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Abstract. This paper studies the work of Bak in Algebra and (lower) Algebraic K-
theory and some later developments stimulated by them. We present an overview of his
work in these areas, describe the setup and problems as well as the methods he introduced
to attack these problems and state some of the crucial theorems. The aim is to analyse
in detail some of his methods which are important and promising for further work in the
subject. Among the topics covered are, unitary/general quadratic groups over form rings,
structure theory and stability for such groups, quadratic K2 and the quadratic Steinberg
groups, nonstable K-theory and localisation-completion, intermediate subgroups, congru-
ence subgroup problem, dimension theory and surgery theory.

The appendix by Max Karoubi states some periodicity theorems and conjectures in an
algebraic context which are related to Bak’s work.
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1. Introduction

The main contributions of Anthony Bak to Algebra may be summarised as follows:

• Introduction of generalised unitary groups (aka general quadratic groups, etc.), form
rings and form ideals.

• Structure of classical groups in the stable range.

• Unitary K-theory, exact sequences, K-theory of forms.

• K1-Stability for classical groups, Λ-stable rank, generalised Witt theorems (1969–2003,
final form joint with Guoping Tang, Viktor Petrov).

• Congruence subgroup problem (joint with Ulf Rehmann).

• Non-abelian K-theory, nilpotent K-theory, localisation-completion.

• Structure of classical groups in the metastable range, sandwich classification of inter-
mediate subgroups (joint with Nikolai Vavilov, Alexei Stepanov).

• Dimension theory.

• Induction and powers of the fundamental ideal in group rings (joint with Nikolai
Vavilov, Guoping Tang).

• Centrality of unitary K2 (joint with Guoping Tang), Hasse norm theorem for K2 (joint
with Ulf Rehmann).

• Grothendieck and Witt groups of finite groups (joint with Winfred Scharlau).

• Higher degree forms and exceptional groups (joint with Nikolai Vavilov).

In the present paper we describe basic ideas and techniques underlying some of these
contributions, and also some later development stimulated by them.

We agree with Dieudonné [67] that had Anthony Bak not written anything apart from
his Thesis [6] and the book [14], he would already secure himself a place in the history
of Mathematics of the XX century. In the first half of the paper we give a very gentle
introduction to the main themes of [6] and [14]: form rings and form ideals, Bak’s unitary
groups, unitary K-theory, structure in the stable range, unitary stability, placing them in a
broader historical context. After this very [s]low start we accelerate and become somewhat
more specific in the middle of the article, where we try to explicitly state some of Bak’s
most influential results, and somewhat more technical towards the end, where we try to
explain some of the recent results and methods.

The present paper covers roughly half of the published work by Anthony Bak, here we
do not touch the topological half of his work, related to surgery theory, global actions,
transformation groups and smooth actions, except the short Section 16 on surgery theory
and transformation groups. We should not dwell at the point as to how much this survey
reflects our personal prospective of Bak’s work, the results which we understand better,
which we invoked in own work, the ones on which we cooperated with Tony, his ideas and
methods we subsequently used and generalised. His published work is so rich in ideas and
so varied that other experts would make a completely different choice as to what Bak’s
most important, relevant and influential results are.
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2. K-theory of rings

In its most familiar versions algebraic K-theory consists in the study of certain functors
Ki from rings to groups. These functors associate to an associative ring R a certain se-
quence of groups Ki(R), which encode very deep arithmetic information about the ring.
The functor K0 was originally introduced in the algebro-geometric context by Alexandre
Grothendieck [54] and then interpreted purely algebraically by Jean-Pierre Serre [125].

In topology, higher K-functors are obtained simply by applying K0 to successive suspen-
sions. This works thanks to Bott periodicity, from which it also follows that topological
K-groups are periodic [4]. In the 60-ies it was not at all clear, what an appropriate alge-
braic analogue of suspension should be. Thus, the usual constructions of higher algebraic
K-functors went in three steps. First, one associated to the ring R a certain algebraic-like
group G(R). Second, one associated to G(R) an object X(G(R)) of a different nature, say
a topological space, a simplicial space, or a category. Finally one recovered Ki(R) from
X(G(R)) as the values of some familiar functors, such as homotopy groups. But first one
needs the group G(R)!

Historically the first version of algebraic K-theory was linear K-theory, which used the
general linear group GL(n,R) — or rather the direct limit of these groups as n goes to
infinity — as the model group. Bass used it to define K1, Milnor to define K2, and
subsequently Quillen and others to define higher K-functors.

Let G = GL(n,R) be the general linear group of degree n over an associative ring R with
1. Recall that GL(n,R) is the group of all two-sided invertible square matrices of degree n
over R, or, in other words, the multiplicative group of the full matrix ring M(n,R). When
one thinks of R 7→ GL(n,R) as a functor from rings to groups, one writes GLn. In the
sequel for a matrix g ∈ G we denote by gij its matrix entry in the position (i, j), so that
g = (gij), 1 ≤ i, j ≤ n. The inverse of g will be denoted by g−1 = (g′ij), 1 ≤ i, j ≤ n.

The first step in the construction of algebraic K-theory was done by Hyman Bass [45].
There is a standard embedding

GL(n,R) −→ GL(n+ 1, R), g 7→
(
g 0
0 1

)
,

called the stabilisation map, which allows us to identify GL(n,R) with a subgroup in
GL(n+ 1, R). Now we can consider the stable general linear group

GL(R) = lim−→
n

GL(n,R),

which is the direct limit (effectively the union) of the GL(n,R) under the stabilisation
embeddings.

A crucial role is played by the elementary subgroup of GL(R). As usual we denote by e
the identity matrix of degree n and by eij a standard matrix unit, i.e. the matrix that has
1 in the position (i, j) and zeros elsewhere. An elementary transvection tij(ξ) is a matrix
of the form

tij(ξ) = e+ ξeij, ξ ∈ R, 1 ≤ i 6= j ≤ n.
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An elementary transvection tij(ξ) only differs from the identity matrix in the position
(i, j), i 6= j, where it has ξ instead of 0. In other words, multiplication by an elementary
transvection on the left/right performs what in an undergraduate linear algebra course
would be called a row/column elementary transformation ‘of the first kind’.

The work of Bass focused attention on the subgroup E = E(n,R) of the general linear
group G = GL(n,R), that is generated by all the elementary transvections. Thus

E = E(n,R) = 〈tij(ξ), ξ ∈ R, 1 ≤ i 6= j ≤ n〉

This subgroup is called the (absolute) elementary group of degree n over R. Since the
stabilisation map sends E(n,R) to E(n+ 1, R), we can define the stable elementary group
E(R) = lim−→E(n,R). A crucial observation known as the Whitehead lemma, asserts that
modulo E(R) the product of two matrices in GL(n,R) is the same as their direct sum, and
in particular, E(R) = [GL(R),GL(R)]. At this point Bass defines

K1(R) = GL(R)/E(R) = GL(R)/[GL(R),GL(R)]

as the abelianisation of GL(R). Indeed algebraic K-theory was born as Bass observed that
the functors K0 and K1 together with their relative versions fit into a unified theory with
important applications in algebra, algebraic geometry and number theory.

Both for the development of the theory and for the sake of applications one has to
extend these definitions to include relative groups. For an ideal I of R, one defines the
corresponding reduction homomorphism

πI : GL(n,R) −→ GL(n,R/I), (gij) 7→ (gij + I).

Now the principal congruence subgroup GL(n,R, I) of level I is the kernel of reduction
homomorpism πI , while the full congruence subgroup C(n,R, I) of level I is the inverse
image of the centre of GL(n,R/I) with respect to this homomorphism. Clearly both are
normal subgroups of GL(n,R).

Again, let I ER and let x = tij(ξ) be an elementary transvection. Somewhat loosely we
say that x is of level I, provided ξ ∈ I. One can consider the subgroup generated by all
the elementary transvections of level I:

E(n, I) = 〈tij(ξ), ξ ∈ I, 1 ≤ i 6= j ≤ n〉.

This group is contained in the absolute elementary subgroup E(n,R) and does not depend
on the choice of an ambient ring R with 1. However, in general E(n, I) has little chances
to be normal in GL(n,R). The relative elementary subgroup E(n,R, I) is defined as the
normal closure of E(n, I) in E(n,R):

E(n,R, I) = 〈tij(ξ), ξ ∈ I, 1 ≤ i 6= j ≤ n〉E(n,R).

Applying the stabilisation embeddings to the families GL(n,R, I) and E(n,R, I) generates
stable versions GL(R, I) and E(R, I), respectively, of these groups. There is no stable
version of C(n,R, I), though, as the stability map does not send C(n,R, I) into C(n +
1, R, I). At this point Bass proves his famous “Whitehead lemma”.
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Theorem 2.1. For any associative ring R and any ideal I ER one has

E(R, I) = [E(R), E(R, I)] = [GL(R),GL(R, I)].

In particular E(R, I) is normal in GL(R) and one can define the relative K1-functor of
a pair (R, I) by

K1(R, I) = GL(R, I)/E(R, I).

In the sequel we state most of the results only in the absolute case but an appropriate
version of these results holds also in the relative case.

As one of important applications in algebra, Bass [45] relates the normal subgroup struc-
ture of GL(R) to the ideal structure of R. This leap in generality is considered as the
starting point of the modern theory of linear groups.

Theorem 2.2. Let R be an arbitrary associative ring and H ≤ GL(R) be a subgroup
normalised by the elementary group E(R). Then there exists a unique ideal I E R such,
that

E(R, I) ≤ H ≤ GL(R, I).

Conversely, any subgroup H satisfying these inclusions is (by Theorem 2.1) normal in
GL(R).

Quite remarkably this result holds for arbitrary associative rings. Thus, an explicit
enumeration of all normal subgroups of GL(R) amounts to the calculation of K1(R, I) for
all ideals I in R.

The group K1 answers essentially the question as to how far GL(n,R) falls short of
being spanned by elementary generators. A few years later Milnor [101], [102], building
on the work of Steinberg [133], [134] and Moore [105], introduced the group K2, which
measures essentially to which extent all relations among elementary generators follow from
the obvious ones.

What are the obvious relations among the elementary transvections tij(ξ), ξ ∈ R, 1 ≤
i 6= j ≤ n? First of all, they are additive in ξ, in other words,

(R1) tij(ξ)tij(ζ) = tij(ξ + ζ)

for any ξ, ζ ∈ R. Secondly, they satisfy the Chevalley commutator formula, which in this
case boils down to the following

(R2) [tij(ξ), thl(ζ)] =


e, if j 6= h, i 6= l;

til(ξζ), if j = h, i 6= l;

thj(−ζξ), if j 6= h, i = l;

where [h, g] = hgh−1g−1 is the commutator of two elements h, g ∈ G. The case j = h, i = l
is excluded from the above formula, since there is no easy expression for [tij(ξ), tji(ζ)].

Let as before R be any associative ring and n ≥ 3. Then the linear Steinberg group
St(n,R) of degree n over R is defined as the group generated by generators xij(ξ) subject
to defining relations (R1) and (R2). For the case n = 2 relation (R2) becomes vacuous.
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The usual definition of the group St(2, R) in [102] is only adequate for rings with many
units, such as fields, but not in general.

There is a canonical homomorphism

St(n,R) −→ E(n,R), xij(ξ) 7→ tij(ξ).

By definition K2(n,R) is the kernel of this homomorphism and consequently there is an
exact sequence

1 −→ K2(n,R) −→ St(n,R) −→ E(n,R) −→ 1.

As above, one has a stabilisation map St(n,R)→ St(n+ 1, R), sending xij(ξ) viewed as
an element of the former group to xij(ξ) viewed as an element of the latter. Since all the
relations defining St(n,R) also hold in St(n+ 1, R) this extends to a homomorphism, thus
a homomorphism on the level of K2, i.e., K2(n,R)→ K2(n+ 1, R). But since St(n+ 1, R)
has new relations, this homomorphism does not have to be an embedding. Still, one can
form the stable Steinberg group as the direct limit St(R) = lim−→ St(n,R). The projections
St(n,R) → E(n,R) extend to the projection St(R) → E(R) and K2(R) is defined as its
kernel. In other words, K2(R) fits into the exact sequence

0 −→ K2(R) −→ St(R) −→ GL(R) −→ K1(R) −→ 0.

Quite remarkably Kervaire [90] and Milnor [102] then proved the following crucial result.

Theorem 2.3. The homomorphism St(R) → E(R) is the universal central extension of
E(R).

In [49], [50] Bass stressed the importance of the congruence subgroup problem [51] in the
development of algebraic K-theory. He feels that interest in the new subject was substan-
tially boosted by its application to help solving the more than half a century old problem
above and by the intrinsic connections of K1 and K2 with deep arithmetic phenomena such
as reciprocity laws of class field theory. After these initial successes — and later after the
definition of higher K-functors by Quillen and others, — the whole theory exploded in two
directions, which may be summarised as follows.

• Prove similar results in the non-stable case, that is when n is fixed.

• Prove similar results for all classical groups, including symplectic, orthogonal and
unitary groups.

Both directions, known as non-stable K-theory — or, sometimes, for reasons that will
soon become clear, non-abelian K-theory — and unitary K-theory, respectively, have
been proved to be much more difficult than the original stable linear case. In both directions
contributions of Tony Bak were extremely important, in some cases decisive. Below we try
to describe them in historical prospective, starting with the second one.

3. Classical groups

We believe that in the Spenglerian sense the concept of group is the oldest concept of
Mathematics, older than the concept of number itself. It is in fact inseparable from any idea
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of symmetry, motion, spacial or temporal pattern. From a modern viewpoint the whole
classical Geometry, including that described in Euclid’s “Elements”, is a study of classical
groups, their subgroups and actions. But it was hardly phrased that way till the late XIX
century. Let us start with a very brief history of time before the 1960’ies.

Many results of Euler and Lagrange should be today interpreted as statements about
orthogonal groups, and, of course, these groups become fully visible in the works of Grass-
mann, Hamilton, Cayley and Clifford. Similarly, symplectic groups were prominent in the
works of Abel, Hamilton, Jacobi and Riemann. For a very good reason they were even
called Abelian groups by Jordan, Dickson and others, until Weyl translated the word com-
plex from Latin to Greek. By the same token, we are inclined to believe that Jacobi and
Hermite were fully aware of unitary groups.

However, modern terminology could hardly have been used before the late 1820’ies when
Galois started to group permutations (‘grouper les permutations’) and the early 1840’ies
when Cayley officially introduced multiplication of matrices. Thus classical groups make
their first official appearance in Jordan’s modest commentary to the works of Galois [81].
In fact, in his landmark book Jordan defines and studies all classical groups over prime
fields Fp.

