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1. Introduction

Dur result is on the Whitehead groups Whr = Xl ( Zr) / Hlr x Z2 of some

groups r relating to geometry. The strategy of using control topology

plus geometry to study Whr was previously used to prove Wh~IM = 0 for

closed flat manifolds Mby Farrell and Hsiang in [6]. The following more

general result was proved using ideas that involved sphere bundles and

geodesie flows.

1.1 Theorern{[8] in first order). WhXIM = 0 for any elosed riemannian

mani f 0 lds wi th nonpositive curva t ure.

In this paper we try to obtain a Whitehead group result coneerning fin

ite polyhedra of nonpositive curvature in two steps. The first step is to

transform the the problem to one about closed manifolds, by applying the

idea of hyperbolization. In the second step that the Whitehead group of a

closed manifold with PL nonpositive curvature ia zero i8 proved as a

development from [7], [8] and [13]. The meaning of a polyhedron with

negative or nonpositive curvature was defined in [12] by Gromov to study

hyperbolic groups. The result cf this paper i8 as foliows. It covers a

maj er class of semihyperbolic groups.



1.2 Theorem. Whr>:l 0, r = 1t1K for any finite polyhedra with nonpositive

curvature.

Note that this implies x1{zr) = H1rX Z2' Ko(Zr) = 0, Xi (Zr) e 0, i S -1.

Previous result in this respect is the vanishing of Whitehead groups in

the.negative curvature case in [13]. One interest in extending that to

the nonpositive curvature case is from the application of 1.2 to p-adic

groups via their Euclidean buildings ( (19]) which are the most interest

ing known examples of polyhedron nonpositive curvature structures. In

particular there is

1. 3 Cor~llary. Let Qp be the field of p-adic numbers. For any torsion

free and cocompact disc~ete subgroup rc SLn (Qp) , Whr =o.

2. From mani folds to polyhedra

This section shows

2.1 Lemma: I f the Wh i tehead groups of closed mani folds wi th PL nonpos i

tive curvature are zero then the same is true for finite polyhedra.

It i8 hyperbolization, an idea due to Gromov([12]) that allows us to

see this. Because we only need to gain nonpositive rather than negative

eurvature, we will avoid the complieated and somewhat unclear striet hy

perbolization needed in [13], by using here a weak but transparent hyper

bolization diseovered in [5] by Davis and Januszkiewicz, whieh i8 like the

untwist version of the first hyperbolization of [12] ,. 3.4.

Let K be finite simplical complex, A be subeomplex. Do the fo"llcwing:

Let hK l :::: Xl; Take hK l x (±l) = two eopies of hK l . If &2cA , then denote h&2 =
&2 X (±l). Hut if 6 2 rt; A, then define h42 = a62 x[-l, 1]. hJ(2 = Xl x{±1) uall

ht:.2
, and so on. The end re8ult h (K, A), the hyperbolization of K relative

to A, is what we want to use. Tc make things clear we give

2.2 There is unique construction h such that

(1) For any finite simplical complex x n and subccmplex A, h(K,A) i5

finite simplical complex. If Li is subccmplex of K then

h(L,Lr\A)X(±I)n~i c h(K,A)

Here .h (L, Lr\A) x (±1) n-i represents the disj oint union of 2 n- 1 copies of

h (L, Lr'\A). Note that if L is a set of vertices then we should use LX (±1) n-l

rather then Lx(±l) n because the construction starts at dimension one, not

zero.

(2) If Xi, LJ and Aare subccrnplexes of some finite simplical ccmplex

pn, k =dim(KtlL), then

h (K, Kr\A) x (±1) n-i U h (L, Lr\A) x (±1) n-j = h (KUL, (KUL) f"'\A) x (±l) n-max (i ,j I

h (K, Kr\A) x (±1) n-i n h (L, I..r'\A) x (±1 ) n-j >:I h (KrlL, I<t1lJlA) x (±1) n-Je

(3) For any AC 6 1
, h(61 ,A) ;;t 6 1

• For n ~ 2



h(~n,Ön) =~nX(±1)n-1

h (~n ,A) = h (a~n, A) x [-1,1], for any AC dÖn • And oön C ö" induces

h(dÖn , A)X(±l) Ch(dÖ", A)X[-l,l]

Now assume that K" is finite simplical complex and A is subcomplex such

that ÖJ nA 1S a simplex for any ö J in K.

