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Selberg zeta functions associated with a theta multiplier

system of SLz(Z) and Jacobi forms

Tsuneo Arakawa

§ 0. Introduction.

0.1. This is a continuation to our previous paper [Ar]). The
purpose of the present paper is to define certain Selberg zeta
 functions associated with a theta multiplier system of SLZ(Z) and to
~obtain the analytic continuations and certain functional equations fof
* them. For ﬁhat purpose we describe Selberg trace formula for certain

 spa5és of automorphic forms of SL,(R) associated with the theta

Y
=

\gthe spaces of Jacobi forms in some cases. As an application we can
derive certain relations between the dimensions of the spaces of
Jacobi forms of lower weights and the orders of the zeros at s5=3/4 of

our Selberg zeta functions.

0.2. To be more precise let m be a fixed positive integer. For
cach r € R=Z/2mZ, denote by er(t,z) the classical theta series given
by (1.1). Let x(M) (M € SL,(Z)) be the theta multiplier system given

by (1.3), which plays a key role to describe the theta transformation

formula (1.2) for er(r,z). We definé two Selberg zeta functions
- . - ) : 3 rot
ur’m’+(s), zr,m,—(S) associated with the theta multiplier system x



{for the precise definition see (2.3)). The zeta functions Zr,m,t(s)
are a kind of Selberg zeta functions studied by Hejahl [Hel] and
Fischer [Fi]. Our main result is that the Selberg zeta functions
Z (s) are analytically continued to meromorphic functions in the

rym, x ] _
whole s-plane which satisfy certain functional equations under the

substitution s —s 1-s (THEOREM 4.3). To obtain this result we
describe the resolvent Selberg trace formula (THEOREM 3.1) involving

the logarithmic derivatives of 2 {s) for certain spaces of

r,m, =

automorphic forms associated with x. For a positive integer ¢, denote
¥

by Jt m (resp. JC m) the space of hclomorphic Jacobi forms of Eichler
7 1

-Zagier [E-Z] (resp. the space of skew-holomorphic Jacobi forms of

. . ¥cus
Skoruppa [Sk2]) of index m and weight {. Denote by Jiuip and Jcc; P
: 1) ’
, ¥
the subspaces of cusp forms of J€ m and JC mn’ respectively. As an
’ y

application of the trace formula we obtain the following relation
between the dimensions of the spaces of Jacobi forms of lower weights

and the order of the zero at s=3/4 of Z (s):

'ym,x

. cusp _ .

dlm{CJz,m - Ords:3/4(zr’m,+(°))+ A(m,Z)
dim J¥ = ord (z (s))

Medt,m T YT%=3/4'%r,m,+ '8

(0.1)

. ¥cusp _ -

dlm,\th,m = Ords:3/4(zr,m,_(0))+ jJ.(m,’l)
s — 7
dlmGJl,m = Ords:3/4(“r,m,-(8))’

where a(m,k), a(m,k) (k € Z) are the numbers given by (5.4).

¥
REMARK. The dimension of the space I m has been calculated by
1

Skoruppa-Zagier [S-Z1, § 2] in an explicit form. By virtue of their



result we discover that

Ordg.g,4(Zp o ,(s))= 2( = 1+ s(m=m)},

2 dim d>0
where the symbol §{(m=p) takes the valﬁes i or 0 according as m is a
square of some integer or not. Cbnsequently, the Selberg zeta
function Zr,m,+(5) does not satisfy the Riemann hypothesis op the
real interval (1/2,1].

For the proof we employ a new formulation of the Selberg trace

formula for SL,(R) due to Fischer [Fi] and some results of [Ar].

The author would like to thank Max-Planclk-Institut fur Mathematik

in Bonn for the financial support in 1989,

8 1. Automorphic forms associated with a theta multiplier systenm

First we recall basic facts on certain spaces of automorphic forms
associated with the theta multiplier system arising from classical
theta series.

Let m be a positive integer and fix it once and for all. Let R
2m

denote the F-module Z/2mZ of residue classes mod 2m. Denote by V=C

{(x_. € C) indexed by the

the C-vector space of column vectors (Xr)reR r

set R. A positive definite hermitian scalar product on VxV is given by

(x,y)= , ER X .Y (x=(x ) epr Y3¥)lpoeg € VI
We use the symbol e™ (&) (resp. e(d)) as an abbreviation for
exp(2nima) (resp. exp(2niwa)). Let § be the upper half plane. We



write, for M:(g g) € SL,(R) and z € &,
J(M,t)= cttd and ' do(t)= n-zdgdn, £zRe(x), n=Im(<).
We take the branch of z% (z=0, o0 € R) with -n<argz<n. For a real

number u, let o“(A,B) (A, B € SLZ(R)) be the cocycle given by

on(A,B)z e(uw(A,B)) with

2nw(A,B)= argJ(A,Bt)+argJ(B,t)-argJ(AB,t),

where argz (z=0) is chosen so that -n<argz<n. For each r € R, we
define the theta series er(t,z) to be the sum

2

(1.1) = em(t(q+ 3—) + 22(q+ 3—)) (vt € 8, 2z € T).
: q € Z 2m 2m
The collection
G(Tyz)= (er‘(t'z))I‘GR

of the theta series er(t,z) as a column vector satisfies the theta

transformation formula

(1.2) e(mt.

: A
_ mf cz® 1/2 . _(a b 7
Ct+d)- (22 ) (orra) M Bumyete,z) (= (3 §) € SLy(D)

<+d
with a certain unitary matrix U(M) of size 2m with respect to the

scalar product ( , ). We set

(1.3) x(M)= U(M), the complex conjugate of U(M).

Let k be a fixed rational integer and set

K= }_(k— .1_) R
2 2

~

By the formula (1.2), x satisfies the following identity



as a unitary multiplier system (see also [Ar; (2.1)]). We set
JylTrk)= exp(2ik-argd(M,c)) (M € SL,(R), © € §)-

We write jM(t) for jM(t,x) if there is no fear of confusion. This

automorphic factor has the property

{1.5) jA(Bt)JB(t)= ozK(A,B)jAB(t) (A, B € SLZ(R)).

