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Introduction.

This is a slightly revised version of my notes prepared for the
lectures given in Genova (Italy) during the second fortnight
of February 1987.

Let us start by recalling a few classical notions to fix
our notations. Let k be an algebraic number field of finite
degree over @ . The (absolute) Weil group W(k) 1is defined,

[23], {24], as the projective limit

W(k) = lim W(E|k)
: <— .
of relative Weil groups W(E|k) , where E varies over all the
finite Galois extensions of k . Each of the relative Weil groups
W(E|k) 1is quasi-compack:

W(E|k) =R, x W (Elk) ,

where R_ 1is the multiplicative group of positive real numbers
and W1(E|k) is a compact group, being an extension of the finite
Galois group G(E|k) of E over k by a compact group c; of
idéle-classes having unit volume. Any continucus finite dimensional

representation
f : Wk) —> GL(&, @ (1)

factors through W(E|k) for some E . We say that p is



noxmalised if it factors through W,(Elk) for a finite Galois
extension E|k . Let S,(F), S,(F) , and S,(F) denote the sets
of prime ideals, of real places and of complex places of a
number field F , respectively; sometimes we write

S,{F) := 8,(F) U S,(F) , and S(F) := S,(F) U S _(F) . For
p€S(E) , let F, be the completion of F at p and let F;
denote the maximal abelian extension of FP . With a finite

Galois extension E|k and a pair of primes p € SO(E) p

p € So(k) such that pl|p one associates the inertia subgroup

1]

N
I = G(E |k p
{t]T € G( p| p) QL

£ v
0 o (mod p) or o € p}

and the Frobenius class

= {1|t € G(E?Ikp) , To a|p|(mod p) for o € vb}

o}
p

. a ' a
in G(E_|k_) the Galois group of E over k here «r
plkp) group p p’ p
stands for the ring of integers in E: and we write, for brevity,
la] := Np /g

where a ranges over the fractional ideals of a number field F
The Galois group G(E;|kp) is regarded as a subgroup of W(E|k) .
Let V Dbe the representation space of 13 and suppose that P

factors throdgh W(E|k) ; one defines a vector space

Vp = {x|x €V, =x=x for 1 € Ip}



and proves (cf., e.g., {14, p. 21]) that the set

{plp € So(k), vp + V}

is finite. Let

=1

Lis,x) = [ 1 det(i-p(o)lp|™® (2)
pES, (k) P
where x := tr p , P(Op) = P(T)|V for T € oy, (the restriction

P(T)|V of the operator P(T) to Vp is easily seen to depend
only on Up but not on the choice of v ; moreover, the‘Euler

factor

det(I—?(op)lpl—s)

depends only on p but not on the choice of p above p ). If
? is normalised (or if it is unitary) then the Euler product (2)
converges absolutely in the half-plane Re s > 1 . Continuing the

function
s ——> L(s,Yx)

meromorphically to @ , one defines the Weil L-function, [24],
associated to P - If the image of P is f4indite, it can be
shown to factor through the Galois group G(F|k) of a finite

Galois extension Flk ; on the other hand, since

Wiklk) s ¢



any one-dimensioﬁal representation of W(k) may be identified
with a Gr&ssencharakter of k (here Ck denotes the idéle-class
group of k ). Thus the class of Weil L-functions contains both
any Artin L-function and any Hecke L-function "mit Gréssen-
charakteren". Let X(k) be the set of all the continuous
finite-dimensicnal normalised representations of the form (1)
and let gr(F) be the group of normalised grossencharacters

of an alqebraic number field F . We shall view an element of

gr(F) both as a character of C. (trivial on R_ embedded

F
diagonally in the connected component of CF ) and as a multi-
plicative function on the monoid TI,.(F) of integral ideals of
F . By a theorem of R. Brauer, [1], the Weil L-function (2) may

be decomposed in a product of abelian L-functions (cf. {24]):

P vy '
L((s,x) = N L(s,wi) r ey € {=1,1} , 0, € gr(Ei) ’ (2")

where k < Ei < E (assuming that [~ factors through W1(E|k) P

say). It has been conjectured, [24], that the function
s —> (=195 s,y ,

where g(x) denotes the multiplicity of the identical represen-

tation in P - is holomorphic in € (Axfin-Wedll conjecture).



