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1 Property P for knots

According to a fundamental theorem of Lickorish and Wallace from the 1960s,
every closed, orientable 3–manifold can be obtained by performing Dehn surgery
on a link in the 3–sphere. Previous to the recent work of Perelman, which
is expected to close the coffin on the Poincaré conjecture, it was a natural
question for geometric topologists whether one might be able to produce a
counterexample to that conjecture by a single Dehn surgery. This led to the
definition of the following property, whose name is generally regarded as a little
unfortunate.

Definition. A knot K in S3 has Property P if every nontrivial surgery along
K yields a non-simply-connected 3–manifold.

Our knots are always understood to be smooth, or at least tame, i.e. equiv-
alent to a smooth one.

Let me briefly recall the notion of Dehn surgery along a knot K in the 3–
sphere S3. Write νK ∼= S1 × D2 for a (closed) tubular neighbourhood of K.
On the boundary ∂(νK) ∼= T 2 of this tubular neighbourhood there are two
distinguished curves (which we implicitly identify with the classes they represent
in the homology group H1(T

2)):

1. The meridian µ, defined as a simple closed curve that generates the kernel
of the homomorphism on H1 induced by the inclusion T 2 → νK.

2. The preferred longitude λ, defined as a simple closed curve that generates
the kernel of the homomorphism on H1 induced by the inclusion T 2 →
C := S3 \ νK.

This preferred longitude can also be characterised by the property that it
has linking number zero with K. The knot K bounds an embedded surface
in S3 (called a Seifert surface for K), and λ can be obtained by pushing K
along that surface. For that reason, the trivialisation of the normal bundle of
K defined by λ is called the surface framing of K.



Given an orientation of S3, orientations of µ and λ are chosen such that
(µ, λ) is a positive basis for H1(T

2), with T 2 oriented as the boundary of νK.
In the contact geometric setting below, the orientation of S3 will be the one
induced from the contact structure.

Let p, q be coprime integers. The manifold Kp/q obtained from S3 by Dehn
surgery along K with surgery coefficient p/q ∈ Q ∪ {∞} is defined as

Kp/q := S3 \ νK ∪g S1 × D2,

where the gluing map g sends the meridian ∗ × ∂D2 to pµ + qλ. The resulting
manifold is completely determined by the knot and the surgery coefficient.

A simple Mayer-Vietoris argument shows that H1(Kp/q) ∼= Z|p|. Therefore,
saying that a knot K has Property P is equivalent to

π1(K1/q) = 1 only for q = 0.

(Observe that p/q = ∞ corresponds to a trivial surgery.)

Example. The unknot does not have Property P. Indeed, every (1/q)–surgery
on the unknot yields S3, which is seen as follows. If K is the unknot, then
the closure C of S3 \ νK is also a solid torus. Write µC and λC for meridian
and preferred longitude on ∂C. We may assume µ = λC and λ = −µC . When
performing (1/q)–surgery on K, a solid torus is glued to C by sending its
meridian µ0 to µ + qλ = λC − qµC . Now, there clearly is a diffeomorphism of
C that sends µC to itself and λC to λC − qµC . It follows that the described
surgery is equivalent to the one where we send µ0 to λC = µ, which is a trivial
∞–surgery.

In the early 1970s, Bing and Martin, as well as González-Acuña, conjec-
tured that every nontrivial knot has Property P. By work of Kronheimer and
Mrowka [9], this is now a theorem.

Theorem 1 (Kronheimer-Mrowka). Every nontrivial knot in S3 has Prop-

erty P.

Before describing the role that contact geometry has played in the proof
of this theorem, I want to indicate the importance of this theorem beyond the
negative statement that counterexamples to the Poincaré conjecture cannot
result from a single surgery.

Proposition 2. If two knots K,K ′ in S3 have homeomorphic complements and

one of the knots has property P, then the knots are equivalent, i.e. there is a

homeomorphism of S3 mapping K to K ′.

Proof. According to a result of Edwards [3], two compact 3–manifolds with
boundary are homeomorphic if and only if their interiors are homeomorphic.
Thus, if S3 \ K is homeomorphic to S3 \ K ′, then there is a homeomorphism
ϕ : C → C ′, where C := S3 \ νK and C ′ := S3 \ νK ′.