. We assume for simplicity that TI=SL,(Z). Let ﬁK be the space of

measurable functions f: § — V satisfying
1) f(M<t)= x(M)jM(t)f(t) for all M € T,

2) Iy (f(t),f(t))dalt) < +w,

where ¢ is a fundamental domain of ' in §. Then, ﬁn forms a Hilbert

space via the Petersson scalar product (f,g) on ﬁKx%K:

(f,g)= f (flt),g(t))dalT) (f, g € %),
g

We set

o
et

) “ ) .
&= n“( Q—¢ + Q—v ) - 2ikn 8
QE” an* RE
Denote by @K the set of all twice continuously differentiable

functions f € %K with the property Axf € %K. Roelcke showed that

(-Axf,g)= (f,_AKg) for f, g € QK ({{Rol, Satz 3.11)
and moreover that the linear operator —AK: QK — ﬁK has the unique
self-adjoint extension -A;: 9; — ®, which is a closed operator

({[Rol, Satz 3.2]).

We recall the definition and some propertiées of real analytic

Eisenstein series on § associated with I'=SL,(Z) and the theta



multiplier system x ([Ar, § 2]). For each r € R denote by e, the
column vector of V whose {-th component is one or zero according as

{=r or not; er:(srt)zeR’ 6r£ being the Kronecker symbol. We define

(2) Rnull

the subsets R , of R=Z/2mZ as follows:

2 2
g2 {r € R| r=-r mod 2m} and RnUIlz{r € R| r“=0 mod 4m}.
Set, for each r € R,
k {2)
o [ (ept(-1)e_ /2 ... reR )
r (e,+(-1)%__)//2 ... r er-r'?.

Denote by 1n the identity matrix of size n. Let r. be the subgroup of

I' generated by the elements (é %) and -1,. Set, for each r € RnUll,
E o p(Tis)= % Gy (o) " HImre) Sxen T
v M e r_\T ’
As is seen in [Ar, § 2], the V-valued function Ek m_r(t,s) is well-
’ 1

defined and absolutely convergent for Re(s)>l. We omit the indices k,

m and write Er(r,s) in place of E

Er(t;s)z(-l)kE_r{t,s) ([Ar, (2.6)]1), it suffices to consider a half

null

{t,s) for simplicity. Since
t,m,r

of the elements of R There exists a subset R of R such that

(2)

R= R v R u {-R7} (disjoint union),

where -R={-r| r € R”}. We choose such a set R™ and fix it throughout

the paper. We define the subsets Rk; R§UI1 by
~ (2) . . .
R™ UR ev. 1f k is even,
{1.6) Ry = ‘
R™ ce. if k is odd,
and
null _ null -
Rk = Rk N R .

null

K . Set, for each r € R,

Denote by t_ the cardinality of the set R



. .

(1.7) 8.= <-r“/4m>,

where <x> (x € R) denotes the real number satisfying
x-<x> € 7 and 0O<g<x>«<1.

As we see in [Ar, Proposition 2.2], the Eisenstein series Er(t,s)

for each r € REUll has the Fourier expansion of the form:
E_(t,s)= I (5. 2%+e. (s)a S uw_+ T q. (t,5)w
P ) - =)
r p € REUll ' °rp rp p p € R rp p

(&=Re(t)1 n=Im(T), Re(s)>1),

where each ¢__(s) is a holomorphic function in the region Rel(s)>1,
rp

and where

- - null
ng-w qrp’n(nro)e((n+8p)§) L p € Rl{-Rl{
Qrp('cts)= - .
) DY Rnu .
ng-m, n=0 qrp’n(n,s)e(ng P € By

Let ¢(s) denote the matrix of size t_ whose (r,p)-component (r, p €

null

Rk ) is given by @rp(s). Moreover, set

E(t,s)= (...,Er(t,s),...)

reRnull

k

which is a sztm matrix. It has been observed by [Ar, Proposition 2.5]

that Er(r,s) are analytically continued to meromorphic functions of s

in the region {s € C| Re(s)21/2)} except on the interval (1/2,1] and

moreover that [E(t,s) and ¢(s) satisfy the functional equations

E(t,1-s)= E(t:s)tQ(l‘S) and | d(s)d(l-s)= 1, .

@

Now we recall briefly a preliminary version of Fischer’s resolvent

trace formula ([Fi, § 2, Theorem 2.1.2]) in a form suitable to our



situation (the fact that our theta multiplier system x does not
satisfy the condition (a) of (1.3.4) in [Fi) causes a little
difference). Set, for -, w € o,

|- 2

4Im(t)Im(w)

BEIEN S
H(t,w)= ( woT ) and  o(t,w)=
T-W

Recall that x=(k-1/2)/2. Set, for s € £ and o>1,
MNs+x)Ir(s-x)

kglo)= o7 % ‘F(s+x,s-x,28;1/0),
dnr(zs)

where F(a,b,c;2z) is the hypergeometric function:

(a)n(b)n Z 0 r(a+n)

with (a)_=

F(a,b,c;z): n

M8

n=0 (c)n n!' r(a)

For ©, w € §, we write =<t=w mod I'y if there is some element y of T
with t=yw, and <#w mod I', otherwise. Denote by N the set of positive
integers and set W0= N u{0}. For s € C-{|x}l-¢|] ¢ € NO}, Re(s)>1,

12=s(1l-s), and <, w € §, set

T x(M) gy (W H(T, MR k(o (T, Mw)) .

{1.8) G A(t,W)=
! 2 MerT

K
It is known by Elstrcdt [El, p.318], Fischer [Fi, Ppoposition 1.4.8]
that the infinite series on the right side of (1.8) converges
normally in variables (z,w,s) with z, w € §, zZfw mdd r\ s € Lt-{lxl-¢I
{ € NO}, Re(s})l (for the notion of normal convergence, see‘[El,
p.302]). Denote by ¥(s) the logarithmic derivative of the gamma
function: ¥(s)=r’(s)/r(s). Let a=s(l-s), u=a(l-a) with s, a €
C-{lkl;fl ¢t € Ny}, Re(s), Re(a)>1l and <, t’ € §. In a manner similar

to that in [Fi, 2.1], we get, instead of [Fi, p.45, (2.1.2)],



. ’ y _ ] -
1:}1m . (GKl(tgt ) GKu(t;t ))=

-.—l(¢(3+x)+¢(s-x)—w(a+n)-W(a—x)Y'(12m+x(-12)j_12(t))

85
+ lim 1 T X(M)jM(T’)H(TyMt,)(kﬁ(o(t,MT’)—ka(o(tyMT,))o
t'—st 2 M € F-{ilz} A =

In vieonf the results of Roelcke ([Rol, 2, Satz 5.7, Satz 7.21]),
there exists a complete set of the eigen values Xgr Xyreeea X
counted with multiplicities of the sélf—adjoint operator -A;:

9; — ﬁx' Then one can write

_ 1 2 . . )
(1.9) X, = Z +r with r. € {r] r=0) u {ir] r>0)} {n € mo).