Lecture 1. Estimates for character sums in numben fields.

Let A € gf(F) and let F(A) denote the conductor of X ,

then

‘r_1 | |itp(k) a p
A{(a)) = a (T—ET) for a = 1(F(N)), o €V, .,

where <r, denotes the ring of integers of a number field F and

F

up = cp(a), cp : F - Fp being the natural embedding of F into

its completion Fp at the place p . Moreover,

tp(k) € R, ap(A) € %, ap(A) € {0,1} for p € S1(F) .

We write
1/2 [€ (X)) |+]a_(A)]
a(x) = 1 @+, ) 1 (2v —2r—-=PB—),
pES, P PES,
and
1/2
b(x) = (!DF| NF/mF(A)) '

where DF is the discriminant of F . One develops the Weil

L-function (2) in a Dirichlet series:

L(s,x) = % cla,y) |a|”®
€T, (k)

and remarks that



cla,x) = x{a) for x € gr(k)
Let
P — < 1
?J : W(k) > GL(djr (1'.), 1 £ ] £ r,

be a continuous normalised representation of the Weil group of

k and let
- -5 \r
L(s,x) = |al™® T 7 cla,x.) . C(3)
a€l, (k) j=1 J
where y := (X1""'Xr)' Xj 1= tr ?j . On the other hand , let
kj be a finite extension of k and let dj = [kj:k], 15 3Jsr.
For Aj € gr{kj) , let
Li(s,x,) = § la|™® ¢ (A ,
3 a€l, (k) a )
so that
C ()\ ) = A (h) ’
a'j J =
hEIo(kj), Nkj/kh a
and let
= 9 -5 r
L(s,A) = |a| ™ c, (A (4)
a€I, (k) j=1 J
where X oi= (11,...,Ar) . We call the function (3) the scalar

product of Weil L-functions L(s,xj), 1 s j s r , while the



function (4) is called the scalar product ocvexr k of the Hecke
functions L(s,kj) ;1 £ 3j & r . Regarding Aj as an one-

dimensional representation of W(kj) we deduce from the basic

properties of the Weil L-functions that

W(k) 5
W(kj) J

AL) = a . h . = Ind
c. J) c ,xj) when ?J n

and, in particular,

W(k)

L{s,X) = L(s,¥) when Py - Indw(kj).Aj ,1sjsr . (5

Proposition 1. Let P =0 ® ... ® Pr r X = tr P - Then

Lis,X) = Lis,x) T[] e (lp|™ 1 .,1.(p™% , (6)
p€ES, (k) P PES, (X)

whehre ¢p(t) e ¢litl, @p(t) = 1{mod t2), Soff) {8 a finiZe sef,
lp(t) € €(t] . Moreover, the degrees of ép(t) and lp(t) are
d

bounded by d-1, d := [ | dj
. 3=1

Equation (6) defines a meromorphic continuation of the

>
function s }—> L(s,x) to the half-plane Re s > % since

> .
L(s,x) 1s meromorphic in &, So,{(x) 1is finite and the product

L(s,®) = [ 1 o (|lp|™%
p€ES, (k) P

converges absolutely for Res > % . Thus, by (5), we obtain a

' >
meromorphic continuation of the scalar product L(s,A) of Hecke

L-functions to the half-plane Re s > . Moreover, by a theorem

1
2



of G. Mackey, [12], a tensor product of monomial representations,
is equivalent to a direct sum of monomial representations, so that
L(s,x) satisfies the Artin-Weil conjecture when each of pj '

1 £ j £r, is induced by a Aj . To be more precise, we have the

following result.

Corollary 1. Theke are numben gields Ejp 181 sy, and grossen-

charactens vy such that

<

Lis,N) =TT L(s,y;) L(s,8) " Le(X,s) for Re s > 32- , ()
i=1
where Lo(X,s) = 1.1 (lp|™® in notations of (6), v € gr(Ei) .

pGSo (X) P
k § E; €K, K bedng the smallest Galois exitensdion o4 k con-
taining each of the fields kj r 153 sr.

