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Selberg zeta functions associated with a theta multiplier

system of SL2 (Z) and Jacobi forms

Tsuneo Araltawa

§o.

o. 1 .

In t T'oduo t Lo·n.

This is a continu~tion to our previous paper [Ar]. The

purpose of the present paper is to define certain Selberg zeta

functions associated with a theta multiplier system of SL~(Z) and to
'""

obtain the analytic continuutions and certain functional equations for

.. them. For that purpose l.,re descri be SeIberg trace formula for certain

spa~es of automorphic forms of SL2\~) associated with the theta

4~multiplier system. Those spaces of automorphic forms corre9pond to
\of'"
~i'"-;"

,~~,the spaces of Jacobi forms in some cases. As an appl ica tion He can

derive certain relations betl{een the dimensions of the spaces of

Jacobi forms of IOHer weights and the orders of the zeros at s=3/4 of

our Selberg zeta functions.

o. 2 • To be more precise let m be a fixed positive integer. For

each r E R=l/2mZ, denote by er(~'z) the classical theta series given

by (1.1). Let x{M) (M E SL~(I)) be the theta multiplier system given
'""

by (1.3), which plays a lcey role to describe the theta transformation

formula (1.2) for er{~'z). We define two Selberg zeta functions

Zr +(s), Zr _(s) associated Hith the theta multiplier system X,m, ,m,
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(for the precise definition see (2.3)). The zeta functions Zr ±(s),m,
are a kind of Selberg zeta functions studied by Hejahl [He] and

Fischer [Fi]. Our main result is that the Selberg zeta functions

Zr,m,±(s) are analytically continued to meromorphic functions in the

whole s-plane which satisfy certain functional equations under the

substitution s --4 1-s (THEOREM 4.3). To obtain this result we

describe the resolvent Selberg trace formula (THEOREM 3.1) involving

the logarithmic derivatives of Zr,m,±(s) for certain spaces of

automorphic forms associated with x. For a positive integer t, denote

*by J r (resp. J r ) the space of holomorphic Jacobi forms of Eichlerl.,m l.,m

-Zagier [E-Z] (resp. the space of skew-holomorphic Jacobi forms of

8koruppa [8k2]) of in~ex m and weight t. Denote by J~usp and J*cusp
l.,m t,m

*the subspaces of cusp forms of Jt,m and Jt,m' respectively. As an

application of the trace formula we obtain the followingrelation

between the dimensions of thespaces of Jacobi forms of lower weights

andthe order of the zero at s=3/4 of Zr ±(s):,m,

d ' JCusp
lm~ 2,m = Ords =3/4(Zr,m,+(s})+ ~(m,2)

( 0 • 1 )

d' J*cusp 0 d (Z ( (1 )
lm~ 2,m = r s=3/4 r,m,- s})+ ~ m,-

where ~(m,k), ~(m,k) (k e Z) are the numbers given by (5.4).

REMARK. The dimension of the space J* has been calculated by1, m

Skoruppa-Zagier [8-Z1, § 2] in an explicit form. By virtue of their
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result we discover that

1
Ord -3/4(Zr +(s))= -{ L 1 + S(m=D)},

s- ,m, 2dlm d>O

where the symbol S(m=D) takes the values 1 or 0 according as m is a

square of some integer or not. Consequently, the Selberg zeta

function Zr +(s) does not sati8fy the Riemann hypothesis on the, m,

real interval (1/2,1].

For the proof we employ a new formulation of the Selberg trace

formula for SL2(~) due to Fischer [Fi] and some results of [Ar].

The author would like to thank Max-Planck-Institut fUr Mathematik

in Bonn for the financial support in 1989.

§ 1. AutomorphLc forms assocLated ~Lth a theta muLtLpLLer system

First we recall basic facts on certain spaces of automorphic forms

associated with the theta multiplier system arising from classical

theta series.

Let m be a positive integer and fix it once and for all. Let R

denote the Z-module I/2mZ of residue classes mod 2m. Denote by v=~2m

the ~-vector space of column vectors (xr)rER (X r E ~) indexed by the

set R. A positive definite hermitian scalar product on VxV i8 given by

(x,y)= L
r E R

(x=(xr)rER' Y=(Yr)rER E V).

We use the symbol me (~) (resp. eta)) as an abbreviation for

exp(2nima) (resp. exp(2nia)). Let 5 be the upper half plane. We
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write, for M=(~ ~) E SL 2 (lR) and Z E 5,

J(M,-r)= c-r+d and

We take the branch of za (z~O, a e R) with -n<argz~n. For areal

number ~, let a~(A,B) (A, B € SL 2 (R)) be the cocycle given by

a (A,B)= e(~w(A,B)) with
~

2nw(A,B)= argJ(A,B"t)+argJ(B,"t)-argJ(AB,-r),

where argz (z~O) is chosen so that -n<argz~n. For each r € R, we

define the theta series er("t,z) to be the surn

( 1 . 1 ) (-r € D, z € 1:).

The collection

of the theta series er{-r,z) as a column vector satisfies the theta

transformation formula

( 1 • 2 ) ( z) rn ~CZ2) 1/2 ,..,e M-r, ---- = e ---- (c-r+d) U(M)e(-r,~)

c"t+d -r+d

with a certain unitary matrix U(M) of size 2m with respect to the

scalar product ( , ). We set

( 1 . 3 ) x(~1) = U(M), the complex conjugate of U(M).

Let k be a fixed rational integer and set

By the forrnula (1.2), X satisfies the following identity

( 1 ." 4 )
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as a unitary multiplier system (see also [Ar, (2.1)]). We set

We write jM(~) for jM(~,K) if there is no fear of confusion. This

automorphic factor has the property

( 1 . 5 ) ( A, B E SLI) ( IR) ) •
'""

We assume for simplicity that r=SLn(Z). Let ~ be the space of
~ K

measurable functions f: ß ~ V satisfying

1) f(M~)= x(M)jM(~)f(~) for all M E r,

2 ) J (f ( ~) , f ( ~) ) dcu ( ~ ) < +CD ,

~

where ~ is a fundamental domain of r in DI Then, ~ forms a Hilbert
K

space via the Petersson scalar product (f,g) on ~ x~ :
K K

( f, g E .te
K

).

