ~ - u(z) by S - u(±"A-
n

).

Thus, we have, for each n ~ 1, exactly two n-dimensional representations.

And this exhausts the list of finite dimensional representations of U (sl(2)).q
3) Every irreducible polynomial J(z) which is not equal to A.z or to

A(z ll-n) for any "A E k - {O} and n ~ 1, defines two left maximal ideals:

the one generated by S - u(z), x and J(z) ~

the other one generated by S. y and J(z).

The corresponding quotient modules are infinite dimensional (irreducible)

representations of principal series.

Note that the left ideals

are also in the left spectrum, but they are not maximal.

According to Theorem 3.2.3, every pair of U, y E k such that y ':t 0, and

-[., -11 ( ., )-1(" -n+l)
U '* Y q-(l-q ) (q--l)(l-q) y-q

for any integer n, defines a maximal left maximal ideal

In case when k IS algebraically closed. these ideals exhaust the list of-

the left olaximal ideals of U (51(2)) which are generated by a pnme ideal of
q.

the subring A[S] = A[xy] (cf. Theoretn 3.2.3). But, there are lots of 000-

closed points of the form U (5/(2))p, P E SpecA[~).q
The non-degenerate case remains (cf. 3.2.5): the ideals of the left spect-
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rum whieh have zero interseetion with the subalgebra A[~J = k[Z,Z-1 ,~J. Aeeor­

ding to 3.2.5, this part of SpeclUq{51(2))' is isomorphie to the left spectrum

of the quantum plane without origin; i.e.

of q-Laurent polynomials IS defined by the rela-where the flng

tions:

SpecIUq{sl(2)) = Spec f( z,~)Ix,x-] J,

k(z,~)q[x,x- IJ

xz = qzx, x~ = (~ + u)x.

Now, Speclk(z,~) [x,x-lJ = Spec.k(z,~) [xJ {O}~ each ideal ofq r: q
Speclk(z'~)q[xJ - {O} is equivalent to a maximal left ideal (cf. 3.2.5); and

any nlaximal left ideal is generated by an irreducible skew polynomial 10 x

with eoeffieients in k(z,~) which is not equal to Ax for any A E k(z,~)*.

R{e,~) = U(sl(2))~ l.e. and

(1)

and

e-I1(~) = ~ I ei-l1 (u) = ~ - nz - (n21)11 CL

1'5 i 5n
(2)

Here n 2: I.

Repeating the same kind of analysis as for U (5/(2)), one can (with less
q

effort) recover the speetral picture and the weil known results of the represen-

tation theory of the Lie algebra s/(2). Actually, this is the easiest known to

me way to get the representation theory of s/(2).

Assurne that char(k) = O.

Fix a prime ideal p of the ring R = A[~J = k[z,~J; and set p':= p n A.

Again, we follow the pattern~ of Theorem 3.2.2.

(a) Let ~ - Z E p. Then the ideal p IS generated by ~ - z and by the

prime ideal p' = p n A of the ring A = kfz}: p = A[~J(~ - z) + A[~Jp'.

It follows from (l) that el1(~) E p if and only if z + (n-I)W2 E p'.

By Theorem 3.2.2, the left ideal P1.n of the ring U(s/(2)) generated by
11 .

~ - z:= xy - z, x, Y ,and z + (n-I)W2

(or, what is the same, by ~ + (1l-I)W2, x, yl1
, and z + (1l-I)Ctl2) IS maxI-

mal, arid the eorresponding irredueible representation U(5/(2 ))/p IS 1l -di-
],11

Illesional. Thus. we have for eaeh 11 ~ I exaetly one n-dimensional representati-
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on. And this exhausts the list of finite dimensional representations of s/(2).

(b) Any irreducible polynomial f(z) such that f(naJz) -:;: 0 for all inte-

gers n, defines two left maximal ideals:

P1,oo generated by ~ - z, x, and f(z);

P00, I generated by ~, y, and f(z).

Here P is the maximal ideal in kfz) generated by f.
The corresponding quotient modules are infinite dimensional (irreducible)

representations of principal series. In particular, for any A E k which is not

equal to n"aJ2 for any n E 1., we have the highest and the lowest weight rep­

resentations (Verma modules) corresponding to the polynomial z - A.. In this

case (which is general if k is algebraically closed),

P1,00 = (~ - A, x, z - A.) and Poo,l = (~, y, z - A).
(b1) The left ideals

U(sl(2))(~ - z) + U(sl(2))x and U(sl(2))~ + U(s/(2))y

are also in the left spectru~, but they are not maximal.

• (c) It follows from Proposition 3.2.3 that any maximal ideal p of the po-

lynomial ring kfz,~] such that (~- nz - n(I1-I)aJ2) i: P for all 11 E 7L, ge-

nerates a left maximal ideal P := U(sl(2))p.
00,00

In the case the field k is algebraically closed, these are exactly ideals

generated by (~- y), (z - A), where y -:;: IlA + n(Il-1)W2 for any 11 E 7I..

(cl) Every nonclosed point p E Speck[z,~) such that (~-I1Z-I1(I1-I)aJ2) i: P

for any 11 E 7L generates a nonclosed point Spec/U(s/(2)).

(d) The non-degenerate case remains (cf. 3.2.5): the ideals of the left

spectrum which have zero interseetion with the subalgebra A[~] = k[z,~]. Ac-

cording to 3.2.5, this part of Spec/U(sl(2)) is isomorphie to the left spect-

rum of the ring of skew Laurent polynomials k(z,~)[X,X-l;8], where 8 aets on

rational funetions by ef(z,~) = f(Z+Ci,~+Z). Now,

Specf(z,~)[x,x-l;8] = Speclk(z,~)[x;8} - {O};

any ideal of Specf(z,~)[x;e) - {Oj is equivalent to a maxiinal left ideal (cf.

3.2.5); and any maximal left ideal IS generated by an irreducible skew polyno­

mial f(x) with coeffieients in k(z,~) such that f(O) -:;: o.

4.4. The left spectrum of the first Weyl algebra, quantum plane, the algebra of

q ..differential operators. Fix a field k, and eonsider the family of k-algebras

[)q,h' where (q,h) is an arbitrary element of k* x k. The algebra [) 15
q,h

generated over k by elements x and y subject to the relation:

XJ' - qyx = h (I)
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Thus. [) IS a quantum (' classical' if q = 1) plane~ [) (::.: [) ifq,o 1,1 I.h
h :;t 0) is the first Weyl algebra whieh is isomorphie to the algebra k{x,dldx]

of differential operators with polynomial eoeffieients. If q:;t 1, then the al­

gebra [) h IS naturally realized as the algebra of q-differential operatorsq,
with polynomial coefficients k{y,dqJ which is the k-subalgebra of the algebra

of endomorphisms of the k-module kfz) of polynomials in z generated by' the

operator of multiplieation y: j(z)~ if(z) and by the q-derivative

d h: j(z)l--I-~) h(j(qz) - j(z))/(zq - z).
q,

The algebra [) h is isomorphie to the hyperbolie k-algebra
q,

R{~,cj = k{~){e,~},

where the k-algebra automorphism e is defined by e(~) = q~ + h.

Thus, if q:;t 1, then we have:

for every 11 ~ O.

If q = I, then

en(~) = ~ + nh = e-I(~) + (n + l)h.

e-I1(S) = S - nh

for every 11 2: O.

4.4.1. Quantum case. Consider first the ease q:;t 1.

Fix a prime ideal p of the ring R = k{SJ.
(a) Let p = R(~ - h). If q is not a root of unity, then

IS a left maximal ideal. One ean see that the module R{8,e,J/p is isomorphie
\00,

to the eanonieal represe ntation of the flng [)
q.h as the flng of q-d ifferen tial

operators (see above).

If m 1 for some 111 2: 2 and qi :;t if < . thenq = _l < m.,

IS a left maximal ideal.

(h) Dually, if p = Re, and q is not a foot of unity, then

p = R{8,S}e, + R{8.e,}y
00, I
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is a left maximal ideal.

(c) The maximal ideal Rf of the flng R = k[~} lS S-stable if and only

. if f(q~ + h) = ').f(~) for some A E k*. One can see that the function ~-

h(l·qf I satisfies this property with A = q~ hence the ideal R(~ - h(l-qf I)

is S-stable. lf q is not a root of unity, this is the only possibility.

Suppose that this is not the case, and f(~) is a polynomial In ~ such

that 8f(~) = ').f(~) for same A E k*. We can represent f in the form

where
-I

y:= h(l-q) , and aO~ O. Then

Aj{~) = Sf(~) = f(S(s)) = L al.qi(~
05:. i ~n

i
y) .

Clearly the quotient ring R1R(S·y) IS isomorphie to

ponding quotient hyperbolic ring is defined by the equations:

for everySince GO":t O.

Cl, ":t O.
l

A = 1. This implies that

-I
xy = h(l-q) = yx;

i
q = 1

k,

such that

and the corres-

shows that, if q 15 not a root of unity, then every

k[~} IS generated by the element S - h( l-qf [; In

i.e. the quotient hyperbolic

incides with Speck[x.x-I}.

The same argument

SIl-stable maximal ideal 10

flng is a hyperbota over k. So, its spectrum co-

partieular, it is S-stable.

(d) If q is not a root of unity. then every i~reducible polynomial j(s)

which is not equal to ~(s - h( l-qf I) or to A(s - h( l-q -11)/( l-q)) for same

integer n generates a left maximal ideal, R{S.S}!

(d) There is a natural embedding of MGXlk(~)[x,x-[;1)} into Spec,R{8.SJ,

where 1) is the induced by S automorphism of the field k(~): i)(SJ = qS + h.

Every irreducible element g of the ring k(~)[x;1J ] such that g(OJ ":t 0 gene-

rates a left maximal ideal in k(S)[x,x-I;i)].

In particular, every polynomial x - J, where f = fes) E k(SJ*, genera-

tes a left maximal ideal in the ring k(~)[X,X-I;i)].

4.4.2. The classical case. Consider now the case q = I, h"* 0;

the first Weyl algebra. Then

Sn(S) = S + Ilh = e-I(S) + (11 + l)h,
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for every n ~ O.