In particular, one remarks that

-
L(s, ) = LSl £(s), w(X,s) eCls],
(s=1)

where £(s) 1is holomorphic for s = 1 and
w = card {i|tp.l =1} .

The methods of classical analytic number theory, [10], lead to

an asymptotic estimate for the sum

R r
A(x,\) := % Il c, (A
|lal<x j=1 J

and, more generally, for the sum
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r
Af{x,x) == } 1 C(aer)
aj<x j=1
We write
A(x,%) = x Py(log x) + R(X,x) (8)
and
A(x,X) = x P3(log x) + R(X,%) (9)

where P-A‘(t) (respectively, P)—(‘(t)) is a polynomial in @ft] of
degree w-1 (respectively, g(x)-1 ) whose coefficients are effectively
computable in terms of the behaviour of L(s,i‘) (respectively,

L(S,;) ) in the neighbourhocd of the point s =1 . If w =0

(respectively, g(x) = 0 ) we let Pi(t) = 0 (respectively, P?(t) = Q).
Theorem 1. Esfimate (9) holds with
2 v =Y . B Y
R(X,x)} = O(x exp(=c,(x)/log x}}, ¢ (x) > 0 ,
as X - o wilh effectively computable (in teams of ; ) constants,
Moneoven, Lf Lis,x) 4An (6) satisfies the Artin-Weil conjecture,
then

2
R(X,x) = 0(c2(e;51)13(x)x1'_§n+ *€ (log x)%9), e >0,

where, Lin notations of (2'),
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€. +1 N
N = § [E;:Q] —5— , §, = d card(S.(X)), n = [k:@] ,
=1 2 | “

C e+ 2
B(x) = T | ale,) b(w;) "Bo
i=1
with B, depending on gl(y) and E (ej-T) only. Finally, L4
24
each of the functions L(s,wi) in (2') satisfies Riemann hypo-

thesis we have

u
R(;.x) = Oe(x"/2+E (] a(wi)gb(wi)e), € >0
i=1

In view of Corollary 1, one obtains as a consequence of Theorem 1

the following result.

Corollary 2. Estimate (8) holds with

1

R(A,x) = 0(C, (58,0 ([] atw) by ?16Y x W2 © S(log 0%
i=

1

where N =

3

Il e~1<

1[E3:m]l €>0

We remark that an estimate of the form

Rix,x) = o(x /27Y)

with v > 0
would imply the Artin-Weil conjecture for L(s,yx) and that, on
the other hand, the well-known (Q-theorem, {2], for grossen-

characters gives

- oxY -
R(x,x) .O(x ) = v 2 55

N
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when y € gr(k) .
Corollary 2 will be used in the last lecture to obtain an

equidistribution theorem for integral ideals having equal norms.

Theorem 2. Suppose P L8 normalised and L(s,y) satisfdies

(2'). Then
’j‘ du ‘f %, &
x{p) = g(x) +0( ) (x 7 + /x [E :Q] +
.p}ﬂc 2 log u 321 ]
+.x exp (-c log x

}))  with cy >0,

log(a(wj)b(wj))+/[Ej:Q]log x

whenre oy denotes the possible (real) Siegel's zero o4 L(s,wj)
{when w? = 1 ) and where x(p) := tr ?(Up) gon p € Sofk) . I§
each of the L(s,wj), 1 s J sup, satisfies Riemann hypothesds,

Zhen

du
log u

+0 (VX
3

Il o112

[Ej:Q]log[x E

af{p,)b(w.) 1) .
1 321 3 J

X
I ox(® =gx) J
Ip|<x 2
This theorem may be proved along the classical lines (cf.,
for instance, [15]); it will be a starting point of our con-

siderations in the next lecture.
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Lecture 2. A new pidime number theonrem,