\Ye set

I) . 8
- ... lKn - •

8!;

Denote by ~K the set of all twice continuously differentiable

functions f E ~K with the property ~Kf E ~K' Roelcke ShO~led that

for f, g E ~K ([Ro1, Satz 3.1])

and moreover that the linear operator -~K: ~K ~ ~K has the un~que

self-adjoint extension -~~: ~~ ~ ~K which is a closed operator

([Rol, Satz 3.2]).

We recall the definition and some properties of real analytic

Eisenstein series on ß associated ~lith r=SLI)(I) and the theta
'""
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multiplier system X ([Ar, § 2]). For each r ERdenote by er the

column vector of V whose i-th component is one or zero according as

l=r or not; er=(~ri)iER' bri being the Kronecker symbol. We define

the subsets R(2), Rnull of R=Z/2ml as foliows:

R(2)- {... - r E RI r:-r mod 2m} and

Set, far each r E R,

w =r

Ir

(
(er+(-I) e_ r )/2

( er+ ( -1 ) k e_ r·) / /2
R

( 2)
r E ..

r E R-R ( 2 ) .

Denote by In the identity matrix of size n. Let r~ be the subgroup of

r generated by the elements (5 i) and -1 2 . Set, for each r E RnuIl ,

-1 s-1
EI (1:,s):.: L jM(1:) (Im(M--c)) X(M) wr ·

r,m,r M E r~\r

As is seen in [Ar, § 2], the V-valued function Ek ,m,r(1:,S) is well­

defined and absolutely convergent for Re(s}>l. We omit the indices k,

m and write E (1:,s) in place of EI (1:,s) for simplicity. Sincer \,m, r

E (1:,s)=(-l)kE (1:,s) ([Ar, (2.6)]), it suffices to consider a halfr -r
null rof the elements of R .. fhere exists a subset R~ of R such that

(disjoint union),

where -R~={-r.1 r E R~}. We choose such a set R~ and fix it throughout

the paper. \\Te define the subsets Rk , Rnu11 byk

( R- u R(2) if k is even,
( 1 . 6 ) Rk =

R~ if k is odd,

and

R
nuII .

n .

Denote by t~ the cardinality of the set R~Ull. Set, for each r E R,
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( 1 • 7 )
0·

8 = <-r"/4m>,r

Hhere <x> (x € IR) denotes the real number satisfying

x-<x> € 1 and O~<x><l.

As we see in [Ar, Proposition 2.2], the Eisenstein series Er(~'s)

for each r € Rnull has the Fourier expansion of the form:Ir

.... 1- ....
Er(~'s)= ~€ Rnull (&rpn~+~rp(s)n ~)wp + ~ qrp(~'s)wp

p k P € Rk

(!;=Re(~), n=Im(~), Re(s»l),

where each ~rp(s) is a holom~rphic function in the region Re(s»l,

and where

co
R _Rnull

~ qrp,n(n,s)e«n+B p )!;) p € Ir Ir
qrp(~'s)=

n=-co
co
~ qrp,n(n,s)e(nl;} p € Rnull

n=-co, n~O
Ir •

Let ~(s) denote the matrix of size t whose (r,p)-component (r, p Eco

R~ull) is given by ~rp(s). Moreover, set

which is a 2mxt matrix. It has been observed by [Ar, Proposition 2.5]co

that Er(~'s) are analytically continued to meromorphic functions of s

in the region {s E ~I Re(s)~1/2} except on the interval (1/2,1] and

moreover that E(~,s) and ~(s) satisfy the functional equations

and ~(s)cl>(l-s)= 1t ·
co

Now we recall briefly a preliminary version of Fischer's resolvent

trace formula ([Fi, § 2, Theorem 2.1.2]) in a form suitable to our
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situation (the fact that our theta multiplier s~stem X does not

satisfy the condition (a) of (1.3.4) in [Fi] causes a little

difference). Set, for ~, w E 5,

(
H-~ ) K

H(~,w)= --_
~-w

and
- 2

l~-wl

4Im(~)Im(w)

Recall that K=(k-1/2)/2. Set, for s E ~ and 0>1,

where F(a,b,c;z) is the hypergeometric function:

co (a)n(b)n n r(a+n)
F(a,b,c;z)= L

z with (a) =
n=O (c)n n! n r(a)

For ~, w E 5, we write ~=w mod r, if there is some element y of r

with ~=yw, and ~~w mod r, otherwise. Denote by ~ the set of positive

integers and set NO= ~ u{O}. For s E ~-{IKI-li l E ~O}' Re(s»l,

~=s(l-s), and ~,w E 5, set

( 1 .8) 1

It is known by Eistrodt [EI, p.318], Fischer [Fi, P~oposition 1.4.8]

that the infinite series on the right side of (1.8) converges

normally in variables (z,w,s) with z, w E 5, z.w mod r, s E ~-{IKI-li

l E NO}' Re(s»l (for the notion of normal convergence, see [EI,

p.302]). Denote by *(s) the logarithmic derivative of the gamma

function: *(s)=r'(s)/r(s). Let ~=s(l-s), ~=a(l-a) with s, a E

~-{IKI-ll l E NO}' Re(s), Re(a»l and ~, ~' E 5. In a manner similar

to that in [Fi, 2.1], ~e get,. instead of [Fi, p.45, (2.1.2)],
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+ lim
"C'~"t:

In view of the results of Roelcke ([Ro1, 2, Satz 5.7, Satz 7.2]),

there exists a complete set of the eigen values AO' Al'··· 'An' ...

counted Hith multiplicities of the self-adjoint operator

~~ ~ ~K. Then one can write

1 ?
(1.9) An = ~ +r~ with r n e (rl r~O) u (irl r>O)

-~ .... ;
K

(n e !No).

