
Max-Planck-Institut für Mathematik
Bonn

On semiring complexity of Schur polynomials

by

Sergey Fomin
Dima Grigoriev

Dorian Nogneng
Éric Schost

Max-Planck-Institut für Mathematik
Preprint Series 2016 (34)

On semiring complexity of Schur polynomials

Sergey Fomin
Dima Grigoriev

Dorian Nogneng
Éric Schost

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109
USA

CNRS, Mathématiques
Université de Lille
59655 Villeneuve d’Ascq
France

LIX, École Polytechnique
91128 Palaiseau Cedex
France

Cheriton School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1
Canada

MPIM 16-34

ON SEMIRING COMPLEXITY OF SCHUR POLYNOMIALS

SERGEY FOMIN, DIMA GRIGORIEV, DORIAN NOGNENG, AND ÉRIC SCHOST

Abstract. Semiring complexity is the version of arithmetic circuit complexity
that allows only two operations: addition and multiplication. We show that
semiring complexity of a Schur polynomial sλ(x1, . . . , xk) labeled by a partition
λ = (λ1 ≥ λ2 ≥ · · ·) is bounded by O(log(λ1)) provided the number of variables k
is fixed.

1. Introduction and main results

Let f(x1, . . . , xk) be a polynomial with nonnegative integer coefficients. As such,
f can be computed using addition and multiplication only—without subtraction or
division. To be more precise, one can build an arithmetic circuit wherein

• each gate performs an operation of addition or multiplication;
• the inputs are x1, . . . , xk, possibly along with some positive integer scalars;
• the sole output is f(x1, . . . , xk).

The semiring complexity (or {+,×}-complexity) of f is the smallest size of (i.e., the
smallest number of gates in) such an arithmetic circuit. This notion is illustrated in
Figure 1. For additional details, see [4, Section 2] and references therein.

x1 x2

n+ n× n×
n+ n×

n×
n+

n×

6
�
��

�
��

�
��

�
��

�
���
��

@
@I

�
��

@
@I

@@I

@
@

@
@
@I

6

6

6

6

6

Figure 1. The smallest {+,×}-circuit computing the polynomial
f(x1, x2) = h5(x1, x2) = x51 + x41x2 + x31x

2
2 + x21x

3
2 + x1x

4
2 + x52. This

circuit is based on the formula h5(x1, x2) = (x1 +x2)(x
2
1(x

2
1 +x22)+x42).

Date: August 15, 2016.
Key words and phrases. Semiring complexity, Schur function, Young tableaux.
2010 Mathematics Subject Classification Primary 68Q25, Secondary 05E05.
Partially supported by NSF grant DMS-1361789 (S. F.), RSF grant 16-11-10075 (D. G.), and

the NSERC (É. S.). D. G. thanks MCCME Moscow and the Max-Planck Institut für Mathematik
for their hospitality and inspiring atmosphere.

1

2 SERGEY FOMIN, DIMA GRIGORIEV, DORIAN NOGNENG, AND ÉRIC SCHOST

This paper is devoted to the problem of determining semiring complexity of sym-
metric polynomials. More specifically, we focus our attention on Schur functions,
an important class of symmetric polynomials which play prominent roles in several
branches of mathematics; see, e.g., [8, Chapter I] and [13, Chapter 7].

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) be an integer partition. The Schur function (or Schur
polynomial)) sλ(x1, . . . , xk) is a symmetric polynomial of degree |λ| =

∑
i λi in the

variables x1, . . . , xk which can be defined in many different ways. One remarkable
feature of Schur polynomials that makes them an exciting object of study in algebraic
complexity theory is that the classical formulas defining them fall into two categories.
On the one hand, there are determinantal expressions (e.g., the Jacobi-Trudi formula
or the bialternant formula) which provide efficient ways to compute Schur functions in
an unrestricted setting, i.e., when all arithmetic operations are allowed. On the other
hand, Schur functions are generating functions for semistandard Young tableaux.
This description represents them as polynomials with manifestly positive coefficients;
so they can be computed using addition and multiplication only. We note however
that the näıve approach based on these monomial expansions yields algorithms whose
(semiring) complexity is very high—and indeed very far from the optimum.

Our main result is the following. (We use the notation λ′ = (λ′1 ≥ λ′2 ≥ · · ·) for
the partition conjugate to λ.)