Fix a prime ideal, p,

(a) Let p = R(~ - h).

of the ring R = kf~J.

If char(k) = 0, then

p := Rle,~}(~ - h) + R{e,~}x
1 00,

R{e,~}/p IS lsomror-
1,00

[) as the nng of
q,h

is a left maximal ideal. One ean see that the module

phic to the canonical representation of the ring

q-differential operators (see above).

If char(k) = p > 0, then

p := Rle,~}(~ - h) + Rle,~}x + R{e,~}yP
1,p

is a left maximal ideal.

(h) Oually, if p = R~, and char(k) = O. then

Poo,1 = Rle,~}~ + R{e,~}y

is a left maximal ideal.

(c) The maximal ideal

if f(~+n) = Af(~) for some
na -stable. Now, the equality

k[~Jf of the ring kf'E,J IS

A E k*. Clearly A = I;

f(~+n) = f(~) implies that

al1-stable if and only

l.e. f(~) itself is

11 = f.char(k) for

IS no

According to Theorem 3.2.2.

to J.l(~ - n) for same n

RIS, ~}f This fact implies a

some integer l.

Consider the whole picture In the case when chark = O. Then there

an -stable non-constant polynomials for any 11 -:t O.

every irreducible polynomial f(~) which is not equal

E 7l and J.l E k* generates a left maximal ideal

theorem by Oixmier [02].

There is a natural imbedding of Maxf(~)[x,x-I"{JJ into SpecIR{a,~}.

where f} is the induced by a automorphism of the field k(~): {J(~) = ~ + 1.

Every irreducible element g of the ring k(~){x;{J } such that g(O) -:t 0 gene-

rates a left maximal ideal In k(~)[X,X-l;fJ]. In· particular. every polynomial

x - J, where J = f(~) E k(~)*. generates a left InaxiInal ideal in the ring

k(~)fX,X -I ;f}}.

4.4.3. Proposition. Any llonzero element of Spec/JJI,h'

a maximal left ideal.

We shall give two proves of this assertion.
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The first proo! a) Fix an abelian category dl. For any P ESpecA. de-

fine the height t)t(P) of P as the supremum of nonnegative integers n such

that there exists a chain P ~ P ~ P ~ ~ P of distinct elements of
I 2 n

SpecA. Here we take the canonical realization of SpecA (cf. 0.3.1). Now we

define the spectral dimension. dirn A. of A as the supremum of ht(P) while Ps
runs through SpecA.

4.4.3.1. Proposition. Suppose that a ring

dim A ::; KdimR.s

R has a finite Krull dimension. Then

Proo! The assertion follows immediately from Corollary 6.4.2 in [R5].•

4.4.3.2. Corollary. Let R

nonzero ideal of Spec~

ideal.

be a prime ring of Krull dimension 1. Then any

is either equivalent to zero, or to a left maximal

=

b) The Krull dimension of the

Corollary 4.4.3.2. a11 nonzero ideals

interseetion with the subring k[SJ
ideals.

first Weyl

fra m

k[xy]

algebra IS

SpecfDl,h
are equivalent

1. Therefore, by

which have zero

to left maximal

The second proo! Let r = L :/a. be an element of [) which is irredu-
I I,h

cible as an element of k(s)fx,·f)]. So that the generated by rieft ideal in

k(~)fx;vJ is maximal. Denote by (r) the interseetion of this left ideal with

the Wey I algebra [) h'
I,

a) If the generated by the coefficients (a.) of r ideal 10 kf~J COlO-
I

eides wirh kfsJ. then the left ideal (r) is maximal.

[n fact. if (r) 1S not maximal. it contains properly 10 a maximal left

ideal Jl which hus a nontrivial intersection with kfSJ. This implies that Il

= [) f far same irreducible polynomial f In particular, all coefficients
I,h'

a. should belang to the ideal kfSJf which contradicts to the hypothesis.
I

b) Consider now the general case: the coefficients (a.) of r generale a
I

proper ideal kf~Jg far same palynomial g. Since (r) n kf~J = 0, and (r)

belangs to the left spectrum, the ideal ((r):g) is equivalent to (r). Note

that ((r):g) = (r), where r = r/g = L x'a /g, and the coefficients {a /g}
I I I I

generate kf~]. Therefore the ideal (r) IS maximal. •
I

Thus we have recovered (in slightly different terms) the Richard Block's
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classification of irreducible representations of the first Weyl algebra [B I].

IS usually denoted by

Clearly the ideals 0

root of unity), or the

are the only 8-stable

o and (~) are the

4.4.4. The quantum plane. This is the algebra [} which9,0
kc/x,yj. The action of 8 is very simple: 8j([;) = q~.

and (~) are 8-stable. If q is generic (i.e. not a

field k is algebraically closed. then these two ideals

primes in R = k[~j. If q is generic, then, for any 11,

only 8n-stable primes in R.

Consider the generic case: q 15 not a root of one. We have the following

picture:

a) The quotient flng R1R~ IS isomorphic to k;

hyperbolic flng IS a commutative k-algebra with generators

relations:

and the corresponding

x, y subject to the

form

xy = yx = O.

Its spectrum is natura11y homeomorPhic to Speck[x) U Speck[y).
Speck

b) The corresponding to 0 part of the left spectrum is

where {}. is the extension of 8. And k(~){{},'E,} ~ k(~)[x;{}J. So that

Specf(~){{}'~} - (0) ::l: Spec/«'E,)[x;{}) - (0) ~ Maxjk(~)[x;{}i;

and any left maximal ideal of k(~)[x;{}) IS a principal ideal generated by an

irreducible element of k('E,)[x;{}).

c) The remaining part of the left spectrum eonsists of all ideals of the

kq[x,yij, where j runs through the set of all irreducible polynomials

in ~ such that f(O) * O.

4.4.5. The quantum torus. By definition, the quantum torus T 1S the k-module
q

of q-Laurent polynomials k [x, x-I ,y,y-li with the multiplication defined by
q

the smne relation xy = qyx. Clearly the algebra T is isomorphie to the 10-
q

calization of the quantum plane at the multiplieative system ('E,) generated by

S = xy. Therefore the SpecjTq is the eomplement to the closed subset V/'E,) =
Spec jkq[x,y)/(~) of the left speetrum of the quantum plane. That IS SpecjTCf

eonsists of the pieces b) and e) of Specjkq[x,yi (cf. 4.4.4).

Note that a11 points of SpecjTq except the generic point 0 are closed.

This can be showed by the argument similar to that of the seeond proof of Propo­

sition 4.4.3.

4.4.6. About closed points of a quantum plane. It follows from Proposition 3.2.3
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(y)

Speerq[x,yj (which is

It is clear that the ideal

left (actually, two-sided)

that a11 the ideals of the series c) are maximal. There is also an obvious set

of closed points; namely the preimage of the set of closed points of Vl~) =

Spec1k [x,y]/(~).q
The generic point which is the zero ideal;

The left ideals generated respectively by x and y. They are preimages

of the corresponding ideals in the commutative quotient ring kq[x,YJ/(~) (cf.

a) abo.ve); in particular, hoth are two-sided. The set of specializations on (x)

(resp. (y) is the preimage of Speck[yj (resp. Speck[x]).

But, there is also aseries of left ideals

(k [x,y]fl I IS an irreducible polynomial In x), (x)
q

and, symmetrically,

{kq[x,yjg I g is an irreducible polynomial in y}.

80th series are preimages of the corresponding subsets of Ma.xlk(~)[x;1J].

Note that each ideal k [x,y]f of the series (x) has unique (up to equI-
q

valence) specialization which is the maximal left (and two-sided) ideal genera-

ted by land y. Similarly, the points of (y).

Th~re are other series of nonclosed points. For instance, any linear func-

tion x - I(~), I E k[~], generates a left ideal from

the preimage of a left maximal ideal in k(~)[x,"ÖJ).

In question has a specialization which lS the maximal

ideal generated by x - 1(0) and ~.

Having this bunch of nonclosed points, it lS natural to ask how to distin­

guish closed points among those elements of the left spectrum which have zero

intersection with k[~].

4.4.6.1. Lemma. A left ideal J.l in

any 01 maxinlal ideals cOl1taining ~ =

file lonn I + ~<p fOT some c.p E kq[x,yj.

kq[x,yj = k[~]{e,~}

xy if (md only if J.l

IS not contained 111

Ilas an element 0/

(2)

Proof a) We represent elements of the ring k [x,y] as functionsq

F(X, v;,t:.) =' L xma + L.. ))l1bJ\ • ~ nl n
m2:o 1l2:1

where {am' bn } are polynomials in S (cf. Lemma 3.1.6). Consider the set of

functions J.l':= II(x,y;O) I / E J.l}. Clearly J.l' is an ideal in the ring of fac-

tors ~:= kq[x,YJ/(~). And the ideal J.l is not contained in any maximal ideal

of the form (I) iff J.l' contains the unity element of the ring 'R. This n1eans

exactly that J.l contains an element of the form I + ~c.p for sorne c.p E kq[X,yj.
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b) The Inverse implication is evident. •

4.4.6.2. Corollary: A left ideal J.l E Spec/,/x,y] such that

Cl closed point (i.e. is equivalent to a maximal left ideal)

contains elements of the fonn I + ~<p for some <p E k/x,yj.

J.l n k[~J = 0 lS

if and only if it

Corollary 4.4.6.2 provides a reclpe of creating closed points: just take

any element r E k [x,y] of the form I + ~q>, Cf> E k [x,y], which IS an irredu-
q -I ql

cible element In k(~)[X,x ;i}j (we replace y by x- ~). Then the left ideal

(r):= k(~){i}, ~}r n kq[x,yj represents a closed point of the left spectrum~ i.e.

there exists an element f In k[~j such that the left ideal ((r):f) IS ma-

ximal.

In the[)
q.hConsider the algebra4.4.7. Closed a nonclosed points of [) h.q,

generic case: q, h E. k*, q:;t I. Assume that char(k) = O.