At about the same time complex and real classical groups made their triumphal ap-
pearance in the geometric and analytic context, in the works of Klein, Lie, Killing, Engel,
Cartan, Picard and others. The major achievement of that period was the discovery of five
exceptional groups and the classification of simple complex Lie groups by Killing, followed
by classification of simple real Lie groups by Cartan. The impact of these works was such,
that they effectively made all advanced mathematics into the theory of Lie groups, or, as
Poincaré put it: “La théorie des groupes est, pour ainsi dire, la mathématique entière”.
Mathematics of the XX century was Lie theory much in the same sense as Mathematics
of the XVIII century was real analysis and that of XIX century — complex analysis. Of
course, the second half of the XX century interpreted Lie theory not in original analytic
terms, but rather in the purely algebraic setting of algebraic groups, as in the works of
Kolchin, Chevalley, Borel, Weil, Rosenlicht, Serre, Tits, Springer, Steinberg, and others.

At the brink of the XX century Dickson, who was familiar both with the book of Jordan
and with Cartan’s thesis, fully recognised the analogy between finite classical groups and
complex Lie groups. He made his point to construct (what we now know as) Chevalley
groups of all types over an arbitrary field and in fact succeeded in constructing all classical
Chevalley groups in his 1901 paper [63]. He writes “After determining four systems of
simple groups in an arbitrary domain of rationality which include the four systems of
continuous groups of Lie, the writer has been led to consider the analogous problem for the
five isolated simple continuous groups of 14, 52, 78, 133 and 248 parameters.” Apparently,
in the process of this work Dickson anticipated many crucial subsequent results pertaining
to isometry groups of quadratic forms and higher degree forms [127]. However, in his book
[62], also first published in 1901, he only systematically treats classical groups over finite
fields. Soon thereafter he switches to other major projects and his remarkable insights
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concerning forms and groups of Lie type over an arbitrary field have been largely ignored
and forgotten.

After that classical groups suddenly became very familiar to Frobenius, Burnside, Minkow-
ski, Schur, Blichfeldt and others, who (among many other remarkable things!) proved sur-
prising and highly non-trivial results about their finite subgroups. However, for the most
part they still used Jordan’s terminology, speaking of Abelian and hypo-Abelian groups,
etc. The modern terminology, including the terms classical groups and symplectic group
themselves, started to emerge only in the 1930’ies, mainly due to the influence of Hermann
Weyl. In [176] he studied finite dimensional representations of classical groups over a field
of characteristic 0. At about the same time, the algebraic theory of quadratic forms over
an arbitrary field started to (re)emerge in the work of Ernst Witt [179]. In particular, Witt
emphasised the crucial distinction of isotropic and anisotropic forms and groups.

Another milestone in the study of classical groups were the books of Jean Dieudonné
[64], [65], [66], first published in 1948, 1951 and 1956, respectively. Therein Dieudonné
systematically carried over all available structural results obtained by his predecessors to
classical groups over arbitrary fields and skew-fields. In particular, he proved in this new
setting analogues of all usual theorems on normal structure, generation, automorphisms,
geometric properties, etc., which previously had been known only over finite or algebraically
closed fields, or fields of characteristic 0.

In the first volume of his monumental work [57], Claude Chevalley gave a very readable
account of the classical groups over R and C and in subsequent volumes started to develop
the theory of algebraic groups. His efforts culminated in a construction of split simple
groups of all types over an arbitrary field [58], which eventually led to the classification of
simple algebraic groups over algebraically closed fields of arbitrary characteristic [59]. It is
often said that Dieudonné’s theory of classical groups is devoured by the theory of algebraic
groups. There is something to it, but nevertheless we do not think this is completely true,
as classical groups over infinite-dimensional skew-fields are not algebraic. In fact soon we
shall see examples of classical groups over fields, which are even less algebraic than that!

In his review of [64] Weyl writes: “The term classical groups covers for the author
(as it did for the reviewer) the group of linear transformations in n variables and those
subgroups that leave certain nondegenerate forms invariant, namely a quadratic or a Her-
mitian or a skew-symmetric bilinear form.” They mean the same for us, but what are
quadratic and hermitian forms? In particular, everybody who has studied works of Dick-
son, Dieudonné and their followers is [pain]fully aware of the abysmal difference between
the cases char(K) 6= 2 and char(K) = 2 even at the level of definitions — not to say
statements and proofs!

Let us address this question first in the very classical setting. Let V be a vector space
over a field K. We consider bilinear forms B : V × V → K on V with values in K. When
B(u, v) = 0 one says that u and v are orthogonal with respect to B and writes u ⊥ v. The
form B is called reflexive provided the orthogonality relation defined by B is symmetric,
i.e. B(u, v) = 0 implies B(v, u) = 0. In this case, the form B is also called an inner product
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on V and V itself is called an inner product space. One considers the isometry group of B

Isom(V,B) = {g ∈ GL(V ) | B(gu, gv) = B(u, v), for all u, v ∈ V }.

In other words, Isom(B) consists of all automorphisms of V preserving inner products.
Any choice of a basis for V identifies V with Kn, B with its Gram matrix b ∈ M(n,K),
B(u, v) = utbv and GL(V ) with GL(n,K). This done, Isom(V,B) becomes a subgroup of
GL(n,K)

Isom(V,B) = {g ∈ GL(n,K) | gtbg = b}.
Three classes of inner products are of particular importance. A bilinear form B is called

symmetric if B(u, v) = B(v, u) for all u, v ∈ V . Clearly, symmetric bilinear forms are inner
products. A bilinear form B is called anti-symmetric if B(u, v) = −B(v, u) for all u, v ∈ V .
Clearly, anti-symmetric forms are also inner products. A form B is called symplectic (also
alternating), if B(u, u) = 0 for all u ∈ V . Recall that a vector u ∈ V is called isotropic
with respect to B if u ⊥ u, or, in other words, B(u, u) = 0. Thus, a form is symplectic,
if all vectors in V are isotropic with respect to this form. The class of symplectic forms
almost coincides with that of anti-symmetric ones. Namely, a symplectic form is always
anti-symmetric, and the converse is also true if char(K) 6= 2. On the other hand, in
characteristic 2, anti-symmetric is the same as symmetric. Thus any symplectic form is
symmetric but it is easy to see that not every symmetric form is symplectic. For example
take the symmetric form B : K × K → K, (u, v) 7→ B(u, v) = uv. This is obviously not
symplectic. This demonstrates the difference between char 6= 2 and char = 2. In the
former, symplectic forms and anti-symmetric forms coincide, but are distinctly different
from symmetric forms. (The only forms which are both symmetric and anti-symmetric
are those which are zero on every pair of elements). In the latter, symplectic forms are a
proper subset (subcategory) of anti-symmetric forms, but symmetric and anti-symmetric
forms are the same.

We move on now to quadratic forms. There is exactly one classical notion of quadratic
form. It is simply a map q : V → K such that for all v ∈ V , q(v) = C(v, v) for some bilinear
form C on V , (Except for the case dim(V ) = 1, a quadratic form q is defined by many
different C’s.) Associated to q, there is a symmetric bilinear form defined by B(u, v) =
q(u, v)−q(u)−q(v). The form B measures the failure of q to be additive. Setting u = v, we
get B(u, u) = q(2u)− 2q(u) = 2q(u). Suppose now that char(K) 6= 2. Then we can recover
q from B by the formula q(u) = (1/2)B(u, u). The role of the condition char(K) 6= 2 is
already visible in the denominator. Conversely, starting from any symmetric bilinear form
B, we can construct a quadratic form q such that B(u, v) = q(u+v)−q(u)−q(v), by setting
q(u) = (1/2)B(u, u). This sets up a natural equivalence, when char(K) 6= 2, between the
category of quadratic forms and the category of symmetric bilinear forms, which preserves
orthogonality, nonsingularity, etc.

Now this means that in characteristic 6= 2 we can define orthogonal groups as isometry
groups of quadratic forms, as follows

O(V, q) = Isom(V, q) = {g ∈ GL(V ) | q(gu) = q(u)}.
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This suggested to Dickson to define orthogonal groups in characteristic 2 as isometry groups
of quadratic forms, rather than bilinear forms [62]. This distinction in terminology was
further emphasised by Dieudonné [66], when he treated orthogonal groups over non-perfect
fields of characteristic 2.

The situation for unitary groups is essentially parallel. These groups are defined in
terms of sesquilinear forms B : V × V → K over a (skew-)field K with involution − : K →
K. One usually rescales the form to assume it is either hermitian, B(u, v) = B(v, u),

or anti-hermitian, B(u, v) = −B(v, u). A unitary group is the isometry group of an
(anti-)hermitian form. Again, one usually has to distinguish the cases char(K) 6= 2 and
char(K) = 2 even at the level of definitions, not to say proofs.

A different approach towards algebraic classical groups was proposed by André Weil [175].
In fact, Weil’s intention was to classify classical groups as invariant points of involutions
on central simple algebras over K. But again this approach runs into serious obstacles in
characteristic 2. These complications were systematically removed only a posteriori in The
Book of Involutions [94].

In most cases quadratic/hermitian forms and orthogonal/unitary groups over fields of
characteristic 2 were much harder to handle, than forms and groups over fields of char-
acteristic 6= 2. In some cases, however, they have been amazingly easier. One such very
famous example was of course Milnor’s conjecture, whose solution in characteristic 2 [87]
(see also [1], [5]) came long before Voevodsky’s solution in characteristic 6= 2 [170], and by
much more elementary means.

But the two kinds of characteristic, 6= 2 and = 2, are always different. Are they really?
In fact for many geometric and topological applications which started to emerge in the
1950’ies and 1960’ies one had to work over Z, which has fields of all positive characteristic
as quotients. Also, from a purely algebraic viewpoint it is preferable to work (at least) over
arbitrary commutative rings.

Over Z there are groups which behave like symplectic groups in some primes and like
orthogonal groups in other primes, the so called hybrid symplectic groups [48].

From the late 1950’ies to the early 1970’ies several attempts were made to generalise
classical groups by constructing a theory which does not depend on the invertibility of 2.
Most notably, one should mention Klingenberg, Wall [172] and Tits [148]. Actually special
cases of their constructions were rediscovered several times; compare in particular [111] and
[100].

In the classical situation of symmetric forms B or quadratic forms q, the orthogonal
group was defined so as to preserve B or q, but did not in general preserved both. In 1969,
Bak came up with the following two ideas, which resolved all difficulties and allowed to
work characteristic free.

• A classical group should be considered as preserving a pair of forms (B, q),

• A quadratic form q takes its values not in R itself, but rather in its factor-group R/Λ,
modulo a certain additive subgroup of Λ ≤ R, the so called form parameter.

Both ideas are explained in some detail in the following sections.
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At about the same time Klein, Mikhalev [91], [92] and Vaserstein [152] in Moscow tried
to define orthogonal and unitary groups over arbitrary rings with involution. They moved
in essentially the same direction as Bak, but failed to recognise the importance of form
parameters and defined just the groups, corresponding to the minimal form parameter.

4. Form rings and form ideals

To describe Bak’s results on unitary K-theory, structure in the stable rangle and stability
we need the notions of form parameter, form ring, form ideal, general quadratic group, its
elementary subgroup and corresponding relative groups. Although these notions are now
classical and widely used in the literature, we briefly recall them for the convenience of the
reader (for a general and comprehensive treatment, see [78] and [14]).

In his foundational paper [47] on unitary algebraic K-theory Hyman Bass writes: “This
paper is intended to make propaganda for the notions of ‘unitary ring’ and ‘unitary ideal’
due to Bak. These concepts permit a refinement of the notion of quadratic hermitian form.
Their inevitability, once one begins a serious study of unitary groups over rings in which 2
is not invertible, is very strikingly revealed in the results on the normal subgroups of stable
unitary groups. The essential role of the notion of unitary ring in the stability theorems
will also be apparent.”

These notions revolutionised the whole subject, and we are tempted to reproduce another
very picturesque passage from Math. Reviews N. 2033642: “All definitions of classical
groups before Bak worked in terms of a bilinear or a quadratic map. As a result they
depended on the invertibility of 2 in the ground ring. Without this restriction the theory was
pestered by a swamp of technical details, with the distinctions of singular and degenerate
forms, defect and non-defect orthogonal groups, etc. The essence of Bak’s definition lies in
the notions of form parameters and form rings.”

We would like to stress that in the meantime the absolute inevitability of all these notions
in the study of classical groups became even more apparent, especially that of the form
ideal [6]. For example, even though symplectic groups can be defined with no reference to
form rings, their subgroups over rings in which 2 is not invertible can be understood only
using the notion of form ideals. Without this notion one is bound to stipulate restrictions
such as 2 ∈ R∗, or some other such condition guaranteeing that relative forms parameters
corresponding to any given ideal coincide, or to introduce into the answers ad hoc technical
definitions such as special pairs, quasi-ideals, Jordan ideals, etc. However, all of those are
just specific manifestations of Bak’s form ideals.

Let R be a ring with an involution denoted by a 7→ a; by definition a+ b = a+b, ab = ba
and a = a for all a, b ∈ R. Fix an element λ ∈ Cent(R), called the symmetry, such that
λλ = 1. The maximal and the minimal form parameters, corresponding to this choice of
involution − and symmetry λ are defined as follows:

Λmin = {a− λa | a ∈ R}, Λmax = {a ∈ R | a = −λa}.
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Clearly Λmin and Λmax are additive subgroups of R and Λmin ≤ Λmax. It is easy to see that
they are closed with respect to the Jordan (quadratic) action of R:

aΛmina ≤ Λmin, aΛmaxa ≤ Λmax

for all a ∈ A. In general, an additive subgroup Λ ≤ R such that

(1) Λmin ≤ Λ ≤ Λmax

(2) aΛa ≤ Λ for all a ∈ R,

is called a form parameter in R. A pair (R,Λ), consisting of a ring with involution and a
form parameter in it is called a form ring.

Let (R,Λ) and (R′,Λ′) be form rings relative, respectively, to the symmetries λ and λ′.

A ring homomorphism µ : R → R′ such that for any a ∈ R, µ(a) = µ(a), µ(λ) = λ′ and
µ(Λ) ≤ Λ′ is called a morphism of form rings. A morphism µ : (R,Λ) → (R′,Λ′) of form
rings is called surjective if µ : R→ R′ is a surjective ring homomorphism and µ(Λ) = Λ′.

These notions suffice to define unitary groups themselves, but in order to introduce later
relative groups for the general quadratic group, we need also the notion of form ideal in a
form ring. Let I be an ideal of R which is invariant under the involution, i.e. I = I. Then
the minimal and maximal relative form parameters of I are defined as follows:

Γmin = 〈x− λx | x ∈ I〉+ 〈xαx | x ∈ I, α ∈ Λ〉, Γmax = I ∩ Λ.

Clearly Γmin ≤ Γmax depend only on the form parameter Λ and the ideal I and are closed
under the quadratic action of R:

aΓmina ≤ Γmin, aΓmaxa ≤ Γmax

for all a ∈ R. In general a relative form parameter of I is an additive subgroup of Γ ≤ I
such that

(1) Γmin ≤ Γ ≤ Γmax

(2) aΓa ≤ Γ for all a ∈ R.

The pair (I,Γ) is called a form ideal in (R,Λ).

5. Bak’s unitary groups

Let (R,Λ) be a form ring, V a right R-module and let, as usual, GL(V ) be the group of all
R-linear automorphisms of V . Further, let f be a sesquilinear form on V , i.e., a biadditive
map f : V × V → R such that f(ua, vb) = af(u, v)b for all u, v ∈ V and a, b ∈ R.