Let ISj(k)| =r.,, j=1,2, sothat n=1r, +2r and let

J 2

E be the group of units in k . By the Dirichlet's unit theoremn,

k

we can write

r1+r2-1

5! XW,
Ek

where W 1is a finite cyclic group. Let

and let X* be the group of invertible elements in the RR-algebra

X ; let i denote the diagonal embedding of k* in X* . Obviously,
R x T,

x*/J'.(Ek) =R,

where T 1is an (n-1)-dimensional real torus. Finally, consider

a homomorphism
f:Ik) —>T
subject to the condition

£((ax)) = w(i{a)} for o € k* ,

where w denotes the natural projection of X* on 7T and I(k)

stands for the group of fractional ideals of k
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Theorem 3. Let U be a "smooth" subset (* of T and Let A
be a confugacy class in the Galodis group 04 a finite Galodis

extension B/k . The 4ollowing formula holds:

card {p|p € S.(k}, |p| < x, £(p) € U, o, = A} =

ARl Qa6 (x exp(-c(U)/Iog %)), CU) > 0,

where U 48 the Haar measure on T noamalised by the condition
u(T) =1 .

As a special case of this theorem, one obtains Chebotarev's
density theorem (just take U =T ); on the other hand, if E \is
chosen to be Abelian over k theorem 3 reduces to an equi-
distribution theorem in the spirit of Hecke's multidimensional
arithmetic, [41, [S], [13]. Theorem 3 is an easy consequence of
the estimates of theorem 2 (see, for instance, [14, p. 68]).

To state the main theorem of this paragraph consider a

ginite subset N of X(k) and let
m= {x|y = tr PP € N}
be the corresponding set of characters.

Theorem 4. Let g, € W(k) and £et 0 < e < 1 , The followding

asymptotic gormula holds:

(* This notion will be analysed in the fourth lecture. For the
time being one may picture U as a rectangular subset of T .
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card {p|p € So(k), |x(pY-%x(go)| < € for each x in @} =

du
log u

X
a(l,gq.,¢) [ + O (x exp(-c,v/log x)), c, > 0 . (10)
2

4

c
Moreover, a(ll,go,c) > Cge § » Cg > 0, Cg > 0 . Here the constants

cj’ i = 4,5,6, depend at most on M (but not on €, Go, X ).
Theorem 4 can also be viewed as a generalisation of both
Cheboratev's density theorem and Hecke's type equidistribution
theorems: one obtains the former one when each P in N has a
finitg image, while the latter ones follow if each ? in N |is
one-dimensional. To sketch the proof of theorem 4 let us note
first that there is a. finite Galois extension E|k such that
each @ in N factors through W,(E|k) since N 1is finite.

Consider a subset
A(M,g..e) = {g|g € W (E|k), [x(g)-x(go)| < e for x € m}

of W,(E[k) and let u be the Haar measure on W1(E|k) norma-

lised by the condition u(w1(E|k)) = 1 . One can actually take
a(ll,go,e} = u(A(M,go,€)) (11)

and prove that

M

wW(A(M,ge,€)) > Cg , m = [E:Q] - 1

To deduce the asymptotic formula (10) with o defined by (11)
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one notes that, in fact, each ? in N factors through a

certain group G which fits in the exact sequence
‘I-_bT-'G—_rH-»‘I,

where T is a finite-dimensional real torus and H 1is a

compact group. Moreover, conditions |x(g)-x{ge.)| < e, x € M ,

define a semialgebraic subset U of G . The asymptotic formula

to be proved would follow now from theorem 2 and the general
equidistribution principles if one could estimate from above

the volume of the §-neighbourhood of the boundary of U uniformly
in the interval, say, 0 < § < 1 . Such an estimate can indeed be
proved as a consequence of recent results on volumes of tubes
-around semialgebraic sets, [25] (cf. also [3]). This concludes
our sketch of the proof of thecrem 4 (cf., however, [16] and
[17, § 5] where this proof has been carried out in detail). We
close this lecture by suggesting an open problem: can one prove
a general theorem on equidistribution of Frobenius classes in a
Weil group (cf. [14, p. 69-71]) that, in particular, would

imply both theorem 3 and theorem 4 ?
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Lecture 3. Analytic continuation and the natural boundary of

scalarn products.
The object of this lecture is the following theorem.

