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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS

AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Abstract. We complete the equisingular deformation classification of irre-

ducible singular plane sextic curves. As a by-product, we also compute the

fundamental groups of the complement of all but a few maximizing sextics.

1. Introduction

Throughout the paper, all varieties are over the field C of complex numbers.
Our principal result is the completion of the classification of irreducible plane

sextics (curves of degree 6) up to equisingular deformation. We confine ourselves to
simple sextics only, i.e., those with A–D–E singularities (see §2.2). The non-simple
ones require completely different techniques and are well known; surprisingly, their
study is much easier: the statements were announced by the second author long
ago, and formal proofs can be found in [13]. Note also that degree 6 is the first
nontrivial case (see [13] for the statements on quintics; quartics were known to
Klein) and, probably, the last case that can be completely understood, thanks to
the close relation between plane sextics and K3-surfaces.

The systematic study of simple sextics based on the theory of K3-surfaces was
initiated by U. Persson [28], who proved that the total Milnor number µ of such a
curve does not exceed 19. Based on this approach, T. Urabe [30] listed the possible
sets of singularities with µ 6 16, and this result was extended to a complete list of
the sets of singularities realized by simple sextics by J. G. Yang [31]. Later, using
the arithmetical reduction [8], I. Shimada [29] gave a complete description of the
moduli spaces of the maximizing (µ = 19) sextics. In the meanwhile, a number
of independent (not explicitly related to the K3-surfaces) attempts to attack the
classification problem has also been made, see, e.g., [2, 3] (defining equations of a
number of maximizing sextics), [25, 26] (sets of singularities and explicit equations
of sextics of torus type), [9, 10, 11] (sextics admitting stable projective symmetries),
[13] (sextics with a triple point), etc.

At some point it was clearly understood, partially in conjunction with Oka’s con-
jecture [18] and partially due to the arithmetical reduction of the problem [8], that
irreducible sextics D should be subdivided into classes according to the maximal
generalized dihedral quotient QD that the fundamental group π1(P2 rD) admits.
If this quotient is large, |QD| > 6, the curves are relatively few in number and can
easily be listed manually (see [7] and §2.5), using Nikulin’s sufficient uniqueness
conditions [24]. The present paper fills the gap and covers the two remaining cases:
non-special sextics (QD = 0, see Theorem 2.4) and 1-torus sextics (QD = D6, see
Theorem 2.9). On the arithmetical side, our computation is based on the stronger
(non-)uniqueness criteria due to Miranda–Morrison [21, 22, 23]. For an even further
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illustration of the power of [23], we solve a few more subtle geometric problems,
namely, we compute the monodromy representation of the fundamental groups of
the equisingular strata (in other words, we classify sextics with marked singular
points, see §4.7 and Theorem 4.10), we discuss whether the strata are real and
whether they contain real curves (the interesting discovery here is Proposition 2.6),
and we give a complete description of the adjacencies of the strata (see §6.5 and
Propositions 6.5, 6.7, 6.8).

There are three sets of singularities that deserve special attention: to the best of
our knowledge, phenomena of this kind have not been observed before. It is quite
common that the (discrete) moduli spaces of maximizing sextics are disconnected,
see [29]. For about a dozen of the sets of singularities with µ = 18, the moduli
space (of dimension 1) consists of two complex conjugate components (see Table 4;
the first such example, viz. E6 ⊕A11 ⊕A1, was found in [1]). We discover a set of
singularities, viz. E6⊕ 2A5⊕A1, with µ = 17 and disconnected moduli space (two
conjugate components of dimension 2), and another one, 2A9, with µ = 18 and
the moduli space consisting of two disjoint real components (see Proposition 2.5).
Finally, the moduli space corresponding to the set of singularities A7 ⊕A6 ⊕A5,
µ = 18, consists of a single component, which is hence real, but it contains no real
curves (see Proposition 2.6).

As another important by-product of Theorems 2.4 and 2.9, we obtain Corollaries
2.8 and 2.11, computing the fundamental groups of the complements of all but a
few maximizing irreducible sextics. In fact, no computation is found in this paper:
we merely use the classification, the degeneration principle, and previously known
groups. Most statements on the fundamental groups were known conjecturally;
more precisely, the groups of some sextics with certain sets of singularities were
known, and our principal contribution is the connectedness of the moduli spaces.

1.1. Contents of the paper. The principal results of the paper are stated in §2,
after the necessary terminology and notation have been introduced. For the reader’s
convenience, we also discuss the other irreducible simple sextics (see §2.5) and list
the known fundamental groups. In §3, we recall the fundamentals of Nikulin’s
theory of discriminant forms and lattice extensions, give a brief introduction to
Miranda–Morrison’s theory [23], and recast some of their results in a form more
suitable for our computations. In §4, we recall the notion of (abstract) homological
type and the arithmetical reduction [8] of the classification problem (see §4.1 and
§4.2) and begin the proof of our principal results, classifying the plane sextics up
to equisingular deformation and complex conjugation. As a digression, we classify
also sextics with marked singular points, see §4.7. With the classification in hand,
the computation of the fundamental groups is almost straightforward; it is outlined
in §5. Finally, in §6, we discuss real strata and real curves, completing the defor-
mation classification of simple sextics. As another digression, in §6.5 we describe
the adjacencies of the non-real strata.

1.2. Acknowledgements. We are grateful to V. Nikulin, who drew our attention
to Miranda–Morrison’s works [21, 22]. To a large extent, this text was written
during the second author’s stay at Max-Planck-Institut für Mathematik, partially
supported by the “Tropical Geometry and Topology” program. We would like to
extend our gratitude to the institute and its friendly staff and to the organizers of
the program.
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2. Principal results

2.1. Notation. We use the notation Gn := Z/nZ (reserving Zp and Qp for p-adic
numbers) and D2n for the cyclic group of order n and dihedral group of order 2n,
respectively. As usual, SL(n, k) is the group of (n × n)-matrices M over a field k
such that detM = 1.

The notation Bn stands for the braid group on n stings. The reduced braid group
(or the modular group) is the quotient Γ = B3/(σ1σ2)3 of B3 by its center; one has
Γ = PSL(2,Z) = G2 ∗ G3. The braid group is generated by the Artin generators
σi, i = 1, . . . , n− 1, subject to the relations

[σi, σj ] = 1 if |i− j| > 1, σiσi+1σi = σi+1σiσi+1.

Throughout the paper, all group actions are right, and we use the notation
(x, g) 7→ x ↑ g. The standard action of Bn on the free group 〈α1, . . . , αn〉 is as
follows:

σi :


αi 7→ αiαi+1α

−1
i ,

αi+1 7→ αi,

αj 7→ αj , if j 6= i, i+ 1

The element ρn := α1 . . . αn ∈ 〈α1, . . . , αn〉 is preserved by Bn. Given a pair α1, α2,
we use the notation {α1, α2}n := α−1

2 (α2 ↑ σ
n
1 ) ∈ 〈α1, α2〉 for n ∈ Z.

We denote by P = {2, 3, . . .} the set of all primes.
The group of units of a commutative ring R is denoted by R×. We recall that

Z×p /(Z×p )2 = {±1} for p ∈ P odd, and Z×2 /(Z
×
2 )2 = (Z/8)× ∼= {±1} × {±1} is

generated by 7 mod 8 and 5 mod 8. If m ∈ Z is prime to p, its class in Z×p /(Z×p )2

is the Legendre symbol (mp ) ∈ {±1} if p is odd or m mod 8 ∈ (Z/8)× if p = 2.

2.2. Simple sextics. A sextic is a plane curve D ⊂ P2 of degree six. A sextic is
simple if all its singular points are simple, i.e., those of type A–D–E, see [16]. If
this is the case, the minimal resolution of singularities X of the double covering of
P2 ramified at D is a K3-surface. The intersection index form H2(X) ∼= 2E8 ⊕ 3U
is (the only) even unimodular lattice of signature (σ+, σ−) = (3, 19) (see §3.4; here,
U is the hyperbolic plane). We fix the notation L := 2E8 ⊕ 3U.

For each simple singular point P of D, the components of the exceptional divisor
E ⊂ X over P span a root lattice in L (see §3.3). The (obviously orthogonal) sum
of these sublattices is denoted by S(D) and is referred to as the set of singularities
of D. (Recall that the types of the individual singular points are uniquely recovered
from S(D), see §3.3.) The rank rk S(D) equals the total Milnor number µ(D).
Since S(D) ⊂ L is negative definite, one has µ(D) 6 19, see [28]. If µ(D) = 19,
the sextic D is called maximizing. We emphasize that both the inequality and the
term apply to simple sextics only.

An irreducible sextic D ⊂ P2 is called special (more precisely, D2n-special) if its
fundamental group π1 := π1(P2 rD) factors to a dihedral group D2n, n > 3.

A sextic D is said to be of torus type if its defining polynomial f can be written
in the form f = f3

2 + f2
3 , where f2 and f3 are homogenous polynomials of degree

2 and 3, respectively. A representation f = f3
2 + f2

3 as above, up to the obvious
equivalence, is called a torus structure on D. According to [7], an irreducible sextic
D may have one, four, or twelve distinct torus structures, and we call D a 1-, 4-,
or 12-torus sextic, respectively. An irreducible sextic is of torus type if and only if
it is D6-special, see [7]. In this case, the group π1(P2 rD) factors to Γ, see [32].
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The points of the intersection f2 = f3 = 0 are singular for D; they are called
the inner singularities of D (with respect to the given torus structure), whereas
the other singular points are called outer. When listing the set of singularities of a
1-torus sextic (or describing a particular torus structure), it is common to enclose
the inner singularities in parentheses, cf. Table 3. Conversely, the presence of a
pair of parentheses in the notation indicates that the sextic is of torus type.

Denote byM∼= P27 the space of all plane sextics. This space is subdivided into
equisingular strata M(S); we consider only those with S simple. The space of all
simple sextics and each of its strataM(S) are further subdivided into familiesM∗,
M∗(S), where the subscript ∗ refers to the sequence of invariant factors of a certain
finite group, see §4.1 for the precise definition. Our primary concern are the spaces

• M1(S): non-special irreducible sextics, see Theorem 4.7, and
• M3(S): irreducible 1-torus sextics, see Theorem 4.8.

In this notation, irreducible 4- and 12-torus sextics constitute M3,3 and M3,3,3,
respectively, whereas irreducible D2n-special sextics, n = 5, 7, constitute Mn. For
each subscript ∗, we denote by M̄∗(S) and ∂M∗(S) := M̄∗(S)rM∗(S) the closure
and boundary of M∗(S) in M∗.

If S is a simple set of singularities, the dimension of the equisingular moduli space
M(S)/PGL(3,C) equals 19− µ(S), as follows from the theory of K3-surfaces.

The coordinatewise conjugation (z0 : z1 : z2) 7→ (z̄0 : z̄1 : z̄2) in P2 induces
a real structure (i.e., anti-holomorphic involution) conj : M → M, which takes
a sextic to its conjugate. A sextic D ∈ M is real if conj(D) = D. A connected
component C ⊂ M∗(S) is real if it is preserved by conj as a set; this property of C is
independent of the choice of coordinates in P2. Clearly, any connected component
containing a real curve is real. The converse is not true; however, in the realm of
irreducible sextics, the only exception is M1(A7 ⊕A6 ⊕A5), see Proposition 2.6.

Most results of the paper are stated in terms of degenerations/perturbations of
sets of singularities and/or sextics (or, equivalently, in terms of adjacencies of the
equisingular strata of M). As shown in [20], the deformation classes of perturba-
tions of a simple singular point P of type S are in a one-to-one correspondence with
the isomorphism classes of primitive extensions S′ � S of root lattices, see §3.3
and §3.4. Thus, by a degeneration of sets of singularities we merely mean a class
of primitive extensions S′ � S of root lattices. Recall (see [17]) that S′ admits a
degeneration to S if and only if the Dynkin graph of S′ is an induced subgraph of
that of S. A degeneration D′ � D of simple sextics gives rise to a degeneration
S(D′)� S(D). According to [10], the converse also holds: given a simple sextic D
and a root lattice S′, any degeneration S′ � S(D) is realized by a degeneration
D′� D of simple sextics, so that S(D′) = S′.

