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1, Introduction

Our result is on the Whitehead groups WhI' = K_;( zI /HI'x Z, of some
groups I relating to geometry. The strategy of using contreol topology
plus geometry to study WhI' was previously used to prove WhmM = 0 for
closed flat manifelds M by Farrell and Hsiang in [6). The following more
general result was proved using ideas that involved sphere bundles and-
geodesic flows.

1.1 Theorem([8) in first order}). Whnvll-l = 0 for any closed riemannian
manifolds with nonpositive curvature.

In this paper we try to obtain a Whitehead group result concerning fin-
ite polyhedra of nonpositive curvature in two steps. The first step is to
transform the the problem to ohe about closed manifolds, by applying the
idea of hyperbolization. In the second step that the Whitehead group of a '
closed manifold with PL nonpositive curvature is zero is proved as a
development from (7], [8] and [13]. The meaning of a polyhedron with
negative or nonpositive curvature was defined in (12] by Gromov to study
hyperbolic groups. The result of this paper is as follows. It covers a

major class of semihyperbolic groups.



1.2 Theorem. WhI' = 0, ' = mX for any finite polyhedra with nonpositive
curvature.

Note that this implies K, (2N = H,I' x 2,, Ko(2IN =0, k; (2l =0, i S -1.
Previous result in this respect is the vanishing of whitehead groups in
the negative curvature case in [13]). One interest in extending that to
the nonpositive curvature case is from the application of 1.2 to p-adic
groups via their Euclidean buildings( [19]) which are the most interest-
ing known examples of polyhedron nonpositive curvature structures. In
particular there is

1.3 Corollary. Let O, be the field of p-adic numbers. For any torsion-
free and cocompact disc;‘ete subgroup I'c SL,(Q,), WhI' = 0.

2. Frommanifolds to polyhedra

This section shows

2.1 Lemma: If the Whitehead groups of closed manifolds with PL nonposi-
tive curvature are zero then the same is true for finite polyhedra.

It is hyperbolization, an idea due to Gromov([12]) that allows us to
see this. Because we only need to gain nonpositive rather than negative
curvature, we will avoid the complicated and somewhat unclear strict hy-
perbolization needed in (13), by using here a weak but transparent hyper-
bolization discovered in [S] by Davis and Januszkiewicz, which is like the
untwist version of the first hyperbolization of {12], 3.4.

Let K be finite simplical complex, A be suﬁcomplex. Do the following:
Let hk! = K'; Take hk' X (1) = two copies of hk'. If A’cA, then denote ha? =
A% x ($1). But if A® ¢ A, then define hA? = 9A? x[-1,1]. hk? = k! x(%1) vall
hA?, and so on. The end result h(K,A), the hyperbolization of K relative
to A, is what we want to use. To make things clear we give

2.2 There is unigue construction h such that

(1) For any finite simplical complex K" and subcomplex A, h(K,A) is
finite simplical complex. If L! is subcomplex of K then
h(L,LAA)X(£1)"7 € h(K,A) |
Here .h(L,LnA_)x(:I:l)"“ represents the disjoint union of 27! copies of
h(L,LNA). Note that if L is a set of vertices then we should use Lx(11)°™!
rather then Lx(11)" because the construction starts at dimension one, not
zero.

(2) If k!, L7 and A are subcomplexes of some finite simplical complex
P", k =dim(KNL), then
h(K, KNA) x(£1) "™ U h(L, LAA)X(£1) "7 = h(KUL, (KUL)NA)x($1)7mex 1. )
h(K,KAA)X(£1) "™ A h(L,LAA)X(£1) "7 = h{KNL, KALAA) X (£1) "~

(3) For any Ac A!, h(A!,A) = A, Forn22



h(A",A") = A™x(£1)"!
h(A",A) = h{(3A", A)x[-1,1], for any A cdA”. And dA” ¢ A" induces
h(3A7, A)X(£1) Ch(dA", A)X[-1,1]

Now assume that K” is finite simplical complex and A is subcomplex such
that A’NA is a simplex for any A! in K.

2.3 Lemma. Forany AcLcK
h(L,A)x(£1) "=l = h(K,A)
ig R;-injective. That means that the inclusion induces injections of fun-
damental groups at all connected components.