Define the maps h : V × V → R and q : V → R/Λ by h(u, v) = f(u, v) + λf(v, u) and
q(v) = f(v, v) + Λ. The function q is called a Λ-quadratic form on V and h its associated
λ-Hermitian form. The triple (V, h, q) is called a quadratic module over (R,Λ).

It is called nonsingular, if V is finitely generated and projective over R and the map
V → HomR(V,R), v 7→ h(v,−) is bijective, i.e. the Hermitian form h is nonsingular.

A morphism (V, h, q)→ (V ′, h′, q′) of quadratic modules over (R,Λ) is an R-linear map
V → V ′ which preserves the Hermitian and Λ-quadratic forms.
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Define the general quadratic group G(V, h, q) to be the group of all automorphisms of
(V, h, q). Thus

G(V, h, q) = {σ ∈ GL(V ) | h(σu, σv) = h(u, v), q(σv) = q(v) for all u, v ∈ V }.

This group is often also called a generalised unitary group or Bak’s unitary group.
Suppose that h and q are defined by the sesquilinear form f . If (I,Γ) is a form ideal in

(R,Λ), define the relative general quadratic group

(1) G(V, h, q, I,Γ) = {σ ∈ G(V, h, q) | σ ≡ 1 (mod I),

f(σv, σv)− f(v, v) ∈ Γ for all v ∈ V }.

This is what classically would be called the principal congruence subgroup of level (I,Γ),
but now the level is a form ideal.

In his Thesis, Bak proved that, if (V, h, q) is nonsingular, then the group G(V, h, q, I,Γ) is
well defined, i.e. does not depend on the choice of f , and is normal in G(V, h, q). Published
proofs for the special case of the hyperbolic unitary group G(2n,R,Λ) — which is the only
case we need here — can be found in section 5.2 of the book of Hahn and O’Meara [78] or
in the paper by Bak and Vavilov [41].

Much of the theory can be developed in this general context, sometimes under the as-
sumption that h is isotropic enough, in other words, its Witt index is large enough. How-
ever, not to overcharge the present exposition with notation and precise technical details,
we concentrate on the case of hyperbolic unitary group G(2n,R,Λ) and now we recall its
definition.

Let V denote a free right R-module with ordered basis e1, e2, . . . , en, e−n, . . . , e−1. If
u ∈ V , let u1, . . . , un, u−n, . . . , u−1 ∈ R such that u =

∑n
i=−n eiui. Let f : V × V −→ R

denote the sesquilinear map defined by f(u, v) = u1v−1 + · · ·+ unv−n. It is easy to see that
if h and q are the Hermitian and Λ-quadratic forms defined by f , then

h(u, v) = u1v−1 + · · ·+ unv−n + λu−nvn + · · ·+ λu−1v1

and

q(u) = Λ + u1u−1 + · · ·+ unu−n.

The ordered basis we chose here was used in [41]. As it is mentioned in [41], in all previously
published works, where general quadratic groups over form rings were considered, either
the ordered basis e1, e−1, . . . , en, e−n, or the ordered basis e1, . . . , en, e−1, . . . , e−n are used.
For example, this latter one is used in the book of Bak [14].

Using the basis above, we can identify G(V, h, q) with a subgroup of the general linear
group GL(2n,R) of rank 2n. This subgroup will be denoted by G(2n,R,Λ) and is called
the general quadratic group over (R,Λ) of rank n. (In many publications, it is also called
general unitary group and is denoted by U(2n,R,Λ)). Using the basis, we can identify the
relative subgroup G(V, h, q, I,Γ) ≤ G(V, h, q) with a subgroup of G(2n,R,Λ) denoted by
G(2n, I,Γ). Bak describes the matrices in G(2n,R,Λ) and G(2n, I,Γ) in his Thesis (See
also [41], [78]).
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The groups introduced by Bak in his Thesis gather all even classical groups under one
umbrella. Linear groups, symplectic groups, (even) orthogonal groups, (even) classical uni-
tary groups, are all special cases of his construction. Not only that, Bak’s construction
allows to introduce a whole new range of classical like groups , taking into account hybridis-
ation, defect groups, and other such phenomena in characteristic 2, which before his Thesis
were considered pathological, and required separate analysis outside of the general theory.
Retrospectively it becomes more and more clear that this unification has been one of the
Wendepunkte in our understanding of classical groups, comparable in its significance to the
contributions by Jordan, Dickson, Witt, Dieudonné, Tits and Wall.

To give the idea of how it works, let us illustrate how Bak’s construction specialises in
the case of hyperbolic groups.

• In the case when involution is trivial, λ = −1, Λ = Λmax = R, one gets the split
symplectic group G(2n,R,Λ) = Sp(2n,R).

• In the case when involution is trivial, λ = 1, Λ = Λmin = 0, one gets the split even
orthogonal group G(2n,R,Λ) = O(2n,R).

• In the case when involution is non-trivial, λ = −1, Λ = Λmax, one gets the classical
quasi-split even unitary group G(2n,R,Λ) = U(2n,R).

• Let Ro be the ring opposite to R and Re = R ⊕ Ro. Define an involution of Re by
(x, yo) 7→ (y, xo) and set λ = (1, 1o). Then there is a unique form parameter Λ = {(x,−xo) |
x ∈ R}. The resulting unitary group

G(2n,Re,Λ) = {(g, g−t) | g ∈ GL(n,R)}

may be identified with the general linear group GL(n,R).

Thus, in particular Bak’s hyperbolic unitary groups cover Chevalley groups of types Al,
Cl and Dl. To include groups of type Bl and in general odd classical groups in the general
theory required substantial additional effort. This was only achieved recently by Bak and
Morimoto, in view of topological applications. In [27] they introduce a powerful, but rather
heavy-going construction phrased in terms of two form parameters.

A simpler approach to odd unitary groups has been developed by Viktor Petrov. Being
jointly supervised by Tony Bak, at the University of Bielefeld, and one of us at the Saint-
Petersburg State University, he could successfully combine his expertise in Bak’s unitary
groups and in Chevalley groups. Departing from Bak’s definition of Λ-quadratic forms
and Abe’s definition of twisted Chevalley groups, Petrov constructed a theory in which a
quadratic form takes values not in R, as in the classical theory, and not in R/Λ as in Bak’s
theory, but rather in their semi-direct product RiR/Λ. This allowed to fully account for
non-abelian root subgroups corresponding to extra-short roots. Thus, odd classical groups
— in particular Chevalley groups of types Bl and the twisted forms of Al — finally obtained
a natural interpretation in the general framework of Bak’s theory. However, many aspects
of this important and beautiful work are decisively too technical to be included in a casual
presentation, since it would require a couple of pages just to state precise definitions. We



15

refer the interested reader to Petrov’s remarkable papers [113], [114] (or to his Russian1

thesis [115]) which give a very clear and detailed account of this theory.

6. Elementary unitary groups

Next, we recall the definition of the elementary quadratic subgroup. For

i ∈ ∆n = {1, · · · , n,−n, · · · ,−1},
let ε(i) denote the sign of i, i.e., ε(i) = 1 if i > 0 and ε(i) = −1 if i < 0. Let i, j ∈ ∆n be
such that i 6= j. The elementary transvection Tij(a) is defined as follows:

Tij(a) =

{
e+ aeij − λ(ε(j)−ε(i))/2ae−j,−i where a ∈ R, if i 6= −j
e+ aei,−i where a ∈ λ−(ε(i)+1)/2Λ, if i = −j.

Once one knows the form of the matrices in G(2n,R,Λ), it is easy to check that Tij(a) ∈
G(2n,R,Λ). The symbol Tij, where i 6= −j, is called a short root, whereas Ti,−i is called a
long root.

The subgroup generated by all elementary transvections is called the elementary qua-
dratic group and is denoted by E(2n,R,Λ). This group is the quadratic version of the
elementary group in the theory of the general linear group. Note that elementary transvec-
tions corresponding to long roots are elementary matrices in E(2n,R) and elementary
transvections corresponding to short roots are a product of two elementary matrices in
E(2n,R). Let (I,Γ) be a form ideal of (R,Λ). The subgroup generated by all (I,Γ)-
elementary transvections is denoted by F (2n, I,Γ), i.e.,

F (2n, I,Γ) = 〈Tij(x), Ti,−i(y) | x ∈ I, y ∈ λ−(ε(i)+1)/2Γ〉.

The normal closure F (2n, I,Γ)E(2n,R,Λ) of F (2n, I,Γ) inE(2n,R,Λ) is denoted by E(2n, I,Γ)
and is called the relative elementary quadratic subgroup of G(2n,R,Λ) of level (I,Γ). In
this note we sometimes do not distinguish between short and long roots and simply write
Tij(x), assuming that x ∈ λ−(ε(i)+1)/2Λ whenever i = −j.

There are standard relations among the elementary transvections, analogous to those for
the elementary matrices in the general linear group. Here we follow [78] and particularly
[41]. These are much simpler than the original generators and relations (up to 28 relations)
in the book of Bak, which in return makes computations with them less painful (see e.g.
[79],[113]). We also need these relations to define the quadratic Steinberg group. Let us
list the elementary relations:

(R1) Tij(a) = T−j,−i(λ
(ε(j)−ε(i))/2a),

(R2) Tij(a)Tij(b) = Tij(a+ b),

(R3) [Tij(a), Thk(b)] = 1 where h 6= j,−i and k 6= i,−j,
(R4) [Tij(a), Tjh(b)] = Tih(ab) where i, h 6= ±j and i 6= ±h,

1His German thesis is devoted to motives of flag varieties and construction of a new invariant of excep-
tional algebraic groups.
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(R5) [Tij(a), Tj,−i(b)] = Ti,−i(ab− λ−ε(i)ba) where i 6= ±j,
(R6) [Ti,−i(a), T−i,j(b)] = Tij(ab)T−j,j(−λ(ε(j)−ε(−i))/2bab) where i 6= ±j.
As the elementary subgroup has more generators and relations than in the linear case,

and also more complicated relations, this — among other things! — makes computations
in the setting of unitary groups more arduous, sometimes terribly much more so.

7. Unitary algebraic K-theory

There is a standard embedding

G(2n,R,Λ) −→ G(2(n+ 1), R,Λ),

(
a b
c d

)
7→


a 0 0 b
0 1 0 0
0 0 1 0
c 0 0 d


called the stabilisation map. In fact some other sources may give a slightly different picture
of the right hand side. How the right hand side exactly looks, depends on the ordered basis
we choose. With the ordered which is used in the book of Bak [14], the standard embedding
has the form

G(2n,R,Λ) −→ G(2(n+ 1), R,Λ),

(
a b
c d

)
7→


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 .

Define
G(R,Λ) = lim−→

n

G(2n,R,Λ)

and
E(R,Λ) = lim−→

n

E(2n,R,Λ).

The groups G(I,Γ) and E(I,Γ) are defined similarly.
One could ask, whether one can carry over Bass’ results discussed in §2 to the unitary

case? Bak, and in a slightly narrower situation, Vaserstein, established unitary versions of
Whitehead’s lemma, which in particular implies the following result.

Theorem 7.1. Let (R,Λ) be an arbitrary form ring, and (I,Γ) be its form ideal, then

E(I,Γ) = [E(R,Λ), E(I,Γ)] = [G(R,Λ), G(I,Γ)].

Now, similarly to the linear case, this allows one to introduce the unitary K-functor

K1(I,Γ) = G(I,Γ)/E(I,Γ).

A version of unitary K-theory modeled upon Bak’s unitary groups has been systematically
developed by Bass in [47]. Note that, in some literature, the notation KU is used to denote
the unitary K-groups. In other literature, the functor above is called a quadratic K-functor
and the notation KQ is used. (For a lexicon of notations, see [14], §14).
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The functor K1 turned out to be very interesting in its own right and enormously impor-
tant in many topological, geometrical and arithmetical applications. For example, unitary
K-theory and its counterpart, hermitian K-theory, defined in terms of metabolic, rather
than hyperbolic modules, turned out to be instrumental in the calculation of the L-groups
of Wall, Bak-Morimoto and others. They developed into huge theories in their own right.
The foundations of these theories are systematically presented in Bak’s book [14], which
introduces and systematically studies K-functors, both unitary KU0, KU1, KU2 and her-
mitian KH0, KH1, KH2, their properties, comparison with linear case, dependence on form
parameter, exact sequences, and much more (see [88] for some applications). Here we
do not develop the topic of general unitary and Hermitian K-theory any further, since
it would require another survey of comparable size just to introduce necessary definitions
and explain some of the basic ideas. Neither do we try to explain the relation of Bak’s
work in unitary and Hermitian K-theory with the work of Wall, Karoubi, Bass, Novikov,
Ranicki, and others, and its relevance in topology (see [88], an Appendix by Max Karoubi
to this paper, on periodicity theorems in Hermitian K-theory in an algebraic context and
its relation to Bak’s work).

As another piece of structure, parallel to the linear situation, let us mention the descrip-
tion of normal subgroups in G(R,Λ), that holds over an arbitrary ring.

Theorem 7.2. Let (R,Λ) be an arbitrary form ring. If H ≤ G(R,Λ) is a subgroup nor-
malised by E(R,Λ), then for a unique form ideal (I,Γ), one has

E(I,Γ) ≤ H ≤ G(I,Γ)

Conversely, these inclusions guarantee that H is automatically normal in G(R,Λ).

It is interesting to mention that here the course of events has been reversed as compared
with the linear case. Namely the proof of this result has been written by Bass [47] (compare
also §5.4D in [78]), only after Bak in his Thesis had already established similar results for
unitary groups of finite degree, which we discuss in the next section! As Bass himself puts
it, “Here we initiate a detailed study of unitary groups of hyperbolic modules over a unitary
ring. We classify the normal subgroups following ideas of Bak.”

Starting with the elementary relations among the generators of the elementary unitary
group one can define unitary Steiberg groups StU and unitary functor KU2. This too is
done in the book of Bak [14], and we briefly describe these results in §11.

8. Structure in the stable range

Do these results carry over to groups of finite degree n? The much more difficult and
demanding task of finding these generalisations was done in Bak’s Thesis [6, 7], under some
finiteness assumptions on the ground ring. In fact he proves there a non-stable version of
these theorems for the quadratic case parallel to Bass’ result for the linear case.

Let us recall the linear case first. These results are most conveniently stated in terms of
the new type of dimension for rings, introduced by Bass, stable rank. Since later we shall
discuss generalisations of this notion, we recall here its definition.
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A row (a1, . . . , an) ∈ nR is called unimodular if the elements a1, . . . , an generate R as a
right ideal, i.e. a1R + · · ·+ anR = R, or, what is the same, there exist b1, . . . , bn ∈ R such
that a1b1 + · · ·+ anbn = 1.

A row (a1, . . . , an+1) ∈ n+1R is called stable, if there exist b1, . . . , bn ∈ R such that the
right ideal generated by a1 +an+1b1, . . . , an+an+1bn coincides with the right ideal generated
by a1, . . . , an+1.

