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ABSTRACT. We find an biorthogonal expansion of the Cayley transform of the non-symmetric
Jack functions in terms of the non-symmetric Jack polynomials, the coefficients being the
MP-type polynomials. This is done by computing the Cherednik-Opdam transform of the
non-symmetric Jack polynomials multiplied by the exponential function.

1. INTRODUCTION

In [9] Opdam studied the non-symmetric eigenfunctions of the Cherednik operators asso-
ciated with any root system with general multiplicity and proved Plancherel formula for the
corresponding Cherednik-Opdam transform. For the root system of type A the polynomial
eigenfunctions are also called the non-symmetric Jack polynomials and they have been stud-
ied in extensively (see e.g. [10]). There are other related non-symmetric polynomials such
as the Hermite and Laguerre polynomials which roughly speaking are their images under
the Hankel transform, which is basically the Fourier transform on the underlying space. The
non-symmetric Laguerre polynomials form an orthogonal basis for the L2-space and it is
thus a natural question to find their Cherednik-Opdam transforms. In this paper we prove
that they are, apart from a factor of Gamma functions, the non-symmetric Meixner-Pollaczek
(MP) polynomials and we find a formula for them in terms of binomial coefficients. As a
corollary we find an biorthogonal expansion of the Cayley transform of the non-symmetric
Jack function in terms of the non-symmetric Jack polynomials, the coefficients being the MP
polynomials.

There are basically three important families of polynomials associated with the root sys-
tem of type A , namely, the Jack type polynomials, the Laguerre polynomials, the MP type
polynomials which are orthogonal with respect the Harish-Chandra measure |c(λ)|−2dλ mul-
tiplied with a certain Gamma factor, which is the spherical transform of an exponential func-
tion. Our results give then a somewhat unified picture of the relation between these polyno-
mials, and provide a combinatorial formula for the MP type polynomials. In brief the Laplace
transform maps the Laguerre polynomials into Jack polynomials, and the Cherednik-Opdam
transform maps the Laguerre polynomials into MP type polynomials. In the case when the
root system corresponds to that of a symmetric cone [4] some results of this type has been
studied in [4], [13] and [3].
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2. NON-SYMMETRIC JACK FUNCTIONS AND THE OPDAM-CHEREDNIK TRANSFORM

In this section we recall the non-symmetric Jack polynomials and functions and the Plancherel
formula for the Opdam-Cherednik transform, developed in [9].

We consider the root system of type Ar−1 on Rr. For our purpose of studying Laplace
transform we make a change of variables xj = e2tj where t = (t1, · · · , tr) ∈ Rr and consider
functions in x ∈ Rr

+ instead. We fix an ordering of the roots so that (with some abuse of the
notion of roots) the positive roots are x2 − x1, x3 − x2, · · · , xr − xr−1 with root multiplicity
2
α

and we will identify the roots as vectors in Rr. Let ρ be the half sum of positive roots, so
that ρ = (ρ1, ρ2, · · · , ρr) = 1

α
(−r + 1,−r + 3, · · · , r − 1). We consider the measure

dµ(x) =
1

2r
(x1 · · ·xr)

− 1

α
(r−1)−1

∏

1≤j<k≤r

|xj − xk|
adx1 · · ·dxr

on Rr
+ and the corresponding Hilbert space L2(Rr

+, dµ).
We consider the Dunkl operators

(2.1) Tj = ∂j +
1

α

∑

i6=j

1

xj − xi
(1 − sij)

and the Cherednik operators

(2.2) Uj = UA
j = xj∂j +

1

α

∑

i<j

xj

xj − xi

(1 − sij) +
1

α

∑

j<k

xk

xj − xk

(1 − sjk) −
1

2
ρj

Here ∂j = ∂
∂xj

and sij stands for the permutation (ij) acting on functions f(x1, . . . , xr)

interchanging the variables xi and xj . The operators {Uj} can be written in terms of {Tj}
and the multiplication operators {xj}, but we will not need it here. Both families {Tj} and
{Uj} are commuting.