Let P denote the discrete subset {1/2:irn! n € NO} of €. As is shown
in [Fi, Theorem 1.6.5], the infinite series

© 1 1
(s,a)= T ( -

(1.10) S T
n=0 w1 /0y 2, .2 1 /04v2,...2
{s-1/2) +rn (a-1/2) +rn

is absolutely convergent for any s, a € C-P, and furthermore, a being
fixed, indicates a holomorphic functiuon of s in the domain {-P.
Let L be a matrix of size 2m (or a linear transformation of V)

characterized by
(1.11) Le = e for any r € R.
We note here that
0 o . .
(1.12) x(-12)= enl/“L {{Ar, (1.3)1)
and hence that
. k k
trX(-lz)J—lo(t): (-1) = (Ler,er)= 2(-1)".
(] G

r R



Therefore by the same argument as in [Fi, 2.1}, Fischer’s theorem

[Fi, Theorem 2.1.2] is replaced by the following in our case.

THEOREM 1.1 (Fischer). Assume T'=8L,(Z). Let 5, a € C, Rels),

Re(a)>1 and |[x|-s, lxl-a § Ng. Set a=s(1l-s), w=a(l-a). Then,

(1.13) S (s,a)= - 1—0(m+(-1)k)(W(S+K)+#x(o-)c)—lll(aﬂc)-llf(a—b:))

',yk,m

tr(x(M)jylc)) {k(o(t,Mc))-k, (o(T,MT))} -

S 1 1 )
Z o null ~ f ( o, > °)|Eq(t:% +it)|2dt]dw(t),
q € Ry Am C-e o 172)%482  (a-1/2)%+t° 2

where the integral on the right hand side of the equality is

absolutely convergent.

OQur purpose from now on is to simplify the integral on the right
hand side of (1.13) with the use of arithmetic or analytic quantities

related to I' and x.

§ 2. Selberg zeta functions

In this paragraph we assumé that ' is a subgroup of SLZ(Z) with
finite index having the element -12. We define two Selberg zete
functions associated with I' and the theta multiplier system x. Since
the matrix L given by (1.11) has the eigen value 1 (resp. -1) with
multiplicity m+1 (resp. m-1), there exists an element Q of GLzm(f)

with



1 0
(2.1) L= Q{ melo | ]Q“l.
0 m-1 :

One may choose as Q a unitary matrix with respect to the scalar

product ( , ). Every x(M) (M € SLZ(Z)) commutes with L via the
relations (1.12), (1.4). Therefore, x{M) has an expression of the form
o (x,(M) © .

(‘-"‘-‘) . ’ X(M)" Q O x_(m) Q

with unitary matrices x+(M), x_{(M) of size m+l, m-~1, respectively.
Every hyperbolic element P of I' has an expression
NPY/2 o -1 '
P= A -1/2 A with N(P)>1 and some A € SL,(R),
: 0 N(P) “ , “

where the uniquely determined number N(P) is called the norm of P.
prim
r

hyperbolic (resp. primitive hyperbolic) elements of I'. We define

Denote by {P}};yp (resp. {PO} ) the I'-conjugacy classes of

the Selberg zeta functions: (s), 2 _(s) as follows:

2
rym,+ rym,

-s5-n
S ),

m,:(s): n 2 det(1

. L -x . (PAIN(P
(PgIBTIM, trp>2 n=0 mxl “£7°0

7
ur' O)

where the signs + are taken in the corresponding manner and the first
product indicates that PO runs over the I'-conjugacy classes-bf
primitive hyperbolic elements of T with'trPO>2. The infinite products
on the right hand side of (2.3) are absolutely and_uniformly
convergent on any compact subset in the half plane (s € C| Re(s)>1}
{for instancé Lemma 2.2.2 and Corollary 2.2.6 in [Fi] ensure this
assertion). Therefore the zeta functions Zr,m,i(S) indicate

holomorphic functions in the same half plane. It shoud be noted that

Zr m :(S) are independent of the choice of the matrix Q satisfying
H ?



(2.1). Set, for x=s(l-s), Re(s)>1l, |xl-s ¢ NO’

(t)=

Gxx;hyp g trx(M)JM(t)~H(t,Mr)ks(0(t,Mt)) (t € $),

1
2
where M runs over all hyperbolic elements of I'. It is known that

G (t), if restricted to a fundamental domain I\$ of I in §,
KX, hYP

defines an Ll—function on I'\s ([Fi, 2.2.5]). Then it follows by the

same argument as in [Fi, Proposition 2.2.5] that

1

{v)do(t)= ——o DI
2(2s-1) {P}?’p, trP>2

Ir\s an.hyp

N(P )%

(trx(P)+(~1) tr (Lx(P))) LogN(Py) - —— ,
1-N(P) !

where PO is the primitive hyperbolic element associated to P. We note
that x also satisfies [Fi, a) of Corollary 1.3.9], i.e,

n

x(Pn)z x(P) for any hyperbolic element P of I with trpP>2,

Taking (2.1), (2.2) into account, we thus have

{2.4)
. . N(p, ) "°
G d = .t ¢ (P logN(P,)  —M8M
Ir\ﬁ nx,hYP(t) ol<) 26-1 {50}?r1m r(lt( 0) ) 1ogN( 0) l'N(PO)_n
v trP0>2
- 1 - : e
= 28_1(Z]’_'m’:‘:/Z]_’m’:t(:») (Re(s)>1, |xl-5 ¢ NO)’
where the signs +, - are chosen according as k is even or odd.

§ 3. Description of Selberg trace formula

To describe Selberg trace formula for the space ﬁn given in § 1



we first calculate the contributions from the elliptic or parabolic
conjugacy classes of r:SLz(Z) to the preliminary resolvent trace
formula (1.13).

