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On relations of dimensions of automorphic forms

of $p(2,R) and its compact twist Sp(2) (I)

Tomoyoshi Ibukiyama

Let p be a fixed prime. In the previous paper [9),
we have given some examples and conjectures on correspondence
between automorphic forms of Sp(2,R)(sige four) and
SP(Z). = g€ H; gti = 12) (H: Hamilton quaternions)
which preserves L-functions, where the p-adic closures
of the discrete subgroupa(to‘which automorphic forms
belong) are minimal parahoric., This was an attempt to
a generaligation of Eichler's correspondence between SLQ(R)
and SU(2). Ihara raised such problem for symplectic groups
and Langlands[15]has given a gquite general philosophy on
correspondence of automorphic forms of any reductive groups
(functoriality with respect to IL-groups). In this paper,
we give good global dimensional relations of automorphic
forms of Sp(2,R) and Sp(2), when the p-adic closures _
of discrete subgroups in question are maximal compact.
(As for similar results for other groups, see[8].)
More precisely, put

K(p) = Sp(2,Q) N ¥M,(2)Y

¥ ¥ Vp : 1000

<
= Sp(2,Q) N g: ps : pt ) where ¥ = g l ; g
Pr x i * o001

and x runs through all integers.

The author is partially supported by SFB 40, Univ.Bonn
and Max-Planck-Institut fir Mathematik,
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For any I” C Sp(2,R), denote by Ak(f')(reap.8k€r7))°"

the space of automorphic (resp.cusp) forms
belonging to [ . We shall calculate the dimension
of 5,(K(p)) for all primes p(Theorem 4 in § 4).
By comparing these with those of certain autoncrphic
forms(i.e., certain spherical functions) of Sp(2),
we shall show certain interesting relations of
dimensions(Theorem 1 below). Some philoaophical
aspects of relations of orbital integrals have been
explained in Langlands[14]). But except for the case
of GL,, or the product of its copies, as far as 1 know,
this is the first global result concerning on the
comparison of dimensions of spaces of automorphic
forms belonging to different R-forms of a complex
Lie group..We propose a p:eciae conjecture on
the correspondence of these spaces which is Auggested
by these relations(conj.1.4). (Some examples of pairs
of automorphic forms whose Euler 3-factors fit this
conjecture have been gi'ven in[9].) In a sense, the
situation is fairly different from the case of GL,,
for example, it is noteworthy that, nevertheless the
discrete subgroups in question are 'maximal', some
'old forms' come in these spaces. This is not because

there exist some forms obtained by Saito-Kurokawa



liftlng Io atatc the relation more explicitly, we need
some more notations. Let B be the definite quaternion
algebra with the prime discriminant p, O be a maximal

order of B. Put BP-BgQ'p and OP’O?ZP' Put

G = ise M,(B); 'z - n(g)1,, n(g) € Q} }

Let G, be the adelization of G, and G, (resp.Gq) be
the infinite(resp.q-adic) component of G,. For

any open subgroup U of G G,» denote by M, (U) the space
of automorphic forms on GA belonging to U with

‘weight py ', where p, is the irreducible representation
of Sp(2) which corresponds to the Young diagram

E,’I: A « ( cf. Ihara [13], Hashimoto[5])).

We take an open subgroup U, = G, 112 LLB U1 of G,,
2 Pap ¢ A

1
where Uq GLZ(Oq)ﬂ Gq. and Ui is the unit group of

the right order of a maximal left Op—lattice in the

non .principal genus in the quaternion hermitian space

Bg with the metric n(x)+n(y) for (x,y) € Blz, where n(% )

is the reduced norm of B.(cf. §1) Put

fo(p) - { (23)6 SLZ(Z); ¢ = o0 mod.p } .
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Theorem 1 For each integer k= 5 and each prime

integer P, we have the following relation of the dimensions:

dim S, (K(p)) - 2 dim Sk(Sp(Z.Z))

= dim M, _5(U,)- dim A, ([7 (@) x dim S, _,(8L,(Z)).

The conjectural meaning of this Theorem will be explained
in §1. The dimension of Sk(Sp(Z,z)) has “been known by
Igusa [12], and the dimension of M,_,(U,)has been given in[77](II)

So, only dim Sk(K(P)) is to be calculated. Recently,

Hashimoto[ ] obtained a general(but not explicit) formula

of dimensions of cusp forms belonging:to any discrete |

subgroups [~ of Sp(2,R). Roughly spoken, his assertion

is as follows: apparently, we have to calculate the

contribution of each [* -conjugacy class to the dimension,

but at least for the semi-simple conjugacy classes, we

can calculate everything from some data on integral

property of their local conjugacy classes in Sp(Z,QP)

and Sp(2,R) (so, in these cases, we can avoid the
classification of I’~ conjugacy classes), and besides ,

for all conjugacy classes, 'local data' at the infinite

place can be explicitly written down.(As for the further

details such as ’'family', see his paper.) But in order to

obtain the dimensions explicitly by using his formula,

we must calculate such local data(the number of 'optimal

embeddings' and some local masses) of semi-simple conjugacy

classes, and classify K(p)-conjugacy classes of parabolic



type or some mixed type.(Since K(p) is not contained
‘in Sp(2,2), there was no known results on such
classification.) These calculations are rather elaborate
and have been done in somewhat lengthy casé by case
process similar to‘['l]'. and here, we shall often
-omit the proofs, or content ourselves with some
sketchy proofs. (Ls for an expésitory review on results
in[S],[G).['l] how‘to calculate dimensions in general,
confer[8) §4.) In §2, we.give local data of seﬁi—simﬁle
conjugacy classes. In §3, we classify K(p)-conjugacy
classes of parabolic or mixed type. In §4, we sum up
them and proOve Th.1.