2.3. Lists and fundamental groups. A complete list of the sets of singularities
realized by simple plane sextics is found in [31], and the deformation classification
of all maximizing simple sextics is obtained in [29] (see also [13] for an alternative
approach to sextics with a triple singular point). The relevant part of these results
is collected in Tables 1, 2 (irreducible maximizing non-special sextics) and Table 3
(irreducible maximizing 1-torus sextics). In the tables, the column (r, c) refers to
the numbers of real (r) and pairs of complex conjugate (c) curves realizing the given
set of singularities; thus, the total number of connected components of the stratum
M1(S) (orM3(S) for Table 3) is n := r+2c. Some sets of singularities are prefixed
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Table 1. The spaces M1(S), µ(S) = 19, with a triple point in S

Singularities (r, c)

2E8 ⊕A3 (1, 0)

2E8 ⊕A2 ⊕A1 (1, 0)

E8 ⊕E7 ⊕A4 (0, 1)

E8 ⊕E7 ⊕ 2A2 (1, 0)

E8 ⊕E6 ⊕D5 (1, 0)

E8 ⊕E6 ⊕A5 (0, 1)

E8 ⊕E6 ⊕A4 ⊕A1 (1, 0)

E8 ⊕E6 ⊕A3 ⊕A2 (1, 0)

E8 ⊕D11 (1, 0)

E8 ⊕D9 ⊕A2 (1, 0)

E8 ⊕D7 ⊕A4 (1, 0)

E8 ⊕D5 ⊕A6 (0, 1)

E8 ⊕D5 ⊕A4 ⊕A2 (1, 0)

E8 ⊕A11 (0, 1)

E8 ⊕A10 ⊕A1 (1, 1)

E8 ⊕A9 ⊕A2 (1, 0)

E8 ⊕A8 ⊕A3 (1, 0)

E8 ⊕A8 ⊕A2 ⊕A1 (1, 1)

E8 ⊕A7 ⊕A4 (0, 1)

E8 ⊕A7 ⊕ 2A2 (1, 0)

E8 ⊕A6 ⊕A5 (0, 1)

E8 ⊕A6 ⊕A4 ⊕A1 (1, 1)

E8 ⊕A6 ⊕A3 ⊕A2 (1, 0)

E8 ⊕A6 ⊕ 2A2 ⊕A1 (1, 0)

E8 ⊕A5 ⊕A4 ⊕A2 (2, 0)
[1] E8 ⊕A4 ⊕A3 ⊕ 2A∗

2 (1, 0)

E7 ⊕ 2E∗
6 (1, 0)

E7 ⊕E6 ⊕A6 (0, 1)

E7 ⊕E6 ⊕A4 ⊕A2 (2, 0)

E7 ⊕A12 (0, 1)

E7 ⊕A10 ⊕A2 (2, 0)

E7 ⊕A8 ⊕A4 (0, 1)

E7 ⊕A6 ⊕A4 ⊕A2 (2, 0)

E7 ⊕ 2A6 (0, 1)
[2] E7 ⊕ 2A4 ⊕ 2A∗

2 (1, 0)

2E∗
6 ⊕A7 (1, 0)

2E∗
6 ⊕A6 ⊕A1 (1, 0)

[3] 2E6 ⊕A4 ⊕A3 (1, 0)

E6 ⊕D13 (1, 0)

E6 ⊕D11 ⊕A2 (1, 0)

Singularities (r, c)

E6 ⊕D9 ⊕A4 (1, 0)

E6 ⊕D7 ⊕A6 (1, 0)

E6 ⊕D5 ⊕A8 (1, 1)

E6 ⊕D5 ⊕A6 ⊕A2 (2, 0)

E6 ⊕D5 ⊕ 2A4 (1, 0)

E6 ⊕A13 (0, 1)

E6 ⊕A12 ⊕A1 (0, 1)

E6 ⊕A10 ⊕A3 (2, 0)

E6 ⊕A10 ⊕A2 ⊕A1 (1, 1)

E6 ⊕A9 ⊕A4 (1, 1)

E6 ⊕A8 ⊕A4 ⊕A1 (1, 1)

E6 ⊕A7 ⊕A6 (0, 1)

E6 ⊕A7 ⊕A4 ⊕A2 (2, 0)

E6 ⊕A6 ⊕A4 ⊕A3 (1, 0)

E6 ⊕A6 ⊕A4 ⊕A2 ⊕A1 (1, 1)

E6 ⊕A5 ⊕ 2A4 (2, 0)

D19 (1, 0)

D17 ⊕A2 (1, 0)

D15 ⊕A4 (1, 0)

D13 ⊕A6 (0, 1)

D13 ⊕A4 ⊕A2 (1, 0)

D11 ⊕A8 (1, 0)

D11 ⊕A6 ⊕A2 (1, 0)

D11 ⊕A4 ⊕ 2A∗
2 (1, 0)

D9 ⊕A10 (1, 0)

D9 ⊕A6 ⊕A4 (1, 0)

D9 ⊕ 2A∗
4 ⊕A2 (1, 0)

D7 ⊕A12 (1, 1)

D7 ⊕A10 ⊕A2 (0, 1)

D7 ⊕A8 ⊕A4 (2, 0)

D7 ⊕A6 ⊕A4 ⊕A2 (1, 0)

D7 ⊕ 2A6 (0, 1)

D5 ⊕A14 (0, 1)

D5 ⊕A12 ⊕A2 (1, 0)

D5 ⊕A10 ⊕A4 (1, 1)

D5 ⊕A10 ⊕ 2A∗
2 (1, 0)

D5 ⊕A8 ⊕A6 (0, 1)

D5 ⊕A8 ⊕A4 ⊕A2 (1, 1)

D5 ⊕A6 ⊕ 2A4 (2, 0)

D5 ⊕A6 ⊕A4 ⊕ 2A∗
2 (1, 0)

with a link of the form [n]: this link refers to the listings of the fundamental groups
found below. Some pairs of singular points are marked with a ∗. This marking is
related to the real structures; it is explained in §6.2.
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Table 2. The spaces M1(S), µ(S) = 19, with double points only

Singularities (r, c)

A19 (2, 0)

A18 ⊕A1 (1, 1)

A16 ⊕A3 (2, 0)

A16 ⊕A2 ⊕A1 (1, 1)

A15 ⊕A4 (0, 1)
[6] A14 ⊕A4 ⊕A1 (0, 3)
[6] A13 ⊕A6 (0, 2)

A13 ⊕A4 ⊕A2 (2, 0)
[6] A12 ⊕A7 (0, 1)
[4] A12 ⊕A6 ⊕A1 (1, 1)

A12 ⊕A4 ⊕A3 (1, 0)
[4] A12 ⊕A4 ⊕A2 ⊕A1 (1, 1)
[5] A11 ⊕ 2A∗

4 (2, 0)

A10 ⊕A9 (2, 0)
[4] A10 ⊕A8 ⊕A1 (1, 1)

Singularities (r, c)

A10 ⊕A7 ⊕A2 (2, 0)
[6] A10 ⊕A6 ⊕A3 (0, 1)
[4] A10 ⊕A6 ⊕A2 ⊕A1 (1, 1)

A10 ⊕A5 ⊕A4 (2, 0)
[6] A10 ⊕ 2A∗

4 ⊕A1 (1, 1)

A10 ⊕A4 ⊕A3 ⊕A2 (1, 0)

A10 ⊕A4 ⊕ 2A2 ⊕A1 (2, 0)
[4] A9 ⊕A6 ⊕A4 (1, 1)
[6] A8 ⊕A7 ⊕A4 (0, 1)
[4] A8 ⊕A6 ⊕A4 ⊕A1 (1, 1)
[6] A7 ⊕ 2A6 (0, 1)

A7 ⊕A6 ⊕A4 ⊕A2 (2, 0)

A7 ⊕ 2A4 ⊕ 2A∗
2 (1, 0)

2A∗
6 ⊕A4 ⊕A2 ⊕A1 (2, 0)

A6 ⊕A5 ⊕ 2A∗
4 (2, 0)

The fundamental groups of most irreducible maximizing sextics are computed
in [13, 15]; the latest computations, using S. Orevkov’s recent equations [27], are
contained in [12]. (Due to [27], the defining equations of all maximizing irreducible
sextics with double points only are known now.) Quite a few sporadic computations
of the fundamental groups are also found in [2, 3, 6, 10, 11, 18, 19, 26, 33] and a
number of other papers, see [13] for more detailed references.

The known fundamental groups π1 := π1(P2 rD) of the maximizing non-special
irreducible sextics D are as follows (depending on the set of singularities):

(1) for E8 ⊕A4 ⊕A3 ⊕ 2A2, the group is the central product

π1 = SL(2,F5)�G12 :=
(
SL(2,F5)×G12

)
/(−id = 6),

where −id is the generator of the center G2 ⊂ SL(2,F5);
(2) for E7 ⊕ 2A4 ⊕ 2A2, the group is π1 = SL(2,F19)×G6;
(3) for 2E6 ⊕A4 ⊕A3, the group is π1 = SL(2,F5) oG6, the generator of G6

acting on SL(2,F5) by (any) order 2 outer automorphism;
(4) for the six sets of singularities marked with [4] in Table 2, one has (r, c) =

(1, 1), and only for the real curve the group π1 = G6 is known;
(5) for A11⊕ 2A4, only for one of the two curves the group π1 = G6 is known;
(6) for the seven sets of singularities marked with [6] in Table 2, the fundamental

group is still unknown.

In all other cases, the fundamental group is abelian: π1 = G6.
The fundamental groups of sextics of torus type are large and more difficult to

describe. To simplify the description, we introduce a few ad hoc groups:

(2.1) G(s̄) :=
〈
α1, α2, α3

∣∣ ρ4
3 = (α1α2)3, {α2 ↑ σ

i
1, α3}si = 1, i = 0, . . . , 5

〉
,

where s̄ = (s0, . . . , s5) ∈ Z6 is an integral vector,

(2.2) Lp,q,r :=
〈
α1, α2

∣∣ (α1α2α1)3 = α2α1α2, {α2, (α1α2)α1(α1α2)−1}p
= {α1, α2α1α

−1
2 }q = {α2, (α1α

2
2)α1(α1α

2
2)−1}r = 1

〉
,
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Table 3. The spaces M3(S), µ(S) = 19

Singularities (r, c)
[1] (3E6)⊕A1 (1, 0)
[2] (2E6 ⊕A5)⊕A2 (2, 0)
[3] (2E6 ⊕ 2A∗

2)⊕A3 (1, 0)

(E6 ⊕A11)⊕A2 (1, 0)

(E6 ⊕A8 ⊕A2)⊕A3 (1, 0)

(E6 ⊕A8 ⊕A2)⊕A2 ⊕A1 (1, 1)
[4] (E6 ⊕A5 ⊕ 2A∗

2)⊕A4 (2, 0)

D5 ⊕ (A8 ⊕ 3A∗
2) (1, 0)

Singularities (r, c)

(A17 ⊕A2) (1, 0)

(A14 ⊕A2)⊕A3 (1, 0)

(A14 ⊕A2)⊕A2 ⊕A1 (1, 0)

(A11 ⊕ 2A∗
2)⊕A4 (1, 0)

(2A8)⊕A3 (1, 0)
[6] (A8 ⊕A5 ⊕A2)⊕A4 (0, 1)
[5] (A8 ⊕ 3A∗

2)⊕A4 ⊕A1 (1, 0)

where p, q, r ∈ Z, and

(2.3) Ep,q :=
〈
α1, α2, α3

∣∣ ρ3α2ρ
−1
3 = α−1

2 α1α2 = ρ−1
3 α3ρ3,

ρ4
3 = (α1α2)3, {α2, α3}p = {α1, α3}q = 1

〉
,

where p, q ∈ Z. Then, the fundamental groups of the maximizing irreducible 1-torus
sextics are as follows:

(1) for (3E6)⊕A1, the group is π1 = B4/σ2σ
2
1σ2σ

3
3 ;

(2) for (2E6 ⊕A5)⊕A2, the groups are E3,6, see (2.3), and L3,6,0, see (2.2);
(3) for (2E6 ⊕ 2A2)⊕A3, the group is E4,3, see (2.3);
(4) for (E6 ⊕A5 ⊕ 2A2) ⊕A4, the groups are L5,6,3 and G(6, 5, 3, 3, 5, 6), see

(2.2) and (2.1), respectively;
(5) for (A8 ⊕ 3A2)⊕A4 ⊕A1, the group is

π1 =
〈
α1, α2, α3

∣∣ [α2, α3] = {α1, α2}3 = {α1, α3}9 = 1,

α3α1α
−1
2 α3α1α3(α3α1)−2α2 = (α1α3)2α−1

2 α1α3α2α1

〉
;

(6) for the set of singularities (A8 ⊕A5 ⊕A2)⊕A4, the group is unknown.

In all other cases, the fundamental group is π1 = Γ. In each of items 2 and 4, it is
not known whether the two groups are isomorphic. The groups corresponding to
distinct sets of singularities (listed above) are distinct, except that it is not known
whether the group in item 5 is isomorphic to Γ.

2.4. Statements. There are 110 maximizing sets of simple singularities realized
by non-special irreducible sextics. We found that 2996 sets of simple singularities
are realized by non-maximizing non-special irreducible sextics. (This statement is
almost contained in [31], although no distinction between special and non-special
curves is made there, nor a description of non-maximizing irreducible sextics.) The
corresponding counts for irreducible 1-torus sextics are 15 and 105, respectively,
see [25]. Our principal results (the deformation classification and a few consequences
on the fundamental group) are stated in the rest of this section, with references to
the proofs given in the headers.

Theorem 2.4 (see §4.3 and §6.1). The space M1(S) is nonempty if and only if
either S is in one of the following two exceptional degeneration chains

2D8 � D9 ⊕D8 � 2D9, 2D4 ⊕ 4A2 � D7 ⊕D4 ⊕ 3A2 � 2D7 ⊕ 2A2
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Table 4. Disconnected spaces M1(S), µ(S) < 19

Singularities (r, c)

E8 ⊕ 2A5 (0, 1)

E7 ⊕E6 ⊕A5 (0, 1)

E7 ⊕A7 ⊕A4 (0, 1)

E6 ⊕A11 ⊕A1 (0, 1)

E6 ⊕A7 ⊕A5 (0, 1)

E6 ⊕A6 ⊕A5 ⊕A1 (0, 1)

E6 ⊕ 2A5 ⊕A1 (0, 1)

Singularities (r, c)

D6 ⊕ 2A6 (0, 1)

D5 ⊕ 2A6 ⊕A1 (0, 1)

2A9 (2, 0)

A7 ⊕A6 ⊕A5 (1, 0)

3A6 (0, 1)

2A6 ⊕ 2A3 (0, 1)

2A7 ⊕A4 (0, 1)

or S degenerates to one of the maximizing sets of singularities listed in Tables 1, 2.
The numbers (r, c) of connected components of M1(S) are as shown in Tables 1, 2,
and 4; in all other cases, M1(S) is connected and contains real curves.

