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Notations and Introduction

Denote by Mar (S2%) the space of modular (cusp) forms of weight 2k on
SLy(Z). We will write ¢ for exp(2mi7), where 7 is the variable on the upper-
half complex plane. Denote by M:+1/2 (S§1/2) the ”+7-subspaces of the
spaces of modular {cusp) forms of half integral weight & + 1/2. These sub-
spaces were introduced by Kohnen {5].

Throwhow the paper we fix an odd prime p.

Let k& be an even positive integer.

Definition 1 We call a pair (p, 2k) supersingular if 2k = 4,6,8,10 or 14 mod
p—1

Note that each pair of the type (p, even integer) is supersingular if p = 3,5
or 7. For each p there exist infinitely many values of k such that the pair
(p,2k) becomes supersingular. For each k there exist a finite nonempty set
of appropriate values of p.

Denote by C,, = Qp the Tate’s field. We fix once and for all an embedding
1p : Q = C,. We will not make difference between elements of Q and their
images under i,. The symbol lim will always denote the limit in C,. We
write ") for an infinite sum considered under p-adic topology. Denote by
L,(s,x) the p-adic L-function, where y is a Dirichlet character ([4], p.29-30).
We put (*(s) = L,(s,w'™*), where w is the Teichniiller character.

Following [2] we denote by H(r, N) the generalized class numbers. They
coincide with the usual class numbers of binary positive definite quadratic
forms when r = 1. They are the Fourier coefficients of the unique Eisenstein
series

Hipja =C1—2r)+ Y H(k,N)g" € M}, ),
N>1
One has
H(r,N) = L(1 =, x)Y_ i(d)x(d)d " oor—1(v/d), (1)
dlv
where (=1)"N = Dv?, D is a discriminant of a quadratic field, x is the
Dirichlet character associated with this quadratic field, o3, (n) = g}, -t
and g is the Mobius function.

Let —A be the discriminant of the imaginary quadratic field Q(+/—A).

Let v, > 0 be the theta series associated with the binary quadratic form



Qj, where

p21%m2 +y? if A=0mod4
2"1%—"'—13:2+a:y+y2 if A =—1mod 4.

Qi(z,y) = {

Put ¢1 = Zm,yez th(z.y) = ZnZO bl(n)qn
Let f = Y.s0a(n)q™ be a cusp Hecke eigenform of weight k on SL,(Z).
Denote by La(s, f) its symmetric square:
Lao(s, f) = H (1- agr—’)_l(l — . fBr7°) (1 - ,637'_’)_1’
r: prime
1

where o, and 8, are complex numbers such that o, + 3, = r and ¢, 3, = p*~1.
Consider Rankin’s convolutions

D(s, fy) = Y a(n)by(n)n™°

n>0

The number D*(k—1, f, 1) = 7%~ 2L,(2k—2, £)~' D(k—1, f, 1) is algebraic.

In the present paper we prove

Theorem 1 Let (p,2k—2) be a supersingular pair. Let x denote the quadratic
Dirichlet character associated with Q(v/—A). Then

D*(k =1, f,%0) + (1 = x(p)p" )" pH =3 D*(k = 1, £, )

>0

~ - (2k — 2)!
=(1-x(p)p )22“—3(1‘; — 1)(1 — p?*=3)¢(3 — 2k)

Remarks

1. It is amusing to notice that the value in the write-hand side of (2) does
not depend on the particular choice of the cusp Hecke eigenform f of weight
k. The dependence on the choice of the discriminant —A 1s very slight and
explicit. Actually, only the value x(p) is involved.

2. The denominators of the numbers D*(k — 1, f, ;) were studied in
(8], Theorem 4. The Rankin’s method was used for this purpose. Even the
p-adic convergence of the series (2) does not follow from this result. This
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convergence 1s the peculiarity of our supersingular situation.

We are going to derive theorem 1 from the following

Theorem 2 Let (p,2k) be a supersingular pair. Consider a modular form
€ M:+1/2' Suppose that ¢ = 3,50¢(n)q”, c(n) € Q Jor all n. Choose N
such that ¢(N) # 0.