Proof. For a subcomplex P and an integer m we will denote hPm =
h{P, PNA)X (1) 92?  1et r be the number of simplices in K that are not in
A. First add X! to L. Note that hLUK!n is the union of hLn and an one di-
mensional complex, so 2.3 is true for them. Therefore we can assume that
the dimensions of the simplices in K but not in L are 2 2. Reduce the prob-
lem to one about hPn c h(PuA')n, Ac Pc PUA! cK, wherei 22, A' ¢ P, 3A! ¢
P. WritedimP =d, max(d,i) =m. Note that
h(PUA!,A) = hPm U hA'm,
hPm A hA‘m = hda!m,
h(A!,A'Ma) = h(3A!,9A ma)x([-1,1].

2.3.1 Lemma. Let X, Y and XNY = Z be compact polyhedra. IfZcXandzc
Y are m;-injective then X € XUY is m;~injective.

Proof: Let X, be one connected component of X. X2 = Z2,. Let Y, be the
union of those components of Y that have intersections with Z,. Then the
fundamental group of X, expands to that of X,UY, by generalized free pro-
ducts and HNN extensions. Let Z, be the union of components of Z that are
in Y, but are not in 2. Let X, be the union of components of X that inter-
sect Z,. Consider X,wY, € XqUY,UX;. Note that the process terminates at a
component of XuY.

According to this 2.3.1, and since h{0A!,9A'mA)x(2l) c
h(dA!,9A'AA)x[-1,1} is m-injective, the problem is reduced to hdAld c
h(P,A). Since had ~ hdA'd = handA'd, had = Ax(:1)¢?, hamdAld =
(ANOAY)x(£1)9!, and 9A'mA = A'MA = simplex, hdA‘'d < hawdAld is m,-
injective. So the problem is feduced to hawdAld ¢ h(P,A). T}le number of
simplices in P but not in A is € r-1. This completes the proof of 2.3. We
can also see

2.4 Lemma. For ACLCK, 122, A'! ¢L, 0A! c L, h(0A!,0A! Aa)x (41) #=l-i*t

ch(L,A) ism-injective.

Let K be finite simplical complex. Assume that each simplex of K is a
simplex with flat geometry such that all these geometric simplices can fit

together. Now assume that the geometry of K has nonpositive curvature,



whose definition was made in [12], 4.2. A subdivision doesn’t change this
status. So put K as a subcomplex of a closed PL manifold M., Do a barycen-
tric subdivision to make sure that A'MK is a simplex for any A! in M. The
PL geometry on K can easily be extended to one on M. It is known that
h(M,K} is closed PL manifold and has nonpositive curvature( (5], [12], 3-
4. One way of proving h(M,K) has nonpositive curvature is to show that the
inclusion in 2.3 is totally geodesic so that everything in the following
process of going fromK to h(M,K) is totally geodesic( compare [13] .9)).

2.5 Denote dimM = n. For any subcomplex P let hP represents h(P, PNK)
in 2.5.
hM = (KUM)x (1) "1 Yhaix(+1) "4
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By 2.4 there is the following process of constructing the fundamental
group of hM from that of K. G,*yG; denotes a free product with amalgama-
tion, G¢,4t denotes an HNN extension.

K ---> m;K

KUM! ——-> mK*Z,.. *Z

L =KX (£1)#20hM*™t ---> mL
Take A! &K,

I = i __ . -
L =L X (£f1)uhA >mL *tlhmjnlb

take another A! ¢ K,
- - -
LUhAY --—> “11"*:1::&1 t

K % (£1) 1 tunm?

hM ---> mhM

Waldhausen’'s theorem in (20] says that the following two sequences are
exact
Wh({H} --->Wh(G,)®Wh (G;) --->Wh (G %,G,)
Wh{H)--->Wh(G)--->Wh{G*,t).
Since hdA! are closed manifolds with PL nonpositive curvature, their
whitehead groups are zero by assumption. Then we get Wh(mK) < Wh{x;hM).

The latter is zero again by assumption. This proves 2.1.



3. Proof of the manifold case

3.1 Section 3 will prove

3.1.1 Theorem: Whi;M = 0 for any closed PL manifold M with nonpositive
curvature.

M having nonpositive curvature means that each simplex in M is assigned
a flat geometry of certain size and that any link of M is larger than or the
same as a standard sphere({12], 4.2). The example of plane R? can be
thought of as the composition of angles at the origin with total sum X = 2x.
When one inserts more angles, say letting the sum become X =4gr, then the
metric on R? is just the pullback, by z?: R? — R?, of ds?=dx?+dy?,
which is d&%*=4(x?+y?)ds?, a riemannian metric with singularity. So M is
like having a metric with various singularities, which maybe the back-
ground of the following gecdesic singularity( a geodesic going into dif-

ferent directions), which is our main concern:

\T——/
SO

Three things are used to overcome this difficulty. They are the geodesic
flow Gwhich is the collection of parametirized geodesics, the sphere bun-
dle R which is the collection of geodesic rays, and bundle S, which is the
collection of segments of length T. '

3.1.2. Note that closed manifolds of almost nonpositive curvature(
limits of riemannian manifolds of K€ 0, see [11])) are covered by 3.1.1 be-
cause their universal covers satisfy the property that the distance func-
tion of two geodesics are convex. In fact they are far less comlicated
here in that there is no geodesic singularity. So Whitehead groups of the

fundamental groups of them must also vanish.