The polynomial eigenfunctions of the operators {Uj} are given by the so-called non-
symmetric Jack polynomials Eη(x) = E(η, x), with η = (η1, . . . , ηr) ∈ Nr. They are
characterized as eigen-polynomials of {Uj} with leading coefficients xη = x

η1

1 · · ·xηr
r in the

sense that
Eη = xη +

∑

ζ<η

cηζx
ζ .

We recall that ζ < η here stands for the partial ordering defined by

ζ < η iff

{

ζ+ < η+, ζ+ 6= η+

ζ < η, ζ+ = η+

where η+ is the unique partition obtained by permuting the entries of ζ and < stands for the
natural dominance ordering: ζ < η iff

∑p
j=1(ζj − ηj) ≥ 0, 1 ≤ p ≤ r.

The functions Eη has holomorphic extension in the variable η. More precisely, there exists
a function real analytic function Gλ(x) = G(λ, x) in x ∈ Rr

+ and holomorphic in λ ∈ a
C,

such that G(λ, 1r) = 1, with 1r = (1, . . . , 1), and

UjG(λ, x) = λjG(λ, x).

The relation between Gλ(x) and Eη(x) is

(2.3) Gη+ρ(x) = Eη(x) :=
Eη(x)

Eη(1r)
,
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The value Eη(1
r) has been computed by Sahi [10],

Eη(1
r) =

eη

dη
;

where eη and dη are defined in the next section. (See also [9] for general root systems.)
Define

(2.4) Fw[f ](λ) =

∫

a

f(x)G(−λ, w−1x)dµ(x).

Then we have

(2.5)
∫

a

|f(x)|2dµ(x) =
∑

w

∫

ia∗
+

Fw[f ](λ)Fw(f)(λ)dµ̃(λ)

where

dµ̃(λ) =
(2π)−rc̃2

w0
(ρ(k), k)

c̃(λ)c(w0λ)
dω(λ)

is the Plancherel measure. Here dω(λ) is the Euclidean measure.

3. LAPLACE TRANSFORM

Adapting the notation in [2] we denote q := 1 + 1
α
(r − 1). Let

(

κ
σ

)

be the binomial
coefficients for two tuples of nonnegative integer κ, σ ∈ Zr

≥0, see e.g. [11] and [2]. Recall
further that the non-symmetric Laplace transform is defined by

L[f ](t) =

∫

[0,∞)r

KA(−t, x)f(x)(

r
∏

j=1

xj)
qdµ(x),

where

KA(t, y) =
∑

η

α|η| 1

d′
η

Eη(t)Eη(y)

is the non-symmetric analogue of the hypergeometric 0F0 function. (Note that our measure
dµ differs a factor (

∏r
j=1 xj)

−q from that in [2, (3.67)].) Here each tuple η will be identified
with a diagram of nodes s = (i, j), 1 ≤ j ≤ ηi, dη =

∏

s∈η d(s), d′
η =

∏

s∈η d′(s),
e′η =

∏

s∈η e(s) with

d′(s) = α(a(s) + 1) + l(s), d(s) = d′(s) + 1, e(s) = α(a′(s) + 1) + r − l′(s))

and a(s) = ηi − j, a′(s) = j − 1 being the arm length, arm colength and

l(s) = #{k > i : j ≤ ηk ≤ ηi} + #{k < i : j ≤ ηk + 1 ≤ ηi},

l′(s) = #{k > i : ηk > ηi} + #{k < i : ηk ≤ ηi},

the leg length and leg colength. See [10] and [5].
The function KA(x, y) generalizes the exponential function in the sense that

(3.1) T
(x)
i KA(x, y) = yiKA(x, y),

where T
(x)
i is the Dunkl operator acting on the variable x.

Recall further the definition of generalized Gamma function

Γα(κ) =

r
∏

j=1

Γ(κj −
1

α
(j − 1))
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and the Pochammer symbol

[ν]κ =
Γα(ν + κ)

Γα(ν)
.

for ν, κ ∈ Cr, whenever it makes sense. A scalar c ∈ C will also be identified with
(c, · · · , c) ∈ C in the text below. We will also use the abbreviation xc = xc

1 · · ·x
c
r and

1 + x = (1 + x1, · · · , 1 + xr) etc.
We recall further the binomial coefficient

(

η
ν

)

for η, ν ∈ N
r defined by the expansion

(3.2) Eη(1 + t) =
∑

ν

(

η

ν

)

Eν(t).