Then
LP(I — k) X)
¢*(1—2k)

where x is the quadratic character associated with Q(\/(—1)*N).

Lim c(p"N) = ¢(0)

We prove theorem 2 in Chapter 1. In order to illustrate this theorem,
we need to consider modular forms of halfl integral weight which Fourier
coefficients are ”interesting” numbers. Chapter 2 is devoted to theta series.
In Chapter 3 we provide a construction which generates another type of half
integral weight modular forms. It allows to prove theorem 1. Since this
construction seems to us to be of independent interest we will briefly recall
it here.

Consider a modular form f of weight &. We suppose that f is a normalized
cusp Hecke eigenform. Let F' be the Klingen - Eisenstein series associated
with f. Since F'is a Siegel modular form of genus 2, it has a ourier-Jacobi
expansion ([3], Chapter 11): F' = 5,50 ¢m(7, 2)ezp(2mimt’). Here ¢, are
Jacobi forms of indeces m and the same weight k. One has ¢ = f. Consider
the Jacobi form ¢;. It follows from (3], Theorem 5.4 that ¢, corresponds to a
half integral weight modular form ¢ of weight £—1/2. The form ¢ belongs to
the Kohnen’s ”4"-space. The Fourier coefficients of the Siegel modular form
F' were calculated by Bocherer [1] and Mizumoto [7], [8]. These numbers
involve special values of Rankin’s convolutions of the modular form f with
theta series of weight 1. We will apply theorem 2 to the modular form ¢. It
will yield theorem 1.

Chapter 1

In this chapter we prove theorem 2. First we prepare a few lemmas.



Lemma 1 Let (p,2k) be a supersingular pair. Consider a cusp Hecke eigen-
form f = ¥, si1a(n)g® of weight 2k. Suppose that a(1) = 1. Let K =
Q(a(n)ax1) be the field extension. Let B be a prime ideal in K dividing p.
Then 9 divides a(p).

Remarks

1. K is known to be an algebraic number field.

2. This lemma explains the name ”supersingular”. It means that if (p, 2k)
is a supersingular pair, then there are no p-ordinary cusp Hecke eigenforms
of weight 2k, i.e. all the cusp Hecke eigenforms are supersingular.

Proof of lemma 1.

It is known ([6], Theorem 4.4) that the space Si possesses a basis over
C which consists of cusp forms with rational integer Fourier coefficients.
Let ¢1,...,9:, where t = dim Sy and ¢; = 3,50 b:i(n)g™ be such a basis. It
follows that there exist algebraic numbers a, . . ., a; such that f = ¥; iy, It
follows from [10], Theorem 7 (see also Remark p.216) that lim, . bi(p™) = 0
for each 1. It yields

Am,alp”) = Jim,

> abi(ph) =0 (3)
1<i<t

I r > 0 then a(p™*!) = a(p”) — p*~'a(p™!), because f is a Hecke eigenform.
1t follows that a(p") = a(p)” mod p?*~!. Taking in account (3) we obtain the
assertion of lemma 1.

Lemma 2 Let (p,2k) be a supersingular pair. Consider a cusp Hecke eigen-
form ® € S;j"_H/2 Let ® = 3,5, c(n)g™ be its Fourier ezpansion.
Then lim, 4eoc(p'n) =0 for each n > 0.

Proof.
It is known [5] that one can pick a cusp normalized (a(1) = 1) Hecke
eigenform f of weight 2k, f = 3,51 a(n)q" such that for N,n > 1

o(n?N) = ¢(N) zlj u(d) (%) & a(n/d).
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In particular we get for n = p”

oo )=o) (at) - (5) #-tat )

Combining this formulae with (3) we obtain the assertion of lemma 2.
Our next assertion immediately follows from (1). However we formulate
it as a separate lemma.

Lemma 3 Let x be the quadratic character associated with Q(/(—1)*N).

Then Lol — k.x)
. r 4 —&5X
rlg& H(k’p N) = il19 _ p2k—1

Proof of theorem 2. Consider the basis of the space M:+1/2 which

consists of the finite set of cusp Hecke eigenforms ¢; together with Hyy,/s.

One has
c(0)

T ((1-2k)

with some algebraic coefficients §;. The assertion of the theorem follows now
from lemma 2 and lemma 3.