The author would like to thank Dr. K.Hashimoto who
bhas shown him the manuscript of his paper[6],
and Dr.S.Kato who informed him the notion of the folding
of the Dynkin diagrams of p-adic algebraic groups.



¢1. Conjectural meaning of Theorem 1.

To explain the situation more clearly, we recall
some- local theory of p-adic algebraié'groups(cf.!l‘itsyﬁg']).
The extended Dynkin diagram for Gp can be obtained from
the one for Sp(2 ,Qp) by dividing by the non trivial
graph automorphism 0 , and each summit can be regarded
as a double coset of a minimal parahoric subgroups.

(See C, and 2C, in the table of [I§] p.64)

S
O"C °> S
S 1
2
T
'C‘%______*1
oco

These double cosets are explicitly given as follows: put

O O % ¢

* x
B(p) = {g € Sp(2,2); g = ( : :
*t x

mod.p )’ (% : integers)

00O %

and let B(p)p be the p-adic closure of B(p). Then, B(p)P

is an Iwahori subgroup of Sp(Z,Qp). We can take

So = B(P)pwoB(P)p» Sy = B(P),w4B(p),, and S, = B(p)w,B(P),

00 -p o ocol1oo

o1 o o 1000
wherewoe(po P o)' Wy 3(0001)’ and

o0 o 1 oo1i1o



On the other hand, put

X . - ’
Gp ={g¢ My(B,) 5 &( § 1% = ne)( %)), n(e)e Q},‘} .
Then, Gp2 Gp. We fix such an isomorphism and regard

subgroups of G’, as those of G; if necessary. Put

0, Op X
u° '(K(): 0 ) () G, where TC is a prime element of
P .

OP- such that T 2. P . Then, U; is a minimal parahoric

subgroup of Gl”- and we can take

1

-Tc”
0 o, o 1 U°

(o]
To=TWle

There are three maximal compact subgroups (up to conjugation)
in 5p(2,Qp), that is, K(p), = B(p), U 5, U S, U §.5,,

Sp(2,2p), and p Sp(Z,ZP)f'1, where

o -1

-1 o
o o *
)

Among these, only K(p)P is invariant by 6 , and the group

Pl

- -

which 'corresponds'’ with K(P)r by *folding' is
Uf, = U?,U T,. So, it is natural to consider that there

exists some good correspondence between Sk(K(P-)) and
Hk;B(Uz)‘ But, in spite that these are 'maximal’ groups,



we must subtract the 'old forms' from each space. Now,

we shall explain this. We intend to regard the cusp forms

in S (K(p)) obtained 'from' 5, (5p(2,2)) + 5,(p sp(2,2)p ™)

as old forms. But K(p) is not conjugate to Sp(Z,Z) or
r’Sp(Z,Z)f7'1, and is not contained in, or does not contain

any of these groups. So, we must define some mapping

between these spaces. Define TrK(r)/B(p):4Sk(B(P))—$‘Sk(K(r)) by:

_[ 2 ) .
Tx(p)/3(p) ) = (zre B(p. )\ K(p) * ‘[ﬂk /[xp3(p)]
for any £ € S (K(p)), where £ |[¥), = £( ¥ z)det (Cz+D)™®
for § = (é g) € Sp(2,Q). Denote by Tr the restriction

of Try(5)/p(p) OB Sk(SP(2:2)) + S £ Sp(2,2)p -h.

We define new forms of S(E(p)) to be the orthogonal complement
of Tr(sk(Sp(z,Z))j+Sk(pSp(2,z)p'1) in Sk(K(p)), and denote

it vy S;(K(p)). The map Tr does not vanish in general.

For example, we have

Lemma 1.2. Let £ & 5,.(5p(2,2)) be an eigen form of
the Hecke operators T(p) and T({p°) with eigenvalues X\(p)
and >(‘p2). respectively. Assume that XA (p) $ o or
>‘(P2) 4 p?X"2, (For example, this is satisfied for all
eigen forms of the Mass space Mk') Then, Tr(f) f o.

The proof consists of an easy argument on Fourier coefficients,

and will be omitted here. In view of the Ramanujan Conjecture,



it is very plausible that the assumption of Lemma 1.2 is
always satisfied. On the other hand, the map Tr is not

injective in general:

Lemma 1.3. Let k be an even integer, Then, for

T €. M, (the MaeB space), we have Tr(f) = Tr(f \LP]k).