Let P denote the discrete subset {1/2±irn ' n e WO} of ~. As is shown

in [Fi, Theorem 1.6.5], the infinite series

co

(
1 1

)(1.10) Sr,k,m(s,a)= "~
n=O (s-1/2)2+ r 2 (a-1/2)2+ r 2

n n

is absolutely convergent for any s, a e ~-P, and furthermore, a being

fixed, indicates a holomorphic functiuon of s in the domain ~-P.

Let L be a matrix af size 2m (ar a linear transformation af V)

characterized by

(1.11) Le ="r far any r e R.

We note here that

( 1 . 12) 'I?Jt:l "'Le ( [Ar, (1.3)])

and hence that
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Therefore by the same argument as in [Fi, 2.1],. Fischer's theorem

[Fi, Theorem 2.1.2] is replaced by the following in our case.

THEOREM 1.1 (Fischer). Assume r=SL?(Z). Let s, a E ~, Re(s),
W

Re(a»l and IKI-s, IKI-a ~ !NO' Set ),,=s(l-s), j..l=a(l-a). Then,

( 1 .13) 1 lc
Sr,lc,m(s,a)=. - -(m+(-l) ) (tJI(s+K)+'!ds-K)-'!da+K)-tJl(a-K))

12

1

2

L
q E Rnull

k

1fCO ( 1
4 - ? ?
~ co (s-1/2)w+t W

1 ) 1 2------------ IE (~,- +it) I dt]d~(~),
? ? q ?

(a-l/Z)w+t~ W

~here the LntegraL on the rLght hand sLde 01 the equaLLty Ls

absoLuteLy convergent.

Our purpose from now on is to simplify the integral on the right

hand side of (1.13) with the use of arithmetic or analytic quantities

related to rand x.

§ 2. Se~berg zeta lunctLons

In this paragraph we assume that r is a subgroup of SL?(I) t;ith
W

finite index having the element -1 Z ' We define two Selberg zeta

functions associated Hith r arid the theta multiplier system x. Since

the matrix L given by (1.11) has the eigen value 1 (resp. -1) with

multiplicity m+1 (resp. rn-I), there exists an element Q of GLZm(~)

t,:i th
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( 2 • 1 ) L= Q(lm+l _~ JQ-l.
o rn-I .

One may choose as Q a unitary matrix with respect to the scalar

product ). Every X(M) (M € SL 2 (1)) commutes with L via the

relations (1.12), (1.4). Therefore, x(M) has an expression of the form

( 2 . 2 )

with unitary matrices i+(M), X (M) of size m+l, rn-I, respectively.

Every hyperbolic element P of r has an expression

(
N(P) 1/2 0·· J-lP= ±A A

. 0 N(P)-1/2
with N(P»l and some A € SL~(R)t...

where the uniquely determined number N(P) is called the norm of P.

Denote by {P}~yp (resp. {PO}~rim) the f-conjugacy classes of

hyperbolic (resp. primitive hyperbolic) elements of f. We define

the Selberg zeta functions· Zr +(s), Zr (s) as foliows:,m, ,m,-
co

( 2 . 3 ) Tl
n=O

where the signs ± are taken in the corresponding manner and the first

product indicates that Po runs over the r-conjugacy classesof

primitive h~l'p'erbolic elements of r with· trPO>2. The infinite products

on the right hand side of (2.3) are absolutely and uniformly

convergent on any compact subset in the half plane {s € ~I Re(s»l}

(for instance Lemma 2.2.2 and Corollary 2.2.6 in [Fi] ensure this

assertion). Therefore the zeta functions Zr,m,±(s) indicate

holomorphic functions in the same half plane. It shoud be noted that

Zr,m,±(s) are independent of the choice of the matrix Q satisfying
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( 2 . 1 ). Set, f 0 r ).. =s ( 1 - s ), Re ( s ) >1, I K I - s ~ L'J0 '

GK)..,hyp("C)=
1

2
("C € D),

where M runs over all hyperbolic elements of r. It is known that

G h ("C), if restricted to a fundamental domain r\ß of r in ß,
K).., yp

defines an L
1-function on r\ß ([Fi, 2.2.5]). Then it follows by the

same argument as in [Fi, Proposition 2.2.5] that

!{
(t r X(P)+(-l) tr(Lx(P) ))logN(PO) .--------

1-N(P)-1

where Po is the primitive hyperbolic element associated to P. We note

that x also satisfies [Fi, a) of Corollary 1.3.9], i.e,

x(pn )= x(p)n for any hyperbolic element P of r with trP>2.

Taking (2.1), (2.2) into account, we thus have

-(2.4)

f G ( )d ( ) -' 1K' hyp "C ~ "C - ----
r\ß A, 2s-1

N(P )-ns
( naL . tr(x± PO) )logN(PO)' _

{P }prlm l-N(P
O

) no r
trPo >2

= _1_(2' /2 (s)
2s-1 r,m,± r,m,± ( Re ( s ) >1, I K 1-8 ~ INo)'

where the signs +, - are chosen according as Ir is even or odd.

§ 3. DesorLptLon 0/ SeLberg traoe /ormuLa

To describe Selberg trace formula forthe space ~K given in § 1
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He first calculate the contributions from the elliptic or parabolic

conjugacy classes of r=SLZ(Z) to the preliminary resolvent trace

formula (1.13).

In [Sk-ZaZ, §4], Skoruppa and Zagier gave a method of calculating

the trace of a certain "linear operator Um(~) (~ e r J
, for the Jacobi

Jgroup r see § 5) of the ~-linear space spanned by the" theta series

6r (r ER). If M e SLZ(Z), the trace of the operator Um(M) coincides

with the trace of aur U(M) given by (1.2). For M=~ ~) E SLZ(Z)

Z "2denote by QM(J..,~) the binary quadratic form bJ.. +(d-a)J..~-c~ and

moreover set

e(M)= (
-1

+1

if c<O and trM<2

otherwise.