Remark

It is a well-known estimate that the absolute values of Fourier coeflicients
of a cusp form of even weight increase slower than those of an Eisenstein
series of the same weight. One can consider theorem 2 as a p-adic analogue
of this fact. Roughly speaking, consider a modular form f = ¥,5¢¢(n)¢".
Suppose that F' = G+ ®, where G = ¥, 5, d(n)q" and ® is a cusp form. Then
lim,o0(c(p” N)—d(p" N)) = 0. We have proven such type of statements both
in the integral and in the half integral weight cases. The supersingularity
condition 1s crucial for our argument.

Classically, such type of argument was applied to the Fourier coefficients
of theta series. The first illustration of theorem 2 deals with theta series
associated with unimodular positive definite quadratic forms.

Hiyiy2 + Z Bri

Chapter 2

Let @ be an unimodular positive definite quadratic form on a lattice A of
rank 4k and B(z,y) the associated bilinear form with Q(z) = 1/2B(z, z).



Let y € A be such that Q(y) = 1. Then by (3], Theorem 7.1 the function
Og (T, 2) Z qQ(z)(;B(” z c(4n — rz)q”C"

z€EA an>r?

1s a Jacobi form of weight 2k and index 1 on SL,(Z). 1t is known that the

function
Ogu(r,0) = 3 ¢ =3 ro(n)g"

z€EA n>0

belongs to M.
Note that rg(n) is the number of representations of an integer n by the
form Q. rg(0) = 1. The number

c(dn — %) = #{z € A|jQ(z) = n, B(z,y) =r}
depends only on 4n — r? by (3], Theorem 2.2. The function

=2 N

N>D

belongs to M;;:—l/?‘ ¢(0) = 1.
In some cases of low weight one can get precise formulae for the numbers
¢(N) and rg(n) (cf. [9], §6 for the integral weight case and [3], p.84-85 for

the half integral weight case). One also has the following asymptotics ([9],
§6, Cor. 2):

ro(n) = —0‘2;: 1(n )+O(nk).

Application of theorem 2 a.nd lemma. 1 to the modular forms ¢ and f
implies the following

Proposition 1 Let N be a positive integer.
a. Suppose that (p,2k) is a supersingular pair. Then

. ) 4k
(1 —p) lim ro(p"N) = o2 (N).

b. Suppose that (p,2k — 2) is a supersingular pair. Then

LP(2 —'2k1Xj
¢(3—4k) ’

where x is the quadratic character assoctated with Q(+/—N).

(1-p) lim (' V) =
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One has to compare our argument with the Siegel famous formulae on
theta series. Let us reformulate the Siegel’s result as an identity of Jacobi
forms. For this purpose we briefly recall some notations and definitions from
[3]. These notations and definitions will be also useful for us in the next
chapter.

Let £ > 2 be an even number.

Let (A;, Qi) (1 < i < h) denote the inequivalent unimodular positive
definite quadratic forms of rank 2k and w; the number of automorphisms of
Q;. Put &; = wi'/(wi' +... +wj!). Following [3], Chapter I, we denote by
Ej 1 the Jacobi - Eisenstein series of weight £ and index 1. The V; operator
sends a Jacobi form of index m to a Jacobi form of index ml. This opera-
tor preserves the weight. Its action on the I'ourier expansion coefficients is
described by formulae ([3], Theorem 4.2):

HVi=>" ( > ak'lc(nl/az,r/a)) qr¢.

nr A\al|(nrl)

Here ¢ = 5. . e(n.7)q*(" is the Fourier expansion of a Jacobi form ¢ of index
m and weight k.
Now the Siegel’s formulae can be written down as ([3], p.87)

Y& D Bgu(rz) = (ExalVi)(r,2). (4)

1<i<h YEA;

=T Qiw=m
We are interested in the cases when m = 0,1. Il m = 0, (4) becomes an
identity of modular forms of even weight k. If m = 1, (4) becomes an identity
of Jacobi forms of index 1 and weight k. Due to the isomorphifm established
in [3], Chapter II, one can rewrite it as an identity of modular forms of half
integral weight £ —1/2. In both cases the modular form which appears in the
right hand side is an Eisenstein series. The modular forms which appears in
the left hand side of (4), are linear combinations of theta series. We apply our
proposition 1 to these theta series. The proposition asserts that for certain p
their Fourter coefficients which numbers are divisible by an increasing power
of p, become p-adically close to the appropriate coefficients of the Eisenstein
series. (See also the remark after the proof of theorem 2.) It accords with

(4) since 3oycich€i = 1.



