BIORTHOGONAL EXPANSION OF NON-SYMMETRIC JACK FUNCTIONS
SIDDHARTHA SAHI AND GENKAI ZHANG

ABSTRACT. We find an biorthogonal expansion of the Cayley transform of the non-symmetric
Jack functions in terms of the non-symmetric Jack polynomials, the coefficients being the
MP-type polynomials. This is done by computing the Cherednik-Opdam transform of the
non-symmetric Jack polynomials multiplied by the exponential function.

1. INTRODUCTION

In [9] Opdam studied the non-symmetric eigenfunctions of the Cherednik operators asso-
ciated with any root system with general multiplicity and proved Plancherel formulafor the
corresponding Cherednik-Opdam transform. For the root system of type A the polynomial
eigenfunctions are al so called the non-symmetric Jack polynomials and they have been stud-
ied in extensively (see e.g. [10]). There are other related non-symmetric polynomials such
as the Hermite and Laguerre polynomias which roughly speaking are their images under
the Hankel transform, which is basically the Fourier transform on the underlying space. The
non-symmetric Laguerre polynomials form an orthogonal basis for the L2-space and it is
thus a natural question to fi nd their Cherednik-Opdam transforms. In this paper we prove
that they are, apart from afactor of Gamma functions, the non-symmetric Meixner-Pollaczek
(MP) polynomials and we fi nd a formula for them in terms of binomial coeffi cients. As a
corollary we fi nd an biorthogonal expansion of the Cayley transform of the non-symmetric
Jack function in terms of the non-symmetric Jack polynomials, the coeffi cients being the MP
polynomials.

There are basically three important families of polynomials associated with the root sys-
tem of type A , namely, the Jack type polynomials, the Laguerre polynomials, the MP type
polynomialswhich are orthogonal with respect the Harish-Chandrameasure |c(\)|~2d\ mul-
tiplied with a certain Gammafactor, which is the spherical transform of an exponential func-
tion. Our results give then a somewhat unifi ed picture of the relation between these polyno-
mials, and provide acombinatorial formulafor the M P type polynomials. In brief the Laplace
transform maps the Laguerre polynomialsinto Jack polynomials, and the Cherednik-Opdam
transform maps the Laguerre polynomials into MP type polynomials. In the case when the
root system corresponds to that of a symmetric cone [4] some results of this type has been
studiedin [4], [13] and [3].
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2. NON-SYMMETRIC JACK FUNCTIONS AND THE OPDAM-CHEREDNIK TRANSFORM

In thissection werecall the non-symmetric Jack polynomialsand functions and the Plancherel
formulafor the Opdam-Cherednik transform, developed in [9].

We consider the root system of type A,_; on R". For our purpose of studying Laplace
transform we make achange of variables z; = €% wheret = (¢, -+ ,t,) € R” and consider
functionsin z € R’ instead. We fi x an ordering of the roots so that (with some abuse of the
notion of roots) the positiverootsare x5 — x1, x3 — 2, - - , x, — x,_1 With root multiplicity
% and we will identify the roots as vectorsin R". Let p be the half sum of positive roots, so
that p = (p1, p2, -+ . pr) = 2(—r+1,—r +3,--- ,r — 1). We consider the measure

dpu() = —

—Lr—1)- a
zg(xl...%) 3 (r=1)—-1 H |z; — x| “dy - - - da,

1<j<k<r

on R’, and the corresponding Hilbert space L*(R’,, dp).
We consider the Dunkl operators

(2.1) Ty=0;+~

and the Cherednik operators

1 T 1 T 1
(22) Uj:U]A:l’jaj—l-aZ J (1—8@')4‘&2 k (1—Sjk)__pj

— Lj — Tk 2
i<k
Here 0, = a%- and s;; stands for the permutation (ij) acting on functions f(z1,...,z,)
interchanging the variables x; and ;. The operators {U;} can be written in terms of {7}
and the multiplication operators {x; }, but we will not need it here. Both families {7} and
{U;} are commuting.