In [Sk-Za2, §4], Skoruppa and Zagier gave a method of calculating
the trace of a certain linear operator Um(g) (g € FJ, for the Jacobi
group FJ see § 5) of the C-linear space spanned by the theta series
8. (r € R). If M € SLZ(Z), the trace of the opérator Um(M) coincides
with the trace of our U(M) given by (1.2). For M=(2 3) € sLy(z)
denote by QM(l,p) the binary quadratic form b12+(d—a)1p—0p2 and

moreover set

-1 ... if c<0 and trM«2
e(M)= '

+1 ... otherwise.

Hence Theorem 2 of [Sk-Zal] implies that

| e(M)sign(t-2) (t-2)1/2
(3.1) trU(M)= =
v |det(1,-M) | X €

m( 1
2,2 e
2°/2°(1,-M) t-2

QM(.X)).

2
where t=trM and Z“ is the lattice of row vectors of size two of

rational integers. The fact that QM(x+y)EQM(x) mod(t-2) for any y €
: 2
Zz(lz—M) and x € Z° ensures the well-definedness of the summation on
the right hand side of (3.1).
Set, for s € C, |k|-s ¢ Ng» x=sf{l-s),
G (1= 2 % trx(M) jy (D H(T, M)k, (o <,M))
kx,ell' T’ 5 8 XA Iyt e BT T kg tot T el by
where M runs over all elliptic elements of I'. For an elliptic element
R of I', let 2v(R) be the order of the centralizer Zr(R) of R in T.

Denote by {R}r the I'-conjugacy classes of elliptic elements of I'. It



has been proved in [Fi, Proposition 2.3.4] that GKl ell(-c), if it is
restricted to F=I'\s, defines an Ll—function on 7. Then we easily
have, similarly as in [Fi, pp. 62-641,

trx(R)
v(R)

‘I(R)y

o =1
(3.2) J’g Gyr,el1(®do(o)= > =

{R}

r

I(R)= js jg (T H(T,Rt)k  (o(,Rt) ) dalT) .

For M:(g g) € SLZ(R), we write c(M) for the (2,1)-component c. Assume

that an elliptic element R of T is SL,(R)-conjugate to some

(cose -sin8@

sing@ cose) with 0<9<2n, where 6 is uniquely determined by R. We

often write 0(R) for 6. If 0<8(R)<n, the integral I(R) has been

explicitly evaluated in [Fi, pp. 65, 66]:

C2ik8 v-1 4 oo s o o
2s-1 2ysing j=0 v v o

{0<8=0(R) <),
where v=v(R), half the order of the centralizer Zr(R). If n<B8=6(R)<2m,

we write 6=n+6’ with 6<g8’<¢m. Set R’=-R. Then R’ is SLZ(R)—cohjugate

! _as ’
to (g?ig, i;gg,). In this case c(R)=-c{R’')<0. Moreover,
Jplt)=J :(T)% g, (-1 :R’)-lj (R't)jps(T)
R . —R SK 2 _12 R

i 2ik;

= sign(-c(R’))e? gy ()= -e Jgr (T

24y ‘
Thus I(R)= -&“**TI(R’), which together with (3.3) implies that

. 2ikg v-1 . . s i . s
(3.4) I(r)= —L .ie z (fOMBITLIy(strtd) L om0(2IH)y (smktd))
25-1 2ysin@ j=0 v v

(nt<B6=8(R)<2m) .



Set

_(0 -1 (1 -1
J-(l 0) and w_(l 0).

We may take J, Ja, W, WZ, W4, W5 as a complete set of

representatives of {R}r. Taking the relation x(M)=zU(M) into account,

then by an easy calculation with the use of (3.1), we have

trx(J)= iGz(m), trx(J3)= —iGz(m)
(3.5) :

trx(W)=i, trx(wz)=iG3(m), trx(w4):-iG3(m), trx(Wo)=-i,

where, for any positive integer ¢,

1 m, 2
G,(m)= — z e (1°/¢8).
¢ /T A mod ¢
Then the right hand side of (3.2) equals
I 11
C; + Cy + Cy
with
_1 3 3
C, = " {trx(J)I(J)+trx (I )I(J7)},
C£= 1 5 5 LI l{trx(wz)I(w2)+trx(w451(w4)}.
6

“{trx(W)I(W)+trx(WT)I(W")}, Cw =
6

Thus we get, by an elementary but tedious calculation,

ozt st (5 (5 )
2 sin(m(k-2j)/3) o o
Cy= 5T§§TYT 520 lézzin(nj3) '(W(S ;+J)'W(a+k;2 J))’
2 sin(2n(k-3/4-mx%-2j)/3) L rerg
i = 9(2i-1) 320 amod3 3 ‘ '(w(s :+J)'¢CJQ€;LJJ)‘

Consequently we have calculated the integral on the left hand side of



(3.2) in an explicit form:

(3-6) f? Gix,er1ltldelc)= :?;2:?;.(¢(S;K)+¢(S;K)-W(S+:+1)—W(S~;+1))

2 . .
1 : s~xtJ S+k+2-J
+ ————— T eqalk-2j,m) |y |—22 ¢y |—————2] 1,
9(2s-1) j=0 3 (( 3 ) ( 3 ))
where
{l+e{m/2)) . o\ o
€y (lt,m)= T sin(n(k-1/2)/2),
(3.7)
" ) sin{xk/3) 1 2
€ (kym)z ——m4m 8 — + = X sin(2n(k-3/4-mx“)/3).
3 /3 3 amod3

It should be noted that the symbols ez(k,m), e3(k,m) take only the
values 0, x1, and moreover that'ez(k,m) (resp. e3(k,m)) depends on
m mod 2 and k mod 4 (resp. m mod 3 and k mod 6).

Next we calculate the conﬁribution from the parabolic elements of

' By a standard argument as in [Fi, 2.4, p.69], we get

(3.8) LI trx(M)jy(T)H(T, M)k, (o(T,MT))
2 M €I, parabolic =
=1 3 (trx(M) (o) +trx(=M) j_y (o) JH(x, M) kg (ol M)
2 Mer, trM=2
=1 5 T (erx (U rtrx(-UM)5 | (ve) JHGrT, UM ve) kg (o ve, U )
2 vy €er_\T nz=-= -U
n=0
where Uz(é %]. Since X(Un)er= e(nBr)er for any r € R, n € Z (see
[Ar, (2.2)]), we immediately have
trx(U™)= I e(ns) (for £_, see (1.7)).
: r € R
Using the properties (1.4), (1.12) of x and (1.5) of jM’ we see that



k
(€)= (-1) = e(ng_)le_.,e.)
gt r ¢ R r ror

trx(fUn)j

k
(-1) = e(ng_) (n € Z).
r € r(2) r

Taking the last equality in (3.8) into account, we define the regular

parabolic part of le(r) as follows:

<

_1
G“*'Par’reg(t)- 2 v E r_\T nE-w
n=0
k n n

{ = e(ng ) + Z (2) (-1) e(ng )} -H(yt,U yr)k (o(vyT,U vT))
r € R r € R : =

()

r“#0 mod4m r2$0 mod4m

(Re(s)>Max (1, |x]|), a=s(l-s)).
Set, for simplicity,

(3.9) R'= (r € R| r°#0 mod 4m) and Ry = R n R

(for the set Rk’ see (1.6)).