Theorem 5.
(1) The gunction L(s,f) defined by (3) can be meromorphically

continued to zhe half-plane €, = {s|Re s > 0} .

(ii) Suppose that r 2 2 and d1 2 ... 02 dr 2 2 . The fL4ine

€° = {s{Re s = 0} 44 the natural boundary 04 L(s,;) unfess

H
i

o
I

[o}
0

2 .

(ii1) I4 r

d, =d, = 2, then the function L(s,¥) 44 equal
to a rnatio of two Well L-gunctions (up 2o a gindte numbern of

Euler factorns) and Zheredore Lt L& meromoaphic in C

Identity (5) shows that assertions (i)-(iii) hold true
when one replaces L(s,;) by L(s,f) . Let us describe now the
main steps in the proof of theorem 5. In view of (6), the
function L(S,;)L(S)¢);1 is meromorphic in € ; moreover, the
polynomials ¢p(t) can be explicitely evaluated when
r = d1 = d2 = 2 and this evaluation proves (iii). In general,
the sequence of polynomials {Qp(t)lp € So(k)} can be para-

metrized as follows. Let Y be the ring of virtual characters

of Wi(k) and let



- 18 -

be a polynomial with coefficients in this ring. We extend
the definition y(p) = tr e(cp) by linearity to VY and
write

H (£) tjaj(p) for p € So(k) ,

1}
0 e~

j=0

and

i 1

H (6) = tjaj(g) for g € W(k) .

=0

Lemma 1. There axe a polynomial H(t) 4in V[t] and a findite
subset SL(X) 0§ Solk) such that

Ho(£) = 0 (t) §orn p € Solk) ~ SL) . (12)

This lemma shows that it suffices to investigate the analytic

properties of the Euler product

L(s,H) = [ 1 H_(|p|% (13) -
PES, (k) P

for H{(t) € Y[t] .

Definition. Let H(t) € Y[t] and suppose that H(0) =1 . We

say that H L& unifary L4
Hg(a) =0 = |a] =1

fon each g 4in W(k) .



- 19 -

Lemma 2. If{ 2 s r s d_ s ... sd, and d1d2r > 8 , then
the polynomial H defdined by (12) and (6) L& not unitanry.
In view of Lemma 2, the statements (i) and (ii) follow from

the following proposition.

Proposition 2. Let H(t) € Y[t] and H(0}) = 1 . The gunction

s —> Li{s,H)

defined by (13) in the half-plane Re s > 1 can be meromorphically
continued to C_ ; 4§ H «£4& not unifary, then T° 4is the natunral
boundary of this function.

We sketch the proof of Proposition 2. Without loss of
generality, we'may assume that

td , a, €Y.,

H(t) =1+ § ] 0

3213

where VO denotes the ring of virtual characters of W1(E|k) for

a finite Galois extension E|k . Let

£
H (£) =[] (1-d;(g)t), g € W, (E|k) ,
g i=1

and let

y = sup {lag(g)| | 1 s4is €, g € G}
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Vo [[t]] , we have

Lemma 3. (i) Foamally, 4in
. n Pyle)
H(t) = [ | [ 1 det(1-t o) » b (o) €3,

n=1 wEXn(H)

where xn(H) L4 a gindite subset of X . Moreoven,

o N B

| 3 b_(e)tr olg)| s £y" d% 1 gon g € W (E]k)
n

mexn(H)

Making use of lemma 3, one can prove the following statement.