Two lines in Table 4 deserve separate statements: to our knowledge, phenomena
of this kind have not been observed before.

Proposition 2.5 (see §4.5). Let S0 := 2A9, S1 := A19, and S2 := A10 ⊕ A9.
The space M1(Si), i = 0, 1, 2, consists of two connected components M±1 (Si), each
containing real curves, so that ∂Mε

1(S0) =Mε
1(S1) ∪Mε

1(S2) for each ε = ±.

Proposition 2.6 (see §6.3). The space M1(A7 ⊕A6 ⊕A5) =M(A7 ⊕A6 ⊕A5)
is connected (hence, its only component is real), but it contains no real curves.

In the other cases in Table 4, the spaceM1(S) consists of two complex conjugate
components. The first such example, viz. S = E6⊕A11⊕A1, was discovered in [1].
The adjacencies of these non-real components are studied in §6.5. Note that one
set of singularities, viz. E6 ⊕ 2A5 ⊕A1, has Milnor number 17; it gives rise to an
interesting adjacency phenomenon, see Proposition 6.7.

Corollary 2.7 (see §4.4). With the same six exceptions as in Theorem 2.4, any
non-special irreducible simple sextic degenerates to a maximizing sextic with these
properties, see Tables 1 and 2.

Corollary 2.8 (see §5.2). Let D ⊂ P2 be a non-special irreducible simple plane
sextic. If µ(D) = 19, the fundamental group π1 := π1(P2 r D) is as shown in
Tables 1 and 2. Otherwise, one has

• π1 = SL(2,F3)×G2 for 2D7 ⊕ 2A2, D7 ⊕D4 ⊕ 3A2, and 2D4 ⊕ 4A2,
• π1 = SL(2,F5)�G12, see §2.3, for 2A4 ⊕ 2A3 ⊕ 2A2,

and π1 = G6 in all other cases.

The remaining statements deal with sextics of torus type, and we introduce
the notion of weight. The weight w(P ) of a simple singular point P is defined
via w(A3p−1) = p, w(E6) = 2, and w(P ) = 0 otherwise. The weight of a set
of singularities S (or a simple sextic D) is the total weight of its singular points.
Recall (see [7]) that, if D is a 1-torus sextic, then 6 6 w(D) 6 7. Conversely, if D
is an irreducible sextic and either w(D) = 7 or w(D) = 6 and D has at least one
singular point P 6= A1 of weight 0, then D is a 1-torus sextic.

Theorem 2.9 (see §4.6 and §6.4). A set of singularities S with w(S) > 6 is realized
by an irreducible simple 1-torus sextic D if and only if S degenerates to one of the
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maximizing sets listed in Table 3. Furthermore, if µ(S) 6 18, a sextic D as above
is unique up to equisingular deformation and the spaceM3(S) contains real curves.

Corollary 2.10 (see §4.6). Any irreducible simple 1-torus sextic degenerates to a
maximizing sextic with these properties, see Table 3.

There are 51 sets of singularities S (all of weight 6) realized by both 1-torus and
non-special irreducible sextics. Formally, these sets of singularities can be extracted
from Theorems 2.4 and 2.9; an explicit list is found in [1]. The corresponding sextics
constitute the so-called classical Zariski pairs.

Corollary 2.11 (see §5.3). Let D ⊂ P2 be an irreducible simple 1-torus sextic.
If µ(D) = 19, the fundamental group π1 := π1(P2 r D) is as shown in Table 3.
Otherwise, one has π1 = B4/σ2σ

2
1σ2σ

3
3 for the sets of singularities

(2E6 ⊕ 2A2)⊕ 2A1, (E6 ⊕ 4A2)⊕ 3A1, (E6 ⊕ 4A2)⊕A3 ⊕A1,

(6A2)⊕A3 ⊕ 2A1, (6A2)⊕ 4A1,

and π1 = Γ in all other cases.

Remark 2.12. In Corollary 2.11, the non-maximizing 1-torus sextics with the
group π1 = B4/σ2σ

2
1σ2σ

3
3 can be characterized as the degenerations of (6A2)⊕4A1.

2.5. Other irreducible sextics. For the reader’s convenience and completeness
of the exposition, we recall the classification of the other irreducible simple sextics,
viz. the D10- and D14-special sextics and the 4- and 12-torus ones. The fundamental
groups are computed in several papers, see [13] for detailed references.

Theorem 2.13 (see [7]). The space M5 consists of eight connected components,
one component M5(S) for each of the following sets of singularities S:

2A9, A9 ⊕ 2A4 ⊕A2, A9 ⊕ 2A4 ⊕A1, A9 ⊕ 2A4,

4A4 ⊕A2, 4A4 ⊕ 2A1, 4A4 ⊕A1, 4A4.

All components are real and contain real curves. B

The fundamental group π1 := π1(P2 rD) of a simple sextic D ∈M5(S) can be
described as follows. Denoting temporarily by G′ the derived subgroup [G,G], one
always has π1/π

′′
1 = D10 ×G3. Besides,

(1) if S = A9 ⊕ 2A4 ⊕A2, then π′′1 is the only perfect group of order 120;
(2) if S = 4A4 ⊕ 2A1, then π′′1/π

′′′
1 = G4

2 and π′′′1 = G2, so that ordπ1 = 960;
(3) in all other cases, π1 = D10 ×G3.

The precise presentations in (1) and (2) are rather lengthy, and we refer to [11].

Theorem 2.14 (see [7]). The spaceM7 consists of two connected components, one
component M7(S) for each of the following sets of singularities S:

3A6 ⊕A1, 3A6.

Both components are real and contain real curves. B

The fundamental groups of all D14-special sextics are D14 ×G3.

Remark 2.15. The sets of singularities 2A9, A9⊕2A4⊕A1, A9⊕2A4, 4A4⊕A1,
4A4 (cf. Theorem 2.13) and 3A6 (cf. Theorem 2.14) are also realized by non-special
irreducible sextics, each by a single connected deformation family.
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Theorem 2.16 (see [7]). The union M3.3 ∪ M3,3,3 consists of eight connected
components, one component for each of the following sets of singularities S:

• M3,3 (4-torus sextics, idem weight w = 8): E6 ⊕ A5 ⊕ 4A2, E6 ⊕ 6A2,
2A5 ⊕ 4A2, A5 ⊕ 6A2 ⊕A1, A5 ⊕ 6A2, 8A2 ⊕A1, 8A2;
• M3,3,3 (12-torus sextics, idem w = 9): 9A2.

All components are real and contain real curves. B

All sets of singularities of weight 8 degenerate to E6 ⊕ A5 ⊕ 4A2 and can be
characterized as perturbations of the latter preserving all four torus structures.
Note that 9A2 does not degenerate to a maximizing sextic, irreducible or not!

Introduce the group

H :=
〈
α, ᾱ, β, γ, γ̄

∣∣ {α, β}3 = {ᾱ, β}3 = {γ, β}3 = {γ̄, β}3 = βγαβγ̄ᾱ = 1
〉
.

In this notation (see also (2.1)), the fundamental group π1 := π1(P2rD) of a sextic
D with a set of singularities S of weight 8 or 9 is as follows:

(1) if S = 9A2 (w = 9), then

π1 = H3 := H/〈{γ̄, α} = {γ, ᾱ} = {γ, γ̄} = [β, α−1γ−1ᾱγ̄] = 1, γ̄−1αγ̄ = γ−1ᾱγ〉;

(2) if S = E6 ⊕A5 ⊕ 4A2, then

π1 = H2 := H/〈ᾱγα = αγ̄ᾱ = γαγ̄ = γ̄ᾱγ〉 ∼= G(3, 6, 3, 3, 6, 3);

(3) if S = A5 ⊕ 6A2 ⊕A1, then

π1 = H1 := H/〈{α, γ}3 = {ᾱ, γ̄}3 = [γ, γ̄] = 1, γαγ̄ = γ̄ᾱγ〉;

(4) for all other sextics of weight 8,

π1 = H0 := H/〈α = ᾱ, γ = γ̄, {α, γ}3 = 1〉 ∼= G(3, 3, 3, 3, 3, 3).

All perturbation epimorphisms H3 � H0 and H2 � H1 � H0, cf. Theorem 5.1,
lift to the identity H → H. We do not know whether the emimorphism H2 � H1

is proper; the others are.

3. Integral lattices

3.1. Finite quadratic forms (see [24]). A finite quadratic form is a finite abelian
group N equipped with a symmetric bilinear form b : N⊗N → Q/Z and a quadratic
extension of b, i.e., a map q : N → Q/2Z such that q(x+y)− q(x)− q(y) = 2b(x, y)
for all x, y ∈ N (where 2 is the isomorphism ×2: Q/Z → Q/2Z); clearly, b is
determined by q. If q is understood, we abbreviate b(x, y) = x ·y and q(x) = x2. In
what follows, we consider nondegenerate forms only, i.e., such that the associated
homomorphism N → Hom(N ,Q/Z), x 7→ (y 7→ x · y) is an isomorphism.

Each finite quadratic form N splits into orthogonal sum N =
⊕

p∈PNp of its

p-primary components Np := N⊗Zp. The length `(N ) of N is the minimal number
of generators of N . Obviously, `(N ) = maxp∈P `p(N ), where `p(N ) := `(Np). The
notation −N stands for the group N with the form x 7→ −x2.

We describe nondegenerate finite quadratic forms by expressions of the form
〈q1〉 ⊕ . . . ⊕ 〈qr〉, where qi := mi

ni
∈ Q, g.c.d.(mi, ni) = 1, mini = 0 mod 2; the

group is generated by pairwise orthogonal elements α1, . . . , αr (numbered in the
order of appearance), so that α2

i = qi mod 2Z and the order of αi is ni. (In the
2-torsion, there also may be indecomposable summands of length 2, but we do not
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need them.) Describing an automorphism σ of such a group, we only list the images
of the generators αi that are moved by σ.

A finite quadratic form is called even if x2 = 0 mod Z for each element x ∈ N of
order two; otherwise, the form is called odd. In other words, N is odd if and only
it contains 〈± 1

2 〉 as an orthogonal summand.
Given a prime p ∈ P, the determinant detpN is defined as the determinant of

the ‘matrix’ of the quadratic form on Np in an appropriate basis (see [24] and [23]
for details and alternative definitions). The determinant is well defined modulo
squares; if Np is nondegenerate, one has detpN = u/|Np| for some u ∈ Z×p /(Z×p )2.
If p = 2, the determinant det2N is well defined only if N2 is even. By definition,
one always has |N | detpN ∈ Z×p /(Z×p )2.

The group of q-autoisometries of N is denoted by AutN ; obviously, one has
AutN =

∏
p∈P AutNp. An element ξ ∈ Np is called a mirror if, for some integer k,

one has pkξ = 0 and ξ2 = 2u/pk mod 2Z, g.c.d.(u, p) = 1. If this is the case, the
map x 7→ 2(x · ξ)/ξ2 mod pk is a well defined functional Np → Z/pk; hence, one has
a reflection tξ ∈ AutNp,

tξ : x 7→ x− 2(x · ξ)
ξ2

ξ.

Note that tξ = id whenever 2ξ = 0 and ξ2 = 1
2 mod Z.

3.2. Lattices and discriminant forms (see [24]). An (integral) lattice N is
a finitely generated free abelian group equipped with a symmetric bilinear form
b : N ⊗N → Z. If b is understood, we abbreviate b(x, y) = x · y and b(x, x) = x2.
A lattice N is called even if x2 = 0 mod 2 for all x ∈ N ; it is called odd otherwise.
The determinant detN of a lattice N is the determinant of the Gram matrix of b.
As the transition matrix from one integral basis to another has determinant ±1,
the determinant detN ∈ Z is well-defined. The lattice N is called non-degenerate
if detN 6= 0 and unimodular if detN = ±1. The signature (σ+N, σ−N) of a
non-degenerate lattice N is the pair of the inertia indices of the bilinear form b.

For a lattice N , the bilinear form extends to a Q-valued bilinear form on N ⊗Q.
If N is non-degenerate, the dual group N ] := Hom(N,Z) can be identified with
the subgroup {x ∈ N ⊗Q | x · y ∈ Z for all y ∈ N}. The lattice N is a finite index
subgroup of N ]. The quotient discrN := N ]/N is called the discriminant group
of N ; it is often denoted by N , and we use the shortcut discrpN = Np for the
p-primary components. One has detN = (−1)σ−N |N |. The group N inherits from
N ⊗Q a symmetric bilinear form b : N ⊗N → Q/Z, called the discriminant form,
and, if N is even, a quadratic extension of b.

Convention 3.1. Unless specified otherwise, all lattices considered below are non-
degenerate and even. The discriminant group of such a lattice is always regarded
as a finite quadratic form.