The description closed and nonclosed points of the 'diagonalizable' part of

the left spectrum (i.e. those - p E Spec fD h for which p n k[~j ;t 0) IS Imme-q.
diate: (he only nonclosed points are the generic point 0 and the two-sided

ideal generated by ~ - y, where y = h/(l-q) (cf. 4.4.1).

As in (he case of quantum plane, we have a couple of canonical families of

nonclosed points of the spectrum having only one specialization. These are pnn­

cipal left ideals generated by irreducible polynomials f ln X or In y such

that f(O);t O.

Finally, we have the same elementary criteria for a non-diagonalizable ele­

ment of the left spectrum of [) h to represent a closed point:q,

4.4.7.1. Lemma. A left ideal p E Speclq[x.y] such lhat p n k[~j = 0 is Cl

closed point (i.e. is equivalent to a maximal left ideal) if and only if it con­

rains elements of the fonn I + (~-y)<p for same <p E kq[x,yj.

Here y = h/(l-q).

Proof is analogous to that of Lemma 4.4.6.1.

4.4.8. An observation. When q E k - {O, I}, the spectral picture of [) for
q,h

h ;t 0 differs from the spectral picture of the quantunl plane, [)q,o' onlr In

the commutative part: the hyperbala xy = yx = h/(l-q) splits into two axes.

But, the difference between Spec fD h when q;t I und the left spectrumq.
cf the first Weyl algebra [) h is very considerable.

I,
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ApPENDIX: COMPLEMENTARY FACTS AND EXAMPLES.

Section 4 covers only apart of the given in Introduction list of quantized

(and classical) algebras. And the list itself is far from being representative.

The purpose of this appendix is to give to areader a beuer view of the

host of eoncrete 'smalI' algebras acquiring an importanee in (not only) mathema­

tical physics. Needless to say that the remaining examples from Introduetion are

included.

andU (s/(2)),
q

Also, the appendix (together with Seetion 4) might be regarded as a sort of

a handbook on examples of hyperbolie rings. whieh are of interest nowadays. [n a

eouple of eases, we sketch (using the general results of Seetion 3 and same spe­

eific properties of the algebras In question) speetral pietures. But, mostly, we

just give formulas needed to make the applieation of Theorem 3.2.2 and Porposi­

tion 3.2.3 straightforward leaving the formulations and details to areader.

Seetions A.I, A.2, A.3 present the study of the left speetrum of special

classes of hyperbolie nngs. These classes are:

rings of M(2)-type (algebras M q(2), SL
q

(2), GL
q

(2) are of M(2)-type);

rings of Heisenberg type (the quantum Heisenberg [KS], [Ma], and Weyl [H]

algebras are prineipal examples);

and, finally, nngs of U(sl(2)-type the partieular eases of whieh are the

enveloping algebra U(5/(2)), the quantum enveloping algebra

the introdueed in [S] "algebras similar to U(s/(2))".

Seetion A.4 is eoneerned with the left spectrum of those 3-dimensional al­

gebras (in the sense of [BS)) whieh happen to be hyperbolic, but do not belong

to any of the listed above classes. Among them, the dispin algebra (- the uni­

versal enveloping algebra of the Lie superalgebra osp(I,2)) and the introduced

by Woronowiez [W I] twisted U(s/(2)).

A.l. Hyperbolic rings of M(2)-type. Fix a hyperbolic nng R18.~} over a comnlU-

tative noetherian ring R.

A.l.l. Lemma. I) The following properties 0/ a 8-i11 varian t element y oi the

ring R{8,~} are equiva/ent:

(a) 8(~r+ -ye-I(~) = (Y + l)~.

(b) -ye-I (~) - ~ IS a central element in the ring RI8,~}.

2) If ~ - 8- 1(~) is 110t a zero divisor. then the element y in ((I) ({nd

(b) is unique/y dejlned.

53



Proof I) (a) ~ (b). We shall show that the element y(rl(~) - ~ 1S cent-

ral In R{8,~}. Note that, since y(rl(~) - ~ E R, it is central if and only

if it is 8-stable. The last property follows immediately from (I):

8(')'tfl(~) - ~) = y~ - 8(~) = y~ + yEf'(~) - (y + I)~ = y(r l (<;) - <;.

(b) ~ (a). Conversely. the fact that A8- 1(<;) - <; and A. are 8-stable IS

expressed by the equality:

~ - 8(~) = A8-1(~) - <;,
which is equivalent to (l) with y replaced by A..

2) Note that the equality (l) is equivalent to) the equality

8(S - 8- 1(<;)) = 8(<;) - <; = y(~ - 8-1(~)). (l)

This means that if the element u:= ~ - 8- 1(<;) is not a zero divisor, then

the element y is uniquely defined. In particular, if the ring R IS a domain,

then either the element ~ itself is 8-stable, or the element y (if any) is

uniquely defined.•

Thus, if R is a domain and 8(S)"j:. S, then the centrul element

(2)

ring A<"Ö,u>. Let RI8,S} be the corresponding to

nng (cf. 3.2.1 ): I.e. R'- ArS}, 81 A = t}, 8(s) =.-

ll~ and the condition (a) In Lemma A.I.l is equivalent

is uniquely defined by 8 und S.

A.1.2. A special case: the

the ring A<"Ö,u> hypebolic

S + "Ö(u). 8- 1(<;) = <; - u.

Then <; - 8- 1(<;) =

to the equality

t}(u) =.yu (l)

(cf. the part 2) of the proof of Lemma A.l",l).

Note that it follows from (I) that y is an element of the ring A.

A.1.3. Example: the coordinate ring of quantum 2 x 2 matrices. The coordinate

algebra iJ(M (2)) 1S the k-algebra with generators x, y, w, v and with theq
relations

qHJX = .nv, qvx = VX, qyw = wy, qyv = v.v, wv = vw,

-[
xy - yx = (q - q )wv

These relations describe the algebra A<"Ö,ll>, where
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A = k{w, v}, f}j(w,v) = j(qw,qv), u = (q - q-l)WV.

The corresponding hyperbolic algebra, R{e,~) = R{x,y;e,~}, is given by

R = k[w.v,~}, and ej(w,v,~) = j(qw,qv,~ + (q3 - q)wv)

for any polynomial j(w, v.~).

Note that
-I .t=- -I -];t:. -Ie j(w,v,...,) = j(q w,q v,...,-(q - q )wv).

Clearly 'Ö(u)

Lemma A.I.I .•

i.e. the ring satisfies the eonditions of

Giving priority to this example, we shall say about a hyperbolic nngs with

the property (a) (or (h)) from Lemma A.l.l that they ure of M(2)-type.

A.1.4. The left spectrum of a hyperbolic ring of M(2)-type. Now fix a hyperboqc

flng. R{e,~). of M(2)-type. And denote by Li the element ~ - e-l(~).

The equalities

and

imply that . .
el(~) = ~ + ( L y)u = e-I(~) + ( L y)u

l'5:j5:i 05:) '5: i
and

for every positive integer i.

First consider special situations.

(I)

(2)

A.l.4.1. The degenerate case: lt = o. This means that ~ = e(~), or, equiva-

lently, ~. is a eentral element 10 R{e,~). In particular, R{e,~)~ 1S a

e-stable two-sided ideal. Thus, we have the partition of the left spectrum of

the ring R{e.~):

and

The quotient nng R{e,~)/R!e.~)~

where e' is the nng automorphism on

is isomorphie to the ring (RJR~)fe/,O),

R1R~ induced by e; l.e. it is defined
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by the relations:

xr = 8'(r)x, ry = yB'(r) for every r E R1R~;

ry = 0 = yx.

Thus, SpecfRlR;){8',O} is' natura1!y homeomorphie (wii:h respeet to any na­

tural topology we might consider) to the push-fof\vard

~peclRlR~)[x.e'l 11 SpecIRlR;)[y,er1j.
J,t)

It remains the open part of tf)e decomposition (3) - the left spectrum of

the localized ring (~rlR{8,~).

Note that. thanks to the 8-in\ ana:lce of ~, the flng (~rlR{8,~J is

isomorphie to the nng ((~r IR){8/''~''/. where A" is the induced by a auto-

morphism of the flng (~rIR, ~" i~ the lr..lage of ~ in (~rlR. Tbe equa-

tions

flngpolynomial

This means thaty = X·I~".

to thc skew

xy =-: ~" = yx

elements x, y are ir.vertible, 1rd

ring (~r IR{fY.... ~") 1~ iso::1orph1c

imply that the

the hyperbolic

(~rIR[A,&'j.

Thus, In the degenerate cafe, ~ = qr ~\ the deseription of t!le le:t spec­

trum of hyperbolie rings is redueed t0 the desl.,;ription vf the l.,;ft ~pectc .. ffi 01'

skew JX'lyr.omi~1 ri:lgs, which is alre;ldy kilcwn tef. Section 1).

A.1.4.2. The nondegenerate case. Sl~PPuse 110"v lhat the elcmenr u i,~ ir:vertible.

Then y is also invertible, sinte e is an automorphism. Now the 8-stab!e ele­

ment y provides the decomposition uf the left speclrum:

and

.Vfl-yj ~ Spec/R{e,~}I.f?r8.~)(I-Y»),

U/I-Y) ~ Spec1((I-yl-I Rre.;}).

Consider each of the spaces in the fight side of the last two expressions.

A.1.4.2.1. The left spectrum of

l-y is 8-stabk,

R{e. ~}IR(e,~)(! -y). Note that, agmn, Slnee

where R":= RJR(I-Y),

R{e,~}/R{8.~)(1.Y) ~ RH{8",~"},

8" is the induced by e automorphism of R", ~" the

Image of ~ in R".
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Clearly the hyperbolic nng R"{e",~"} IS of M(2)-type, but, Slnce the

image of y In R" IS I, the element

u"= ~"- e,,-l(~,,)

lS 8"-stable (cf. A.1.3). Therefore, the formulas (l ), (2) (cf. the beginning

of the seetion A.l.4) acquire, in this case, a particularly simple form:

(5)

and

(6)
for every positive integer n.

We leave to areader the applieation of Theorem 3.2.2 and Proposition 3.2.3

to this ease.