2 . 3 Lenuna. For any A c LeK

h (L, A) x (±l) n~JlDL eh (K, A)

is Jt1-inj ective. That means that the inclusioninduces injections of fun

damental groups at all connected components.

Proof. For a subcomplex P and an integer m we will denote hPm =
h (P, Pf"'\A) x (±l) m-dJlDP. Let r be the number of simplices in K that are not in

A. First add K 1 to L. Note that hLUK 1n is the union of hLn and an one di

mensional complex, so 2.3 is true for thern. Therefore we can assume that

the dimensions of the simplices in K but not in L are ~ 2. Reduee the prob

lem to one about hPn C h(Pu~l )n, AC Pe Puö1 C K, where i ~ 2, Öl <t P, oö1 c

P. Write dimP a d, max(d, i) = m. Note that

h (puÖl, A) :;: hPm U hA.1 m,

hPrn ("'\ hL\1 In = hdÖ1 m,

h(.6.1 ,.6.1 nA) = h(o~J ,dÖJnA)X[-l, 1].

2.3.1 Lemma. Let X, Y and Xf"'lY = Z be eompaet polyhedra. If Z c X and Z c

Y are 7t1-injective then x c XUY is 7t1-injective.

Proof: Let Xo be one eonnected eomponent of X. Xon2· Zoo Let Yo be the

union of those components of Y that have intersections with Zo. Then the

fundamental group of Xo expands to that of XoUY o by generalized free pro

ducts and HNN extensions. Let Zl be the union of components of Z that are

in Yo but are not in Zo. Let Xl be the union of components of X that inter

seet Zl. Consider XouYo C XOUYOUX1. Note that the process terrninates at a

component of XUY.

According to this 2.3.1, and sinee h(o~J,oÄJnA)x(±l) c

h(oÖJ ,oöJ f"'\A)X[-1,1] is x1-injective, the problem is reduced to hOöJd c

h (P, A). Sinee hAd ("'\ hO.&J d = hW'd.&J d, hAd Cl: AX (±1) d-1, ~.6.J d =
(Af'"\C)ö1 )X{±1)d-l, and OÖJnA :::I .&J nA :% simplex, hoÖJd c hAua.&Jd is 7t1

in j eet i ve . So the problem i s reduced to hA\.Jd.&J d c h ( P, A). The number 0 f

simpliees in P but not in A is :S: r-l. This completes the proof of 2.3. We

can also see

2.4 Lemma. For A C LeK, i ~ 2, ö J <t L, d.&J C L, h (aaJ , aaJ f"\A) x (±l) dJmL-J +l

eh (L, A) i8 7t1-inj ective.

Let K be finite simplical eomplex. Assurne that eaeh simplex of K is a

simplex with flat geometry such that all these geometrie simplices ean fit

together. Now assume that the geometry of K has nonpositive eurvature,



whose definition was made ~n [12], 4.2. A subdivision doesn' t change this

status. So put K as a subcomplex of a closed PL manifold M. oe a barycen

tric subdivision to rnake sure that .L\J nK is a simplex for any.L\J in H. The

PL geometry on K can easily be extended to one on M. It is known that

h (M, K) i8 closed PL manifold and has nonpositive curvature ( [5], [12], 3

4. One way of proving h(M, K) has nonpositive curvature i9 to show that the

inclusion in 2.3 is totally geodesic so that everything in the following

process of going from K to h (M, K) is totally geodesie ( compare [13] ,9» •

2.5 Denote dimM = o. For any subcomplex P let hP represents h(P,Pr\K)

in 2.5.

hM = (KUMI) x (±1) n-I Uh60J x (±1) n-J
1~

By 2.4 there is the following process of constructing the fundam~ntal

group of hM from that of K. GI*HG~ denotes a free product with amalgama

tion, G*Ht denotes an HNN extension.