The genus g(N) of a nondegenerate even lattice N can be defined as the set of
isomorphism classes of all even lattices L such that discrL ∼= N and σ±L = σ±N .
If N is indefinite and rkN > 3, then g(N) is a finite abelian group.

An isometry of lattices is a homomorphism of abelian groups preserving the
forms. (Note that we do not assume the surjectivity.) The group of auto-isometries
of a lattice N is denoted by O(N). There is an obvious natural homomorphism
d: O(N) → AutN , and we denote by dp : O(N) → AutNp its restrictions to the
p-primary components. For an element u ∈ N such that 2u/u2 ∈ N ], the reflection
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tu : x 7→ 2u(x · u)/u2 is an involutive isometry of N . Each image dp(tu), p ∈ P, is
also a reflection. If u2 = ±1 or ±2, then d(tu) = id.

3.3. Root lattices (see [4]). In this paper, a root lattice is a negative definite
lattice generated by vectors of square (−2) (roots). Any root lattice has a unique
decomposition into orthogonal sum of indecomposable ones, which are of types Ap,
p > 1, Dq, q > 4, E6, E7, or E8.

Given a root lattice S, the vertices of the Dynkin graph G := GS can be iden-
tified with the elements of a basis for S constituting a single Weyl chamber. This
identification defines a homomorphism SymG → O(S), s 7→ s∗, where SymG is
the group of symmetries of G. The image consists of the isometries preserving the
distinguished Weyl chamber. For indecomposable root lattices, the groups SymG
are as follows:

• SymG = 1 if S is A1, E7, or E8,
• SymG ∼= S3

∼= D6 if S is D4, and
• SymG = G2 in all other cases.

In the latter case, unless S = Deven, the generator of SymG induces −id on S. If
S = E8, then S = 0. For S = A1, A7, or Deven, the groups S are F2-modules and
−id = id in AutS.

A choice of a Weyl chamber gives rise to a decomposition O(S) = R(S)oSymG,
where R(S) ⊂ O(S) is the subgroup generated by reflections tu, u ∈ S, u2 = −2.
Furthermore,

Ker[d : O(S)→ AutS] = R(S) o Sym0 G,

where Sym0 G is the group of permutations of the E8-type components of G. Thus,
denoting by Sym′G ⊂ SymG the group of symmetries acting identically on the
union of the E8-type components, we obtain an isomorphism Sym′G = Im d. For
future references, we combine these statements in a separate lemma.

Lemma 3.2. Let S be a root lattice. Then, the epimorphism d: O(S)� Im d has
a splitting Im d = Sym′GS ↪→ O(S), and one always has −id ∈ Im d. C

3.4. Lattice extensions (see [24]). An extension of a lattice S is an isometry
S → L. Two extensions S → L1, L2 are (strictly) isomorphic if there is a bijective
isometry L1 → L2 identical on S. More generally, given a subgroup O′ ⊂ O(S),
two extensions are O′-isomorphic if they are related by a bijective isometry whose
restriction to S is an element of O′.

We use the notation S ↪→ L for finite index extension ([L : S] <∞). There is a
unique embedding L ⊂ S ⊗Q and, hence, inclusions S ⊂ L ⊂ L] ⊂ S]. The kernel
of a finite index extension S ↪→ L is the subgroup K := L/S ⊂ S]/S = S. Since
L is an even integral lattice, the kernel K is isotropic, i.e., the restriction to K of
the quadratic form q : S → Q/2Z is identically zero. Conversely, given an isotropic
subgroup K ⊂ S, the subgroup L = {x ∈ S] | (x mod S) ∈ K} ⊂ S] is an extension
of S. Thus, we have the following theorem.

Theorem 3.3 (Nikulin [24]). The map L 7→ K = L/S ⊂ S establishes a one-
to-one correspondence between the set of strict isomorphism classes of finite index
extension S ↪→ L and that of isotropic subgroup K ⊂ S. One has L = K⊥/K. B

An isometry a ∈ O(S) extends to a finite index extension L if and only if d(a)
preserves the kernel K (as a set). Hence, O′-isomorphism classes of finite index
extensions of S correspond to the d(O′)-orbits of isotropic subgroups K ⊂ S.
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Another extreme case is that of a primitive extension S → L, i.e., such that
the group L/S is torsion free; we use the notation S � L. If L is unimodular,
one has discrS⊥ ∼= −S: the graph of this anti-isometry is the kernel of the finite
index extension S ⊕ S⊥ ↪→ L. Hence, the genus g(S⊥) is determined by those of S
and L. If L is also indefinite, it is unique in its genus. Then, for each representative
N ∈ g(S⊥), an extension S � L with S⊥ ∼= N is determined by a bijective anti-
isometry ϕ : S → N (L is the finite index extension of S ⊕ N whose kernel is the
graph of ϕ), and the latter induces a homomorphism dϕ : O(S) → AutN . If ϕ is
not fixed, this map is well defined up to an inner automorphism of AutN .

Theorem 3.4 (Nikulin [24]). Let L be an indefinite unimodular even lattice, S ⊂ L
a nondegenerate primitive sublattice, and O′ ⊂ O(S) a subgroup. Then, the O′-
isomorphism classes of primitive extensions S � L are enumerated by the pairs
(N, cN ), where N ∈ g(S⊥) and cN ∈ dϕ(O′)\AutN/ Im d is a double coset (for
given N and some anti-isometry ϕ : S → N ). B

Theorem 3.5 (Nikulin [24]). Let S � L be a lattice extension as in Theorem 3.4,
N = S⊥, and ϕ : S → N the corresponding anti-isometry. Then, a pair of isome-
tries aS ∈ O(S), aN ∈ O(N) extends to L if and only if dϕ(aS) = d(aN ). B

Fix the notation L := 2E8⊕ 3U, where U is the hyperbolic plane, U = Zu+Zv,
u2 = v2 = 0, u ·v = 1, and E8 is the root lattice, see §3.3. For the ease of references,
we recast Nikulin’s existence theorem from [24] to the particular case of primitive
extensions S � L. Note that we do not need the restriction on the Brown invariant:
by the additivity, it would hold automatically.

Theorem 3.6 (Nikulin [24]). Given a nondegenerate even lattice S, a primitive
extension S � L exists if and only if the following conditions hold : σ+S 6 3,
σ−S 6 19, `(S) 6 δ := 22− rkS, and

• for all odd p ∈ P, either `p(S) < δ or |S|detp S = (−1)σ+S−1 mod (Z×p )2;

• either `2(S) < δ, or S2 is odd, or |S|det2 S = ±1 mod (Z×2 )2. B

3.5. Miranda–Morrison results (see [21, 22, 23]). Classically, the uniqueness
of a lattice N in its genus and the surjectivity of the map d: O(N) → AutN are
established using the sufficient conditions found in [24]. Unfortunately, these results
do not cover our needs, and we use the stronger criteria developed in [21, 22, 23].
Throughout the rest of this section, we assume that

(∗) N is a nondegenerate indefinite even lattice, rkN > 3.

Warning 3.7. The convention used in this paper (following Nikulin [24] and, even-
tually, Gauss) differs slightly from that of Miranda–Morrison, where quadratic and
bilinear forms are related via q(x+ y)− q(x)− q(y) = b(x, y). Roughly, the values
of all quadratic (but not bilinear) forms in [21, 22, 23], both on lattices and finite
groups, should be multiplied by 2. In particular, all lattices in [21, 22, 23] are even
by definition. Note though that this multiplication by 2 is partially incorporated
in [21, 22, 23]: for example, the isomorphism class of a finite quadratic form gener-
ated by an element α with q(α) = (u/pk) mod Z, which is (2u/pk) mod 2Z in our
notation, is designated by the class of 2u in (Z×p )/(Z×p )2.

Given a lattice N and a prime p ∈ P, we define the number ep := ep(N) ∈ N
and the subgroup Σ̃p := Σ̃p(N) ⊂ Γ0 := {±1} × {±1} as in (3.11). Algorithms

computing ep(N) and Σ̃p(N) are given explicitly in [22]. Computations are in terms



14 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

of rkN , detN , and N only, which means that the genus g(N) determines ep(N),

Σ̃p(N) and, moreover, Coker d. One has ep = 1 and Σ̃p = Γ0 for almost all p ∈ P.

Theorem 3.8 (Miranda–Morrison [21, 22]). For N as in (∗), there is an F2-module
E(N) and an exact sequence

O(N)
d−→ AutN e−→ E(N)→ g(N)→ 1,

where g(N) is the genus group of N . One has |E(N)| = e(N)/[Γ0 : Σ̃(N)], where

e(N) :=
∏
p∈P ep(N) and Σ̃(N) :=

⋂
p∈P Σ̃p(N). B

The group E(N) and homomorphism e: AutN → E(N) given by Theorem 3.8
will be called, respectively, the Miranda–Morrison group and Miranda–Morisson
homomorphism of N . The next statement follows from Theorem 3.4, Theorem 3.8,
and the fact that a unimodular even indefinite lattice is unique in its genus.

Corollary 3.9 (Miranda–Morrison [21, 22]). Let L be a unimodular even lattice
and S ⊂ L a primitive sublattice such that N := S⊥ is as in (∗). Then the strict
isomorphism classes of primitive extensions S � L are in a canonical one-to-one
correspondence with the Miranda–Morrison group E(N). B

Generalizing, fix an anti-isometry ϕ : S → N and consider the induced map
dϕ : O(S) → AutN , see §3.4. Since Im d ⊂ AutN is a normal subgroup with
abelian quotient, this map factors to a homomorphism d⊥ : O(S)→ AutN → E(N)
independent of ϕ. Then, the following statement is an immediate consequence of
Theorems 3.4 and 3.8.

Corollary 3.10. Let S ⊂ L be as in Corollary 3.9, and let O′ ⊂ O(S) be a
subgroup. Then the O′-isomorphism classes of primitive extensions S � L are in
a one-to-one correspondence with the F2-module E(N)/d⊥(O′). C

Theorem 3.8 and Corollary 3.9 cover most of our needs. However, in a few special
cases, we need the more advanced treatment of [23]. Introduce the groups

Γp,0 := {±1} × Z×p /(Z×p )2 ⊂ Γp := {±1} ×Q×p /(Q×p )2, p ∈ P,

and

ΓA,0 :=
∏
p

Γp,0 ⊂ ΓA := ΓA,0 ·
∑
p

Γp ⊂ Γ :=
∏
p

Γp.

(Since the groups involved are multiplicative, although abelian, we follow [23] and
use · to denote the sum of subgroups. However, we retain the notation

∑
and

∏
to

distinguished between direct sums and products. Thus, the adelic version ΓA is the
set of sequences {(sp, tp)} ∈ Γ such that (sp, tp) ∈ Γp,0 for almost all p.) Let also
ΓQ := {±1}×Q×/(Q×)2 ⊂ ΓA. Then ΓA,0 ·ΓQ = ΓA and the intersection ΓA,0 ∩ΓQ
is the group Γ0 = {±1} × {±1} introduced above. We recall that Q×/(Q×)2 is the
F2-module on the basis {−1} ∪ P, i.e., it is the set of all square free integers.

On various occasions we will also consider the following subgroups:

• Γ++
p := {1} × Z×p /(Z×p )2 ⊂ Γp,0;

• Γ2,2 ⊂ Γ++
2 is the subgroup generated by (1, 5);

• Γ−−Q ⊂ ΓQ is the subgroup generated by (−1,−1) and (1, p), p ∈ P;

• Γ−−0 := Γ−−Q ∩ Γ0 ⊂ Γ0 is the subgroup generated by (−1,−1).
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We denote by ιp : Γp ↪→ ΓA, p ∈ P, and ιQ : ΓQ ↪→ ΓA the inclusions. The images
ιQ(1, q) and ιq(1, q), q ∈ P, differ by an element of

∏
p Γ++

p , viz., by the sequence

{(1, sp)}, where sq = 1 and sp is the class of q in Z×p /(Z×p )2 for p 6= q.
Defined and computed in [23] are certain F2-modules

Σ]p(N) := Σ](N ⊗ Zp) ⊂ Σp(N) := Σ(N ⊗ Zp),

which depend on the genus of N only. One has Σ]p ⊂ Γp,0, Σp ⊂ Γp, and Σp ⊂ Γp,0
for almost all p. (In fact, for almost all p ∈ P one has Σ]p = Σp = Γp,0.) Hence,

Σ](N) :=
∏
p

Σ]p(N) ⊂ ΓA,0, Σ(N) :=
∏
p

Σp(N) ⊂ ΓA.

In these notations, the invariants used in Theorem 3.8 are

(3.11) ep(N) = [Γp,0 : Σ]p(N)], Σ̃p(N) = Σ]0(N ⊗ Zp) := ϕ−1
p (Σ]p(N)),

where ϕp : Γ0 → Γp,0 is the projection, and E(N) is the quotient ΓA,0/Σ
](N) · Γ0.

(Clearly, Σ̃(N) = Σ](N) ∩ Γ0.) Unfortunately, the map
∏
p AutNp → E(N) given

by Theorem 3.8 does not respect the product structures. The following statement
refines Theorem 3.8, separating the genus group and the p-primary components.