Theorem 1.1. The semiring complexity of a Schur polynomial sλ(x1, . . . , xk) labeled
by partition λ=(λ1≥· · ·≥λ`) is at most O(log(λ1)k

52k``d) where d=max
j
λ′j(k−λ′j).

Since ` ≤ k (or else sλ(x1, . . . , xk) = 0) and d ≤ k2/4, we obtain:

Corollary 1.2. The semiring complexity of sλ(x1, . . . , xk) is bounded from above

by kk
2(1

4
+o(1))O(log(λ1)). If the number of variables k is fixed, then this complexity

is O(log(λ1)).

Remark 1.3. The problem of designing efficient algorithms employing addition and
multiplication arises naturally in the context of numerical computation, as these
algorithms possess valuable stability properties. Motivated by such considerations,
J. Demmel and P. Koev [3] designed {+,×}-algorithms for computing Schur polyno-
mials using a dynamic programming approach. In the notation of Theorem 1.1, their
[3, Proposition 5.3] asserts that the semiring complexity of sλ(x1, . . . , xk) is bounded

from above by O(e5.2
√
|λ|`k). When k is fixed, and the shape λ grows, this bound is

much larger than the one is Corollary 1.2. On the other hand, in the regime where
λ is fixed, and the number of variables k grows, the complexity of the Demmel-Koev
algorithm is linear in k whereas the bound in Theorem 1.1 is exponential in k. It
would be interesting to find a common generalization of these results.

We prove Theorem 1.1 in two stages. At the first stage (see Section 3), we treat
a special case where partition λ has only one (nonzero) part. More explicitly, we
obtain the following result.

ON SEMIRING COMPLEXITY OF SCHUR POLYNOMIALS 3

Let hn(x1, . . . , xk) denote the complete homogeneous symmetric polynomial, i.e.,
the sum of all monomials of degree n in the variables x1, . . . , xk:

(1.1) hn(x1, . . . , xk) =
∑

1≤i1≤···≤in≤k

xi1 · · · xin .

(See an example in Figure 1.)

Theorem 1.4. The semiring complexity of hn(x1, . . . , xk) is O(k2 log(n)).

Our proof of Theorem 1.1, presented in Section 6, relies on three main ingredients:

• Theorem 1.4;
• a formula expressing a multichain-generating function of a shellable poset in

terms of complete homogeneous polynomials, see Section 4; and
• a formula representing a Schur polynomial as a multichain generating function

(or more precisely an iterated sum thereof), see Section 5.

2. Related problems

The general problem of determining the semiring complexity of a Schur polynomial
is open. In particular, the following tantalizing problem remains out of reach.

Problem 2.1 ([4, Problem 3.2]). Can the semiring complexity of sλ(x1, . . . , xk) be
bounded by a polynomial in k and n = |λ|?

Remark 2.2. A general method for obtaining lower bounds on semiring complexity
was suggested in 1976 by C. Schnorr [11]. Schnorr’s bound only depends on the
support of a polynomial, i.e., on the set of monomials that contribute with a positive
coefficient. Schnorr’s argument was further refined by E. Shamir and M. Snir [12];
powerful applications were given in [6]. As mentioned in [4, Remark 3.3], Schnorr-
type lower bounds are useless in the case of Schur functions since computing a Schur
function is difficult not because of its support but because of the complexity of its
coefficients (the Kostka numbers). The problem of computing an individual Kostka
number is known to be #P-complete (H. Narayanan [9]) whereas the support of a
Schur function is very easy to determine.

Remark 2.3. The paper [4] by the first two authors (with G. Koshevoy) investigated
the concept of semiring complexity alongside other similar computational models
involving restricted sets of arithmetic operations. In brief, the results obtained in [4,
6, 16] demonstrate that that adjoining subtraction and/or division to the two-element
set {+,×} of allowed arithmetic operations can, in some cases, dramatically decrease
computational complexity. (By contrast, removing division from {+,−,×,÷} comes
at merely polynomial cost, as shown by V. Strassen’s [14].) We refer the reader to [4]
for the discussion of these issues.

Remark 2.4. In the unrestricted model, one can compute sλ(x1, . . . , xk) in time
polynomial in k and log(λ1), via the bialternant formula, see, e.g., [13, Section 7.15],
and using repeated squaring to compute the powers of variables appearing in the
relevant determinants.

4 SERGEY FOMIN, DIMA GRIGORIEV, DORIAN NOGNENG, AND ÉRIC SCHOST

One important complexity model studied in [4] is subtraction-free complexity,
which allows the operations of addition, multiplication, and division. It turns out
that subtraction-free complexity of a Schur function is indeed polynomial.