One says that the stable rank of the ring R equals n and writes sr(R) = n if every
unimodular row of length n + 1 is stable, but there exists a non-stable unimodular row of
length n. If such n does not exist (i.e. there are non-stable unimodular rows of arbitrary
length) we say that the stable rank of R is infinite.

It turned out that stable rank, on one hand, most naturally arises in the proof of results
pertaining to linear groups and, on the other hand, it can be easily estimated in terms of
other known dimensions of a commutative ring R, say of its Krull dimension dim(R), or its
Jacobson dimension j(R) = dim(Max(R)). Here, Max(R) is the subspace of all maximal
ideals of the topological space Spec(R), the set of all prime ideals of R, equipped with the
Zariski Topology. Then j(R) is the dimension of the topological space Max(R). Let us
state a typical result in this spirit due to Bass.

Theorem 8.1. Let R be a ring finitely generated as a module over a commutative ring A.
Then sr(R) ≤ dim(Max(A)) + 1.

In fact, usually this inequality is strict. The right hand side should be thought of as a
condition expressing (a weaker form of) stability for not necessarily unimodular rows. In
[68] and [86] it is shown that already asr(R) ≤ dim(Max(A)) + 1, where asr(R) stands for
the absolute stable rank (see p. 22, for more discussion on this).

As a curiosity we could mention that the name stable rank itself and the notation sr
were introduced by L.N.Vaserstein [150] as a result of mistranslation. Bass himself spoke
about stable range rather than stable rank, but in Russian the word rank is spelled with
g. Moreover the definition we introduced is shifted by one from Bass’ original condition.
The precise relationship is sr(R) ≤ n if and only if Bass’ stable range condition SRn+1 holds.
However, our notation is now in common use, and we think that it is actually slightly more
convenient both in structure theory and in stability problems than Bass’ original condition.

Now we are in the position to state two of the main results of [45].

Theorem 8.2. Assume that n ≥ max{sr(R), 3} and let I E R be an ideal of R. Then
E(n,R, I) is normal in GL(n,R). More precisely,

[GL(n,R), E(n,R, I)] = [E(n,R), C(n,R, I)] = E(n,R, I)

Theorem 8.3. Assume that n ≥ max{sr(R), 3} and let H be a subgroup of GL(n,R),
normalised by the elementary subgroup E(n,R). Then there exists a unique ideal I E R
such that

E(n,R, I) ≤ H ≤ C(n,R, I).
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The first of these theorems allows one to conclude that in the stable range the nonstable
K1-functor of degree n

K1(n,R, I) = GL(n,R, I)/E(n,R, I),

is not just a set, but in fact a group. In the next two sections we discuss both its behaviour
under stabilisation maps and what happens below the stable range, again mostly limiting
ourselves to the absolute case K1(n,R) = K1(n,R,R).

In his Thesis, Bak systematically studied the structure of unitary groups at the stable
level and establishes analogues of Bass results (and in his book, also of Milnor’s results)
in this setting. Unfortunately, many results contained in Bak’s Thesis stayed unpublished
for about 30 years. It is mentioned in [41] that ”Unfortunately [6] was never published
and was not easily available, especially in Russia and China. This did a lot of harm. In
fact, many works appearing up till the late eighties , were proving structure theorems for
classical groups over rings covered in [6], such as zero-dimensional ones.”.

Of course, in the quadratic case one also has to slightly revise the upper bound group:

C(2n, I,Γ) = {g ∈ G(2n,R,Λ) | [g,G(2n,R,Λ)] ≤ G(2n, I,Γ)}.
Note that, although the form ring is not reflected in the notation, actually the groups
depend not only on (I,Γ), but also on (R,Λ). Actually, in the majority of interesting cases
this subgroup coincides with the group

G̃(2n, I,Γ) = {g ∈ G(2n,R,Λ) | [g, E(2n,R,Λ)] ≤ E(2n, I,Γ)}
considered in [78]. The reason they coincide is that in fact, they both coincide with the
larger group

G′(2n, I,Γ) = {g ∈ G(2n,R,Λ) | [g, E(2n,R,Λ)] ≤ G(2n, I,Γ)}
which transports the smaller one of two subgroups on the left-hand side to the larger one
of the two on the right-hand side. Let us quote a typical result in this style that figures as
Corollary 3.4 in [6] (recall that a ring R is called almost commutative, or module finite, if
it is finitely generated as a module over its centre).

Theorem 8.4. Let R be a module finite ring. Furthermore, assume that the centre A of
the ring R is Noetherian of Krull dimension d. Let n ≥ max{d+ 2, 3}. Then for any form
ideal (I,Γ) one has

C(2n, I,Γ) = G′(2n, I,Γ) = G̃(2n, I,Γ).

In [39] and [43] one can find many further instances, when these groups coincide.
With this notation two of the main results (the two implications in Theorem 1.2) estab-

lished in Bak’s Thesis may be stated as follows.

Theorem 8.5. Let R be a module finite ring. Furthermore, assume that the centre A of
the ring R is Noetherian of Krull dimension d. Let n ≥ max{d+ 2, 3}. Then for any form
ideal (I,Γ), E(2n, I,Γ) is a normal subgroup of G(2n,R,Λ) and

[E(2n,R,Λ), C(2n, I,Γ)] = E(2n, I,Γ).
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Theorem 8.6. Keep the assumptions in the preceding theorem. Then for any subgroup
H ≤ G(2n,R,Λ) normalised by E(2n,R,Λ) there exists a unique form ideal (I,Γ) such
that

E(2n, I,Γ) ≤ H ≤ C(2n, I,Γ).

In fact Bak’s original theorem imposes a slightly weaker assumption on the centre of
R, namely what is now called Bass–Serre dimension (see §13 for the defintition). In the
1990’ies Bak and Vavilov [41], [40]2 and independently Vaserstein and Hong You [158] could
remove the assumption on the dimension of the centre of R and prove analogues of these
results for groups of degree n ≥ 3 over classes of rings which in both cases included, in
particular almost commutative rings.

One of the most important and lasting aspects of these theorems is that they emphasise
the inevitablity of form ideals — and in particular of relative form parameters! — in the
description of normal subgroups. This is rather non-obvious, since even now, after almost
40 years, many authors still seem not to have fully assimilated this fact. Instead, they try
to introduce some ad hoc corrections to (what they believe is) the standard description in
terms of ordinary ideals, with the idea to save the answer in various specific situations.

As a curiosity let us cite that even in the paper [158], which nominally acknowledges that
the description should be stated in terms of form ideals, relative form parameters are omit-
ted from the notation: “In this article we often write (J,∆) as J”. This leads to unavoidable
confusion and ambiguity. On page 94 the authors define C(2n, J,Γ) — which they alterna-
tively denote by O2n(R, J) or by O2n(R, J,Γ) — as “the subgroup of matrices in O2nR which
reduce modulo J to scalar matrices over the centre of R/J”. Clearly, this group does not
depend on the relative form parameter — and in fact corresponds to the maximal relative
form parameter Γmax. But then their Theorem 1.1 (an analogue of 8.5 above) cannot be true
as stated, since the last inclusion there can be a proper inclusion, rather than equality. Nei-
ther does the uniqueness of the form ideal in Theorem 1.2 (an analogue of 8.6 above) hold
under this definition. That the authors indeed rely on the above (wrong) definition and do
not, thereby, take into account the relative form parameter is illustrated by the naive form of
level reduction on page 104: “Consider the image H ′ of H in O2n(R/J) . . . Thus H ′ is central
in O2n(R/J), i.e. H ⊂ O2n(R, J)”. In fact, such naive level reduction gives only inclusions
E(2n, I,Γmin) ≤ H ≤ C(2n, I,Γmax) and the equality [E(2n,R,Λ), H] = E(2n, I,Γmin)
which one wants for any H in the sandwich E(2n, I,Γmin) ⊆ H ⊆ C(2n, I,Γmax) no longer
holds, because [E(2n,R,Λ), C(2n, I,Γmax)] = E(2n, I,Γmax).

Thus the results of [158], and their proofs, only stand as stated under some additional
simplifying assumption which guarantees that Γmin = Γmax for all ideals of R, for example,
2 ∈ R∗. But both the correct definition of the group C(2n, J,Γ) and the correct form of
level reduction, which allow one to proceed without any such simplifying assumption, were
introduced already in Bak’s Thesis!

2These papers circulated in preprint form since 1994, but their authors are slow publishers.
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9. Stability for unitary K-functors

Another milestone in the development ofK-theory were stability theorems forK-functors.
For the linear case these theorems were established by Bass himself and Vaserstein at the
level of K1, by Dennis, Vaserstein, van der Kallen, Suslin and Tulenbaev at the level of K2

and by Suslin in general.
Let us explicitly state stability theorems for K1 and K2, which play a crucial role in many

results. The embeddings GL(n,R) ≤ GL(n + 1, R), E(n,R) ≤ E(n + 1, R), considered in
§2 induce a homomorphism

ψn : K1(n,R)→ K1(n+ 1, R).

It is natural to ask, under which conditions this homomorophism is an epimorphism or a
monomorphism. The first one of these questions is called the problem of surjective stability ,
and the second one — the problem of injective stability . For classical groups it is much
easier to establish surjective stability, than injective stability — for exceptional groups this
is not always the case! The first stability result is due to Bass [45].

Theorem 9.1. For any n ≥ sr(R) the map ψn is surjective. In other words, one has

GL(n+ 1, R) = E(n+ 1, R) GL(n,R).

In fact this stability result was instrumental in the proof of results we mentioned in the
preceding section. On the other hand, applications to the congruence subgroup problem
[51] required injective stability. Let us state the final version of injective stability for K1,
now known as the Bass–Vaserstein Theorem.

Theorem 9.2. For any n ≥ sr(R) + 1 the map ψn is injective. In other words, one has

GL(n,R) ∩ E(n+ 1, R) = E(n,R).

Just to give some idea how powerful this result is, let us mention that it allows sharpening
standard commutator formulae as follows.

Theorem 9.3. Let n ≥ sr(R) + 1. Then for any ideal I ER one has

[GL(n,R),GL(n,R, I)] ≤ E(n,R).

Moreover, if n ≥ 3 and 1 ∈ R∗ +R∗ this inclusion is in fact an equality.
The proof of a slightly weaker result (with some extra conditions) in Bass’ book [46] took

about 40 pages and relied on extremely intricate matrix computations. Soon thereafter
Vaserstein produced a readable 10 page proof [151]. However, to really understand what
goes on and to come up with a proof that really explains things, one has to introduce
additional technical tension. Plenty of such tension is introduced as one tries to generalise
these results to higher K-functors and to other types of groups!

In fact, in the early 70-ies Dennis [61] and Vaserstein [153] established surjective stability
for K2 and subsequently van der Kallen [82] and Suslin–Tulenbaev [143] came up with
injective stability for K2. These theorems paved the way to the beautiful stability theorems
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and comparison theorems of Suslin [140], which demonstrate that the correct version of
unstable K-theory is Volodin’s K-theory.

However, let us dwell with K1 for a while. Consider the subgroups P and Q of the group
E(n+ 1, R) defined as follows:

P =

{(
1 0
u a

)
, u ∈ Rn, a ∈ E(n,R)

}
,

Q =

{(
b 0
v 1

)
, v ∈ nR, b ∈ E(n,R)

}
.

These subgroups should be thought of as the elementary subgroups of the parabolic sub-
groups P1 and Pn in GL(n + 1, R). Now we are all set to state Dennis–Vaserstein decom-
position.

Theorem 9.4. Let n ≥ sr(R) + 1. Then every element g ∈ E(n + 1, R) can be written in
the form g = yt1,n+1(λ)z, where y ∈ P , λ ∈ R, z ∈ Q.

This is essentially what survives over a ring of finite stable rank of several canonical forms
for matrices in GL(n,K) over a field (such as Bruhat decomposition, Gauß decomposition,
etc.)

For other classical groups the development was not as straightforward, due to the fact
that it was not immediately clear what the relevant substitute of stable rank was. In
fact, since for classical groups elementary transformations can modify two components of
a row or a column, one is compelled to work in terms of pieces of rows and columns,
which are not necessarily unimodular. As a result a host of competing stability conditions
were tried as candidates over decades, with variable success. The short list starts with
the obvious candidate, Jacobson dimension j(R) = dim(Max(R)). Another major success
was an important observation by Stein that a slightly less obvious absolute stable rank
asr(R), defined in terms of a weaker form of stability for not necessarily unimodular rows,
would work here — as well as for exceptional groups! For the orthogonal group there was
also Vaserstein’s condition defined in terms of unimodular rows lying on a quadric, which
at the time seemed quite natural. In fact, this condition became quite popular and was
generalised to unitary groups by Bak’s student Habdank [77], as unitary stable rank and
to all Chevalley groups by Plotkin [119].

However, there was a general feeling that stability proofs for groups other than SLn and
Sp2l are far from being satisfactory. Indeed, many results using diverse stability conditions
had non-trivial overlaps, but would not directly imply each other. On top of that most
of the published proofs, with the notable exceptions of Suslin–Tulenbaev proof in [143]
and Stein’s proof in [132] (and subsequent proofs by Plotkin directly modeled on it [118],
[117] and references therein) were so technical and clumsy that it was not easy not only
to check them in detail, but even to simply figure out what goes on there. Amazingly,
this applied both to proofs phrased in terms of matrices and proofs phrased in terms of
modules. Saliani’s proof reproduced in [93] is generally accepted as being correct, but is
by no means easy to follow either.
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Andrei Suslin confessed to us that he never tried to look inside such stability proofs for
classical groups and to correct all the misprints3 therein, but would rather devise his own
proofs. He suggested that we should proceed similarly and in [120] we made yet another
attempt to understand the interrelation of different proofs and different stability condi-
tions used therein. For example, are the Suslin–Tulenbaev proof and the Stein proof the
same, or are they two different proofs? When one looks at these proofs from a caterpillar
viewpoint, as matrix calculations, even the answer to such questions was not immediately
obvious! First we interpreted all previous proofs in terms of the theory of algebraic groups,
systematically articulating words like parabolic subgroups, unipotent radicals, Levi decom-
position, etc., instead of explicit matrix formulae. As a result, we could invoke stability
conditions exactly once in the proof of Dennis–Vaserstein decomposition, all the rest was
pure structure theory of algebraic groups, essentially the Chevalley commutator formula!
Thus the whole proof with all subsidiary results for all split classical groups = classical
Chevalley groups, was condensed into 4 pages. In fact, we could fit into this space both
the Suslin–Tulenbaev and Stein proofs, at the moment we discovered that they only differ
in one issue, as to whether the extra zeroes needed to establish Dennis–Vaserstein decom-
position are produced in the unipotent radical (according to Suslin–Tulenbaev) or in the
Levi factor (according to Stein).