Theorem 3.12 (Miranda–Morrison [23]). Let N be as in (∗). Then:

(1) there is an isomorphism g(N) = ΓA/Σ(N) · ΓQ (hence, N is unique in its
genus if and only if ΓA = Σ(N) · ΓQ);

(2) there is a commutative diagram

AutN =
∏
p AutNp

γ−−−−→
∏
p Σp(N)/Σ]p(N)y yβ

Coker d
∼=−−−−→ Σ(N)/Σ](N) · (Σ(N) ∩ ΓQ),

where all maps are epimorphisms, γ is the product of certain epimorphisms
γp : AutNp � Σp(N)/Σ]p(N), p ∈ P, and β is the quotient projection. B

3.6. A few simple consequences. The homomorphism γ in Theorem 3.12(2) is
easily computed on reflections: for a mirror ξ ∈ Nr, r ∈ P, modulo Σ]r(N) one has

γr(tξ) = (−1,mrk), where ξ2 =
2m

rk
mod 2Z, g.c.d.(m, r) = 1, k ∈ N.

If r = 2 and ξ2 = 0 mod Z, this value is only well defined mod Γ++
2 ; if r = 2 and

ξ2 = 1
2 mod Z, it is well defined mod Γ2,2. In these two cases, the disambiguation

of γr(tξ) needs more information about ξ and N : one needs to represent ξ in the
form 1

2x for some x ∈ N ⊗Z2. Given another prime p, consider the homomorphism

χp : Z×p /(Z×p )2 � {±1},

χp(m) :=
(m
p

)
if p 6= 2, χ2(m) := m mod 4,

and define the p-norm |ξ|p ∈ {±1} and the ‘Kronecker symbol’ δp(ξ) ∈ {±1} via

|ξ|p :=

{
χp(q

k), if r 6= p,

χp(m), if r = p,
δp(ξ) = (−1)δp,r ,

where δp,r is the conventional Kronecker symbol. (If p = 2 and ξ2 = 0 mod Z, then
|ξ|2 is undefined.) Finally, introduce a few ad hoc notations for a lattice N :



16 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

• the group Ep(N) = {±1} if p = 1 mod 4 and ep(N) · |Σ̃p(N)| = 8; in all
other cases, Ep(N) = 1;
• the map γ̄p sending a mirror ξ to |ξ|p ∈ Ep(N), with the convention that
γ̄p(ξ) = 1 whenever Ep(N) = 1;
• the map β̄p sending a mirror ξ to an element of Γ0: if p = 1 mod 4, then
β̄p(ξ) = (δp(ξ) · |ξ|p, 1); otherwise, β̄p(ξ) = δp(ξ)× |ξ|p.

Following [23], we say that a lattice N is p-regular, p ∈ P, if Σ]p(N) = Γp,0, i.e., if
ep(N) = 1. We will also say that the prime p is regular with respect to N ; otherwise,
p is irregular. In several statements below, we make a technical assumption that

Σ]2(N) ⊃ Γ2,2; this inclusion does hold for the transcendental lattices of all primitive
homological types (see §4.1) except S = A15 ⊕A3, see [23].

Lemma 3.13. Let N be a lattice as in (∗), Σ]2(N) ⊃ Γ2,2, and assume that N has
one irregular prime p. Then E(N) = Ep(N) and e(tξ) = γ̄p(ξ) for a mirror ξ.

Lemma 3.14. Let N be a lattice as in (∗), Σ]2(N) ⊃ Γ2,2, and assume that N has
two irregular primes p, q. Then

E(N) = Ep(N)× Eq(N)× (Γ0/Σ̃p(N) · Σ̃q(N))

and one has e(tξ) = γ̄p(ξ) × γ̄q(ξ) × (β̄p(ξ) · β̄q(ξ)) for a mirror ξ ∈ N , provided
that ξ2 6= 0 mod Z if p = 2 or q = 2.

Corollary 3.15. Under the hypotheses of Lemma 3.14, assume, in addition, that
|E(N)| = |Ep(N)| = 2. Then E(N) = Ep(N) and e(tξ) = |ξ|p for a mirror ξ. C

Proof of Lemmas 3.13 and 3.14. Let Γ′p,0 := Γp,0 for p 6= 2 and Γ′2,0 := Γ2,0/Γ2,2,
so that we can identify Γ′p,0

∼= {±1} × {±1} for all p ∈ P. If p 6= 1 mod 4, the map
ϕp : Γ0 → Γ′p,0 is an epimorphism; if p = 1 mod 4, one has ϕp(Γ0) = {±1} × {1}.
Modulo Γ−−Q , the image γ(tξ) equals γ̄(tξ) := {(δs(ξ), |ξ|s)} ∈

∏
Γ′s,0.

Now, the first statement of each lemma is a computation of the group E(N) =
ΓA,0/Σ

](N) · Γ0, which can be done in Γ′p,0 or Γ′p,0 × Γ′q,0; our group Ep(N) is

the quotient Γp,0/Σ
]
p(N) · Imϕp. The second statement is the computation of the

image of γ̄(ξ) in E(N): the maps γ̄p and β̄p are the projections Γp,0 → Ep(N) and
Γp,0 → Imϕp, respectively. For the latter, we use the following fact, see [23]: if a
prime p = 1 mod 4 is irregular for N and Σ]p(N) 6⊂ Imϕp, then Σ]p(N) is generated
by (−1,−1). �

3.7. The positive sign structure. A positive sign structure on a lattice N is a
choice of an orientation of a maximal positive definite subspace of N ⊗ R. (Recall
that the orthogonal projection of one such subspace to another is an isomorphism
and, hence, all these spaces admit a coherent orientation.) We will use the map
det+ : O(N) → {±1} sending an auto-isometry to +1 or −1 if it preserves or,
respectively, reverses a positive sign structure. Thus, O+(N) := Ker det+ is the
subgroup of auto-isometries preserving positive sign structures. (In the notation
of [23], one has det+ = det · spin and O+ = O−−.) The following statement is
essentially contained in [23].

Proposition 3.16 (Miranda–Morrison [23]). Let N be a lattice as in (∗). Then one

has Σ̃(N) ⊂ Γ−−0 if and only if det+ a = 1 for all a ∈ Ker[d: O(N)→ AutN ]. B

Thus, if Σ̃(N) ⊂ Γ−−0 , there is a well defined descent det+ : Im d→ {±1}. The
next lemma computes the values of det+ on reflections.
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Lemma 3.17. Let N be a lattice as in (∗), Σ]2(N) ⊃ Γ2,2, and assume that there is

a prime p such that Σ̃p(N) ⊂ Γ−−0 . Then, for a mirror ξ ∈ N such that tξ ∈ Im d
and ξ2 6= 0 mod Z if p = 2, one has det+ tξ = δp(ξ) · |ξ|p.

Proof. The proof is similar to that of Lemmas 3.13 and 3.14: we assume that the
element γ̄(tξ) · ιQ(δp(ξ), δp(ξ)) representing tξ lies in Σ](N) · Γ0 and compute its
image in Σ](N) · Γ0/Σ

](N) · Γ−−0 = {±1}. This can be done in Γp,0. �

Proposition 3.16 can be restated in a form closer to Theorem 3.8: introducing
the group E+(N) := ΓA,0/Σ

](N) · Γ−−0 , one has an exact sequence

(3.18) O+(N)
d−→ AutN e+−→ E+(N)→ g(N)→ 1.

The groups E+(N), as well as a few other counterparts, are also computed in [22]:

for the order |E+(N)|, one merely replaces Σ̃(N) with Σ̃(N)∩Γ−−0 in Theorem 3.8.
In the special case of at most two irregular primes, the computation is very similar
to §3.6. For an irregular prime p, denote Σ̃+

p (N) := Σ̃p(N) ∩ Γ−−0 ⊂ Γ−−0 and

introduce the groups E+
p (N) and maps γ̄+

p , β̄+
p defined on the set of mirrors and

taking values in E+
p (N) and Γ−−0 = {±1}, respectively, as follows:

• if p = 1 mod 4, then E+
p (N) = Ep(N), γ̄+

p = γ̄p, and β̄+
p (ξ) = δp(ξ) · |ξ|p;

• if p 6= 1 mod 4, then E+
p (N) = Γ0/Σ̃p(N) · Γ−−0 (if p 6= 2 or Σ]2(N) ⊃ Γ2,2,

one has E+
p (N) = {±1} if ep(N) · |Σ̃+

p (N)| = 4 and E+
p (N) = 1 otherwise);

• if p 6= 1 mod 4 and E+
p (N) 6= 1, then γ̄+

p (ξ) = δp(ξ) · |ξ|p and β̄+
p (ξ) = |ξ|p;

• if p 6= 1 mod 4 and E+
p (N) = 1, then γ̄+

p (ξ) = 1 and β̄+
p (ξ) is the image of

β̄(ξ) = δp(ξ)× |ξ|p, see §3.6, under the projection Γ0 → Γ0/Σ̃p(N) = Γ−−0 .

(In the last case, one has β̄+
p (ξ) = |ξ|p unless p = 2.) The proof of the next two

statements repeats literally that of Lemmas 3.13 and 3.14.

Lemma 3.19. Let N be a lattice as in (∗), Σ]2(N) ⊃ Γ2,2, and assume that N has
a single irregular prime p. Then one has E+(N) = E+

p (N) and e+(tξ) = γ̄+
p (ξ) for

a mirror ξ ∈ N such that ξ2 6= 0 mod Z if p = 2. C

Lemma 3.20. Let N be a lattice as in (∗), Σ]2(N) ⊃ Γ2,2, and assume that N has
two irregular primes p, q. Then

E+(N) = E+
p (N)× E+

q (N)× (Γ−−0 /Σ̃+
p (N) · Σ̃+

q (N))

and one has e+(tξ) = γ̄+
p (ξ)× γ̄+

q (ξ)× (β̄+
p (ξ) · β̄+

q (ξ)) for a mirror ξ ∈ N such that

ξ2 6= 0 mod Z if p = 2 or q = 2. C

Corollary 3.21. Under the hypotheses of Lemma 3.20, assume, in addition, that
|E+(N)| = |E+

p (N)| = 2. Then E+(N) = E+
p (N) and e(tξ) = γ̄+

p (ξ) for a mirror

ξ ∈ N such that ξ2 6= 0 mod Z if p = 2. C

4. The deformation classification

4.1. The homological type. Consider a simple sextic D ⊂ P2. Recall (see §2.2)
that we denote by X → P2 the minimal resolution of singularities of the double
covering of P2 ramified at D, and that the set of singularities of D can be identified
with the sublattice S ⊂ L spanned by the classes of the exceptional divisors. Let
τ : X → X be the deck translation of the covering.
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Lemma 4.1. The induced action of τ on the Dynkin graph G := GS preserves the
components of G; it acts by the only nontrivial symmetry on the components of type
Ap>2, Dodd, or E6, and by the identity otherwise. C

Remark 4.2. In other words, τ : G → G can be characterized as the ‘simplest’
symmetry of G inducing −id on discr S.

In addition to S, we have the class h ∈ L of the pull-back of a generic line
in P2. Obviously, h is orthogonal to S and h2 = 2. Let Sh := S ⊕ Zh. The triple
H := (S, h,L), i.e., the lattice extension Sh ↪→ L regarded up to isometries of L
preserving S (as a set) and h, is called the homological type of D. This extension is
subject to certain restrictions, which are summarized in the following definitions.

Definition 4.3. Let S be a root lattice. A homological type (extending S) is an
extension Sh := S⊕ Zh ↪→ L satisfying the following conditions:

(1) any vector v ∈ (S⊗Q) ∩ L with v2 = −2 is in S;

(2) there is no vector v ∈ S̃h := (Sh ⊗Q) ∩ L with v2 = 0 and v · h = 1.

Note that condition (2) in this definition can be restated as follows: if a is a
generator of an orthogonal summand A1 ⊂ S, the vector a+ h is primitive in L.

Given a homological type H = (S, h,L), we let

• S̃ := (S⊗Q) ∩ L be the primitive hull of S,

• S̃h := (Sh ⊗Q) ∩ L be the primitive hull of Sh, and
• T := S⊥h with T = discr T be the transcendental lattice.

Since σ+T = 2, all positive definite 2-spaces in T⊗R can be oriented in a coherent
way. A choice o of one of these coherent orientations, i.e., a positive sign structure
on T, see §3.7, is called an orientation of H. The homological type of a plane
sextic D has a canonical orientation, viz. the one given by the real and imaginary
parts of the class of a holomorphic form ω on X.

An automorphism of a homological type H = (S, h,L) is an autoisometry of L
preserving S (as a set) and h. The group of automorphisms of H is denoted by
AutH. Let Aut+H ⊂ AutH be the subgroup of the automorphisms inducing id

on T. On the other hand, we have the group Auth S̃h ⊂ O(S̃h) of the isometries

of S̃h preserving h. There are obvious homomorphisms

(4.4) Aut+H ↪→ AutH → Auth S̃h ↪→ O(S),

where the latter inclusion is due to item 1 in Definition 4.3, as S ⊂ S̃h is recovered
as the sublattice generated by the roots orthogonal to h. If the primitive extension
S̃h� L is defined by an anti-isometry ϕ : discr S̃h → T (see §3.4), so that we have

a homomorphism dϕ : Auth S̃h → Aut T , then, for ε = + or empty,

(4.5) Im[AutεH → Auth S̃h] = (dϕ)−1d(Oε(T)).