A.l.4.2.2. The open part. Sinee the element I-Y is 8-stable,

(l-yrIR{8,~) ~ 'K{e,~'/,
-I

where jt:= (I-y) R - the loealization of the ring R at \-y, e the auto-

morphism indueed by 8, ~' the image of ~.

Set u'; = ~' - e(~'); and let y' denote the image of y In :1\. It

follows from the formulas (I), (2) (cf. the beginning of A.1.4) that

(7)
and

(8)

A.l.4.3. General case. Let now R{S,~} be a generie ring of M(2)-type, ll:= ~ -

8- I(~), S(Li) = yu. Then, thanks to the Iast property, R{8, ~I Li 1S a two-sided

ideal, and the quotient ring, R{S,~}/R{S,~}ll is isomrphic to the hyperbolic

ring R'(8',~'I, where R'= R/Rll, 8' is the induced by 8 automorphism, ~'

the im'age of ~ in R'.

The equality 8(ll) = yu implies that the multiplicative subset (u):= {uni

11 ;;:: GI is an Ore set. The loealization of R/8.~} at (u) lS isomorphie to

the hyperbolic ring R"{8'''~''I, where R": (ur IR, 8" is the induced by S

automorphism of R", ~" lS the image of ~. Clearly the ring R"{8",~"1 is

also of M(2)-type, and the image Li" of the element Li is invertible.

Thus, we have the decomposition

in whieh the hyperbolic flng
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A.1.4.1), and R"{e/\~"} is nondegenerate (cf. A.1.4.2).

A.l.5. The left spectrum of the ring A(M (2)). Recall that the coordinate al-
q

gebra, A(M (2)), of quantum 2 x 2 matrices is the ring A<'Ö,u>, where
q -J

A = k[w,vj, 'ÖJ(w,v) = J(qw,qv), u = (q - q )wv.

(cL Example A.1.2). The corresponding hyperbolic ring, R{8,~} is given by:

R = k[w, v,~J, SJ(w, v,~) = J(qw,qv,~ + (q3 - q)wv) (1)

. for any polynomial J(w, v,~).

Clearly

and

According to A.l.4.3,
SpeciR{S,~} = V!u) U U!u),

where

V/u) =:: SpeciR'{e',~'}, U/u)::.: SpeciR"{8",~"},

R' = k[w,v,~]/{vw} ~ (k[v] n k[w])[~'],

and S'f(v, w,~') = f(qv, qw, S') for every J( v, w. S') E R';

k[ -I -lj::.]R" Qf W, W ,v, v ,...," ,

3and EY'f(w,v,~) = f(qw,qv,~" + (q - q)wv) (cf. (1)).

According to A.l.4.1,

Sp~c/R'{S',~') = (Spec/R"[x.8"J li Spec/R"[y,8,,-IJ) U Spee!s'rlR'{S',~'},
SpeeR"

where

(2)

(3)

R" = R'/R''j::.' - k[v] n k['·V], d e"('f.() f.( ) fo fir)..., - • an )' v, w =)1 qV,qw r every v, W =
g(v) + h(w) ER"; and

Therefore

where

- ISpecjRI/[x,e"] li Spee/R"[y, 8" ] =::

SpeeR"

- I - I
Specf/v,x] li Spec/ku[v,y ] li Spee [.k [v, x}-U SpeL/\/w,y ].

Speek[v] Speck q Speck[v] I

-]
u = q . and
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(5)

- I -[
Specf [x, v, v J II Spec1k [x, w, w ].

q Speck [vJ q

Now consider the nondegenerate part of the left spectrum - ,the open subset

Spec ,R"rS'.... ~"}, where R":::.: k[w, W-I, v, V-I,~"J, and 8"f( w, v,~") = J(qw, qv, ~" +

(q3 _ q)wv) (cf. (3».

and

')

(a) If y = q- = I, then, for every positive integer n,

8"n(~") = ~" + nu" = 8"-I (~") ~ (n +1)u", (6)

(7)

where u" = -I
(q - q )vw. The general theorems of Seetion 3 provide the fo11o-

wing assertion.

two non-correspond
-I -I

k[w, W ,v, V J,111

A.l.5.1. Proposition. Let char(k) = O. Then

I) Ta, every prime ideal p

equivalent left ideals from Spec,R"{8",~"}:

Poo,l: R"{8/'.~"}p + R"{8",~"}~" + R"{8",~"}y

and

R"{S",S") such that

P n R"{S", ~I\} = P

(md p00, c;.; E SpecIRI\{SI\, Sl\).p : = R"{8", S"}p,
00,00

coincides witlz

Every p E Spec[R"{S",'E,"} such that ~"- I1U" E P for same n ~ I (resp.

n ::; 0) is equivalent to P1,00 (resp. to, Poo [) for same ideal p fram
-[ -[ ,

Speck[w, w ,v, v J.
2) Let an ideal p E Speck[w,w-l,v,v-I,'E,"j be such t!Ult, for every nonzero

integer n, there is an f(v, \V,S") 111 p such that f(v, \V,s"-nu") e p, (md

'E," - iu" e ,:p for aU integers l.

Then every left ideal p 11l

and

.,
(h) Suppose n6w that ,y := q- ;t: 1. Then

S"I(~,,) = 'E," + Y(I-yrl(l-Y)U"

S,,-I('E,I\) = 'E," - (l-yr1(I-j+l)u"

for every positive integer i. Here the specialization of general facts looks
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as follows.

.,
A.1.5.2. Proposition. Let q (!zence y = q-) be not Cl root of unity. Then

-I -I
I) To every p E Speck[w. w ,v, v J. correspond two non-equivalent left

ideals from SpecIR"{8",C/''l .'

P00, I = R"{8",~"}p + R"{8",~"}~" + RI\{8",~"}y

and

PI,oo= R"{e",~"}p + R"{8".~"}(~"- yu") + R"{e",~"}x.

Every P E Specf"18".~"} such that .

~I\ + Y(I-yrl(l-Y)U" E P

(resp. ~"- (l_yr1(I_yi)U/\ E p)

P 111 k{w,w-l,v,v-I,~"l' do not contain neither ~"+

(I-yf I(I-!)U" for any integer ~ 0, but, for

there exist an f(v, w,~") (md an g(v, w,~/\) In p

for same i 2:: I ( resp. i 2:: 0)
-I -I

certain p E Speck[w. w ,v, v ].

2) Let a prime ideal

Y(I_yr1(I_Y')U", nor ~"

every i ~ land n ~ 0,

such t!zat both

ii equivalent to (resp. to for

'(g(d1(M (2))),
q

...

f(v.w,~" + Y(I-yr1(I-Y)u/\) (md g(v,w,~1\ - (I-yrl(l-l)ul\)

do not belong to p.

Then every left ideal p in R/\{S",S") such that

p n R"{el\,~I\} = p

Coil1cides with p .' = RI\{8".~" }p, (md p E Spec,R/\{8", ~/\ j.
00,00 00,00

A.1.6. Coordinate algebras of SL and GL. The quantum detenninant,
Cf q

~ -I.., - quv = xy - quv = yx - q uv,

IS a 8-stable element In R{S,S):

e(~ - quv) = ~ + (q3 - q )uv - q3uv = S - quv

which means exactly that S - quv is a central element.

(Note that if q IS not a root of unity, then the center,

of the algebra dJ(Mq(2)) IS generated by the 'quantum detenninant').

The coordinate flng A(SL
q

(2)) IS the quotient of the coordinate rIng

i1(M q(2)) of quantum 2 x 2 matrices by the ideal generated by .S - quv - I:

i.e. the algebra i1(SL
q

(2)) IS obtained from d1(M
q

(2)) by adding the relation:

xy -qllV = I

60



(cf. 4.1).

The coordinate ring

A(M (2)) of quantum 2 x 2
q

lt is more convenient

A(GL
q

(2)) IS the localization of the coordinate

matrices at the powers of the determinant.

to describe these two algebras in terms of the

nng

cor-

responding hyperbolic rings.

In fact, if R{e.~} lS the hypebolic ring of

IS the quantum determinant, then the quotient of

by (detq - I) = ~ - quv - I is naturally

A{'Ö,r,}, where

M (2), and det:= ~ - quvq q
R{8,~} by the ideal generated

isomorphie to a hyperbolic fing

A = k[u, vl, 'ÖJ(u. v) =J(qU,qv); S = I + quv

Similarly, the localization of R{e,~J at (det ) lS just the hyperbolic
q

ring R' {8/.~'J. where R' is the Iocalization of the (commutative) nng R

at (det J. 8' IS the un1que extension of the automorphism 8 onto R', ~'q
is the image of ~ under the canonical morphism R~ R' .

A.2. Quantum Heisenberg algebra. Given nonzero elements, q and p. of a -field

k, denote by H(q, p) the k-algebra generated by indeterminables x, y, z

which satisfy the following relations:

-I
xz = q zx; yz = qzy. (1)

xy - pyx = z. (2)

Li = z.fez),

15 a two-parameter deformation of the Heisenberg alge­

of the most straightforward examples of the flngs

The algebra H(q, p)

bra. Clearly H(q.p) IS one

A<t}.p,u> (cf. 3.1.10):

A = kfz}. 'Öf(z) = f(q-I z) for any polynomial

The corresponding hyperbolic algebra is RI8,~}, where

R = k[z.~}. 8f(z,~) = f(q-IZ.p~+q-IZ) for any

(cf. 3.1.10).

Note that 8-IJ(Z,~) = f(qZ,p-I(~-Z)). [n particular. we have:

8(~) + 8-1(~) = (p + p-I)~ + (q-I_ p-I)Z. (3)

The equality (3) suggests that a special choice of parall1eters, namely p =

q, might have same advantages. And this is really the case, as the following

Proposition shows:

A.2.1. Proposition. Let­

Suppose that an elemellt ~

8 be (l1l Clutomorphism

oJ R satisfies ~!le condition

0/ a conU11utative ring R.
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(4)

for same invertible element p such that e(p) = p.