The decisive contribution of Bak at this point was his observation that you should not
wander around in search of an appropriate ring theoretic condition, but rather should work
directly from the proof and see what precisely is needed there. Consequently, in a joint
paper [37], Bak and Tang boldly introduced the Λ-stable rank of form rings as the precise
condition that is required to establish surjective stability by following the proof for unitary
K1 in [6], (4.7), and Hermitian K1 in [37]. Namely, one says that Λ sr(R,Λ) ≤ n provided
sr(R) ≤ n and for any unimodular row (a1, . . . , an, a−n, . . . , a−1) of length 2n there exists
a matrix

y ∈ AH(n,R,Λ) = {x ∈M(n,R) | x = −λx∗, xii ∈ Λ}
such that (a1, . . . , an) + (a−n, . . . , a−1)y is unimodular. In fact, the condition was phrased
slightly differently, in the spirit of Bass’ condition, its equivalence with the definition given
here follows from Lemma 3.3 of [37].

It was established in [37] and [31] that all thinkable stability conditions — or, at least,
all the conditions used to study unitary stability before, such as absolute stable rank,
unitary stable rank, as well as conditions expressed in terms of Krull dimension, Jacobson
dimension, or Bass–Serre dimension — are bounded from below by Λ-stable rank.

Even more remarkably, it turned out that this Bak’s Λ-stability condition is precisely
what was needed to transcribe to the unitary case the proof of [143] and [120] based on
Dennis–Vaserstein decomposition! This task is beautifully accomplished in the joint work
of Bak with Petrov and Tang [31]. This work at last provides a long desired unified version
of stability results for the unitary case which generalises all previously known results! Not
only that, the use of Bak’s condition allows improving the bound for injective stability in

3We try to be as politically correct as we can and carefully control our language.
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terms of Bass–Serre dimension by 1. This bound is the one predicted by that for surjective
stability in Bak’s Thesis [6] (4.7). As in the linear case, consider the stability map

ψn : K1(2n,R,Λ) −→ K1(2(n+ 1), R,Λ).

Then the main result of [31], Theorem 1.1, can be stated as follows.

Theorem 9.5. For any n ≥ Λ sr(R) the map ψn is surjective.

Theorem 9.6. For any n > Λ sr(R) the map ψn is injective.

These results are direct analogues of the stability results for GLn, with the same bounds .
Before that work such a unified analogue was not known even for the case of surjective
stability, despite the efforts of many experts! Direct analogue of the stability results for
GLn, again with the same bounds, hold also for general Hermitian groups GH2n [37]. Here,
stability phenomenon is concentrated in the hyperbolic part of the group and consequently
the Λ-stable rank condition is needed only for the maximal form parameter Λ = Λmax.

10. Structure in the metastable range

In the non-stable case, as there is no “room” available for manoeuvering as in the stable
case (e.g. think of the Whitehead lemma, proving E(R) is normal in GL(R)), one is forced
to put some finiteness assumption on the ring. Indeed, there are counter-examples available
which show that there are some rings over which the answers to the main structure problems
are not standard. For any given n Gerasimov [70] produced examples of rings R for which
E(n,R) is as far from being normal in GL(n,R), as one can imagine.

However, for commutative rings and for rings satisfying appropriate commutativity con-
ditions standard answers do hold. A major contribution in this direction is the work of
Suslin [139], [149] who showed that if R is a module finite ring namely, a ring that is
finitely generated as module over its centre, and n ≥ 3 then E(n,R) is a normal sub-
group of GL(n,R). That Suslin’s normality theorem (and the methods develop to prove
it) implies the standard commutator formulae in full force was somewhat later observed
independently by Borewicz–Vavilov [55] and Vaserstein [154]. Module finite rings are also
called almost commutative.

Theorem 10.1. Assume that R is an almost commutative ring and n ≥ 3. Further, let
I ER be an ideal of R. Then E(n,R, I) is normal in GL(n,R). More precisely,

[GL(n,R), E(n,R, I)] = [E(n,R), C(n,R, I)] = E(n,R, I).

Now, it is only natural to ask, whether the second of Bass’ theorems viz., the classification
of subgroups of GL(n,R) normalised by E(n,R) also holds when n ≥ 3 and R is module
finite. The following theorem was first established for commutative rings by Wilson [178],
for n ≥ 4, and independently by Golubchik [71], for n ≥ 3.

Theorem 10.2. Let R is an almost commutative ring, n ≥ 3. For any subgroup H ≤
GL(n,R) normalised by E(n,R), there exists a unique ideal I ER such, that

E(n,R, I) ≤ H ≤ C(n,R, I).
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Observe that unlike the stable case now a subgroup H satisfying the conclusion of the
theorem is not necessarily normal in GL(n,R), see §4.2D in [78], many such examples were
constructed by A. Mason (see [78]).

In fact, quite remarkably Wilson and Golubchik worked in the absence of the standard
commutator formulae, and thus could not directly invoke level reduction used by Bass in
his proof at the stable level. As a result their proofs are considerably more complicated
than subsequent proofs assuming the standard commutator formulae.

Simpler and more general proofs were devised by Borewicz–Vavilov [55] and Vaserstein
[154]. In fact, these proofs are based on completely different ideas. The proof by Borewicz–
Vavilov is of geometric nature and is based on reduction of rank. At the same time the
proof by Vaserstein is of arithmetic nature and is based on the reduction of dimension of the
ground ring (of course, for zero-dimensional rings he has to invoke reduction of rank, but
for those rings it is classically known). The ultimate quarter-page proofs of these results,
based on decomposition of unipotents, were proposed by Stepanov and Vavilov [137].

We do not attempt to describe many subsequent results in this style, stated in terms of
various finiteness and commutativity conditions. Many variations on this theme have been
published by Vaserstein and his followers. However, all these variations operate in terms of
commutative localisations. A much more general approach has been taken by Golubchik
and Mikhalev, who established similar results in terms of non-commutative localisations,
such as Ore localisation [72]—[76]. The exact conditions are mostly far too technical to
state, but their results imply the standard description for rings such as PI-rings, or weakly
noetherian rings. Unfortunately, these outstanding results are mostly still not published
in a form accessible to a Western reader, and the published ones do not constitute easy
reading, so that their importance is largely downplayed or outright ignored.

The path to full-scale generalisation of these results to other classical groups was anything
but straightforward. With many works on the structure of classical groups in various
situations4 the definitive analogues of the above results were only established in the mid-
90-ies. Let us state these results for almost commutative rings, since this is the only case
which is likely to be of interest to a general audience, apart from a handful of experts in
classical groups.

Theorem 10.3. Assume that R is an almost commutative ring and n ≥ 3. Further, let
I ER be an ideal of R. Then E(2n, I,Γ) is normal in G(2n,R,Λ). More precisely,

[G(2n,R,Λ), E(2n, I,Γ)] = [E(2n,R,Λ), C(2n, I,Γ)] = E(2n, I,Γ).

Theorem 10.4. Let R be an almost commutative ring, n ≥ 3. For any subgroup H ≤
G(n,R,Λ) normalised by E(n,R,Λ), there exists a unique form ideal (I,Γ) E (R,Λ) such,
that

E(n, I,Γ) ≤ H ≤ C(n, I,Γ).

4Many of which operated in terms of various finite-dimensionality conditions and thus proved special
cases of results already established in [6]!
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These results are established in [43], [158], [41], [40]. As far as the first one of these
results is concerned, it also holds for n = 2 provided that ΛR+RΛ = R, see [43]. Nothing
like that can be said in general about the second result, as can be seen from the amazing
paper [60] by Costa and Keller, on the exceptional behaviour of the group Sp(4, R). In
fact, as we observed in §8, modulo correction of errors the work [158] proves only a weaker
result namely, E(n, I,Γmin) ≤ H ≤ C(n, I,Γmax), whereas the actual proof in [40] is still
unpublished.

Presently Bak and Vavilov are updating their proof so that it would operate in terms of
Λ-stable rank and non-commutative localisation more general than Ore localisation, rather
than absolute stable rank and localisations at maximal ideals of the centre. One cannot
claim, that it is the most general result possible in this direction, but at least it is the
first proposal of sufficient conditions for the standard description of structural results that
uniformly generalises all the previously known ones.

On a different slope, let us refer to the papers [163]—[167] by the second-named author
and his students where one can find a detailed comparison of various proofs of these results
for commutative rings, and their generalisations to exceptional groups.

One giant step forward is to characterise the subnormal subgroups of classical-like groups.
This turned out to be directly related to subgroups normalised by relative elementary
subgroups. The development of this line of research starts as follows.

In [16] (the original manuscript of which goes back to 1967), Bak studied the subgroups
of GL(n,R) normalised by E(n,R, I), for a ring R with the stable rank condition and
obtained a sandwich classification for such subgroups. His motivation for this was to
positively answer a question credited to Borel. Consider the general linear group GL(n,K)
where K is a global field. If n ≥ 3 and H is a noncentral subgroup of GL(n,K), normalised
by an arithmetic subgroup of GL(n,K), then does H contain an arithmetic subgroup of
GL(n,K)? Bak observed that the answer to this would follow if one could establish a
sandwich condition similar to the absolute case for subgroups of the special linear group
SL(n,R) normalised by relative elementary groups where R is the ring of integers in K.

Thanks to the works of Wilson [178], Vaserstein [154, 155] and Vavilov [162], the Sand-
wich Theorem has been improved several times and now we have the following theorem (see
[155] for a more general form, and recall that for two ideals I and J of the commutative
ring R, (I : J) = {r ∈ R | rJ ⊆ I}).

Theorem 10.5. Let R be a commutative ring, n ≥ 3 and H a subgroup of GL(n,R)
normalised by E(n,R, J) for an ideal J . Then there exist an ideal I such that

E(n,R, I) ⊆ H ⊆ C(n,R, I : J4).

Theorems of the above nature are a key to classify the subnormal subgroups of GL(n,R)
(see proof of Theorem 1 in [155]). Namely, if

H = G0 EG1 E . . .EGd = GL(n,R)
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is a subnormal subgroup of GL(n,R), then thanks to the above Theorem, there is an ideal
J of R such that

E(n,R, J4) ⊆ H ⊆ C(n,R, J).

In [16] Bak conjectured that his Sandwich Classification Theorem holds as well in the
setting of general quadratic groups over rings with stable rank condition (in [16] Conjecture
1.3). Indeed, in the light of recent developments in the theory, one can formulate the
following conjecture:

Conjecture 1. Let (R,Λ) be a form ring with R module finite, and let (J,ΓJ) be a form
ideal. Let H be a subgroup of G(2n,R,Λ), which is normalised by E(2n, J,ΓJ). Then there
is a form ideal (I,ΓI) and a positive integer k such that

E(2n, I,ΓI) ⊆ H ⊆ G(2n, I : Jk, (I : Jk) ∩ Λ).

This conjecture for a commutative ring R satisfying the stable rank condition, was settled
positively by Habdank [77]. Recently Zhang [180] proved the conjecture in the stable case
with only the commutativity assumption on the ring (and obtained a much finer range than
is predicated by the conjecture), and consequently a description of subnormal subgroups
of quadratic groups in this setting followed. His refinement was to replace (I : Jk) ∩ Λ by
a certain smaller relative form parameter Γ(I:Jk) and it is conjectured that the conclusion
of the conjecture above holds also for this smaller relative form parameter.

11. Unitary Steinberg groups

Similarly to the linear case one can define the quadratic Steinberg group and the qua-
dratic K2 group. The quadratic Steinberg group StU(2n,R,Λ) is a group generated by
Xij(a) where i, j ∈ ∆n and a ∈ R, subject to the relations R(1) to R(6), with Xij in-
stead of Tij. Here n ≥ 3. As for n = 1 or 2 some of R(1) to R(6) are not valid. To be
consistent with previous sections, we drop the “U” from the notation and simply write
St(2n,R,Λ). Thus K2,2n(R,Λ) = K2(2n,R,Λ) is defined as the kernel of the natural epi-
morphism St(2n,R,Λ)→ E(2n,R,Λ), and there is an exact sequence

1 −→ K2,2n(R,Λ) −→ St(2n,R,Λ) −→ E(2n,R,Λ) −→ 1.

To come up with a stable version of these groups, one should as usual consider the
stablisation homomorphism

St(2n,R,Λ) −→ St(2(n+ 1), R,Λ),

sending Xij(a) (in the first group) to Xij(a) (in the second group). However, since now the
Xij(a)’s take part in some new relations, this map is not necessarily an embedding.

Now we can set

St(R,Λ) = lim−→
n

St(2n,R,Λ)
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and define K2(R,Λ) as the kernel of the natural epimorphism St(R,Λ) → E(R,Λ), and
again, there is an exact sequence

1 −→ K2(R,Λ) −→ St(R,Λ) −→ E(R,Λ) −→ 1.

Similarly to the linear case one can proceed to show that the map St(R,Λ) → E(R,Λ)
is a central extension. In fact, in his book [14] Bak proves the following analogue of the
Milnor–Kervaire theorem (see also §5.5 of [78]).

Theorem 11.1. The homomorphism St(R,Λ)→ E(R,Λ) is a universal central extension
of E(R,Λ).

It is natural to ask, whether this result carries over to Steinberg groups of finite degree.
For the linear case the answer is given by the following remarkable theorem established by
van der Kallen [83] and Tulenbaev [149].

Theorem 11.2. Let R be a module finite ring. Then the homomorphism

St(n,R) −→ E(n,R)

is central for n ≥ 4.

The marvelous another presentation proof of this theorem for commutative case given in
[83] is a real masterpiece of mathematical exposition and can be explained to an undergrad-
uate student (we’ve done this more than once ourselves!). The proof of the general case
[149] combines van der Kallen’s basic idea of “another presentation” with Suslin’s “factori-
sation and patching” and is technically somewhat more demanding, compare also [36]. In
[137] we sketch the construction of a different van der Kallen like model of the Steinberg
group, which starts not with Suslin’s decomposition, but rather with the decomposition of
unipotents, and leads to a slightly shorter proof.

Bak and his (then) student Guoping Tang announced that by adapting a hard to read
van der Kallen–Tulenbaev proof of centrality of nonstable K2 (in the linear case) to the
quadratic case, they could show the centrality of quadratic K2. Namely, they obtained the
following result.

Theorem 11.3. Let R be a module finite ring. Then the homomorphism

St(n,R,Λ) −→ E(n,R,Λ)

is central for n ≥ 8.

Their proof combines techniques of [41], [83], [149], but the presence of both short and
long roots in the elementary quadratic subgroup, non-commutativity, non-triviality of the
involution, the presence of the form parameter, among other things, make this proof tremen-
dously involved. About 8 years ago we and Alexei Stepanov scrutinised most of the Bak–
Tang proof and it looked quite convincing to us, but due to enormous size it is still not
published.

In fact, recently one of us raised from the ground a similar proof for the case of ex-
ceptional Chevalley groups of types E6 and E7, [164]. Despite severe additional technical
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complications stemming from representation theory and more complicated root structure,
we hope that, when completed, the proof in this case would be not nearly quite as com-
plicated as the unitary proof by Bak and Tang — to get some idea, compare [79] and
[80].