See also [11] and [12]. We make the following generalization.

Definition 3.1. The binomial coefficients
(

η
ν

)

for any η ∈ C
r and ν ∈ N

r are defined by

(3.3) Gη+ρ(1 + t) =
∑

ν∈Nr

(

η

ν

)

Eν(t).

Since Gλ(1 + t) is an analytic function near 1 and Eν(t) form a basis for all polynomials
the above definition makes sense, and it agrees with (3.2) in view of the relation (2.3). In
particular

(

η
ν

)

is a polynomial of η ∈ Cr. It follows from the definition and [2, Proposition
3.18] that

(3.4) Eν(T )Gη+ρ|t=1 =
d′

ν

α|ν|

(

η

ν

)

.

The following lemma is proved in [2, (4.38)]. (Note that there is an error or misprint there:
E

(L)
η ( 1

x
) should be replaced by Eη(

1
x
). For symmetric case it was a conjecture of Macdonald

[8] proved by e.g. in [1, (6.1)-(6.3)].)

Lemma 3.2. Suppose c > −1. The Laplace transform of the functions xcEη(x) is given by

L[xaEη(x)](t) = N (L)
0 [c + q]η(

r
∏

j=1

t
−(c+q)
j )Eη(

1

t
).

The normalization constant N (L)
0 is computed in [2].

We fix in the rest of the text an even integer b > 2q + 2. Let

(3.5) E(L)
κ (x) = E(L,b)

κ (x) =
(−1)|κ|[b]κeκ

dκ

∑

σ

(−1)|σ|

[b]σ

(

κ

σ

)

Eσ(x)

be the non-symmetric Laguerre polynomial. The next Lemma follows from [2, Proposition
4.35] after a change of variable 2x = t2. Our parameter b is their a + q.

Lemma 3.3. Let p1(x) =
∑r

j=1 xj . The Laguerre functions

lκ(x) := lbκ(x) := EL
κ (2x)e−p1(x)(2x)

b
2

form an orthogonal basis for the space L2(Rr
+, dµ).

The norm ‖lκ‖2 has also been explicitly evaluated in [2].
We can now compute the Cherednik-Opdam transform of the Laguerre function. By the

Plancherel formula (2.5) they are then orthogonal functions in λ.
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Proposition 3.4. Suppose b > (q − 1) = 1
α
(r − 1). The Cherednik-Opdam transform Fw[lκ]

of the Laguerre function lκ(x), for w ∈ Sr being the identity e, is

Fe[lκ](λ) = 2
rb
2 N (L)

0

Γα( b
2
− ρ − λ)

Γα( b
2
)

Mκ(λ)

where

Mκ(λ) =
(−1)|κ|[b]κeκ

dκ

∑

σ

1

[b]σ

d′
σdσ

α|σ|eσ
(−2)|σ|

(

κ

σ

)(

− b
2

+ λ∗ + ρ∗

σ

)

Proof. The function lκ is a linear combinations of the functions e−p1(x)Eσ(x) and we com-
pute the Cherednik-Opdam transform of these functions. We write Lemma 3.2 as
∫

Rr
+

KA(−t, x)x
b
2Eη(x)dµ(x) = N (L)

0

Γα( b
2

+ η)

Γα( b
2
)

t−
b
2E−η∗(t) = N (L)

0

Γα( b
2

+ η)

Γα( b
2
)

E− b
2
−η∗(t),

with η∗ = (ηr, ηr−1, · · · , η1). Let the operator Eσ(T ) act on it evaluated as t = 1r =
(1, . . . , 1). The resulting equality, by (3.1) and the fact that KA(x, 1r) = ep1(x), and (3.4), is,

∫

Rr
+

e−p1(x)Eσ(−x)x
b
2Eη(x)dµ(x) = N (L)

0

Γα( b
2

+ η)

Γα( b
2
)

d′
σdσ

α|σ|eσ

(

− b
2
− η∗

σ

)

.