Then (~- p-I e- I(~))(~ • pS-I (~)) is Cl central element In the hyperbolic

algebra R{e.~) = R{x,y;e,~}.

Proof We have:

(5)

Since

from (5) that

p and
-I

P enter symmetrically ioto the equation (4), it follows

Therefore
e(~ - p-IS-l(~)) = p(~ - p-IS-I(~)).

(~ - p-le-I(~))(~ - pe-I(~))

1S a S-stable (hence central) element. •

(6)

The algebra H(q,q) was introduced

algebra (in [KS], it is denoted by Hq)'

studied in [Ma].

In [KS] as a q-analog of the Heisenberg

The prime spectrUITI of this algebra is

A.2.2. 'Heisenberg type' Hyperbolic algebras. Now, instead of direct investiga­

tion of the rings H = H(q,q), we shall consider properties of a more general
q

dass of Hyperbolic rings which arises from Proposition A.2.1.

That dass consists of Hyperbolic rings R{e,~} such that

e(~) + S-I(l;) = (p + p-l)S (l)

for some S-stable in·vertible element p. We shall refer to the hyperbolic nngs

with property (l) as hyperbolic rings 01 Heisenberg type.

Note that the dass hyperbolic rings of Heisenberg type IS stable under the

adjunction (cf. 3.1.9); i.e. the adjoint to R{e,~) flng, R{S-I,e-2(~)}, also

satisfies the condition (l):

of Heisenberg type. Let tr

an invertible element of A.

A.2.3. Special case: rings A <'Ö, p, u>

phism of a commutative ring A, p

a flng defined by the relations:

xa = i}(a)x, ay = yi}(a) for every a E A,

xy - pyx = u for certain II E A.
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Finally, let R{ß, E) be the associated with A <11, p, u> hyperbolic flog:

R = A[~), 8(~) = t}(p)~ + t}(u), 8l A = {J.

(cf. Section 3.1.10).

Since e-I(~) P-I(~= ~ - u), we have:

e(~) + 8-1(~) = ({J(p) + p-I)~ + ({J(u) - p-l u). (1)

The equality (1) implies that

e(~) + e-](~) = (p + p.I)~ (2)
if and only if

t}(p) = p and {J(u) = p-] u. (3)

of A = kfz), the algebra of Laurent poly­

same sort 0 f action, 13-f(z) = f(q-] z), and

und an integer 11. Then (3) holds if and only

A.1.3; but let u =

Then (3) holds if and

t}f(z) = f(q -I z), as tn

and an h E k*.

if u = h E k.

A.2.3.1. Example. Let A = kfz),

h 11 f . .z or some nonnegative Integer n

only if p = qn. In particular, p = I

Similarly, we can take, instead

nomials, A = k[Z,Z-l j , with the

with u = hzn for some h E k
'f nI p = q .

Note that if q is not a foot of unity, then the only solutions of the

(3) , n 11 >0system are u = lZ, P = q, 11_.

In fact, the equality {)(p) = p means exactly that p E k. Since q 15

not a root of unity, the equality 13-(u) = P-lu implies thut u = hzn for some

h E k and same integer n. _

A.2.4. A canonical central element. Let R{e.~} be a hyperbolic flng of Heisen-

berg type; i.e.

(8. + 8-1)(~) = (p + p-I)~ and 8(p) = p.

for an invertible element p such that e(p) = p.

By Proposition A.2.1,

c(p) = (~ - p-le-I(~))(~ - p8-1(~))

IS a central element in the flng Rfe,~}.

(1)

(2)

A.2.4.1. The case of rings

ated with the ring A<t},p,ll>

A <tl, p, ll>. If Rfe,~}.

(cf. A.2.3), then

1S the hyperbolic flng aSSOCI-

-I
c(p) = (xy - p yx)u. (1)
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In particular, if A = kfz] (ar if A
11 11= hz und p = q (cf. Example A.2.3.1), und

-I
= kfz,z J), then, necessurily, u

·n nc(p) = h(xy - q yx)z.

It follows from the equalities 8(u) = p-I u and {}(p) = p that

c(p) = (xy - p-lyX)U = xyu - p-ly8(u)x = xyu - p-lyp-I ux = xyu - p-2yu.x

I.e.

-I
c(p) = x(yu) - p (yu)x.

(2)

(3)

The equality (3) shows that if the element

A<{},p,u> is isomorphie to the ring A<{},p-I.c(p».

u IS invertible, then the ring

A.2.5. The hyperbolic rings and the rings A<'Ö,p.u> of Heisenberg type. Let,

for a· short while, R{8,~} be a generie hyperbolic flng, and let p be an

invertible element in R. Denote by LI the element ~ - p8-1(~), and consider

the ring R<8,p,u>. Let Rft]r8,t} be the associated with R<8,p,u>

hyperbolic algebra (cf. A.2.3): GI R = 8, G(t) = 8(p)t + 8(u).

Clearly the map <Pp.' Rft] ) R whieh is identical on Rand sends t

inta ~, .is a ring epimarphism such that <Pp 08 = 8 0<pp' Therefore <Pp defines

the canonical ring epimorphism

'f
p

.' Rft]rG,t} ) Rr8,~j.

Now suppose that the hyperbolic ring Rf8,~} IS of Heisenberg type, and

let p be an element such that

(8 + 8-1)(~) = (p + p-I)s" and 8(p) = p. (1)

It follows from (1) that

8il := S(s - pS-l(S)) = s(s) - pes) = p-IS - S-I(S) = p-1ll

Sinee 8(p) = P und S(il) = p-1u, the flng R<8,p,u}, or, what is the

same, the associated hyperbolic ring Rft]r8,t}, is of Heisenberg type. Note

also that

-I
Grt) = pt + P ll. (2)
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A.2.6. The left spectrum of a hyperbolic ring of Heisenberg type. Fix a

hyperbolie ring R{S,Sj of Heisenberg type:

S(S) + S-I(S) = (p + p-I)S.

And set, as above, u:= S - pS-I(~).

A.2.6.1. Lemma. For any nonnegative integer n,

en(~) = pn+le-I(S) + p-n( L p2i)u,
05i~

(1)

and
-n-1.e -n-1.e -n-I( ~ 2i)8 (I.) = P ~ - P k P u.

. 05i9z

Proof When n = 0, the formula (1) is just the definition of u:

lf (l) holds for some n, then, thanks to the equalities

8(p) = P and S(u) = p-ltt,

(2)

it holds for n+ I:

n+2e-1(."-) n+ I -n( ~ 2;)-1p ~ +p tt+p k P pu=
05: i 5:n

The formula (2) follows from the formula (l) for the

R{S-I,S-2(~)j with p-I instead of p an.d, as a consequenee,

Li. This is an easy way to write it. But, onee the formula

easier to prove it by induetion. The details are left to areader.•

eonjugate nng,

-u instead of

is wrirten, it IS

A.2.6.2.

R{S,Sju

Decompositions. Thanks to the property S(u) =

is, actually, two-sided. Thus, we have the decomposition

Spec/R{S,sJ = V/u) U V/u),

-[P ll, the left ideal

und ,

V/li) ~ Spec,R'rS',s'j, V/u) ~ Spec,R"r811,s"),

where R'= RJRu, 8' the induced by 8 automorphisIll of R' 1"" the15 , S IS

image of S~

R"
-[

8" the induced by 8 autonlorphisnl of R", ~" is the= (u) R, IS
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Image of ~.

A.2.6.2.1. SpecIR'{8',~'}. Since 8'(~') = p'~', where p' IS the Image of p

in R', the left ideal R'{8',~'}~' is two-sided. Therefore

Specf'{8',~'} = Vl~') U V/~'),

and

The left spectrum of (R'IR'~'){8',O) is homeomorphic to

Spec/(R'IR'~')[x, 8'] 1l SpecIR'/R'~')[ y, 8,-1].
SpecR'IR'~ ,

. And

(cf. A.1.4.1).

Image, u",

of A.I.4.2, we consider the decomposition

p" IS the image of the

A.2.6.2.2. SpecIR"{8",~"}. Now the

invertible. So, following the scenario

with respect to the central element

element p in R":
P"Z1- , where

of the element u is

and

V/l-P',z) :;:,: SpecIR-{8-,~-J, where R-= R"IR"(I-p,,2);

V/I_p,,2) ~ Spec/RA{81'",~/"), where RA= (l_p,,2r IR".

Now it remains only the open set V/I_p,,2):::.: SpecIR/\{8A,~/\J.

Denote by uA and pA the images in RI\.{SA, ~AJ of II and p

respectively. Since the element· l_pA2 IS invertible, we can rewrite the

formulas (I), (2) from Lemma A.2.6.1 as

and
8/\n(~) = pAn+181\. - I(~) + pI\. -11 (1- p/\2(11 + I))r 1_ pl\.2r Iu/\

8/\-n-l (~) = p/\-n-l ~ '_ pI\.-11- I(l_pA2(11 + 1))( l_pA2r Iu A .

(1)

(2)

The formulas (I), (2) provide a specialization of Theorem 3.2.2 and

Proposition 3.2.3 which we formulate here for readers' convenience.

Set ch(p,Ä) = 0 if I - Al e p for all i;::: I; otherwise it is equal to

the minimal positive integer such that I - 'Ai E p.

A.2.6.2.2.1. Proposition. (a) Let P E SpecRA.
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I) lf EY'-I(~) E p,
.,

and cf)(p,pA-) = r, then the left ideal

then the left ideal2and eh(p, pA) = 0,

Pt,r+1 = R{EY',~A}p + R{8/\~A}X + R{EY',~A}yr+1

belangs to SpeeIR{8,~}.

2) lf 8A-t(~) E p,

IS In SpeeIRA{8A,~A}.

3) lf ~ E p, and eh(p, pA2
) = 0, then the left ideal

Poo,1 = R{8A,~A}p. + R{8A,~A}y

is in SpeeIRA{EY',~A}.