The deformation classification of sextics is based on the following statement.

Theorem 4.6 (see [8]). The map sending a plane sextic D ⊂ P2 to its oriented
homological type establishes a bijection between the set of equisingular deformation
classes of simple sextics and the set of isomorphism classes of oriented homological
types. Complex conjugate sextics have isomorphic homological types that differ by
the orientations. B
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A homological type is called symmetric if it admits an orientation reversing
automorphism. According to Theorem 4.6, symmetric are the homological types
corresponding to real, i.e., conjugation invariant components of M(S).

Recall that, in §2.2, the equisingular strata M(S) were subdivided into families
M∗(S). The precise definition is as follows: the subscript ∗ is the sequence of

invariant factors of the kernel K of the finite index extension Sh ↪→ S̃h. (Obviously,
K is invariant under equisingular deformations.) Theorems 4.7 and 4.8 below single
out the families M1 and M3, which are of our primary interest; they correspond
to K = 0 and K = G3, respectively.

A homological type H = (S, h,L) is called primitive if Sh ⊂ L is a primitive

sublattice, i.e., if K = 0. In this case, one has discr S̃h = S ⊕ 〈12 〉 and the inclusion

Auth S̃h ↪→ O(S), see (4.4), is an isomorphism.

Theorem 4.7 (see [7]). A simple plane sextic D is irreducible and non-special if
and only if its homological type is primitive. B

The fact that primitive homological types give rise to irreducible sextics was also
observed in [31], where the primitivity is stated as a sufficient condition.

Theorem 4.8 (see [7]). A simple plane sextic D is irreducible and p-torus, p = 1,

4, or 12, if and only if the kernel K of the extension Sh ↪→ S̃h is, respectively, G3,
G3 ⊕G3, or G3 ⊕G3 ⊕G3. B

There is a similar characterization of other special sextics: a sextic is irreducible
and D2n-special, n > 3, if and only if the kernel K is Gn; one necessarily has n = 5
or 7. Note that these statements cover all possibilities for the kernel K free of
2-torsion, and K has 2-torsion if and only if the sextic is reducible, see, e.g., [13].

4.2. Extending a fixed set of singularities S to a sextic. By Theorem 4.6,
given a simple set of singularities S, the connected components of the space M(S)
modulo the complex conjugation conj : P2 → P2 are enumerated by the isomorphism
classes of the homological types extending S. If a subscript ∗ is specified, the set
π0(M∗(S)/conj) is enumerated by the extensions with the kernel K of the finite

index extension Sh ↪→ S̃h in the given isomorphism class.
We are interested in the sets of singularities S with µ(S) 6 18. In this case, T is

indefinite and rk T > 3; hence, Miranda–Morrison’s results apply and, with K and,
hence, S̃h fixed, the further extensions S̃h � L are enumerated by the cokernel of
the well-defined homomorphism d⊥ : Auth S̃h → E(T), see §3.5. In the special case

K = 0, due to the isomorphism Auth S̃h = O(S), we have a canonical bijection

(4.9) π0(M1(S)/conj) = Coker[d⊥ : O(S)→ E(T)],

assuming that Sh does admit a primitive extension to L and taking for T any
representative of the genus S⊥h .

4.3. Proof of Theorem 2.4. By Theorems 4.6 and 4.7, for the first part of the
statement it suffices to list (using Theorem 3.6) all sets of singularities extending
to a primitive homological type; the resulting list is compared against the list of
all perturbations of the maximizing sets obtained. Since the homological type is
primitive, we have discr S̃h = S ⊕ 〈 12 〉.

For the second part, let S be one of the sets of singularities found, µ(S) 6 18,
and let T be a representative of the genus g(S⊥h ). In most cases, Theorem 3.8 gives
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Table 5. Exceptional sets of singularities (see §4.3)

[1] E6 ⊕ 2A4 ⊕ 2A2
[1] A5 ⊕ 2A4 ⊕ 2A2 ⊕A1
[2] 3A4 ⊕ 3A2

[3] E7 ⊕A7 ⊕ 2A2
[3] E6 ⊕A7 ⊕A5
[3] 2A7 ⊕ 2A2

[3] A7 ⊕A5 ⊕A4 ⊕A2
[4] 2A6 ⊕ 2A2 ⊕ 2A1
[5] 2A9

us E(T) = 0 and, due to Corollary 3.9, a primitive homological type extending S
is unique up to strict isomorphism. In the remaining cases, it suffices to show that
the map d⊥ : O(S)→ E(T) is onto, see (4.9).

There are 32 sets of singularities containing a point of type A4 and satisfying the
hypotheses of Lemma 3.13 or Corollary 3.15 (with p = 5); in these cases, a nontrivial
symmetry of any type A4 points maps to the generator −1 ∈ E(T). The remaining
nine sets of singularities are collected in Table 5, with references to the list below,
where we indicate the Miranda–Morrison homomorphism e: Aut T → E(T) (given
by Lemma 3.14) and automorphism(s) of S generating E(T).

(1) e : tξ 7→ δ3(ξ) · δ5(ξ) · |ξ|5 ∈ {±1}; a transposition A4 ↔ A4;
(2) e : tξ 7→ (δ3(ξ) · δ5(ξ) · |ξ|5, |ξ|5) ∈ {±1} × {±1}; a symmetry of A4 and a

transposition A4 ↔ A4 (two generators);
(3) e : tξ 7→ δ2(ξ) · δ3(ξ) · |ξ|2 · |ξ|3 ∈ {±1}; a transposition A2 ↔ A2 or a

symmetry of A4, A5, or E6;
(4) e : tξ 7→ δ3(ξ) · δ7(ξ) · |ξ|3 · |ξ|7 ∈ {±1}; a transposition A1 ↔ A1;
(5) e : tξ 7→ |ξ|5 ∈ {±1}; none.

The last case S = 2A9 is special: the map d⊥ : O(S)→ E(T) is not surjective and
there are two deformation families, as stated.

To complete the proof, we need to analyze whether the space M1(S) contains
a real curve and, if it does not, whether the homological type H extending S is
symmetric. This is done in §6.2 below. �

4.4. Proof of Corollary 2.7. Unless S = 2A9, the statement follows immediately
from Theorem 2.4. Indeed, there is a degeneration S� S′ to a maximizing set of
singularities S′. Due to [10, Proposition 5.1.1], there is a degeneration D� D′ of
some sextics D ∈ M1(S) and D′ ∈ M1(S′). Since M1(S)/ conj is connected, a
degeneration exists for any sextic D ∈M1(S). The exceptional case S = 2A9 with
disconnected moduli space is given by Proposition 2.5, see §4.5 below. �

4.5. Proof of Proposition 2.5. For S0 = 2A9, one has T ∼= Zu⊕Zv⊕Zw, with
u2 = v2 = 10, w2 = −2. The group T is 〈 25 〉 ⊕ 〈

2
5 〉 ⊕ 〈

1
2 〉 ⊕ 〈

1
2 〉 ⊕ 〈

3
2 〉, and Aut T is

generated by

σ1,2 : α1,2 7→ −α1,2, σ3 : α1 ↔ α2, σ4 : α3 ↔ α4.

Let Sh := discr S̃h = S0⊕〈 12 〉. According to §3.3, the image of d: O(S0)→ AutSh
is generated by −id on each of the two copies of discr A9 and by the transposition of
the two copies. Since |E(T)| = 2, the image Im[d: O(T)→ Aut T ] is generated by
the images σ1, σ2, σ3σ4 of the auto-isometries u 7→ −u, v 7→ −v, u↔ v, respectively.
It is straightforward that Im d⊥ = 0 ⊂ E(T); hence, by Corollary 3.10, 2A9 ⊕ Zh
extends to L in two ways. The proof of the fact that both homological types are
represented by real curves is postponed till §6.1 below.

The two homological types can be distinguished as follows. In T , there are two
non-characteristic elements of square 1

2 and two pairs of opposite elements of square



GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 21

2
5 , and the map 1

2u 7→
1
5u, 1

2v 7→ ±
1
5v establishes a bijection between these two-

element sets. A similar bijection in the other group Sh is due to the decomposition
Sh = 2 discr A9⊕〈 12 〉. The two homological types extending 2A9 differ by whether
the anti-isometry Sh → T does or does not respect these bijections.

Now, a simple computation shows that each of the two sublattices S0 ⊕ Zh ⊂ L
extends to both Si ⊕ Zh ⊂ L, i = 1, 2 (where S1 = A19 and S2 = A10 ⊕A9 are
as in the statement), and these are all possible degenerations of S0. On the other
hand, each Si, i = 1, 2, extends to two distinct real homological types, see [29], and
each of the resulting families admits a unique, up to deformation, perturbation to
2A9, cf. [10, Proposition 5.1.1]. These observations complete the proof. �

4.6. Proof of Theorem 2.9 and Corollary 2.10. Let S be a set of singularities
of weight 6 or 7. As shown in [7], up to automorphism of S, there is at most one
isotropic order 3 element β ∈ S satisfying condition (1) in Definition 4.3. Such an
element does exist if and only if w(S) = 6 or w(S) = 7 and S contains A2 as a direct
summand. (In the latter case, the extra A2 point becomes an outer singularity; all
other singular points of positive weight are inner.) This element β has the form∑
i(±αi), where αi are the only (up to sign) order 3 elements in the discriminants

of the inner singular points. Important for Theorems 3.6 and 3.8 is the relation
between S and S̃ := discr S̃. One has:

• `p(S̃) = `p(S) and detp S̃ = detp S for all primes p 6= 3;

• |S̃| = 1
9 |S| and det3 S̃ = −9 det3 S;

• `3(S̃) = `3(S)− δ, where δ = 1 if S contains (as a direct summand) A17 or
2A8 and δ = 2 otherwise.

Now, as in §4.3, we compare two lists: the sets of singularities extending to
a homological types with kernel G3 (using Theorem 3.6) and those obtained by
perturbations from the maximizing sets, see Table 3. These lists coincide. For each
set of singularities S found, Theorem 3.8 gives us E(T) = 0; hence, there is a unique
homological type and the spaceM3(S)/ conj is connected. In view of the first part,
this fact implies Corollary 2.10, and it remains to analyze the real structures. This
is done in §6.4 below. �

4.7. Digression: permutations of the singular points. Consider a sextic D
with the set of singularities S, and letM(D) be the connected equisingular stratum
containing D. Denoting by S(S) the group of the type-preserving permutations of
the singular points constituting S, we have the so-called monodromy representation
π1(M(D)) → S(S). In this section, we are interested in the image S+(D) of this

homomorphism. In other words, we can consider the covering M̃(D) → M(D)
whose points are sextics with marked singular points; then, [S(S) : S+(D)] is the

number of the connected components of M̃(D).

Theorem 4.10. The permutation group S+ := S+(D) of a non-special irreducible
simple sextic D with the set of singularities S is as follows:

• if µ(D) = 19, then S+ is the group of permutations of the E8 points of S;
• if S is one of the sets of singularities listed in Table 6, then S+ is as shown

in the table (see the explanation after the statement).

In all other cases, one has S+ = S(S).

The groups S+(D) are encoded in Table 6 by means of one or several subsets
S1,S2, . . . enclosed in brackets: a permutation σ ∈ S(S) belongs to S+(D) if and
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Table 6. Permutation groups (see Theorem 4.10)

[3E6]

[2E6]⊕D6

[2E6]⊕A6

[2E6]⊕A5 ⊕A1

[2E6]⊕A5

[2A2]⊕E7 ⊕A7

[2A7 ⊕ 2A2]

[2A2 ⊕ 2A1]⊕ 2A6

[2A4]⊕E6 ⊕ 2A2

[2A4]⊕A5 ⊕ 2A2 ⊕A1

[2A4 ⊕ 2A2]⊕D6

[2A4 ⊕ 2A2]⊕ 2A3

[2A4 ⊕ 3A2]⊕A3 ⊕A1

[3A4]⊕ [3A2]

only if the restriction of σ to each subset Si is even. Note that, in many cases, this
condition actually implies that S+(D) is the trivial group.

Proof. If µ(D) = 19, then S+(D) is the group of projective symmetries of D; these
groups are described in [9].

In general, let (H, o) be the oriented homological type of D. From the description
of the equisingular moduli spaces of sextics, see, e.g., [8], it is immediate that the
monodromy representation can be factored as

π1(M(D))� Aut+H → O(S)� S(S),

where the arrow in the middle is the homomorphism (4.4). If H is primitive
and µ(S) 6 18, we have a well-defined homomorphism d⊥ : O(S) → E+(T), cf.
§3.5, where T is the transcendental lattice; this homomorphism factors through
d′ : Sym′GS → E+(T), see Lemma 3.2. Hence, combining the above observation
with (3.18) and (4.5), we conclude that S+ ⊂ S(S) is the image of Ker d′.

The groups E+(T) are computed using Lemmas 3.19 and 3.20. For most curves,
one has E+(T) = 1 and hence S+ = S(S).

There are 171 sets of singularities S containing a point of type A2 and satisfying
the hypotheses of Lemma 3.19 or Corollary 3.21 with p = 3. For such curves, a
non-trivial symmetry of A2 maps to the generator −1 ∈ E+(T); hence, S+ = S(S).

Similarly, there are 28 sets of singularities S containing a point of type A4 and
satisfying the hypotheses of Lemma 3.19 or Corollary 3.21 with p = 5: a non-trivial
symmetry of A4 maps to the generator −1 ∈ E+(T).