Chapter 3

This chapter is devoted to the proof of theorem 1.
Let
(Z) =Y A(T)exp(2mitr(TZ)) (5)

T>0

/2 m
where n,r,m € Z and n,m,4nm — r* > 0. Rewrite the Fourier expansion 5
as

be a Siegel modular form of genus 2 and even weight &. Put 7' = ( n /2 ) ,

F(r,z,7') = S A(n,r,m)exp(2mi(nt + rz + mr')).

n,mdnm—r2>0

Lemma 4 The numbers A(n,r,1) depend only on 4n — r2.

Define the numbers ¢(N) by

A(n,r,1) if there exists a pair n,r such that N = dn — r?

o(N) = { 0 otherwise
Then the function o(T) = Tnsoc(N)g" belongs to M ,.

Proof. :
Consider the Fourier-Jacobi expansion of the Siegel modular form F:

F(r,2,7") = Y ¢m(7,2) exp(2mim7’).
m>0

It follows from [3], Theorem 6.1, that ¢ (7, z) is a Jacobi form of weight
k and index m. Consider ¢,(r, 2):

di(r,2) = D A(n,r,1)exp(2ri(nT + r2)).

n,dn—r220

A(n,r,1) depends only on 4n —r? by [3], Theorem 2.2. The last assertion
of the lemma follows from (3], Theorem 5.4.

Let us specialize our consideration to the case when the Siegel modular
form is a Klingen - Eisenstein series. The following proposition is a special-
ization of results obtained in [1], [7], [8].



Proposition 2 Consider f € Sy. Let
= Y A(T)exp(2nitr(T Z))

T>0
be the Klingen - Ilisenstein series associated with f.

_(n T2
Put T = /2 m

g.c.d(n,m,r)=1.
Suppose that dAnm —1? = p? A, where —A is a fundamental discriminant.
For a positive integer v pul

O = Zq ne?roy+my? _ Z br(n)g"™,

n>0

@g?) = Z br(nv?)q

n>0

), where n,r,m € Z and n,m,4nm — r? > 0,

Consider the algebraic numbers

(k — 1)(2m)?-2
22k — 2)1Ly(2k ~ 2, f)

D(T, ) = D(k —1, f, 0%,

Then

A(T)= L2 - )(D(T n)+ 3, p* I~ x(p)p' D (TJ))-

0<i<n

Here x is the quadratic Dirichlet character associated with Q(v/—A), and
L(2 — k, x) is the value at negative integer of the Dirichlel L-function.

We will use proposition 2 in the special case when m = 1. In this case

[ r/2
I'= r/2 1
In what follows we will not make difference between a binary quadratic form
and its matrix.

is the matrix of a quadratic form from the principal class.

Lemma 5 Suppose that dn —r* = Ap*, 0 < u<v.
There exists a binary quadratic form S with discriminant —Ap® =% which
belongs to the principal class such that

D(T, u) = D(5,0). (6)



Proof

Actually we are going to prove that eg?“) = Og. It will yield (6). We claim
that if S exists then it belongs to the principal class. If Op = 3,50 br(n)g™
then Og = @;’f’”) = Y u»o br(np*)¢". Since T represents 1, br(1) # 0. It
yields br(p**) # 0. It means that S represents 1 and our claim follows. The
rest of the proof (the existence of S) essentially contains in [1], p.33. We
omit it.

Combining lemma 5 with Proposition 2 we get the explicit formulas for the
Fourier coefficients A(n,r,1) of the Klingen - Eisenstein series F. Lemma
4 allows to regard these numbers as the Fourier coefficients of a modular
form of half integral weight. Application of the theorem 2 to these Fourier
coefficients completes the proof of theorem 1.
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