4) -SlIppose that

and
pAl1 + 18A- t(~) + pA-n( l_pA2(n+ IJ)( l_pA2r Iu" e p

8"-11-1 (~) = p"-n-I ~ _ p"-n-I (l_pA2( n + 1))( l_pA2r 1u" e p

for every nonnegative integer n; and let p be not 8Am-stable for any nonzero

integer m. Then the left ideal p00,00:= R{e,~}p belangs to SpeeIRA{e",~").

(h) All the Usted above left ideals are not eqllivalent one to another.

(e) Every left ideal p from Spec,RA{aA,~"} which contains

for same integer 11 ~ 0 is equivalent eitlzer to Pl,r+t' or to PI,oo for

certail1 p E SpeeR".

(d) Every left ideal p frol11 SpecIR"{8A,~A} which contains

8"-1l-1 (~) = ,,-n-I~ ,,-I1-I( ,,2(11+1))( "2r l ,, e pp - P I-p I-p Li

for same integer n ~ 0 is equivalent either to PI r+t' or Poo I
for certain

, ,
p E SpecRA.

A.2.6.3. AVersion of Engel's theorem. Recall that, glven a flng Band its

subring A. aB-module is called A-finite if it IS finitely generated as an

A-module.

One of the consequences of the obtained description of the left spectrum of

Heisenberg type hyperbolic rings is the following fact:

A.2.6.3.1. Proposition.

with the weight p.

Let R{8,~}

Suppose that

he a hyperholic ring of Heisenberg type

the subring 0/ 8-invarinWll elements of the
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ring R is a Jield, and p is not a root of unity.

Then the following properties of a left ideal p from

equivalent:

(a) the quotient module R{e,~}/p is R·Jinite;

(h) p = p + R{e,~}x + R{e,~}y for some pe SpeeR.

In partieular, p is two-sided, alld

R{8,x}/P ~. RJ(R~ + R8-1(~)).

are

where J1 is a maxi-

then a simple left

as an R-module, 10

A.2.6.3.2. Corollary. Let R{e,~} be CIS in Proposition A.2.6.3.1.

I) If U:= R~ + Re-I(~) is a proper ideal in R,

R{e,~}-module is R·Jinite if and only if it is isolnorphie,

the quotient module R/Jl with zero action of x and y,

mal ideal in R which contains Cl.

2) If R~ + Re-I(~) coincides with R, then there are no nonzero R-finite

R{e.~}-modules.

A.2.8. Aversion of skew. Weyl algebras. T. Hayashi [H] has defined a quantum

version of the first Weyl algebra as the flng A which is generated over a
q

field k by x, y, z with the relations
-I

xz =, q Z;t; yz = qzy; (5)

xy - pyx = z; (6)

and
c(q) = (xy - q-lyX)Z = I.

By analogy, consider the ring,

by adding the relation:

R{8,p.~), which IS obtained from

(7)

R{e.~}

c(p) = (~ - p-Ie-Io;))(~ - pe-[(~)) = l.

The ring R{e,p,~} shall be called the Weyl ring assoeiated with

or, shonly, the Weyl ring, when it does not create ambiguity.

(8)

R{e.~}

A.2.8.1. The ring ~VA<'Ö.p,u>. Consider the special ease, - when R{8,~} lS the

hyperbolic ring associated with the nng A<lJ, p.lt> of Heisenberg type (cf.

A.2.4). Then the associated Weyl ring, R{e,p.~}, ean be described in terms

A, 'Ö, u and p (using the canonical isomorphism A<'Ö,p,u> ------7 R{e,~}) as

the ring generated by x, y and A with the relations:

xa = f}(a)x, ay = yl}(a) for every a E A, (l)

xy - pyx = II far certain II E A. (2)

c(p) = (xy - p-lyX)U = I. (3)

68



The flng defined by the relations (1). (2), (3) will be denoted by

WA<'Ö.p,u>.

Clearly the nng WA<tt,l,U> coincides with WA<t},I,I>; i.e. this nng IS

given by the relations:

xa = tt(a)x. ay = ytt(a) for every a E A,

xy - YX = 1.

(1)

(4)

In particular, the (conventional) first Weyl algebra IS a subalgebra of

the ring WA<tt, l, I>.

A.3. Rings of U(sl(2))-type. A ring A<tt,u> will be said to be of U(sl(2))-type·

if there exists an element u in A such that

Q - tt -I (Q) = U. ( 1)

Clearly the solution of (1) is determined uniquely up to a tt-invariant sum­

mand. We shall call any solution of (I) a weight of the flng A<tt,u>.

A.3.2. Example. Let A<ß,u> = U (s/(2)); i.e.
-1 q -I

for some q E k - fO.±I}, U = (z - z )/(q - q ).

Then

-I
A = kfz,z ], ßf(z) = /(qz)

(2)

satisfies the equation (1).

If we consider the different version of U (sl(2)), the one withq

Li = (z - Z-1.)/(q - q- I ),

then, instead of (2), one should take

Q = (q2z2 + Z-2)(q2 _ lr l(q _ q-1r l . (3)

A.3.3. Example. Let now A = kfz], ß/(z) = /(Z+I). This subclass of algebras

A<ß,u> was introduced in [5] under the name algebras similar to lhe enveloping

algebra 0/ sl(2). One can easily check that, if deg(u) ~ I, the equation (1)

has unique solution Q such that 0(0) = 0 (cf. [5], Lemma 1,4).•

Let RfS,~} be the associated wirh A<ß,ll> hyperbolic flng:

R = Af~J, S{~) = ~ + ß(u), S I A = il.

A.3.4. Lemma. Suppose A<tt,u> is . a ring 0/ U(sl(2))-type \vilh a weighl o.

Then ~ - 0 is a S-invarianl (hence central) element in RfS,c,j.

Proof In fact,

S(e, - 0)·= e, + ß(u) - 13(0) = 'E, + i}(o - 13- 1
(0)) - i}(u) = e, - o. •
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Fix a weight. 0, of the ring A <'Ö, U>. And let

element ~ - o. It is convenient to represent the flng

with 8 IA = {} and 8(rU = 11. and with ~ = 11 + o.

Clearly, for every integer n, we have:

11 denote the 8-invariant

R = Af~} as AfllJ

8-1(~) + ('Ön(o) _ {}-1(0))

Note that the elements {}n(o). 0 and {}n(o) - 'Ö-] (0)

the choice of 0:

'Ön(o) - 'Ö.1(0) = L 'Öi(u)
05: i ~l

and
{}-n-I(O) - 0 = L {}-I(U)

05:i91

(4)

do not depend on

(5)

(6)

for every integer n;::: O.

As we did in other cases, consider the corresponding to the element 11 de-

composition of the left spectrum:

SpecIR{8,~} = V111) U V/Tl).

Since the element 11 is central, we have:

(7)

3 provides descriptions

of the left spectrum of

where the automorphism 8 is the trivial extension of 11, l.e. 81 A = 11, and

8(11) "= 11·

A straightforward application of results of Seetion
-]

of both parts. Spect{fJ,o} " and Spectfll,l1 }{8,11+o},

the ring R{8,~}. The details are left to areader.
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A.4. Other examples of hyperbolic rings. There are lots of interesting hyperbo­

lie rings whieh do not belong to any of the three classes discussed in Sections

A.I, A.2. and A.3. One of the best known of such rings is the dispin algebra.

A.4.1. The dispin algebra. The dispin algebra,

algebra of the Lie superalgebra osp( 1.2). It

the relations

U(osp( 1,2)),

1S generated by

is the enveloping

x, y, z with

zy - yz = y, yx + xy = z. xz - z,x = x

Take A = kfz], and define the automorphism 'Ö by

iJj(Z) = f(?, + I).

Ther. algebra U(osp(I,2)) coineides with the algebra A<iJ,p,u>, where

p ~ -I, U = z.
The corresponding hyperbolic algebra is Rla,;}, wllere

R = Ar~] = k{~,~], S~ = -~ + z + I.

Clearly R{e,~} eannot be of M(2)- or U(sl(2))-rype

Sinee a- I
(~) = -(~ - z), we have:

S(s) + e-1(S) = -s + Z + I - S + z. = (P + P-1)~ + lZ + 1•

whieh shows that it is nut of Heisenberg type eilhc;r.

A.4.2. Another deformation of U(sl(2». Ao example of a 'quantized' hyperbolie

ring whieh is not 01' M(2)-, U(sl(2))- or Heiser.berg type lS the introduced by

\Voronowiez [W] deformation of U(s/(2)). This deforrr;ation. ~(sI(2)), is the

k-algebra with generators x, y, z subject to the rele,tions

4 .,
:c: - y ZX = (1 + y')x,

2
xy - V yx = vz,

..; , 2
zy - v yz = (I + Y )y,

W~lere v E k* is not a root of un!ty.

We can rewrite these equations as

xz = (y
4

z.,. + I + v~)x
.,

xy - Y-yx = YZ

4 .,
zy = y(v z + 1 + V-).

where

Now it IS clear that this Woronowicz's algebra IS the algebra
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The corresponding hyperbolic algebra, RIß,~), is given by

Thus, the equality (~+ ~-,I)(~) = (p + p-I)~

W(sl(2)) is not a ring of Heisenberg type.

does not hold~ I.e.

A.4.3. 3-Dimensional quasi-polynomial algebras. Both, the dispin algebra

U(osp( 1,2)) and the Woronowicz' s algebra w(sl(2)) are examples qf algebras

which were introduced In [BS] as 3-dimensional skew polynomial algebras. To

avoid confusion with the notion of a skew polynomial ring which is used in this

paper, we rename them into quasi~polynomial rings. By definition, a

3-dimensional quasi-polynomial k-algebra is given by the relations

yx - axy = A., zx - ßxz = J-l, xy· yyx = v (1)

such that

I) A, 11, v E k.t + ky + kz + k, and 0:, ß, Y E k*;

2) the 'standart monomials' , {;·/Ji I i,j,l ~ O}, form a basis of the al-

gebra.