12. Nilpotency of K1

Suslin’s result makes it possible to define the non-stable K1,n, when n ≥ 3, for module
finite rings. The study of these non-stable K1’s is known to be very difficult. There are
examples due to van der Kallen [85] and Bak [18] which show that non-stable K1 can be
non-abelian and the natural question is how non-abelian it can be?

The breakthrough came with the brilliant work of Bak [18], who showed that this group
is nilpotent by abelian (Theorem 12.2) if n ≥ 3 and the ring satisfies some dimension
condition (e.g. has a centre with finite Krull dimension).

In 1991, Bak introduced in his paper [18] his localisation-completion method. Using this
method he was able to prove that nonstable K1(n,R) = GL(n,R)/E(n,R) is a nilpotent by
abelian group provided R is module finite over its centre, with finite Bass–Serre dimension
and n ≥ 3 (see §13 for definitions). Recall that, a group G is nilpotent by abelian, if there
is a normal subgroup H, such that G/H is abelian and H is nilpotent. This clearly implies
that G is solvable.

Theorem 12.1. Let R be finitely generated over its centre, with finite Bass–Serre dimen-
sion. Then the group K1(n,R), n ≥ 3, is nilpotent by abelian.

In fact, Bak proves a much more precise result, as he explicitly constructs a descending
central series in SL(n,R).

Theorem 12.2. Let R be a quasi-finite A-algebra, i.e., a direct limit of module finite
A-subalgebras, and n ≥ 3. Then there is a filtration

GL(n,R) ≥ SL0(n,R) ≥ SL1(n,R) ≥ · · · ≥ E(n,R),

where GL(n,R)/ SL0(n,R) is abelian and SL0(n,R) ≥ SL1(n,R) · · · is a descending cen-
tral series. Moreover, if i ≥ δ(R), where δ(R) is the Bass–Serre dimension of R, then
SLi(n,R) = E(n,R).

His method which consists of some “conjugation calculus” on elementary elements, plus
simultaneously applying localisation-patching and completion was a source of further work
in this and related areas. We analyse this important work in more detail in the Section
13. In [79] the first author adopts the same method to study nonstable K1 of quadratic
modules, establishing Theorem 12.2 for the general quadratic group G(2n,R,Λ). In the
case of general quadratic groups, as the elementary subgroups have more generators and
relations, this makes, among other things, computations in this setting much more involved.

In [80] the authors apply the localisation-completion method in the setting of Chevalley
groups to prove that K1 of Chevalley groups are nilpotent by abelian. More precisely,
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let Φ be a reduced irreducible root system of rank at least 2 and let R be a commu-
tative ring of finite Bass–Serre dimension or finite Krull dimension. Let G(Φ, R) be a
Chevalley group of type Φ over R and let E(Φ, R) be its elementary subgroup. Then
K1(Φ, R) = G(Φ, R)/E(Φ, R) is nilpotent by abelian. In particular, E(Φ, R) is a char-
acteristic subgroup of G(Φ, R). This fact plays a crucial role in A. Stepanov’s recent
spectacular results, partly positive, partly negative, solving the oversubgroup problem for
E(Φ, R) embedded in G(Φ, R′) where R′ is an overring of R [136]. Also, the recent clas-
sification of subgroups of the general linear group GL(2n,R) containing the elementary
quadratic subgroup EU(2n,R,Λ) was made possible by employing the powerful form of
Bak’s “conjugation calculus” [113, 168, 169].

Putting these results together, one can write the following theorems which describe the
nilpotent structure of K1 group of classical-like groups.

Theorem 12.3. Let G(2n,R,Λ), n ≥ 3, be the general quadratic group over an almost
commutative form ring (R,Λ), of finite Bass–Serre dimension, and let E(2n,R,Λ) be its
elementary subgroup. Then G(2n,R,Λ)/E(2n,R,Λ) is nilpotent by abelian.

Theorem 12.4. Let Φ be a reduced irreducible root system of rank ≥ 2, G(Φ, R) a Chevalley
group of type Φ over a commutative ring R of finite Bass–Serre dimension, let E(Φ, R) its
elementary subgroup. Then G(Φ, R)/E(Φ, R) is nilpotent by abelian.

Theorem 12.3 is proved in [79] and Theorem 12.4 in [80]. Using Bak’s localisation-
completion and Stein’s relativisation [131] the above theorem is carried out in the relative
case as well [44].

13. Localisation-completion

The methodology employed to prove Theorem 12.2, including the localisation-completion
method, was the main motivation to later develop dimension theory in arbitrary categories
(see §14), and also influenced many subsequent works. We describe here Bak’s localisation-
completion method. For making the method as transparent as possible, we assume the
ground ring A to be commutative Noetherian5.

We start by recalling the notion of Bass–Serre dimension for a commutative ring A.
Consider the topological space Spec(A) of all prime ideals of A under the Zariski topology,
and let, as before, Max(A) denote the subspace of maximal ideals of A. The Bass–Serre
dimension of A, denoted by δ(A), is defined to be the smallest non-negative integer d such
that Max(A) = X1 ∪ · · · ∪Xr is a finite union of irreducible Noetherian subspaces Xi, with
topological dimension not greater than d. It is easy to see that δ(A) = 0 if and only if A
is semi-local. For a module finite A-algebra R, we define δ(R) to be the dimension δ(A).
Again, it is clear that if δ(R) = 0, then R is a semi-local ring.

As a first step for invoking induction on δ(A) later on, Bak proves an induction lemma.

5Since any ring is a direct limit of its Noetherian subrings and the functors GLn and En commute with
direct limits, the proof smoothly reduces to Noetherian rings. Bak introduced his finite completion method
to take care of this when working with general rings
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Lemma 13.1. If s ∈ A such that for each Xk(1 ≤ k ≤ r), s does not lie in some member

of Xk, then δ(Âs) < δ(A) where Âs = lim←−p≥0
A/spA is the completion of A at s.

With this lemma, Bak sets the stage for simultaneously employing localisation-patching
to make computations in zero dimensional rings and completion for applying induction on
δ(A). This is done as follows. For any multiplicative set S in A, let S−1A denote the ring
of S-fractions of A. In particular, for an s ∈ A, we denote by 〈s〉 = {si | i ≥ 0} the
multiplicative set generated by s.

Let r have the same meaning, as in the definition of Bass–Serre dimension. For each k,
1 ≤ k ≤ r, pick a maximal ideal mk ∈ Xk. In the sequel, we take S to be the multiplicative
set S = A \ (m1 ∪ · · · ∪mr). For each s ∈ S, consider a diagram

Âs ←− A −→ 〈s〉−1A

and the direct limit lim−→s
〈s〉−1A = S−1A. The ring S−1A is semi-local and any completion

over S−1A involving only a finite number of elements actually takes place in some 〈s〉−1A.

Furthermore, δ(Âs) < δ(A) for any s ∈ S by the induction lemma. Bak’s strategy is to use

the rings 〈s〉−1A to perform actual computations, and the rings Âs to apply induction on
the dimension of A.

To carry out this strategy, he introduces his dimension filtration,

SLd(n,R) =
⋂
R−→S
δ(R′)≤d

Ker
(

GL(n,R) −→ GL(n,R′)/E(n,R′)
)
,

where R′ is a module finite A-algebra. See [79], Definition-Lemma 3.3 for technicalities.
It is clear that the following homomorphism is injective,

GL(n,R)/ SL0(n,R) −→
∏

δ(R′)=0

GL(n,R′)/E(n,R′).

Since δ(R′) = 0, the ring R′ is semi-local, and thus GL(n,R′)/E(n,R′) is abelian. It follows
that GL(n,R)/ SL0(n,R) is an abelian group. To show that the second half of the filtration
in Theorem 12.2 is a descending central series, it suffices to show that for any x ∈ SL0(n,R)
and y ∈ SLd−1(n,R), one has [x, y] ∈ SLd(n,R). Since the filtration is functorial, we can
assume d = δ(R) = δ(A).

Here Bak uses his localisation-completion techniques. Consider the diagram

GL(n, R̂s)
bFs←− GL(n,R)

Fs−→ GL(n, lim−→
s

〈s〉−1R).

Since δ(S−1R) = δ(S−1A) = 0, the image of x in GL(n, S−1R) lies in E(n, S−1R). Since
S−1R = lim−→s

〈s〉−1R, there is an s ∈ S such that Fs(x) ∈ E(n, 〈s〉−1R). On the other hand,

by induction on the dimension of R, F̂s(y) ∈ E(n, R̂s).
It remains only to show that

(2)
[
Fs
−1
(
E(n, 〈s〉−1R)

)
, F̂−1

s

(
E(n, R̂s)

)]
⊆ E(n,R).
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Let x ∈ Fs
−1(E(n, 〈s〉−1R)) and y ∈ F̂−1

s (E(n, R̂s)). For any subset T ⊂ 〈s〉−1R, we
denote by EK(T ) the subset of E(n, 〈s〉−1R), that consists of all products of at most K
elementary matrices of level T . It is clear that replacing s by its sufficiently large power
si, we can assume that x ∈ F−1(EK(1

s
R)) for some natural K. Since E(n,R) is dense in

E(n, R̂s) in the s-adic topology, it is clear that y ∈ E(n,R) GL(n, skR) for any k ≥ 0.
Thus, in order to prove the inclusion (2), it suffices to show, that for any 0 6= s ∈ S, and

any natural K, there exists a k such that

(3)

[
F−1
s

(
EK

(
1

s
R

))
,GL(n, skR)

]
⊆ E(n,R).

As we noticed, y = uz, for some u ∈ E(n,R) and z ∈ GL(n, skR). But since u does not
influence the inclusion, it suffices to verify Equation 3.

Now, since R is Noetherian, there is a positive integer i, such that the map Fs : siR −→
〈s〉−1R is injective, see [18], Lemma 4.10. This is one of the crucial points of the whole
proof, as it guarantees that Fs|GL(n,siR) is injective. Bak then shows that there exists a
natural ki ≥ i such that

(4)

[
EK

(
1

s
R

)
, Fs(GL(n, skiR))

]
⊆ Fs(E(n, siR))

The inclusion (3) is a trivial consequence of (4) and the injectivity of Fs on GL(n, siR).
Observe, that this is a very powerful result. In particular, Suslin’s normality theorem,

we discussed in §10, is an immediate corollary of this result, corresponding to the case,
when s = 1.

Finally, we outline the main idea of the proof of inclusion (4). It suffices to consider the
case K = 1. The general case easily follows by induction on K.

Let ε(a/s) ∈ E1
(

1
s
R
)

and σ′ ∈ Fs(GL(n, skR)). If we show that for any maximal ideal

m of A, there is an element tm ∈ A \ m, and an integer lm such that [ε(tlmm a/s), σ
′] ∈

Fs(E(n, sqR)) for suitable q, then since a finite number of tm generate A, it can be seen
that [ε(a/s), σ′] ∈ Fs(E(n, spR)). But to show this we have to use two localisations at the
same time (see the diagram below). Suppose σ ∈ GL(n, skR), such that Fs(σ) = σ′. Since
localising R at m, i.e., Rm, is a semi-local ring, the image of σ in Rm can be written as ε′δ′

where δ′ is a diagonal matrix and ε′ ∈ E(sk/2Rm)
By a direct limit argument, there is a t ∈ A \ m, such that the image of σ in 〈t〉−1R

is ε′′δ′′ where δ′′ is a diagonal matrix and ε′′ ∈ E(sk/2tR). On the other hand, since A is
Noetherian, one can see that for a suitable positive integer i the map ti〈s〉−1R −→ 〈st〉−1R
is injective and thus GL(n, ti〈s〉−1R) −→ GL(n, 〈st〉−1R) is injective. Since GL(n, ti〈s〉−1R)
is a normal subgroup of GL(n, 〈s〉−1R), it follows that for any integer l ≥ i, [ε(tla/s), σ′] ∈
GL(n, ti〈s〉−1R). Consider the following diagram:



33

GL(n, skR)

σ
↓
σ′

��

σ 7→ε′′δ′′ //

ε′δ′

++

GL(n, 〈t〉−1R)

ss
ε′′δ′′
↓
εδ

��

GL(n, skRm) ⊆ E(n,Rm, s
k/2Rm)∆(skR)

GL(n, ti〈s〉−1R) � � // GL(n, 〈st〉−1R)

Now the images of σ′ and ε′′δ′′ in the ring 〈st〉−1R, are images of the same element σ,
calculated in two different ways, and thus must coincide:[

Ft

(
ε

(
tla

s

))
, Ft(σ

′)

]
=

[
Ft

(
ε

(
tla

s

))
, Fs

(
E

(
sk/2

t
a′
))

δ

]
.

It is easy to see that δ disappears and it only remains to verify that for any p and q there
exist suitable integers l and k such that[

E

(
tl

s
R

)
, E

(
sk

t
R

)]
⊆ E(sptqR).

Bak achieves this by a clever application of the “conjugation calculus” of elementary ma-
trices, see Lemmas 4.6 to 4.8 in [18].

14. Bak’s dimension theory

In 1995, Bak gave a lecture series in Buenos Aires, sketching a general theory of group-
valued functors on arbitrary categories with structure and dimension [19].

An arbitrary category C is structured by fixing a class of commutative diagrams in C,
called structure diagrams and a class of functors taking values in C, called infrastructure
functors. A function d : Obj(C) −→ (ordinal numbers) is called a dimension function if it
satisfies a certain property, called reduction, relating it to the structure on C.

The structure diagram and infrastructure functors one takes depend on the landscape
being modelled and the results being sought. We shall describe fundamental concepts and
results of the theory in terms of structure diagrams of the kind • ←− • −→ • (which are
automatically commutative) and dimension function taking values in Z≥0 ∪ {∞}. A short
description of the theory in terms of structure diagrams of the kind

•

��

// •

��
• // •

as well as some of its applications, may be found in [36].
We begin by defining the notion of a category with structure, using structure diagrams

of the kind • ←− • −→ •.
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Definition 14.1. A category with structure is a category C together with a class S(C)
of diagrams C ←− A −→ B in C called structure diagrams and a class I(C) of functors
F : I −→ C from directed quasi-ordered sets I to C called infrastructure functors, satisfying
the following conditions.

(1) S(C) is closed under isomorphism of diagrams.

(2) For each object A of C, the trivial diagram i.e., A←− A −→ A is in S(C).
(3) I(C) is closed under isomorphism of functors.

(4) For each object A of C, the trivial functor FA : {∗} −→ C, ∗ 7→ A, is in I(C), where
{∗} denotes the directed quasi-ordered set with precisely one element ∗.

(5) For each F : I −→ C in I(C), the direct limit lim−→I
F exists in C.

Next, a category with dimension is defined. To do this, we need first the notion of
reduction.

Definition 14.2. Let (C,S(C), I(C)) be a category with structure. Let d : Obj(C) −→
Z≥0∪∞ be a function which is constant on isomorphism classes of objects. Let A ∈ Obj(C)
such that 0 < d(A) <∞. A d-reduction of A is a set

Ci ←− A −→ Bi (i ∈ I)

of structure diagrams where I is a directed quasi-ordered set and B : I −→ C, i 7→ Bi, is
an infrastructure functor such that the following holds.