Suppose K has Property P. This implies that there is a unique way of
attaching a solid torus S1 × D2 to C such that the resulting manifold is the
3–sphere. Hence ϕ extends to a homeomorphism S3 → S3, i.e. the knots K
and K ′ are equivalent.



Observe that in this proof we only used the weaker property that nontrivial
surgery along K does not yield the standard 3–sphere. This had been proved
earlier (for K different from the unknot) by Gordon and Luecke [8]. Since the
unknot is characterised by its complement being a solid torus, the result of
Kronheimer and Mrowka (or the weaker one by Gordon and Luecke) yields the
following corollary.

Corollary 3. If two knots in S3 have homeomorphic complements, then the

knots are equivalent.

Of course, together with a positive answer to the Poincaré conjecture, the
result of Gordon-Luecke implies that of Kronheimer-Mrowka.

2 Contact Dehn surgery

This section gives a brief report on joint work with Fan Ding [1]. Recall that a
(coorientable) contact structure ξ on a differential 3–manifold is a tangent 2–
plane field defined as the kernel of a global differential 1–form α that satisfies the
nonintegrability condition α∧ dα 6= 0 (meaning that α∧ dα vanishes nowhere).
An example is the standard contact structure

ξst = ker(x dy − y dx + z dt − t dz)

on S3 ⊂ R4. This can also be characterised as the complex line in the tangent
bundle of S3 with respect to complex multiplication induced from the inclusion
S3 ⊂ C2.

I shall have to use a few notions from contact geometry without time for
much explanation (tight and overtwisted contact structures, convex surfaces
in contact 3–manifolds). For more details see the introductory lectures by
Etnyre [5] or the Handbook chapter by the present author [7].

A (smooth) knot K in a contact 3–manifold (M, ξ) is called Legendrian if
it is everywhere tangent to ξ. The normal bundle of such a knot has a canonical
trivialisation, determined by a vector field along K that is everywhere transverse
to ξ. This will be referred to as the contact framing. We now consider
Dehn surgery along K with coefficient p/q as before, but we define the surgery
coefficient with respect to the contact framing.

It turns out that for p 6= 0, one can always extend the contact structure
ξ|M\νK to one on the surgered manifold in such a way that the extended contact
structure is tight on the glued-in solid torus S1 ×D2. Moreover, subject to this
tightness condition there are but finitely many choices for such an extension, and
for p/q = 1/k with k ∈ Z the extension is in fact unique. These observations
hinge on the fact that ∂(νK) is a convex surface, i.e. a surface admitting a
transverse flow preserving the contact structure. On solid tori with convex
boundary condition, tight contact structures have been classified by Giroux
and Honda.

We can therefore speak sensibly of contact (1/k)–surgery. The following
theorem is proved in [1].



Theorem 4. Let (M, ξ) be a closed, connected contact 3–manifold. Then (M, ξ)
can be obtained from (S3, ξst) by contact (±1)–surgery along a Legendrian link.

Remarks. (1) There is a related theorem, due to Lutz-Martinet in the early
1970s, cf. [7], saying that every (closed, orientable) 3–manifold admits a contact
structure in each homotopy class of tangent 2–plane fields. The original proof
is based on surgery along a link in S3 transverse to ξst. For an alternative proof
using Legendrian surgery see [2].

(2) From the topological point of view, surgeries with integer surgery coeffi-
cient are best, since they correspond to attaching 2–handles to the boundary of
a 4–manifold. Thus, contact (±1)–surgeries are best from both the topological
and contact geometric viewpoint.

(3) Contact (−1/k)–surgery is the inverse of contact (1/k)–surgery (along
appropriately related knots).

(4) Contact (−1)–surgery is symplectic handlebody surgery in the sense of
Eliashberg and Weinstein, cf. [2], and preserves the property of being strongly
symplectically fillable (see below).