The polynomial eigenfunctions of the operators {U;} are given by the so-called non-
symmetric Jack polynomias E,(z) = E(n,z), withn = (n,...,n,) € N'. They are
characterized as eigen-polynomials of {U;} with leading coeffi cients 27 = z7* - - - 2" in the

sense that
E, =2a"+ Z Cnet.
¢<n
Werecall that { < n here stands for the partial ordering defi ned by

+ + + +
C<n iff ¢t <nt, C+7é77+
¢<m, (T =7
where 1" is the unique partition obtained by permuting the entries of ¢ and < stands for the
natural dominance ordering: ¢ < niff 320 (¢; —n;) > 0,1 <p <.

Thefunctions E,, has holomorphic extensionin the variable . More precisely, there exists
afunction real analytic function G, (z) = G(\,z) inz € R’, and holomorphicin A € a%,
such that G(\, 17) = 1, with1" = (1,...,1),and

LGG%A,%)ZZAjG%A,$)
The relation between G (z) and £, (z) is

(2.3 Gpip(r) = &)(x) =
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Thevalue E,,(1") has been computed by Sahi [10],

where ¢,, and d,, are defi ned in the next section. (See also [9] for genera root systems.)
Defi ne

(2.4) NN = [ 1062w ) (o)
Then we have

25 [ 1@ Pana -3 / FlINFL N
where

(2m) " &y (p(k), k)
c(A)e(wo))
is the Plancherel measure. Here dw(\) isthe Euclidean measure.

dfu(X) =

dw(\)

3. LAPLACE TRANSFORM

Adapting the notation in [2] we denote ¢ := 1 + 1(r — 1). Let (%) be the binomial
coeffi cients for two tuples of nonnegative integer x,0 € Z, seeeg. [11] and [2]. Recall
further that the non-symmetric Laplace transform is defi ned by

£l = | Kat s [Loyane)
where

L) = S Al £, (1), (y)

is the non-symmetric analogue of the hypergeometric ( F; function. (Note that our measure
du differsafactor ([];_, z;)~7 fromthat in[2, (3.67)].) Here each tuple n will be identifi ed
with a diagram of nodes s = (i,7), 1 < j < midy = [l,ds), d, = [l d(s),
e, = [Le, e(s) with
d'(s)=ala(s)+1)+1(s), d(s)=d(s)+1, e(s)=ald(s)+1)+r—1(s))
anda(s) =mn; —j, d'(s)=j— 1beingthearm length, arm colength and
I(s) =#{k>i:j<m <mi} +#{k<i:j<m+1<n},

U(s) =#{k>i:m > n} +#{k <i:n <},
the leg length and leg colength. See [10] and [5].
The function K 4(z, y) generalizes the exponentia function in the sense that

(3.) T K a(z,y) = yika(z, y),
where Tz.(z) isthe Dunkl operator acting on the variable x.

Recall further the defi nition of generalized Gamma function

HF ——J—l))
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and the Pochammer symbol

_ Tav+5)
[VLi_' Fa(V)
for v,k € C", whenever it makes sense. A scalar ¢ € C will also be identifi ed with
(¢,---,c) € Cinthe text below. We will also use the abbreviation z¢ = - --2¢ and

l+z=(14zy,---,1+x,)€tc.
We recall further the binomial coeffi cient (") for n, v € N” defi ned by the expansion

(3.2) g1+t =Y (Z) &,(1).

See dso[11] and [12]. We make the following generalization.
Definition 3.1. The binomial coeffi cients(”) for any n € C” and v € N" are defi ned by

(3.3) Grrpl+1) = (’7) E,(t).

veNr

Since G, (1 + t) isan anaytic function near 1 and £,,(¢) form abasis for all polynomias
the above defi nition makes sense, and it agrees with (3.2) in view of the relation (2.3). In
particul ar (Z) isapolynomia of n € C". It follows from the defi nition and [2, Proposition
3.18] that

d, (n
(3.4) E,(T)Gypli=1 = o (V)
Thefollowing lemmaisprovedin[2, (4.38)]. (Notethat thereisan error or misprint there:

EygL) () should bereplaced by E, (). For symmetric case it was a conjecture of Macdonald
[8] proved by e.g. in[1, (6.1)-(6.3)].)