The proof is easy and omitted here. It seems that, if k is
odd, then Tr is injective, and if k is even, then
ker Ir = if - flE(’]k H £ ¢ Mk} . If this is true, we have

dim SP(X(p)) = dim 5, (K(p)) - 2 dim S, (Sp(2,2)) for odd k, and
dim Sp(K(p)) = dim S, (E(p)) - 2 dim 5,,(59(2,2)) + din Sy 5(SLy(2))

tor even k. (Numerical examples in [ 9] support this.)

On the other hand, we can show that, if a common eigen form
fe "v(Uz) satisfies a certain condition, then

I(s,f) = ‘L(s,g)rL(s,h) for' some g ¢ Az(fo(P)) and

h € SZV +4(SL2(Z)). (This is a slight modification of
Ihara [13].) So, denote by le. (Uz) the space spanned by

common eigen forms f ¢ M, (Uz) such that L(s,f) = L(s,g)L(s,h)
(up to Buler p-factor) for some g ¢ Az(f'o(p)) and

h € SZk-Z(SI‘Z(z))' We define the space of new forms

of M, (Uz) to be the orthogonal complement of M]f, (Uz) in



hy(Uz). Th.1 .and some examples seem to suggest that

dim M, (U,) = dim M (Uy) - dim Ay(L (p)) x dim S, ,(5L,(2))
for even v , and

dim MU(Uy) = dim M, (U,) - dim S,([" (p)) x dim S, ,(5L,(3))
for odd V .

Conjecture 1.4. For any integer k £ 5, there exists
an isomorphism ¢ of M_s(U,) onto SP(K(p)) such that

L(s,f) = L(s, ¢ (£f)) (up to Buler p-factors) for any common
eigen form f ¢ M§_3 (Uz) of all the Hecke operators T(n)
(n 'f p )o

Now, we point out one important fact. There exist some
new forms of sk(x(p)) which can be obtained by lifting
cusp forms in SZk_z(f'o(p))(See examples in (9] ). So,

also in the case of M, (Uz), it seems more natural to

define new forms in the same point of view as in the case
1 ‘ *
of Sk(K(p)). Put Up = GI‘Z(Op) N GP. Put

1 o 1
U, = GOJ;r U »and U= G,,upt;l;rgup,.

The ‘trace map' TrUZ/Uo of M, (Uo) to M, (Uz) can be

defined as before. Denote the orthogonal complement of
TI'IJ?_/UO(I"l v(Uy)) in M ,(U,) by M1,,(U2). (We note here

that U; is not conjugate to Ug, which causes the difference
from the case of SL,.) Then, it seems natural td

expect MB(UZ) = MI,(UZ).



In the representation theoretic language,
our conjecture seems to be stated as follows:

let = ®qu or 1t -r@T(‘,"1 be an irreducible
\

admissible representation of esp(2,Q,) or G,,
respectively. (Here, GSp means the symplectic
group with similitudes.) Assumé that TC, corresponds
to det”™y ! to pv, Ty =T} for a4 p, and that

Wq(qu) has a .Sp(z,zq)-fixed vector. Assume

that TT-p is an irreducible representation which has
a K(p)p.-fixed vector, but has no Sp(2 ,zp)- or

P 5p(2,2,)p"L fixed vector, and that m! is an
irreducible repr_esentation of Gp which hasa Ui-fixed
vector, but has no U;-ﬁxed vector. Then,

L(s,T) = IL(s, 1':.')?



§2. Semi-simple conjugacy classes

In this section, we shall give 'local data' at p
of semi ssmple conjugacy classes, then, give their
contribution to dim Sk(K(p)) as Theorem 2. (The local
data at gq f P have been given in [T ].) The proofs are
lengthy and elaborate but similar techmnique \can be
found in [T], and we will omit them here.

We review some notations. Put

’
R = ru4(zp)z{” »  where ¥ -( ! p ) ’
1

and put

o 1 o 1
GSp = {s € M,(Q); g(_12 oz)ts = n(g) (-12 oz)}
Let R* be the invertible elements of R. Por g € GSp, let
Z(g) be the commutor algebra of Qp(g) in H4(Qp).

For any Z_-order /\1, /\2 of Z(g), denote by /\1 n A2

p
when a"1/\1a = /\2 for some a € Z2(g) N\ GSp. For any
torsion element g ¢ GSp and Z‘p-o’;'du' N C z(g), put
cp(g;R, A ) = the number of elem-ents of M(g,\ ),
where M(g, A ) = (z(g) N 6) \M(g,R, A\ )/R* and

M(g,R, A) ={x€ 6spy x'gx ¢ RY, 3(g) N xmx A A}
In the following sentences, we always denote by f(x)
the principal polynomial of the elements in conjugacy

classes treated there.



Proposition 2.1. The total contribution of + 1 € K(p)

to dim Sk(;((p) ) is given by:
(p2+1)(2k-2) (2k-3) (2k-4)/22375.