K ---> 1t1K

KU Ml ---> KI K *Z ••• *z

L = K x (±1) J-2u bMJ - l ---> 1tl L

Take60J rr. K,

i. =L x (±1) uhJ:1J
-- -> 1tl L *1tlha411tlL

take another!l rr. K,
- .. J
Luh60 ---> 1tl L* 1 t

alha!

11M ---> 7t l hM

Waldhausen' s theorem in [20] says that the following two sequences are

exact

wh( H) -- ->Wh (G l ) (i)wh (G 2 ) -- ->Wh (G l *HG 2)

Wh(H)--->Wh(G)--->Wh(G*Ht).

Since haAJ are closed manifolds with PL nonpositive curvature, their

Whitehead groups are zero by assumption. Then we get Wh (1t l K) c Wh (1t l hM) .

The latter i8 zero again by assumption. This proves 2.1.



3. Proof of the mani fold case

3.1 Section 3 will prove

3.1.1 Theorem: WhftlM :I 0 for any closed PL manifold M with nonpositive

curvature.

M having nonpositive curvature means that each simplex in Mis assigned

a flat geometry of certain size and that any link of M is larger than or the

same as a standard sphere([12], 4.2). The example of plane R2 can be

thought of as the composition of angles at the origin wi th total sum L = 2ft.

When one inserts more angles, say letting the sum become L C 41t, then the

metric on R:2 is just the pullback, by Z2 : R:2 ---+ R 2 , of ds 2 = dx 2 + dy2,

which is d§2 = 4 (x 2 + y2) ds 2 , a riemannian metric wi th singularity. So M is

like having ametrie with various singularities, which maybe the back

ground of the following geodesie singularity( a geodesic going into dif

ferent directions), which is our main concern:

Three things are used to overcome this difficulty. They are the geodesie

flow Gwhich is the collection of parameterized geodesics, the sphere bun

dIe R which is the collection of geodesie rays, and bundle ST which is the

collection of segments of length T.

3.1.2. Note that closed manifolds of almost nonpositive curvature(

1imits of riemannian manifolds of K SO, see [11]) are covered by 3.1.1 be

cause their universal covers 9atisfy the property that the distance func

tion of two geodesics are convex. In fact they are far less comlicated

here in that there is no geodesie singularity. So Whitehead groups of the

fundamental groups of thern must also vanish.

3.2 The bundle 5'1

Note that in section 3 we always assume Mf] to be closed PL manifold with

curvature SO, X lts universal cover. First recall that the geode9ic flow

of M i9 G(H} = {all local isometries R ---> M}. There i9 ametrie to G(M)

that comes from one to G (X) by defining di stance in G (M) to be the minimum

of distances between elements in the inverse images in G(X). The metric

onG(X) is
+-

d (a,~) = Id [a ( t ) , ß(t ) ] • e-1tI dt .

3 • 2 . 1 Lerrana. For geodes ic s a (t), ß(t) in Mand 1 i f t iogs l'1 ( t), ~ ( t) in X,



d(a,ß) S d(rt, ~).

The sphere bundle of M is R(M) = (leeal isometries [0, +00) ---> H}, whieh

is fiber bundle over H'with fiber the ideal boundary of X. Denote the

ideal boundary as ax. It is horneornorphie to sn-1.

3.2.2 Theorem ( see (13], 14) : The eanonical map G(M) ---> R (H) can be ap

proximated by horneomorphisms.

For T > 0, let 5 T (H) be the set of all parameterized geodesie segments

of length T in M. Its topology is from ST (X) , in whieh two elements are

close if and only if they are close pointwise.

3.2.3 Lennna: 5 T (M) ---> M is a 'fiber bundle.

This assertion is equivalent to that, for a < b, the homeomorphism ap

proximations of Sb (x) ---> 5a (x) can depend continuously on x in X. Davis

and Januszkiewicz in [5] proved that Sb (x) ---> 5 a (x) can be approximated

by homeomorphisms, where Sr (X) i6 the 6phere of radius i with center x in

X. In particular. any Sr (X) is homeomorphic to sn-1.

Let A and B be locally compact, separable and metric spaces, f: A ---->

B proper and 8urj eetive. ' f being completely regular means that for each Yo

in B and E > 0, there is neighborhood U for Yo such that: for each y in U,

there is homeomorphism h: f-1 (y) ----> f-1 (Yo) which is e-close to IdA •

3.2.4 Theorem (Dyer-Harmstrom [4]): If f: A -- -> B is completely regu

lar, B is locally fini te-dimensional, and the point-inverses t-1 (y) have

locally centract ible horneomorphism groups. then f is fiber bundle.