Hence Theorem 2 of [Sk-Za1] implies that

( 3 • 1 ) trU(M)=
E(M)sign(t-Z)(t-2)1/Z

Idet(1l)-M) I
4J

i: 2 <) em (_1_ QM (X)) ,
x E Z /1.:-( 1l)-M) t-Z

4J

l)
where t=trM and Z4J is the lattice of row vectors of size two of

rational integers. The fact that QM(x+y):QM(x) mod(t-Z) for any y E

Z2(1l)-M) and x e Z2 ensures the well-definedness of the summation on
4J

the right hand side of (3.1).

Set, far s E~, IKI-s ~ !NO' ;.=s(1-s),

where M runs over all elliptic elements of r. For an elliptic element

R of r, let 2v(R) be the order of the centralizer Zr(R) of R in r.

Denote by {R.l r the r-conjugacy classes of elliptic elements of r. It
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has been proved in [Fi, Proposition 2.3.4] that G, ll(~)' if it isKA,e

restricted to ~=r\D, defines an LI-function on ~. Then we easily

have, similarlyas in [Fi, pp. 62-64],

( 3 .2)

Hhere

I(R)= J jR(~)H(~,R~)ks(a(~,R~))d~(~).
D

For M=(~ ~) € SL2(~)' we write c(M) for the (2,1)-component c. Assurne

that an elliptic element R of r is SL?(~)-conjugate to some
'"

(~~~: -~~~:) with O<9<2n, wher~ 9 is uniquely determined by R. Ne

often write 9(R) for 6. If O<S(R)<n, the· integral I(R) has been

explicitly evaluated in [Fi, pp. 65, 66]:

( 3 . 3 ) I (R) = 1
, .... 2iK9 v-I

__1_ . t J' ~_0 (e i 9 ( Zj + 1 ) t/J (8 +~+ j) _ e - i 9 ( 2 j + 1 ) t/J (8 - ~+ j I) )
28-1 2V8in9

(O<S=S(R)<n),

where v=v(R), half the order of the centralizer Zr(R). If n<S=S(R)<2n,

we write 9=n+S' with g<S'<n. Set R'=-R. Then R' is SL2(~)-conjugate

to (
cosB' -sinS')sin9' cosS" In this case c(R)=-c(R')<O. Moreover,

__ ? i Kn 2 i Kn .sign(-c(R' ))e'" jR' (~)= -e J R , (~).

Thus I(R)= _eZiKnI(R'), which together with (3.3) implie8 that

(n<9=9(R) <Zn).
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Set

(0 -1)J= 1 0 and (1 -1)w= 1 O'

J
3 , 2 4 5 1 fWe may take J, W, W , W ,Was a comp ete set 0

representatives of (R}r' Tal~ing the relation x(M)=U(M) into account,

then by an easy calculation with the use of (3.1), we have

( 3 • 5 )

3trx(J)= iG 2 (m), trx(J )= -iG2 (m)

t r x ( W) =i , t r X (\'1
2 ) =i G3 ( m) , t r X ( W4 ) =- i G3 ( m) , trx(W5 )=-i,

where, for any positive integer t,

m f)

L e (;..'""/t).
;.. mod t

Then the right hand side of (3.2) equals

CJ + C~ + c~I

with

CJ = ! (trx(J)I(J)+t r x(J 3 )I(J 3 )},
4

C~= !(trx(W)I(W)+trx(W5 )I(W 5 )},
6

11 1 f) f) 4 . 4
Cw = -(trx(W'"")I(W'"")+trx(W )I(W )}.

6

Thus we get, by an elementary but tedious calculation,

I I 1 2 sin ( 27d k - 3 / 4 - m;..
2

- 2 j ) / 3) ( ( _ +') (r- + .. +f) _ '))

C\'1 = L L .' '" S Je .J _ '" ,;) 10: '"" J •
9(2s-1) j=O ;..mod3 3 3 3

Consequently we have ca~culated the integral on the left hand side of
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(3.2) in an explicit form:

( 3 .6) E 2 ( k , rn) . ("J (s +1<:) + ,IJ (s - 1<:) _ ,IJ (s + K +1) _ ,IJ (s - 1<: + 1) )GKA ,ell(1:)dcu{1:)= 't' 't' 't' 't'

8(2s-1) 2 2 2 2

where

E2 (k,rn)=
( 1+ e ( rn / 2 ) )

./2
sin(7t(k-1/2)/2),

( 3 . 7 )

E 3 (k,rn)= + 1 L
3 Arnod3

It should be noted that the symbols E2 (k,rn), E3 (k,m) take only the

values 0, ±1, and rnoreover that W E2 (k,rn) (resp. E3 (k,rn)) depends on

m rnod 2 and k rnod 4 (resp. rn mod 3 and k rnod 6).

Next we calculate the contribution from the parabolic elements of

r. By a standard argument as in [Fi, 2.4, p.69], we get

( 3 .8) 1
L trx(M)jM(1:)H(1:,M1:)ks(o(1:,M1:))

r') tvl E r, parabolic"'"

1 L (trx (M)jM(1:)+tr X{-M)j_M(1:))H(1:,M1:)ks (O(1:,M1:))=
r') M E r, trM=2"'"

CD
- ~ k n~-~ (trX(Unl+trX(-Un)j_un(Y,l)H(y"UnY,lkS(O(y"Uny,»,

y E rCD\r
n~O

where U=(~ t). Since x(Un)er = e(nBr)er for any r E R, n E Z (see

[Ar, (2.2)]), we immediately have

(for Br , see (1.7)).
n

trx(U )= L e(n8 r )
r E R

Using the properties (1.4), (1.12) of X and (1.5) of jM' we see that
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trx(~Un)j (-"C)= (_I)k L e(nBr)(e_r,er )_Un r € R

= (_I)k L R (2 ) e(ne r ) (n € I) •
r E

Taking the last equality in (3.8) into account, we define the regular

Parabolic part of G (~) as follows:
K)..

co

n=-co
n~O

k n n
e ( n 8r) + L ( 2) (-1) e ( ne r ) } . H ( 1"1: , U 1"'t) k,... ( CI ( 1"1: , U 1"1:))

r E R v

2r $0 mod4m

(Re(s»Max(l, IKI), )..=s(l-s»).