Proof Obﬂviou«s,n because [Sp(z.z) : B(p)-_]
= (p%+1)(p+1)2 and [k(p) : B(p)] - (p+1)2'. g.e.d.

Proposition 2.2. The representatives of K(p)/{t 1t -

conjugacy classes with f£(x) = (x-1)2(x+1 )2 are given by:

o = 1 o o 1y,

0 n ) o o -1 -1 0:

0 and 2 o o 1 o).
o

-1 0O 0 -1

1
X\"(:-

The contribution t(§;), t(8;) of each conjugacy class to
dim S, (K(p)) for k2 5 is given Yy:

QO -0
000

£(8)) = (~1)¥(2k-2) (2k-4)/2%32,

(-1)K(2k-2)(2x-4)/273, if 2,
t(&)_{ )*(2k~2)(2k-4) P 3

(-1)¥(2x-2)(2x-4) /22, if p = 2.

Next, we treat the case where f(x) = (x-1 )zg(x) and

g(x) is an irreducible quadratic polynomial. Put P = Q[x]/g(x),

Ve identify the algebra MZ(Qp) b 4 Mz(Qp) with the aigebra

d

CQoP
MOMO

RO
€ 09O

)3 a, b, c, d, x, ¥, Z, W € Qp} .

13-



rut g = ((9), W), wmerew = (270), (271), e (020)

for f(x) = (x-1)2(x2+1), (x-1)2(x2+x+1), or (x-1 )2(12-x+1)

, respectively.

Proposition 2.3. Notations being as above,

(i) if (-%-) =1, then

"2 e if A M, (2 22
c (&R, A ) = { § ~ My(Zp) 6 7

6 o de ‘Othemise,

(ii) if (-—%—) -1, or p = 3 and f(x) = (x-1)2(x2-x+1). then

(€ A) {2 e ) @1, = Ay,

o ... otherwise,

)i

(111) if p = 3 and £(x) = (x-1)2(x®+x+1), then

Qoo

Q
and M(S: /\1) = { 14’ (g
(o]

o
o)
o
1 .

0O -200

2 ... a2 A/ - 2(zp)@z;L
c,(8:R,\) = 1. iEANA,

© ... otherwise,
where /\2 = '[((2 33), x+yw) ; a,b,c,d,x,y € 23.

d mod.3} ’

-1 o0

o -1

o 1 *
1 1 .

X+y

]

LA, N esp: NoN 6sp] = 6, and
M(A,) is as in (i1) , M(M)) = { (

L-N-SV I
coowu



_ 15
(v) 4f () =o and p = 2,

2.4 A~ = My (2,) © 2, [w] ,
CP(G.R./\) - 1 oo if /\r\./\z ’
0 ... Otherwise,
where /\2 {( a 2b ) x+yw); a,b,c,d,x,y € Zz
x-y = d mod.2 }
[LA;Nesp: A LN 6sp] = 3, and
o
1)}
1 [ )
1

Next, we treat the case where f(x) = g(x)2 and g(x) is

H(/\1) is as in (11), M(AZ) = {(

OO NN
OOON
—_ 00 =

an irreducible quadratic polynomial. First, we treat the
case where zo(g) is split. (As for the notation Zo(g),

see ['T ]‘I))f Put F = Q [x] /g(x).

Proposition 2.4. Assumptions being as above,
(1) if (—%—) = -1, then c, = o for any N,

F a120
(ii);:_f_(—i,--)-1.:@gg=(o b1 ).werea.beQ and
2 P

g(x) = (x-a)(x-b), then A

- 1 oy=1 10
cp(S,R,/\) -{1 -ee A1 A~A1 Mz(zp)e( ) MZ(Z )( )o
o ... otherwise,

2 . '
[GSpﬂ GLZ(Zp) A N GSp} = p+1, where we embed

"2(01,)2 in M,(Q)) diegonally.



(iii) __1_;(-%—)=ogggp=2, take g =

1o if NAA = xraTTN 3(e),
cp(g.R./\) = [ 1. if AN, = yRy"'N 2(g),
0 ... Otherwise,
10 0o o
where Xx = (:}}-‘1’_‘1’) and y-(:
10 o0o-1
d(Ay) = 3, () =2, a,(N,) =6, (A ) = 2,

P

oppo

aiaa
!

NSO N

SRS
-

(iv) E(—%—)so and p = 3, takega("

OO ==
OO0 0 =
200 =
-t ed O
S

-

et

&

1~}

——

eeo 18 A AN = xrx" 0 2(0),
(@R A ) = | 1 .0 38 AnA, = RN 2(e),
0 ... Otherwise

1

1

i)

1

B

d3(/\1) =1, 93(/\1) =~1v d3(/\2) = 8, 33(/\2) = 2,

—

where x

0 O VI

)
3
o
)

00 -
- Y-
Q400
O -0

where d () and e (A\) are as in [ 7]

Next, we treat the case where Zo(g) is division.

Then, (——) } 1 by definition of Z.(g).