Proof of 3.2.3: We will just show that ST (X) is fiber bundle. In view of

the above eriterion one should show ST (X) ---> X to be completely regular.

Note that Homeo(Sn-1) being locally contractible is known as a result of

the Cernavskii theorem. Give ST (X) the following metric

d(U,ß) =d[u{O), ß(O)] +d[U(T),ß(T)]

A5sume that e > 0, x, y are in X, d(x,y) S e/4. Take homeomorphism f x : ax
---> ST(X) that is e/4-close to the canonieal map. A similar f y : ax --->

ST (y) i8 taken. Consider

whereü = (f X -
1u) (T), v= (f y - 1v) (T).

d(x,y) + d(u,v)

Sd{x,y) +d(u,ü) +d(O,v) +d{v,v) Sd{x,y) +d(u,ü) +d(x,y) +d(v,v)

S 4· e/4 =E,

where d (Q, v) S d (x. y) i5 because the distance function of two asymptot ic



geodesics is a deereasing one. This means that Ey Ex - l
: ST{X) ---> ST{Y)

i8 t-elose to Id in ST (X). #

3.2.5 Corollary. There is continuous class of bundle equivalences h t =

R (M) x [0,1) ---> ST (M) such that h l = the canonical rnap.

Proof. For .any ray a{t), t e [0, +00), one gets segment a (t) ,t e [0, T] .

This is the canonical map, which iso cell-like by argument similar to that

of 3.2.2. Since ST (H) is indeed a manifold by 3.2.3, [18] ean imply h t •

3.3 Technical estimates

Let a{t) ,OS t S 1 be curve in M, l{s), 0 S s < +00 be geodesie ray with 1(0)

= a{O). Assume that the diameter of a is S d, T> O. Lift a arid y to X to be rt

and y such that rt( 0) = y( 0). For each t in [0,1], draw the geodesie segment

from rt(t) to y(T+d). Since the length of this segment is ~ T+d-d = T, a

smaller segment of length T, denoted Ct(t).y, is available. Map it down to

M. The result, written as a(t) .y, is independent of ways of lifting and i8

a curve in ST (M) •

Assume that W i8 h-cobordism over M, Pt, qt, 0 S t S 1, : wx[O, 1] -- -> W

are defonnations of W to M and to another boundary. The lifting of W to

R(M) i8

W=R(M)XHW={(l,x) E R(M)xW:l(O) =Pl(X)},

Assume that the maximum of the diameters of curves( called associated

curves of the h-cobordism) PlPtX, PlqtX, X E W, is d, which by definition

is the diameter of W. Take T > O. Use d and T to obtain, for any (1, x) in

R(M)XW with 1(0) =Pl (X), a curve PlPtX *1 in ST (M). Take the h t of 3.2.5.

Consider

{(hO-1htl,x), 0 S t S l}U{ (ho-lPl~tX -.y,Ptx) , 0 S t S l}U{ (ho-lhl_tl,Plx), 0 S t :S 1}

where notation umeans the three curves are wedged together. This is a

curve in W. Let i: R(M) ---> Wbe the inclusion, j: W---> R(M) be (l,x)

---> 1. Then ji :::lId; Id is homotopic to ij: (y,x) ---> (Y,PlX) via the col

lection of the above expressed curves. Therefore the associated curves in

R{M) are

(ho-lhtl,O S t S 1)U(ho-1[PlPtX *Y], OSt S 1)

U(h O-
1h 1- t 'Y, 0 S t S 1), (l,x) in R (M)XH W.

Consider the other boundary in the same way. One sees

3.3.1 Lemma. Let W be h-cobordism over H with diameter d, T> O. Then

there are homotopies(weak deformations) of W= R(M)XxW with its boun

daries, and homeomorphism h o= R{H) ---> ST (M) such that associated curves

of h oO~) in ST (M) are arbi trarily close to the following curves

PtPtX -.y, 0 S t S 1, PIQtX *y, 0 S t S 1: (l, x) e R (M)XHW.