Set, for simplicity,

( 3 .9) R*= {r E RI r2~0 mod 4m} and

(for the set Rk , see (1.6»).

By [Fi, Lemma 2.4.1], the restrietion of GK)..,par,reg(1:) to ~=r\5

defines an L
1
-function on ~ with respect to dW(1:), and moreover,

where we put

L
n E I-{O}

( 0< e< 1 , Re ( s ) ) Max ( 1, I K I ) ) .

1t has been shown in [Fi, pp.72-77] that the integral I(e,s) is

absolutely convergent and that

1(8;s)= --_I_{-log2-logsin(~e)+(~(s+K)-~(s-K))(1/2-e)}.
2s-1
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Therefore,

(Re ( s ) >Max ( 1 , I K I ) ) .

As a final step in this paragraph we consider the non-regular part of

the contribution from the parabolic elements of r. Set, for Re(s),

Re(a»l, IlCl-s, IKI-a ~ !NO'

1
f(t;s,a)=

and

1

Ks a(1:')=
, n

The integral we have to consider is the following:

( 3 • 11) 1= J:'}' ( t K ("1:')-
co s,a

L Rnull
q € k

(Re ( s ), Re (a) >Max ( 1 , I K I ) ) ,

Rnullwhere we recall that t
co

is the cardinality of the set k .

take as ~ the usual fundamental domain of r=SLZ(Z) in 5:

No~.,T we

~= {1:' € 51 -1/2<Re(1:').s;:1/2, 11:'1~1 and Re(1:')~O on 11:'1=1}.

Thanks to Lemma 2.4.11 of [Fi], the integral I is modified into the

form:
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( 3 . 12)

1= lim [ ~(logY-IOg2+ lo/(s+K)+ lo/(s-K)-~(s)-~(s+1/2)+ 1_.)
Y ~+oo 2s-1 2 2 2s-1

t ( 1 1 1 )
- 00_ logY-log2+ -~(a+K)+ -~(a-K)-~(a)-~(a+1/2)+----

2a-1 2 2 2a-1

f 1 fOO ~- L -- f(t;s,a) IE (~,1/2+it) IWdtdw(~)],
~Y q E Rnul1 4~ -(X) . q!i

where

~Y= {~ E ~I Im(~)~Y}.

. null Y
For each r E Rk ' let Er(~'s), with Y>O being chosen sufficiently

large, denote the compact form of Er(~'s):

Y ( Er ( ~, s ) -u (Im ( ~) , s ) ... i f ~ E ~-~Y
E (~,s)= r

r Er ( ~ , s ) ... i f ~ E ':'y'

where ur(n,s) (n=Im(~»O) is the constant term of the Fourier

expansion of Er(~'s) given by

Set

s 1-s
u (n,s)= n w +n L 11 ~rp(s)wp

r r p E Rnu
k

~(s)= detcll(s).

([Ar, Proposition 2.2]).

The Maass-Selberg relation for Er(~'s) (see [Ar, Proposition 2.4] or

in more detail [Ro, Lemma 11.2]) implies that, if 0>1/2 and t~O,

( 3 . 13)

20-1
+

2it

On the both hand sides of (3.13), one can take the limit of 0 ~1/2
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and get

(3.14 )

(
y2it)+ 2Re tr~(1/2+it) 0 ,

2it

where we have used the identities

~(s)= ~logdet~(s)= tr(~'(s)~(s)-I)= tr(~'(s)~(I-s)).
cp us

Thus we have, by [Fi, Lemmas 2.4.18, 2.4.19] together with (3.14),

( 3 . 15) lim [J L
y ~+CX) ~ q EY ,

1 CX) ?

null -- J f(t;s,a) IE (~,l/2+it) I~dtd~(~)
R 4n -CX) q

k

-tCX)(_l - --'__1 )logy ]
2s-1 2a-1

= -lJCX) f ( t ; s , a )~ ( 1 / 2 + i t ) d t + 1:.t r ~ ( 1 / 2) ( 1 f) - 1 2) .
4n -CX) cp 4 (s-I/2)~ (a-l/2)

Consequently it follows from (3,.12), (3.15) that

,( 3 • 16 )
t

1= --_1_[-tCX)10g2+ ~(*(s+K)+*(s-K)-2*(s)-2*(s+1/2))+
2s-1 2

t '
---l_tr (l t -~(1/2»] - ---1_[-tCX)10g2+ ~(~(a+K)+~(a-K)-2*(a)-2*(a+1/2))
2s-1 CX) 2a-1 2

..: I_t 'r ( 1 t - ~ ( 1 / 2 ) )] + -.l JCX) f ( t ; s , a )~ ( 1 / 2 +i t ) d t
2a-l CX) '4n -CX) cp

( Re ( s ), Re ( a ) >Max ( 1, I K I ) ) .

Now all the contributions of the elements of r to the integral on

the right side of (1.13) have been calculated. Therefore with the help

of (1.13), (2.4), (3.6), (3.10), (3.11) and (3.16), the resolvent
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trace formula of Fischer ([Fi, Theorem 2.5.1]) can be formulated in

our case as the following.

THEOREM 3.1. Let r=SLZ(Z).Let k be an integer and m a positive

integer. Set K=(k-1/Z)/2. Assume Re(s), Re(a»Max(l, IKI). Then,

+ 4
1 s: ( 1.,.,
~ 00 (s-l/Z)~+t~

__1__)~( 1/2+it)dt
? qJ

1/4+t~

+ {the same expression ~ith s being repLaoed by a},

7.Jhere Sr 1 (s, a) is 9 iven by (1.10) and the s igns +, - are ohosen, \:, m

aooording as k is even or odd.