Thus, using the relation (2.3) we see that

F [lκ](λ) =

∫

[0,∞)r

lκ(x)G(−λ, x)dµ(x)

= 2
rb
2 N (L)

0

Γα( b
2
− ρ − λ)

Γα( b
2
)

(−1)|κ|[b]κeκ

dκ

∑

σ

1

[b]σ

d′
σdσ

α|σ|eσ

(−2)|σ|
(

κ

σ

)(

− b
2

+ λ∗ + ρ∗

σ

)

.

as claimed. �

By using the same argument we can also find a formula for the function Fw[lκ](λ) for
any w ∈ Sr. The Plancherel formula (2.5) then gives an orthogonality relation for the
polynomials. In the next section we will find another formula for Mκ(λ).

Remark 3.5. In the case of one variable r = 1 we have El = xl, dl = d′
lel = l!, our

polynomial is

Mk(λ) = (b)k(−1)k
∑

l

1

(b)l
l!(−2)l

(

k

l

)(

− b
2

+ λ

l

)

= (b)k(−1)k
2F1(−k,

b

2
− λ; b; 2)

which is the MP polynomial P
(b/2)
k (x; π

2
) [6, 1.7.1], more precisely

Mk(λ) = k!ikP
(b/2)
k (−iλ;

π

2
).

The functions Γ( b
2

+ iλ)Mk(iλ) are orthogonal in the space L2(R, dλ), as a consequence of
(2.5).
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4. A BINOMIAL FORMULA FOR Mκ(λ)

We recall first the following result [2, Proposition 4.13].

Lemma 4.1. The following expansion holds
r
∏

j=1

(1 − zj)
−bKA(−x;

z

1 − z
) =

∑

η

(−α)|η|
1

d′
η

E(L)
η (x)Eη(z)

We need another expansion of the
∏r

j=1(1− z2
j )

− b
2 Eκ− b

2

(1−z
1+z

) in terms of the polynomials
Eη(z).

Lemma 4.2. Consider the following expansion
r
∏

j=1

(1 − z2
j )

− b
2 Eη− b

2

(
1 − z

1 + z
) =

∑

κ

Cκ(η)Eκ(z),

for η ∈ Nr, ηj ≥
b
2
. The coefficients are then given by

(4.1) Cκ(η) = Eη−b(−1)
∑

σ

(

η − b

σ

)

(−2)|σ|
(

−σ∗ − b

κ

)

and is a polynomial in η.

Proof. Note that Cκ(η) is a polynomial in η follows from the remark after Definition 3.1.
Change variables yj = 1 + zj , 1−zj

1+zj
= 2

yj
− 1, 1 − z2

j = (1 + zj)
2 1−zj

1+zj
= y2

j (
2
y
− 1). We have

(1 − z2)−
b
2 Eη− b

2

(
1 − z

1 + z
) = (y2(

2

y
− 1))−

b
2 Eη− b

2

(
2

y
− 1)

= y−bEη−b(
2

y
− 1)

= (−1)|η−b|y−bEη−b(1 −
2

y
).

(4.2)

We expand Eη−b(1 − 2
y
) by using the binomial formula,

y−bEη−b(1 −
2

y
) = y−bEη−b(1)

∑

σ

(

η − b

σ

)

Eσ(−
2

y
)

= Eη−b(1)
∑

σ

(

η − b

σ

)

(−2)|σ|Eσ∗−b(y).

Here we have used the relations Eσ(−
2
y
) = (−2)|σ|E−σ∗(y) and y−bE−σ∗(y) = E−σ∗ − b(y).

Now each term E−σ∗−b(y) = E−σ∗−b(1 + z) can again be expanded in terms of Eκ(z). Inter-
changing the order of the summations we find that (4.2) is

Eη−b(−1)
∑

κ

(

∑

σ

(

η − b

σ

)

(−2)|σ|
(

−σ∗ − b

κ

)

)

Eκ(z).