Promsition 2.5,

W (-—-—)--1.Ms-(( Vw(19) " w)

. : , S
where W are as in Prop.2.3, and g are regarded as

elements g; GSp as in Prop.2.3. Then,
1 o/.’n _i_f;_ NA = ’ (Z EW])

0.... Otherwise,
o "12

(i1) if (--g;-) =0 and p = 2, take g -=(12 o ), then

1 ir ANaly= xax"‘(\ z(g),
cp(g,R,/\) =11 .o if A, Ry'N 2(g),

0 ... otherwise,
1 }
1
1 ]
1 w

/pt, 1
wherex-( 2 2 sy Y ={~
o] 12 ‘

dz(/\1) = 6, 3,2(/\1) = 2, dz(/\z) = 1, and 32(/\2) = 2,

coomMNnN
OO0 20
O =0

. ) ? o 12

(111);;(T)=0£_£p33,tak_eg-!( ).méa
-1 1,

{1 eeoe if ,\NA1 = -1n Z(g)’

0

P

0

0o

C (goRsA) =
© ... otherwise,

where x -(

[~ N1 -]
O-KOO
..so.ao

). andd(/\)-4. 3(/\)-2.
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Next, we treat the regular elements g € K(p). When ng]

is the maximal order of Q(g], it is fairly easy to classify
global conjugacy classes. We sketch it here. Let

T € 5Sp(2,2) be an element whose principal polynomial

is f(x) = (x2+1)(xz.:|;x+1), x4_-1;x3+x21x+1, x4+1, of

x*-x%+1. (It exists and we fix it.) When f£(x) = (x?+1)(x%px+1)

10 0 o

-10-1 9o
more explicitly, put € =( °©o o0 -1}
1 o o

012

Put J = (_1 o ) Assume that g"15’ g€ K(p) for some
2

g € 6L,(Q). Then, S (gi%™Y) = (gs%0™ ") S , ana
*es"'e Q(S). The map (£ ) 5 b — It Q(F) is
%

g

the complex conjugation on Q(YT ), and gJ gJ"1 is invariant

by this map. So, g gd~ 1€ Q(¥+§~1). Put
1000
v= (3 529 |- men, y'&'¢ & e n(2). Now,
oo'o0 1

the class number of Q(¥ ) is one.So, by virtue of Chevalley
[2], ag¥ & GL4(Z) for some a € Q(¥ ).

Lemma 2.6. Iet f(x) be one of the above polynomials.

Then, the set of K(p)-conjugacy classes with pi‘incipal

polynomial f(x) is bijective to the set

1%/p 3 «€ 20545717, M) =20} / Bore ) q(ensty(21sT")

The map is given by:

g '8 (gY € 6L,(2)) — giter.



Proof The injectivity is obvious. The surjectivity

is proved by case by case process. q‘.e.d.

Proposition 2.7. The numbers of K(p)-conjugacy classes
of above me_g are given as follows:

(xz+1)(x2+x+1) ess 8
O cee 1f ("%") Lt “‘1,
<41 eeey 4 ... if (—%—-) = 0,
8 eeo s if (—"g-) = 1,

x4+x3+x2+x+1 » and
4

ee. Same as in
x —x3+x2-xic-1 _

o 'y ¥ iI (‘%‘) = -1,.
x4“x2'|'1 . X 2 eoe if (.%_) = 0O,
s ... if (—%—) =1,

where F = Q(§ +§"1).

Next, we treat the case where f(x) = (xz+x+1)(x2-x+1).

In this case, 2 [x]/f(x) is not the maximal order, and
we give the local data instead of giving global conjugacy
classes. Put F = Q[x)/(x%+x+1). Put

a, b€ th

), when (—g—) = 1, where £(x) = (x2-a?)(x°-b2),



[ © o-1o0 o o-1/po
1
ae(5550) me(3aal) e g
o -1 o1 o -1 o 1
and
o o-1/po o o1i/po
o o o 1 0 0 o0 o
g1"(po—1 o | g2"(-p o -1 o | Whem ¥=3.
o -1 o 1 o~-1 o 1

Proposition 2.8.

(1) If () = 1, then

2 vou if A~ 2}
} P
cp(g.Ro/\) {o -+« otherwise,

4

where Zp is embedded diagonally in M4(zp), and

4
Mg, 28) = 1 1,

000

0O-=00

b
L el
-

00 ~20
Q00O =

(11) If () = -1, then,

c,(gysRy A) = o for any A, and
2 o0 if N ~ ‘op'

cp(82Ry A) = [

o ... otherwise,

where op is the maximal order of Fp = Qp(gz), and

My o) = | 140 ( )}

(11i) If () = o (p = 3), then

o oW o
00O =
-0 00

od OO

2 s o0 if ~N 0
Op(si.R./\) = { /\ |
O e Otherwisg, fO; i L 1. 2.

where o, and M(g;,0.) are the same as in (ii).

-20-



Now, denote by Hi the total contridbution to dim Sk(x(p)),

of those semi-simple conjugacy classes whose principal
polynoialava’re of the form 1‘1(&1). where the
polynomials fi(x) are defined as in [7 7] (I) p.5%.