3.2 The bundle Sy

Note that in section 3 we always assume M” to be closed PL manifold with
curvature £ ¢, X its universal cover. First recall that the geodesic flow
of M is G(M) = {all local isometries R ---> M}, There is a metric to G(M)
that comes from one to G(X)} by defining distance in G(M) to be the minimum
of distances between elements in the inverse images in G{X). The metric

on G(X) is
o

dia,p) = [dle(e), Ber)-e™at.

3.2.1 Lemma. For geodesics a{t), B(t) in M and liftings &(t), Pl(c) in X,



d(a,p) sd(a, B).

The sphere bundle of M is R(M) = {local isometries [0, +s) ---> M}, which
is fiber bundle over M with fiber the ideal boundary of X. Denote the
ideal boundary as 8X. It is homeomorphic to §"71,

3.2.2 Theorem( see{13], §4) : The canonical map G{M)} ---> R(M) can be ap-
proximated by homeomorphisms.

For T > 0, let Sr(M) be the set of all parameterized geodesic segments
of length T in M. Its topology is from S;(X) , in which two elements are
close if and only if they are close pointwise.

3.2.3 Lemma: Sy (M) --->M is a'fiber bundle.

This assertion is equivalent to that, for a < b, the homeomorphism ap-~
proximations of S, (x) ---> 8§, (X) can depend continuously on x in X. Davis
and Januszkiewicz in (5] proved that S, (x) ---> S, (X) can be approximated
by homecmorphisms, where S, (x) is the sphere of radius r with center x in
X. Inparticular, any S;(x) is homeomorphic to 771,

Let A and B be locally compact, separable and metric spaces, f: A ---->
B proper and surjective. f being completely regular means that for each y,
in B and € > 0, there is neighborhood U for y, such that: for each y in U,
there is homeomorphismh: f~!(y) ----> £~ (y,) which is e-close to Id,.

3.2.4 Theorem(Dyer-Harmstrom [4])): If f: A ---> B is completely regu-
lar, B is locally finite-dimensional, and the point-inverses f~!(y) have
locally contractible homeomorphism groups, then £ %S fiber bundle.

Proof of 3.2.3: We will just show that Sy {X) is fiber bundle. In view of
the above criterion one should show Sp{X) ---> X to be completely regular.
Note that Homeo(S"™}) being locally contractible is known as a result of
the Cernavskii theorem. Give S, (X) the following metric
d(a,B) =d(a{0), B(0O)] +d(a(T),P(T)]

Assume that 6> 0, X, y are in X, d(x,y) se/4. Take homeomorphism f,: dX
---> Sp(x) that is &/4-close to the canonical map. A similar f,: dX --->

Sy (y) is taken. Consider

where @ = (£, u) (T}, ¥ = (£,7'v)(T).

d{x,y) + d(u,v)

sdi{x,y) +d{u,t) +d(tz, V) +d{(¥,v) £d{x,y}) +d(u,d) +dix,y) + d(¥,v)
sd-¢e/d =¢,

where d(i1,¥) S d(x,y) is because the distance function of two asymptotic



geodesics is a decreasing one. This means that £, £l Sp{x) ---> Sply)
is g-close to Id in Sy (X). #

3.2.5 Corollary. There is continuous class of bundle equivalences h,:
R(M)} x [0,1) ---> Sr (M) such that h; = the canonical map.

Proof. For any ray a(t), t € [0,+e), one gets segment a(t),t € [0,T].
This is the canonical map, which is';ell-like by argument similar to that

of 3.2.2. Since S; (M) is indeed a manifold by 3.2.3, [18] can imply h..