Theorem 2.5 ([7, Section 6], [2, Section 4], [4, Theorem 3.1]). Subtraction-free
complexity of a Schur polynomial sλ(x1, . . . , xk) is at most O(n3) where n = k + λ1.

We emphasize that the algorithms in [2, 4, 7] utilize division in essential ways, so
they do not bring us any closer to the resolution of Problem 2.1.

Since subtraction-free complexity is bounded from above by semiring complexity,
Theorem 1.1 implies that the subtraction-free complexity of a particular Schur poly-
nomial sλ(x1, . . . , xk) can be much smaller (for small k) than the upper bound of
Theorem 2.5.

Problem 2.6. Find a natural upper bound on subtraction-free complexity of a Schur
polynomial that simultaneously strengthens Theorems 1.1 and 2.5.

Remark 2.7. The paper [5] by G. Koshevoy and the second author provided an
exponential lower bound on {+,×}-complexity of a monomial symmetric function.

3. Semiring complexity of complete homogeneous polynomials

In this section, we prove Theorem 1.4. We use the notation

hm = hm(x1, . . . , xk) =
∑

1≤i1≤···≤im≤k

xi1 · · ·xim ,(3.1)

h̃m = hm(x21, . . . , x
2
k),(3.2)

em = em(x1, . . . , xk) =
∑

1≤i1<···<im≤k

xi1 · · ·xim .(3.3)

Lemma 3.1. One can compute hn−k+1, . . . , hn starting from h̃bn
2
c−k+1, . . . , h̃bn

2
c and

e1, . . . , ek, using O(k2) additions and multiplications.

Proof. The key algebraic observation is that∑
m≥0

hm t
m =

k∏
i=1

(1− xit)−1 =
k∏
i=1

(1 + xit)
k∏
i=1

(1− x2i t2)−1 =
k∑
a=0

eat
a
∑
b≥0

h̃bt
2b,

and consequently

(3.4) hm =
∑

m−k≤2b≤m

em−2b h̃b .

For n−k+1 ≤ m ≤ n, the indices b appearing on the right-hand side of (3.4) satisfy
b ≤ bm

2
c ≤ bn

2
c and b ≥ dm−k

2
e ≥ dn−2k+1

2
e = bn

2
c − k + 1. Thus we can use (3.4) to

compute these hm; this takes O(k) operations for each of the k values of m. �

Lemma 3.2. One can compute e1, . . . , ek using O(k2) additions and multiplications.

Proof. The required algorithm is obtained by iterating the Pascal-type recurrence

em(x1, . . . , xj) = xjem−1(x1, . . . , xj−1) + em(x1, . . . , xj−1). �

ON SEMIRING COMPLEXITY OF SCHUR POLYNOMIALS 5

We note that in the unrestricted model, the complexity of computing e1, . . . , ek is
of the order k log(k), see [15].

Proof of Theorem 1.4. Let us denote by T (n) the semiring complexity of computing
hn−k+1, . . . , hn. Lemmas 3.1–3.2 imply that T (n)≤ T (bn

2
c)+O(k2). (Squaring the

variables x1, . . . , xk, which is needed to compute the h̃b’s, takes linear time.) We
conclude that T (n) = O(k2 log(n)), as desired. �

4. Partially ordered sets: generating functions and shellings

Definition 4.1 (Poset, chain complex). Let P be a finite graded partially ordered set
(poset) with a unique minimal element 0̂ and a unique maximal element 1̂. A linearly
ordered subset

{p1 < · · · < pm} ⊂ P

is called a chain (of size m). The chain complex of P is the simplicial complex on
the ground set P whose simplices are the chains in P . Since P is graded, all maximal
(by inclusion) chains in P have the same cardinality, so the chain complex is pure.

Definition 4.2 (Shelling). A linear ordering

(4.1) C1, . . . , Cf

of the set of all maximal chains in P is called a shelling (of the chain complex)

if for every j ∈ {1, . . . , f}, the subcomplex
⋃j−1
i=1 Ci of the chain complex (i.e., the

simplical complex whose maximal simplices are C1, . . . , Cj−1) intersects Cj at a union
of codimension 1 faces of Cj. We denote by C∗j ⊂ Cj the complement (inside Cj)
of the intersection of these codimension 1 faces. Equivalently, C∗j is the (unique)
smallest face of Cj not contained in

⋃
i<j Ci. Put differently, C∗j consists of the

elements of Cj which can be exchanged with another element to form one of the
maximal chains preceding Cj in the shelling:

(4.2) C∗j = {x ∈ Cj | ∃y ∈ P ∃i < j Cj − {x} ∪ {y} = Ci}.