(1) If i ≤ j ∈ I then the triangle

A

��   A
AA

AA
AA

A

Bi
// Bj

commutes.

(2) d(lim−→I
Bi) = 0.

(3) d(Ci) < d(A) for all i ∈ I.

A function d is called a dimension function on (C,S(C), I(C)), if any object A of C, such
that 0 < d(A) < ∞, has a d-reduction. In this case, the quadruple (C,S(C), I(C), d) is
called a category with dimension.

Remark 14.3. Bak has a more comprehensive theory, where he also introduces virtual iso-
morphisms in the category and the notion of type and an object can have d-reductions of
a specific type [19].

Even in this early stage of the theory, one can prove that for any dimension function,
there exist a universal one, as the following theorem shows.
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Theorem 14.4. Let (C,S(C), I(C)) be a category with structure and C0 a nonempty class
of objects of C, closed under isomorphism. Then there is a dimension function δ on
(C,S(C), I(C)) called the universal dimension function for C0, such that

• C0 is the class of 0-dimensional objects of δ,

• if d is any other dimension function on (C,S(C), I(C)), whose 0-dimensional objects
are contained in C0, then δ ≤ d.

For the rest of this section (C,S(C), I(C), d) will denote a category with dimension and

G, E : C −→ Group

will be a pair of group valued functors on C such that E ⊆ G.
Bak then defines the dimension filtration

G ⊇ G0 ⊇ G1 ⊇ · · · ⊇ E

of G with respect to E by

Gn(A) =
⋂

A−→B
d(B)≤n

Ker
(
G(A) −→ G(B)/E(B)

)
.

This filtration generalises the filtration constructed for GL(n,R) in Section 13 .

Definition 14.5. A pair G, E of group valued functors on C is called good if the following
holds.

(1) E and G preserve direct limits of infrastructure functors.

(2) For any A of C, E(A) is a perfect group.

(3) For any zero dimensional object A, K1(A) := G(A)/E(A) is an abelian group.

(4) For any structure diagram

C ←− A −→ B

let H = Ker(G(A) −→ G(B)/E(B)) and L = Ker(G(A) −→ G(C)/E(C)). Then one
has the following inclusion [H,L] ⊆ E(A).

The following theorem is a central result in Bak’s theory of group valued functors on
categories with dimension.

Theorem 14.6. Let C = (C,S(C), I(C), d) be a category with dimension and (G, E) be a
good pair of group valued functors on C. Then the dimension filtration

G ⊇ G0 ⊇ G1 ⊇ · · ·

of G with respect to E is a normal filtration of G such that the quotient functor G/G0 takes
its values in abelian groups and the filtration G0 ⊇ G1 ⊇ · · · is a descending central series
such that if d(A) is finite then Gn(A) = E(A), whenever n ≥ d(A).

In particular, if d(A) is finite, then E(A) is a characteristic subgroup of G(A).
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In applications thus far of the Theorem 14.6, the structure diagram • ←− • −→ • are

localisation-completion diagrams Âs ←− A −→ 〈s〉−1A where A is a ring, form ring, etc.
On the resulting category with structure, dimension functions d are established by proving
an induction lemma similar to Lemma 13.1. However, one can and should replace using
Theorem 14.4, the dimension function d by the universal dimension function δ for the zero
dimensional objects of d, or even better, by all objects D such that G(D)/E(D) is abelian,
and call these objects the zero dimensional ones. This δ can be considerably smaller than
d. The crucial property (4) in Definition 14.5 of a good pair (G, E) of group valued functors

is obtained in practice by choosing the right definition of completion Âs, so that the square

A

��

// 〈s〉−1A

��

Âs
// 〈s〉−1Âs

is a pullback diagram. In all applications thus far, this is the notion of finite completion.
Note that squares

•

��

// •

��
• // •

instead of diagrams • ←− • −→ • have been necessary in practice when verifying that
condition (4) of Definition 14.5 is satisfied. In fact, there is a version of good pair, in which
squares are already required in the definition. We remark on this next.

Remark 14.7. Bak also has an alternative version of the above theorem, in which structure
diagrams are commutative squares

•

��

// •

��
• // •

instead of diagrams • ←− • −→ • and a good pair (G, E) is replaced by a natural transfor-
mation S −→ G of group valued functors such that the following holds

(1) S and G preserve direct limits of infrastructure functors.

(2) S(A) is perfect for any A.

(3) G(A)/image(S(A) −→ G(A)) is abelian for any zero dimensional object A.

(4) Ker(S(A) −→ G(A)) ⊆ Cent(S(A)) for any finite dimensional object A.

(5) The extension S −→ G satisfies excision on any structure square.

The conclusion of the alternative version is the same as that above, see [36].

In the light of Section 13, one can see that the localisation-completion method can
serve as a way to structure the category of rings, possibly with some additional algebraic
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structure like form parameters. The resulting category with structure together with Bass–
Serre dimension forms a category with dimension. One can then readily see that functors
such as GLn and En, satisfy conditions 1, 2 and 3 of Definition 14.5 and the functors GLn
and Stn, satisfy conditions 1, 2 and 3 of Remark 14.7. Thus, in order to obtain Theorem
14.6, one needs only to check that the remaining conditions hold for the functors in question.

In [108] Bak’s student Mundkur uses the functors GLn and Stn and the alternative version
of “good” functors described in Remark 14.7 to recover Bak’s theorem by the machinery
of dimension theory. But he had to pay a price by assuming that n ≥ 4, since centrality of
the extension St(n,R) −→ E(n,R) for commutative rings is only known when n ≥ 4.

On the other hand, in the case of quadratic modules the results concerning centrality of
the extension St(2n,R,Λ) −→ E(2n,R,Λ) are not yet published. We discussed the status
of this problem in Section 11. Thus, in [79], the first author had to adopt the notion of
good pair in Definition 14.5 and check condition 4, which because of the presence of both
short and long roots in the elementary quadratic subgroup, needs extra effort.

Bak and Stepanov use in [36] the alternative version of good functors described in Remark
14.7 to study the nonstable K-theory of net general linear groups introduced by Borewicz
and Vavilov [55].

15. Congruence subgroup problem

As we mentioned in Section 2, the early development of lower algebraic K-theory was
strongly motivated by and closely related to the congruence subgroup problem. In this
section we outline the works by Bak and Rehmann, concerning the congruence subgroup
problem for classical groups over central simple algebras over a global field. Here we take a
very limited view and do not attempt to discuss the subsequent remarkable results by many
authors. To get a broader prospective, the reader should consult the book by Platonov and
Rapinchuk [116] and the recent papers by Prasad, Raghunathan [121] and Rapinchuk.

Let D be a division ring with centre K of finite index (i.e., D, as a vector space over F ,
has a finite bases). Let O be a subring of D, Nrd : GL(n,D) −→ K∗ denotes the reduced
norm map for any n and let SLn(O) = Ker Nrd |GL(n,O). For any two sided ideal a of O,
recall the group GL(n,O, a) from Section 2 and set SLn(O, a) = SLn(O)∩GL(n,O, a). The
groups GL(n,O, a) and SLn(O, a) are called congruence subgroups of level a of GL(n,O)
and SLn(O), respectively.

For the moment suppose D = Q is the field of rational numbers and O = Z is the ring of
integers. For any ideal a of Z, the quotient Z/a is finite. It follows that GL(n,O)/GL(n,O, a)
is finite and this in turn implies that SL(n,O)/ SL(n,O, a) is finite. Thus SL(n,O, a) has
finite index in SL(n,O). In 1964, Mennicke and independtly Bass, Lazard and Serre proved
that if n ≥ 3 then the converse is also valid, namely any finite index subgroup of SL(n,O)
contains a congruence subgroup. For almost a hundred years before this theorem was
proved, it was known to Klein that SL(2,Z) does not follow this pattern!

Now, let D denote a finite central division algebra over a global field K. Let Σ denote
a non-empty finite set of nonequivalent valuations of K which contains all archimedean
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valuations of K. The ring R =
⋂
v 6∈Σ

Rv, where Rv is the valuation ring of v, is called the

ring of Σ-integers of K. Let O be a maximal R-order on D. If a is a two sided ideal of O
then O/a is finite and thus as above the congruence subgroup SL(n,O, a) has finite index
in SL(n,O). The congruence subgroup problem asks whether the converse is true, as in the
above case D = Q and O = Z. In other words, does any finite index subgroup of SL(n,O)
contain a congruence subgroup?

Serre formulates the congruence subgroup problem in terms of computing a certain group

defined as follows. Let SL(n,O), respectively, ̂SL(n,O) denote the completion of SL(n,O)
with respect to the topology defined by the family of congruence subgroups SL(n,O, a),
respectively, family of subgroups of finite index. There is a canonical surjective homomor-

phism ̂SL(n,O) −→ SL(n,O). Let C(Σ, SL(n,O)) be the kernel of this map. It is called
the congruence kernel. One can check easily that C(Σ, SL(n,O)) is trivial if and only if the
congruence subgroup problem has a positive answer. Serre’s formulation of the problem is
as follows.

Congruence subgroup problem according to Serre. If n ≥ 3 or if n = 2 and Σ has at least
two elements, is C(Σ, SL(n,O)) finite? When is C(Σ, SL(n,O)) trivial?

In 1967 Bass, Milnor and Serre solved the congruence subgroup problem for SLn, where
n ≥ 3 and for Sp2n, where n ≥ 2 in the case D = K is a global field and computed the
groups C(Σ, SL(n,O)) and C(Σ, Sp2n(O)).

In 1970 Serre considered the group SL2 when Σ has at least two elements and computed
the group C(Σ, SL2(O)).

In the above cases the congruence kernel C(Σ, G), where G is one of SLn or Sp2n, can
be described as follows:

C(Σ, G) =

{
1, if Σ contains a noncomplex valuation,

µ(K), if Σ is totally complex,

where µ(K) is the group of roots of unity of K.
Serre also showed that if G = SL2 and S has only one element, then C(S,G) is an infinite

group, thus uniformly explaining the classical counter-examples.
In 1981, Bak and Rehmann studied the congruence subgroup problem in the general

situation of a central division algebra D over a global field K [33]. They had discovered
already by 1979 (see [32]) that the computation of the congruence kernel C(Σ, SL(n,O))
depends on Σ r PlD/K(Σ), where

PlD/K(Σ) = {v ∈ Σ | K∗v/Nrd(D∗v) 6= 1},

rather than Σ itself. This influenced others working on the problem for other groups to
reformulate the result they were looking for. Now we can state the precise form of the
theorem established by Bak and Rehmann.
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Theorem 15.1. Let n ≥ 2. If n = 2, suppose that |Σ| > 2. In addition if D 6= K, suppose
that SL1(O) is infinite. Then

C(Σ, SL(n,O)) =

{
1, if Σ r PlD/K(Σ) contains a noncomplex valuation

µ(K), if Σ r PlD/K(Σ) is empty or totally complex,

unless 2|[D : K] and for every 2-power root of unity ξ 6= ±1, one has ξ − ξ−1 6∈ K. In this
last case C(Σ, SLn(O)) is either µ(K) or µ(K)/{±1}.

It is still an open conjecture that the case µ(K)/{±1} never occurs and C(Σ, SLn(O))
is either trivial or µ(K).

Sketch of the Proof. One shows first that

C(Σ, SL(n,O)) ∼= lim←−
a6=0

SLn(O, a)/E(n, (O, a)).

By the Bass stability for the functor K1, we know that

SL(n,O, a)/E(n, (O, a) ∼= SK1(O, a) := SL(O, a)/E(O, a).

Thus
C(Σ, SL(n,O)) ∼= lim←−

a6=0

SK1(O, a).

To compute SK1(O, a) one uses the following exact sequence of Bak [14], 7.36,

(5) K2(D) −→
∐
v 6∈Σ

coker
(
K2(Ov, av) −→ K2(Dv)

)
−→ SK1(O, a)

−→
∏
v 6∈Σ

SK1(Ov, av)⊕ SK1(D) −→
∏
v 6∈Σ

(SK1(Dv), SK1(Ov)),

where
∏

denotes the restricted direct product, [14],§7E. Observe that, this exact sequence
holds not only for general linear groups, but for all classical groups GQ (see §2), and not
only for rings of integers in division rings, but for a much larger class of rings. It contains
the basic strategy for computing the answer to the congruence subgroup and metaplectic
problems for all classical groups [15] and also for computing surgery groups in differential
topology. Examples of surgery computations are provided in [9] and [10]. The paper [9]
is of special importance, since it shows that odd dimensional surgery groups of finite odd
order groups vanish. This means that there is no obstruction to performing surgery on an
odd dimensional smooth compact manifold whose fundamental group is finite of odd order.
Bak and Rehmann then show that for almost all v’s, the group SK1(Ov) is trivial.

On the other hand, since the group SK1 is trivial for division algebras over local and
global fields (by theorems of Nakayama–Matsushima and Wang, respectively), one has∏

v 6∈Σ(SK1(Dv), SK1(Ov)) = 1, and the above exact sequence reduces to

K2(D)
φ−→
∐
v 6∈Σ

K2(Dv)/K2(Ov, av) −→ SK1(O, a) −→
∏
v 6∈Σ

SK1(Ov, av) −→ 1.
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Since we are interested in the inverse limit of the SK1(O, a) over all nonzero a, we can
restrict to the case of “small” nonzero two sided ideals a. Bak and Rehmann show that
for such ideals SK1(Ov, av) = 1, [33], Lemma 6.1, and that for inclusions a′ ⊆ a′′ of such
ideals, the canonical map K2(O, a′) −→ K2(O, a′′) is an isomorphism. For any small ideal
a, set k2(Ov) = K2(Ov, av). Then the exact sequence above takes the form

K2(D)
φ−→
∐
v 6∈Σ

K2(Dv)/k2(Ov) −→ SK1(O, a) −→ 1

for small nonzero ideals a.
Let Rv = O ∩Kv, πv the uniformising parameter of Rv, ev the ramification index of Rv,

pv = char(Rv/Rvπv), µ(Kv)pv pv-th roots of unity in Kv, and finally

µ(Rvπ
k
v ) = (µ(Kv)pv)

p
[k/ev−1/(pv−1)]
v ,

where [k/ev−1/(pv−1)] denotes the largest integer smaller or equal to | k/ev−1/(pv−1) |.
Note that if char(Kv) 6= 0 then µ(Kv)pv = 1.