4 3 0 o 3 3 - :
By [Fi, Lemma 2.4.1], the restriction of Gxx,par,reg(t) to F=T'\$%

defines an Ll—function on ¥ with respect to dw(t), and moreover,

f? G“*’Par:reg(‘)dm(‘): - g Ri I(6.38),
where we put
L(8;s)= I = e(ng)H(<, Ut k_(o(t,U t))da(T)
rm\ﬁ n € Z_{O} 3

(0<e<l, Re(s)>Max(1l,|xl])).
It has been shown in [Fi, pp.72-77] that the integral I(g,s) is
absolutely convergent and that

1

25-1

I(8;s)= {-log2-logsin(ng)+(y(s+x)~-y(s-x))(1/2-£)}.



Therefore,

(3.10) fg Gy, par, reg (T do(T)= 23_1( ] ERIQ (-log2-logsin(xe_)
+W(s40) —¥(s-1)) (1/2-8.)1) (Re(s)>Max(1, [x])) .

As a final step in this paragraph we consider the non-regular part of

the contribution from the parabolic elements of I'. Set, for Re(s),

Re(a)>1, |xl-s, |xl-a & Ny,

k ,a(0)= ks(o)—ka(a),

s
1 : 1
f(t;s,a)= - r
2. .2 2. .2
(s-1/2)7+¢t (a-1/2)"+t
and
_ n n
Ks,a(t)- . g 7-(0) H(<,U t)ks’a(O(t;U T)).

The integral we have to consider is the following:

{3.11) I= Iy ( i} E AT thS,a(?t) -
T aann — [ fltis,a) Egir, 1/2+it) | %dt)dal )

(Re(s), Re(a)>Max(1l,|x}|)),

where we recall that t_ is the cafdinality of the set REUll. Now we

take as # the usual fundamental domain of r:SLz(Z) in §:

F= {t € 8] -1/2<¢Re(Tt)<1/2, |t}j=21 and Re(t)20 on |<t|=1}.

Thanks to Lemma 2.4.11 of [Fil], the integral I is modified into the

form:



(3.12)

I= 1lim [ © (1ogY—log2+ Ly(se)+ Ly(s-x)-y(s)-y(s+1/2)+ —2L )
o 2 2 25-1

<

(1ogy-1ogz+ Ly(atr)+ Ly(a-x)-yla)-y(atl/2)+ ——i—J
2 2 2a-1

- [ E o = [ fesa) B 172+t [ Rdtde() ],
?Y q € Rk i Y-
where
Fy= (t € 7| Im(c)<Y}.

For eaéh r € REUll, let Ez(t,s), with Y>0 being chosen sufficiently

large, denote the compact form of Er(r,s):

v _ Er(t,s)—ur(Im(t),s) eo. 1if v € 7-Fy
Er('cys)- .
Er(t's) L) ) lf T € ?Y’
where ur(n,s) (p=Im(<}>0) is the constant term of the Fourier
expansion of Er(t,s) given by

1-s C
ur(n,s)z nswr+n . E Rnull ¢rp(s)wp {[Ar, Proposition 2.2]).
k

Set

@(s)= detd(s).

The Maass-Selberg relation for Er(t,s) {see [Ar, Propositioh 2.4]1 or

in more detail [Ro, Lemma 11.2]) implies that, if ¢>1/2 and t=0,

(3.13) , f Z Lull lEg(t,o+it)|2dm(t)=v

F q € Rk

t Y2 lotr(@(otit)d(o-it)) Y1727 tro(o-it) Yt tro(orit)y 2it
+
2o-1 2it

On the both hand sides of (3.13), one can take the limit of ¢ —1/2



and get

Y )2 ) @’ .
(3.14) f? . R?ulllEq(t,1/2+lt)| do(t)= 2t logY - £-(1/2+it)
<

Y21t

)
2it

+ 2Re(tr¢(1/z+it)-

where we have used the identities

’

%—(S?: a%'logdet¢(5)= tr(@’(S)m(S)_1)= tr(od’(s)d(1l-s)).

Thus we have, by [Fi, Lemmas 2.4.18, 2.4.19] together with (3.14),

. 1 e . 2
(3.15) lim z — f(t;s,a)|E_(t,1/2+it) |“dtde(<)
Y —>+cn[ ny q € RnUll 45 f—m ' a

k
-tw( 1 1 )logY ]
2s-1 2a-1

= - L f(trs,a)@(1/2+it)dt + ltr¢(1/2)( S ).
4rY - @ 4 ' (

Consequently it follows from (3.12), (3.15) that

' t
(3.16) I= ; 11[_twlog2+ ;S(W(S+K)+¢(S'K)-2¢(S)—2¢(s+1/2))+
S— =l
1 ' 1 t_
2s-1 ® 2a-1 2
g3 - 10 eitia @l .
oty e(1/2))] + = I-wf(t,s,a)¢ (1/2+it)dt

{Re(s), Re(a)>Max(1l,|x]|)).

Now all the contributions of the elements of I' to the integral on
the right side of (1.13) have been calculated. Therefore with the help

of (1.13), (2.4), (3.6), (3.10), (3.11) and (3.16), the resolvent



trace formula of Fischer ([Fi, Theorem 2.5.1]) can be formulated in

our case as the following.