Definition 4.3 (Multichain, support). A “weakly increasing” sequence M = (p1 ≤
· · · ≤ pm) consisting of elements pi ∈ P is called a multichain of size m; we write
|M | = m. The elements of P which appear in M (with nonzero multiplicity) form
the support of M , denoted by supp(M). The support of any multichain is a chain.

Let us associate a formal variable zp with each element p ∈ P . For a multiset M
of elements in P , we denote by zM the corresponding monomial: zM =

∏
p∈M zp.

Lemma 4.4. If P has a shelling as above, then the generating function for its mul-
tichains of size m is given by

(4.3)
∑

multichain M
|M |=m

zM =

f∑
j=1

∑
C∗j⊂supp(M)⊂Cj

|M |=m

zM =

f∑
j=1

zC
∗
j hm−|C∗j |((zp)p∈Cj

),

where we use the notation (4.1)–(4.2).

6 SERGEY FOMIN, DIMA GRIGORIEV, DORIAN NOGNENG, AND ÉRIC SCHOST

Proof. For any chain C, there is a unique maximal chain Cj with C∗j ⊂ C ⊂ Cj . (The
chains C satisfying the latter condition are precisely the ones contained in Cj but in
none of the preceding chains Ci (i < j).) Categorizing the multichains M by their
support, and applying the above observation to C = supp(M), we establish (4.3). �

In Section 5, we will relate Schur polynomials to a special case of the above con-
struction involving a class of (shellable) posets Ph,k described in Definition 4.5 below.
These posets have been extensively studied in algebraic combinatorics, due to the role
they play in representation theory and the classical Schubert Calculus. In particular,
Ph,k describes the attachment of Schubert cells in the Grassmann manifold Gr(h, k).

Definition 4.5 (Posets Ph,k). Let h and k be positive integers, with h ≤ k. We
denote by Ph,k the poset whose elements are column vectors (or simply columns) of
height h whose entries lie in the set {1, . . . , k} and strictly increase downwards:

(4.4) t =

[
t1
...
th

]
∈ Zh, 1 ≤ t1 < · · · < th ≤ k;

these are partially ordered component-wise:

[
t1
...
th

]
≤

[
t′1
...
t′h

]
if and only if

{
t1≤t′1

...
th≤t′h

.

Let us make a few simple but useful observations.

Lemma 4.6.

(1) The cardinality of Ph,k is
(
k
h

)
.

(2) The columns 0̂ =

[
1
...
h

]
and 1̂ =

[
k−h+1

...
k

]
are the unique minimal and maximal

elements of Ph,k, respectively.
(3) The poset Ph,k is graded, with the rank function given by

rk(

[
t1
...
th

]
) = t1 + · · ·+ th −

h(h+ 1)

2
.

(4) Each maximal chain in Ph,k has cardinality h(k − h) + 1.
(5) The poset Ph,k is canonically isomorphic to the poset of integer partitions

(partially ordered component-wise) having at most h parts all of which are
≤ k − h. The isomorphism is defined by[

t1
...
th

]
7→ (th − h, . . . , t1 − 1).

Equivalently, Ph,k is canonically isomorphic to the poset of Young diagrams fitting
inside the h× (k − h) box, ordered by inclusion.

Example 4.7. Let h = 2 and k = 5. The poset P2,5 consists of
(
5
2

)
= 10 elements

of the form [ab], with 1 ≤ a < b ≤ 5. These are in bijection with partitions µ =
(µ1, µ2) = (b − 2, a − 1) satisfying 3 ≥ µ1 ≥ µ2 ≥ 0 (equivalently, Young diagrams

ON SEMIRING COMPLEXITY OF SCHUR POLYNOMIALS 7

fitting inside the 2×3 rectangle). There are 5 maximal chains in P2,5, corresponding
to the 5 standard tableaux (cf. Definition 5.1) of this rectangular shape:

maximal chains standard tableaux

[12] < [13] < [23] < [24] < [34] < [35] < [45] [135246]

[12] < [13] < [23] < [24] < [25] < [35] < [45] [134256]

[12] < [13] < [14] < [24] < [34] < [35] < [45] [125346]

[12] < [13] < [14] < [24] < [25] < [35] < [45] [124356]

[12] < [13] < [14] < [15] < [25] < [35] < [45] [123456]

We will later need the following crude estimate.