In the very few remaining cases, the group Sym′GS, identified with its image
in AutS, see Lemma 3.2, is generated by reflections, and the map d′ is computed
explicitly using Lemmas 3.19 and 3.20. Details are left to the reader. �

5. The fundamental group

5.1. The degeneration principle. Our computation of the fundamental groups
is indirect; it is based on a few previously known results and the following statement,
often referred to as the degeneration principle.

Theorem 5.1 (Zariski [32]). If a plane curve D′ degenerates to a reduced plane
curve D, there is an epimorphism π1(P2 rD)� π1(P2 rD′). B

Corollary 5.2. If a plane sextic D′ degenerates to D and π1(P2 rD) = G6, then
also π1(P2 rD′) = G6. C

Corollary 5.3. If a sextic D′ of torus type degenerates to D and π1(P2 rD) = Γ,
then also π1(P2 rD′) = Γ.

Proof. Since any sextic D′ of torus type is a degeneration of Zariski’s six-cuspidal
sextic, there is an epimorphism π1(P2 rD′)� Γ, see [32] and Theorem 5.1. Since
Γ is a Hopfian group, the statement follows from Theorem 5.1. �
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5.2. Proof of Corollary 2.8. We need a slightly stronger statement, which is
proved in the same way as Corollary 2.7, see §4.4, by comparing two independent
lists: with few exceptions listed below, any non-special irreducible plane sextic
degenerates to one with known abelian fundamental group.

The exceptions are the six sets of singularities listed in Theorem 2.4 and

2A4 ⊕ 2A3 ⊕ 2A2 � E8 ⊕A4 ⊕A3 ⊕ 2A2,

3A4 ⊕ 3A2, 2A4 ⊕A3 ⊕ 3A2 ⊕A1 � E7 ⊕ 2A4 ⊕ 2A2.

The fundamental groups of the curves listed in Theorem 2.4 are computed in [13],
using the degenerations

2D9 � D10 ⊕D9, 2D7 ⊕ 2A2 � D10 ⊕D7 ⊕A2

to reducible maximizing sextics. The groups of some curves realizing the three
other sets of singularities are computed together with those of the corresponding
maximizing sextics, by analyzing the perturbations (see [13] for references). In view
of the uniqueness given by Theorem 2.4, the results hold for all curves. �

5.3. Proof of Corollary 2.11. With one exception, viz. the set of singularities
(A8⊕A5⊕A2)⊕A4, the fundamental groups of all maximizing irreducible sextics
of torus type are known, see [13, 14] for references. Comparing the two lists, one
can easily see that all but 14 non-maximizing deformation families degenerate to
maximizing sextics D with π1(P2rD) = Γ known; for these curves, the fundamental
group is Γ due to Corollary 5.3. All sextics with at least one type E6 type point
are treated in [13]. The remaining exceptions are

(6A2)⊕ 4A1 � (6A2)⊕A3 ⊕ 2A1,

studied in [6] as perturbations of (3E6)⊕A1, and

(6A2)⊕A4 ⊕A1 � (A5 ⊕ 4A2)⊕A4 ⊕A1,

studied in [14] as perturbations of (A8 ⊕ 3A2)⊕A4 ⊕A1. �

6. Real structures

6.1. Real sextics. A real structure on a complex analytic variety X is an anti-
holomorphic involution c : X → X. A real variety is a pair (X, c), where X is a
complex variety and c is a real structure. The fixed point set XR := Fix c is called
the real part of X. (We routinely omit c in the notation when it is understood.)

Let (X, c) be a real surface. A curve D ⊂ X is said to be real if c(D) = D.
If X̄ → X is a double covering branched over a (nonempty) real curve, the real
structure c lifts to two distinct real structures on X̄; the two lifts differ by the deck
translation of the covering, and all three involutions commute.

Any real structure on P2 is equivalent to the standard complex conjugation; in
appropriate homogeneous coordinates, it is given by (z0 : z1 : z2) 7→ (z̄0 : z̄1 : z̄2).
In these coordinates, real curves are those defined by real polynomials.

Theorem 6.1. A homological type H is realized by a real sextic if and only if H
admits an involutive orientation reversing automorphism.

Proof. The necessity is obvious: the real structure on P2 lifts to a real structure
on the covering K3-surface X, which induces an involutive automorphism of the
homological type.
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For the converse, let a ∈ AutH be an automorphism as in the statement. Due
to Lemma 3.2, the restriction a|S has the form r ◦ (−s∗), where r ∈ Ker d and s∗
is induced by an involutive symmetry s ∈ Sym′GS. Since Ker d ⊂ AutH (in the
obvious way: automorphisms extend to S⊥ by the identity, see Theorem 3.5), the
involution r−1 ◦ a is also in AutH. Let c := r−1 ◦ a ◦ th ∈ O(L); it is still an
involution and c|T = a|T.

Let T± be the (±1)-eigenspaces of the action of c on T ⊗ R. Since c reverses
the orientation, one has σ+T± = 1. Hence, one can choose generic (i.e., maximally
irrational) vectors ω± ∈ T± such that ω2

+ = ω2
− > 0 and take ω := ω+ + iω− for

the class of a holomorphic form. Let, further, S− be the (−1)-eigenspace of the

action of c on S̃h ⊗ R. Since h ∈ S−, one has σ+S− = 1. By the construction, −c
preserves a Weyl chamber of S; hence, condition (1) in Definition 4.3 implies that

S− is not orthogonal to a vector v ∈ S̃h of square (−2) and one can find a generic
vector ρ ∈ S−, ρ2 > 0, and take it for the class of a Kähler form. These choices

define a 2-polarized K3-surface X with PicX = S̃h and, by an equivariant version
of the global Torelli theorem, c is induced by a real structure on X commuting with
the deck translation τ of the ramified covering X → P2 defined by h. This real
structure descends to P2 and makes the sextic corresponding to X (i.e., the branch
curve) real. �

Let D be a real sextic with the set of singularities S. The real structure c lifts
to two real structures on the covering K3-surface; they take exceptional divisors to
exceptional divisors and, hence, induce two involutive symmetries c± : G → G of
the Dynkin graph G := GS. Define another symmetry c0 : G → G as follows: on
each connected component Gi of G fixed by c± and of type other than Deven let
c0 = id; on all other components, let c0 = c±. In other words, since c− = c+ ◦ τ ,
we just let v ↑ c0 = v for each vertex v such that v ↑ c+ 6= v ↑ c−, see Lemma 4.1.

Corollary 6.2. If a homological type H is realized by a real sextic (D, c), then any
c0-invariant perturbation H′ of H is also realized by a real sextic D′.

Note that we do not assert that D′ degenerates to D in the class of real sextics.
A real perturbation can be found if H′ is invariant under one of c±.

Proof of Corollary 6.2. Let c∗ : L → L be the automorphism of H induced by one
of the two lifts of c. Composing c∗ with −τ∗ on some of the indecomposable
summands of S, we can change it to another involutive automorphism c′ of H (see
Lemma 3.2 and Theorem 3.5) inducing c0 on G. Then c′ preserves S′; hence, c′ ◦ th
can be regarded as an involutive orientation reversing automorphism of H′, and
Theorem 6.1 applies. �

6.2. End of the proof of Theorem 2.4. It is easily confirmed that most sets of
singularities S with µ(S) 6 18 are symmetric perturbations of maximizing sets of
singularities realized by real sextics, see Tables 1 and 2. (In the tables, marked with
a ∗ are pairs of isomorphic singular points permuted by the complex conjugation.
These pairs should be taken into account when analyzing symmetric perturbations.
Note that singular points of type Deven do not appear in irreducible maximizing
sextics.) Due to Corollary 6.2, these sets of singularities are realized by real curves.

The remaining 25 sets of singularities are listed in Table 7. Each of these sets S
extends to a unique (up to isomorphism) primitive homological type H, and we
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Table 7. Exceptional sets of singularities

[3A6]7
[2A6]7 ⊕D6

[2A6]7 ⊕D5 ⊕A1

[2A6]7 ⊕ 2A3

[2A5]3 ⊕E8

[E6 ⊕A11]3 ⊕A1

[E6 ⊕A5]3 ⊕E7

[E6 ⊕A5]3 ⊕A7

[E6 ⊕A5]3 ⊕A6 ⊕A1

[E6 ⊕ 2A5]3 ⊕A1

[E7 ⊕A7]2 ⊕A4

[2A7]2 ⊕A4

A7 ⊕A6 ⊕A5

2D7 ⊕ 2A2

D7 ⊕D4 ⊕ 3A2

2D4 ⊕ 4A2

? 2E7 ⊕A4

?E7 ⊕D5 ⊕A6

?E7 ⊕A11

?E7 ⊕A6 ⊕A5

? 2D9

?D9 ⊕D8

? 2D8

?D5 ⊕A7 ⊕A6

E7 ⊕ 2A4 ⊕A3

denote by T the corresponding transcendental lattice. In each case, the natural
homomorphism d: O(T)→ Aut T is surjective.

By Theorem 3.5, the homological type H is symmetric if and only if there is an
isometry a ∈ O(T) with det+ a = −1 and such that d(a) ∈ dϕ(O(S)), where dϕ

is induced by any anti-isometry ϕ : S ⊕ 〈 12 〉 → T . If (and only if) a as above can
be chosen involutive, then so is d(a) and, due to Lemma 3.2, a extends to L by an
involutive isometry of S; hence, M1(S) contains real curves, see Theorem 6.1.

Lemma 6.3. The first twelve sets of singularities in Table 7 (those with a [ · ]p
pattern) extend to asymmetric primitive homological types.

Proof. Let S be one of the sets of singularities in question. Then Σ̃(T) ⊂ Γ−−0 , see
§3.7, and there is a well defined map det+ : Aut T → {±1}. We use Lemma 3.17
(with the ‘test prime’ p indicated in the table) to show that det+ takes value +1
on the image of O(S). If p = 7 (the first four lines), the latter image is generated
by reflections tξ such that either

• ξ2 = 6
7 (a symmetry of the Dynkin graph of A6), or

• ξ2 = 12
7 (interchanging of two copies of A6), or

• ξ ∈ T2 (isometries involving the other singular points);

on the other hand, one has (−3
7 ) = (−6

7 ) = ( 2
7 ) = 1. If p = 3 (the next six sets of

singularities), the image of O(S) is generated by the following automorphisms a:

• tξ with ξ2 = 4
3 (a symmetry of the Dynkin graph of E6 or A5),

• tξtη with ξ2 = 2
3 , η2 = 1 (interchanging of two copies of A5),

• tξtη with ξ2 = 2
3 , η2 = 1

4 (a symmetry of the Dynkin graph of A11),

• tξ with ξ2 = 7
8 or ξ2 = 6

7 (a symmetry of the Dynkin graph of A7 or A6).

In each case, Lemma 3.17 (with p = 3) implies that det+ a = 1. Finally, if p = 2
(the last two sets of singularities), we have reflections tξ such that either

• ξ2 = 7
8 (a symmetry of the Dynkin graph of A7), or

• ξ2 = 7
4 (interchanging of two copies of A7), or

• ξ2 = 4
5 (a symmetry of the Dynkin graph of A4).

Lemma 3.17 (with p = 2) implies that det+ tξ = 1. �

Listed in the last column in Table 7 are the sets of singularities S extending to
symmetric homological types due to Proposition 3.16. However, since we want to
represent these types by real sextics, we will attempt to find involutive orientation
reversing automorphisms, see Theorem 6.1. A simplest automorphism with this
property would be a reflection ta, a ∈ T, a2 = 2.
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Lemma 6.4. If S is one of the sets of singularities marked with a ? in Table 7,
the lattice T contains a vector a with a2 = 2.

Proof. It suffices to find an embedding Sh⊕Za ↪→ L, a2 = 2, with the image of Sh
primitive. In each case, there is an element α ∈ discr Sh with α2 = − 1

2 mod 2Z.

Let β ∈ discr(Za) = 〈 12 〉 be the generator, and let S′h be the finite index extension
of Sh with the kernel generated by α+β. On a case-by-case basis one confirms that
Theorem 3.6 implies the existence of a primitive embedding S′h ↪→ L. (In the last
case, the set of singularities D5 ⊕A7 ⊕A6, the element α above should be chosen
carefully, viz. α = 2α1 + 4α2 + α4 in discr Sh = 〈 34 〉 ⊕ 〈

9
8 〉 ⊕ 〈

8
7 〉 ⊕ 〈

1
2 〉.) �

The set of singularities A7 ⊕A6 ⊕A5 is considered in Proposition 2.6, see §6.3
below, and the remaining four deformation families are real and contain real curves;
for proof, we construct explicit reflections in O(T).

If S = 2D7 ⊕ 2A2, then T = Zu ⊕ Zv ⊕ Zw with u2 = 4, v2 = −12, w2 = 6,
and the reflection tu extends to an involutive automorphism of H (via −id on one
of the D7 components). Hence, M1(S) contains a real curve; by Corollary 6.2, so
do M1(D7 ⊕D4 ⊕ 3A2) and M1(2D4 ⊕ 4A2).