We now prepare to change the above curves. For any t> 0, take h o, choose

homeomorphism go: G(M) ---> ST (M) which is very close to the canonical map



denot~d f. Consider go-Iho (W). Any associated curve of it, restricted

from G(M) to ST(M), can be €-close to a curve of the form a(t)*1, ac M,

diam(a) S d , 1 is in R(M), 1(0) ~ a(O). Give Sr(X) the metric d(a,ß) =
d[a(O) I ß(0)] + d [a(TL ß(T) ] I which is invariant under isometries and in

duces a metric on Sr (M). Consider any curve V in G (H) such that d (fV, a*l)

S €. There rnust be lifting [V of fv to Sr (X) such that d( [V I 0:*1 =
d (fV, a*l) Se. V and [V determine V which is 1i ft ing of V and fV = l'V.

d(fV,rt*1) Se. with lemma 3.2.1, we can simply consider

Fixed d > 0 I any e > 0 I T > 0, and a collection I:(e, T) of curves in G( X)
r

such that for any of its curve , ,there is geodesic segment 1[0 I T+d] such

that for any point in the curve, expressed as geodesic a(t) I t e R, there

is the fo1lowing triangle in X

,
o '..

Ls...---~)~
o T d Si

such that d[a(O), 1(0)] SE, d[a(T), l(T) ] Se. The purpose is to make I:

elose to ieaves of G(X). The following three points are needed.

(1) For any triangle (1, a,b) in X, with 1 S d, then a-l) S 1 ~ d. By the

metrie formula i~ 3.2. segment of length d in X means segment of length 2d

in G (X) •

(2) Consider twe geodesies a(t) and ß(t) in X in the following situa

tion

-.4----------.;---#--...::::::.~-~o(

T+A-T+t

Since X has curvature SO,

x(t) S T+d-t 2d
T

Fer t in [( 1-2t) T, T] ,

x (t) s: 2d 2 /T +4de.

Denote t = (1-t:) T. We estimate
.... -tT er ....

d [tß, (T+d-T+t) a] =Jd [ß (t+t ) , a( T+d-T+t+t ) ] e-1tldt = J+ J+J
-- ~T eT



eT ItT

f = f x (t+t) e-lt1dt
~T -eT

-eT

f d U~ (t+t ) ,a (T+d-T+t+t ) ] e-1t ldt

-ET 2

S f {2 (-ET-t ) + 2d +4 de] e-1t ldt_ T

2d2
S 2 e -eT + -- +4de.

T

The same is true for the integration from eT to +00. So

- 8d2
d {tß, (T+d-T+t)a] S 4e~T + -- + 16de.

T

(3) If there are two geodesics a (t) and ß (e) in X such that d{a( 0) I ß (0)]

S e , d{a(T),ß(T}] Se, t= (l-E)T , then d(ta,tß) S 4e -t+4e. These three

points together imply that t·l:(e, T) is foliated controlled by the follow

ing bound. Note that for a class of curves in an one dimensional foliation

we say it is (u,v) -controlled, or its diameter is S (u,v), if any curve in

the class is in a v-neighborhood of some leaf segment whose length is S u.

(2d, 4e~T+ 8d
2

+ 16de + 4e- ll--(IT +4e)
T

If T:::l/e2
, e ---> 0, then the second term goes to zero. This gives

3.3.2 Proposition. Let W be h-cobordism over M with diameter d, Wbe

the lifting of W to R(M). Then for any a > 0 there is homeomorphism 9 :::

'tgo-1h o : R(M) --->G(M) suchthatg(W) is (2d,S)-controlled.

3.4 The proof

We now proof theorem 3.1.1, i. e., WhJt1M ::: O. It is o. k. to consider MXS 1

instead of M because Wh1t1Mc Wh (Jt1MXZ). Orient 51. Then there is natural

decomposition ST (MX5 1
) ::: ST + U ST O U ST-, which comes fram a decompositian

af ST (XXR). Because if we take y in Sr (X) , - then - (ST (yxR ) ) 0' the union of

which for all 'Y being 5 T (XXR) , has the fallowing natural decomposition

Apparently there are similar decompositions G(MXS 1 ) ::: G+ U GO U G- ,

R (MxS 1) = R+ U R 0 U R- .