3 Symplectic fillings

Contact geometry enters the proof of Theorem 1 via the notion of symplectic
fillings. Observe that a contact 3–manifold (M, ξ) is naturally oriented — the
sign of the volume form α ∧ dα does not depend on the choice of 1–form α
defining a given ξ; similarly, a symplectic 4–manifold (W,ω), i.e. with ω a
closed 2–form satisfying ω2 6= 0, is naturally oriented by the volume form ω2.

Definition. (a) The symplectic 4–manifold (W,ω) is called a weak (symplec-
tic) filling of the contact manifold (M, ξ) if ∂W = M as oriented manifolds
(outward normal followed by orientation of M gives orientation of W ) and
ω|ξ 6= 0.

(b) The symplectic 4–manifold (W,ω) is called a strong (symplectic)
filling of the contact manifold (M, ξ) if ∂W = M and there is a Liouville
vector field X defined near ∂W , pointing outwards along ∂W , and satisfying
ξ = ker(iXω|TM ). Here Liouville vector field means that the Lie derivative
LXω, which is the same as d(iXω) because of dω = 0 and Cartan’s formula, is
required to be equal to ω.

For instance, (S3, ξst) is strongly filled by the standard symplectic 4–disc
D4 with ωst = dx ∧ dy + dz ∧ dt. The Liouville vector field here is the radial
vector field X = r∂r/2.

It is clear that every strong filling is also a weak filling. The converse is
false: There are contact structures that are weakly but not strongly fillable;
such examples are due to Eliashberg and Ding-Geiges.

The contact geometric result that allowed Kronheimer and Mrowka to con-
clude their proof of Property P was first proved by Eliashberg [4].

Theorem 5 (Eliashberg). Any weak symplectic filling of a contact 3–manifold

embeds symplectically into a closed symplectic 4–manifold.



An alternative proof was given by Etnyre [6]. Both proofs rely on open book
decompositions adapted to contact structures. Theorem 5 being a cobordism
theoretic result, it is arguably more natural to give a surgical proof. Özbağcı and
Stipsicz [10] were the first to observe that such a proof, based on Theorem 4,
can indeed be devised. In the remainder of this section, I shall sketch this
surgical argument.

Theorem 5 is proved by showing that any contact 3–manifold can be capped
off symplectically, or has what is called a concave filling that can be glued to
the given (convex) filling. (For instance, a strong concave filling corresponds
to a Liouville vector field pointing inwards along the boundary.) Such a cap,
attached to the (convex) symplectic filling of the contact manifold, gives the
desired closed symplectic manifold.

(i) Strong fillings can be capped off: Let (W,ω) be a strong filling of (M, ξ).
By Theorem 4, there is a Legendrian link L = L− t L+ in (S3, ξst) such that
contact (−1)–surgery along the components of L− and contact (+1)–surgery
along those of L+ produces (M, ξ). By Remarks (3) and (4) we can attach
symplectic 1–handles to the boundary (M, ξ) of (W,ω) corresponding to contact
(−1)–surgeries that undo the contact (+1)–surgeries along L+. The result will
be a symplectic manifold (W ′, ω′) strongly filling a contact manifold (M ′, ξ′),
and the latter can be obtained from (S3, ξst) = ∂(D4, ωst) by performing contact
(−1)–surgeries (along L−) only.

A handlebody obtained from (D4, ωst) by attaching symplectic handles in
this way is in fact a Stein filling of its boundary contact manifold, and for
those a symplectic cap had been found earlier by Akbulut-Özbağcı and Lisca-
Matić. The cap that fits on the Stein filling also fits on the strong filling
(W ′, ω′), since strongly convex and strongly concave fillings of a given contact
manifold can always be glued together, using the Liouville flow to define collar
neighbourhoods of the boundary.

(ii) Reduce the problem to the consideration of homology spheres only:
Let (W,ω) be a weak filling of (M, ξ). We want to attach a (weak) symplectic
cobordism from (M, ξ) to some integral homology sphere Σ3 with contact struc-
ture ξ′, so as to get a weak filling of (Σ3, ξ′) containing (M, ξ) as a separating
hypersurface.