Finally, if S = E7 ⊕ 2A4 ⊕ A3, then T = Zu ⊕ Zv ⊕ Zw with u2 = v2 = 10,
w2 = −4. Since d: O(2A4)→ discr 2A4 is obviously onto, the reflection tu extends
to an involutive automorphism of H. �

6.3. Proof of Proposition 2.6. One has T = 〈 78 〉⊕〈
6
7 〉⊕〈

4
3 〉⊕〈

3
2 〉⊕〈

3
2 〉, and the

image of O(S) in Aut T is generated by the reflections tαi
, i = 1, 2, 3. Furthermore,

one has Σ̃2(T) = Γ−−0 and the map det+ : Aut T → {±1} is well defined. Applying
Lemma 3.17 with p = 2, one finds that det+ tα1

= 1 and det+ tα2
= det+ tα3

= −1.
In particular, it follows that the homological type is symmetric, i.e.,M1(S) consists
of a single real component.

Up to sign, any involutive isometry a ∈ O(T) with det+ a = −1 is a reflection,
a = ±tx for some x ∈ T, x2 > 0: one can take for x a primitive vector generating
the (−1)-eigenlattice of ±a, whichever has rank one. As explained above, tx must
induce −id in one and only one of the components T3, T7. Hence, x2 = 2kq, where
k = 1, 3 and q = 3, 7. (Recall that x ∈ ( 1

2x
2)T]; if k = 2, then ξ := 1

2x ∈ T2

has square 0 mod Z and tξ is not in the image of O(S).) Obviously, η := 1
qx is a

generator of Tq; on the other hand, one can see that η2/α2 /∈ (Z×q )2, where α = α2

or α3 for q = 7 or 3, respectively. This is a contradiction. �

6.4. End of the proof of Theorem 2.9. As in §6.2, one can easily see that
each set of singularities S can be obtained by a symmetric perturbation from a
maximizing real one, see Table 3. Furthermore, the perturbation can be chosen of
torus type, i.e., each inner singular point of weight w is perturbed to a collection
of points of total weight w. Such perturbations are known to preserve the torus
structure. Hence, by Corollary 6.2, the space M3(S) contains a real curve. �

6.5. Adjacencies of the strata. Recall that, with the exception of the set of
singularities S = 2A9, the spacesM1(S)/ conj are connected for all non-maximizing
sextics (see Theorem 2.4). Together with [10, Proposition 5.1.1] and [20], this fact
gives us a clear picture of the adjacencies of the real strata; the only doubtful case
of the two components of M(2A9) is treated in Proposition 2.5.

Consider the adjacency graph C of the strata M1(S) ⊂M1 containing non-real

components, and let C̃ be the adjacency graph of these non-real components. One
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E7 ⊕E8 ⊕A4

E7 ⊕A12

E7 ⊕A8 ⊕A4

A15 ⊕A4

A12 ⊕A7

A8 ⊕A7 ⊕A4E7 ⊕A7 ⊕A4

2A7 ⊕A4

E8 ⊕A7 ⊕A4

Figure 1. The graph C2

E8 ⊕E6 ⊕A5

2A5 ⊕E8

X0 ⊕E7

X0 ⊕A6 ⊕A1

X0 ⊕A7

E8 ⊕A6 ⊕A5

E7 ⊕E6 ⊕A6

E6 ⊕A12 ⊕A1

E6 ⊕A7 ⊕A6

E6 ⊕A11 ⊕A1

E6 ⊕A13

E8 ⊕A11
e

Smin := E6 ⊕ 2A5 ⊕A1

Figure 2. The graph C3 (where X0 := E6 ⊕A5)

can interpret the vertices and edges of C as, respectively, asymmetric primitive
homological types and isomorphism classes of their degenerations, whereas those
of C̃ are oriented homological types and their orientation preserving degenerations.
With two exceptions, viz. A14 ⊕A4 ⊕A1 and A13 ⊕A6, see Table 2, a vertex of C
is determined by the corresponding set of singularities. Most degenerations are of
corank one, in which case a degeneration S′ � S is uniquely determined by the
pair (S′,S), see, e.g., [17]. The forgetful projection C̃ → C is a double covering,
and we are interested in the structure of this map, in particular, in the connected
components of C̃.

The graph C has several isolated vertices, viz. D7 ⊕A10 ⊕A2, D5 ⊕A14, three
vertices representing A14 ⊕A4 ⊕A1, and all maximizing sets of singularities that
are also represented by real curves. The rest splits into three larger components,
which we denote by Cp, p = 2, 3, 7, and call clusters. For a fixed p, the vertices
of Cp are all sets of singularities in Table 7 containing a [ · ]p pattern and all their

asymmetric degenerations, see Figures 1–3. Denote by C̃p ⊂ C̃ the pull-back of Cp,

p = 2, 3, 7. Each double covering C̃p → Cp is described by its characteristic class,
which we denote by ωp ∈ H1(Cp;F2).

Let Cp :=
⋃
M1(S), the union running over all S ∈ Cp, p = 2, 3, 7. These

subspaces of M are also called clusters; their connected components are in a one-
to-one correspondence with those of C̃p.

The graph C2 is shown in Figure 1. Since it is simply connected, we have the
following immediate statement.

Proposition 6.5. The double covering C̃2 → C2 is trivial. Hence, the cluster C2
consists of two complex conjugate components. C

The graph C3 is depicted in Figure 2, where only corank one degenerations are
shown. This graph has a minimal vertex Smin := E6 ⊕ 2A5 ⊕A1, shown in grey.
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D13 ⊕A6

D5 ⊕A8 ⊕A6E8 ⊕D5 ⊕A6

2× {A13 ⊕A6}

A10 ⊕A3 ⊕A6

D6 ⊕ 2A6

D5 ⊕A1 ⊕ 2A6

A6 ⊕ 2A6

2A3 ⊕ 2A6

E7 ⊕ 2A6

A7 ⊕ 2A6

D7 ⊕ 2A6

	 γ1

	 γ2

	 γ3

−

−

Figure 3. The graph C7

The closure of C3 contains four real strata

2E6 ⊕A5 ⊕A1 � E7 ⊕ 2E6, 2E6 ⊕A7, 2E6 ⊕A6 ⊕A1.

In all four, the real structure interchanges the two E6 points; for the non-maximizing
set of singularities 2E6 ⊕A5 ⊕A1, this fact can be proved similar to Lemma 6.3.

Regarded as a diagram, C3 is not quite commutative. There are two isomorphism
classes of degenerations Smin � E8 ⊕ E6 ⊕ A5; in the self-explanatory notation,
they are

(6.6) [E6 ⊕A1]⊕ [A5]⊕ [A5], [A5 ⊕A1]⊕ [E6]⊕ [A5]� E8 ⊕E6 ⊕A5.

The former factors through the edge e : 2A5⊕E8 � E8⊕E6⊕A5 represented by a
dotted arrow in Figure 2, and the latter factors through the three other edges ending
at E8 ⊕E6 ⊕A5. Denote by e] ∈ H1(C3;F2) the class sending a cycle α, regarded
as a sequence of undirected edges, to the multiplicity of e in α. Formally, e] is
the image of the generator of the group H1(e, ∂e;F2) = F2 under the relativization
homomorphism H1(e, ∂e;F2) = H1(C3,C3 r e;F2)→ H1(C3;F2).

Proposition 6.7. The characteristic class ω3 of the double covering C̃3 → C3 is
ω3 = e] 6= 0. In particular, the cluster C3 is connected.

Proof. Let C′3 be the graph obtained from C3 by removing the (open) edge e, and let

C̃′3 ⊂ C̃3 be the pull-back of C′3. As explained above, C′3 is a commutative diagram.

Hence, the restricted covering C̃′3 → C′3 is trivial: an orientation of the homological
type extending Smin induces an orientation of all other homological types. On the
other hand, both degenerations (6.6) factor through 2E6⊕A5⊕A1 and differ by a
transposition of the two E6 type points, which extends to an orientation reversing
automorphism of the homological type. Hence, the double covering C̃3 → C3 is not
trivial and the obstruction is e]. �

The graph C7 is depicted in Figure 3, where shown in black are the vertices and
edges constituting undirected cycles. (There are two vertices corresponding to the
set of singularities A13⊕A6, see Table 2, each connected by an edge to 3A6.) The
group H1(C7;F2) ∼= F3

2 is generated by the three four-edge cycles γ1, γ2, γ3, and
the characteristic class ω7 is determined by its values on these cycles.

Proposition 6.8. The characteristic class ω7 of the double covering C̃7 → C7 is
γ1, γ3 7→ 1, γ2 7→ 0. In particular, the cluster C7 is connected.

Proof. Consider a quadratic F7-module X . Recall that the group AutX is generated
by reflections and there are well defined homomorphisms det, spin: AutX → {±1}
sending a reflection tξ to (−1) and the class 14ξ2 mod (Z×7 )2 ∈ Z×7 /(Z

×
7 )2 = {±1},
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respectively, see, e.g., [5]. Assuming that |X | ·det7 X = 1 mod (Z×7 )2, define a spin-
orientation of X as a class of orthogonal bases α := {α1, . . . , α`}, αi = 2

7 mod 2Z,
two bases α′, α′′ being equivalent if the isometry σ : α′i 7→ α′′i , i = 1, . . . , `, has
spinσ = 1. Note that the order or the signs of the basis vectors are not important:
isometries reversing the spin-orientation are more subtle. In particular, the group
discr7 S for any S ∈ C7 has a canonical spin-orientation.

Let ds := det · spin. In a similar way, using bases with α2
i = − 2

7 mod 2Z, we
can define the notion of ds-orientation for a F7-module Y satisfying |Y| · det7 Y =
(−1)` mod (Z×7 )2, where ` := `(Y). An anti-isometry X → Y takes spin-orientations
to ds-orientations. There is a unique ds-orientation on 〈− 2

7 〉; hence, a ds-orientation
on Y induces a ds-orientation on any codimension one submodule Z ⊂ Y satisfying
|Z| · det7Z = (−1)`−1 mod (Z×7 )2. A similar statement holds for spin-orientations.

The essence of the proof of Lemma 6.3 is the fact that, for any vertex S ∈ C7,
one has Im[d7 : O+(T) → Aut T7] ⊂ Ker ds. (If µ(S) = 19, this follows from [29].)
Hence, there is a bijection conv : o 7→ s between positive sign structures on T and
ds-orientations on T7. (The particular choice of conv is not important; it can be
fixed separately for each isomorphism class.) Thus, an oriented homological type
(H, o) can be declared positive or negative according to whether the anti-isometry
S → T does or does not take the canonical spin-orientation of S7 to conv(o).

Given a lattice extension ι : S ↪→ S′, the homomorphisms ι ⊗ Q and ι] induce
additive relations ι∗ : S7 99K S ′7 and ι] : S ′7 99K S7. If ι is one of the black arrows
in Figure 3, both ι∗ and ι] are true homomorphisms; they give rise, in a canonical
way, to either an isomorphism S7 = S ′7 or a splitting S7 = S ′7 ⊕ 〈 27 〉 (if S = 3A6),
which respect the canonical spin-orientation. Passing to the transcendental lattices,
we conclude that, in either case, a ds-orientation on T7 induces one on T ′7 . On the
other hand, T′ ⊂ T is a maximal positive definite sublattice and T and T′ have a
common positive sign structure o = o′. Hence, we can assign to ι a sign ε = ±1
so that the ds-orientation on T ′7 induced by conv(o) equals ε conv(o′). This sign
depends on the conventions conv, but the product ε := ε1ε2ε3ε4 over a four-edge
cycle c := (ι1, ι2, ι3, ι4) does not, as each convention is used twice. It is immediate
from the definitions that ε = (−1)ω7(c). Now, the statement of the proposition is
proved by a routine computation of the signs, cf. Example 6.9 below. �

Example 6.9. We illustrate the computation of the signs in the previous proof.
All rank two lattices involved are of the form Zu⊕ Zv, u2 = 2r+1 · 7, v2 = 2s+1 · 7,
r, s > 0, and for such lattices, we define conv to take the positive basis {u, v}
to a basis {α1, α2} with α1 := 1

7 (2r+2u + 2s+1v). (For a module of length two,

one vector of square − 2
7 mod 2Z is enough to define a ds-orientation. For the

comparison purposes, it is convenient to consider the basis β1 := 1
7 ·2

ru, β2 := 1
7 ·2

sv

with β2
1 = β2

2 = 2
7 mod 2Z, so that α1 = 4β1 + 2β2. In terms of the β-basis,

the transposition of the two vectors or changing the sign of one of them reverses
the orientation.) To avoid choices for rank three lattices, we consider a pair of
arrows S′ � S � S′′. Let S = D6 ⊕ 2A6 (the upper pair in Figure 3). Then
T = Zu ⊕ Zv ⊕ Zw, u2 = v2 = 14, w2 = −2, and T′,T′′ ⊂ T are spanned,
respectively, by u′ = u, v′ = v and u′′ = 3u + 7w, v′′ = v. (Since we know that
the sign is well defined, it suffices to consider a particular pair of sublattices.) The
orientations of the two bases are coherent, and the coefficient 3 /∈ (Z×7 )2 in the
expression for u′′ tells us that the product of the signs associated with this pair of
arrows is (−1): one has β′′1 = −β′1 and β′′2 = β′2. A similar computation, slightly
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more involved if S = 3A6, shows that the sign convention for rank three lattices
can be chosen so that only two arrows have associated sign (−1), see Figure 3.
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