3.3 Technical estimates

Let a{t),0St <1becurve in M, y{s), 0 € s < += be geodesic ray with y(0)
= a(0). Assume that the diameter of @ is<d, T>0. LiftaandytoXtobel
and :( such that &{0) = ?(0) . For each t in {0,1], draw the geodesic segment
from &(t) to Y(T+d). Since the length of this segment is 2 T+d-d = T, a
smaller segment of length T, denoted &(t)#*y, is available. Map it down to
M. The result, written as a(t) *y, is independent of ways of lifting and is
a curve in S; (M),

Assume that W is h-cobordism over M, p;, @, 0 st <S1,:wx[0,1] ~-~->W
are deformations of W to M and to another boundary. The lifting of W to
R(M) is '

W=R(M)XyW={(y,x) € R(M)XW:¥(0) =p, (x)}.

Assume that the maximum of the diameters of curves( called associated
curves of the h-cobordism) p;p.x., p1Q: %X, X € W, is d, which by definition
is the diameter of W. Take T > 0. Use d and T to obtain, for any (Y,x) in
R(M)XW with ¥(0) = p,(x), a curve p,p,x * ¥ in Sy (M) . Take the h, of 3.2.5.
Consider

((holh.v.x), 0S¢t S1HU((ho™pipex *Y.pex), 0St S1HU((he hye Y. pax), 0St S 1)
where notation | means the three curves are wedged together. This is a
curve in W. Let i: R(M) ---> W be the inclusion, j: W ---> R(M) be (y,x)
--->¢¥. Then ji sId; Id is homotopic to ij: (y,x) ---> {Y.p;x) via the col-
lection of the above expressed curves. Therefore the associated curves in
R{(M) are

(hoh, Y, 0SSt S1)1\Ylhg (pypex *y], 0S¢t <1)

U(hothy ¥, 0SES1), (7.x) in R(M)Xy W.

Consider the other boundary in the same way. One sees

3.3.1 Lemma. Let W be h-cobordism over M with diameter d¢, T > 0. Then
there are homotopies(weak deformations) of W = R{M)XyW with its boun-
daries, and homeomorphism h,;: R{M) ---> S; (M) such that associated curves
of ho(ﬁ) in S; (M) are arbitrarily close to the following curves
Pipex *Y, 0SSt S1, p1gex ¥y, 0SSt S1: (Y, x) € R{M)XyW.

We now prepare to change the above curves, For any £€> 0, take hy, choose

homeomorphism gy: G(M) ---> S; (M) which is very close to the canonical map



denoted f£. Consider gu‘lho(‘W) . Any associated curve of it, restricted
from G(M) to S;{(M), can be €-close to a curve of the form a{t}*y, o C M,
diam{a) £ d, ¥y is in R(M), ¥(0) = a(0). Give S;(X) the metric d(a,B) =
df{a(0}, B(0)] + d(a(T),B(T)], which is invariant under isometries and in-
duces a metric on Sy{M). Consider any curve V in G(M) such that A{fV, a*y)
Se. There must be lifting fV of £V to Sy(X) such that d{fV, &+ =
d(fv,a*y) €e. V and £V determine V which is lifting of V and £V = fV.
d(fV,u*y) Se. With lemma 3.2.1, we can simply consider

Fixedd >0, anye> 0, T> 0, and a collection L(g,T) of curves in G(X)
such that for any of its curve, there is geodesic segment ¥[{0, T+d] such
that for any point in the curve, expressed as geodesic a{t), t € R, there

is the following triangle in X

such that d[a(0), Y(0)) <&, d[a(T),¥(T)] <e. The purpose is to make I
close to leaves of G(X). The following three points are needed.

(1) For any triangle (l1,a,b) in X, with 1 €d, thenh-d<1 <€d. By the
metric formula in 3.2, segment of length d in X means segment of length 24
inG(X).

(2) Consider two geodesics a(t) and B(t) in X in the following situa-

tion

Since X has curvature s 0,
T+d-t

t) § ——m2
x{t) T d

For t in [{1-2¢)T,T],
x (t) £2d%/T +4de.
Denote T= (1€} T. We estimate

4o —2T eT 4=

d (1B, (T+d-T+t)a] = [d(Br+t) , a(T+d-T+rst ) Je'de = [+ +]

~=s —€T ¢T



eT eT
[ = [xteretlae

-7 -7
< 4d?/T +8de.
-7

I dBl1+t),a(T+d-T+w+t ) ] e

—T

2
< | (2 (-er-c)+2vader e a

2
$2e + -2% +4dE.

The same is true for the integration fromeT to 4. So
8d?

di{tf, (T+d-T+r)a} S de™T + +16de.