§ 4. AnaLytio oontinuation and funotionaL equation

Follwing [Fi, 3.1],·~e explain briefly how the Selberg zeta

functions Zr,m,±(s) are analytically continued to meromorphic

functions in the whole s-plane and satisfy certain functional
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equations (basic ideas are similar to those of Hejhal [He, eh.10]).

Let the notation be the same as in the previous paragraphs. Let

G(z) denote the Barnes G-function given by

'7/ t) t) GO ( ) n ( 2)G(z+l)= (2~)~ WexP(-z(Z+1)/2-yzw/2)n~1 1+ ~ exp -z+ ~n '

where y is the Euler constant. Then, G(z) is an entire function whose

zeros are located at z=l-n (n € ~) with order n. We define the

functions 8 1 (s), 8 hyp (s), 8 e1l (s) and 8par (s), following Fischer

[Fi]. Set

k . :
8 1 (S)= exp ( m+(~l) (slog(27t)+s(1-s)+(1/2+!dlogr(s+K)+

which is a zero-free holomorphic function in ~-(-GO, IKI). It follows

from [Fi, Remark 3.1.3] that

Set

(
Zr,m,+(s) if Ir is even

8 hyp (s)=
Z ( s ) if k is odd.r,m,-

Then, Bhyp(s) is a holomorphic function in the half-plane Re(s»l.

Define a holomorphic function 8 ell : ~-(-GO, IKI) --4 ~ by

1
8;:;11(s)= Tl_. j=O
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Moreover, set

k
2- (m+ ( - 1 ) Ir ) s . ( r ( s +K) ) (m+ ( - 1) ) / 2- 8*.

Spar(s)= r(s-K)

r(s-K) t
-s ( ) Q)n (sin(~8))' ,

r E R~ r r(s)r(s+1/2)

where

*(for the set Rk , see (3.9)).2
8 =<-r /4m>r( 4 • 1 ) *8 = L * er'

r E Rk

The function Spar(s) defines a holomorphic function in

~-(-Q),Max(l, IKI)). We remark that the form of our 8 par (s) is a little

different from that in [Fi, Corollary 2.4.22]. Recall that

~(s)=det~(s). We set, for Re(s»1,

( 4 • 2 ) 1
~par,~(s)= ----tr(1 t -~(1/2))+

2s-1 Q)

2s-1 ___1 ) .~(1/2+it)dt
~ qJ

1/4+t'""

It has been proved in [Fi, Lemma 2.4.19 and p.103, (2.4.6)] that the

integral on the right hand side of (4.2) is absolutely convergent for

Re(s»1/2 and that ~par,~(s) is analytically continued to a

meromorphic function in the Hhole s-plane which has at most only

simple poles whose residues are all rational integers. In particular

~par,~(s) is holomorphic in the half plane {s E ~I Re(s»1/2} and has

a simple pole at s=1/2 with the residue (t -tr~(1/2))/2 E 1 (note
Q)

that ~(1/2) is a diagonalizable matrix with eigen valu€s ±1, since
. 2

~(1/2) is a hermitian matrix and ~(1/2) =1 t ([Ar, Propositions 2.3,
ce

2.5])). Moreover with the help of [He, p.440, Proposition 2.17], one
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can prove the functional equation

( 4 • 3 ) <p'
~par,~(s) + ~par,~(l-s)= ~(s).

(One can also prove (4.3) by using [Fi, ,Lemma 2.4.16 and (2.4.6)]).

Now the resolvent trace formula (Theorem 3.1) can be reformulated as

PROPOSITION 4 . 1 . Assume that Re ( s ) , Re (a) >Max ( 1 , I K I ) . Then,

.... , .... , .... , 0'

Sr 1 (s,a)= 2S:1 ( ~I(s)+ ~hYP(s)+ ~ell(s)+ ....par(s)+ ~par,~ (8)"), r, m Br
.... .... ....
~hyp ~ell ~par

.... , .... , .... , 0'

- 2a:l ( ~I(a)+ ~hYP(a)+ ~ell(a)+ .....par(a)+ J;par,~(a)) .
BI

.... .... ....
~hyp ~ell ~par

Let ~~, ~K' ~~, ~~, ~~ be the same as in § 1. For 8 E ~, denote by

~ (8) the subspace consisting of f E ~~ with -~~f=s(l-s)f. It
~ K ~

follows from [Ro1, Satz 5.6, 5.7] that

( 4 .4) ~v(s)= {f E ~ I -A f=s(l-s)f}.
~ K K

Let d l. (s) denote the multiplicity of the eigen value s(l-s) of the
\., m

self-adjoint operator -~~: ~~ --4 X . Obviously,
~ ~ ~

By the definition of the numbers r n ,

s=1/2±irn (n E ~O).

\\Te set

~ (s)~{O} if and only if
~

* *Via the formula in Proposition 4.1 and (4.3), (B '/B )(s) can be
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analytically continued to a meromorphic function inthe whole s-plane

satisfying the functional equation

( 4 • 5 )
-*, -*, ,
~(s) + ~(l-s) + ~(s)=O.
S°t- a'" <P

poles at s=1/2±irn (n e WO) with the residue

itself is analytically

are all simple poles). As

* *poles of (8 '/B )(s) are

The function (2s-1)Sr I (s,a), with a being fixed, indicates a, {,rn

meromorphic function in the whole s-plane that has at most simple
I

d1 (1/2+ir) (resp.{,rn n

2d1- (1/2)) if r ~O (resp. r =0). Therefore by Proposition 4.1, the\.,m n. n

singularities of the function (8*'/8*)(s) are located at s=1/2±irn (n

e WO) and at any poles of ~~(s) (theY·par, ....

we have seen, the residues at those simple

. *all rational integers. Consequently, 8'(s)

continued .to a meromorphic function in the Hhole s-plane. \'Je note that

( 4.6 )
(t -tretJ(1/2))/2

<p(1/2)= (-1) CD

* *and that (8 '/8 )(s) has a simple pole at s=1/2 with the residue

2d1 (1/2)-(t -tr~(1/2))/2 (e 1) according to Proposition 4.1 and{,rn CD

*14.2). Hence the identities (4.5), (4.6) imply that B (s) itself

satisfies the functional equation

( 4 . 7 ) * . *B (l-s)= ~(S)B (s).