This completes the proof. �
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Theorem 4.3. It holds that

(−α)|κ|
1

d′
κ

Mκ(λ) = Cκ(λ − ρ)

Proof. We replace x by 2x in Lemma 4.1,
r
∏

j=1

(1 − zj)
−bKA(−x;

2z

1 − z
) =

∑

κ

(−α)|κ|
1

d′
κ

E(L)
κ (2x)Eκ(z),

where we have used the fact that KA(2x; y) = KA(x; 2y). Multiplying both sides by
∏r

j=1(2xj)
b
2 e−p1(x) and since KA(−x; y + 1r) = KA(−x; y)e−p1(x) we get
r
∏

j=1

(1 − zj)
−bKA(−x;

1 + z

1 − z
)

r
∏

j=1

(2xj)
b
2 =

∑

κ

(−α)|κ|
1

d′
κ

l(ν)
κ (x)Eκ(z).

Multiplifying the both sides by Eη(x), η ∈ Nr, and integrating with respect to dµ(x) for z

in neighborhood of z = 0 (we omit the routine estimates guaranteeing that the interchanging
of the integration and summation is valid), we get, by Lemma 3.1,

N (L)
0 [

b

2
]η

r
∏

j=1

(1 − zj)
−bEη(

1 − z

1 + z
) = N (L)

0 [
b

2
]η
∑

κ

(−α)|κ|Mκ(η + ρ)
1

d′
κ

Eκ(z).

Cancelling the common factor N (L)
0 [ b

2
]η and rewriting then the left hand as

r
∏

j=1

(1 − zj)
−b

(

r
∏

j=1

1 − zj

1 + zj

)
b
2

Eη− b
2

(
1 − z

1 + z
) =

r
∏

j=1

(1 − z2
j )

− b
2 Eη− b

2

(
1 − z

1 + z
),

we get
r
∏

j=1

(1 − z2
j )

− b
2 Eη− b

2

(
1 − z

1 + z
) =

∑

κ

(−α)|κ|Mκ(η + ρ)
1

d′
κ

Eκ(z).

Comparing this with Lemma 4.1 proves our claim. �

Finally we can also consider the same problem for the symmetric Jack functions. The
Laplace transform is the symmetric case has been studied earlier by Macdonald [8] and
Baker-Forrester [1]. Using their results and by similar arguments as above we can the propo-
sition below.

Let Ωκ(x) = Ω
(α)
κ (x) for a partition κ = (κ1, · · · , κr) be the Jack symmetric polynomials

in r-variables, normalized so that Ωκ(1
r) = 1; see [7]. The corresponding functions for

κ ∈ C
r, which we call the Jack function (and which for general root system is called the

Heckman-Opdam hypergeometric function) will be denoted still by Ωκ(x), x ∈ (0,∞)r.

Proposition 4.4. Consider the following expansion
r
∏

j=1

(1 − z2
j )

− b
2 Ωη− b

2

(
1 − z

1 + z
) =

∑

κ

Qκ(η)Ωκ(z).

The coefficient Qκ(η) are polynomials in η up to a ρ shift, and a slight modification

fκ(λ) = 2rb/2N (L)
0

d′
κ

(−α)|κ|
Qκ(λ − ρ)
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form an orthogonal basis in the space

L2((0,∞)r, |
Γα( b

2
− ρ − λ)

Γα( b
2
)

|2|c(λ)|−2ds)W

of symmetric L2-functions.

Note that the functions Γα( b
2
−ρ−λ)Qκ(λ−ρ) is up to a constant depending only on κ are

the spherical transform of the Laguerre functions ep1(x)Lκ(2x)(2x)b/2, where Lκ(2x)(2x)b/2

is the symmetric Laguerre polynomials defined in [1], which then implies the orthogonality
of the functions fκ by the Plancherel formula (2.5) and the orthogonality of the Laguerre
functions [1].

We observe the spherical transform of the functions Lκ(2x)ep1(x)(2x)b/2 is a Weyl group
invariant polynomial of that of ep1(x)(2x)b/2, and as a consequence of our result we may get
a Rodrigues type formula expressing the former as polynomials of the Cherednik operators
{Uj} acting on the latter. However it might be more interesting to reverse the procedure,
namely to find the polynomials producing a Rodrigues type formula with the spherical trans-
form as an immediate consequence; see e.g. [14] for the case of Wilson polynomials.
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