Lemma 3.2. Suppose ¢ > —1. The Laplace transform of the functions z“E, (z) is given by

Ll By@))() = N e + alo([[ 17 ) By (5).

, t
7=1

The normalization constant NO(L) iscomputed in [2].

Wefi x intherest of the text an eveninteger b > 2¢ + 2. Let

YR el /e
@9) B9 () = BE0) = S e ST EIT (M e

be the non-symmetric Laguerre polynomial. The next Lemma follows from [2, Proposition
4.35] after achange of variable 2z = t2. Our parameter b istheir a + q.

Lemma 3.3. Let py(z) = "

j=1

x;. The Laguerre functions
Lo(z) == 1(z) := EX(2z)e (™) (22)2
form an orthogonal basis for the space L*(RR’, , dy).

The norm ||1,.||* has aso been explicitly evaluated in [2].
We can now compute the Cherednik-Opdam transform of the Laguerre function. By the
Plancherel formula (2.5) they are then orthogonal functionsin \.
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Proposition 3.4. Suppose b > (¢ — 1) = 1(r — 1). The Cherednik-Opdam transform 7, [l,.]
of the Laguerre function [,.(x), for w € S, being the identity e, is

_ o wlal—p =N
Fe[lﬁ]()‘) =2 '/\/0 Fa(g) Mn()‘)

where

M,(\) = (_UZ# 3 1 dd, (2} (,i> <_g gy +p*>

— [b], alle, o o

Proof. The function I, is alinear combinations of the functions e ) E, () and we com-
pute the Cherednik-Opdam transform of these functions. We write Lemma 3.2 as

b
Ca(—t, D)6, (@)du(r) = NP e+ 1)
. Ta(2)

R (1) = M, £

o Ta(2+1n) .
To(3) 2

e (8),

with n* = (n.,n—1, -+ ,m1). Let the operator E,(T") act on it evaluated as¢t = 1" =
(1,...,1). Theresulting equality, by (3.1) and the fact that X 4(x, 17) = e”®), and (3.4), is,

b I, (% 'd, (b —
/ POE, (~a)aty a)dp(a) = NP Lol T Aot ( n)‘
R

Ta(2) alle, o

r
+

Thus, using the relation (2.3) we see that
FII) = [ )G inte)
0,00)"

2 Lol =P =) (“D[Ben 3 dolo (oo (“) (—3 + AT+

:22
o g

[b], alvle,

g

as claimed. O

By using the same argument we can also fi nd a formula for the function %, [l,.](\) for
any w € S,.. The Plancherel formula (2.5) then gives an orthogonality relation for the
polynomials. In the next section we will fi nd another formulafor M, ()).

Remark 3.5. In the case of one varidble r = 1 we have E; = 2!, d; = dje; = 1!, our
polynomial is

M) = -0 -2 () (73] = kA -k g - X

which is the MP polynomial P{"’*)(x; T) [6, 1.7.1], more precisely

E).

Mi(X) = Kl PO (—i); 5

The functionsT'(% + @A) M, (i\) are orthogonal in the space L?(RR, d)), as a consequence of
(2.5).

)
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4. A BINOMIAL FORMULA FOR M, ()
We recall fi rst the following result [2, Proposition 4.13].

Lemma 4.1. The following expansion holds

T

[0~ ) ati 175 = Yo G B e ()

Jj=1 n

We need another expansion of the [T7_, (1 — zf)—%Eﬁ_% (132) interms of the polynomials
Ey(2).
Lemma 4.2. Consider the following expansion

T

p
[o-5,, 1+§ ZC

j=1

forn e N, n; > g The coefficients are then given by

(4.1) Culn) = Ey(=1) Y (n ’ b) (=2 (_0;_ b)

o

and is a polynomial in 7.