{3) If there are two geodesics a(t) and B(t) in X such that d{a(0),B(0}]
S e dla(T),B(T)] €€, T=(1-e)T, then d(1x,t8) S 4e™+ 4e. These three
points together imply that T-Z{€,T) is foliated controlled by the follow-
ing bound. Note that for a class of curves in an one dimensional foliation
we say it is (u,v)-controlled, or its diameter is € (u,v), if any curve in

the class is in a v-neighborhood of some leaf segment whose length is Su,
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(2d.4e7+ + 16de+ 41787 44¢)

If T=1/€%, & ---> 0, then the second term goes to zero. This gives

3.3.2 Proposition. Let W be h-cobordism over M with diameter d, W be
the lifting of W to R{(M). Then for any 8 > 0 there is homeomorphism g =
tgn'lho: R(M) --->G{M) such that g(l‘}) is (24,8) ~controlled.

3.4 The proof

We now proof theorem 3.1.1, i.e., WhrM = 0. It is o.k. to consider Mxs?
instead of M because Whm,M ¢ Wh{r,Mx2). Orient S!. Then there is natural
decomposition Sy (MxS!) = 5,* u $;%° v §;7, which comes from a decomposition
of Sr(XXR). Because if we take ¥ in Sy (X}, then (Sr(¥XR)),., the union of
which for all ybeing S; (XxR), has the following natural decomposition

+
?
0 Y

P

+ . -

KSTlefR,ﬂ = duy va

o]
Apparently there are similar decompositions G{Mxs!}) = ¢* v G° U G-,

R(MxS!) = R*UR°UR".

Any element of Wh{mM xZ) is the Whitehead torsion t{W) of an h-



cobordism W over MxS!. Lift wWto W over R(MxSY). W=W UR UW. W UKW
is h-cobordism over R* U R°, which is fiber bundle over Mxs!, with disc
E"™ as fiber . So t{W'UW®) =1(W). So consider W'UW’.

To apply 3.3.2 to change this h-cobordism, choose h, and g, there to
respect decompositions. A problem is that homotopies of W' u W° construct-
ed at the beginning of 3.3 may go out of W' u W°. Take neighborhood 3° U o/
for 3° ¢ 3° U . The obvious retraction 3° U 8'? ---> 3° induces a map J:
St Sp° U SpY? ---> Sp*u S;°. Now change each p;p.x*y, Y€ R*u R®, y(0) =
p1X, to J(p;p.x*Y) . This gives us a correct homotopy of W*u W°. But then
we expect J(p;p.x*Y) to be very close to p,p. x*Y

This is true if projection of p,;p.x from MxS! to S!' is small. To gain
that, take large k in 2, consider Idxz*: MxS! ---> MxS!, substitute W by Wy
=' (Idxz*)*W. I1f t(W,) =0 is proved, then k-t(W) =0. Take another large 1
inz, (k,1}=1, As k- "T(W) =1-1(w) =0, T(W) =0.

So apply 3.3.2 to take homeomorphism g: R* U R? ---> 6* U G° such that
g(W" U W° is (2d,8)-controlled, where & can be arbitrarily small. Now it
is better to add a trivial h-cobordism over G° U G™( see lemma 3.8 of {7})
so that we need only consider an h-cobordism W over G that is (4d,8)-
controlled, where 8§ can be arbitrarily small. Now we turn to

3.4.1 Theorem. Assume that m2 5, G® is manifold and 1-dimensional fol-
iation. A c G compact such that any leaf intersecting A has length > 1.
Then for any € > 0 there is 8§ > 0 such that the following is true. For any
h-cobordism H over G with diam(H) < (1,8}, there is handlebody structure
for H such that there is no handle over A and that the diameter of the han-
dlebody structure is s (C(m) 1,€).

This is an adjustment of [13], 7.6 to the language used by Quinn{ [16]
or [17)), to consider handlebody structures of h-cobordisms directly
without having to mention the concept of products which won’t be encugh
latter.

In our case let I = 4d. Let G,.q be the union of all closed orbits in G
with periods €£4d. Then W as well as its handlebody structure are (D,g)-
controlled and all handles are over a neighborhood of G,;. where D = C{2n- '
1) 4d depends on d and n only, € can be arbitrarily small and the neighbor-
hood can be arbitrarily close to G,4. We now want to apply the thin h-
cobordism to G,4 because the h-cobordism is very close to the circles in
G.g- One thing is that G,y is not fibered by S! although [8) shows it can be
filtered into a stratification of fiber bundles. But we will see that the

local situation of G 4 is still within the ability of [16].