Any element of Wh (Jt1M XZ) is the Whitehead torsion 't (W) of an h-



cobordism W over MXS 1 • Lift W to Wover R(MXS 1
). Wo = w+ U WO u w-. w+ V WO

is h-cobordism over R+ V RO, which is fiber bundle over MXS 1
, with disc

E n +1 as fiber. So t (w+VWo) = t (W). So cons ider w+uWo •

To apply 3.3.2 to change this h-cobordism, choose h t and go there to

respect decompositions. A problem is that homotopies of w+ u WO construct

ed at the begi~ningof 3.3 may go out of w+ u Wo. Take neighborhood ao u cr1
1:2

for ao c ao u a-1
• The obvious retraction ao u a-112

-.- -> ao induces a map J:

ST+U STO U ST-lJ2 ---> 5 T +U STO. Now change each P1PtX*"'(, "( e R+ U RO, y(O) =
P1X, to J (P1PtX.y). This gives us a correct homotopy of w+ U WO. But then

we expect J(P1PtX*"'() to be very close to P1PtXtJy

This is true if proj ection of P1Pt X from MXS1 to Sl is small. To gain

that, take large k in Z, consider Idxz Je
: MXS 1 -- -> MXS 1

, substitute W by wJe

== (Idxz Je
) "'W. If t (WJe ) = 0 is proved, then k ·t (W) =0. Take another large 1

in Z, (k,l )=1. As k ·t(W) = 1 ·t(W) = 0, t(W) = O.

So app1y 3.3.2 to take homeomorphism g: R+ U RO ---> G+ U GO such that

9 O~·+ U Wo) i8 (2d, S) -controlled, where S can be arbitrarily small. Now it

is better to add a trivial h-cobordism over GO U G-( see lemma 3.8 of [7])

so that we need only consider an h-cobordism Wover G that is (4d,S)

controlled, where S can be arbitrarily small. Now we turn to

3.4.1 Theorem. Assume that m ~ 5, Glll is mani fold and I-dimensional fol

iation. A c G compact such that any leaf intersecting A has length > 1 .

Then for any E > 0 there i8 S > 0 such that the following is true. For any

h-eobordism H over G wi th diarn (H) S (1 , S), there is handlebody strueture

for H such that there is no handle over A and that the diameter of the han

dlebody structure i8 S (C (m) 1 , E) •

This is an adjustment of (13], 7.6 to the language used by Quinn ( (16]

or (17]), to consider handlebody structures of h-cobordisms directly

without having to mention the coneept of products whieh won't be enough

latter.

In our ease let 1 = 4d. Let G4d be the union of all closed orbits in G

.with periods S 4d. Then Was weIl as its handlebody strueture are (D, t) 

controlled and all handles are over a neighborhood of G 4d I where D = C (2n

1) 4d depends on d and n only, e can be arbitrarily small and the neighbor

hood ean be arbitrarily elose co G4d • We now want to apply the thin h

cobordism to G4d beeause the h-eobordism is very elose to the circles in

G4d • One thing is that G4d i8 not fibered by 51 altholigh (8] shows it can be

filtered into a strati fication of fiber bundles. But we will see that the

loeal situation of G 4d is still within the ability of (16] .

3 . 4 • 2 De f in i t i on .

(1) If a(t), t e R is closed geodesie with period( i.e. minimum



a
period} u, k ~ 1, then we can have a map 51 (ku) --> [0, ku] /O=ku -> MXS 1

•

Call this map, together wi th the orientation and the length of 51 (ku) but

dropping the reference point, a k-fold o~iented geodesic circle from u.

The period of this circle means u not ku.

(2) If 51 (u}x [a, b] --> MXS 1 is- a totally geodesic immersion such that

the oriented geodesic circles at (a,b) are all one fold, then call it a

primitive move from the one fold version of the circle at a to the one fold

version of the circle at b. call u the period of the primitive move and b-a

its perpendicular distance. A move is a combination of several primitive

moves. The perpendicular distance of a move means the sum of those of the

primitives. A down move i9 a combination of primitive moves such that the

period of any primitive move is equal to that of its beginning circle.