Lemma 4.8. The number of maximal chains in Ph,k is bounded by hh(k−h).

Proof. The maximal chains in Ph,k correspond to the standard Young tableaux (see,
e.g., Definition 5.1 below) of rectangular shape h× (k−h). Such a standard tableau
can be constructed by consecutively placing the entries 1, . . . , h(k−h), in this order.
Each time, we have at most h choices (at most one per row). �

Definition 4.9 (Intervals Ph,k[a,b], and lexicographic ordering of maximal chains).
For a,b ∈ Ph,k satisfying a ≤ b, we denote by [a,b] = Ph,k[a,b] the corresponding
(order-theoretic) interval:

Ph,k[a,b] = {c ∈ Ph,k | a ≤ c ≤ b}.

In the special case Ph,k[0̂, 1̂] = Ph,k, we recover the entire poset Ph,k.
The lexicographic ordering on the set of maximal chains in Ph,k[a,b] is the linear

order defined as follows. Let

C = (a =

[a11
...
ah1

]
< · · · <

[a1N
...

ahN

]
= b),

C ′ = (a =

[
a′11
...
a′h1

]
< · · · <

[
a′1N
...

a′hN

]
= b)

be two maximal chains in Ph,k[a,b]. Let j indicate the leftmost position where these
two chains differ, that is, the smallest index for which there exists i with aij 6= a′ij.
Furthermore, let i be the largest value (corresponding to the lowermost location)
for which this inequality occurs (for the minimal choice of j). Then C < C ′ in the
lexicographic ordering if and only if aij < a′ij.

Example 4.10. In Example 4.7, the maximal chains in P2,5 = P2,5[0̂, 1̂] are listed
in the lexicographic order, top down.

The following result is a special case (for Lie type A) of a well known result about
shellability of intervals in Bruhat order quotients for finite Coxeter groups, see [1, 10].

Lemma 4.11. The lexicographic ordering of the maximal chains in Ph,k[a,b] pro-
vides a shelling of this poset.

8 SERGEY FOMIN, DIMA GRIGORIEV, DORIAN NOGNENG, AND ÉRIC SCHOST

Combining Lemmas 4.4 and 4.11 enables us to express a generating function for
multichains in Ph,k[a,b] in terms of complete homogeneous symmetric functions.
These expressions, reformulated in terms of a certain kind of tableaux, will be used
in Section 5 to obtain efficient {+,×}-algorithms for computing Schur functions.

5. Schur polynomials as multichain generating functions

Let us recall the combinatorial definition of a Schur polynomial sλ(x1, . . . , xk)
labeled by an integer partition λ = (λ1 ≥ · · · ≥ λ` ≥ 0). Note that we allow trailing
zeroes at the end of λ.

We assume that ` ≤ k. This condition does not restrict the generality, since λ` > 0
and ` > k imply sλ(x1, . . . , xk) = 0.

We use the notation n = |λ| = λ1 + · · ·+ λ` for the size of the partition λ.

Definition 5.1 (Tableaux, Schur functions). A semistandard (Young) tableau T of
shape λ = |T | is an array of integers

T = (ti,j | 1 ≤ i ≤ `, 1 ≤ j ≤ λi)

satisfying ti,j < ti+1,j and ti,j ≤ ti,j+1 whenever these inequalities make sense.
A tableau T is called standard if each of the numbers 1, . . . , n appears exactly once
among the n tableau entries ti,j . We denote by xT the monomial associated with T :

xT =
∏
i,j

xti,j .

The Schur function (or Schur polynomial) sλ(x1, . . . , xk) is the generating function
for semistandard tableaux of shape λ and entries in {1, . . . , k}:

sλ(x1, . . . , xk) =
∑
|T |=λ

xT .

By construction, sλ(x1, . . . , xk) is a homogeneous polynomial of degree n in the
variables x1, . . . , xk, with positive integer coefficients. It is well known (see, e.g.,
[13, Chapter 7]) that sλ(x1, . . . , xk) is symmetric with respect to permutations of the
variables.