THEOREM 3.1. Let T=8L,(Z). Let k be an integer and m a positive

integer. Set x=(k-1/2)/2. Assume Re(s), Re(a)>Max(1l,|x]|). Then,

1

1 k , .
Sp,k,miSr2)= - Ig(m+(-1) ) (¥ (s+x)+y(s-k)) + 28_1‘Zr,m,:/zr,m,¢)(°’
1 €,(k~2j,m) : . .
1 2 s-k+J)_, (s+txtl-j
' 23-1[ jfo 8 Gp( 2 ) w( 2 ))

\ % e3(k-2jym’(w(s—K+J)-w(§i£iE:Q))]

j=0 9 3 3
1 k . ' :
+ [-1og2- (m+ (1)) -log( 1 ysin(me) )+t (¥(s-x)-w(s)-¥(5+1/2))
2s-1 r € Rk
k
+(-1) 1
+(y(s+k)-y(s-x)) [ 22220 - ¢ g+ tr(l, -®(1/2))
( 2 r e Ri r) 25-1 ty, ]
+ L f ( 1 -1 )21(1/z+it)dt
i Y- 2..,2 2/ ¢
(s-1/2) %4t 1/4+t

+ {the same expression with s being replaced by a},

where Sr’k,m(s,a) is given by (1.10) and the signs +, - are chosen

‘according as k is even or odd.

§ 4. Analytic continuation and functional equatiomn

Follwing [Fi, 3.1], we explain briefly how the Selberg zeta
functions Zr m'i(s) are analytically continued to meromorphic
] ?

functions in the whole s-plane and satisfy certain functional



equations (basic ideas are similar to those of Hejhal [He, Ch.101]).
Let the notation be the same as in the previous paragraphs. Let
G(z) denote the Barnes G-function given by
z/2 2 ® 7\ 1 2
G(z+1)= (2m)%/ %exp(-z(2+1)/2-y22/2) n (1+ %) exp(—z+ :_),
n=1 : 2n
where ¥ is the Euler constant. Then, G(z) is an entire function whose
zegros are located at z=1-n (n € N) with order n. We define the

functions Ep(s), By (s), E,;(s) and Z (s), following Fischer

“par
[Fi]. Set

mt(-1)% '
mtl-1) (slog(2n)+s(l-s)+(1/2+k)logr(s+k)+

{1

1{s)= exp(

(1/2—x)logr(=-z)-logG(S+K+1)*logG(a-K+1)}),

which is a zero-free holomorphic function in C-{(-w=,}|x}). It follows

from [Fi, Remark 3.1.3] that

=2 vk
1 (s)= -(Zs—l)mii—ll—(w(8+x)+¢(s-n))o
=] 12
=1
Set
Zr’m’+(s) if k is even
:hyp(s)- L f . d
. Zr’m’_(s) ... 1if k is odd.
Then, Ehyp(s) is a holomorphic function in the half-plane Re(s)>1.

Define a holomorphic function B.11° C-(-=, |x|) — C by

(s+x+2—j)
3

2

0 [ r(s+x+1fg)

2

H =g

r(ﬁlﬁil) €y (k-2],m) /4
Eell(s)= ]

[ r(ﬁ:ﬁi;) Je3(k-2j,m)/3
o Lr

J



Moreover,‘set

' k
=] (s)= 2‘(m+('1)k)s.( I(s+x) )(m+(—1) )/2—8*.
par F?:j;;

- r(s-«) t,
moy (sin(ne)) S )

r € Ry I'(s)r(s+1/2)
where
X 2 x '

(4.1) B = Z i 3r’ Br=<-r /4m> (for the set Rk' see (3.9)).

. r € Rl

g

The function Spar(s) defines a holomorphic function in
C-(-=,Max(1,]|xl)). We remark that the form of our E {s) is a little

“par
different from that in [Fi, Corollary 2.4.22]. Recall that

p({s)=detd(s). We set, for Re(s)> 1,

_ 1
par,0(8)= STtr(ly -e(1/2))+

(4.2) £

2s-1 ( 1 -1 -%l(1/z+it)dt
© 2

dx 1/4+¢%

()
(s-1/2)“+t
It has been proved in [Fi, Lemma 2.4.19 and p.103, (2.4.6)] that the
integral on the right hand side of (4.2) is absolutely convergent for

Re(s)>1/2 and that & {s) is analytically continued to a

par, ¢
meromorphic function in the whole s-plane which has at most only

simple poles whose residues are all rational integers. In particular

gpar ®(S) is holomorphic in the half plane {s € €| Re(s)>1/2} and has
’

a simple pole at s=1/2 with the residue (t_-tr#(1/2))/2 € Z (note

that ¢(1/2) is a diagonalizable matrix with eigen valués +1, since

2

$(1l/2) is a hermitian matrix and ¢(1/2) :1t ([Ar, Propositions 2.3,

[=-]

2.5])). Moreover with the help of [He, p.440, Proposition 2.17], one



can prove the functional equation

(1-s)= 2 (s).

(4.3) & par,® ?

par,m(s) + £

(One can also prove (4.3) by using [Fi, Lemma 2.4.16 and (2.

4.6)1).

Now the resolvent trace formula (Theorem‘3.1) can be reformulated as

PROPOSITION 4.1. Assume that Re(s), Re(a)>Max(1,|xl|). Then,

- - ) —0
_ 1 =1 “hy Sel1 Spar )
Sp k. m(S:3)= s—l( —(s)+ TRs)+ —E(s)s PE(s)+ £, o (5)
< =1 “hyp Sell “par
:.\’ l:’ —™? -:’
- ! ( “Liays P(a)+ —&ll(a)4 TRBC(5), £ (a))
2a-1\ g = = = par,®
=1 “hyp “ell “par
Let %x' & QK, A;. 9; be the same as in § 1. For s € €, denote by
xn(s) the subspace consisting of f € 9; with -A;fzs(l—s)f. It

follows from [Rol, Satz 5.6, 5.7] that

(4.4) %K(S)= {f € QKI —AKfzs(l—s)f}.
Let dk,m(s) denote the multiplicity of the eigen value s(l1-3) of the
- self-adjoint operator 552: 9; — ﬁK. Obviously,
dk,m(s): dimcxn(s).
By the'definiﬁion of the numbers T ﬁx(s)¢{0} if and only if
s=1/2xir_ (n € Ny). | |
We set
X
E (s)= EI(S)Ehyp(s)Eell(S)Epar(S)-
Via the formula in Proposition 4.1 and (4.3), (E*’/E*)(s) can be



analytically continued to a meromorphic function in the whole s-plane
satisfying the functional equation
4.5 il 25 ®’ (5)=0
. E(s) + = - + =0.
( ) ér( ) éT( s) 7) (s)