Lemma 4. There 4is Mo duch that {§ M > M, and N > (Y+1)M then

L(s,H) = ZN(S)UM(s)g{s) ’ (14)
whehre
: -bn(w)
UM(S) = 1—_-! f—l L(ns , try) ’
1sn<M wEXn(H)
Zyls) = [7] Hp(|p| Yoo
lpl<N ¥ -
and gl(s) 44 holomoaphic and has no zeros in
T = {s|Re s > 1y
1/M M
Since both ZN(s) and UM(s) are meromorphic in € and since
CI:+ = U ¢1/M '
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equations (14) provide a meromorphic continuation of L(s,H) to
C, . Moreover, as an easy consequence of Lemma 3 one proves that
L{(s,H) 1is a meromorphic function in € when H is unitary
(that is, if y =1 ). If ¥ > 1 one can prove that the

closure of the set

{s|Re s > 0, ZN(S)-1 = 0 for some N}

contains:-the line @° . To show that this line is the natural
boundary of L(s,H) it remains to prove that the poles of this
function coming from the first factor in (14) cannot be cancelled
by the zeros of the second factor. Making use of theorem 4 one
can estimate the number of poles of zy(s) in a neighbourhood
of a fixed point in C° . On the other hand, a careful analysis
of the structure of the zero-set of UM(s) provides an upper
bound for the number of such zeros which shows that complete
cancellation cannot occur. We have to refer to [17] for the
details of this argument; an alternative proof of theorem 5 may
be found in [9].

Theorem 5 is of considerable interest for £he general theory
of L-functions having Euler product. For the history of its proof
and for some related results we refer the reader to two short
notes, [21], {22], and our final report on this problem, [17].
This exposition (as well as the article [17]) owes much to the
early work of N. Kurokawa, [(6]-[8], where Theorem 5 has been

proved for representations ?j' 1§ jsr , of Galois type.
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Lecture 4. Integral points on algebraic sets degined by a

sdystem of norm-forms.

The following prob;em has stimulated much research in number
theory and arithmetic algebraic geometry. Let fj(xj) € Z[xj] '
1 g 3 s r-, and consider the algebraic set U given by the
system of equations fj(xj) =0, 1 $3j sr . One chooses a
compact subset of U(IR) and asks for an estimate of the number
of integer points in this subset (here xj = (xj1""'xjn.) is
an array of nj variables). When the number of variables.
n = E nj is relatively small compared to the degrees and the
numbg;jof equations the analytic methods must be supplemented
by arithmetical considerations. We study here the Simplest
problem of this type: dealiné with norm-form equations allows
one to avoid algebro-geometric considerations and to work in
the framework of classical algébraic number theory. To give a
precise statement of our results we need a notion of "smoothness"”
generalising the notion of a plane domain with a boundary satis-
fying Lipschitz condition. Consider a triple (W,E,u) consisting
of a set W , a Borel measure u and a system E of measurable
subsets of W ; a measurable subset V of W is said to be

n-smooth if for each A in the interval 0 < A < 1 one can find

a finite subset E,(A) of E satisfying the following conditions:

(1) card Eo(A) s AR

(11) P n ?' ¢ when . e * P', P € Eo (1), o' € E., (&) ;
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(iii) let V_ = UP , Vo= U P , then
‘ QEEO(A) PEE, (4)
psv

V, 2V and u(v_~V_) < C(V}a (for some constant C(V) inde-
pendent of A land called the smoothness constant of V ). The
elements of E are refered to as elementary sets. Consider,
secohdly, a triple (S,m,N) consisting of a set S , a map
mT:S-+W and amap N : S -IR_ ; this triple is said to be

(E,u)=equidistributed if

card {s|s € S, w(s) € fr Ns < x} = u(plalx) +a(b(x))

b(x)

for ? € E , where ETET -0 as x =»

Lemma 5. I4 (S,m,N}) L& (E,u)-equidistributed, then
card {s|s € S, ©(s) € V, Ns < x} = p(Via(x) + O(b1(x))

with b1(x)/a(x) = 0 (and b, exactly expressible in teams of
b, n, C(V)) dor any n-smooth set V .
Let kj|m, 1 <3 sr, be a finite Galois extension of degree
dj and let K = ki"‘kr be the composite field of kj '
IK:Q] =;rd . To simplify our exposition we impose the following

condition on these fields (cf. [11]):
(ei(p), ej(p)) =1 for i % 3, p € S.(@ ., {(15)

where ei(p) denctes the ramification index of p in ki .
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r