Example 5.2. Let ` = 2 and λ = (r, r). A semistandard tableau of shape λ is a
2 × r matrix T = (ti,j) with positive integer entries which weakly increase left-to-
right in each row, and strictly increase top-down in each column. The corresponding
Schur polynomial is given by s(r,r)(x1, . . . , xk) =

∑
T

∏
i

∏
j xti,j where the sum is

over all such tableaux with entries ≤ k. For example, if r = 2 and k = 3, then we
get 6 different tableaux, and the answer is s(2,2)(x1, x2, x3) = x21x

2
2 + x21x

2
3 + x22x

2
3 +

x21x2x3 + x1x
2
2x3 + x1x2x

2
3 .

Our next goal is to restate Definition 5.1 using the language of multichain gener-
ating functions introduced in Section 4.

The connection between Schur functions and the posets Ph,k comes from the ob-
servation that the multichains of size m in Ph,k are in bijection with semistandard
tableaux of rectangular shape h × m and entries ≤ k. We next extend this corre-
spondence to arbitrary shapes. This will require some preparation.

ON SEMIRING COMPLEXITY OF SCHUR POLYNOMIALS 9

Definition 5.3 (Dissecting Young diagrams into rectangular shapes). Let λ = (λ1 ≥
· · · ≥ λ`) be an integer partition. As usual, we denote by λ′ the conjugate partition,
i.e., the partition whose parts are the column lengths of (the shape of) λ. We then

denote by λ̃′1 > · · · > λ̃′s the integers, listed in the decreasing order, which appear

as parts of λ′. In other words, λ̃′1, . . . , λ̃
′
s are all the (different) heights of columns in

the Young diagram of λ. We denote by λ̃ = (λ̃1 ≥ · · · ≥ λ̃`) the partition conjugate

to λ̃′ = (λ̃′1, . . . , λ̃
′
s). To rephrase, the shape λ̃ is obtained from λ by keeping one

column of each height, and striking out the rest.
We can now dissect the Young diagram λ by vertical cuts into s rectangular shapes

of sizes h × (λh − λh+1) where h runs over the set of parts of λ̃′ (equivalently, the
distinct column lengths of λ). To simplify notation for the sake of future arguments,

we denote hj = λ̃′j and mj = λhj −λhj+1− 1, so that λ gets dissected into rectangles
of sizes hj × (mj + 1), for j = 1, . . . , s.

Example 5.4. Let λ = (6, 6, 4, 1, 1), ` = 5. Then λ′ = (5, 3, 3, 3, 2, 2), λ̃′ = (5, 3, 2),

λ̃ = (3, 3, 2, 1, 1), s = 3. The shape λ can be dissected by vertical cuts into three
rectangles of sizes 5 × 1, 3 × 3, and 2 × 2, respectively. In this example, we have
h1 = 5, h2 = 3, h3 = 2,m1 = 0,m2 = 2,m3 = 1.

Definition 5.5 (Pruning of tableaux). Let T be a semistandard tableau of shape λ.

The pruning of T is the semistandard tableau T̃ of shape λ̃ obtained from T by
selecting the rightmost column of each height (and removing all columns of that
height located to the left of it). We denote by a1, . . . , as the columns of T̃ , listed left
to right. (These columns have heights h1, . . . , hs, respectively.) We denote by āj the
column of height hj+1 obtained from aj by removing the hj − hj+1 bottom entries.

We furthermore denote by T1, . . . , Ts the semistandard tableaux of rectangular
shapes h1 ×m1, . . . , hs ×ms obtained by dissecting T by the vertical cuts described
in Definition 5.3, and then removing the rightmost column from each of the resulting
tableaux. (If mj = 0, then Tj is empty.) Thus T is obtained by interlacing the
rectangular tableaux Tj with the columns of the pruning: T = [T1|a1|T2|a2| · · · |Ts|as].

Example 5.6. Continuing with Example 5.4, let T =

[
1 1 2 2 2 4
2 2 3 3 3 5
4 5 6 6
5
6

]
. Then

T̃ =

[
1 2 4
2 3 5
4 6
5
6

]
, T1 = ∅, a1 =

[
1
2
4
5
6

]
, T2 =

[
1 2
2 3
5 6

]
, a2 =

[
2
3
6

]
, T3 = [23], a3 = [45].

Consider the set of semistandard tableaux T of a given shape λ, with entries ≤ k,
and with a given pruning T̃ = [a1| · · · |as]. Note that once T̃ and λ have been fixed,
each tableau Tj, for 1 ≤ j ≤ s, can be chosen independently of the others, as long
as it satisfies the following restrictions:

• Tj is a semistandard tableau of rectangular shape hj ×mj, with entries ≤ k;
as such, it can be viewed as a multichain of size mj in the poset Phj ,k;
• every column a in Tj (i.e., every element of this multichain) satisfies the

inequalities āj−1 ≤ a ≤ aj, with respect to the partial order in Phj ,k.