3.4.2 Definition.

{l) If a(t), t € R is closed geodesic with period{( i.e. minimum

'



period) u, k 2 1, then we can have a map S'(ku) --> [0,ku]/0=ku :-> Mxst.
Call th.is map, together with the orientation and the length of s'(ku) but
dropping the reference point, a k-fold oriented geodesic circle from o.
The period of this circle means u not ku.

{2) If s'(u)x[a,b] --> MxS! is a totally geodesic immersion such that
the oriented geodesic circles at (a,b) are all one fold, then call it a
primitive move from the one fold version of the circle at a to the one fold
version of the circle at b. Call u the period of the primitive move and b-a
its perpendicular distance. A move is a combination of several primitive
moves. The perpendicular distance of a move means the sum of those of the
primitives. A down move is a combination of primitive moves such that the
period of any primitive move is equal to that of its beginning circle,

Let B denote the collection of one fold oriented geodesic circles of
periods €4d. Assume @ is closed geodesic in MxS!. Take a regular neigh-
borhood for it. Note that for any closed 'geodesic B of period v which is
very close to o under the metric of G(MxS!), it must be in the regular
neighborhcod, therefore its one fold oriented geodesic circle is homoto-
pic to a certain fold circle of a. By an elementary application of the fact
that the distance function of any two geodesics in the universal cover XXR
is convex, we can produce a totally geodesic immersion S$'(v)x[a,b] -->
MxS! such that the circle at a is the one fold circle of B, that at b is a
circle of &, and in fact the immersion is a down move. This observation
suggests that from the point of view of topology we should divide B into
disconnected subsets using the equivalence relation that two elements in
B are equivalent if and only if between them there is a move consisting of
primitive moves of periods €4d. In a component define the distance
between two elements to be the lower bound of the perpendicular distances
of all the moves between them. This gives ametric to B,

The map f£: G,9 --> B of taking a closed geodesic to its one fold circle
is continuous. If o and P are elements inB, Bis very close to a in B, then
P must be in a regular neighborhood of & € MxS!. Then we can get a unique
down move from f to . This shows that for any @ in B there is r > 0 such
that its closed ball E of radius r is contractible. And f~!(E) can be de-
formed to f~la which is homeomorphic to S!. We now want to apply the fol-

lowing 3.4.3 to &.

Note that notations in this paragraph and 3.4.3 are independent of the
preceding ones. Let M” be closed manifold, n2 5, X be compact subset in M,
W be h-cobordism over M with deformationsg p, and q,, 0 St €1, todW =M and

to d,W. Recall that for a x € W it has two associated curves p;p.x and



pP1Q:X. For € > 0, X® denotes the set of points that are e-close to some

points in X. Let §be >0, k2 0. Say that Wis (X,8,k)-contrelled if there
. is

0=8< « + + 8 <84y =8

such that the associated curves of pl'l(Xai) are in x'*1, 0<1i<k. A handle-

body structure of Wis over X®* if all handles are inside p,™*(X%). Let W_; be

the ceollar part of the handlebody structure with homeomorphism h,:

Mx(0,1])] --> W_;, hy = Idy. Recall that for a x € M its associated curve is
Dihex. W, is (X,8,k)-controlled if the associated curves of Xa‘ are in

x%+*1  Assume that U is neighborhood of X in M, u,, 0 St €1, is deformation
of Uto X, B is compact metric space and f: X --> B is continuous map. W is
e-controlled at B if the diameters of the images under fu,; of the associ-
ated curves of W that are inside U are Se. W_; being e-controlled at B is
understood in a similar way. '

3.4.3 Theorem. Assume that X is locally contractible, B is locally 1-
connected, and for any point in B and any sufficiently small r > 0 the
closed r-ball E satisfies Whim, (£f*E)xz%) =0, i 2 0. Then there are £,> 0,
8, > 0, and k, that depends only on n, such that for anye<e,, §$ 8, and k 2 k,
Wis trivial.

This is a slight extension from 2.7, [16]) ( also see {2]) to treat a sub-
set X of a manifold rather than the whole manifold M itself. The above ar-
rangements are to ensure that controlled handle eliminations can be car-
ried out near X. The reader can now see that 86, (16] works for 3.4.3. X
being locally contractible makes sure that there are always neighborhood

retractions.

Return to W which is (D,€)-controlled. wWhen € is small enough the

r
theorem appliés to W 2 G D G4g —> B, in particular Wh(rtls1 xz!y =0, i20,

so that W is trivial. This proves 3.1.1.
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