( 4 . 8 )

Furthermore all the poles of the function

-, -, ='
~I(s)+ ~ell(s)+ .....par(s)
Br 8 ell Bpar

are located at S=±K-{, s=-{, s=-1/2-{ ({ e WO) (they are all simple

poles). It is immediate to see that theresidues at the poles s=-{,

-1/2-t (t E WO) are rational integers. We set, for l e WO'
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( 4 • 9 )
m+(-1)k(?v_Z P +5)_ EZ(k-Zt,m)).,,(m,k;t)= -,," ~

12 4

E 3 ( !t - 2 t , m)

3

(4.10 )
m+(-1)k(_?v_2

P
_7)+ E2 (k+2t-2,m) + E3 (k+2t-4,m) + ~*

p.(m,k;t)= -,," ~ v
12 4 3

*(for E2 (k,m), E3 (k,m), see (3.7) and for 8 see (4.1)).

It is easy to see from the definition of 8 I (s), 8 e11 (s), 8 par (s) that

the residue of the function (4.8) at each simple pole S=K-t (resp.

s=-K-i) with i E ~o equals the number ).,,(m,k;l) (resp. p.(m,k;l)).

LEMMA 4.2. The resLdues 01 the lunctLon (4.8) at the sLmpLe

poLes are aLL ratLonaL Lntegers.

Proof. It suffices to prove that ).,,(m,k;t), p.(m,k;l) with any t E

Wo are rational integers. We discuss only the case of ~(m,k;i). The

assertion that ~(m.k;l) Eldepends on k mod 12 and l rnod 6.

Therefore we may assurne that k is a positive integer suffieiently

large relative to l. Taking the residues at S=K-{ (>1) of the both

hand sides of the forrnula in Proposi tion 4.1, 't.:e have

)." ( m, k ; t) = d} ( K - t ) E [NO'{:, m

q.e.d.

Aecording to Lemma 4.2, the function

is meromorphica1ly continued over the Hhole s-plane. Therefore.

8hyp (s) ean be analytically continued to a meromorphic funetion in
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the whole s-plane via the relation

Bhyp (s) = =* (s) . (BI (s) Bell (s) Bpar (s) ) -1 ·

Thus we obtain the following theorem.

THEOREM 4.3. The SeLberg zeta /UnctLons Zr,m,±(s) are

anaLytLcaLLy oontLnued to meromorphLo /unotLons Ln the ~hoLe s-pLane

lJh Loh sa t Ls/'Y the f'unot Lona L equa t Lon. (4. 7 ) •

§ 5. The spaoes 0/ JaoobL /orms

We recall the notion of (holomorphic) Jacobi forms and skew­

·.holomorphic Jacobi forms following Eichler-Zagier [E-Z] and Skoruppa

[Sk2].

Denote by aJ the real Jacobi group of degree one. As a set,

Für two elements g.=(M.,(~.,~.),p.) € aJ (j=1,2), the composition
J J J J J

gl g 2 is defined by

glg2= (M1M2'(Al'~1)M2+(A2'~2)'Pl+P2+(Al'~1)M2(-~~))'
JThe group a acts on the product space DX~ in the manner:

( ) ( M.,.. , Z + ~1:+ ~ )g 1:,Z = ""
c1:+d

for g=(M,(~,~),p) E aJ , M=(~ ~), (1:,z) € ßx~r:.

Let m be a fixed positive .integer. Set

where g and (1:,z) be the same as above. Then, J m(g,(1:,z)) satisfies

the property as an automorphic factor:
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Let t be a non-negative integer. For simplicity we discuss only the

case of r=SL~(Z). Set
w

Jr = {( M, (A, Po) , p) I M € SL 2 (1.), A, Po, P € Z},

JHhich forms a discrete subgroup of G • For 1: € 5, He Hrite n=Im(1:).

Then the space Jt,m (resp. J~,m) of holomorphic Jacobi forms (resp.

skeH-holomorphic Jacobi forms) of index m and Height t is defined to

be the space consisting of all functions ~: DX~ ~ ~Cwhich satisfy

the following conditions:

(i) ~(1:,z) is a holomorphic function in 1: E 5 and z € ~

(resp. ~(1:,z) is a smooth function in 1: E ß and holomorphic in z),

(ii) ~(1:,z) satisfies the functional equation

( resp. .p ( y ( 1: , Z ) ) = J m( Y, ( 1: , Z ) ) J ( M, 1: ) t - 1 I J ( t"1 , 1:) I ~ ( 1: , Z ) )

Jfor all y € r .
(iii) ~(1:,z) has the Fourier-Jacobi expansion of the form:

c(n,r)e(n1:+rz)
4mn~r2

L
n,r E

? c(n,r)e(n~+ ~ir2n+rz)).
E, 4mn~r~ . ~m

Denote b J cusp (
y t,m resp.

*(resp. J r ). Namely,
1...,m

J*cusp) the subspace of cusp forms of J pt,m 1..., m

J~~~p (resp. J~~~sP) consists of all Jacobi

forms ~ E J r (resp. all skew-holomorphic Jacobiforms ~ E J~
-t-,m 1...,m

~hose Fourier coefficients c(n,r) in the above (iii) vanish if 4mn=r 2 .

Now let k be a rational integer and K=(k-l/2)/2 as before. For s E
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~, let XK(s) denote the subspace of X
K

given in (4.4). We are much

concerned with the special subspsce ~K(K) (resp. XK(-K)) if K>O (resp.