Let B denote the collection of one fold oriented geodesic circles of

periods ~ 4d. Assume a is closed geodesic in MXS l
• Take a regular neigh

borhood for it. Note that for any closed geodesic ß of period v which is

very close co a under the metric'of G(MXS 1 ), it must be in the regular

neighborhood, therefore its one fold oriented geodesic circle is homoto

pic to a certain fold circle of Q. By an elementary application of the fact

that the distance functicn of any two geodesics in the universal cover XXR

is convex, we can produce a totally geodesic immersion Sl(v}x[a,b] -->

HXS l such that the circle at a is the one fold circle of ß, that at b i8 a

circle of u, and in fact the immersion is a down mcve. This observatieq

suggests that fram the point of view of topology we shculd.divideB inte

disconnected subsets using the equivalence relation that two elements in

Bare equivalent if and only if between thern there i9 a move consisting of

primitive moves of periods ~4d. In a component define the distance

between two elements to be the lower bcund of the perpendicular distances

of all the moves between thern. This gives ametrie co B.

The map f: G4d --> B cf taking a closed geodesic to its one fold circle

is continuous. If u and ß are elements in B , ß is very close to a in B, then

ß must be in a regular neighborhood of U C MXS l . Then we can get a unique

down move from ß to a. This shows that for any a in B there is r > 0 such

that its closed ball E of radius r i8 contractible. And [-1 (E) can be de

formed to [-la which is homeomorphic to 51. We now want to apply the fol

lowing 3.4.3 to W.

Note that notations in this paragraph and 3 .4.3 are independent of the

preceding ones. Let Mn be closed manifeld, n ~ 5, X be compact subset in M,

Wbe h-cobordism over M with defOI1l1ations Pt: and qc, 0 ~ t ~1, to ,Lw = M and

to o+w. Recall that for a x E W it has twe associated curves PIPex and



P1qex. For e > 0, XL denotes the set of points. that are e-c1ose to some

points in X. Let S be > 0, k ~ O. Say that W is (X, S, k) -contro11ed if there

is

o= So < . . . Sk < Sk+1 =8

such that the associated curves of P1-1 (X&l) are in X&1+1, 0 S i S k. A hand1e

body structure of W is over XE if all handles are inside P1-1 (XE) . Let W-1 be

the collar part of the handlebocly structure, wi th homeomorphism h e :

MX (0,1] --> W-1 , h o = IdH • Reca11 that for a x e M its associated curve is

P1hex. W-1 is {x,S,k)-control1ed if the associated curves of X&1 are in

X51
+l. Assume that U is neighborhood of X in M, ue ' 0 S t SI, is deformation

of U to X, B is compact metric space and f: X --> B is continuous map ~ W is

e-contro1led at B if the diameters of the images under f U1 of the asseci

ated curves of W that are inside U are SE. W-1 being e-control1ed at B is

understood in a simi1ar way.

3.4.3 Theorem. Assume that X is loca1ly contractib1e, B is 10ca11y 1

connected, and for any point in Band any sufficiently small r > 0 the

closed r-ball E sat i sf ies Wh (1t1 ( f -1E) XZ 1 ) = 0, i ~ o. Then there are Eo > 0,

80 > 0, and k o that depends only on n, such that for any ES Eo, 8 S 80 and k ~ k o

W is trivial.

This is a sI ight extension from 2.7, [16] ( a1 so see [2]) to trea t a sub

set X of a manifold rather than the whole manifo1d Mitself. The above ar-

rangements are CO ensure that controlled handle eliminations can be car

ried out near X. The reader can now see that §6, (16] works for 3.4.3. X

being 10cal1y contractible makes sure that there are always neighborhood

retractions.

Return to W which is {D,E}-contrelled. When E is small enough the
f

theorem applies to W::> G ::> G.. d -> B, in particular Wh (1t1S 1 XZ 1 ) = 0, i ~ 0,

so that Wis trivial. This proves 3.1.1.
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