A.4.3.1. Theorem (2.5 in [BS]). Let i1 be Cl 3-dimensional algebra defined by

the relations (1). Up to isomorphism, A is givell by the following relations:

(a) if Ifa.ß,y} I = 3, then iJ is given by

yz - azy = 0, z.x - ßxz = 0, xy - yyx = 0

(h) lf j {a.ß,y} I = 2, and if ß"* a = y = I, A is one of the following:

(i) yz - zy = z (H) yz ~ zy = z (iii) yz - zy = 0

Zx - ßxz =y zx - ßxz = b zx - ßxz = y

. xy - yx = x xy - yx = x xy - yx = 0

(iv) yz - zy = 0 (v) yz ,- zy = az (vi) yz - zy = z

zx - ßxz = b zx - ßxz = 0 Z.X - ßxz' = 0

xy - yx = 0 xy - yx = x xy - yx = 0
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Here a, b E k are arbitrary; all nonzero values of b yield isomorphie

algebras.

(e) if I(Ci,ß,yj I = 2, and if ß * Ci = Y * I, then

(i) yz ~ CiZy = 0 (ii) yz - Cizy ='0

ZX - ßxz = y + b ZX - ßxz = b

xy ~ Ciyx = 0 xy - Ciyx = 0

b E k arbitrary; all nonzero values 0/ b yield isomorphie algebras.

(d) if Ci = ß = Y * I, then A is given by

yz - azy = a x + b
1 I

ZX - axz - az! + b
2

xy - o:yx = a Z + b
3 3

lf a. = 0, then all nonzero values of b. yield isomorphie algehras.
I I

(e) if 0: = ß = Y = I, then A is isomorphie to one 0/ the following:

(i) yz - zy = x (ii) yz - zy = 0 (Hi) yz - zy = 0

zx - xz = y zx - xz = 0 zx - xz = 0

xy - yx = z xy - yx = Z xy - yx = b

(iv) yz ~ zy = -y (v) yz - zy = az

zx - xz = x + y z.x - xz = x

xy - yx = 0 xy - yx = 0

G, b E k arbitrary; all nonzero values 01 b y(eld isomorphie algehras.

A.4.4. 3-Dimensional skew polynomial and hyperbolic rings. The following

algebras In the list of Theorem A.4.3.1 are either hyperbolic or skew

polynonlial:

(b): algebras (i), (H) are hyperbolic, the algebra (vi) IS skew polyno-

mial~

(e): both algebras (i) and (ii) are hyperbolic;

(e): the algebra (i) is hyperbolic, the algebra (v) is skew polynomial.

We shall support this observation by producing the hyperbolic or skew poly­

nomial structure for each of the listed above rings. Besides, we shall describe

the pait of the left spectrum covered by Theorem 1.1.2 and Proposition 1.1.3 in

the most interesting cases.

(h) (i) Take A = k[yj, iJI(y) = J(y - I). Then the relations (i) are
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xa = it-I(a)x, za = 1j(a)z, ZX - ßXZ = Y E A;

l.e. .4 = A<'Ö,ß,y>. The corresponding hyperbolic ring is R{e,~}, where

R = k[y,~J, Sf(y,~) = f(y - I,ß~ + y - I).

In particular, the dispin algebra

hyperbolic ring R{e,~} for' ß = -\,

Clearly the ring .it<"ß-,I,y> (hence

ping algebra U(sl(2)). So, we assume that

One can check that

(cf. A.4.1) IS isomorphie to the

R{S,~}) is isomorphie to the envelo-

ß i= I.

and

sn(~) = ßn+ 1e-I(~) + L ßI 'Ön-l (Y) =
05:i9z

ßn+IS-I(~) + L ßl(y - n + 0 =
O:5:i9z

e-n(s) = ß-n~ - L ß-i"ß-i-n(y) =
I~ i9l

ß-n~ - L ß-i(y + n - i) = ß-n(~ - L ßi(y + 0) =
l~i9z 0'5: i 91-1

(I)

(2)

Let the ideal pE SpeeR contain e-l(~) = ß-l(~ - y). It follows from

( I) that eJl
-

1
(~) E P if and only if

(3)

The formula (3) shows that, for every positive integer 11 such that ßn i=

I, there exists unique prime ideal p such that

is' a left ideal from SpeeIR{e,~}. This ideal, P, is

p(A(I1)) = R(~ - 'A(n)) + R(y - A(n)),
where

Similarly, if ßn"j:. I, there exists unique prime ideal p such that

p := R{S.~}p + R{S,S}z + R{e,S}x
l1

11,1

74

(4)

(5)

(6)



is a left ideal from SpeclR{e,~}. This ideal, p, IS

p(AI.-nY) = R~ + R(y • J.J, -nY), (7)
where

Obviously, for every integer

quotient ring, Rlp(A(n)) is

p(J.J,n)) is maximal for every n,
I, n

n, the ideal p(A(n)) is maximal, and the

isomorphie to k. Therefore the left ideal

and the eorresponding quotient module,

R{e,~}/p(A(n)) ,
I,n

lrre-

eontains

dimensional

ß = -I)

finite

when

eyen-dimens ional representati-

ofthe list of equivalence classes

of the dispin algebra (the case

In every odd dimension and norepresentation

has dimension n over k. And this exhausts the list of finite dimensional ir-

R-finite modules from the speetrum of the ca-redueible representations and even

tegory R{e.~}-mod.

In particular,

dueible representations

one

ans.

Every prime ideal

not equal to k[y](y+J.J,n)))

and

P tn k[y] which does not eootain y+A(n)

for any n, defines two ideals from SpecIR{e.~}:

R{e.~}(~ - y) + R{e,~}p + R{e,~}x

R(e,~}~ + R{e,~}p + R(e.~}z.

(i.e. is

Thus, the 'Verma' part of the left speetrum eontains two non-closed points,

and
prO) = R(e.~}(~ - y) + R(e.~jx

pA(O) = R{8,~j~ + R{e.~jz,

(8)

(9)

and two families of closed points (- maximal left ideals):

and
p(fJ:= R{8,~}(~ - y) + R{8.~jf + R{8,~jx

p"(g):= R{8,~j~ + R{e,~}g + R{e,c)z,

( 10)

(11)

where f = f(y) and g = g(y)

als in y which are not equivalent to

In partieular, if the field

(8) and (9), we ean write:

run through the set of all irredueible polynomi­

y - A.(n) for any n.

k IS algebraically closed, then, instead of

(12)

where A runs through k - (A(n) I 11 ::2: Oj, and

Jl"(A):= R{e,~}~ + R{8,~}(x - A) + RI8,~}z. (13)
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where A. runs through k· (/...(-nY I n ~ I}.

Note that the family of ideals (10) is exactly the set of a11 nontrivial

specializations of the ideal prO) (cf. (8)), and the family of ideals (11) is

the set of a11 nontrivial specializations of the ideal pA(O) (cf. (9».

Now, suppose that p is a prime ideal in R = k[Y,~J· such that enp:;t p

for every n '* 0, and en(~) fe p for any n.

For example, the ideal m(y,v):= R(~ - y) + R(y - v), where

(14)

have this property.

Then the left ideal p00,00 = R{e,~Jp

the ideal p IS maximal, then p00,00

the left ideals

belongs to Spee/R{e,~J. Moreover, if

IS a maximal left ideal. In particular,

m(y,v) = R{e,~j(~ - y) + R{e,~J(y • v),
00,00

where the pair y, v satisfies the conditions (14), are maximal.

(15)

(b) (ii) d1 = A{f}, ß,bJ for the same A and f} as In (i), but with b E k*

instead of y. Le. iJ Ct R{e,~J, where

R = k[y,~J, ef(y,~) = f(y - I,ß~ + b).

So, we have:

8n(~) = ßn+ [e-l(~) + I ßit)n-i(b)_.
05:i~

ßn+le·I(~) + bel - ßfl(l - ßn+I),

e-n(s) = ß-n;; - L ß-if}i-n(y) =
I::; i~

This time, the left ideal

where pE SpeeR and ~ - y E p, belongs to Spec/R{8,'f,J if and only if ßn =

I, but ßI:;t 1 if \::; i S; n - l.

Moreover, the left ideals
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p := R{8,~}p + R{8,~}x and I-or p := R{8,~}p + R{8,~}z
1,00 00, I

belong to SpeeIR{e,~} if and only if ß is not a root of unity.

If pE SpeeR is such that

~ ± bel - ßfl(1 • ßn) e p

and en(p) '# p for any n, then p = R{e,~}p belongs to the left spectrum.
00,00

If P is a maximal ideal, then the left ideal p is also maximal. In parti-
00,00

cular, the left ideal

R{e,~}(~ - y) + R{e,~}(y - v)

(b) (vi) Take B = k[x,y}, i}f(x,y) = f(ßx,y+t). Then d1 = B[z;f}].

(e) (i) Take A = k[y] , f}f(y) = f(ay) , u = y + b. Then s4 = A<f}.ß,u>.

The corresponding hyperbolic ring is R{e,~}, where

R = k[y.~J, ef(y,~) = f(a·ly,ß~ + a-Iy + b).

Note that Woronowicz' s deformation of U(sl(2))

4 ß -2 2 2. )-1belongs to this class: a = v , = v , b = v (v - I .

, We have:

en(~) = ßn+ 18·1(~) + L ßif}n-i(y + b) =
O$;i5n

ßn+le-l(~) + L ßi(ai-ny + b).

·~i"5n

(cf. Example A.4.2)

If aß = I, then it follows from the last expression that

en-I(~) = ßne-I(~) + nßn-ly + b(1 - ßfl(1 - ßI1).

If aß '# I, then

811-1(~) = ßne-l(~) + (I - aßf 1a-1l+ 1(1 - (aß)f1)y + b(l - ßrl(, - ßn).
Similarly,

e-ll(~) = ß-n~ - L ß-ii}i-ll(y) = ß-n(~ - L ßl(a1y + b)),
l"5i5n O"5i5Jl-l

which implies that
-11 .J: ß- f1 (.J:e (...,) = ..., - 12Y - b( I

if aß = I, and

e-n(~) = ß-Il(~ - (I - aßfl(1 - (aß)I1)y - bel ßrl(l - ßI1))
if aß '# l.