K<O). As is easily seen from the results of [Ro, §2-§5], one has

( 5 . 1 )
~K(X)= {f E ~xl n-Kf(~) is holomorphic in ~ E ß} if K>O,

~X(-K)= {f E ~KI nKf(~) is anti-holomorphic in ~ E ß} if K<O.

Assume that K>O (i.e.,. k~l). Any ~ E Jk,m has an expression as a

linear combination of theta series:

( 5 .2)

J cusp
If k~2 and ~ E k,m' then the collection f(~)=(fr(~) )reR as a column

vector gives rise to an element of ~K(K)' If k=l (K=1/4), then, for

any ~ E J 1 ,m' f(~)=(fr(~}}reR becomes an element of ~K(K)' since it

is easy to see from the Fourier-Jacobi expansion of ~ that

2I f ( 1:) I d(U ( ~ ) < +CD •

Next let K<O (i.e., k~O). In this case any ~ e J~-k,m has an

expression of the form

(5 . 3 ) .L
r E

If 1 1 d J *cusp th . . 1 th 11 t' (){~- an 4J E 1-k,rn' en as lS eaSl y seen, e co ec 10n g "'t' =

(gr(~»rER aso a column vector becomes an element of ~K(-K). If k=O

*(K=-1/4), then, for any ~ e J 1 ,rn' g("'t')=(gr(~»rER is also an element

of 1e (-K).
K

RROPOSITION 5.1. Let k be a rationaL integer.

J cusp
(i) 11 k~2 (resp. k=l), the spaee k,rn (resp. J 1 ,m)

- 29 -
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XK(K) vLa the aorrespondenae ~ --4(fr )reR Ln (5.2) as ~-LLnear spaaes.

. . *cusp *(11) If k~-l (resp. k=O), the spaoe J 1 - k ,m (resp. J 1 ,m) Ls LsomorphLo

to ~K(-K) vLa the aorrespondenoe ~ --4(gr)rER Ln (5.3) as ~-LLnear

spaaes.

The proof is immediate from (5.1), so we omit it.

NOH we employ the resolvent trace formula to obtain some

information on the dimensions of the spaces of Jacobi forms.

Denote by ~(m,k) (resp. ~(m,k)) the number ~(m,k;O) (resp.

~(m,k;O)) given by (4.9) (resp. (4.10)) for l=O. Namely,

m+(-1)k(2k+9)_ E2 (k,m) _ E 3 (k,m) _ 0*_
~(m,k)= 4 v tc:.o

24 3
( 5 .4)

~(m,k)= m+(-i)k(_2k_13)+ E 2 (k-2,m) + E3 (k-4,m) + 8*.
24 4 3

For a meromorphic function f(z) having a pole at z=~, denote by

Resz=~f(z) the residue at the pole z=~ of f(z).

( i )

THEOREM 5.2.

If k~3, then,

Let mbe a posLtLve Lnteger and k an Lnteger.

d · JCusp - )
1m~ 1 - ~(m,k .

~ t:,m

(v) If k=-l, then,

(ii) If k=2, then, dim~J~~:P= ResS=3/4((Z~,m,+/Zr,m,+)(s))+~(m,2).

(iii) If k=l, then, dim~Jl,m= ResS=3/4((Z~,m,_/Zr,m,_)(S)).

(iv) If k=O, then, dim~Jr,m= Res s =3/4((Z'r,m,+IZr ,m,+)(s)).

dim~J~cusp= Res -3/4((Zr' _/Z r _)(s))+ ~(m,-l).
'l. ... ,m s- ,m, ,m,
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(vi) I f 1\..~-2, then,

Proof. According to Proposition 4.1, we have

( 5 • 5 )
...., .... , .... , c'

(2s-1)Sr,k,m(s,a)= :::'hyp(s)+ :::'1(s)+ :::'ell(s)+ :par(s)+ l;par,cI>(s)
Bhyp BI Bell :::'par

.... , .... , .... , .... ,
_ 2s-1( :hYP(a)+ :1(a)+ :ell(a)+ :par(a)+ l;par,cI>(a))

2a-1 ... ... ...-hyp :::'1 -eIl -par

Let a be fixed (Re(a»Max(l, IKI)). The functions of s on the both

hand sides of (5.5) are meromorphically continued over the whole

s-plane and ~ ~(s) is holomorphic far Re(s»1/2. First aasume thatpar, ....

k~2 (then, K>1/2). Comparing the reaidues at the simple pole a=K of

the functions on the both hand sides of (5.5), we have

if k>2

... if k=2.

Thus with the help of (i) of Propositin 5.1, we immediately obtain

the assertions (i), (ii). Next assume k~-l (then, K(-1/2). In this

case we calculate the residues of the function (2s-1)Sr,lt,m(s,a) at

the simple pO,le S=-K in two manners via (5.5). Thus together wi th

Proposition 5.1, (ii), we get the asserti?ns (v), (vi). If k=l, then,

K=1/4. We consider the residues of the functions on the bath hand

sides of (5.5) at the simple pole s=1-K=3/4. Then the assertion (iii)

follows in a manner similar to the proofs of (i), (ii). The assertion

(iv) is similarly verified.

- 31 -

q.e.d.



The identities (0.1) in the introduction are a direct consequence

of Theorem 5.2. Moreover as an immediate corollary to it, we obtain

the following.

COROLLARY 5.3. ( i ) d · JCusp d· J*
1m~? = 1m~ 1

\l. w,ffi '~,m
+ )..(m,2).

(1·1·) d· J*cusp_ d· J (1)
1m~ 2,m - 1mq: l,m + ~ m,-. ·

REMARK. Skoruppa-Zagier [S-Zl, 2] obtained a general trace

formula for Hecke operators acting on the space of Jacobi forms.

Corollary 5.3, (i) is apart of their trace formula for k=2 ([S-Z2,

§ 3 t (1 1 ) ] •
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