~We can give H, explicitly as a corollary to the above
results by using [T ] and Hashimoto | S

Theorem 2 Assume that k = 5, then H, and H,
have been given in Prop.2.1, 2.2, and

B.i(i Z 3) are given as follows:

3 5 k-2, -k¢1, -k+2, k-1 ; 47/253, ... if p = 2,

] {[21(—3. ~k+1, -k+2 3 3]/2%3°, ... 1£ p ¢} 3,
4 5 [2k-3, -k+1, -k+2 3 37/2%3%, ... if p = 3,

Hg = [-1, -k#1, -k+2, 1, k-1,k-2 ; 6] /2232,

Kk
2k~ +1 -1 +1
+ eee if p= 1 mod.4
(), () .
IZR-Q;(E-Q . 5(-1%(p-1) ... if p = 3 mod.4,
K
Zk' -1 eese ifpiz.
L
L 2! 213

. 21-



- {(2k-3)(p+1) $2+1; -1, 1
2.35 + Py [0, 1,

3] «es if pz= 1 mod.3,

=4 82k=3)(p=1) L p=1) g 4, 15 3) ... if p= 2 mod.3
- e '
2k=-3)  + Mo, 1,133} ... ifp=3

i ] ] ’

HB = [1, 0, O, -1, "4""‘1, -1, 0, 0, 1, 1, 1 3;12]V/2.3’
2[1, o, 0, -1, o, o__]/32 eee if p $ 2,

H, =

9

[1, 0’ O, _1’ o’ 0] /2.32 s e i-f p = 2,

H1° a (1+("‘1§)‘)) [19090!"130 H 53/5:

Hyy = (45 [1, o, 0y -1 3 4]/2%, end
[o, 1, =1 3]/2°3 vee if P= 1 mod.12,
(-—1)k/2‘3 vee if p= 11 mod.12,
Hyp = -
("1) /2 ’3 s oo if p = 2, 3,
o eee if p=5, 7 mod,.12,

where (—:;—-) is the Legendre symbol, and
t = [to, t1’ see tq_1 H qJ means tmt

t=tjifk_=_=jmodq.

-22-
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§3. Conjugacy classes of non semi-simple types

In this section, we shall give the representatives
of non semi-simple K(p)-conjugacy classes which have
non-zero contribution to dim 5, (XK(p)),
and give their contribution to dim S (K(p))(k Z 5).
Put

P, = (o ) € sp(2,Q) j' and

¥ *
P, = f(: :) € sz} .
o *

Lemma 3.1, Assume that g € sp(2,Q) is not semi-simple.
Then, some Sp(2,Q)-conjugate of g is contained in P or P,.

OO#O
O % % g

As for the proof, see Borel-Tits[[| J. Next two lemmata
are easy and the proof will be omitted.

Lemma 3.2, The Satake compactification of K(p)\ Sp(2,R)
has the unique zero-dimensionel cusp end two
one-dimensional cusps, that is

sp(2,Q) = X(p)P,

o100
- x(p)2, U K(p) ( 100 :) K(e).
oo1o



Lemma 3.3. Assume that g & K(p) is not semi-simple.
Then, .some K(p)-conjugate of g is contained in Pyy Py

or Pi , where

)/#i**
b 2 ¢

P} =l(g’;*°)e Sp(Z,Q)}’ .
O x ¥ 3

By this Lemma, we can assume that g € Py P1, or P1'.
Then, by case by case direct calculations, we can

give a complete list of K(p)-conjugacy classes which
ara not semi simple and which have contribution to

dim Sk(K(p)). The proofs are lengthy but routine,

and will be omitted here.

Theorem 3 : The representatives of K(p)-conjugacy

classes which are of elliptic/parahoric, § -parabolic,

parabolic, or paraelliptic (in the semnse of Hashimoto[ §1),

are given in the following list, together with their

contribution to dim Sk(K(p))(k & 5). The contribution to

© dim Sk(K(p)), of each set of conjugacy classes below,

are denoted by Ii‘

- 24 -



(1) elliptic/parabolic
(1) £(x) = (x-1)(x2-x+1) and (x+1)2(x2+x+1),

SEEHE

n/p o
.t o 1" i:
1 o
o 1/

O oo
00 =20

-t
O-AO'?
“~0o3O
o O -
Q0 =20

0000
000
Q00 =
—_-O =0

(nez,nfo)

The tota} contribution of the above conjugacy classes to

dim S, (E(p)) is given by:

11 = [O, 1’ 1’ o,"1""1 H 6] /6.