The function (2s-1)S ({s,a), with a being fixed, indicates a

rsk,m
meromorphic function in thq whole s-plane that has at most simple
poles at s:l/Z:tirn (n € NO) with the residue dk,m(l/z+irn) (resp.
2dk m(1/2)) if rn:O (resp. rn=0). Therefore by Proposition 4.1, the

1 .
singularities of the function (2 '/Z )(s) are located at s=1/2:tlrn (n

€ NO) and at any poles of £ (s) {(they are all simple poles). As

“par, o
. . X b 4
we have seen, the residues at those simple poles of (2 ’'/Z )(s3) are

all rational integers. Consequently, =2 (s) itself is analytically
continued to a meromorphic function in the whole s-plane. We note that

(t_-tro(l/2))/2
(4.6) @(1/2)y= (-1)

X ¥
and that (2 '/2 )(s) has a simple pole at s5=1/2 with the residue

2d (1/2)-(t_-tre(1/2))/2 (€ Z) according to Proposition 4.1 and

k,m
b 4 . ;
{4.2). Hence the identities (4.5), (4.6) imply that Z (s) itself

satisfies the functional equation
X X
(4.7) 2 (l-s)= @(s)E (s).

Furthermore all the poles of the function

2 )
(4.8) —(s)+ —S2=(s)+ P2L(3)
I Sell =par
aré located at s=xx-¢{, s=-¢&, s=-1/2-¢{ (¢ € WO) {(they are all simple
poles). It is immediate to see that the residues at the poles s=-¢,

-1/72-¢ (£ € NO) are rational integers. We set, for ¢ € NO’



+(_1)k €5(k-2¢,m) €g(kk-2¢,m) ¥

(4.9) alm,k;e)= BX2°) (2¢-2¢45)- - - e - t_,
12 4 3
4k €,(k+2£¢-2,m) €,(k+2¢-4,m)
(4.10)  alm,k; &)= "_‘:_;?-‘L__)__(-z,c-zc-7)+ 2 ; v 2 . MR

{for ez(k,m), ea(k,m), see (3.7) and for*e see (4.1)).

It is easy to see from the definition of EI(S), Eell(s), Epar(s) that
the residue of the function (4.8) at each simple pole s=k-¢ (resp.

s=-kx-¢) with ¢ € Ng equals the number i(m,k;¢&) (resp. a(m,k;¢)).

LEMMA 4.2. The residuaes of the function (4.8) at the simple

poles are all rationmnal integers.

Proof. It suffices to prove that x(m,k;¢), a(m,k;¢) with any { €
NO are rational integers. We discuss only the case of a{m,k;&). The
assertion that x(m,k;{) € Z depends on k mod 12 and ¢ mod 6.
Thérefore we may assume that k is a positive integer sufficiently
large relative to {. Taking the residues at s=k¢-f (>1) of the both

hand sides of the formula in Proposition 4,1, we have

x({m,k; &)= dk,m(K_C) € Ny-

According to Lemma 4.2, the function

(1]

I(S)Eell(S)Epar(S)

is meromorphically continued over the whole s-plane. Therefore,

Ehyp(s) can be analytically continued to a meromorphic function in



the whole s-plane via the relation

_ o x N L y-1
:hyp(s)— =) (S)'(:I(o):ell(o)zpar(o)) .

Thus we obtain the following theorem.

THEOREM 4.3. The Selberg zeta functions Zr,m,x(S) are
analytically continued to meromorphic functions (in the whole sS-plane

which satﬁsfy the fumctional equation (4.7).

§ 5. The spaces of Jacobi forms

We recall the notion of (holqmorphic) Jacobi forms and skew-
uholomorphic Jacobi forms following Eichler-Zagier [E-Z] and Skoruppa
A[Sk2].

Denote by GJ the real Jacobi group of degree one. As a set,

¢’z (M, (Xm0, 0) | M € SLy(R), 2, uy p € R).

For two elements gj:(Mj’(*j'“j)’pj) € GJ (j=1,2), the composition
185 is defined by

Mo
glgzz (MIMZ’ (lly&ll)M2+(ler2)1pl+pz+(llgﬂ1)M2 [—l;] ).

. The group GJacts on the product space $xC in the manner:

z+lt+g)

for g=(M,(x,u),p) € GJ, M:(i'g). (t,yz) € $xC.
ct+d

g(tyz)= (Mx,

Let m be a fixed positive .integer. Set

: 2
R ~
Jm(g,(t,z))z em(—x“r—21z—xu—p+ clztattu) ),

ct+d
where g and (t,z) be the same as above. Then, Jm(g,(t,z)) satisfies

the property as an automorphic factor:



\

- ” ' J
Jm(glgzr(Tyz))- Jm(glvgz(fvu))Jm(gzv(tyz)} (gly gz € G ).

Let ¢ be a non-negative integer. For simplicity we discuss only the
case of I'sSL,(Z). Set

rJz {(M,(lyﬂ)vp)l M € SLZ(Z), X, M, p € 12},

which forms a discrete subgroup of GJ. For t € §, wWe write p=Im(<t).
Then the space J{,m {resp. Ji’m) of holomorphic Jacobi forms (resp.
skew-holomorphic Jacobi forms) of index m and weight ¢ is defined to
be the space C6nsisting of all functions ¢: §xC — < which satisfy
the following conditions:

(i) ¢(t,2) is a holomorphic function in v € & and z € {

(resp. ¢(t,z) is é smooth function in v € § and holomorphic in 2z),

(ii) ¢(<T,z) satisfies the functional equation

$(vitiz))= I (v, (w23, (<, 2)

(resp. ¢(Y(tjz))= Jm(Yy(t,Z))J(M,t){—llJ(M,t)l¢(tyz))

for éll Y € FJ.

(iii) ¢(tT,z2) has the Fourier-Jacobi expansion of the form:

¢(t,2)= z o c{n,r)e(nt+rz)
n,r € Z, 4mnxr
: -, 1.2
(resp. ¢(x,2)= X o C(n,r)e(nr+ —ir n+rz)).
n,r € 7, 4mn<r” A 2m
cusp - Xcusp - -
Denote by J{,m {resp. J{,m ) the subspace of cusp forms of J{'m
X cusp ' ¥cusp . .
\J o o
(resp. Jt,m ). Namely, Jt,m {resp. J{,m ) consists of all Jacobi
. . x
forms ¢ € J, - (resp. all skew-holomorphic Jacobi forms ¢ € JC m)
1 1

whose Fourier coefficients c(n,r) in the above (iii) wvanish if 4mn=r

Now let k be a rational integer and x=(k-1/2)/2 as before. For s €



€, let ﬂn(s) denote the subspace of XK given in (4.4). We are much
concerned with the special subspsce %K(n) (resp. %K(—n)) if >0 (resp.

k<0). As is easily seen from the results of [Ro, §2-§5], one has

£ (k)= {£f € #_| n ¥f(x) is holomorphic in t € §} if x>0,
(5.1) K K .