Condition (15) implies, in particular, that 4 = [ | dj ,
J=1

that the fields k1'°"'kr are linearly disjoint over @ . Let

T = T1 X ... X Tr and let H = H1 X L. X Hr , Where Tj denotes

the (dj—1)-dimensional torus assigned to kj as in lecture 2 and

where Hj is the ideal class group of k, ; let

p)
f: I(k1)x e X I(kr) -+ T be the product of homomorphisms
fj : I(kj) - Tj defined in lecture 2 and consider two sets of

r-tuples of ideals

a2
Io = {ala = (31,...,ar), aJ € Io(kj)' Na_] = = Nar}
and
e
S, = ‘[P|P = (p1,...,pr), pj € So(kj), Np1 = L. = Npr} .

Theorem 6. Take the rectangular subsets of T as elementany
and Let u be the Haar measunre on T noamalised by the condition

T
M(T) =1 . Let A € H and suppose that 1 L8 a ]

(d.~-1)-smooth
j=1

Aubset 04 T . Then

p(1) ? du
R 5 log u

=~ = b —_——
card {p|p € S, N A, £(p) € T} + 0 (x exp(-cvlog x))

with ¢ > Q0 , and

A a A a
card {a|a € I, N A, £(a) € 1}

e x v 0 ')

with v > 0 , where w, = w(K)L(1,¢)-1, wi{K) denotes the residue
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0§ the g=gunction 2Z_(s) § K at s =1 and L(s,®) 4is

0
K
w Y .
defined by the equation Y n % ] aéj) = ZK(s.)L(s,Cb)_1 ’

aéj):= card {ala € Io(kj), Na = n}

Theorem 6 shows that both integral and prime divisors
with equal norms are equidistributed in the seﬁse of E. Hecke;
it can be deduced form the estimates (8) and the prime number
theorem for grossencharacters with the help of lemma 5 and
equation (6). Choose an integral ideal aoj in Aj gnd let

{wji|1 sis dj} be a %-basis of a, one defines a norm-

5 ;

form fj associated to Aj as follows:

-1
£.(x,) = N, ( X, .W.,)Na, H

obviously, fj(xj) € Z[x,] . Consider the algebraic set W defined

3

by a system of equations:

f1(x1) = ... = £ _(x))

i
2‘
[}

and let W, X e X Woo with W“j r 1 $3J s r , be defined

1
by the equation fj(xj) = 1 . In what follows we assume, for
simplicity, that kj is totally complex, then fj is positive
definite and we can define a projection

«1/4d. d.

fj(aj) J, a. er J

W:W(]R)—ch(IR),ﬁ:aj}——>a 3

3

(this map is not defined on the subset fj(xj) =0, 1sjsr,

of smaller dimension and containing no integer points except the
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origin) . Moreover, one can define a natural projection map
h ¢t WelR) =T of Wo(R) on T and take as elementary
the subsets of W(IR) of the shape:

e -
{ala = (a1,...,ar), t, < f (aj) St m(a) € U} ,

1 j 2!

where 0 & t1 < t2 and where h(lU) is a smooth subset of T .,

Theorem 7. Thenre L4 a Bonrnel measune u on W{(IR) such that

card (V n W(Z)) = u(V) W‘f#ﬂ_m + 0 (CWMew) Yy

with vy > 0, where t(V) = max {fj(aj)!; € V} , for any smooth

subset V of W(R) (L.e. smooth with néépecz to the sysiem o4

elementany sets we have jfust descrdbed).

Corollary 3. The 5o££bwing asymplotic formula holds thue:

- 1/d .
card {ala € W(Z), ]|aj]|< X J, 15 j s rl = T%+§%¥%%% +
o(x'7Y)  with Yy > 0 , where |l a.]l:= max |a,,| and
] 1sisq, 13
N 1/a,
where m(x) := u({yly € W(R), ||yj||< x J,153 sz}

Mokreovenr, Lthere fwo constants C1, c sduch that C,x s m(x) s C,Xx

2 2
Theorem 7 can be deduced (with the help of lemma 5) from theorem 6.
The results described in this lecture appear in [18]-[20] (cf.

also {11] and [14, Ch. III]).
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