(2) £(x) = (x-1 )2(12+x+1) and (x+1 )2(x2-1+1)

(1) oo -1/po -1to1i1/po
] o1 o n X{ 061 o n
po -1 o po o o
00 o 1 oo o 1
1on/p o 1 o n/p
+ 00 o0 =% ) * o~-1 o
oo 1 o o o 1
01 o -1 o-1 o0
(ng 2, n#o)

: I, = (-2, 1, 13 3] /23,

Q0 =0

-25-
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——

-0

] i
NO

000«
—00O0

(i1)

~~
12
[ L]
] 18 12}
. .
Ry o o
Q [o]
i 8 8
o -
1 L o N
-~
|
R =N 2, =1
= Lo Lo A
i o~ ed
o
[ . . .
© 0 . .
. . .
N -
-+
Ay o N N
N\ L)) N
ﬁ ~ ~ ~
: m m
(o] ] LY L8}
0\
—pe om en
i~ Q -
-~
(8] - - (o]
<«
] - -
g o 1, 1
~ v L4 g
—.L N N
{I\J\l’llb
L]
L\2\

I

(3) £(x) = (x-1)%(x%+1) and (x+1)2(x%+1),

OO
~N~O0O0O0
-

O~ 0O
00 /A0

OO«
~O0O0
-

O~ 00
OO.D.O

*

O~ 00O

~NOe- O

00O«
—~ 000

O~ 00
~NOT™ O
OO0~

~ 00O

(n€ 2, n $ o),

O_np4l
~+v O O

O~ 00
c0of/O

(n€ Z, n$4o0if p$42andns1if p = 2):

4772,

.
’

I, = [-1, 1,1, -1



(11) & -parabolic : £(x) = (x-1)%(x+1)2

i 1 1 on/
”f_(o-‘:“é" :) t(o-1 A )
o o 1 o o o 1 o
o 0 o

o 0 o =1 -1
(n,mGZ.nfo,m*o):
I = (-1)%72%,

(i) 1 1n/p m\ 1 1n/p a1
0o-1 m =2m, 0 -1 m -2m+1
o o 1 o o o 1 o
‘ o o 1 -1 o o 1 -1
-1o2m/p m -1 0 (2m-1)/p m
-p 1 m-1 n -p 1 m-1 n
oo -1 -p oo -1 -p
oo o 1 oo o 1

"(m, n € %, and (2n+pm,-2m), ( 4n+p(2m-1),-2m+1),
(2m,2n-pm), or ( 2m-1,4n-p(2m-1)), is pot
edual to (o0,0), respectively.):

Kk -
Ig = (-1*¥2-(2))/24,

QO =0

1
o
o
0

(iii) .
d ;)._....wneres-(ngpz>.(z:> .

o (=2 1), (3

(n€ 2, nfo)

L, = -(-1)¥(2k-3)/2%3,

- 2f%-



- 2}

(111) parahoric : f(x) = (x--1)4 and (x+1)4

W w2 3) s=(82) (M) meznto
2

o 1

Ig = -p(2k-3)/2%:32,
81 842 -1
Next, put L = 845 Sy S{€P Z, Bypy 8,€ 2

and for S,, S, € L, denote S, ~ S, when S, = US,*U for

some U € fo(P) U(; _?)FO(P)-

()
2

4 ) 53
19= 1/ 273

-we

S e{s ¢ L, detS ¢ (-Qx)z)./N ’

(3) i(12 S )

o 1, se(seL,Sdeﬁnite}'/m ’

Lo = (p+1)/273,

-e

(4) :1:(12 S)

S € is € L, S indefinite, det S € (Qx)Z}/N
o 1 :
2

(the contribution to the dimension is zero),




(1V) paraelliptic
Put |

g(a) = (

(1) £(x) = (xz-M)2 :

OO0 R

00 -0
oO-+00

) » Where J is some integer.

]
- .0 0

(1) 1 (—'-'-1-)1-) = -1, there exists none in K(p),

(1) if '(:I-:L) = 1, then

o -1
s B
-1/ 1 o O -n 1 n
(@ (o oo") sld). S’(n 0)' "111)
o o1 o
(ne 2, n ¥ o),
o -n 1 n+i
n+1 o) *\-n 1
(n€ 2),
where d runs through a set of the representatives
in 7 of the solutions of d%+1= o mod.p, and

(iii) if p = 2, then

(1)-1 :"l S (1) s.(O -n) 2-:'
TS o T T ok At
(n€ 2, n ¥ o),

0 -n 2~

(n+1 o)) (2"1+n

(n € 2)

Iy = - (),

)

-2?-
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(2) f£(x) = (x2+x+1)2 and (x2—x+1)2 3

(i) "if (=2) = -1, then, there exists none in K(p),

(11) if (52) = 1, then,

tg(d)-1(g W le@, s ==('n -2 ),
o}

n -n
o 1 o
(n€ 2%, nto)
( -n =2n -n =-2n
n+! -n)|’\n+2 -n ) °?

(ne 2)

where d runs through a set of the representatives

of the solutjons of x24x41 = o mod.p, and

(1ii) if p = 3, ihen, besides the above conjugacy

classes in (ii)(here, we put d = 1), there exists

following conjugacy classes:

-m-2e-h -3m-6e-h

-2 -3 s where B = ( ° ~3m-6e+h /,

e =%1/3, h = o, 21, and m is any integer such that
3m+6e+h $ o :

Iy = - 2=(1+(32) .