10 SERGEY FOMIN, DIMA GRIGORIEV, DORIAN NOGNENG, AND ÉRIC SCHOST

(We set ā0 = 0̂ =

[
1...
`

]
by convention, so that the lower bound is redundant forj =1.)

This gives a bijection between the set of tableaux under consideration and a Cartesian
product of sets of multichains in the posets Phj ,k:

semistandard tableaux T
of shape λ, with entries ≤ k,

with pruning T̃ = [a1| · · · |as]

←→
s∏
j=1

{
multichains of size mj

in Phj ,k[āj−1, aj]

}
Identifying multichains in Phj ,k[āj−1, aj] with semistandard tableaux of rectangular
shape, and passing to generating functions, we obtain the following result.

Lemma 5.7. With the notation as above, we have

(5.1) sλ(x1, . . . , xk) =
∑
T̃

xT̃
s∏
j=1

∑
Tj

xTj ,

where

• T̃ = [a1| · · · |as] runs over semistandard tableaux of shape λ̃, with entries ≤ k;
• Tj runs over semistandard tableaux of rectangular shape hj ×mj whose col-

umns form a multichain in Phj ,k[āj−1, aj].

Since the interval Phj ,k[āj−1, aj] is (lexicographically) shellable, the sums
∑

Tj
xTj

appearing in (5.1) can be computed using formula (4.3):

Lemma 5.8. We have

(5.2)
∑
T

xT =
∑
Q

xQ
∗
hm−|Q∗|(x

c1 , . . . ,xcN),

where

• T runs over semistandard tableaux of rectangular shape h×m whose columns
form a multichain in Ph,k[a,b];
• Q = [c1| · · · |cN] runs over the maximal chains in Ph,k[a,b], and Q∗ is a

subchain of Q obtained from Q as in (4.2).

Let us restate the latter condition in concrete terms. For each pair of consecutive
columns cj and cj+1, we have cj+1 = cj + eij for some ij ∈ {1, . . . , h}, where ei
denotes the column whose ith component is equal to 1, and all others are equal to 0.
The chain/tableau Q∗ is formed by the subset of columns cj for which ij−1 > ij and
moreover cj−1 + ej ∈ Ph,k (so that replacing cj by cj−1 + ej transforms Q into a
lexicographically smaller maximal chain).

Example 5.9. Let h = 2, k = 5, a = 0̂, b = 1̂, cf. Example 4.7. Then (5.2) becomes

s(m,m)(x1,. . ., x5)=hm(x1x2, x1x3, x2x3, x2x4, x3x4, x3x5, x4x5)

+x2x5 hm−1(x1x2, x1x3, x2x3, x2x4, x2x5, x3x5, x4x5)

+x1x4 hm−1(x1x2, x1x3, x1x4, x2x4, x3x4, x3x5, x4x5)

+x1x4 ·x2x5 hm−2(x1x2, x1x3, x1x4, x2x4, x2x5, x3x5, x4x5)
+x1x5 hm−1(x1x2, x1x3, x1x4, x1x5, x2x5, x3x5, x4x5)

ON SEMIRING COMPLEXITY OF SCHUR POLYNOMIALS 11

6. Proof of the main theorem

Combining (5.1) and (5.2), we obtain:

Corollary 6.1. The Schur polynomial sλ(x1, . . . , xk) is given by

(6.1) sλ(x1, . . . , xk) =
∑
|T̃ |=λ̃

xT̃
s∏
j=1

∑
Q

xQ
∗
hmj−|Q∗|(x

c1 , . . . ,xcN),

where

• λ̃, s, h1, . . . , hs, and m1, . . . ,ms are described in Definition 5.3;
• T̃ = [a1| · · · |as] runs over semistandard tableaux of shape λ̃, with entries ≤ k;
• Q = [c1| · · · |cN] runs over the maximal chains in Phj ,k[āj−1, aj].

To prove Theorem 1.1, we analyze the (semiring) complexity of computing a Schur
polynomial sλ(x1, . . . , xk) using the formula (6.1) together with Theorem 1.4.