For any integer n 2: I, set
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R{e,~}/p IS

if aß = I, and

ß n-I ß n -1 ß -I ßnt(n) = (1 • a)a (1 - (a ) ) b(1 - ) (I - ),

ß ß n -I ß -I ßnt( •n) = (I - a )( 1 - ( a ) ) b( 1 - ) ( 1 - )

if (aß)n '* I.

Let the ideal pe SpeeR contain e- I
(~) = ß- 1

(~ - Y - b).

from (16) that Sn-I (~) E P if and ooly if

either an = 1 = ßn, or (aß)n;t I and - y + t(n) E p.

(a) Let aß = I. And suppose that ßn = I, but ßi '* I if

Then every p E Speet{e,~} such that the quotient module

R-finite, is equivalent to one of the left maximal ideals

p.:= R{e,~}(~ ~ tri) - b) + R{e,~}(y + tri)) + R{a,~}x + R{e,~}i
I

It follows

1 :::; i < n.

for every 1:5 i :5 n; and, if i '* j,

to each other.

the ideals p., p. are not equivalent
I J

If ß is not a root of unity, then, for every ~ I, the maximal left

ideal p. is In Speef{e.~}; p. IS not equivalent to p. if I ;t j, and
I I J

every p E SpecIR{e.~} is equivalent to one of p ..
I

Clearly any prime ideal, p, 1n R which contains S-l(~) is of the form

p = Ra-I(~) + RJ = R(~ - y - b) + RJ,

where I = I(y) is an irreducible polynomial. The left ideal

p := R{e.~}(~ - y - b) + R{a,s}f + R{S.~}x,
1 00.

belongs to SpeeIR{S,~} if and only if f(y) IS not equivalent to y + tri)

for any l.

Similarly, the only ideals Poo I
10 Spec,R{e,~} (p lS pnme, and ~ E

,
S(p)) are of the form

where f = J(y) lS an irreducible polynomial which is not equivalent to y +

t(-0 for any i ~ I.

It is not difficult to describe the ideals pE SpeeR such that R{S.'E,Jp E

Spec,Rf8J,} (cf. Proposition 3.2.3):
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Every pe SpeeR such that en(~) i: p belangs to this set except

the ideals Rg for any irreducible g E k[yj, if ß is a root of unity;

the ideal Ry. if ß IS not a root of unity.

(b) Let now aß * J. And suppose that an = 1 = ßn, but the condition

a.i= I = ßi does not hold for 1 ~ i .s; n - 1. Then

prO) := R(e,~j(~ - y - b) + R{e,~}x + R(e,~}zn
I,n

belangs to SpecIR{eJ~}' The set of nontrivial specializations of the ideal

p(O) I,n consists of a11 the ideals

p(j) := R(e,~}(~ - y - b) + R{e,~}1 + R{e,~}x + R{e,~}zn,I,n .
where 1 = I(y) is any irreducible polynomial which is not equivalent to y +

t(i) for same I.s; i < n such that (aß/;t I.

Clearly a11 the left ideals p(f) , I ~ 0, are maximal.
l,n

Besides, there are the maximal left ideals

p .:= R{e,~}(~ - tri) - b) + R{e,~}(y+t(i)) + R(e,~}x + R{e,~}i,
1,1

for every i such that I.s; i < n and (aß/* I.

The ideals p(O) , (p(f)) and
I,n I,n

another, and every ideal p E SpecIR{e,~}

R-finite, is equivalent to one 01 thern.

(p.) are 110t equivalent one to
I, I

such that the module R{S.~}lp IS

Since Sn= id, the series {p }
1,00 ' {poo /, and {p00, oo} are, evidently,

empty.

(e) Now assume that aß * 1, and the condition an = I = ßn does not hold

for any n ~ I. Then, for evel)' i such that (aßl~ I, the left ideal

p .:= R{S,~)(~ - t(i) - b) + R{e,~}(y+t(i)) + R{8J,}x + R{S,~}i,
I, I

IS maximal. Every p E Speef{S,~} such that the, quotient module R{e,~}lp . IS

R-finite, is equivalent to one of the ideals p ..
1,1

The series (p ) and {p } consist of the ideals
1,00 00,1

R{S,~}(~ - Y - b) + R{8,~}1 + R{S,~}x,

R{8,~}~ + R{e,~}g + R{8,~}z,

where I (resp. g) runs through the set of all irreducible polynoInials In y

which are not equivalent to y + tri) (resp. to y + t( ~i)) for any i ~ l.

Suppose that pe SpeeR is such that SI1(~) e p for any 11. Then p00,00=
R{e,~}p E SpecIR{e,~} provided

p * Ry. if a. is not a root of unity;
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P ':t Rg for any irreducible polynomial g(y). if a is a root of unity.

Moreover. if the ideal p is maximal, then p00,00 is a maximal left ideal.

In particular, the left ideals

= R{e,~}(~ - y) + R(e,~}(y - v),

where y ':t t(i)

m(y,v)
00,00

for any integer i, are max imal.

(e) (ii) i1 = A<~,ß,b>, where A = k[y] , fJj(y) = j(ay).

The corresponding hyperbolic ring is R{e,~}. where

R = k[y,~], ej(y,~) = j(a-ly,ß~ + b).

Here the formulas for e±n(~) are the same as in the ease (h) (ii)

en(~) = ßn+1e- 1(<;) + bel _ ßrl(1 _' ßn+l),

e-n(~) = e-n(~) = ß-n(~ - b(1 - ßfl(l _ ßn)).

We leave the description of SpeeIR{e,~} to the reader as an exercise.

(e) (i) This IS the enveloping algebra of the Lie algebra with basis x, y•

. z and the relations

[y,z] = x, [z,x] = y, [x,y] = z.
In other words, A = U(s/(2).

(e) (v) Let A = k[x,y], fJj(x,y) = j(x+l,y - a). Obviously A = A[z;f}].

A.4.5. 3-Dimensional rings of skew differential operators. Let "Ö be an auto-

morphism of a ring A and a a f}·derivative; l.e. a IS an additive map from'

A to A such that

a(ab) = a(a)b + "Ö(a)a(b)

for a11 Q, b in A.

and a is the ring

ject to the relations:

Reca11 that an Ore extension of a ring A defined by f}

A[x, f), a] generated by A and the indeterminable x' sub-

xa = tJ(a)x + ara) jor all a E A. (I)

Clearly A[x, ~,O] coincides with the skew polynomial ring A[x, f)].

Generic Ore extensions are called 'sometimes skew polynomial rings. However,

the differenee between geometrieal pictures (the left spectrum. sin1ple modules

ete.) in the degenerate ease, a = 0, and non-degenerate ease turns out to be

eonsiderable enough to split these two eases. So, the ring of skew differential

operators (with eoeffieients in A) seems to be more adequate version of a se­

cond name for Ore extensions.
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8 be the autamorphism·

dJ = A'[z;8].

is a double skew palyno-

The left spectrum and irreducible representations of rings of skew diffe­

rential operators are pretty weil understood in the case when the ring of coef­

fieients is commutative and noetherian (cf. [R8]. [R9]).

Now, resuming the contemplation of the list of algebras in Theorem A.4.3.1,

note that five of them - (b) (Hi) and (iv). and (e) (H). (iH). (iv) are

rings of skew differential operators:

(b) (Hi) Take B = kfx,y}, ~f(x,y) = f(ßx,y), and define a ~-derivation

Ö by ö(x) = y, 8(y) = O. Then A = Bfz;~,ö}.

(b) (iv) :ß = Bfz;~,a}. where B and ~ are as 10 (iii) and the

~-derivation a is defined by a(x) = b, a(y) = O.

(e) (ii) This is the universal enveloping algebra of the Heisenberg Lie al­

gebra. So, it ean be eonsidered either as

kfz}{x,y;id,l.zI, or as k[y,z}fx;id, a},

where a(y) = z. a(z) = O.

(e) (Hi) 'A = A[x;id,8}, where A = kfy,zj, as In (ii), and Ö(y) = b.

8(z) = O.

(e) (iv) Take A = kfx,y}. a(y) = y. a(x) = x + y. Then si = A[z;id,aj.

One ean apply to these algebras the results of [R8] and obtain a deseripti­

on of the left spectrum and irreducible representations.

A.4.6. The remaining cases. The only algebras left from the list of Theorem

A.4.3.1 are: the 'generic' 3-dimensional algebra (a), the algebra (h) (v)

and, finally, the algebras (d).

(a) Let A = kfz}. 'Öf(z) = f(az) for every f E A; and let e be the

automorphism of the algebra B = Afy,iJ} whieh assigns to a polynomial g(y,z)

the polynomial g(yy,ß-1z). It is easy to see that d1 = B{x.8}.

(b) (v) Let A = kfy}. 'Öf(y) = f(y + I); and let

of A'= A[x;'Ö} defined by 8g(x,y) = g(ßx,y + a). Clearly

Thus, in both cases, (a) and (b) (v), the ring iJ

mial extension of a eommutative (polynomial) ring.

The invariant (categorical) approach to the noncommutative algebraic geome­

try (cf. [R6]) allows to describe the left spectrum of iterated skew polynorrüal

extensions.

(d) Suppose now that the algebra

defined by the relations
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yz - cx.zy = a1x + bl:= A.

zx - a.xz = a.; + b
2
:= Jl

xy - ayx = a Z + b: = V
3 3

where Ci = ß = Y '#. l.

= O. Define the automorphism {} of the alge-

and the ~-derivative a by B(y) = b.
3

8 and the 8-derivative 0 of the flng B =

A.4.6.1. A special case. Let a
3

bra A = k[yj by 'Öf(y) =!(ay) ,

Now. define the automorphism

A[x,i},aj by

8g(x.y) = g(a.x,a-1y). o(x) = a.; +' b
2
, D(y) = -Ci-I(a1x + b

t
).

Clearly our ring coincides with the Öre extension B{z,e,oj.

In other words. if one of the coefficients a. is zero, then the flng IS a
I

double Ore extension. Again, there is a way to get a pretty ample information

about the left spectrum of a double Ore extension.

Thus the only case which remains, apparently, out of reach of the presented

In this chapter technique (as weil as [BS]) IS when all the coefficients a.
I

are nonzero.
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