44. Proof of Theorem 1
In this section, we prove Theorem 1. First, we get

Theorem 4 For any integer k 2 5 and any prime
integer p, we have

12 12
dim S, (K(p)) = §~ H; + )1,
1= =1

where H; or I, is given in Th.2 or Th.3, respectively.

Numerical examples of dim S, (K(p))

P 5 6 7 8 9 10 11 12 13 14 15 16
2 o oo 1 o 1 1 2 o 2 1 4
3 o 1 o1 1 2 A1 1
5 111 2 2 4 4 5 9 8 .13
1 1.2 2 4 4 7 7T 11 11 16 16 24

1 2 3 3 6 T 12 14 20 22 32 36 48
13 3 5 71015 19 25 31 37 48 56 72
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By virtue of [ 7] and Igusa BZ],' our Theorem 1
is a corollary to Theorem 4. But it is interesting
to see the details of contribution of each conjugacy

classes. We denote by Ji the contribution to
dim S, (K(p)) - 2 dim 5, (8p(2,2)) - dim Mk_3(U2),

of those semi-simple conjugacy classes whose principal

polynomials are of the form fi(ix)(i = 1,.00512).(A8 fOr
the notatipns fi(x), seel'T ] p.590, Y- S

£o(x) = (x%+1)%, £.(x) = (xP+x+1)?, and £ ,(x) = x*-x%41.)

We get the following result.

Proposition 4.1. The numbers Ji(i = 1,..0512) are

given as followas:

J; =0 ifi £6, 7, 12, and

I = o -0 + Ll - S-0-3h,
1 - ~1 k -
1 N+ P Lomtis] - o ()

Tz = - (FNENT + =59 [on-1,1:3].

Proof. The contribution to dim M _5(U,) has been given

in[T], dim 5,(5p(2,2)) in Haehimoto [ £J, and dim S (X(p))

in Theorm 2 of this paper. ' q.e.d.



Remark This result is rather mysterious. Those elements
with the principal polynomials fi(x)(isa,...‘,12) are
regular elements. Among those, as stated above,

only J1 2 is exceptionally non-zero. I do not know

the intrinsic reason of this.

Next, we shall give the contribution to
dim Sk(K(p)) - 2 dim Sk(Sp(Z,z)), of non-semi-simple

conjugacy classes,.(Note that there is no such contribution

to Mk-S(UZ)') More precisely, take a set '(C'}C Sp(2,R)

of non semi-si‘mple elements, and denote by K('H"} )
the contribution to dim Sk(K(p)) - 2 dim Sk(Sp(Z,z)),

of those K(p)-conjugacy classes whose elements are

Sp(2,R)-conjugates of one of ‘13' ‘I . Put

A 1°t1t° 1000
01 oI o101
S(*";i’ﬂ)' oo 1 o » a = 0010 ’
o0 o 1 o001
121»:1) A cosO;)sinag
o o o (4]
b={s010 |° @(9”\)’ -8inf o cosf o ’
ooo0o1 o o o 1

o cosg sing
o o -8ing cosyp

A cosfl sin® Acosf Isinf
X(B.)\) - (—sinp cosf - Asing Ncosp ) .
\ o

-33-



Proposition 4.2. For k = 5, we have

A
K(zf (3=,41)) = —2-(1( By o141 337

R(S (x1,21)) = f-—;?— (1-(,
K(sa) = - -é%';‘z-(zx-a).
-1
K = o35
2(F(Een) = (-5,
k¥ (&) = 0=,
2°3

and K(d) = o for any other ¥ & Sp(2,R) which is not
Sp(2,R)-conjugate to one of the above.

Proof is obvious by virtue of Th.4 and Hashimoto [6-_\ Th.6.2.

Now, denote six non zero values in Prop.4.2.by
. . 20
K,(i=1,...,6), thatds, K, = K(&f (T,ﬂ)),

and so on. Then, for k£ 5, we have,



dim S, (K(p)) - 2 dim sk(Sp(z,z)‘) - dim M _5(U,)

= J +J +J ik
6 12 ¢ =

- -] B+ FO-G0s FO-F 3}
x | % - [o-1,1:3] - —%—(3+(-1)“)}

So, we obtain Theorem 1.

Remark VWe get also the foilowing interesting result.
Put [ (p) = B(p) UB(p)w,B(p), [ }(p) = B(p) VU B(p)w,B(p),

and [ 3(p) = B(p) U B(p)w B(p). When p = 2, the

dimensions of cusp forms belonging to these groups

are easily calculated by using Igusa[14](I1)(cf.fi1]).
We get the following-equality for k = 3:

dim 8, (B(2)) - dim S, ([,(2)) - dim S, ("}(2)) - dim S, (""(2))
+ dim sk(x(z)’) + 2 dim S, (Sp(2,2))

= dim My_5(U)) - dim M _5(U;) - dim M_,(U,) +{
where the discriminant of B is two. . This.supports

the conjecture in [ 9). This relation is extended in[8]
for all p.

_35‘_

100. if k = 3,
O... if k % 3,
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