Proof. Note that C,.(n) is a polynomia in n follows from the remark after Defi nition 3.1.
Change variablesy; = 1+ z;, =2 = F-11-z=(1 +2)? 1A = y; (2 —1). Wehave

l-‘ij 1+Zj J
1—=2 2 b 2
2\ —= _ 204 —2 “
-, = G- e -y
2
(4.2) = y_bEn—b(g —1)

We expand E,,_(1 — ) by using the binomia formula,

—b _2 _ b n—>o _g
) En—b(l y) ) En—b(l)Z( )50( y)

g

=E 1)) (” i b) (—2)171&,_o(y).

g

Herewehaveused therelations &, (—2) = (—2)171E_,. (y) andy " E_,- (y) = E—0* — b(y).
Now eachterm £_,-_,(y) = £_,«_4(1 + z) can again be expanded in terms of £,(z). Inter-
changing the order of the summationswe fi nd that (4.2) is

Eyo(-D)Y (Z (" - b) (—2)! (—"l_ b)) Eul2).

K g

This compl etes the proof. O



EXPANSION OF NON-SYMMETRIC JACK FUNCTIONS 7

Theorem 4.3. It holds that

(=)0, = €3 = )

Proof. Wereplace = by 2z in Lemma4.1,
2z

T

[T~ 5) K=o 1) = Y- BV 22)E, (2)

j=1 K
where we have u%d the fact that KCA(2z;y) = Ka(x;2y). Multiplying both sides by
IT- (ij)2e n@) and since Ka(—x;y + 17) = Ka(—z;y)e 1) we get

- 1+2 - b 1
_»\b . N3 — —a)\lsl @)
[0 =2 K ) [T o) = 3 1022
Multiplifying the both sidesby £, (), n € N", and integrating with respect to dy(z) for =
in neighborhood of = = 0 (we omit the routine estimates guaranteeing that the interchanging
of the integration and summation isvalid), we get, by Lemma 3.1,

T

NP T10 =) By ) = A gl S0l bt + )

Ex(2).

Jj=1 K
Cancelling the common factor NO(L) [2],, and rewriting then the | eft hand as

T

- 1=z 1—2 b 1—=2
—b j _ 2\ -2
H(l_zj) (}_[1—1—21') En_%(1+z>_H(l_Zj) 2E’7_%(1+2)7

j=1 =1 j=1
we get
- 2 _b 1 —Z o |I€‘ 1
jl:[l(l—zj) QEn_g(1+Z)—XH:( @) M(n+p)d, Ex(2).
Comparing thiswith Lemma 4.1 proves our claim. O

Finally we can also consider the same problem for the symmetric Jack functions. The
Laplace transform is the symmetric case has been studied earlier by Macdonald [8] and
Baker-Forrester [1]. Using their results and by similar arguments as above we can the propo-
sition below.

Let Q.(x) = Q) (x) for apartition k = (K1, - - , k,) bethe Jack symmetric polynomials
in r-variables, normalized so that €2,.(1") = 1; see [7]. The corresponding functions for
k € C", which we call the Jack function (and which for general root system is called the
Heckman-Opdam hypergeometric function) will be denoted still by Q,.(z), z € (0, 00)".

Proposition 4.4. Consider the following expansion

T

0 1-
[I0 -0, 4G = eme

j=1

The coefficient Q).(n) are polynomials in 7 up to a p shift, and a slight modification

QH()\ - p)

_ orb/2 £ (L) K
fn(>‘) =2 ’ 2'/\/’0 (—a)""'
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form an orthogonal basis in the space

L*((0,00)",| [Ple()|~*ds)™

of symmetric L2-functions.

Note that the functions T, (2 — p— A\) Q.. (A — p) isup to aconstant depending only on « are

the spherical transform of the Laguerre functions e?*(®) L, (2x)(2x)*/2, where L, (2x)(2x)"/?

is the symmetric Laguerre polynomials defi ned in [1], which then implies the orthogonality
of the functions f,. by the Plancherel formula (2.5) and the orthogonality of the Laguerre
functions[1].

We observe the spherical transform of the functions L, (2z)eP*®) (22)%?2 is a Weyl group
invariant polynomial of that of e”(*)(2x)"?, and as a consequence of our result we may get
a Rodrigues type formula expressing the former as polynomials of the Cherednik operators
{U,} acting on the latter. However it might be more interesting to reverse the procedure,
namely to fi nd the polynomial s producing a Rodrigues type formulawith the spherical trans-
form as an immediate consequence; see e.g. [14] for the case of Wilson polynomials.
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