We begin by computing the monomials xc, for all columns c of height hj with

entries ≤ k, for each j ≤ s. This can be done using ≤ `
∑

j≤s
(
k
hj

)
multiplications.

(Note that s ≤ `.)

Recall that the Young diagram λ̃ has s columns, of heights h1, . . . , hs. Hence the
number of tableaux T̃ appearing in (6.1) is bounded by

∏
j≤s
(
k
hj

)
.

Each monomial xT̃ can be computed by s− 1 multiplications (given all the xci).

The number of maximal chains in Phj ,k[āj−1, aj] is at most h
hj(k−hj)
j , by Lemma 4.8.

Each of these chains has length N ≤ h(k − h) + 1. Since |Q∗| ≤ |Q| = N , we can
compute xQ

∗
in time ≤ h(k − h). Also, mj − |Q∗| ≤ λ1. Theorem 1.4 now implies

that we can compute xQ
∗
hmj−|Q∗|(x

c1 , . . . ,xcN) in timeO(h2(k−h)2 log(λ1)). Putting
everything together, we obtain the following upper bound on the semiring complexity
of sλ(x1, . . . , xk):

`
∑
j≤s

(
k

hj

)
+
∏
j≤s

(
k

hj

)
· (2s+

∑
j≤s

h
hj(k−hj)
j (O(h2j(k − hj)2 log(λ1)))).

This can be replaced by O(log(λ1))s`
2k22ks`d where

d = max
j
hj(k − hj) = max

j
λ′j(k − λ′j),

and then by O(log(λ1))k
52k``d. �

References

[1] A. Björner and M. Wachs, Bruhat order of Coxeter groups and shellability, Adv. in Math. 43
(1982), 87–100.

[2] C. Chan, V. Drensky, A. Edelman, R. Kan, and P. Koev, On computing Schur functions and
series thereof, preprint, 2008.

[3] J. Demmel and P. Koev, Accurate and efficient evaluation of Schur and Jack functions, Math.
Comp. 75 (2006), 223–239.

[4] S. Fomin, D. Grigoriev, and G. Koshevoy, Subtraction-free complexity, cluster transformations,
and spanning trees, Found. Comput. Math. 16 (2016), 1–31.

12 SERGEY FOMIN, DIMA GRIGORIEV, DORIAN NOGNENG, AND ÉRIC SCHOST

[5] D. Grigoriev and G. Koshevoy, Complexity of tropical Schur polynomials, J. Symbolic Comput.
74 (2016), 46–54.

[6] M. Jerrum and M. Snir, Some exact complexity results for straight-line computations over
semirings, J. Assoc. Comput. Mach. 29 (1982), 874–897.

[7] P. Koev, Accurate computations with totally nonnegative matrices, SIAM J. Matrix Anal.
Appl. 29 (2007), 731–751.

[8] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Mono-
graphs, 1999.

[9] H. Narayanan, On the complexity of computing Kostka numbers and Littlewood-Richardson
coefficients, J. Algebraic Combin. 24, (2006), 347–354.

[10] R. A. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982),
104–126.

[11] C. P. Schnorr, A lower bound on the number of additions in monotone computations, Theor.
Comput. Sci. 2, (1976), 305–315.

[12] E. Shamir and M. Snir, Lower bounds on the number of multiplications and the number of
additions in monotone computations, Technical Report RC-6757, IBM, 1977.

[13] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge University Press, 1999.
[14] V. Strassen, Vermeidung von Divisionen, J. Reine Angew. Math. 264 (1973), 184-202.
[15] V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von

Interpolationskoeffizienten, Numer. Math. 20 (1972/73), 238–251.
[16] L. G. Valiant, Negation can be exponentially powerful, Theor. Comput. Sci. 12, (1980), 303–

314.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
E-mail address: fomin@umich.edu
URL: http://www.math.lsa.umich.edu/˜fomin/

CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, 59655, France
E-mail address: Dmitry.Grigoryev@math.univ-lille1.fr
URL: http://en.wikipedia.org/wiki/Dima Grigoriev

LIX, École Polytechnique, 91128 Palaiseau Cedex, France
E-mail address: dorian.nogneng@lix.polytechnique.fr
URL: http://www.lix.polytechnique.fr/~dorian.nogneng/

Cheriton School of Computer Science, University of Waterloo, Waterloo, ON,
Canada N2L 3G1

E-mail address: eschost@uwaterloo.ca
URL: https://cs.uwaterloo.ca/~eschost/

	34_Fomin_cover
	34_Fomin