We start from a contact surgery presentation of (M, ξ) as in (i). For each
component Li of L we choose a Legendrian knot Ki in (S3, ξst) only linked with
that component, with linking number 1. These Ki can be chosen in such a way
that surgery with framing −1 relative to the contact framing is the same as
surgery with coefficient 0 relative to the surface framing. (In case you know
the term: The Thurston-Bennequin invariant of Ki can be chosen to be equal
to 1). Performing these surgeries has the effect of killing all integral homology.

Since ω is exact in the neighbourhood S1 × D2 × (−ε, 0] of a Legendrian
knot in the boundary (M, ξ) of (W,ω), these surgeries can be performed by
attaching symplectic handles as in the case of a strong filling. The collection of
these handles gives the desired (weak) symplectic cobordism.

(iii) Pass from a weak filling of a homology sphere to a strong filling: We



begin with the symplectic manifold (W ′, ω′) with boundary (Σ3, ξ′) constructed
in (ii). We want to modify ω′ in a collar neighbourhood Σ3 × [0, 1] of the
boundary Σ3 ≡ Σ3×{1} such that the resulting symplectic manifold is a strong
filling of the new induced contact structure ξ ′′ on the boundary. By (i) this can
then be capped off.

Since H2(Σ3) = 0, we can write ω = dη with some 1–form η in a collar
neighbourhood as described. (We see that it would be enough to have Σ3 a
rational homology sphere.) Choose a 1-form α on Σ3 with ξ′ = ker α and
α ∧ ω|TΣ3 > 0, which is possible for a weak filling. Then set

ω̃ = d(fη) + d(gα)

on Σ3 × [0, 1], where the smooth functions f(t) and g(t), t ∈ [0, 1], are chosen
as follows: Fix a small ε > 0. Choose f : [0, 1] → [0, 1] identically 1 on [0, ε]
and identically 0 near 1. Choose g : [0, 1] → R+

0 identically 0 near 0 and with
g′(t) > 0 for t > ε/2.

We compute

ω̃ = f ′ dt ∧ η + fω + g′ dt ∧ α + g dα,

whence

ω̃2 = ff ′ dt ∧ η ∧ ω + f ′g dt ∧ η ∧ dα + f 2ω2

+ fg′ ω ∧ dt ∧ α + fg ω ∧ dα + gg′ dt ∧ α ∧ dα.

The terms appearing with the factors f 2, fg′ and gg′ are positive volume forms.
By choosing g small on [0, ε] and g′ large compared with |f ′|, one can ensure
that these positive terms dominate the three terms we cannot control. Then ω̃
is a symplectic form on the collar, and in terms of the coordinate s = log g(t),
the symplectic form looks like d(esα) near the boundary, with Liouville vector
field ∂s.

4 Proof of Property P for nontrivial knots

Here is a very rough sketch of the proof by Kronheimer and Mrowka. It relies
heavily on pretty much everything known under the sun about gauge theory.

Let K be a nontrivial knot. It had been proved earlier by Culler-Gordon-
Luecke-Shalen that π1(K1/q) is nontrivial for q 6∈ {0,±1}. It therefore suffices
to find a nontrivial homomorphism π1(K1) → SO(3).

Arguing by contradiction, we assume that no such homomorphism exists.
This implies the vanishing of the instanton Floer homology group HF (K1). By
the Floer exact triangle one finds that the group HF (K0) vanishes likewise,
and so does the Fukaya-Floer homology group.

For K nontrivial, results of Gabai say that K0 is different from S1 × S2

and admits a taut 2–dimensional foliation. Eliashberg and Thurston, in their
theory of confoliations, deduce from this the existence of a symplectic structure
on K0 × [−1, 1] weakly filling contact structures on the boundary components.
According to Theorem 5, by capping off these boundaries we find a symplectic



manifold V containing K0 as a separating hypersurface (and satisfying some
mild cohomological conditions).

Now, on the one hand, the Donaldson invariants of V can be expressed as
a pairing on the Fukaya-Floer homology group of K0 and therefore have to
vanish.

On the other hand, results of Taubes say that the Seiberg-Witten invari-
ants of V are nontrivial. By a conjecture of Witten, proved in the relevant
case by Feehan-Leness, the Donaldson invariants are likewise nontrivial. This
contradiction proves Theorem 1.
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