ﬁu(-K)= {f € %KI n*f(t) is anti-holomorphic in © € $} if k<O.

Assume that x>0 (i.e., k21). Any ¢ € Jk m has an expression as a
. 3

linear combination of theta series:

(5.2) ¢(t,2)= =T a "f (v)e.(x,z).
r € R
If k=2 and é € JEYSP ' then the coll ction f(x)=(f_(<t)) as a column
k,m ' € e € TI=3 et TV iper 2°
vector gives rise to an element of xx(x). If k=1 {(x=1/4), then, for
any ¢ € Jl,m’ f(t)z(fr(t))reR becomes an element of ﬁx(x), since it

is easy to see from the Fourier-Jacobi expansion of ¢ that

f 1£(0) | 2delt) < +o.
F

¥

1-k,m has an

Next let x<0 (i.e., k<0). In this case any ¢ € J

expression of the form

(5.3) ¢(t,z)= T a%s.(v)e.(T,z).
, r € R
¥cusp . . .
If k<-1 and ¢ €Jy_ k. m' then as is easily seen, the collection g(t)=
b4
(gr(r))reR as a column vector becomes an element of fK(-K)- If k=0

¥

(k=-1/4), then, for any ¢ € J1 g(t)z(gr(t)) is also an element

m'’ rek
of ﬁk(-x)o
RROPOSITION 5.1. Let k¥ be a rational integer.
. _ cusp . . .
(1) If k=22 (resp. k=1), the space Jk,m (resp. Jl,m) is isomorphic to



XK(K) via the correspondence ¢ —(f ), . .p in (5.2) as C-linear spaces.

Xcusp

(ii) If k<-1 (resp. k=0), the space J1 k,m

¥
(resp. Jy o) (s isomorphic
’
to £ (-x) via the correspondence ¢ —(g.),.p in (5.3) as C-linear

spaceas.
The proof is immediate from (5.1), so we omit it.

Now we employ the resolvent trace formula to obtain some
information on the dimensions of the spaces of Jacobi forms.
Denote by x(m,k) {(resp. u(m,k)) the number x(m,k;0) (resp.

n{m,k;0)) given by (4.9) (resp. (4.10)) for £=0. Namely,

m+(_1)k ez(krm) _ €3(k,m)

x(m, k)= (2k+9) - -8t v
24 4 3
(5.4)
_ivk €,(k-2,m) € (k-4,m)
a(m,lk)= E‘_*(_U__(_Zk_w” 2 + 3 + B*-
24 4 3

For a meromorphic function f(z) having a pole at z=«, denote by

Res O(f(z) the residue at the pole z=a of f(z).

-
& -

THEOREM 5.2. Let m.-be a positive integer and k an integer.
(1) If k=23, then, dichﬁ?Zp = ax(m,k).

. _ . sCcusp. -
(ii) If k=2, them, dim.J ReoS=3/4((Zf'm'+/Z

51: Z’m - ]“’m’+)(s))+ l(m,Z).

(1ii) If k=1, then, dimgJy 1= Res_.q.,((20 o /20 o ) (s)].
. - : ¥ - —~ o
(iv) IF k=0, them, dimgJ] = Resg_g,,((2' [ (/20 1 ().

. X s .
(v) If k=-1, them, dimgJ,% °P= Ress:3/4((z;,m,_/zr,m,_)(s)j+ uim,-1).



Xcusp_

(vi) If k<-2, them, dim_qul_k,m— a(m,l).
Proof. According to Proposition 4.1, we have
Zh 51 ell -
- - _hy . e “par -
(5.5) (2s 1)S]..,k,m(s,a)_ ':J(S.)‘{‘ = (o)+ = (s)+ ;‘L‘(S)"' ﬁpar (b(a)
“hyp =1 “ell “par

—~J —~7 —- 3
_ 2s5-1( “hyp =1 Sell “par )
2oL MR(a)s —Ha)+ —SRl(a)r PRE(ayr g, o (a)
“hyp =1 “ell “par

Let a be fixed (Re(a)>Max(1,]x])). The functions of s on the both
hand sides of (5.5) are meromorphically continued over the whole

s-plane and & (s) is holomorphic for Re(s)>1/2. First assume that

par, ¢
k22 (then, x>1/2). Comparing the residues at the simple pole s=x of

the functions on the both hand sides of (5.5), we have

dk’m(x):»l(m,k) o if k?Z

dz’m(x)= Ress:3/4((Zf,m,+/2r,m,+)(s))+ a(m,2) ... if k=2,

Thus with the help of (i) of Propositin 5.1, we immediately obtain
the assertions (i), (ii). Next assume kg<-1 (then, x<-1/2). In this
cése we calculate the residues of the function (Zs-l)Sr’k'm(s,a) at
the simple pole s=-x in two manners via (5.5). Thus together with
Proposition 5.1, (ii), we get the assertigns {v), (vi). If k=1, then,
x¥=1/4. We consider the residues of the functions on the both hand
sides of (5.5) at the simple pole s=1-x=3/4. Then the assertion (iii)

follows in a manner similar to the proofs of (i), (ii). The assertion:

(iv) is similarly verified. ' q.e.d.



The identities (0.1) in the introduction are a direct consequence
of Theorem 5.2. Moreover as an immediate corollary to it, we obtain

the following.

' i . cusp._ 4. X
COROLLARY 5.3. (i) dlmCJz,m = dlmQJl,m + a(m,2).
.. . Ycus .
(11) dlmCJZ,mvpz d;mCJl,m + a(m,-1).
REMARK. Skoruppa-Zagier [S-21, 2] obtained a general trace

formula for Hecke operators acting on the space of Jacobi forms.
Corollary 5.3, (i) is a part of their trace formula for k=2 ([s-22,

§ 3, (11)1].
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