It remains to determine the cokernel of the map φ above. To do so Bak and Rehmann
embed φ in a commutative diagram

K2(D)
φ //

∐
v 6∈Σ

K2(Dv)/k2(av)

K∗ ⊗ Nrd(D∗)

ψ

OO

φ′ //
∐
v 6∈Σ

µ(Kv)/µ(Kv ∩ av)

‘
v 6∈Σ

ψv

OO

whose other maps ψ,
∐

v 6∈Σ ψv and φ′ are defined as follows: ψ(a ⊗ b) = (a, β), where

b = Nrd(β). To define ψv, note that for v 6∈ Σ, Nrd(D∗v) = K∗. Consider the map
K∗v ⊗K∗v −→ K2(Dv), (a ⊗ b) 7→ (a, β) where b = Nrd(β). It induces a map K2(Kv) −→
K2(Dv). This induces for any a a map

K2(Kv)/K2(Rv, Rv ∩ av) −→ K2(Dv)/K2(Ov, av).
Identifying K2(Kv)/K2(Rv, Rv ∩ av) with µ(Kv)/µ(Rv ∩ av) via the norm residue symbol
at v, one obtains a map

µ(Kv)/µ(Rv ∩ av) −→ K2(Dv)/K2(Ov, av).
For a small a, it is obvious that µ(Rv ∩ av) = 1 and K2(Ov, av) = k2(Ov), and the resulting
map ψv : µ(Kv) −→ K2(Dv)/k2(Ov) is the required one. The map φ′ is induced by the
norm residue homomorphisms at each v, see [33], §3 and §4 for explicit constructions.
They show that the maps ψv are surjective and conclude trivially that the canonical map
cokerφ′ −→ cokerφ is surjective. They then establish a generalisation of Moore’s reciprocity
law, [33], Theorem 3.2, from which it easily follows that

cokerφ′ =

{
1, if Σ r PlD/K(Σ) contains a noncomplex valuation,

µ(K), if Σ r PlD/K(Σ) is empty or totally complex.
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Since C(Σ, SL(n,O)) = cokerφ and cokerφ is a quotient of cokerφ′, it follows that

C(Σ, SL(n,O)) =

{
1, if Σ r PlD/K(Σ) contains a noncomplex valuation,

quotient of µ(K), if Σ r PlD/K(Σ) is empty or totally complex.

The more precise computation of C(Σ, SLn(O)) in the theorem above is obtained by refining
technically the argument above, in particular showing that ker(ψv) ⊆ {±1} and that in
many cases ker(ψv) = 1.

We will finish this section by mentioning another result of Bak and Rehmann on K2 of
global fields. Recall that, since the norm map of finite field extensions coincides with the
transfer map on K1, the Hasse norm theorem can be stated in terms of K1 functors as
follows:

Theorem 15.2. If L is a cyclic extension of a global field K, then an element of K1(K)
lies in the image of transfer map NL/K : K1(L) −→ K1(K) if and only if its image in each
K1(Kv) lies in the image of the transfer map

NLw/Kv : K1(Lw) −→ K1(Kv).

Note that here Kv and Lw are the completions of K and L with respect to v and w and
w is an extension of v to L. A natural question is whether the result is true for higher
K-groups.

In [34] Bak and Rehmann succeeded in proving the Hasse norm theorem for K2. In fact,
they prove it holds not only for cyclic extensions of global fields, but for all finite extensions.

Theorem 15.3. If L is a finite field extension of a global field K, then an element of
K2(K) lies in the image of the transfer map NL/K : K2(L) −→ K2(K) if and only if its
image in each K2(Kv) lies in the image of the transfer map∏

w/v

NLw/Kv :
∏
w/v

K2(Lw) −→ K2(Kv).

Note, that here one considers all extensions w of v to L. This does not change Hasse’s
original theorem, since if L is a Galois extension of K, then

image(NLw/Kv) = image(
∏
w/v

NLw/Kv).

To prove their theorem, Bak and Rehmann observe that it is equivalent to the exactness
of the sequence

K2(L)
NL/K−→ K2(K)

‘
λv−→

∐
v∈ΣL/K

µ(Kv) −→ 1,

where λv is the composition of the canonical map K2(K) −→ K2(Kv) with the norm residue
map K2(Kv) −→ µ(Kv) and ΣL/K is the set of all real v such that any extension of v to L
is complex. They then prove the exactness of the sequence.
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It is worth mentioning that, Bak and Rehmann prove their theorem without using any
Galois cohomology machinery and Tate’s result connecting K2 with Galois cohomology.
Similarly Bak and Rehmann show that the Hasse–Schilling norm theorem for K2 is equiv-
alent to the exactness of the sequence

K2(D)
Nrd−→ K2(K)

‘
λv−→

∐
v∈ΣD/K

µ(Kv)

and prove the result in this form. The reader is encouraged to compare their Theorem 3
in [34] with Suslin’s theorem 26.7 in [141].

16. Surgery and transformation groups

Surgery theory like K-theory was born in the 1950’s and underwent its early development
in the late 1950’s and 60’s. Its origins lie in work of Milnor [103] on exotic spheres and in the
work of Kervaire and Milnor [89] on the classification of n-dimensional smooth manifolds,
n > 4, which are homotopically equivalent to the standard n-sphere Sn. Whereas the
solution to the generalized Poincare Conjecture by Smale [129] shows that every smooth
closed simply connected manifold of dimension n > 4 which is homotopically equivalent
to the standard n-sphere is homeomorphic to the standard n-sphere, the work of Kervaire
and Milnor demonstrates that the diffeomorphism classes of such manifolds (for a fixed n)
form a finite group under the operation of connected sum. A smooth manifold which is
homeomorphic to a standard sphere, but not diffeomorphic, is called an exotic sphere. Their
technique and methodology were extended by Browder [56] and Novikov [109] to all simply
connected compact smooth manifolds of dimension n > 4. They classified such manifolds of
a fixed dimension n > 4 in a given homotopy class, in terms of a surgery exact sequence and
the homotopy theory of a certain classifying space G/O. This work was quickly extended
in Wall [173, 174] to the case of smooth compact manifolds with finite fundamental group.
The classification Wall gets is more of a program how to classify manifolds, rather than a
transparent classification in terms of, for example, well understood invariants. One of the
steps in the program is performing surgery on a smooth normal map f : N −→M between
manifolds of the same dimension n, in order to convert f to a homotopy equivalence.
This is not always possible. There is an obstruction called the surgery obstruction σ(f),
which lies in a group Ln(G) called the surgery obstruction group, where G denotes the
fundamental group of N. The fundamental theorem of surgery says that a normal map f can
be converted by surgery to a normal map f ′ : M ′ −→ N which is a homotopy equivalence
if and only if its obstruction σ(f) vanishes. The surgery obstruction group should actually
be decorated further depending on what one means by homotopy equivalence, namely
simple homotopy equivalence, arbitrary homotopy equivalence, or something in between.
Thus one writes Lsn(G) if simple homotopy equivalence is meant and Lhn(G) if arbitrary
homotopy equivalence is meant. However, regardless of the situation, the L-group Ln
is always periodic of period 4, by construction, and for n even, (resp. n odd) Ln is a
subquotient of a K0-group (resp. K1-group) of some category, depending on the situation,
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of nonsingular forms defined over the integral group ring ZG supplied with an appropriate
involution. This means, in particular, that K-theory methods can be used to compute
surgery obstruction groups and eventually surgery obstructions.

Bak did this, beginning in 1975 in [8], by showing first that for n odd and G of odd order,
the Wall groups Lsn(G) and Lhn(G) vanish, which has the consequence that for smooth,
compact n-manifolds, n > 4, whose fundamental group is finite of odd order, there is no
obstruction to converting via surgery a normal map to a simple homotopy or homotopy
equivalence. To make the computation above, Bak applied the unitary K-theory exact
sequence 7.36b of [15], which is the analog of the exact sequence 7.36a, for ordinary K-
groups. We saw in the previous section, that the latter was used several years later by
Bak and Rehmann as the basis for computing the congruence kernel in the congruence
subgroup problem for SL of division rings. In the current situation, Bak computes the
terms surrounding KQ1(ZG) in the unitary exact sequence to arrive at the answer, instead
of computing, as in the later paper [33] with Rehmann, the terms surrounding K1(O) or
K1(O, a) in the exact sequence for ordinary K-groups. The unitary exact sequence is also
the basis, as we said earlier, for Bak’s solution to the congruence subgroup problem for
classical groups [14]. In a further paper [9] appearing in 1976, Bak uses the K2 − K1

unitary exact sequence above and its unitary K1 − K0 version to compute the surgery
groups Lsn(G) and Lhn(G) for all n and all finite groups G with abelian 2-hyperelementary
subgroups. It is worth pointing out at this stage that all the exact sequences are based
on localisation-completion methods, starting from localisation-completion squares of rings
and form rings. Bak returned some 15 years later to ideas here in order to establish his
program, which we reviewed in Sections 12, 13, and 14, concerning group valued functors,
categories with dimension, and nonabelain (nonstable) K1.

We move on now to equivariant surgery theory. After the development of non-simply
connected surgery, the idea of equivariant surgery was in the air (see §14a of [174]) and sev-
eral mathematicians contributed to its early development. If M is a smooth manifold then
its fundamental group, say G, acts smoothly on the simply connected covering (manifold)

M̃ of M and M̃/G is diffeomorphic to M . It turns out that much of what was discussed

above can be carried out if M is replaced by M̃ supplied with the smooth action of the
fundamental group of M . This is the basis of equivariant surgery theory. In this theory, one
starts with a simply connected compact smooth n-dimensional manifold supplied with a
smooth action of a finite group G. One makes the assumption that the fixed point manifold
of any nontrivial subgroup of G has dimension less than or equal to n/2. The assumption is
imposed so that one can perform surgery without disturbing the fixed point sets of nontriv-
ial subgroups of G. (If M is not simply connected, but has finite fundamental group then
one simply replaces M by its simply connected cover supplied with the smooth action of
the semidirect product of G with the fundamental group of M . If the fixed point manifold
in M of each nontrivial subgroup of G has dimension ≤ n/2 then the same is true for the
action of the semidirect product on the simply connected covering.)
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T. Petrie applied in [112] an equivariant surgery theory, which he had developed, to an
old problem of Montgomery and Samelson: Which spheres have a smooth one fixed point
action of some finite group G? Petrie’s procedure produced a G-invariant normal map
f : M → Sn where M is a smooth G-manifold of dimension n with precisely one G-fixed
point and G is acting smoothly on Sn. The next step was to modify f by (equivariant)
G-surgery to a homotopy equivalence. It would then follow from Smale’s solution to the
generalized Poincare conjecture that M is an exotic sphere. But it is not difficult to see
that one can convert such a sphere, without altering its fixed point sets (see Proposition
2.1 of [96]), to a standard sphere by taking the connected sum with its Kervaire-Milnor
inverse [89]. Petrie was successful in carrying out his program for certain finite odd order
groups G [112]. Here there was no surgery obstruction thanks to Bak’s theorem on the
vanishing of Lhn(G). On the other hand Petrie had set up his equivariant surgery theory
under the so-called gap hypothesis, namely that the fixed point manifold of any nontrivial
subgroup of G had dimension strictly less than n/2. For about a decade, it was believed
that under this assumption the equivariant surgery groups were identical with the Wall
surgery obstruction groups Lhn(G). This is in fact the case for groups G of odd order, which
was Petrie’s assumption in [112], but does not hold for arbitrary finite groups. For arbitrary
finite groups it is necessary to assume that the fixed point manifold of any element of order
2 in G has dimension strictly less than n/2 − 1. This stronger hypothesis is now called
the strong gap hypothesis. However if there are elements of order 2 in G whose fixed point
manifold has dimension k − 1 where k is the largest integer less than or equal to n/2,
then one gets a G-equivariant surgery obstruction group Leqn (G) which is different than
Lhn(G). Whereas Wall groups use the minimal form parameter, the G-equivariant surgery
groups Leqn (G) are constructed with the (nonminimal) form parameter generated by all
elements g in G of order 2 such that the fixed point manifold of g has dimension (k − 1).
This discovery was made by Morimoto [106, 107], who introduced the correct G-equivaraint
surgery obstruction groups with form parameters, christening them Bak surgery obstruction
groups. Subsequently, Bak and Morimoto made several calculations of the new surgery
groups, including some surprising vanishing theorems for odd dimensional Bak groups of
even order groups G and then made various applications of these results to spheres and
homotopy lens spaces, see [25].

One of the main applications of [106, 107] is to the problem of Montgomery and Samelson,
regarding which standard spheres have a one smooth fixed point action of some finite group.
Petrie and others had found already a few groups which could acts smoothly on some
spheres with precisely one fixed point, but unfortunately their results did not always give
precise information on the dimension of the spheres. Morimoto, however, was interested
in an exhaustive answer to the problem. He wanted to obtain a complete list of groups
which could act smoothly with one fixed point on some standard sphere and a complete
list of spheres which have a one fixed point action of some finite group. The first list was
completed using the equivariant surgery theory in [106, 107], but the second list had a gap
at n = 8. (It was known that for n < 6, the answer was negative and that for n ≥ 6,
the answer was positive, except possibly for the case n = 8.) This case remained open
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for about a decade and was settled first in the joint paper [28]. The main obstacle the
authors had to overcome was that there was no equivariant surgery theory which allowed
middle dimensional fixed point manifolds of nontrivial subgroups of G. This theory was
constructed in their joint papers [27] and [29] for even dimensional manifolds, which is what
they needed for the application to the 8-sphere. In these papers, there occurs a new kind
of form, with 2 parameters instead of just one. There is a quadratic form taking values in
the ring modulo one of the parameters, and a not necessarily even, nonsingular Hermitian
form, which is related in a suitable way to the quadratic form. The Hermitian form is as
usual the restriction of the intersection form on the middle dimensional homology group
Hk(M), to the so-called surgery kernel Kk(M), but the restriction is not necessarily even
as in all other instances of surgery. The quadratic form is constructed out of the geometric
self intersection form and takes values modulo the form parameter which is generated by
the elements g of order 2 in G such that dim(M g) = k − 1. The other parameter, whose
symmetry is opposite to that of the form parameter above, is generated by all elements g
in G of order 2 such that dim(M g) = k, and it used to relate the quadratic and hermitian
forms.

The surgery theory above, and in particular its applications to transformation groups,
motivated some complectly algebraic work on induction/restriction theory, which included
the important result that the dual of Dress’ induction theorem is also true.

Dress induction says that if inducing up on a Mackey functor is surjective then restricting
down on the functor is injective and the functor is hypercomputable. The dual, proved in
[20] says that if restricting down on a Mackey functor is injective, then inducing up is
surjective and the functor is hypercomputable. The dual has the marvelous consequence
(see Corollary 1.3 of [20]) that a Mackey subfunctor of a hypercomputable Mackey functor is
again hypercomputable. If a surgery group functor is a hypercomputable Mackey functor,
then one can use its hypercomputability to compute the surgery obstruction of a given
normal map. This is frequently done in surgery theory and includes many of the applications
discussed above. It is routine to verify that surgery group functors are Mackey functors,
so the crux of the matter is to show they are hypercomputable. It turns out, however,
that surgery group functors may occur as Mackey subfunctors of Mackey functors which
are already known to be hypercomputable. It follows therefore from the result above that
such Mackey subfunctors are themselves hypercomputable.
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[67] Dieudonné, Jean, Panorama des mathématiques pures. Le Choix bourbachique. Gauthier-Villars,

Paris, 1977. 2
[68] Estes, David; Ohm, Jack, Stable range in commutative rings. J. Algebra, 7 (1967), no.3, 343–362. 18
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